
Interactive Visualization and Minimization
of Labelled Transition Systems

Felix Freiberger
Saarland University

Natural Sciences and Technology I
Computer Science

30.09.2014

Bachelor’s Thesis

Reviewers:

Univ.-Prof. Dr.-Ing. Holger Hermanns
Univ.-Prof. Dr. Verena Wolf

Contents
1 Introduction 3

2 Preliminaries 4
2.1 pseuCo . 4
2.2 CCS . 4
2.3 Previous Work . 4
2.4 Explanation of Symbols and Technical Terms . 4

3 Accessing pseuCo.com 5
3.1 Accessing the Online Version of pseuCo.com . 5
3.2 Building pseuCo.com from Source . 5

4 User Manual 6

5 Developer Manual 7
5.1 The Debugging Page . 7
5.2 Dependencies . 7
5.3 The Build Process . 7
5.4 Application Start-Up . 8
5.5 How pseuCo.com Stores and Handles Files . 9
5.6 Offline Mode . 10
5.7 Tasks and the Background Worker . 13
5.8 Editors, Translations and Actions . 16
5.9 LTS Exploration . 17
5.10 LTS Visualization and Graph Layout . 18
5.11 LTS Minimization . 19
5.12 The Server Component of pseuCo.com . 29
5.13 A Build Server for pseuCo.com . 30

6 The Future of pseuCo.com 32
6.1 Model Checking . 32
6.2 Additional Input Formats . 32
6.3 New Translations for Existing File Types . 32

Appendix A Definitions for LTS 34

Appendix B Code Listings 35

Appendix C The Repository Structure 47

Appendix D The Build Directory Structure 49

Appendix E User Manual (digital printout) 51

Glossary 63

Bibliography 65

This document is based on version 28ce29e0c1e78581f88a7674e60fd6de41d893f2 of pseuCo.com, tagged thesis.

1

Introduction
Labelled transition systems (LTS) are a popular way of modelling the behaviour of reactive systems and
processes. Consequently, there are many tools to create, view and analyse such systems. However, many
of these tools are hard to set up or use or cannot work with large or infinite transition systems. This
unnecessarily complicates the use of such systems, especially for teaching. There, complex set-up cannot
be expected from students, and infinite systems are regularly analysed while exploring the limits of LTS
and languages having LTS semantics.

For this thesis, a new application handling labelled transition systems was developed – pseuCo.com. Being
a JavaScript-based web application, it offers a set-up-free experience, while still keeping many advantages
of classic, native applications, like offline use.

In addition, pseuCo.com was designed to work with large or infinite transition systems as well as with
small ones, enabling users to view and analyse them just as they would expect. Users can visualize any
transition system right in their browser, with the ability to expand and collapse states as they wish. While
automatic graph layout keeps the system easily readable even as states appear and disappear, users are
free to rearrange states as they wish. Support for (partial) minimization – even of infinite systems – allows
to get a faster overview over the behaviour modelled by a system.

PseuCo.com includes a compiler from pseuCo to CCS, and a mechanism to convert CCS terms to labelled
transition systems. Both are based on PseuCoCo[1], and seamlessly integrated into the user interface.

PseuCo.com features an internal file system for supported file types, with extensive import and export
capabilities. A link-based file sharing mechanism enables users to easily send pseuCo.com-files to any user,
without requiring anything but an internet connection and a modern browser from the receiver.

3

Preliminaries
2.1 pseuCo

PseuCo is a programming language designed to teach concurrent programming. It features a heavily
simplified Java-like syntax, and has built-in support for message passing inspired by Go. PseuCo was
created by Christian Eisentraut and Holger Hermanns at the chair for Dependable Systems and Software
at Saarland University to be used in the mandatory Bachelor-level lecture “Nebenläufige Programmierung”
(“Concurrent Programming”).

2.2 CCS

The Calculus of Communicating Systems (CCS) is a process calculus designed to model communicating
systems. There are multiple versions of CCS. In this context, a pragmatic extension of CCS supporting
value passing (of booleans, integers and strings), sequencing and termination is used[1]. The semantics of
a CCS process is a Labelled Transition System (LTS).

2.3 Previous Work

For his Bachelor’s thesis[1], Sebastian Biewer developed a translational semantics for pseuCo, based on
CCS. His work includes a JavaScript compiler from pseuCo programs to CCS terms, a parser for CCS
and the CCS operational semantics, yielding transition systems as underlying foundational objects. This
resulted in the open source software PseuCoCo, available at https://github.com/Biewer/PseuCoCo. It
also contains a parser and type checker for pseuCo in JavaScript, written by Pascal Held.

However, PseuCoCo contains no full graphical user interface, and there are no ways to interact with the
resulting transition system except for a simple tracing functionality.

2.4 Explanation of Symbols and Technical Terms

• repository refers to the path where you stored the source code repository of pseuCo.com.

In the electronic version, you can click on the remainder of the path to see the current version in
the public online repository.

• base URL refers to the URL where you access pseuCo.com – either http://pseuco.com/ or the URL
your local webserver runs at.

In the electronic version, you can click on the remainder of the path to see the online version at
http://pseuco.com/.

• API base URL refers to the path where the pseuCo.com server component can be reached. For the
public instance, this is http://pseuco.com/api/.

• A short description of some technical terms can be found in the glossary on page 64.

4

https://github.com/Biewer/PseuCoCo
http://pseuco.com/
http://pseuco.com/
http://pseuco.com/api/

Accessing pseuCo.com
To access pseuCo.com you can either use the public online version or build it from source yourself.

3.1 Accessing the Online Version of pseuCo.com

Using a modern webbrowser, open http://pseuco.com/. Given a working internet connection, this will
open the application and save a copy for later offline use. In the future, you can open this URL even
without an internet connection to use the saved copy.

3.2 Building pseuCo.com from Source

The source code of pseuCo.com can be acquired using Git from its public repository, which is located at
http://git.fefrei.de/concurrent-programming-web.git/.

PseuCo.com has many build- and run-time dependencies, most of which can be installed automatically.
However, some have to be installed manually upfront:

1. a recent version of node.js from http://nodejs.org/, including npm, the Node Package Manager

2. the command-line interface of grunt, grunt-cli, which can be installed by running:
1 npm install -g grunt -cli

All other dependencies can be installed by npm and the default build script.

If git, node and grunt-cli are installed correctly, you can fetch and build pseuCo.com as follows:
1 git clone http ://git.fefrei.de/concurrent -programming -web.git/
2 cd concurrent -programming -web
3 npm install
4 grunt

For file sharing and file templates, pseuCo.com needs a server component. While being in the directory
repository /server/, it can be run with node server.js. The server will run on port 9128.

To open pseuCo.com, the directory repository /build/ needs to be served by an HTTP server1.

By default, pseuCo.com tries to reach the pseuCo.com server at base URL /api/, relative to the URL it is
running from. A reverse proxy can be used to forward request to this URL to the server component, as
shown in Listing 3.1. Alternatively, for development, pseuCo.com can be configured to access the server
component at another URL. For details, see section 5.1.

As soon as the HTTP server is running, accessing it with a modern browser will open the user interface.

Listing 3.1: A configuration file for using Apache as a reverse proxy
1 RewriteEngine On
2 RewriteRule (.*) http :// localhost :9128/ $1 [P]

1Using the file://-protocol will not work in most browsers due to security restrictions.

5

http://pseuco.com/
http://nodejs.org/
https://secure.fefrei.de/redmine/projects/concurrent-programming-web/repository/revisions/master/entry/server/
https://secure.fefrei.de/redmine/projects/concurrent-programming-web/repository/revisions/master/entry/build/
http://pseuco.com/api/

User Manual
PseuCo.com features an interactive user manual that can be accessed at base URL /#/help. A digital
printout of the manual can be found in Appendix E.

Remark
The User Manual contains interactive elements. If possible, please read the online version instead of
the digital printout version.

You can find the current public version of the user manual at http://pseuco.com/#/help.

6

http://pseuco.com/#/help
http://pseuco.com/#/help

Developer Manual
5.1 The Debugging Page

The pseuCo.com UI has a hidden debugging page that allows quick access to some internal settings,
located at base URL /#/debug.

5.2 Dependencies

PseuCo.com depends on several JavaScript libraries, both for the build system and for the actual application.
Libraries are managed by npm and Bower.

A full list of libraries can be found in the corresponding configuration files: Listing 5.1 shows all
dependencies that Bower installs, which are runtime dependencies. Similarly, Listing 5.2 shows the
dependencies installed by npm. All of them are build-time dependencies, except for PseuCoCo.

The Ace text editor is an additional dependency. Since it is not available as a Bower package, it is
downloaded and unzipped programatically by a build script.

5.3 The Build Process

PseuCo.com can be built from source using the included build mechanism – refer to section 3.2 for an
explanation. In this section, you can find additional information on its internal functionality.

Running npm install installs all dependencies listed in Listing 5.2, including grunt and corresponding
plug-ins. Afterwards, running grunt executes the default task defined in Listing B.1. This task performs
the following actions:

1. Test the code with jshint to find common programming errors.

2. Call Bower to install all dependencies from Listing 5.1.

Listing 5.1: Dependency section from bower.json
18 "dependencies": {
19 "bootstrap": "~3.2.0",
20 "angular": "~1.2.23",
21 "angular -strap": "~2.0.5",
22 "angular -animate": "~1.2.23",
23 "angular -route": "~1.2.23",
24 "angular -motion": "~0.3.3",
25 "angular -sanitize": "~1.2.23",
26 "angularLocalStorage": "~0.1.7",
27 "underscore": "~1.7.0",
28 "momentjs": "~2.8.2",
29 "hammerjs": "~2.0.2",
30 "d3": "~3.4.11",
31 "bootstrap -additions": "~0.2.3",
32 "jquery": "~2.1.1",
33 "jquery.cookie": "~1.4.1"

7

http://pseuco.com/#/debug

Listing 5.2: Dependency section from package.json
9 "devDependencies": {

10 "grunt": "~0.4.5",
11 "grunt -bower -task": "~0.4.0",
12 "grunt -contrib -uglify": "~0.5.1",
13 "grunt -contrib -jshint": "~0.10.0",
14 "grunt -contrib -cssmin": "~0.10.0",
15 "grunt -contrib -copy": "~0.5.0",
16 "grunt -contrib -clean": "~0.6.0",
17 "grunt -contrib -concat": "~0.5.0",
18 "grunt -contrib -watch": "~0.6.1",
19 "grunt -peg": "~1.5.0",
20 "grunt -contrib -coffee": "~0.11.1",
21 "grunt -browserify": "~2.1.4",
22 "grunt -zip": "~0.16.0",
23 "grunt -curl": "~2.0.2",
24 "grunt -contrib -rename": "0.0.3"
25 },
26 "dependencies": {
27 "PseuCoCo": "git:// github.com/Biewer/PseuCoCo.git#v0 .6.26"
28 }

3. If the specified version of Ace is missing: download and unzip it.

4. Call PEG.js to create the parsers for all grammars.

5. Compile the CoffeeScript files from PseuCoCo.

6. Bundle up all JavaScript files from PseuCoCo to pseucoco.js using Browserify.

7. Concatenate all JavaScript files from the external libraries to a single file lib.js, and minimize it
by removing unnecessary white space, resulting in lib.min.js.

8. Concatenate all main JavaScript files to app.js.

9. Concatenate and minify all CSS files from libraries to lib.css.

10. Concatenate and minify all CSS files from the main application to app.css.

11. Concatenate the JavaScript files needed for the background worker to worker.js – see section 5.7
for details.

12. Copy all the generated and static files to repository /build/ to build the final directory structure the
web server should present.

5.4 Application Start-Up

PseuCo.com heavily relies on AngularJS. All core functionality is implemented as AngularJS controllers,
directives and factories.

Remark
AngularJS heavily influences the design of JavaScript applications. Without a sound understanding
of how AngularJS works, most of the code of pseuCo.com will be hard to understand.

The website of AngularJS has some small examples demonstrating the way AngularJS applications
work as well as many useful resources in the “Learn” tab.

As in most AngularJS applications, the application start-up is controlled by the main HTML file. The
core part of it is shown in Listing 5.3.

8

https://secure.fefrei.de/redmine/projects/concurrent-programming-web/repository/revisions/master/entry/build/
https://angularjs.org/

Listing 5.3: Simplified and shortened version of index.html
1 <!DOCTYPE html >
2 <html lang="en" data -ng -app="cp.app" manifest="offline.appcache">
3 <head >
4 <meta name="viewport" content="user -scalable=no ,␣width=device -width ,␣initial -�

scale=1,␣maximum -scale =1">
5 </head >
6 <body >
7 <div class="navbar␣navbar -inverse␣navbar -fixed -top" role="navigation" data -bs -�

navbar >
8 <!-- navigation bar elements -->
9 </div>

10 <div class="fill" id="mainFill">
11 <div class="container -fluid" id="mainContainer">
12 <div data -ng -view id="view"></div>
13 </div>
14 </div>
15 <script src="js/lib.min.js"></script >
16 <script src="js/app.js"></script >
17 </body >
18 </html >

Listing 5.4: Simplified and shortened route configuration from app.js
1 .config(function ($routeProvider) {
2 $routeProvider
3 .when(’/landing ’, {
4 templateUrl: ’partials/landing.html’
5 })
6 .when(’/files’, {
7 controller: ’filesCtrl ’,
8 templateUrl: ’partials/files.html’
9 })

10 // ...
11 .otherwise ({ redirectTo: ’/’ });
12 })

After loading the library and application code – which just defines the components, but does not
actually execute any application code – AngularJS processes the HTML elements. The attribute
data-ng-app="cp.app" on the <html> element causes the module cp.app to be loaded, which is de-
fined in repository /src/js/app.js. This sets up some shared data, but most importantly, it configures
$routeProvider, as shown in Listing 5.4.

This causes AngularJS to read the route in the URL, load the corresponding controller, and inject
the corresponding partial into <div data-ng-view id="view"></div>. For example, if the user opens

base URL /#/files, the partial repository /src/partials/files.html is injected, and filesCtrl (defined
in repository /src/js/ui/controllers/filesCtrl.js) is instantiated.

5.5 How pseuCo.com Stores and Handles Files

In pseuCo.com, users can create and store files. These files are stored in the user’s browser, using the
HTML Web Storage API1.

File storage is managed by the factory files in the module cp.files, the definition of which can be
found in repository /src/js/files/files.js. It uses the angularLocalStorage library. Upon creation
every file is assigned a random, 12-digit id by which it can be referred to later on.

To allow listing all files without storing the data of all files in a single key (slowing down access), file
metadata is stored separately from file contents: There is a single repository of file metadata, stored under

1see http://www.whatwg.org/specs/web-apps/current-work/multipage/webstorage.html

9

https://secure.fefrei.de/redmine/projects/concurrent-programming-web/repository/revisions/master/entry/src/js/app.js
http://pseuco.com/#/files
https://secure.fefrei.de/redmine/projects/concurrent-programming-web/repository/revisions/master/entry/src/partials/files.html
https://secure.fefrei.de/redmine/projects/concurrent-programming-web/repository/revisions/master/entry/src/js/ui/controllers/filesCtrl.js
https://secure.fefrei.de/redmine/projects/concurrent-programming-web/repository/revisions/master/entry/src/js/files/files.js
http://www.whatwg.org/specs/web-apps/current-work/multipage/webstorage.html

Listing 5.5: fileTypes declaration from files.js
3 .value(’fileTypes ’, {
4 ccs: {
5 fullName: ’CCS ’,
6 allowCreation: true ,
7 allowEmpty: true ,
8 allowTemplate: true ,
9 allowImport: false ,

10 allowFork: true ,
11 importableFilesStatement: "no formats for this file type"
12 },
13 pseuco: {
14 fullName: ’pseuCo ’,
15 allowCreation: true ,
16 allowEmpty: true ,
17 allowTemplate: true ,
18 allowImport: false ,
19 allowFork: true ,
20 importableFilesStatement: "no formats for this file type"
21 },
22 lts: {
23 fullName: ’LTS ’,
24 allowCreation: true ,
25 allowEmpty: false ,
26 allowTemplate: false ,
27 allowImport: true ,
28 allowFork: false ,
29 noWatch: true ,
30 importableFilesStatement: "pseuCo.com -LTS -JSON -files and AUT -files"
31 }
32 })

the key files, and one key per file for the actual content.

In the same module, there is a configuration value called fileTypes, shown in Listing 5.5. For each
allowed file type, it defines multiple properties which are explained in Figure 5.1.

5.6 Offline Mode

Albeit being a web application, pseuCo.com is available offline. This is achieved by using the HTML
Application Cache2. It is configured using the manifest file repository /src/offline.appcache, shown in
Listing 5.6. It contains a list of all files belonging to the application3. These files will be downloaded
automatically by any browser supporting the application cache because the configuration file is referenced
in index.html, as shown in Listing 5.3.

Additionally, this configuration file defines base URL /api/ to be a NETWORK path. This ensures that the
path is not cached (since it is used to communicate with the server component). Furthermore, it prevents
the browser from blocking access to it based on a rule in the HTML Application Cache specification that
tries to ensure applications behave the same in online and offline mode.

While this suffices to ensure pseuCo.com works offline, there are subtle details which make updates work
properly.

As soon as the application cache received and stored a complete copy of the application, the server will
never be contacted again, except for two possible reasons: To access a NETWORK path, or to update the
manifest file. When the application is updated, the manifest file must change too, to ensure that existing
users download the new version. To achieve this, the build process not only copies the manifest to the
output directory, but appends the build date as a comment to the file, as shown in the copy:appcache
section of Listing B.1.

2see https://html.spec.whatwg.org/multipage/browsers.html#offline
3index.html is not listed here, since the index file is included implicitly.

10

https://secure.fefrei.de/redmine/projects/concurrent-programming-web/repository/revisions/master/entry/src/offline.appcache
http://pseuco.com/api/
https://html.spec.whatwg.org/multipage/browsers.html#offline

property type effect

fullName string the human-readable name of the file type
allowCreation boolean if enabled, show a button to create this type of

file on the “Files” tab
allowEmpty boolean if enabled, allow to create an empty file of this

type
allowTemplate boolean if enabled, show templates for this file type and

allow creating a new file based on them
allowImport boolean if enabled, allow to import files of this type
allowFork boolean if enabled, allow the user to create a file of this

type based on the result of a translation
importableFilesStatement string human-readable string explaining which types of

text files can be imported for this file type

Figure 5.1: Explanation of the properties of a fileType definition

Listing 5.6: The configuration file for the application cache, offline.appcache
1 CACHE MANIFEST
2

3 version.txt
4 js/app.js
5 js/worker.js
6 js/lib.min.js
7 css/app.css
8 css/lib.css
9 partials/about.html

10 partials/ace.html
11 partials/actions.html
12 partials/backup.html
13 partials/debug.html
14 partials/edit.html
15 partials/error.html
16 partials/export.html
17 partials/fetch.html
18 partials/files.html
19 partials/help.html
20 partials/import.html
21 partials/landing.html
22 partials/lts.html
23 partials/newfile.html
24 partials/pseucojava.html
25 partials/share.html
26 partials/svg.html
27 partials/trace.html
28 fonts/glyphicons -halflings -regular.eot
29 fonts/glyphicons -halflings -regular.svg
30 fonts/glyphicons -halflings -regular.ttf
31 fonts/glyphicons -halflings -regular.woff
32 img/icon.png
33

34 NETWORK:
35 api/

11

Figure 5.2: Notification bar after the application cache was updated

Listing 5.7: A configuration file Apache to configure client-side caching
1 AddType text/cache -manifest .appcache
2

3 Header set Cache -Control "no -cache , must -revalidate"
4

5 <Files offline.appcache >
6 Header set Cache -Control "must -revalidate"
7 </Files >

When an update is available and the user opens pseuCo.com, the request is served from the cache.
Afterwards, the browser requests the manifest file, determines that an update is available, and downloads
the new version. To inform the user about this, pseuCo.com listens to events emitted by the browser to
determine the update status, shows a progress bar during the download phase, and shows a notification
bar (see Figure 5.2) offering to switch to the new version afterwards. This behaviour is implemented in

repository /src/js/app.js.

It is important to ensure that the application cache never contains invalid versions of the application,
because otherwise, the user’s browser will only re-download the corrupted files when an update is released
or the user manually clears the application cache4.

The HTML Application Cache has an integrated mechanism to ensure that if the application is updated
on the server during the download phase, the download process (which would save a mixture of old and
new files) fails safely: After the download finishes, the browser fetches the application manifest file again.
If it differs from the initial version that started the download process, the downloaded files are assumed to
be inconsistent and dropped.

Additionally, the browser makes sure that all requests are served with old versions from the cache, until
the page reloads, which causes an atomic switch to the new version.

However, there is no integrated mechanism to ensure that all “downloaded” application files are actually
fetched from the server, and not from a (possibly outdated) cache. Therefore, it is important to ensure this
manually by correctly setting the corresponding HTTP headers. Listing 5.7 shows a suitable configuration
file for Apache: It prevents all application files from being cached in the normal browser cache5, and
makes sure that while the application manifest may be cached, the browser must check for updates on the
server on any access.

Remark
Developing an application which uses the HTML Application Cache has a few possibly confusing
differences from normal development:

1. You must change the manifest for changes to be picked up by the browser.

2. You must reload the page twice for changes to show up: Once to trigger the update, and a
second time to switch to the new version.

3. Depending on the HTTP server and its configuration, deleting the manifest file does not stop
this behaviour: The application cache is cleared only if the request for the manifest results in a
404 not found error. Any redirects, server errors or other unexpected behaviours cause the
browser to keep the application cache, and not download any updatesa.

4Instructions on how to to so are available at base URL /#/help#faq-blankscreen.
5Doing so would be useless, since they will be stored in the – fully separate – HTML Application Cache anyway.

12

https://secure.fefrei.de/redmine/projects/concurrent-programming-web/repository/revisions/master/entry/src/js/app.js
http://pseuco.com/#/help

4. Clearing the normal browser cache will not ensure you see the most recent version, as in most
browsers, the application cache needs to be deleted separately.

5. While you can change the API path on the debug page (see section 5.1), the browser will block
access to any location not listed in the manifest.

To ease development, the build scripts normally omit the application manifest, disabling the offline
mode. This causes a 404 not found error for the manifest during testing, which is expected and
causes no further issues.

To copy the application manifest and enable offline mode, execute the appcache build task, which is
part of the serverside task the official build server runs.
aThis is intended behaviour, and makes sure that users can keep using their offline applications when they are in a
captive network that redirects all HTTP requests to a login page.

5.7 Tasks and the Background Worker

Normal JavaScript applications are single-threaded and use multiple threads only when accessing asyn-
chronous browser APIs, for example for network access. This is fine, since most JavaScript applications
only perform small actions, where the only significant delay is network access.

PseuCo.com however performs many long-running, CPU-intensive tasks. Without countermeasures, these
would cause the UI to hang for excessive amounts of time. The only way to fully prevent this type of
issue is by using multi-threading.

JavaScript was designed as a single-threaded scripting language, and has no memory model. Therefore,
the only widely implemented mechanism of using multiple threads in JavaScript, Web Workers6, solely
use a message-passing interface for communication between the threads.

The Web Worker API defines methods to start a worker (which runs a script file specified when the worker
is initialized) and to exchange messages with it, but provides no further assistance to manage tasks that
should be executed by the worker.

For pseuCo.com, a new framework was developed to simplify the definition and use of workers that process
specific tasks submitted to them by AngularJS applications. It is contained in the cp.tasks module,
and consists of the files in the repository /src/js/tasks/ directory. This framework is intentionally kept
general so it can be reused by other projects.

5.7.1 Features of the Tasks Framework

The tasks framework has the following responsibilities:

1. Manage start-up and termination of the workers.

2. Manage callbacks that hand back computation results and cancellation notifications.

3. Ensure that tasks are executed according to their priority, which can be specified when a task is
submitted.

5.7.2 Defining a Worker

To define a worker, you need to build a JavaScript file containing everything the worker needs to execute,
and place it at any path accessible to the application, preferably js/worker.js, relative to the base path
of your application. This file must contain, in the following order:

1. all library code that the worker needs

2. a definition of the variable workerData, as specified below

6see https://html.spec.whatwg.org/multipage/workers.html#workers

13

https://secure.fefrei.de/redmine/projects/concurrent-programming-web/repository/revisions/master/entry/src/js/tasks/
https://html.spec.whatwg.org/multipage/workers.html#workers

3. a verbatim copy of the file repository /src/js/tasks/backgroundWorker.js

You can define multiple types of workers in one file. They are distinguished by a name, called type.

Each worker has one object storing its state. This object will be passed as workerState to all functions
that may access it.

The workerData variable must be an object. Each property of this object defines a worker type (given
by the property’s key). The value of each such property must be an object with two properties: An
initialization function initialize which will receive workerState as its argument (and may create
arbitrary properties in the workerState object) and an object tasks. For each task the worker can carry
out, tasks must contain a property whose key is the task name, and whose value is a function, the task
function.

Each task function receives two arguments: data and workerState. The data is provided by the caller,
and workerState is the object discussed above. The task function must return an object with at least
the following two properties: A boolean value taskCompleted, and a serializable object data.

Each time a task function returns, data will be sent to the caller. If taskCompleted is false, the task
will be scheduled to execute again. If the return value contains a property newPriority containing a
number, the task’s priority will be modified to match that number. A task function is free to modify the
data object to store intermediate results.

To ensure that the worker has a chance to process other tasks with a higher priority, or detect that
a task has been cancelled, task functions should regularly return intermediate results (if any) and
taskCompleted: false, waiting to be called again by the framework.

You can find an example of a worker definition in repository /src/js/worker.js.

5.7.3 Using a Worker

To use a worker, developers can use the API given by the factory taskManager. It offers the following
methods:

• getRunningTaskCount is a zero-argument function that returns the number of tasks in the execution
queue.

• requestWorker(type, crashCallback, sourcePath) is a function that starts a worker.

type is a string indicating the type the worker should have (as specified in the worker definition).

crashCallback(error) is a function that will be called when the worker encounters an uncaught
exception.

Remark
Do not use this mechanism for expected exceptions. Instead, let tasks normally return a value
that indicates failure.

If a task crashes, crashCallback(error) and the cancellationCallback() of the correspond-
ing task will be called.

sourcePath is an optional string indicating the path to the JavaScript file containing the worker. If
it is omitted, ’js/worker.js’ is used.

The return value of this function is an object containing the following properties and methods:

– id is an integer identifying the worker instance that was started.

– terminateWorker(finishCallback) is a function that requests the worker to be terminated.
This function must not be called if the worker is already terminating or has terminated.
finishCallback() will be called once the worker has terminated.

14

https://secure.fefrei.de/redmine/projects/concurrent-programming-web/repository/revisions/master/entry/src/js/tasks/backgroundWorker.js
https://secure.fefrei.de/redmine/projects/concurrent-programming-web/repository/revisions/master/entry/src/js/worker.js

Remark
This does not terminate the worker immediately, but waits for the current execution to
return. Cancellation notifications are sent for all pending tasks that could not be executed
any more.

This method will not forcefully terminate a worker that got stuck, and there is no method
that will. Always ensure that all task functions in your worker terminate regularly.

– submitTask(taskName, data, resultCallback, cancellationCallback, priority) sub-
mits a task to the worker to be executed. This function must not be called if the worker is
terminating or has terminated.

taskName is the name of the task to execute, as specified when the worker was defined.

data is a serializable object that will be sent to the worker and used to call the task function.

resultCallback is a function that processes results returned by the worker. It will be called as
resultCallback(data, taskCompleted), where data is the data the task function returned,
and taskCompleted indicates whether the task has finished or is still computing.

cancellationCallback is a function that will be called if the task is cancelled for any reason.

priority is a number in the range 0-9, where 9 indicates highest and 0 lowest priority. Tasks
with a higher priority are executed before any tasks with a lower priority.

The function returns a task id that can be passed to cancelTask.

– cancelTask(taskId) is a function that requests the specified task to be cancelled. This
function must not be called if the worker is terminating or has terminated.

The task will be cancelled as soon as possible. If the task is currently running, it will be stopped
the next time it returns. After cancelTask has been called, all results from this task will be
silently dropped. This ensures that while a task might finish after you tried to cancel it, you
can be guaranteed to never receive results from a task that you requested to be cancelled.

Remark
The tasks framework executes all callbacks in an AngularJS context: $apply() is called automatically,
and exceptions are sent to $exceptionHandler. There is no need to call $apply() manually.

If you do not understand the previous paragraph, you can ignore it safely.

5.7.4 Usage of the Tasks Framework for pseuCo.com

The tasks framework powers all CPU-intensive computations on pseuCo.com. For all of the following, the
computation is run by a task in the background worker, and only the results are sent to the main thread
to be displayed in the UI:

• all translations (see section 5.8)

• LTS exploration (see section 5.9)

• LTS random tracing

• LTS export

• LTS minimization (see section 5.11)

• parsing of file imports

15

Listing 5.8: The configuration file editorConfiguration.js
1 angular.module(’cp.ui ’).value(’editorConfiguration ’, {
2 fileTypes: {
3 ’ccs ’: {
4 editor: ’ace -text -editor ’,
5 translations: [
6 {
7 source: ’ccs ’,
8 target: ’lts ’,
9 },

10],
11 actions: []
12 },
13 ’pseuco ’: {
14 editor: ’ace -text -editor ’,
15 translations: [
16 {
17 source: ’pseuco ’,
18 target: ’ccs ’,
19 },
20 {
21 source: ’ccs ’,
22 target: ’lts ’,
23 }
24],
25 actions: []
26 },
27 ’lts ’: {
28 editor: ’lts -editor ’,
29 translations: [],
30 actions: [{
31 displayIcon: ’glyphicon glyphicon -road ’,
32 displayName: ’Random path ’,
33 action: ’traceLts ’
34 }, {
35 displayIcon: ’glyphicon glyphicon -export ’,
36 displayName: ’Export LTS ’,
37 action: ’exportLts ’
38 }]
39 }
40 },
41 fileActions: [
42 {
43 displayIcon: ’glyphicon glyphicon -share ’,
44 displayName: ’Share this file ’,
45 action: ’shareFile ’
46 }
47]
48 });

5.8 Editors, Translations and Actions

The main features of pseuCo.com are pseuCo and CCS file editing, viewing LTS, the translations
pseuCo→ CCS and CCS→ LTS, and actions like tracing, export or file sharing.

In the code, these features are referenced by three terms:

1. An editor is the component responsible for viewing and editing data of a specific file type.

2. A translation provides a way to convert data from one file type to another.

3. An action describes anything a user can actively initiate. Actions can be specific to a file type or
apply to any file.

The interaction between editors, translations and actions is configured by the value editorConfiguration,
defined in repository /src/js/ui/editorConfiguration.js and shown in Listing 5.8. More specifically,
for each file type, it defines:

16

https://secure.fefrei.de/redmine/projects/concurrent-programming-web/repository/revisions/master/entry/src/js/ui/editorConfiguration.js

• the name of the editor directive that should be used for data of this file type,

• the translations that should be used when editing a file of this type, and

• the actions that apply to data of this file type.

Additionally, it defines actions that apply to files of all types.

Remark
There is one crucial difference between the translations and actions property:

• The translations property applies to files of a specific type. For example, when editing a
pseuCo file, only the translations defined for the pseuco file type apply. Although there is a
translation to CCS, no further translations from CSS occur, unless they are defined in the
pseuco property.

• The actions property applies to data of the file type specified. For example, the actions defined
for lts are available when editing a CCS file, since the CCS → LTS translation makes LTS
data available.

File editing is handled by the fileEditCtrl and the partial edit.html. fileEditCtrl is responsible
for setting up the data structures for all editors and actions that are available. Given this data, the
editorManager and actionManager directives are responsible for displaying the editors and action
buttons.

There is one core difference between the data stored in files, and the data used by editors, translations
and actions: While files store only the minimal amount of information needed to recreate everything that
is visible to the user, the in-memory representation of data stores additional temporary information that
is generated from the persisted data.

To separate these parts, the in-memory representation is a JavaScript object with two properties: The
core property stores the part of data that will be persisted (and may have an arbitrary type). The
extended property stores an object containing all additional in-memory-only data.

For example, this mechanism makes sure that when viewing a pseuCo file, the CCS term shown never
has to be parsed: While the translation pseuCo→ CCS yields the CCS string (which is the core of the
translation), in addition, it contains the parse tree in the extended part of the data. The CCS→ LTS
translation can use this parse tree instead of the CCS string.

5.8.1 Translations in the Background

The actual translations are performed by the background worker so that the user interface stays responsive.

This process is initiated by fileEditCtrl which submits a ’translate’ task to the background worker.
This causes the worker to compute all requested translations one-by-one, returning each translation as an
intermediate result as it becomes available.

The parse trees, part of the extended data, never leave the background worker7. However, they are stored
and used internally in the extended data in the worker.

5.9 LTS Exploration

The result of translations returning a LTS often is extremely large or even infinite, rendering the naive
approach of computing the full transition system before returning it useless.

Therefore, translations to LTS are handled in a special way. The worker only computes the label of the
initial state, and stores a function generateTransitions that can generate the transitions of this state.
7This is crucial: The parse trees are returned by the external library PseuCoCo, and are not serializable.

17

Figure 5.3: Graphic from http://bl.ocks.org/mbostock/3750558: D3.js’s built-in force layout

The resulting system is stored permanently in the worker. A version of it without generateTransitions
is returned to the main thread, including a dataId that allows to reference the data stored in the worker.

The process of generating the transitions and remaining states is called “exploration”, controlled by the
ltsExplorer service in the cp.tools package. It is defined in repository /src/js/tools/ltsExplorer.js.
To start the exploration, it sends an ’exploreLts’ request to the worker, causing it to perform a breadth-
first search through the transition system, computing each state’s transitions as they are needed. The
transitions computed by this search are sent back to ltsExplorer in the main thread, where they are
added to the local copy of the transition system, ready to be used by the user interface.

This exploration continues until all states are explored or a fixed number of states have been explored. In
the latter case, exploration resumes if the user reaches a state with unexplored transitions, or explicitly
requests exploration to resume in the UI.

5.10 LTS Visualization and Graph Layout

Since LTS are visualized as a graphs, rendering them involves graph layout. There are many well-known
graph layout algorithms, but most of them cannot be used for pseuCo.com because of the restrictions and
considerations that apply for this use case:

• The algorithm should not be overly CPU-intensive, since it is running in JavaScript, possibly on
low-end devices.

• The algorithm must allow to add additional states and transitions afterwards, and refine the graph
layout. This is because pseuCo.com allows users to view large or even infinite graphs by expanding
states one by one.

When adding new states, existing states should not move significantly, to ensure the user still can
easily recognize them.

• Since pseuCo.com is an interactive application (and is even running on touch-enabled devices in
many cases), allowing the user to influence the graph layout is both feasible and desirable.

To provide the best graph layout possible in this specific application, pseuCo.com uses force-based graph
layout. The implementation is based on D3.js’s force layout8, but adds some tricks to apply the algorithm
to transition systems.

LTS visualization, including graph layout, is implemented in the ltsEditor directive, defined in
repository /src/js/ui/directives/ltsEditor.js.

D3.js’s force layout successfully layouts graphs as shown in Figure 5.3. It does so by applying three kinds
of forces:

• A simulated electrical charge of nodes ensures sufficient distance between the nodes.

8see https://github.com/mbostock/d3/wiki/Force-Layout, demonstration: http://bl.ocks.org/mbostock/929623

18

http://bl.ocks.org/mbostock/3750558
https://secure.fefrei.de/redmine/projects/concurrent-programming-web/repository/revisions/master/entry/src/js/tools/ltsExplorer.js
https://secure.fefrei.de/redmine/projects/concurrent-programming-web/repository/revisions/master/entry/src/js/ui/directives/ltsEditor.js
https://github.com/mbostock/d3/wiki/Force-Layout
http://bl.ocks.org/mbostock/929623

X

(a) Self loops

0

(b) Multiple transitions

a

b

c

0

(c) Placement of labels

Figure 5.4: Advantages of using control nodes (indicated as dark dots, usually invisible)

• Virtual springs along the edges try to keep them at a specified target length.

• Virtual gravity centres the whole graph.

Additionally, there is a temperature mechanism, slowly increasing a virtual friction-like effect until all
nodes have stopped moving.

This approach does not suffice for LTS, which have some differences compared to simple graphs:

1. In LTS, states may have self loops.

2. In LTS, edges are directed, and states can be connected by edges in both directions simultaneously.

3. In LTS, edges are labelled, and states can be connected by arbitrarily many edges, differing in their
label.

To account for these changes, pseuCo.com introduces one additional, invisible “control node” per transition.
This node behaves just like the visible nodes representing states, and serves as the control point for a
Bézier curve representing the transition.

This change has three main effects:

1. Self loops automatically repel each other, so they point in different directions and don’t overlap, as
shown in Figure 5.4a.

2. Multiple transitions between two states bend slightly, so all of them are visible, as shown in
Figure 5.4b.

3. Since the control nodes repel each other, they indicate places where short labels can be placed
without overlapping, as shown in Figure 5.4c.

This approach often produces decent results, like the one shown in Figure 5.5. In some cases, nodes get
“stuck” in a suboptimal position between other nodes, as shown in Figure 5.6. In these cases, users can
drag-and-drop nodes to move them manually. This works well in practice: Because of the virtual springs,
just dragging one misplaced node moves its neighbours as well, often fully untangling the graph with only
a single manual intervention.

5.11 LTS Minimization

PseuCo.com can minimize labelled transition systems, computing the smallest transition system that still
is observation congruent (see Definition 6) to the original transition system.

There are many well-known minimization algorithms[2][4][5], but they assume to be run on fully-explored
transition systems. PseuCo.com, however, has the goal to provide users with tools that work as far as
possible with extremely large or even infinite transition systems, requiring modification to he classic
approach.

The design goals of such a minimization feature are:

• If the system is fully explored, return the (unique [2]) minimal observation congruent system.

19

strike?

extinguish!

τ

extinguish!

bang!

bang!

bang!

bang!
extinguish!

bang!
extinguish!

bang!

bang!

bang!

extinguish!

Figure 5.5: A result of graph layout with control nodes

strike?

extinguish!

τ

extinguish!

bang!

bang!

bang!

bang!

extinguish!

bang!

extinguish!

bang!

bang!

bang!

extinguish!

Figure 5.6: Graph layout with control nodes sometime produces bad results

20

• If the system is not fully explored, provide a safe approximation of the minimal system: If in doubt,
assume states cannot be unified.

• Pre-compute all data that would be needed for full minimization, so it can be used if the user
requests minimization before exploration finishes.

The resulting algorithm is highly similar to the one described in [2], and works in four distinct phases:

1. Weak transitions are computed.

2. The relational coarsest partitioning is computed, using the algorithm from [4]. Since weak transitions
have been added to the transition system, the result is weakly bisimilar[2].

3. The algorithm from [2] to minimize the number of transitions is run.

4. To ensure observation congruence, a τ self loop is added to the initial state if necessary.

However, the actual algorithm contains subtle differences to this simplified version to cope with partially
unexplored systems and to increase performance. The details are given in the following sections.

5.11.1 Computing Weak Transitions

The minimization algorithm needs access to the weak transitions in the transition system. They are
pre-computed by an exploration mechanism (“weak exploration”), similar to the mechanism described in
section 5.9.

Weak exploration runs in parallel to the normal exploration, but is slightly delayed. This ensures that a
user can quickly see the initial fragment of the transition system, but as soon as exploration got ahead of
the user, weak transitions are computed as fast as possible to allow minimization to run.

The core function of this algorithm, weakProcessState(), is called automatically in a breadth-first
manner by the exploration mechanism – its only remaining responsibility is to update the weak transition
information to incorporate the transitions starting in the state it processes.

To allow for a simpler and faster implementation, weak τ -transitions are stored as weakConnections,
separate from all other transitions which are stored in weakTransitions. In both cases, transitions are
stored in both their start and end state.

Let LTS = (S,→, s0) be a transition system and Sreach be the set of reachable states. After having been
run in a breadth-first manner for all reachable states, weakProcessState() guarantees the following:

1. For each state s ∈ Sreach, states[s].weakConnections.pre is an array representing the following
set: {

s′ ∈ Sreach

∣∣∣ s′ τ=⇒ s
}

2. For each state s ∈ Sreach, states[s].weakConnections.post is an array representing the following
set: {

s′ ∈ Sreach

∣∣∣ s τ=⇒ s′
}

3. For each state s ∈ Sreach, states[s].weakTransitions.outgoing is an array representing the
following set: {

(s, α, s′)
∣∣∣α 6= τ ∧ s

α=⇒ s′ ∧ s′ ∈ Sreach

}
4. For each state s ∈ Sreach, states[s].weakTransitions.incoming is an array representing the

following set: {
(s′, α, s)

∣∣∣α 6= τ ∧ s′
α=⇒ s ∧ s′ ∈ Sreach

}
Listing 5.9 shows a simplified PseudoCode version of weakProcessState, while Listing B.2 shows the
actual JavaScript implementation. The behaviour of this procedure is illustrated in Figure 5.7. The
PseudoCode version assumes that the initial state is contained in its own weakConnections.pre and
weakConnections.post sets by default.

21

When weakProcessState is called on a state, it iterates over all outgoing (normal) transitions s1
α−→

s2. After adding the transition s2
τ=⇒ s2 to the corresponding weakConnections sets, the algorithm

distinguishes between τ transitions and non-τ transitions:

• If the transition is not a τ -transition (α 6= τ), the algorithm adds all weak transitions s3
α=⇒ s4 it

can find using the already computed data: s3 (prestate) iterates over all states where s3
τ=⇒ s1 is

already known (stored in the set weakConnections.pre of s1), and s4 (poststate) iterates over all
states where s2

τ=⇒ s4 is already known (stored in the set weakConnections.post of s2).

For example, in Figure 5.7c, the transition B a−→ C is processed. This adds the transition A a=⇒ C
(since A τ=⇒ B and C τ=⇒ C) and B a−→ C (since B τ=⇒ B and C τ=⇒ C). However, no weak transitions
ending in state D are found, since the weak connection C τ=⇒ D has not been found yet.

• If the transition is a τ -transition (α = τ), the algorithm first adds all new weak connections
s3

τ=⇒ s4: s3 (prestate) iterates over all states where s3
τ=⇒ s1 is already known (stored in the set

weakConnections.pre of s1), and s4 (poststate) iterates over all states where s2
τ=⇒ s4 is already

known (stored in the set weakConnections.post of s2).

Since adding a weak connection might give rise to new weak transitions (by prolonging already
computed ones), for every weak connection s3

τ=⇒ s4 the algorithm adds, it searches for every already
computed weak transition s5

β=⇒ s3 or s4
β=⇒ s6 (by iterating s5 over weakTransitions.incoming of

s3 and s6 over weakTransitions.outgoing of s4), and adds the new transition s5
β=⇒ s4 or s3

β=⇒ s6,
respectively.

Remark

The second part of this search (extending the beginning of weak transitions) is relevant in
cyclical graphs only. Figure 5.8d shows an example were this search yields a result.

For example, in Figure 5.7d, the weak connection C τ=⇒ D is added since C τ=⇒ C and D τ=⇒ D. This
causes two searches:

1. A search for all weak transitions ending in C finds A a=⇒ C and B a=⇒ C. This causes the weak
transitions A a=⇒ D and B a=⇒ D to be added.

2. A search for all weak transitions starting in D does not find any transitions.

Correctness of Weak Transition Computation

Correctness of this algorithm – assuming it runs to completion – can be shown in two steps:

Lemma 1. The sets in weakConnections are computed correctly, as specified in subsection 5.11.1.

Proof. Soundness can be shown by induction over the program execution: The initial state (only the
initial state has a τ self loop) is sound. Whenever a transition s τ=⇒ t is added to weakConnections, it
either has the form s

τ=⇒ s (which is always a valid weak transition), or it is added as the combination of
two weak transitions s τ=⇒ s′ and s′ τ=⇒ t that have been added before, both sound by induction.

For completeness we need to show that every weak τ -transition s
τ=⇒ t is added to weakConnections

during weak exploration if s and t are both reachable.

Each such transition is by definition based on a sequence of n ∈ N τ -transitions s τ−→ s1
τ−→ s2

τ−→
· · · τ−→ sn−1

τ−→ t with n− 1 intermediate states. We use induction to show the following version of the
claim: For any n ∈ N, any weak transition s τ=⇒ t based on a sequence of n intermediate states has been
added to weakConnections after weakExploreState has been called with s and the intermediate states
s1, s2, . . . , sn−1.

Let n ∈ N be a fixed natural number, and the claim be valid for any m ∈ N with m < n. Case distinction
on n:

22

A B C D
τ a τ

(a) The original transition system

A B C D
τ a τ

(b) weakProcessState(A)

A B C D
τ a τ

a

a

(c) weakProcessState(B)

A B C D
τ a τ

a

a

a

a

(d) weakProcessState(C)

A B C D
τ a τ

a

a

a

a

(e) weakProcessState(D)

A B C D
τ a τ

a

a

a

a

(f) Result of weak exploration

Dashed arrows represent an element of weakTransitions, while dotted arrows represent an element of
weakConnections. States with double borders are already weakly explored. Thick lines indicate the state
that is currently being processed, and the weak transitions and connections that are added as a result.

Figure 5.7: How weak exploration processes a transition system

23

A B

C

a

bτ

(a) The original transition system

A B

C

a

bτ

a

(b) weakProcessState(A)

A B

C

a

bτ

a

b

(c) weakProcessState(B)

A B

C

a

bτ

a

b

a

(d) weakProcessState(C)

For an explanation of the different types of lines, see Figure 5.7.

Figure 5.8: How weak exploration processes a cyclic transition system

Listing 5.9: PseudoCode for weakProcessState()
1 procedure weakProcessState(state):
2 for each transition from state:
3 add transition.target to its own weakConnections.pre and weakConnections.post�

sets
4

5 if transition is a tau -transition:
6 for each prestate in state.weakConnections.pre , poststate in transition.�

target.weakConnections.post:
7 add poststate to the set prestate.weakConnections.post
8 add prestate to the set poststate.weakConnections.pre.add
9

10 if poststate and prestate have not been in these sets before:
11 // add new transitions that consist of an old transition and the�

newly added connection
12 for each transition in prestate.weakTransitions.incoming:
13 add a longer version of transition ending in poststate to both�

corresponding sets
14 end for
15 for each transition in poststate.weakTransitions.outgoing:
16 add a longer version of transition starting in prestate to both�

corresponding sets
17 end for
18 end if
19 end for
20 else: // transition is not a tau -transition
21 for each prestate in state.weakConnections.pre , poststate in transition.�

target.weakConnections.post:
22 add prestate to the set poststate.weakConnections.pre
23 add poststate to the set prestate.weakConnections.post
24 end for
25 end if
26 end for
27

28 remember that state has been weak explored
29 end procedure

24

1. n = 0

This means that s = t, and the transition has the form s
τ=⇒ s. Since s must be reachable, it is

either initial or has an incoming transition from a reachable state s′. If s is initial, s τ=⇒ s is in
weakConnections by default. Otherwise, since s′ is reachable, weakProcessState must have been
called on it (based on the breadth-first order), causing s τ=⇒ s to be added to weakConnections.

2. n > 0

This means that the chain s τ−→ s1
τ−→ s2

τ−→ · · · τ−→ sn−1
τ−→ t contains at least one intermediate state.

We know that weakProcessState must be called on s, s1, s2, . . . , sn−1 since they are all reachable
(s is reachable by assumption, all others are because they are reachable from s). Let s′ be the one
where weakProcessState is called last, and s′′ be the next one in the chain.

We know that weakProcessState has been called on all other states. Since the weak transitions
s
τ=⇒ s′ and s′′ τ=⇒ t are based on chains shorter than n, we know by induction they already must

have been added to the corresponding weakConnections sets.

Then, weakProcessState must find s τ=⇒ t during its search and add it.

All cases have been considered. �

Lemma 2. The sets in weakTransitions are computed correctly, as specified in subsection 5.11.1.

Proof. Soundness can be shown by induction over the program execution: The initial state (no weak
transitions) is sound. Whenever any transition s α=⇒ t is added to weakTransitions, it is caused by any
of the following combinations:

• s τ=⇒ s′
α−→ s′′

τ=⇒ t

• s α=⇒ s′
τ=⇒ t

• s τ=⇒ s′
α=⇒ t

All of these must be valid by induction, and cause s α=⇒ t to be a valid weak transition by definition.

For completeness we need to show that every weak transition s
α=⇒ t with α 6= τ is actually added to

weakTransitions during weak exploration if s and t are both reachable. This is shown similarly as in
the proof of Lemma 1, by induction on the length of the chain of transitions s τ−→ · · · α−→ · · · τ−→ t backing
the weak transition.

By definition each such transition can be decomposed into a sequence of transitions s τ=⇒ s′
α−→ s′′

τ=⇒ t. We
know that weakProcessState must be called on s, s′ and s′′ since they are all reachable (s is reachable
by assumption, s′ and s′′ because they are reachable from s).

Case distinction on whether s τ=⇒ s′ and s′′
τ=⇒ t have both been discovered before weakProcessState

searches for weak transitions based on s′ α−→ s′′.

1. Assume s τ=⇒ s′ and s′′ τ=⇒ t have both been discovered.

Then, this call to weakProcessState will add s α−→ t.

This serves as the base case for the induction, with s = s′ and s′′ = t.

2. Assume not both s τ=⇒ s′ and s′′ τ=⇒ t have been discovered yet. This is only possible if s 6= s′ or
s′′ 6= t, otherwise, both s τ=⇒ s′ and s′′ τ=⇒ t would have been added before – during creation of the LTS
for initial states, when s′ was discovered by weak exploration (which must have occurred beforehand,
due to the breadth-first order), or at the beginning of the iteration in weakProcessState.

When weakProcessState is called on s′, the weak transition s′ α=⇒ s′′ is added, because s′ τ=⇒ s′ has
been added before (because s′ is initial, or was discovered during the breadth-first traversal) and
s′′

τ=⇒ s′′ is added by this run of weakProcessState.

Further case distinction on the order in which s τ=⇒ s′ and s′′ τ=⇒ t are discovered:

(a) Assume s τ=⇒ s′ is discovered after s′′ τ=⇒ t.

When s τ=⇒ s′ is added, the resulting iteration will use s′ α=⇒ t, added by then by induction, to
add s α=⇒ t.

25

Listing 5.10: PseudoCode for stateIsFullyWeakExplored()
1 procedure stateIsWeakExplored(state):
2 return whether state has been weak explored
3 end procedure
4

5 procedure stateIsWeakConnectionExplored(state):
6 if the state has been marked as weak connection explored: return true
7

8 if stateIsWeakExplored(state) && every state in weakConnections.post fulfulls�

stateIsWeakExplored:
9 mark this state as weak connection explored

10 return true
11 else:
12 return false
13 end if
14 end procedure
15

16 procedure stateIsFullyWeakExplored(state):
17 if (weak) exploration of the LTS is finished already: return true
18 if state has been marked as fully weak explored: return true
19

20 if not stateIsWeakConnectionExplored(state): return false
21

22 if (every target state of a transition in state.weakTransitions.outgoing fulfills�

stateIsWeakConnectionExplored):
23 mark state as fully weak explored
24 return true
25 else:
26 return false
27 end if
28 end procedure

(b) Assume s′′ τ=⇒ t is discovered after s τ=⇒ s′.

When s′′ τ=⇒ t is added, the resulting iteration will use s α=⇒ s′′, added by then by induction, to
add s α=⇒ t.

All cases have been considered. �

When Weak Exploration Did Not Finish

If the breadth-first traversal of the graph is interrupted at any point, the initial fragment of the graph is
likely to already contain all weak transitions, allowing minimization to be run on it.

For any state, all weak transitions must have been found if weak exploration has run far enough that all
paths starting in this state must pass at least two non-τ transitions before reaching a state that has not
been visited by weak exploration yet.

Whether this is the case can be determined by the algorithm given in Listing B.3, a PseudoCode version
is given in Listing 5.10. If this algorithm returns true, the sets weakConnections and weakTransitions
will not be changed further during weak exploration.

PseuCo.com makes direct use of this property. As soon as the user requests the minimization result, weak
exploration is paused, and the system enters the partitioning phase. While the resulting system may not
be minimal, this ensures a prompt response to the user’s request, since weak exploration has the highest
computational cost in the minimization algorithm.

5.11.2 Partitioning, Transition Minimization & Generation of the Resulting
System

The actual partitioning is similar to the algorithm in [4], an alternative description of which can be found
as the “naive version” of the relational coarsest partitioning algorithm in [5]. There is one key difference:
Initially, not all states start in one partition. Instead, states which are not fully weakly explored (as

26

explained in subsection 5.11.1) are placed in a separate one-state partition each, while all fully weakly
explored states start in a single, separate partition.

This ensures that states cannot be falsely considered equal because weak transitions have not been fully
computed yet. Consequently, this means that the resulting system may not be minimal. However, if weak
exploration finished, all states start in the same partition, and the result is guaranteed to be minimal.

The full implementation of the minimization algorithm (as a background worker task) can be found in
Listing B.4. A simplified PseudoCode version of it is shown in Listing 5.11.

To ensure the resulting system has the minimal number of transitions, the algorithm must
remove superfluous transitions. For example, in the transition system in Figure 5.9, the transition X a−→ Z
can be removed, because X a−→ Y

τ−→ Z, and therefore X a=⇒ Z.

[2] describes an algorithm to solve this issue, which removes a transition s1
a−→ s2 if there is a state s3

such that:
(s1

a−→ s3 ∧ s3
τ−→ s2) ∨ (s1

τ−→ s3 ∧ s3
a−→ s2) (5.1)

This approach only works in a transition system which is saturated, meaning that s1
α=⇒ s2 implies s1

α−→ s2
for any states s1, s2 and for any action α.

PseuCo.com uses an adapted version of this algorithm, integrated into the construction of the new
transition system. To avoid having to compute the weak transitions, it argues over the (weak) transitions
in the original transition system.

Let LTS = (S,→, s0) be the initial transition system. Let S′ be the set of states of the new, minimized
transition system, and ρ : S → S′ a function mapping old states to the corresponding new states. For any
weak transition s1

α=⇒ s2 in the old transition system, s′1 := ρ(s1) and s′2 := ρ(s2) are computed, and the
corresponding transition s′1

α−→ s′2 is added to the transition system unless any of the following conditions
hold:

1. α = τ ∧ ρ(s1) = ρ(s2)

This prevents τ self loops from being added to the result.

2. There are sa, sb, sc, sd, such that all of the following conditions hold:

(a) sa
τ=⇒ sb

α−→ sc
τ=⇒ sd

(b) ρ(sa) = s′1

(c) ¬(α = τ ∧ ρ(sb) = ρ(sc))

(d) ρ(sd) = s′2

(e) ρ(sa) 6= ρ(sb) ∨ ρ(sc) 6= ρ(sd)

This condition describes the same idea as Equation 5.1, but is easier to compute: It only reasons over
weak transitions in the original system (which have already been computed for the minimization).

Condition 2a ensures that the states build a path as in Equation 5.1. Condition 2b ensures that
the starting state s1 actually corresponds to the correct starting state in the minimized system.
Condition 2c ensures that sb

α−→ sc does not correspond to a τ self loop in the new system, which
could be removed. Condition 2d ensures that the ending state corresponds to the correct ending
state in the new system. Finally, condition 2e ensures that either sa

τ=⇒ sb or sc
τ=⇒ sd (or both)

correspond to an actual τ step in the minimized LTS.

While in pseuCo.com weak transitions do not have to be fully computed to start a minimization,
leaving out weak transitions can only make this condition false-negative, resulting in a system with
too many transitions. As explained in the beginning of section 5.11, this is an accepted behaviour.
When all weak transitions have been computed, minimization is guaranteed to be complete.

Correctness of this approach follows from the correctness of the corresponding algorithm in [2]. The only
differences are:

• This approach reduces looking at weak transitions in the new, minimized system to looking at weak
transitions in the original system.

27

Listing 5.11: PseudoCode for LTS minimization
1 procedure getSplit(partition , splitter):
2 if partition ∩ splitter 6= ∅ && partition \ splitter 6= ∅:
3 return p1: partition ∩ splitter 6= ∅, p2: partition \ splitter 6= ∅
4 else:
5 return false
6 end if:
7 end procedure
8

9 procedure minimizeLts(states , initialState):
10 var initialPartition = ∅
11 var partitions = {}
12

13 // set up initial partition
14 for each reachable state in states: // remove unreachable states
15 if stateIsFullyWeakExplored(state):
16 initialPartition.add(state)
17 else:
18 partitions.add({state })
19 end if
20 end for
21

22 // add initialPartition to partitions if it is not empty
23 if (initialPartition.length > 0): partitions.add(initialPartition)
24

25 // split partitions
26 repeat until partitions does not change anymore:
27 for all pairs of partitions (partition1 , partition2):
28 if partition1 was already split in this iteration: continue
29

30 for all transition labels (including tau):
31 // compute using weakConnections for tau , and weakTransitions otherwise:
32 var splitter = set of all states having a transition with this label to a�

state in partition2
33

34 if getSplit(partition1 , splitter) returns a split:
35 replace partition1 by the partitions getSplit returned
36 continue with the next pair
37 end if
38 end for
39 end for
40 end repeat
41

42 var newStates = ∅
43 for each partition in partitions:
44 add a new state for it to newStates
45

46 for each outgoing weak transition or tau -connection from a state in partition:
47 if it is a tau -connection to itself: continue // tau self loops are�

superfluous
48 build a corresponding transition to the new state
49

50 if (transition can be reproduced by following a longer chain of weak�

connections and transitions):
51 ignore the new transition // would be superfluous
52 else:
53 add the transition to newState
54 end if
55 end for
56 end for
57

58 var newInitialState = the state corresponding to the partition with initialState
59

60 if there is a (strong) tau -transition from initialState to another state that ended�

up in the same partition:
61 add a tau self loop to newInitialState
62 end if
63

64 return newStates , newInitialState
65 end procedure

28

a

a
b τ

c

d

X
Y

Z
0

Figure 5.9: While having the minimal number of states, this system is not minimal in the number of
transitions.

• Instead of only removing a transition in the cases given in Equation 5.1, this algorithm additionally
allows a transition s1

a−→ s2 to be removed if there are states s3, s4 such that s1
τ−→ s3

α−→ s4
τ−→ s2.

Correctness follows by saturation: s1
τ−→ s3

α−→ s4 implies s1
α−→ s4, allowing the transition to be

removed based on the first disjunct in Equation 5.1.

To ensure the result is observation congruent (in addition to being weakly bisimilar), a τ self
loop is added to the new initial state if and only if the initial system contained a strong τ -transition from
its initial state to another state which ends up in the partition that contains the initial state.

5.12 The Server Component of pseuCo.com

PseuCo.com mostly is a JavaScript-application, running client-side in the browser. This only requires a
HTTP server to deliver the (static) application files. However, there are two features that use an active
server component:

1. To create new files, users can choose start with “template files” that can be updated without
updating the whole application.

2. Users can create short links to files. Opening such a link opens the pseuCo.com user interface and
directly navigates to the file that was shared.

By default, pseuCo.com communicates with the server at base URL /api/. The server is implemented to
listen at port 9128, and repository /server/server.htaccess configures Apache to forward the requests
to base URL /api/ to this port, acting as a reverse proxy.

The server is implemented in JavaScript, and designed to be run with node.js. All server code is located
in repository /server/server.js.

The server implements the following API calls:

1. API base URL /paste/add allows to submit files and retrieve a sharing URL for it. Requests to this
path must be POST requests, having a JSON-encoded body, containing an object with the following
properties:

(a) file must be an object representing the file to be shared. It must have the properties type
and content and may have a name.

(b) sharingAgreementVersion must be a number, representing the version number of the legal
notice the user agreed to before uploading the file. The server will reject uploads not having a
recent enough sharingAgreementVersion.

(c) temporary is an optional value. If it evaluates to true, the server will only store the uploaded
file for a short amount of time.

29

http://pseuco.com/api/
https://secure.fefrei.de/redmine/projects/concurrent-programming-web/repository/revisions/master/entry/server/server.htaccess
http://pseuco.com/api/
https://secure.fefrei.de/redmine/projects/concurrent-programming-web/repository/revisions/master/entry/server/server.js

The server will store the submitted file – either permanently in the repository /server/data/paste/
directory, or in memory for temporary shares – and return a JSON-encoded response. It has the
following properties:

(a) id is the identifier of the file, as chosen by the server.

(b) url is a URL which can be given to other users to view this file.

(c) temporary: true will be set for temporary shares. Otherwise, this property is omitted.

2. API base URL /paste/get allows to get files that have been submitted to the server. Requests to this
path must be GET requests, and have one parameter id, which is the identifier for the shared file.

The server will then return a JSON object having the following properties:

(a) file will be the file object that was submitted to the server when the share was created.

(b) temporary: true will be given for temporary shares. Otherwise, this property is omitted.

3. API base URL /templates/get allows to get access to the templates that are stored on the server for
a specific file type. Requests to this path must be GET requests, and have a single parameter type:
a string representing the file type for which the templates are requested.

The server will return a JSON object having an array templates as its single property. It is an
array of templates, each being an object having the following properties:

(a) name is a name for the template

(b) description is a description string for the template, which may contain basic HTML formatting
including links.

(c) content is the content of the template. If the user selects the template, content should be
used to initialize the contents of the file that is created.

The server features a banning system to prevent malicious users from causing excessive system load on
the server.

The server sets Cache-Control headers to ensure that the responses it gives may not be cached, except
for successful calls to API base URL /paste/get.

Since the clients interacting with this server are sandboxed inside browsers, the server has to conform to
the Cross-Origin Resource Sharing standard9 to ensure clients are allowed access to it:

1. To ensure not just clients running in the same domain can access the server, it sends the header
Access-Control-Allow-Origin: *.

2. When a client sends an OPTIONS request, the server responds with Access-Control-Allow-Methods:
GET, POST, Access-Control-Max-Age: 3600, and mirrors all values listed in the Access-Control

-Request-Headers header of the request in the Access-Control-Allow-Headers header of its
response. This indicates to the client’s browser that it is allowed to send arbitrary GET and POST
requests.

5.13 A Build Server for pseuCo.com

PseuCo.com can be built on a remote server – usually on the server that hosts the repository and serves
the resulting page publicly. The exemplary script in Listing 5.12 automates this process. It accepts the
branch to build as its single command line argument and performs the following actions:

1. If the branch specified is master – which contains the public server part – stop the server.

2. Check out the specified branch from the Git repository.

3. Install missing npm packages, and remove superfluous ones.

9see http://www.w3.org/TR/access-control/

30

https://secure.fefrei.de/redmine/projects/concurrent-programming-web/repository/revisions/master/entry/server/data/paste/
http://www.w3.org/TR/access-control/

Listing 5.12: A build script for server-side building
1 #!/ bin/bash
2

3 GIT_REPO=$HOME/repositories/concurrent -programming -web.git/
4 CHECKOUT_DIR =/var/www/virtual/fefrei/apps/concurrent -programming -web/$1/
5

6 echo Building branch $1.
7 echo Preparing ...
8 mkdir -p $CHECKOUT_DIR
9

10 if [$1 == "master"]
11 then
12 echo Stopping server ...
13 svc -d /home/fefrei/service/cpw -server/
14 fi
15

16 echo Checking out ...
17 GIT_WORK_TREE=$CHECKOUT_DIR git checkout -f --quiet $1
18 GIT_VERSION=‘git rev -parse $1‘
19 cd $CHECKOUT_DIR
20

21 echo Installing NPM packages ...
22 npm install
23

24 echo Pruning NPM packages ...
25 npm prune
26

27 if [$1 == "master"]
28 then
29 echo Starting server ...
30 svc -u /home/fefrei/service/cpw -server/
31 fi
32

33 echo Writing version information ...
34 echo $1 [$GIT_VERSION] > version.txt
35

36 echo Deploying ...
37 grunt serverside
38

39 exit

4. Start the server if it was stopped earlier.

5. Run the serverside task of the build script, which performs the normal build and generates a
configuration file for the HTML Application Cache – see section 5.6.

31

The Future of pseuCo.com
PseuCo.com has been designed to be easily extensible, featuring many self-contained, reusable modules.
This section points out some possible extensions, and evaluates how well the existing infrastructure
supports them.

6.1 Model Checking

A useful potential extension is model checking, allowing users to verify their transition systems against a
LTL[6] or CTL[3] property.

The infrastructure of pseuCo.com is well-suited for this extension:

1. The user interface is prepared for this addition: Model checking could be implemented as an action
(see section 5.8), similar to tracing and LTS export.

2. Model checking is computationally expensive. With the tasks API (see section 5.7), there already is
an extensive infrastructure for background computation.

3. PseuCo.com supports on-demand exploration of large or infinite transition systems. This integrates
well with model checking, which often does not require access to the full transition system, for
example for evaluating existentially quantified properties.

6.2 Additional Input Formats

Another potential kind of extension is the addition of another input language (similar to the current
support for pseuCo).

The infrastructure of pseuCo.com is well-suited for this type of extension:

1. File management and editing is parametrized, allowing to easily add new file types. Just declaring
the new file type in repository /src/js/files/files.js and configuring the translations and actions
in repository /src/js/ui/editorConfiguration.js is enough to add the user interface elements to
create, manage and edit files of this new file type.

The additional translations can be implemented in the background worker (see section 5.7).

2. While LTS exploration currently evaluates CCS terms (since the only way to create LTS files
– apart from importing them – is the translation CCS → LTS), this process is encapsulated in
the generateTransitions function. A translation from any other input to LTS can easily create
transition systems that work with the current code by returning transition systems with a new
generateTransitions function.

6.3 New Translations for Existing File Types

PseuCo.com can be extended by new translations for existing file types – for example a translation from
pseuCo code to Petri nets.

Depending on the kind of integration, the pseuCo.com infrastructure would need to be extended:

32

https://secure.fefrei.de/redmine/projects/concurrent-programming-web/repository/revisions/master/entry/src/js/files/files.js
https://secure.fefrei.de/redmine/projects/concurrent-programming-web/repository/revisions/master/entry/src/js/ui/editorConfiguration.js

Figure 6.1: Adding additional translations doesn’t scale and causes confusing UI

1. As long as the new translations are just an extension to the existing ones, the current infrastructure
suffices.

2. There is no support for the user to select a “translation chain”. If in addition to the old pseuCo→
CCS→ LTS chain, a new translation chain pseuCo→ Petri→ LTS was be added, the file editing
interface for pseuCo files would look as illustrated in Figure 6.1.

Adding such a selection capability requires changes to the editor configuration specification format
in repository /src/js/ui/editorConfiguration.js and to the controller fileEditCtrl.

33

https://secure.fefrei.de/redmine/projects/concurrent-programming-web/repository/revisions/master/entry/src/js/ui/editorConfiguration.js

Appendix A

Definitions for LTS

In the following, let Act be an arbitrary set with τ ∈ Act. τ is called internal action.

Definition 1 (LTS). A Labelled Transition System (LTS) over Act is a triple (S,→, s0) where S is a set
of states, s0 ∈ S the initial state, and → ⊆ S ×Act × S the transition relation.

We will write s α−→ t as a shorthand for (s, α, t) ∈ →.

Definition 2 (). For any LTS = (S,→, s0) over Act, s, s′ ∈ S and σ ∈ Act∗, let s σ
 s′ be defined

inductively on σ:

s
ε
 s′ :⇔ s = s′

s
σ′α
 s′ :⇔ ∃s′′ : s σ′

 s′′
α−→ s′

Definition 3 (Weak Transition (⇒)). For any transition system LTS = (S,→, s0), the weak transition
relation ⇒ is defined as follows (where a ∈ Act \ {τ}):

s
τ=⇒ s′ :⇔ ∃n ∈ N : s τ

n

 s′

s
a=⇒ s′ :⇔ ∃s′′, s′′′ ∈ S : s τ=⇒ s′′

a−→ s′′′
τ=⇒ s′

Definition 4 (Weak Bisimulation). For two transition systems LTSs = (S,→s, s0) and LTS t = (T,→t, t0)
over the same set Act, a relation R ⊆ S × T is called weak bisimulation if for any (s, t) ∈ R and α ∈ Act,
both of the following conditions hold:

• If s α=⇒ s′, then there is a t′ ∈ T such that t α=⇒ t′ and (s′, t′) ∈ R.

• If t α=⇒ t′, then there is a s′ ∈ S such that s α=⇒ s′ and (s′, t′) ∈ R.

Definition 5 (Weakly Bisimilar (≈)). Two transition systems LTSs = (S,→s, s0) and LTS t = (T,→t, t0)
over the same set Act are called weakly bisimilar (LTSs ≈ LTS t) if there is a weak bisimulation R such
that (s0, t0) ∈ R holds.

Definition 6 (Observation Congruent (∼=)). Two transition systems LTSs = (S,→s, s0) and LTS t =
(T,→t, t0) over the same set Act are called observation congruent (LTSs ∼= LTS t) if both of the following
conditions hold:

• If s0
α−→ s′, then there are n,m ∈ N and t′ ∈ T such that t0

τnατm

 t′ and (S,→s, s
′) ≈ (T,→t, t

′).

• If t0
α−→ t′, then there are n,m ∈ N and s′ ∈ S such that s0

τnατm

 s′ and (S,→s, s
′) ≈ (T,→t, t

′).

34

Appendix B

Code Listings

Listing B.1: Gruntfile.js, the configuration file for grunt
1 module.exports = function(grunt) {
2 "use␣strict";
3

4 var aceVersion = ’1.1.7 ’;
5

6 grunt.initConfig ({
7 pkg: grunt.file.readJSON(’package.json’),
8 curl: {
9 ace: {

10 src: ’https :// github.com/ajaxorg/ace -builds/archive/v’ + aceVersion + ’.�

zip’,
11 dest: ’managed_components/ace/ace -’ + aceVersion + ’.zip’
12 }
13 },
14 unzip: {
15 ace: {
16 src: ’managed_components/ace/ace -’ + aceVersion + ’.zip’,
17 dest: ’managed_components/ace/build’,
18 router: function (filepath) {
19 return filepath.split(’/’).splice (1).join(’/’);
20 }
21 }
22 },
23 bower: {
24 install: {
25 options: {
26 targetDir: ’managed_components/bower/’,
27 cleanTargetDir: true
28 }
29 }
30 },
31 uglify: {
32 options: {
33 mangle: false ,
34 sourceMap: true
35 },
36 app: {
37 files: {
38 ’temporary_files/build/js/app.min.js’: [’temporary_files/build/js/app�

.js’]
39 }
40 },
41 lib: {
42 files: {
43 ’temporary_files/build/js/lib.min.js’: [’temporary_files/build/js/lib�

.js’]
44 }
45 },
46 worker: {
47 files: {

35

48 ’temporary_files/build/js/worker.min.js’: [’temporary_files/build/js/�

worker.js’]
49 }
50 }
51 },
52 concat: {
53 app: {
54 src: [
55 ’src/js/libs.js’,
56 ’src/js/app.js’,
57 ’src/js/ui/ui.js’,
58 ’src/js/files/files.js’,
59 ’src/js/actions/actions.js’,
60 ’src/js/tasks/tasks.js’,
61 ’src/js/api/api.js’,
62 ’src/js/tools/tools.js’,
63 ’src/js /**/*. js’,
64 ’!src/js/pre -pseucoco.js’, // helper for browserify build
65 ’!src/js/post -pseucoco.js’, // helper for browserify build
66 ’!src/js/pseucoco.js’, // must be build with browserify
67 ’!src/js/worker.js’, // must be executed as Web Worker
68 ’!src/js/tasks/backgroundWorker.js’ // must be executed as Web Worker
69],
70 dest: ’temporary_files/build/js/app.js’,
71 nonull: true ,
72 options: {
73 stripBanners: true ,
74 banner: ’//!␣@license␣(c)␣Copyright␣2014␣Felix␣Freiberger.␣Contains␣�

PseuCoCo ,␣(c)␣Copyright␣2013,␣2014␣Sebastian␣Biewer.␣Details␣in␣�

ReadMe.md␣or␣on␣the␣About -tab.\n’
75 }
76 },
77 lib: {
78 src: [
79 ’managed_components/bower/jquery/jquery.js’,
80 ’managed_components/bower/angular/angular.js’,
81 ’managed_components/bower /**/*. js’,
82 ’managed_components/ace/build/src/ace.js’
83],
84 dest: ’temporary_files/build/js/lib.js’,
85 nonull: true
86 },
87 CCS: {
88 src: [
89 ’temporary_files/CCSParser.js’,
90 ’temporary_files/CCS_no_parser.js’
91],
92 dest: ’temporary_files/CCS.js’,
93 nonull: true
94 },
95 PseuCo: {
96 src: [
97 ’temporary_files/PseuCoParser.js’,
98 ’temporary_files/PseuCo_no_parser.js’
99],

100 dest: ’temporary_files/PseuCo.js’,
101 nonull: true
102 },
103 worker: {
104 src: [
105 ’src/js/pre -pseucoco.js’,
106 ’temporary_files/pseucoco.js’,
107 ’src/js/post -pseucoco.js’,
108 ’managed_components/bower/underscore/underscore.js’,
109 ’temporary_files/AUTParser.js’,
110 ’src/js/worker.js’,
111 ’src/js/tasks/backgroundWorker.js’
112],
113 dest: ’temporary_files/build/js/worker.js’,
114 nonull: true
115 }
116 },
117 jshint: {

36

118 options: {
119 jshintrc: true
120 },
121 all: [’src/js /**/*. js’]
122 },
123 cssmin: {
124 combine: {
125 files: {
126 ’temporary_files/build/css/app.css’: [’src/css /**/*. css’],
127 ’temporary_files/build/css/lib.css’: [’managed_components/bower /**/*.�

css’]
128 }
129 }
130 },
131 copy: {
132 partials: {
133 expand: true ,
134 flatten: true ,
135 src: ’src/partials /*’,
136 dest: ’temporary_files/build/partials/’
137 },
138 index: {
139 src: ’src/index.html’,
140 dest: ’temporary_files/build/index.html’
141 },
142 htaccess: {
143 src: ’src/. htaccess ’,
144 dest: ’temporary_files/build/. htaccess ’
145 },
146 serverhtaccess: {
147 src: ’server/server.htaccess ’,
148 dest: ’temporary_files/build/api/. htaccess ’
149 },
150 appcache: {
151 src: ’src/offline.appcache ’,
152 dest: ’build/offline.appcache ’,
153 options: {
154 process: function (content) {
155 return content + ’\n\n#␣’ + (new Date()).toString () + ’\n’;
156 }
157 }
158 },
159 fonts: {
160 expand: true ,
161 flatten: true ,
162 src: ’managed_components/bower/bootstrap/glyphicons -halflings -regular .*’,
163 dest: ’temporary_files/build/fonts/’
164 },
165 images: {
166 expand: true ,
167 flatten: true ,
168 src: ’src/img/*’,
169 dest: ’temporary_files/build/img/’
170 },
171 version: {
172 src: ’version.txt’,
173 dest: ’temporary_files/build/version.txt’
174 }
175 },
176 clean: {
177 tmpbuild: [’temporary_files/build/’],
178 build: [’build/’],
179 oldbuild: [’temporary_files/old_build ’],
180 tmp: [’temporary_files/’],
181 managed: [’managed_components/’],
182 ace: [’managed_components/ace/’]
183 },
184 watch: {
185 js: {
186 files: ’src/js /**/*. js’,
187 tasks: [’test’, ’clean:tmpbuild ’, ’rename:unbuild ’, ’concat:app’, ’concat�

:worker ’, ’rename:build ’]
188 },

37

189 html: {
190 files: ’src /**/*. html’,
191 tasks: [’clean:tmpbuild ’, ’rename:unbuild ’, ’copy:partials ’, ’copy:index’�

, ’rename:build’]
192 },
193 css: {
194 files: ’src /**/*. css’,
195 tasks: [’clean:tmpbuild ’, ’rename:unbuild ’, ’cssmin ’, ’rename:build’]
196 },
197 parsers: {
198 files: ’src/js/parsers /*. pegjs ’,
199 tasks: [’clean:tmpbuild ’, ’rename:unbuild ’, ’peg:AUT’, ’concat:worker ’, ’�

rename:build’]
200 }
201 },
202 peg: {
203 CCS: {
204 src: ’node_modules/PseuCoCo/CCSParser.pegjs’,
205 dest: ’temporary_files/CCSParser.js’,
206 options: {
207 exportVar: ’CCSParser ’
208 }
209 },
210 PseuCo: {
211 src: ’node_modules/PseuCoCo/PseuCoParser.pegjs’,
212 dest: ’temporary_files/PseuCoParser.js’,
213 options: {
214 exportVar: ’PseuCoParser ’
215 }
216 },
217 AUT: {
218 src: ’src/js/parsers/AUT.pegjs ’,
219 dest: ’temporary_files/AUTParser.js’,
220 options: {
221 exportVar: ’AUTParser ’
222 }
223 }
224 },
225 coffee: {
226 CCS: {
227 options: {
228 bare: true
229 },
230 files: {
231 ’temporary_files/CCS_no_parser.js’: [’node_modules/PseuCoCo/CCS.�

coffee ’, ’node_modules/PseuCoCo/CCSRules.coffee ’, ’node_modules/�

PseuCoCo/CCS+Traces.coffee ’, ’node_modules/PseuCoCo/CCSExecutor.�

coffee ’, ’node_modules/PseuCoCo/CCSExport.coffee ’]
232 }
233 },
234 PseuCo: {
235 options: {
236 bare: true
237 },
238 files: {
239 ’temporary_files/PseuCo_no_parser.js’: [’node_modules/PseuCoCo/PseuCo�

.coffee ’, ’node_modules/PseuCoCo/PCType.coffee ’, ’node_modules/�

PseuCoCo/PCEnvironment.coffee ’, ’node_modules/PseuCoCo/PCExport.�

coffee ’]
240 }
241 },
242 CCSCompiler: {
243 options: {
244 bare: true
245 },
246 files: {
247 ’temporary_files/CCSCompiler.js’: [’node_modules/PseuCoCo/PCCCompiler�

.coffee ’, ’node_modules/PseuCoCo/PCCProcessFrame.coffee ’, ’�

node_modules/PseuCoCo/PCCProgramController.coffee ’, ’node_modules/�

PseuCoCo/PCCContainer.coffee ’, ’node_modules/PseuCoCo/�

PCCCompilerStack.coffee ’, ’node_modules/PseuCoCo/PseuCo+Compiler.�

coffee ’, ’node_modules/PseuCoCo/PCCExecutor.coffee ’, ’node_modules�

/PseuCoCo/PCCExport.coffee ’]

38

248 }
249 }
250 },
251 browserify: {
252 PseuCoCo: {
253 src: ’src/js/pseucoco.js’,
254 dest: ’temporary_files/pseucoco.js’,
255 },
256 options: {
257 browserifyOptions: {
258 paths: [’temporary_files/’]
259 }
260 }
261 },
262 rename: {
263 build: {
264 files: [
265 {
266 src: ’build ’,
267 dest: ’temporary_files/old_build ’
268 },
269 {
270 src: ’temporary_files/build’,
271 dest: ’build ’
272 }
273]
274 },
275 unbuild: {
276 files: [
277 {
278 src: ’build ’,
279 dest: ’temporary_files/build’
280 }
281]
282 }
283 }
284 });
285

286 grunt.loadNpmTasks(’grunt -bower -task’);
287 grunt.loadNpmTasks(’grunt -contrib -uglify ’);
288 grunt.loadNpmTasks(’grunt -contrib -cssmin ’);
289 grunt.loadNpmTasks(’grunt -contrib -jshint ’);
290 grunt.loadNpmTasks(’grunt -contrib -copy’);
291 grunt.loadNpmTasks(’grunt -contrib -clean’);
292 grunt.loadNpmTasks(’grunt -contrib -concat ’);
293 grunt.loadNpmTasks(’grunt -contrib -watch’);
294 grunt.loadNpmTasks(’grunt -contrib -coffee ’);
295 grunt.loadNpmTasks(’grunt -peg’);
296 grunt.loadNpmTasks(’grunt -browserify ’);
297 grunt.loadNpmTasks(’grunt -zip’);
298 grunt.loadNpmTasks(’grunt -curl’);
299 grunt.loadNpmTasks(’grunt -contrib -rename ’);
300

301 grunt.registerTask(’get -ace’, ’Get␣and␣unzip␣the␣Ace␣text␣editor.’, function () {
302 if (!grunt.file.exists(’managed_components/ace/ace -’ + aceVersion + ’.zip’)) {
303 grunt.task.run([’clean:ace’, ’curl:ace’, ’unzip:ace’]);
304 }
305 });
306

307 grunt.registerTask(’test’, [’jshint ’]);
308 grunt.registerTask(’build’, [’peg’, ’coffee ’, ’concat:app’, ’concat:lib’, ’concat:CCS�

’, ’concat:PseuCo ’, ’browserify ’, ’concat:worker ’, ’uglify:lib’, ’cssmin ’, ’copy:�

partials ’, ’copy:fonts’, ’copy:images ’, ’copy:htaccess ’, ’copy:serverhtaccess ’, ’�

copy:index’, ’copy:version ’, ’clean:oldbuild ’, ’rename:build’]);
309 grunt.registerTask(’appcache ’, [’copy:appcache ’]);
310 grunt.registerTask(’deploy ’, [’bower:install ’, ’get -ace’, ’build’]);
311 grunt.registerTask(’serverside ’, [’deploy ’, ’appcache ’]);
312 grunt.registerTask(’default ’, [’test’, ’deploy ’]);
313 };

Listing B.2: weakProcessState() from worker.js
284 var weakProcessState = function (ltsData , stateName) {

39

285 if (! stateName) stateName = ltsData.extended.explorationState.weakFrontier.shift�

(); // draw next state
286

287 var states = ltsData.core.states;
288 var state = states[stateName];
289

290 var insertConnection = function (set , value) {
291 if (!_.contains(set , value)) {
292 set.push(value);
293 return true;
294 }
295 };
296

297 var insertTransition = function (set , transition) {
298 if (!_.some(set , function (t) {
299 return t.source === transition.source && t.target === transition.target�

&& t.label === transition.label;
300 })) {
301 set.push(transition);
302 return true;
303 }
304 };
305

306 var createTransition = function (preStateName , postStateName , label) {
307 var weakTransition = {
308 source: preStateName ,
309 target: postStateName ,
310 label: label
311 };
312

313 insertTransition(states[preStateName]. weakTransitions.outgoing ,�

weakTransition);
314 insertTransition(states[postStateName]. weakTransitions.incoming ,�

weakTransition);
315 };
316

317 _.each(state.transitions , function (transition , index) {
318 // insert self -connection to target state
319 var targetState = ltsData.core.states[transition.target];
320 insertConnection(targetState.weakConnections.pre , transition.target);
321 insertConnection(targetState.weakConnections.post , transition.target);
322

323 if (transition.weak) {
324 // weak transition
325

326 // update weak connections
327 _.each(state.weakConnections.pre , function (preStateName) {
328 _.each(targetState.weakConnections.post , function (postStateName) {
329 var wasNew = insertConnection(states[preStateName].�

weakConnections.post , postStateName);
330 insertConnection(states[postStateName]. weakConnections.pre ,�

preStateName);
331

332 if (wasNew) {
333 // we discovered a new connection
334 // this might allow new transitions (longer than existing�

ones)
335

336 _.each(states[preStateName]. weakTransitions.incoming ,�

function (t) {
337 createTransition(t.source , postStateName , t.label);
338 });
339 _.each(states[postStateName]. weakTransitions.outgoing ,�

function (t) {
340 createTransition(preStateName , t.target , t.label);
341 });
342 }
343 });
344 });
345 } else {
346 // strong transition
347

348 // create weak transitions

40

349 _.each(state.weakConnections.pre , function (preStateName) {
350 _.each(targetState.weakConnections.post , function (postStateName) {
351 createTransition(preStateName , postStateName , transition.label);
352 });
353 });
354 }
355 });
356

357 state.weakExplored = true;
358 };

Listing B.3: stateIsFullyWeakExplored() and utility functions from worker.js
361 var stateIsWeakExplored = function (ltsData , stateName) { // true if a state has been�

weak explored
362 return ltsData.core.states[stateName]. weakExplored;
363 };
364

365

366 var stateIsWeakConnectionExplored = function (ltsData , stateName) { // if true , no�

more states will be added to weakConnections
367 var state = ltsData.core.states[stateName];
368 if (state.weakConnectionExplored) return true;
369

370 if(stateIsWeakExplored(ltsData , stateName) && _.every(state.weakConnections.post ,�

function (postStateName) {
371 return stateIsWeakExplored(ltsData , postStateName);
372 })) {
373 state.weakConnectionExplored = true;
374 return true;
375 } else {
376 return false;
377 }
378 };
379

380

381 var stateIsFullyWeakExplored = function (ltsData , stateName) { // if true , no more�

weak transitions or connections will be added to this state
382 var states = ltsData.core.states;
383 var state = states[stateName];
384

385 if (ltsData.extended.explorationState.explorationFinished) return true;
386 if (state.fullyWeakExplored) return true;
387 if (! stateIsWeakConnectionExplored(ltsData , stateName)) return false;
388

389 if (_.every(state.weakTransitions.outgoing , function (transition) {
390 return stateIsWeakConnectionExplored(ltsData , transition.target);
391 })) {
392 state.fullyWeakExplored = true;
393 return true;
394 }
395

396 return false;
397 };

Listing B.4: Task function of the minimizeLts task from worker.js
739 minimizeLts: function (data , workerState) {
740 var ltsData = workerState.data[data.dataId];
741

742 if (! ltsData) {
743 return {
744 data: null ,
745 taskCompleted: true
746 };
747 }
748

749 enhanceIfNeeded(ltsData);
750

751 var states = ltsData.core.states;
752

753 var initialBlock = [];
754 var blocks = [];

41

755

756 var stateToBlockMap = {};
757

758 var notFullyWeaklyExploredStates = [];
759

760 _.each(states , function (state , stateName) {
761 if (_.contains(ltsData.extended.explorationState.explored ,�

stateName) || _.contains(ltsData.extended.explorationState.�

frontier , stateName)) {
762 if (stateIsFullyWeakExplored(ltsData , stateName)) {
763 initialBlock.push(stateName);
764 stateToBlockMap[stateName] = initialBlock;
765 } else {
766 // unexplored state
767 var newBlock = [stateName]; // this state may not be�

grouped
768 blocks.push(newBlock);
769 stateToBlockMap[stateName] = newBlock;
770 notFullyWeaklyExploredStates.push(stateName);
771 }
772 } else {
773 // unreachable state - ignore
774 }
775 });
776

777 if (initialBlock.length > 0) blocks.push(initialBlock);
778

779 var done = false;
780

781 var buildToDo = function () {
782 var todo = [];
783

784 _.each(blocks , function (block1) {
785 _.each(blocks , function (block2) {
786 todo.push({ block1: block1 , block2: block2 });
787 });
788 });
789

790 return todo;
791 };
792

793 var getIncomingActionPredecessors = function (block) { // gets a map�

of all strong actions to predecessor states
794 if (block.incomingActionPredecessors) return block.�

incomingActionPredecessors;
795

796 var result = {};
797

798 _.each(block , function (stateName) {
799 _.each(states[stateName]. weakTransitions.incoming , function (�

transition) {
800 var label = transition.label;
801 var preList = result[label];
802 if (! preList) { preList = []; result[label] = preList; }
803 preList.push(transition.source);
804 });
805 });
806

807 block.incomingActionPredecessors = result;
808 return result;
809 };
810

811 var getWeakPredecessors = function (block) {
812 return _.flatten(_.map(block , function (stateName) {
813 var state = states[stateName];
814 return state.weakConnections.pre;
815 }), true);
816 };
817

818 var getSplit = function (block , splitter) {
819 var intersection = _.intersection(block , splitter);
820 if (!_.isEmpty(intersection)) {
821 var difference = _.difference(block , splitter);

42

822 if (!_.isEmpty(difference)) {
823 return { block1: intersection , block2: difference };
824 }
825 }
826

827 return false;
828 };
829

830 var performSplit = function (block , split) {
831 var index = blocks.indexOf(block);
832 if (index > -1) blocks.splice(index , 1);
833 else throw "trying␣to␣split␣a␣nonexisting␣block";
834

835 blocks.push(split.block1);
836 blocks.push(split.block2);
837

838 var assignBlock = function (block) {
839 return function (stateName) {
840 stateToBlockMap[stateName] = block;
841 };
842 };
843

844 _.each(split.block1 , assignBlock(split.block1));
845 _.each(split.block2 , assignBlock(split.block2));
846 };
847

848 // partition
849 while (!done) {
850 done = true;
851

852 var todo = buildToDo ();
853 todoloop: while (!_.isEmpty(todo)) {
854 var task = todo.shift();
855

856 var block1 = task.block1;
857 if(!_.contains(blocks , block1)) continue; // this block was�

split already
858

859 var block2 = task.block2;
860

861 var weakPredecessors = getWeakPredecessors(block2);
862 var weakSplit = getSplit(block1 , weakPredecessors);
863

864 if (weakSplit) {
865 done = false;
866 performSplit(block1 , weakSplit);
867 } else {
868 var incomingActionPredecessors2 =�

getIncomingActionPredecessors(block2);
869

870 for (var action in incomingActionPredecessors2) {
871 var predecessors = incomingActionPredecessors2[action�

];
872 var split = getSplit(block1 , predecessors);
873 if (split) {
874 done = false;
875 performSplit(block1 , split);
876 break todoloop;
877 }
878 }
879 }
880 }
881 }
882

883 // partitioning completed
884 var newStates = {};
885 var nextStateLabel = 0;
886

887 var blockToStateInfo = {};
888 _.each(blocks , function (block) {
889 blockToStateInfo[block] = {
890 label: ’’ + nextStateLabel ++,

43

891 weakConnectionPostBlocks: _.uniq(_.flatten(_.map(block ,�

function (stateName) {
892 return _.map(states[stateName]. weakConnections.post ,�

function (postStateName) {
893 return stateToBlockMap[postStateName];
894 });
895 }), true)) // blocks that can be reached by only tau steps
896 };
897 });
898

899 var oldToNewLabel = function (oldStateName) {
900 return blockToStateInfo[stateToBlockMap[oldStateName]]. label;
901 };
902

903 _.each(blocks , function (block) {
904 var thisBlockLabel = blockToStateInfo[block].label;
905

906 var outgoingOldTransitions = _.flatten(_.map(block , function (�

stateName) {
907 return states[stateName]. weakTransitions.outgoing;
908 }), true);
909

910 var outgoingNewTransitions = _.map(outgoingOldTransitions ,�

function (transition) {
911 // this weak transition points to an old state - build a new�

one , pointing to a new state
912 return {
913 label: transition.label ,
914 target: oldToNewLabel(transition.target)
915 };
916 });
917

918 // remove duplicates
919 var uniqueOutgoingNewTransitions = _.flatten(_.map(_.groupBy(�

outgoingNewTransitions , ’label’), function (�

transitionsWithCommonLabel) {
920 return _.uniq(transitionsWithCommonLabel , ’target ’);
921 }), true);
922

923 var weaklyReachibleNewStates = _.uniq(_.flatten(_.map(block ,�

function (stateName) {
924 return _.map(states[stateName]. weakConnections.post ,�

oldToNewLabel);
925 }), true));
926

927 _.each(weaklyReachibleNewStates , function (targetStateName) {
928 if (targetStateName !== thisBlockLabel) {
929 // targetStateName is reachable with a weak transition -�

add that
930 uniqueOutgoingNewTransitions.push({
931 target: targetStateName ,
932 weak: true
933 });
934 }
935 });
936

937 var filteredUniqueOutgoingNewTransitions = _.filter(�

uniqueOutgoingNewTransitions , function (transitionToTest) {
938 // check if the transition is needed (or can be replaced with�

a transition of a weak post state)
939 return !_.some(blockToStateInfo[block].�

weakConnectionPostBlocks , function (�

weakConnectionPostBlock) {
940 var weaklyOutgoingMatchingTransitions = _.flatten(_.map(�

weakConnectionPostBlock , function (�

weakConnectionPostState) {
941 return _.filter(states[weakConnectionPostState].�

transitions , function (transition) {
942 return transition.label === transitionToTest.�

label && transition.weak === transitionToTest.�

weak;
943 });
944 }), true);

44

945

946 // weaklyOutgoingMatchingTransitions are all transitions�

that might make transitionToTest superfluous
947

948 return _.some(weaklyOutgoingMatchingTransitions , function�

(weaklyOutgoingMatchingTransition) {
949 if (weaklyOutgoingMatchingTransition.weak &&�

stateToBlockMap[weaklyOutgoingMatchingTransition.�

target] === weakConnectionPostBlock) return false;�

// prevent tau steps from replacing themselves as�

part of tau*
950 return _.some(states[weaklyOutgoingMatchingTransition�

.target]. weakConnections.post , function (�

stateAfterOutgoingWeakMatchingTransition) {
951 if (oldToNewLabel(�

stateAfterOutgoingWeakMatchingTransition) !==�

transitionToTest.target) return false; // we�

ended up in the wrong state - no possible�

replacement
952

953 // we found a matching route: tau* ->�

weaklyOutgoingMatchingTransition -> tau*
954 // we still must check that this is longer than�

transitionToTest , otherwise , each transition�

would remove itself
955 return block !== weakConnectionPostBlock ||�

transitionToTest.target !== oldToNewLabel(�

weaklyOutgoingMatchingTransition.target);
956 });
957 });
958 });
959 });
960

961 newStates[thisBlockLabel] = {
962 transitions: filteredUniqueOutgoingNewTransitions
963 };
964 });
965

966 var newInitialState = oldToNewLabel(ltsData.core.initialState);
967

968 // add weak self -loop if needed for observation congruence
969 var blockWithInitialState = stateToBlockMap[ltsData.core.initialState�

];
970 if (_.some(states[ltsData.core.initialState]. transitions , function (�

transition) {
971 return transition.weak && stateToBlockMap[transition.target] ===�

blockWithInitialState;
972 })) {
973 newStates[newInitialState]. transitions.push({
974 target: newInitialState ,
975 weak: true
976 });
977 }
978

979

980 var dataId = workerState.nextDataId ++;
981

982 var newLtsData = {
983 core: {
984 initialState: newInitialState ,
985 states: newStates
986 },
987 extended: {
988 dataId: dataId
989 }
990 };
991

992 var generateRelayingTransitionGenerator = function (state ,�

underlyingStateName) {
993 return function () {
994 var underlyingState = states[underlyingStateName];
995 if (! underlyingState.transitions) blindExploreState(data.�

dataId , ltsData , underlyingStateName);

45

996 var underlyingTansitions = underlyingState.transitions;
997

998 state.transitions = state.transitionsFromMinimization;
999 if (!state.transitions) state.transitions = [];

1000

1001 _.each(underlyingTansitions , function (underlyingTransition)�

{
1002 if (! stateToBlockMap[underlyingTransition.target]) {
1003 var newStateLabel = ’U-’ + nextStateLabel ++;
1004

1005 var newState = JSON.parse(enhancedStateTemplate);
1006 newState.generateTransitions =�

generateRelayingTransitionGenerator(newState ,�

underlyingTransition.target);
1007

1008 newStates[newStateLabel] = newState;
1009

1010 var newBlock = [newState];
1011 stateToBlockMap[underlyingTransition.target] =�

newBlock;
1012 blockToStateInfo[newBlock] = { label: newStateLabel�

};
1013 } else {
1014 if (_.some(state.transitions , function (transition) {
1015 return transition.label === underlyingTransition.�

label && transition.weak ===�

underlyingTransition.weak && transition.target�

=== oldToNewLabel(underlyingTransition.target�

);
1016 })) {
1017 return; // transition already exists - ignore
1018 }
1019 }
1020

1021 state.transitions.push ({
1022 label: underlyingTransition.label ,
1023 weak: underlyingTransition.weak ,
1024 target: oldToNewLabel(underlyingTransition.target)
1025 });
1026 });
1027 };
1028 };
1029

1030 var safeDataCopy = JSON.parse(JSON.stringify(newLtsData));
1031

1032 // restore explore functionality for not fully explored states
1033 _.each(notFullyWeaklyExploredStates , function (originalStateName) {
1034 var state = newStates[oldToNewLabel(originalStateName)];
1035 state.generateTransitions = generateRelayingTransitionGenerator(�

state , originalStateName);
1036

1037 // hide transitions from view - state needs to be explored
1038 state.transitionsFromMinimization = state.transitions;
1039 state.transitions = undefined;
1040 });
1041

1042 workerState.data[dataId] = newLtsData;
1043

1044 return {
1045 data: {
1046 command: ’minimized ’,
1047 data: safeDataCopy
1048 },
1049 taskCompleted: true
1050 };
1051 }

46

Appendix C

The Repository Structure

In the source code repository of pseuCo.com, you can find a multitude of files and directories. Some of
them are generated by the package managers and the build script, and not included in the repository
directly.

Here is an overview over this directory structure:

.git — hidden data directory from Git

bower_components — managed by Bower, contains all files from the dependencies shown in List-
ing 5.1

build — contains the resulting directory structure the web server should present – see Appendix D

managed_components — contains files managed automatically by the build scripts

ace — contains the downloaded archive and unzipped version of Ace

bower — contains only the needed files from the Bower dependencies shown in Listing 5.1

node_modules — managed by npm, contains all files from the dependencies shown in Listing 5.2

server — contains the files needed for the server component – see section 5.12

data — the data directory for the server component

paste — files that have been submitted to the paste service from users

templates — template files that will be offered to users, separated by file type

ccs.json

lts.json

pseuco.json

server.htaccess — configuration file for Apache to direct incoming HTTP requests to the
pseuCo.com server running at port 9128

server.js — the server code

src

css — all CSS files needed by pseuCo.com (CSS definitions can be in any CSS file in this folder
– the separation in different files is purely for convenience.)

img — contains images used in pseuCo.com

js — contains all main JavaScript files

partials — contains partials

.htaccess — configuration file for Apache, setting headers to disable the normal client-side
caching (in favour of the Application Cache – see section 5.6)

47

index.html — main HTML file, describing the core parts of the UI (Additional UI elements
(partials) are injected during runtime.)

offline.appcache — configuration file for the Application Cache – see section 5.6

temporary_files — location for temporary files needed during the build process

.gitattributes — configuration file for Git, ensuring line endings are normalized

.gitignore — configuration files for Git, ensuring generated files are not committed to the repository
by accident

.jshintrc — configuration file for jshint

bower.json — configuration file for Bower, listing dependencies

COPYING — license text

Gruntfile.js — configuration file for grunt, describing the build process – see section 5.3

package.json — configuration file for npm, describing this package and the dependencies

ReadMe.md

version.txt — contains the string testing to allow pseuCo.com to identify itself as having
been built from source (For the official builds, this file is overwritten with the string displayed at

base URL /#/about.)

48

http://pseuco.com/#/about

Appendix D

The Build Directory Structure

This section describes the final directory structure, ready to be served by Apache or any other HTTP
server. It is set up by the build scripts in repository /build/.

api — virtual path, to which the server component should respond (The folder contains a .htaccess
file to configure Apache to redirect requests to it.)

css

app.css — CSS styles from the main application

lib.css — CSS styles from external libraries

fonts — contains fonts containing Glyphicon symbols

img

icon.png — the pseuCo.com icon, PNG version

icon.svg — the pseuCo.com icon, SVG version

js

app.js — JavaScript code from the main application

lib.js — JavaScript code from external libraries

lib.min.js — JavaScript code from external libraries, minified

lib.min.js.map — source map for lib.js, for debugging

worker.js — JavaScript code for the background worker – see section 5.7

partials

about.html — UI fragment: “About” tab

ace.html — UI fragment for including Ace

actions.html — UI fragment: action buttons

backup.html — UI fragment: “Backup” tab

debug.html — UI fragment: the hidden “Debug” tab – see section 5.1

edit.html — UI fragment: file viewing and editing

error.html — UI fragment: displays critical errors

export.html — UI fragment: LTS file export

fetch.html — UI fragment: message shown while a shared file downloads

files.html — UI fragment: “Files” tab

help.html — UI fragment: “Help” tab

49

https://secure.fefrei.de/redmine/projects/concurrent-programming-web/repository/revisions/master/entry/build/

import.html — UI fragment: file import

landing.html — UI fragment: main “pseuCo.com” tab

lts.html — UI fragment: the LTS viewer

newfile.html — UI fragment: new file creation

pseucojava.html — UI fragment: the classical pseuCo-Java compiler

share.html — UI fragment: file upload for sharing

svg.html — UI fragment: result of SVG export

trace.html — UI fragment: random trace through LTS

.htaccess — configuration file for Apache – see section 5.6

index.html — main HTML file

offline.appcache — configuration file for the Application Cache – see section 5.6

version.txt — describes the version of pseuCo.com – either “testing” if built from source locally,
or a branch name and commit identifier if built on the official server

50

Appendix E

User Manual (digital printout)

Remark
The documentation of the pseuCo language contains work by Kathrin Stark and Holger Hermanns.

51

52

53

54

55

56

57

58

59

60

61

62

Glossary

Ace

a JavaScript-based text editor – see http://ace.c9.io/ 7, 8, 47, 49

AngularJS

a rich JavaScript framework that helps building dynamic HTML-based applications by enhancing
HTML – see https://angularjs.org/ 8, 9, 13, 15, 63

Apache

a HTTP server – see http://apache.org/ 5, 12, 29, 47, 49, 50

Bézier curve

a curved described by several (usually four) so-called control points, defining not only the start and
end point, but also points the curve will bend towards – see https://en.wikipedia.org/wiki/B%
C3%A9zier_curve 19

Bower

a package manager for web applications – see http://bower.io/ 7, 47, 48

Browserify

a JavaScript tool to bundle JavaScript-files with their npm dependencies to be runnable in a browser
environment – see http://browserify.org/ 8

CoffeeScript

a programming language that cross-compiles to JavaScript – see http://coffeescript.org/ 8

controller

refers to application code that provides the functionality behind a user interface and manages the
data model 8, 9

CSS

a language to describe the appearance of HTML elements 8, 47, 49

D3.js

a JavaScript library for visualizations based on SVG elements – see http://d3js.org/ 18

directive

an AngularJS-specific term for a HTML extension: an element that provides a part of the user
interface, consisting of both HTML code describing the UI, and JavaScript code providing the
functionality 8, 17

factory

an AngularJS-specific term for a singleton: a component that provides a specific function, and must
be initialized once before it can be used arbitrarily often 8

63

http://ace.c9.io/
https://angularjs.org/
http://apache.org/
https://en.wikipedia.org/wiki/B%C3%A9zier_curve
https://en.wikipedia.org/wiki/B%C3%A9zier_curve
http://bower.io/
http://browserify.org/
http://coffeescript.org/
http://d3js.org/

Git

a version control system – see http://git-scm.com/ 5, 30, 47, 48

grunt

a JavaScript-based build system – see http://gruntjs.com/ 5, 7, 35, 48

jshint

a tool to find common issues in JavaScript code – see http://jshint.com/ 7, 48

node.js

a command-line JavaScript interpreter – see http://nodejs.org/ 29

npm

the Node Package Manager, part of node.js – see https://www.npmjs.org/ 5, 7, 30, 47, 48, 63

partial

fragment of an HTML file defining a part of the UI 9, 17, 47, 48

PEG.js

a JavaScript-based parser generator to generate JavaScript parsers for arbitrary languages – see
http://pegjs.majda.cz/ 8

PseuCoCo

a compiler from pseuCo to CCS code – see section 2.3 3, 4, 7, 8, 17

64

http://git-scm.com/
http://gruntjs.com/
http://jshint.com/
http://nodejs.org/
https://www.npmjs.org/
http://pegjs.majda.cz/

Bibliography

[1] Sebastian Biewer. A compiler for pseuCo to CCS, 2013.

[2] Jaana Eloranta. Minimizing the number of transitions with respect to observation equivalence. BIT,
31(4):576–590, 1991.

[3] E. Allen Emerson and Edmund M. Clarke. Using branching time temporal logic to synthesize
synchronization skeletons. Sci. Comput. Program., 2(3):241–266, 1982.

[4] Paris C. Kanellakis and Scott A. Smolka. CCS expressions, finite state processes, and three problems
of equivalence. In Robert L. Probert, Nancy A. Lynch, and Nicola Santoro, editors, Proceedings of the
Second Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, Montreal,
Quebec, Canada, August 17-19, 1983, pages 228–240. ACM, 1983.

[5] Robert Paige and Robert Endre Tarjan. Three partition refinement algorithms. SIAM J. Comput.,
16(6):973–989, 1987.

[6] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of Computer
Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, pages 46–57. IEEE Computer
Society, 1977.

65

Legal Notes

Eidesstattliche Erklärung
Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement in Lieu of an Oath
I hereby confirm that I have written this thesis on my own and that I have not used any other media or
materials than the ones referred to in this thesis

Einverständniserklärung
Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die Bibliothek der
Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent
I agree to make both versions of my thesis (with a passing grade) accessible to the public by having them
added to the library of the Computer Science Department.

Saarbrücken, 30.09.2014

Felix Freiberger

	Introduction
	Preliminaries
	pseuCo
	CCS
	Previous Work
	Explanation of Symbols and Technical Terms

	Accessing pseuCo.com
	Accessing the Online Version of pseuCo.com
	Building pseuCo.com from Source

	User Manual
	Developer Manual
	The Debugging Page
	Dependencies
	The Build Process
	Application Start-Up
	How pseuCo.com Stores and Handles Files
	Offline Mode
	Tasks and the Background Worker
	Editors, Translations and Actions
	LTS Exploration
	LTS Visualization and Graph Layout
	LTS Minimization
	The Server Component of pseuCo.com
	A Build Server for pseuCo.com

	The Future of pseuCo.com
	Model Checking
	Additional Input Formats
	New Translations for Existing File Types

	Appendix Definitions for LTS
	Appendix Code Listings
	Appendix The Repository Structure
	Appendix The Build Directory Structure
	Appendix User Manual (digital printout)
	Glossary
	Bibliography

