

 system house for distributed automation

USB-CANmodul

GW-001, GW-002,
3004006, 32040xx, 34040xx

Systems Manual

Edition February 2010

USB-CANmodul

  SYS TEC electronic GmbH 2010 L-487e_22

In this manual are descriptions for copyrighted products, which are not explicitly indicated
as such. The absence of the trademark () and copyright () symbols does not infer that
a product is not protected. Additionally, registered patents and trademarks are similarly
not expressly indicated in this manual

The information in this document has been carefully checked and is believed to be entirely
reliable. However, SYS TEC electronic GmbH assumes no responsibility for any
inaccuracies. SYS TEC electronic GmbH neither gives any guarantee nor accepts any
liability whatsoever for consequential damages resulting from the use of this manual or its
associated product. SYS TEC Electronic GmbH reserves the right to alter the information
contained herein without prior notification and accepts no responsibility for any damages,
which might result.

Additionally, SYS TEC electronic GmbH offers no guarantee nor accepts any liability for
damages arising from the improper usage or improper installation of the hardware or
software. SYS TEC electronic GmbH further reserves the right to alter the layout and/or
design of the hardware without prior notification and accepts no liability for doing so.

 Copyright 2010 SYS TEC electronic GmbH, D-07973 Greiz/Thueringen. Rights -
including those of translation, reprint, broadcast, photomechanical or similar reproduction
and storage or processing in computer systems, in whole or in part - are reserved. No
reproduction may occur without the express written consent from SYS TEC electronic
GmbH.

 EUROPE NORTH AMERICA
Address: SYS TEC electronic GmbH

August-Bebel-Str. 29
D-07973 Greiz
GERMANY

PHYTEC America LLC
203 Parfitt Way SW, Suite G100
Bainbridge Island, WA 98110
USA

Ordering
Information:

+49 (3661) 6279-0

info@systec-electronic.com

1 (800) 278-9913

info@phytec.com

Technical
Support:

+49 (3661) 6279-0

support@systec-electronic.com

1 (800) 278-9913

support@phytec.com

Fax: +49 (3661) 6279-99 1 (206) 780-9135

Web Site: http://www.systec-electronic.com http://www.phytec.com

22th Edition February 2010

 Contents

 SYS TEC electronic GmbH 2010 L-487e_22

Table of Contents

Preface 1

Introduction 3

1 Getting Started.................................... ... 16
1.1 Installation.. 16
1.1.1 Installation of the USB-CANmodul under Windows-OS 16
1.1.2 Software Installation... 16
1.1.3 Updating an Existing Installation.. 19
1.1.4 Verifying the Device Installation... 20
1.1.5 Device Number Allocation.. 21
1.1.6 Connection to a CAN Network ... 23
1.1.7 Starting PCANView (USBCAN) ... 24
1.1.8 Creating a debug file from DLL.. 29
1.1.9 Activation of the network driver.. 31
1.2 Status LEDs on the USB-CANmodul... 32
1.3 CAN Supply Voltage .. 34
1.4 CAN-port with Low-Speed CAN Transceiver ... 35
1.5 Expansion Port... 36
1.6 Termination resistor for CAN bus .. 39
1.7 Order Options .. 41
1.8 The new sysWORXX USB-CANmoduls .. 43
1.8.1 The Multiport CAN-to-USB... 43
1.8.2 The USB-CANmodul1.. 43
1.8.3 The USB-CANmodul2.. 44
1.8.4 The USB-CANmodul8 and USB-CANmodul16.. 44

2 Software Support for Windows OS.................... .. 45
2.1 File Structure.. 45
2.2 Tools for the USB-CANmodul.. 46
2.2.1 USB-CANmodul Control .. 46
2.2.2 PCANView (USBCAN) for Windows.. 47
2.3 Description of the USBCAN-library.. 49
2.3.1 Attributes of the USBCAN-library... 49
2.3.2 Functions of the USBCAN-library .. 53
2.3.2.1 General functions... 54

2.3.2.2 Functions for automatic transmission .. 105

2.3.2.3 Functions for the CAN Port.. 110

2.3.2.4 Functions for the Expansion Port... 116

2.3.3 Error Codes of the Functions... 121
2.3.4 Baud Rate Configuration.. 129
2.3.5 CAN Messages Filter Function .. 135
2.3.6 Using multiple CAN-channels .. 138
2.3.7 Using the Callback Functions .. 139
2.4 Class library for .NET programming languages... 146
2.4.1 Methods of class USBcanServer ... 147
2.4.2 Event of class USBcanServer.. 165

3 Software support for Linux OS...................... ... 170

USB-CANmodul

  SYS TEC electronic GmbH 2010 L-487e_22

3.1 Installation of the driver under Linux .. 170
3.2 API functions under Linux .. 171
3.3 Logging debug information... 173

4 Software support for Windows CE OS 175
4.1 Installation of the driver under Windows CE .. 175
4.2 API functions under Windows CE.. 176
4.3 Logging debug information... 176

5 Index.. .. 177

 Contents

 SYS TEC electronic GmbH 2010 L-487e_22

Index of Figures and Tables

Figure 1: Installation of the driver at Windows Vista...18
Figure 2: Device Manager with the USB-CANmodul ..20
Figure 3: USB-CANmodul Control Tool ..21
Figure 4: Device Number Selection Dialog Box..22
Figure 5: Dialog Box with Hardware Configuration ...24
Figure 6: Dialog Box Message Filter Configuration ..25
Figure 7: PCANView (USBCAN) Main Window..26
Figure 8: precisely timed CAN messages in PCANView (USBCAN)............................27
Figure 9: configuration of cyclic CAN messages in PCANView (USBCAN)27
Figure 10: Debug settings in USB-CANmodul Control ...29
Figure 11: Location of CAN and Expansion Port on GW-002...36
Figure 12: Location of the Expansion Port on USB-CANmodul2....................................37
Figure 13: simple example circuit for Expansion Port...38
Figure 14: termination resistors on CAN bus..39
Figure 15: Internal structure of the Multiport CAN-to-USB...43
Figure 16: Dialog Box for Manipulating the Port Expansion and the CAN Port46
Figure 17: Software State Diagram...50
Figure 18: Examle for parallel mode with two defined CAN messages105
Figure 19: Example of sequential mode with two defined CAN messages106
Figure 20: Structure of baud rate register BTR0...129
Figure 21: Structure of baud rate register BTR1...129
Figure 22: General structure of a single bit on the CAN-bus (source: SJA1000 manual)130
Figure 23: Format of the extended baud rate register for Multiport and

USB-CANmodul1/2..131
Figure 24: Generic structure of one bit on the CAN-bus (source: Atmel AT91SAM7A3

manual)..132

USB-CANmodul

  SYS TEC electronic GmbH 2010 L-487e_22

Table 1: States of the LEDs on the USB-CANmodul GW–001/GW–002 32
Table 2: States of the LEDs on the sysWORXX modules .. 33
Table 3: Pinout of the CAN DB-9 Plug.. 34
Table 4: Signals available for low-speed CAN port... 35
Table 5: CAN Port Pin Assignment for External Transceiver on the GW-002............ 35
Table 6: Expansion Port Pin Assignment on the GW-002 and USB-CANmodul2...... 36
Table 7: Expansion Port Signal Properties on GW-002.. 36
Table 8: Expansion Port Signal Properties on USB-CANmodul2 37
Table 9: recommended cable parameters .. 40
The USB-CANmodul is available in different options: ... 41
Table 10: Software File Structure ... 45
Table 11: Software State Functions.. 51
Table 12: Constants for the type of version information ... 56
Table 13: Constants for CAN transmission mode... 69
Table 14: Constants for the CAN-frame format .. 93
Table 15: Constants for the flags parameter in function UcanGetMsgPending() 102
Table 16: Constants for the flags parameter in function UcanEnableCyclicCanMsg()110
Table 17: Constants for low speed CAN port.. 113
Table 18: Constants for CAN-channel selection ... 138
Table 19: Available functions under Linux OS .. 172
Table 20: tested Windows CE versions and CPU types ... 175

 Preface

 SYS TEC electronic GmbH 2010 L-487e_22 1

Preface

This USB-CANmodul Systems Manual describes the board's design and function. Precise
specifications for the on-board microcontrollers can be found in the enclosed
microcontroller Data Sheet/User's Manual.

In this manual, and in the attached schematics, low active signals are denoted by a "/" in
front of the signal name (i.e.: /RD). A "0" indicates a logic-zero or low-level signal, while a
"1" represents a logic-one or high-level signal.

Declaration of Electro Magnetic Conformity for the SYS TEC
USB-CANmodul

The USB-CANmodul is a tested and ready-to-use interface device and must only be used
as such.

Note:

The USB-CANmodul should not be operated without additional protection circuitry and
further testing if cables to the product's connectors are longer than 3 m. It is required to
use shielded CAN cables.

The USB-CANmodul fulfills the norms of the European Union’s Directive for Electro
Magnetic Conformity only in accordance to the descriptions and rules of usage indicated
in this hardware manual (particularly in respect to the described steps for putting the
device into operation).

Implementation of SYSTEC products into target devices, as well as user modifications
and extensions of SYSTEC products, is subject to renewed establishment of conformity
to, and certification of, Electro Magnetic Directives. Only after doing so the devices are
allowed to be put into circulation.

USB-CANmodul

2  SYS TEC electronic GmbH 2010 L-487e_22

 Introduction

 SYS TEC electronic GmbH 2010 L-487e_22 3

Introduction

Unveiled in 1995, the Universal Serial Bus (USB) connectivity standard provides a
simple and convenient way to connect various peripheral devices to a host-PC. It will
replace a wide variety of serial and parallel connections. The USB standard allows up to
127 devices to be connected to the PC without using multiple connector types, without
interrupt conflicts (IRQs), hardware address adjustments (jumpers) or channel changes
(DMA). USB provides powerful true hot plug-and-play capability; i.e., dynamic attach and
recognition for new devices. It allows the user to work with those devices immediately
without restarting the operating system.

The USB-CANmodul takes advantage of this communication standard and provides an
easy to use portal from a host-PC to a CAN network. Connecting the USB-CANmodul to
the host-PC is simple. The included USB cable supports the two types of USB connectors,
type A and type B. The type A plug connects to the host computer or an upstream hub.
Type B plug connects downstream to the USB-CANmodul. The USB interface enables
data transfer with a rate of up to 12 MBit/s. With a uniform connector for all device types,
the system is absolutely user friendly.

Once the USB-CANmodul is connected to the host-PC, the operating system reads the
configuration data and automatically loads the device driver. All CAN messages are
transferred transparently through the USB Bus. CAN Baud Rates of up to 1 MBit/s are
supported. The transmitted and received CAN messages are buffered by the
USB-CANmodul. The device supports CAN messages according to CAN 2.0A and 2.0B
specifications (11- and 29-Bit identifiers). Connection to the CAN bus meets the CiA
Standard DS 102 (DB-9) and features optional optical isolation of the CAN signals.

Drivers for Linux, LabView (contributed), Windows 2000/XP and higher are provided for
the USB-CANmodul. The USB configuration tool for Windows enables connectivity and
management of more than one device on the USB bus. This USB network is configured
using device numbers which are assigned by the user and are stored in an EEPROM. The
functions for data exchange with the USB-CAN application are available through a DLL
(Dynamic Linked Library). The enclosed demo program shows the easy handling of the
DLL API functions.

USB-CANmodul

4  SYS TEC electronic GmbH 2010 L-487e_22

This manual refers to the following USB-CANmodul versions:

Order number Features
GW-001 Obsolete, but software support for compatibility reasons.

- Galvanic isolation configurable via Jumper.
- No Software support since Windows driver version V4.00.

GW-002 Obsolete, but software support for compatibility reasons.

- More compact housing: 102x54x30 (LxBxH in mm), protection

class IP40, supports DIN-rail mounting
- USB-CANmodul with galvanic isolated available under separate

order number. Thus, it is not longer needed to open the housing
and to supply power via CAN-bus.

- CAN-ground (CAN-GND) and CAN-shield (CAN-SHLD) not
connected internally.

- Various CAN-transceivers available optionally for low-speed CAN
or single-wire CAN, special PCB pads and socket connector for
assembly of special CAN-transceivers

- External power supply of up to 30V possible, depending on the
CAN-transceiver used

- 8-bit user port (I/O with TTL level) provides for customer-specific
extensions

3004006 Multiport CAN-to-USB with 16 CAN-channels

- 19“ rack mounted device
- Contains 8 logical devices with 2 channels each.
- Fast 32-bit microcontroller
- External power-supply with 230VAC/500mA (inlet connector for

non-heating devices)
- Galvanic isolation of the CAN-channels

3204000,
3204001

USB-CANmodul1

- more compact enclosure with dimensions of 78x45x18 (LxWxH in

mm)
- Single CAN interface
- Fast 32-bit MCU, enhanced firmware
- Power-supply via USB, current consumption max. 110mA
- High-speed CAN transceiver 82C251
- Galvanic isolation available with order no. 3204001

3204000 R2,
3204001 R2

USB-CANmodul1 Revision 2

- same as above but includes better EMC behaviour
- 120 ohm termination resistor can be set at PCB

 Introduction

 SYS TEC electronic GmbH 2010 L-487e_22 5

Order number Features
3204002,
3204003,
3204007,
3204008,
3204009,
3204011,
3204013,
3204017,
3204018,
3204019

USB-CANmodul2

- Two CAN-channels, independently utilizable
- Fast 32-bit MCU, enhanced firmware
- Power-supply via USB
- High-speed CAN transceiver 82C251 or Low-speed CAN

transceiver TJA1054 or Single-wire CAN transceiver AU5790
- Galvanic isolation available with order no. 3204003
- 8-bit user port (I/O with TTL level) provides for customer-specific

extensions with order no. 3204007
3204002 R2,
3204003 R2,
3204007 R2,
3204008 R2,
3204009 R2,
3204011 R2,
3204013 R2,
3204017 R2,
3204018 R2,
3204019 R2

USB-CANmodul2 Revision 2

- same as above but includes better EMC behaviour

3404000 USB-CANmodul8

- 8 CAN-channels, independently utilizable
- Table case
- Contains 4 logical devices with 2 channels each
- Fast 32-bit MCU, enhanced firmware
- External power-supply with 230VAC/500mA (inlet connector for

non-heating devices)
- Galvanic isolation of the CAN-channels

3404001 USB-CANmodul16

- 16 CAN-channels, independently utilizable
- Table case
- Contains 8 logical devices with 2 channels each
- Fast 32-bit MCU, enhanced firmware
- External power-supply with 230VAC/500mA (inlet connector for

non-heating devices)
- Galvanic isolation of the CAN-channels

USB-CANmodul

6  SYS TEC electronic GmbH 2010 L-487e_22

References to Hardware and Software changes

In this section you will find references to new functions in the hardware and software of
the USB-CANmodul.

The selection of arbitrary baud rates within the PCANview tool is supported starting with
version 2.15. The UcanWriteCanPort() and UcanReadCanPort() functions were integrated
for control of the low speed transceivers.

Software version 2.16:

- Following a new installation, the USB-CANmodul will appear in the device manager
under the entry "USB-CAN-Hardware " instead of under the entry "USB Controller ".

- Reading the serial number and the CAN controller's operational mode via the
function UcanGetHardwarInfo() is now possible.

- The function UcanGetVersionEx() has been added to support extended version
inquiry.

- The function UcanInitCanEx() is available for expanding the configuration of the
SJA1000, i.e. listing only - mode

- The new functions UcanConfigUserPort(), UcanWriteUserPort() and
UcanReadUserPort() are provided for use of the 8-bit user port.

Software version 2.17:

- Only the installation for Windows2000/XP is supported.

- Installation and operation under Windows98/Me is possible, however SYSTEC will
offer no guarantee that this will work.

- The messages "bus off", "error passive" and "warning limit" were not previously
passed on to the application

- The CAN status error is no longer cleared automatically by UcanGetStatus() after it
has been read, rather it is cleared only when UcanResetCan() is called

Software version 2.18:

- The USBCAN.SYS device driver now also supports power management. If the
computer is activate after being in stand-by mode, the device driver will be loaded
again.

- The time stamp precision for receive messages in the structure tCanMsgStruct has
been improved.

- The CAN status messages USBCAN_CANERR_BUSLIGHT and
USBCAN_CANERR_BUSHEAVY are deleted automatically as soon as the CAN
controller error counter drops below the corresponding threshold.

- The UCAN Config tool has been replaced by the new USB-CANmodul Control tool in
the control panel.

 Introduction

 SYS TEC electronic GmbH 2010 L-487e_22 7

- The PCANView tool didn't correctly answer RTR frames of 29-bit CAN messages in
previous versions. This bug has been fixed starting at version 2.0.4 build 043 of
PCANView.

- New function UcanGetFwVersion() implemented allowing version query of the
module software.

- New demo project for Microsoft Visual Studio C/C++ 6.0.

- Software support for Borland Delphi as library and demo project.

Software version 2.19:

- An error was eliminated from the USBCAN32.DLL. The Connect Control callback
function was not called in version 2.18, as soon as a USB-CANmodul was plugged in
or plugged off from the PC.

- new: Software support for LabView as library and demo project

Software version 2.20:

- An error was eliminated from the USBCAN32.DLL. After calling function
UcanDeinitHwConnectControl(), it was not possible to register a new callback
function by means of UcanInitHwConnectControl().

- If the function UcanResetCan() was called while the receive buffer still contained
CAN messages, old messages could happen to be received twice.

- The file USBCAN32.DLD does not exist any longer. Instead, the checkbox “Debug” in
the USB-CANmodul Control tool is to be used to produce debug information.

Software version 3.00:

- Under some circumstances, the hardware connect control callback functions was
called repeatedly although only one USB-CANmodul was plugged in or plugged off
from the PC.

- New API functions introduced to support multiple CAN interfaces (available with
GW-006, 3004006).

- The software driver now supports simultaneously operation of up to 64 modules on
one PC.

Software Version 3.01:

- Bugfix: Under some circumstances the function UcanDeinitCan() could cause an
access violation.

- Bugfix: The USB-CANmodul GW-002 does not transmit CAN-messages correctly
after bus-off, although function UcanResetCan() was called.

- Bugfix: When using several USB-CANmoduls on the very same PC over multiple
application instances, it happened that an application returned error code 0x06
(illegally handle), although the initialization was successful.

- Bugfix: When a CAN2.0A message was received with Multiport CAN-to-USB, the
CAN-ID of the next CAN2.0B message was incorrectly transferred to the PC.

USB-CANmodul

8  SYS TEC electronic GmbH 2010 L-487e_22

- Transmit-Echo for CAN-messages introduced. GW-002 and Multiport CAN-to-USB
now return transmitted CAN messages as receipt message to the PC. This
messages are marked as echo messages (transmit echo).

- Multiport CAN-to-USB now also supports a baud rate of 10kBit/s.

- Multiport CAN-to-USB activates the Traffic LED only, if the respective CAN-channel
was previously initialized.

- Function UcanGetModuleTime() implemented to USBCAN32.DLL.

Software Version 3.02

- Bugfix: First time installation of version 3.01 did not work properly under Windows
2000

- Bugfix: On Multiport CAN-to-USB 3004006 function UcanReadCanMsgEx() returned
with error code USBCAN_ERR_CANNOTINIT if function was called with parameter
bChannel_p = USBCAN_CHANNEL_ANY and only the 2nd CAN-channels was
initialized.

- Change of software: If the function UcanInitCanEx.() was called with CAN mode
kUcanModeNormal, then the function UcanReadCanMsg..() returned with error code
USBCAN_WARN_NODATA, although the buffer still contains CAN messages. This
was caused by the transmit messages, which were continuously processed within the
DLL. This was caused by the transmission echoes, which were continuously
processed within the DLL. The USBCAN32.DLL was changed to skip the
transmission echoes when CAN mode kUcanModeNormal is used and to return the
next received CAN message instead.

Software Version 3.03

- Change of software: The USBCAN32.DLL now has two more receive buffers per
CAN-channel. Thus it is possible to read CAN messages from one CAN-channel with
function UcanReadCanMsgEx(), without having these blocked by CAN messages of
the other CAN-channel.

- Change of software: Function UcanResetCanEx() now has a parameter to specify
what components are to be reset and what is left unchanged.

Software Version 3.04

- Bugfix referring to Multiport CAN-to-USB 3004006: some CAN messages were sent
twice if the bit rate was too high

- Bugfix referring to Multiport CAN-to-USB 3004006: Some CAN messages queued for
transmission were deleted if function UcanInitCanEx2() was called for the second
CAN-channel.

- Bugfix: Now the firmware-internal message buffer is not deleted by function
UcanInitCanEx2(), if one of the channels is already initialized.

- Software change referring to Multiport CAN-to-USB 3004006: Forcing a firmware
update is now possible.

- Software change: Now a restart is required after deleting the USB-CANmodul drivers
from Windows-OS.

 Introduction

 SYS TEC electronic GmbH 2010 L-487e_22 9

Software Version 3.05

- The drivers now support the USB-CANmodul1 (order no. 3204000, 3204001) and
USB-CANmodul2 (order no. 3204002, 3204003)

- Software change: Now the hardware type is returned with structure
tUcanHardwareInfoEx.

- Software change: The size of the receive and transmit buffers in USBCAN32.DLL is
now configurable. Therefore the two new members/parameters
m_wNrOfRxBufferEntries and m_wNrOfTxBufferEntries exist in structure
tUcanInitCanParam.

- Bugfix referring to Manual: The pin description in Table 6 was wrong. Pin 9 and Pin
10 were switched.

Software Version 3.06

- New feature: Support for automatically transmission of cyclic CAN messages added.
A new demo for Microsoft Visual Studio 6.0 or higher (MFC) is available in folder
"%INSTALLDIR%\DemoCyclicMsg".

- New feature: Function UcanGetMsgPending() added for reading the number of
pending CAN messages (current buffer contents).

- New feature: Function UcanGetCanErrorCounter() added for reading the current
error counters from the CAN controller. This function is only available for the
sysWORXX derivates of the USB-CANmodul.

- New feature: Function UcanWriteCanMsgEx() returns warning
USBCAN_WARN_TXLIMIT when it was called to send more than one CAN
messages but not all CAN messages could be sent because the transmit buffer is
full. The number of accepted CAN messages were indicated to the application by the
parameter pdwCount_p.

- New feature: Function UcanGetVersionEx() also supports to read versions of other
driver files (such as loader, device driver and control panel application).

- Software change: Misspelling the define USBCAN_ERR_DISCONECT was corrected
to USBCAN_ERR_DISCONNECT within the header file USBCAN32.H.

- Software change: USB-CANmodul Control revised with better construction of the
dialog box elements. Already used USB-CANmoduls are also displayed (but grayed).
The debug log file on using USB-CANmodul Control can be switched on/off
separately.

- Bugfix: Function UcanResetCanEx(...,..., USBCAN_RESET_ONLY_STATUS) could
not be called in state HW_INIT.

- Bugfix: Time stamp timer was corrected within sysWORXX derivates of
USB-CANmodul. Time stamps of CAN messages were some different to the old
hardware derivates (such as GW-001 or GW-002).

- Software change: All API functions of USBCAN32.DLL which returns an error code
got the return code type UCANRET. The type UCANRET is also defined to 'unsigned
char' like the previous type BYTE. Therefore applications need not to be recompiled
for this change.

USB-CANmodul

10  SYS TEC electronic GmbH 2010 L-487e_22

Software Version 3.07

- Bugfix: Modules of the sysWORXX USB-CANmodul series hangs when transmission
of cyclic CAN messages was started.

- Bugfix: Access violation has occurred when multiple Windows users tried to initialize
USB-CANmodules on Windows XP.

- Bugfix: Function UcanWriteCanMsgEx() returned warning message
USBCAN_WARN_TXLIMIT instead of USBCAN_SUCCESSFUL when only one CAN
message should be sent and it was successfully transmitted.

- Bugfix: Function UcanInitHardware() or UcanInitHardwareEx() returned
USBCAN_ERR_ILLHW when more than one applications tried to initialize modules
on the same time. A Mutex is added now to fix the problem.

Software Version 3.08

- Bugfix: If UcanResetCanEx() was called to reset the CAN interface without deleting
the message buffers in firmware, then CAN messages were nevertheless deleted.

- New feature: USB-CANnetwork driver available for all sysWORXX series
USB-CANmodules. The use of this driver has to be enabled for each device. Use the
USB-CANmodul Control to switch and/or show the current state of it.

- New feature: Hardware list within the USB-CANmodul Control is now sorted by serial
numbers.

- New feature: USB-CANmodul Control was extended to check for new driver versions
on the SYS TEC homepage. Therefore a new tab sheet "Update" was added.

- New feature: UcanForceUpdate tool gets two new command line arguments. "-snr:"
specifies the serial number of the USB-CANmodul which has to be updated. "-net:"
specifies whether the new USB-CANnetwork driver should be used for the specified
device.

Software Version 3.09

- Bugfix: The red CAN-status-LED on the sysWORXX USB-CANmoduls was not reset
correctly after an error state had been erased.

- Bugfix: When function UcanInitCanEx2() was called for two CAN channels with
transmit echo it could happen that the second channel never received the transmit
echo.

- Bugfix: Device driver Usbcan.sys noticed a receive buffer overrun although there
never was an overrun.

- New feature: Support of device driver Usbcan.sys for Microsoft Vista. Note:
USB-CANnetwork Driver is not available under Vista!

Software Version 3.10

- Bugfix: When changes in Debug Settings were made in the USB-CANmodul Control
they were not stored to the Registry if the windows user was not the administrator.

 Introduction

 SYS TEC electronic GmbH 2010 L-487e_22 11

- New feature: The firmware of all new sysWORXX modules also filters the Data bytes
0 and 1 of CAN2.0A messages and the RTR-frame of CAN2.0A and CAN2.0B
messages - similar to GW-001 and GW-002 (compare 2.3.5).

- New feature: DLL API function UcanSetTxTimeout() for dual channel sysWORXX
modules was added. It configures a transmission timeout (default is 0). If a CAN
message cannot be sent within this timeout the firmware sets a special internal state.
All further CAN messages for this CAN channel will be deleted automatically and the
CAN driver state is set: USBCAN_CANERR_TXMSGLOST to inform the application
about the deletion. This way, the transmission through another CAN channel is not
blocked any more. If the CAN message is sent the special CAN driver state will be
deleted automatically. Once the timeout is configured to zero this feature is switched
off.

- Software change: In DemoGW006 and DemoCyclicMsg it is shown how to load
Usbcan32.dll for the run-time of the application.

Software Version 3.11

- New feature: Driver for Windows CE 5.0 is available. It is based on CPU-type
ARMV4I and was tested on Intel PXA255 and PXA270. Other CPU can be ported on
request.

- New feature: Linux driver version 2.02 r3 released, including a shared library. Kernel
driver supports firmware update of USB-CANmodul1.

Software Version 4.00

- Bugfix: Calling function UcanResetCanEx() with parameter dwFlags_p that was
equal to zero resulted for USB-CANmodul1 not to be able to receive any CAN
messages.

- Bugfix: Calling function UcanResetCanEx() for cleaning receive buffer resulted not to
be able to delete all received CAN messages of USB-CANmodul1 or GW-002.

- Bugfix: When function UcanWriteCanMsgEx() returned an error code, the variable
referenced by parameter pdwCount_p was set to zero.

- New feature: Support of automatically sending of cyclic CAN messages added in
wrapper for LabView 8.5 and 8.6. Now multi-channel USB-CANmoduls are supported
too.

- New feature: New API function UcanSetDebugMode() enables the creation of a
debug log file out of the USBCAN-library.

- New feature: Support of Windows Vista (32 and 64 bit) added. Note: GW-001 not
longer supported!

- Software change: performance improvements for sysWORXX USB-CANmoduls.

- Software change: Predefined baud rate values of 10kBit/sec, 20kBit/sec, 50kBit/sec
and 100kBit/sec for sysWORXX modules changed. "Sync Jump Width" (SJW) of
these baud rate values is set to 1 for better synchronization.

- Software change: Default path for creating LOG files from USBCAN32.DLL was set
to "Documents".

USB-CANmodul

12  SYS TEC electronic GmbH 2010 L-487e_22

Software Version 4.01

- Bugfix: for USB-CANmodul GW-001 or GW-002, the USB-CANmodul Control
sometimes showed that they use the USB-CANnetwork Driver although it does not
apply to those modules; only the Device Driver can be used.

- Bugfix: Library/API function UcanGetStatus() or UcanGetStatusEx() always returned
"no error" in driver version V4.00 although a CAN bus error was detected.

- Bugfix: In Windows XP, a “guest” user account was only able to start one application
that used USBCAN32.DLL.

- Bugfix: Disconnecting a USB-CANmodul while it was still being used in an application
sometimes caused a blue screen on Windows XP with driver version V4.00.

- New feature: USB-CANmodul Control automatically checks if a new driver version is
available from the SYS TEC homepage. This feature can be activated by the user
upon installation or in tabsheet "Update" in the USB-CANmodul Control.

- New feature: a new context menu has been added in the USB-CANmodul Control in
tabsheet "Hardware".

Software Version 4.02

- Bugfix: If API function UcanResetCanEx() was called with flag parameter
USBCAN_RESET_NO_BUFFER_COMM, not all CAN messages were sent from a
multi-channel USB-CANmodul.

- Bugfix: If API functions UcanWriteCanMsg() and UcanResetCanEx() were often
called alternately from one application, it was likely that one of those functions would
hang up.

- Software change: the Setup.exe under Windows 2000/XP/Vista only installs the new
driver if beforehand all USB-CANmodules are disconnected from the computer and
an older driver version is removed.

Software Version 4.03

- Bugfix: USB-CANmodul Control V4.02 always indicated that a driver update would be
available from the SYS TEC homepage although this was not the case.

- Software change: For installing a new driver using update of USB-CANmodul Control
the Setup.exe will not be called automatically but the download folder is opened in
Windows Explorer. The user has to start Setup. exe manually.

Software Version 4.04

- Bugfix: the CAN Traffic LED did not work on all sysWORXX USB-CANmoduls with
firmware version V4.03.

Software Version 4.05

- New feature: Support for new module versions.

- New feature: Driver support for Windows CE 6.0 on x86 CPU is available.

 Introduction

 SYS TEC electronic GmbH 2010 L-487e_22 13

Software Version 4.06

- New feature: the Watchdog supervision has been implemented in the firmware of
sysWORXX USB-CANmoduls.

- New feature: A new separate bootloader has been implemented in the firmware of
sysWORXX USB-CANmoduls. It enables the downgrade to earlier driver versions.
To use this feature the module has to be connected to a Windows 2000/XP/Vista PC
with the driver version 4.06 before. The bootloader is always started after the USB-
CANmodul has been connected. The bootloader notifies the computer about the
firmware version that is programmed. If necessary, it programs new firmware into a
different flash area and starts this firmware. This implies the advantage that in case
of an incorrect firmware update the module must not be sent back because the
bootloader is not overwritten.

- New feature: When starting the application, a dialog box is shown if debug feature
USBCAN32.DLL is activated. The Debug Info Dialog of USBCAN32.DLL can be
switched off with USB-CANmodul Control's Debug tabsheet using check box "Show
Dbg Info".

- Software change: New constants for CAN bit rate defined in USBCAN32.DLL for
sysWORXX USB-CANmoduls. These new constants sets the sample point above
85%. Using BTR0/BTR1 to set the CAN bit rate (dwBaudrate == 0) the new sample
points are enabled. PCANView enables the new sample points too. New 32-bit
baudrate values have been defined for the sysWORXX USB-CANmoduls. For those,
the sample point is between 85 and 90%. If baudrate values BTR0/BTR1 are used
for sysWORXX USB-CANmoduls, the new sample points will be activated - also if
tool PCANView is used. For user applications, the new 23-bit baudrate values must
be replaced to use the new sample points.

Software Version 4.07

- Bugfix: USB-CANmodul2 with order number 3204019 could not read back the correct
/ERR pin state of the low speed CAN transceiver TJA1054.

Software Version 4.08

- Bugfix: For USB-CANmoduls that use the USB-CANnetwork driver, if the acceptance
filter was set to receive only one CAN-ID, other CAN-IDs were received as well.

- Bugfix: USBCANCE.dll for Windows CE was not able to write a debug log file.

Software Version 4.09

- New feature: PCANView.exe can be called with command line parameters to select
the device number, bit rate, channel and window position.

- New feature: PCANView is able to configure cyclical CAN messages that are
automatically sent by the hardware of all sysWORXX modules.

USB-CANmodul

14  SYS TEC electronic GmbH 2010 L-487e_22

Technical Data:

• CAN interface:

- Meets the CiA DS 102 Standard and ISO 11898-2/3

- Optically isolated voltage supply (available as option)

- GW-001 only: 2 jumpers for configuration of the CAN voltage supply (optically
isolated via CAN bus, or via USB bus)

- Connection to the CAN bus via DB-9 plug

- Supports CAN frame format according to specifications for CAN 2.0A and 2.0B
(11- and 29- bit CAN identifier)

- Standard version with Philips PCA82C251 CAN transceiver, other variants
available on request, i.e. low-speed and single-wire transceivers

- Further CAN transceivers: 82C252, TJA1054, TJA1041, AU5790

- GW-002 only: Connector for adapting other CAN transceivers by user (e.g.
B10011S)

- optional power supply via CAN bus, depending on CAN transceiver (see
ordering number)

- intermediate buffer for 768 CAN messages (fix value) in each direction on the
USB-CANmodul

- intermediate buffer for 4096 messages in each direction on the PC
(changeable since software version 3.05)

• USB interface:

- USB connector type B in accordance to the USB standard

- Power supply through the USB bus (max. 200mA in operating mode) for
GW-001, GW-002, USB-CANmodul1 and USB-CANmodul2

- Transmission type: Bulk, 12MBit/s

• Power (green) and status LED (red) for GW-001 and GW-002

• Power (yellow), status LED (red) and traffic LED (green) for all sysWORXX
USB-CANmoduls

• 8 bit expansion port (only GW-002, 3204002 and 3204003)

• Operating temperature 0°C...+55°C for GW-001 and G W-002

• Operating temperature 0°C...+85°C for all sysWORXX modules

• Conforms to CE standard

• Optional mounting accessories for DIN rail and wall assembly

Scope of Delivery

• Assembled and tested device

• Systems Manual

• Software (tools, demos in source, driver software)

 Introduction

 SYS TEC electronic GmbH 2010 L-487e_22 15

• USB cable (type A to type B; approximately 1.5 meters)

Software Support:

• Kernel-Mode driver for Windows 2000, XP (32 bit edition, since driver V4.00 64 bit
edition too) and Vista (32 and 64 bit version since driver version 4.00):

- USBCANLD.SYS, USBCANL2.SYS, USBCANL3.SYS, USBCANL4.SYS and
USBCANL5.SYS for automatic firmware download to the USB-CANmodul

- USBCAN.SYS supports the various functions of the USB-CANmodul

- UCANNET.SYS (network driver) realizes the use of a USB-CANmodul by up to
6 applications

• User-Mode driver for Windows 2000, XP (32 bit edition, since driver V4.00 64 bit
edition too) and Vista (32 and 64 bit version since driver version 4.00):

• USBCAN.DLL for easy use of the USB-CANmodul functions

• Up to 64 CAN-channels (corresponds to i.e. 64 USB-CANmodul1 or 32
USB-CANmodul2)

• Tools for Windows 2000, XP (32 bit edition, since driver V4.00 64 bit edition too) and
Vista (32 and 64 bit version since driver version 4.00):

- USB-CANmodul Control – administration and configuration of more than one
USB-CANmodul by allocation of device numbers

- PCANView(USBCAN) – CAN monitor program

• Demo programs in source (Microsoft C/C++ using MFC and Microsoft Visual Basic
.NET)

• Contributor drivers for LabView

• Device driver and demo software for Linux (Kernel 2.6)

• Device driver and Demo for Windows CE

USB-CANmodul

16  SYS TEC electronic GmbH 2010 L-487e_22

1 Getting Started

What you will learn in this Getting Started section:

• Installing the USB-CANmodul

• Software installation

• Connecting the USB-CANmodul to the host-PC

• Connecting the USB-CANmodul to a CAN network

• using PCANView (USBCAN)

1.1 Installation

1.1.1 Installation of the USB-CANmodul under Window s-OS

Ensure that the individual components are not damaged. The contents of the
USB-CANmodul are:

• USB-CANmodul

• Installation CD-ROM with electronic version of this Systems Manual and all software
and drivers

• USB cable

1.1.2 Software Installation

Note:

Installation of the software and operation of the USB-CANmodul on Windows 98/Me is not
possible any longer!

Installation and operation of the USB-CANmodul requires a host-PC with a USB port that
is running Microsoft Windows 2000, XP and Vista (since driver version 4.00). The
USB-CANmodul will not work under Windows NT because there is no USB support in this
operating system.

Note:

Make sure to install the software before the USB-CANmodul is connected to the PC.
Make sure that you are logged in Windows-OS with admin rights. We provide driver
updates for downloading under:

http://www.systec-electronic.com

• Start your computer.

 Getting Started

 SYS TEC electronic GmbH 2010 L-487e_22 17

• Insert the USB-CANmodul Utility CD-ROM in your CD-ROM drive.

• Open the Windows Explorer

• Go to path:

"<CD-ROM>:\Products\USB-CANmodul_xxxxxx\Software\SO -387 " .

Execute file SO-387.exe, which will start the setup tool.

• Click on "OK" to start the setup program. The following window will appear:

• Click Next. Accept the License Agreement in the next window and click Next again.

• In the next windows you select the destination location of the USB-CANmodul
software and the type of installation you wish to perform (Full Installation is
recommended).

• Follow the setup instructions to install the USB-CANmodul software and click Finish at
the end of the process.

• Connect the USB-CANmodul to your computer using the included USB cable.

• Windows automatically detects the USB-CANmodul. The appropriate driver files
will be found automatically (see Note below). The firmware will now be downloaded to
the USB-CANmodul. The red status LED blinks with a frequency of 10 hertz to
indicate this procedure.

USB-CANmodul

18  SYS TEC electronic GmbH 2010 L-487e_22

• After successful download of the device firmware the red status LED will stay on.

Note:

The USB-CANmodul device driver does not have the Microsoft signature. Because of this
an error message will appear when using Windows XP operation system that the driver
didn't pass the loop test. Ignore this message and click on Continue Installation.

Since 64 Bit Edition of Windows Vista all Kernel Mode Drivers has to be shipped with an
certificate which identifies the manufacturer of the driver. Installing the driver for the first
time a windows appears as shown in Figure 1. Please tick the box for always trusting the
software from company SYS TEC electronic GmbH.

Figure 1: Installation of the driver at Windows Vista

 Getting Started

 SYS TEC electronic GmbH 2010 L-487e_22 19

1.1.3 Updating an Existing Installation

Follow the steps below if you have an existing USB-CANmodul installation and just want
to update the driver:

• Start your computer.

• Open the Windows Explorer

• Go to path:

"<CD-ROM>:\Products\USB-CANmodul_xxxxxx\Software\SO -387 " .

• Execute file SO-387.exe, which will start the setup tool.Follow the setup instructions to
install the USB-CANmodul software and click Finish at the end of the
process.Connect the USB-CANmodul to your computer using the included USB cable.

USB-CANmodul

20  SYS TEC electronic GmbH 2010 L-487e_22

1.1.4 Verifying the Device Installation

Verification of correct device installation on your host-PC can be done by following the
steps listed below:

• Highlight the icon "My Computer" on the desktop and click the right mouse key.

• A pop-up menu appears. Click on "Properties". The dialog box "System Properties"
appears.

• Choose the tab "Device Manager" at the top. In Windows 2000,XP and Vista the
device manager is located in the "Hardware" register card.

• Click on the pull-down menu "Universal Serial Bus Controller " resp. "USB
Controller " resp. "USB-CAN-Hardware ". If the device "Systec USB-CANmodul
device driver" or "Systec USB-CANmodul network driv er" is shown in the list, the
new USB device has been detected properly. This is shown in the figure below.

Note:

Starting with version 2.16 of the installation program, the USB-CANmodul will appear in
the device manager under the entry "USB-CAN-Hardware " and no longer under the entry
"USB Controller " after setup is completed.

Figure 2: Device Manager with the USB-CANmodul

If the installation was not successful, check the installation steps as described above and
try to re-install.

 Getting Started

 SYS TEC electronic GmbH 2010 L-487e_22 21

1.1.5 Device Number Allocation

With the help of device number allocation, it is possible to use more than one
USB-CANmodul simultaneously on the host-PC. The device number identifies the
individual USB-CANmodul.

• Click on Start � Settings � Control Panel . Using the Category View in Windows
XP additionally click to Other Control Panal Options – in Windows Vista use
Additional Options . In 64 Bit edition of Windows XP or Vista click to View 32-bit
Control Panel Items .

• Click on the USB-CANmodul Control symbol. The following window will appear:

Figure 3: USB-CANmodul Control Tool

• Select/highlight one of the modules shown in the hardware list and then click on the
Change... button.

Note:

The device number of USB-CANmoduls grayed out in the list cannot be changed because
they are used by other applications.

USB-CANmodul

22  SYS TEC electronic GmbH 2010 L-487e_22

Figure 4: Device Number Selection Dialog Box

• Enter a new device number in the input field or modify the device number using the
Up or Down button. Click OK to exit this window.

• The new device number will only take affect and gets downloaded into the device after
clicking the Apply or OK button.

 Getting Started

 SYS TEC electronic GmbH 2010 L-487e_22 23

1.1.6 Connection to a CAN Network

The USB-CANmodul provides a DB-9 plug for connection to the CAN network. The pin
assignment on this connector is in accordance to the CiA (CAN in Automation)
specification. Connect your CAN network to this connector with an appropriate CAN bus
cable. The pinout is described in Table 3 on page 34.

Note:

When using the standard version of the GW-002 with on-board high-speed CAN
transceivers (82C251) a termination resistor of 120 Ohms at both ends of the CAN cable
between CAN_L (pin 2) and CAN_H (pin 7) is required to ensure proper signal
transmission. When using a special version of the device featuring a low-speed CAN
transceiver (e.g. TJA1054 etc.) no terminating resistor must be used because it is already
integrated in the device. It is necessary to use shielded cables if the CAN bus extension
exceeds 3 meters.

USB-CANmodul

24  SYS TEC electronic GmbH 2010 L-487e_22

1.1.7 Starting PCANView (USBCAN)

The included program PCANView (USBCAN) is a CAN bus monitor for Windows.

• Start the utility program using the Windows Start button and browse to Programs �
USB-CANmodul Utilities � PCANView (USBCAN). It is recommended that you drag
the PCANView (USBCAN) icon onto the desktop of your PC. This enables easy start
of this utility program by double-clicking on the icon.

• The USB-CANmodul settings window will appear:

Figure 5: Dialog Box with Hardware Configuration

• Select the baud rate of your CAN network in the Baudrate box and the Device
Number. The entry any selects the USB-CANmodul that is found first by Windows.

• If "user" is selected in the baud rate field, then the values for registers BTR0 and
BTR1 of the SJA1000 can be entered directly. The SJA1000 operates with a 16 MHz
clock speed. Refer to the SJA1000 manual for calculation of values for other baud
rates.

• When using a sysWORXX USB-CANmodul please enter the user-specific baud rate
into field “BTR Ext” (also see Section 2.3.4) and select the CAN-channel you want to
use.

• Click on the OK button to enable these settings.

 Getting Started

 SYS TEC electronic GmbH 2010 L-487e_22 25

• A new window PCANView – Connect to net will appear.

Figure 6: Dialog Box Message Filter Configuration

• In this message box you can select Standard (11-bit) or Extended (29-bit) CAN
identifier and message filters, if desired. Click on the OK button to enable these
settings.

USB-CANmodul

26  SYS TEC electronic GmbH 2010 L-487e_22

• The PCANView (USBCAN) main window will appear:

Figure 7: PCANView (USBCAN) Main Window

This screen is divided into two sections: Receive and Transmit

• Receive: monitors CAN signals that are received from a node

• Transmit: monitors CAN signals sent from the host-PC to the

CAN network via the USB-CANmodul

Note:

The tool PCANView is not suitable for sending precisely timed CAN messages to the CAN
bus by using the USB-CANmodul.

Since Software version V4.09, in PCANView it is possible to configure cyclic CAN
messages which are automatically sent by the firmware of the USB-CANmodul. This
feature can be used for instance when precisely timed CAN messages have to be sent to
the CAN bus (e.g. SYNC messages). For this purpose, the system menu of PCANView
includes a command "SYSTEC cyclic CAN messages" (see Figure 8). A dialog box opens
up where all cyclic CAN messages can be configured (see Figure 9). Use button Add to
add a new cyclic CAN message. With button Edit a previously marked cyclic CAN
message can be edited. Each sysWORXX USB-CANmodul supports up to 16 cyclic CAN
messages. Choose option parallel if the cycle time of each CAN message should refer to
itself (see Figure 18). With option sequential the cycle time of each CAN message refers
to its subsequent CAN message (see Figure 19).

 Getting Started

 SYS TEC electronic GmbH 2010 L-487e_22 27

Figure 8: precisely timed CAN messages in PCANView (USBCAN)

Figure 9: configuration of cyclic CAN messages in PCANView (USBCAN)

USB-CANmodul

28  SYS TEC electronic GmbH 2010 L-487e_22

Since Software version V4.09 it is possible to call PCANView by using command line
parameters e.g. for using a batch file. If at least one of these command line parameters is
used then the dialog box for hardware parameters is not shown (see Figure 5).

The following command line parameters are available in PCANView:

Syntax:

PCANView.exe [-d<devicenr>] [-c<channelnr>] -b<baud rate> [-l]
 [-x<x-pos> -y<y-pos>] [-n]

-d <devicenr> defines the device number of the USB-CANmodul. The range of values
is between 0 and 254. Any USB-CANmodul that is found first is allocated value 255
(default value).

-c <channelnr> defines the CAN channel that is to be used for multi-channel
USB-CANmoduls. The range of values is between 0 and 1. Default value is 0 (first
CAN channel).

-b <baudrate> defines the bit rate on CAN bus in kBit/sec. Possible values are 1000,
800, 500, 250, 125, 100, 50, 20, 10. There is no default value for this parameter. It
must be set if the dialog box for setting hardware parameters shall not be shown.

-l If this parameter is set, the USB-CANmodul will be initialized in listen-only mode. In
this case CAN messages cannot be sent.

-x,-y <x-pos> and <y-pos> define the position of the PCANView main window. If those
parameters are missing, the position of the PCANView main window is read from
the registry and is the same for all instances.

-n If this parameter is set, the dialog box to configure the message filter will be
skipped (see Figure 6). In this case all CAN messages will always be received.

Example:

PCANView.exe –d1 -b1000 –n

The following command allows for starting more than one instance of PCANView from a
batch file. To run the batch file, it is not necessary to wait until the previous PCANView
instance is closed:

start PCANView.exe –d1 -b1000 –n –x20 –y35
start PCANView.exe –d2 -b1000 –n –x600 –y460

 Getting Started

 SYS TEC electronic GmbH 2010 L-487e_22 29

1.1.8 Creating a debug file from DLL

If problems with the software drivers should occur, there is a possibility to create a
debug log file from USBCAN32.DLL. You should always send this log file to our support
email address so that we can find a solution for your problem.

To activate the feature please open USB-CANmodul Control from the control panel. At
the tab sheet Debug you will find the following window:

Figure 10: Debug settings in USB-CANmodul Control

Enable the feature by ticking the box “Enable Debug ”. In the list above you can activate
different debug information that should be added to the debug log file. Click to “Browse”
for choosing the folder in which the debug log file should be stored to. The default setting
is the "Documents" folder.

Apply the new settings and close USB-CANmodul Control. Start your application using an
USB-CANmodul and wait until the problem will occur. After this close your application.

Afterwards, you will find a file named USBCAN_XXXXXXXX_YYYYYY_ZZZ.LOG.
XXXXXXXX represents the creation date of the log file in format YYYYMMDD (year month
day) and YYYYYY stands for the creation time in format HHMMSS (hour minute second).
ZZZ is the name of the application executed.

USB-CANmodul

30  SYS TEC electronic GmbH 2010 L-487e_22

Note:

Enabling this feature decreases the performance of the software because API functions
have to execute much more code to generate debug outputs. Limitating the debug
information by changing the LOG-Level can help to increase performance again. But note
that in this case important information could be missing in the log file.

Furthermore, the debug log file may increase in size. Activate the feature
“Check max. LOG file size”. This way, USBCAN32.DLL will monitor the file size of the
debug log file. If it is exceeded, the previous (older) debug outputs will be deleted from the
debug log file. Default setting of the maximum debug file size is 10240 Kbytes (means 10
Mbytes).

Since version V3.11 of USBCAN-library, an application can call the function
UcanSetDebugMode() for subsequent activation of the feature. Refer to section 2.3.2.1 for
more information.

 Getting Started

 SYS TEC electronic GmbH 2010 L-487e_22 31

1.1.9 Activation of the network driver

The network driver UCANNET.SYS was developed for connecting several applications to
one physical USB-CANmodul. Therefore, the kernel mode driver creates a virtual CAN
network for each physical module to which several applications can connect to. All CAN
messages that are sent by an application are not only sent to the physical CAN bus but
also to all the other connected applications. Received CAN messages are passed on to all
applications.

The network driver can only be activated for sysWORXX USB-CANmoduls – but not for
the older modules GW-001 and GW-002.

To activate the network driver for an USB-CANmodul, open the USB-CANmodul Control
from the Control Panel. Mark that module within the hardware list that you want to use for
the network driver. Push the button "Change… " to open the dialog box shown in Figure 4.
Tick the box "use USB-CANnetwork driver " and confirm with "OK". After pushing the
button "Apply " or "OK" in the main window of the USB-CANmodul Control, the
USB-CANmodul automatically reconnects to the host PC. This results in exchanging the
kernel mode driver. Now you can use several applications with this USB-CANmodul.

USB-CANmodul

32  SYS TEC electronic GmbH 2010 L-487e_22

1.2 Status LEDs on the USB-CANmodul

The state of each CAN-channel on the USB-CANmodul is displayed via 2 resp. 3 LEDs. In
order to distinguish the states, different blinking cycles were defined respectively.

(Not to scale)

A description of the power and status LEDs is shown in the table below:

USB-CANmodul
connected?

LED green
(Power)

LED red
(Status)

Description

no off Off No voltage is supplied to the
device.

yes on Blinking cycle 1 Device logs in to the host-PC
yes on On Log-in successful, CAN is not

initialized, no error.
yes on Off CAN is initialized, no error.
yes on Blinking cycle 2 A CAN-bus error occurred on

the device.

Table 1: States of the LEDs on the USB-CANmodul GW–001/GW–002

cycle 1:

cycle 2:

cycle 3:

approx. 10 Hz 1:1

approx. 2 Hz 1:1

approx. 4 Hz 3:1

on

off

on

off

on

off

 Getting Started

 SYS TEC electronic GmbH 2010 L-487e_22 33

On the Multiport CAN-to-USB each CAN-channel has one Status-LED. Furthermore, each
channel has a Traffic-LED (green), indicating CAN-bus traffic, once the channel has been
initialized. The Multiport CAN-to-USB, USB-CANmodul2, USB-CANmodul8 and
USB-CANmodul16 have the same LED assignment. On USB-CANmodul1 there is only
one traffic LED, as there is only one channel available. Table 2 contains a list of all LED
states.

USB-CANmodul
connected?

LED yellow
(Power)

LED red
(Status)

Description

no off off No voltage is supplied to the device.
no on blinking cycle 1 USB cable not connected.
yes on blinking cycle 1 Device logs in to the host-PC.
yes on on Log-in successful, CAN-channel is not

initialized, no error.
yes on off CAN-channel is initialized, no error.
yes on blinking cycle 2 A CAN-bus error occurred on this

channel.
yes on blinking cycle 3 Firmware update running. The device

must not be powered-off or
disconnected while the firmware
update is running.

Table 2: States of the LEDs on the sysWORXX modules

All sysWORXX modules also have a green traffic LED for each CAN-channel. While it is
blinking it shows an active traffic on CAN bus.

USB-CANmodul

34  SYS TEC electronic GmbH 2010 L-487e_22

1.3 CAN Supply Voltage

No external CAN supply voltage is necessary for the standard version GW-002 or the
GW-002-xx0 versions. The low-speed versions
GW-002-xx1 and GW-002-xx2 require an external supply voltage for the CAN transceiver.
Be sure to note the limitations for the CAN transceivers when connecting the external
supply voltage.

The pin assignment for the DB-9 CAN plug is shown in the table below:

Pinout of DB-9 plug Pin
with 82C251, 82C252, TJA1041,

TJA1054 (differential)
with AU5790 (single wire)

1 N/C N/C
2 CAN-L N/C
3 GND GND
4 N/C N/C
5 CAN shield CAN shield
6 GND GND
7 CAN-H CAN-H
8 N/C N/C
9 Vcc (+7 to +30 VDC)* Vcc (+5.3 to +13 VDC)*

Table 3: Pinout of the CAN DB-9 Plug

Note:

The value for Vcc depends on the alternative CAN transceiver that populates the device.

For the standard low-speed version (GW-002-xx2, refer to section 1.7) an input voltage
between 12V and 30V can be supplied at pin 9 (VCC). The nominal voltage amounts to
24V +/-25%. A temporary maximum voltage of up to 35V is allowed. The CAN transceiver
starts functioning with supply voltages as low as 8V. The
GW-002-xx2 version features an internal protective circuit and a voltage reduction circuit
for the input voltage. This means that when supplying the device from an external 12V (+/-
20%) source at VCC, the CAN transceiver's supply voltage CANVBAT can drop below 8V.
In this case recognition of the standby mode can not be guaranteed.

We recommend using the GW-002-xx1 version in 12V systems. This version is
specifically designed for an external 12V voltage. It has no extra circuitry for supply
voltage reduction; hence the CAN transceivers standby mode recognition will function.
The USB-CANmodul in the GW-002-xx1 version can also operate at 24V (+/-20%).
Implementation in 24V systems is possible, but not recommended. Use the GW-002-xx2
instead.

 Getting Started

 SYS TEC electronic GmbH 2010 L-487e_22 35

1.4 CAN-port with Low-Speed CAN Transceiver

The high-speed CAN transceiver Philips 82C251 is implemented in the standard
configuration of the device. As an alternative, other CAN transceiver can be populated on
the USB-CANmodul. In this case only the behavior on the CAN bus changes, not the
behavior in relation to the software. From the software point of view (e.g. using the
included PCANView) any transceiver can be used.

The optional low-speed transceivers TJA1054 or the single wire transceiver AU5790 have
multiple signals for setting the operating mode of the transceivers and displaying the
operating state. The following signals are supported:

Signal Name Meaning Type Default value
EN Enable turn-on signal high-active high level
/STB Standby turn-off signal low-active high level
/ERR Error error signal low-active high level
TRM Termination termination resistor high-active low level

Table 4: Signals available for low-speed CAN port

Note:

It is only possible to read the state of the termination resistor.by software using
USB-CANmodul2.

The standard levels are set so that the transceivers function in normal operating mode.
Thus operation with the PCANview tool is possible immediately. The Error signal is not
evaluated. Functions for setting the operating modes and for reading the Error signal are
supported by the USBCAN-library and are described in the section on software support
(refer to section 2).

Please refer to the data sheet for the CAN transceiver in question when setting the
operating mode. The AU5790 does not have an error output.

An additional pin header connector in 2.54 mm pitch (male or female) is provided for
support of additional CAN transceivers such as the B10011S.

Resistors with 1 kOhm are populated at pins RTL or RTH when using the TJA1054. When
using the AU5790 device a 9.1 kOhm resistor at space Rt is used and a 220 pF capacitor
at Cul.

This CAN port connector has the following pinout:

Signal Pin Pin Signal
/STB 1 2 EN
/ERR 3 4 SPLIT
CAN_RX 5 6 CAN_TX
CAN_5V 7 8 CAN_GND
INH 9 10 CAN_LX
CAN_HX 11 12 CANVBAT
RTH 13 14 RTL

Table 5: CAN Port Pin Assignment for External Transceiver on the GW-002

USB-CANmodul

36  SYS TEC electronic GmbH 2010 L-487e_22

1.5 Expansion Port

The USB-CANmodul features an 8-bit port for functional expansion which can be used to
add digital inputs (e.g. push buttons) and digital outputs (e.g. LEDs) to the device. An
additional 2*5-pin header connector in 2.54 mm pitch (male or female) is provided on the
USB-CANmodul. The connector has the following pinout:

Signal Pin Pin Signal
PB0 1 2 PB1
PB2 3 4 PB3
PB4 5 6 PB5
PB6 7 8 PB7
GND 9 10 Vcc Output

Table 6: Expansion Port Pin Assignment on the GW-002 and USB-CANmodul2

The microcontroller's port pins are connected directly to the expansion port. Make sure
that external circuitry connected to this port does not exceed the maximum load tolerance
of the corresponding port pins! The port pins can be configured to be used as inputs or
outputs. The 5V supply voltage DC5V is turned on only after the CAN interface in the
USB-CANmodul is initialized (following the function call of UcanInitCan() or
UcanInitCanEx()). External circuitry supplied by this voltage should not draw more than
2mA current in order to not destroy the microcontroller.

Please do not hesitate to contact us for additional hardware and software implementation
support. The following figure depicts the positions of the connectors and sockets. A
detailed diagram is available on request.

USB CAN

Expansion Port for external
CAN Transceiver

Pin 1

Pin 1

8-bit port

Figure 11: Location of CAN and Expansion Port on GW-002

Symbol Parameter Condition min. max. Unit
VIH Input High Voltage 2.0 5.25 V
VIL Input Low Voltage -0.5 0.8 V
VOH Output High Voltage IOUT = 1.6 mA 2.4 V
VOL Output Low Voltage IOUT = -1.6 mA 0.4 V
CIN Input Pin Capacity 10 pF
VCC Supply Voltage 4.75 5.25 V

Table 7: Expansion Port Signal Properties on GW-002

 Getting Started

 SYS TEC electronic GmbH 2010 L-487e_22 37

Functions for expansion port access are described in section 2.3.2.

CAN1

CAN0USB

SD Card

Trigger

ext. power
+5 VDC X400

JP200

JP300

JP
10

4

JP
10

5

Figure 12: Location of the Expansion Port on USB-CANmodul2

The pinout of the Expansion Port X400 on USB-CANmodul2 is described in Table 6.
Please note that pin 1 is located at the upper right corner of X400. This connector is not
build in on all modules!

Symbol Parameter Condition min. max. Unit
VIH Input High Voltage 2.0 5.5 V
VIL Input Low Voltage -0.3 0.8 V
VOH Output High Voltage IOUT = 2 mA 2.9 V
VOL Output Low Voltage IOUT = 2 mA 0.4 V
CIN Input Pin Capacitance 14.1 pF
IOUT Output Current 2.0 mA
VCC Supply Voltage 3.2 3.4 V

Table 8: Expansion Port Signal Properties on USB-CANmodul2

A user circuit of the Expansion Port depends on the necessity to which level the hardware
of USB-CANmodul has to be protected against destruction. You find an example of a user
circuit without protection in the next figure.

USB-CANmodul

38  SYS TEC electronic GmbH 2010 L-487e_22

Figure 13: simple example circuit for Expansion Port

Please note that if Vcc is used as power supply for your circuit, the total current of an USB
device may not exceed 500 mA (during plug-in the total current actually may not exceed
100 mA). If bus powered USB hubs are used, there could be problems even below 500
mA. Some USB hubs share its power supply with the number of available USB ports.
Please note that there could also be problems below 500 mA if other USB devices are
connected to these ports. Thus, we advice to implement a galvanic decoupled circuit that
has its own power supply.

 Getting Started

 SYS TEC electronic GmbH 2010 L-487e_22 39

1.6 Termination resistor for CAN bus

Please note that there always has to be connected two termination resistors with value
120 Ohms, if you are using a USB-CANmodul with a high-speed CAN transceiver. These
has to be connected to both ends of the CAN bus:

CAN-Bus

CAN_H

CAN_L

120 Ohm120 Ohm

termination
resistor at
bus begin

termination
resistor at
bus end

7 7

2 2

Figure 14: termination resistors on CAN bus

Note:

When using a special version of the device featuring a low-speed CAN transceiver (e.g.
TJA1054 etc.) no terminating resistor must be used because it is already integrated in the
device.

On USB-CANmodul2, USB-CANmodul8, USB-CANmodul16 and Multiport CAN-to-USB a
termination resistor with 120 Ohms is already build in for each CAN-channel. You can
enable or disable it by closing a jumper (USB-CANmodul2) or by switching a switch on
front panel (USB-CANmodul8, USB-CANmodul16 and Multiport CAN-to-USB). The
default state of the termination resistors is: disabled.

If you decide to enable the termination resistor, change the appropriate switch to ON or
close the appropriate jumper (refer to Figure 12 - JP200 for CAN-channel 0; JP300 for
CAN-channel 1).

The current state of the termination resistor can be indirectly read back by software only
on USB-CANmodul (by calling function UcanReadCanPort() or by showing in Control
Panel Application USB-CANmodul Control – refer to Figure 16). Please note that the
jumper JP104 must have the same state like JP200 (for CAN-channel 0) and the jumper
JP105 must have the same stat like JP300 (for CAN-channel 1). Otherwise the read state
of the termination resistor is not correct. The reason of this solution is the optical isolation
of the CAN-channels.

USB-CANmodul

40  SYS TEC electronic GmbH 2010 L-487e_22

max. cable length
[m]

max. bit rate
[kBit/s]

specific resistance
[kΩ/m]

Cable cross-section
[mm²]

30 1000 70 0,25..0,34
100 500 <60 0,34..0,60
500 100 <40 0,50..0,60
1000 20 <26 0,75..0,80

Table 9: recommended cable parameters

 Getting Started

 SYS TEC electronic GmbH 2010 L-487e_22 41

1.7 Order Options

Obsolete USB-CANmoduls which are not available any more:

Part Number Option

GW-002 Standard version, high-speed (82C251)

GW-002-x0x high-speed with Philips 82C251 transceiver

GW-002-x1x low-speed with Philips TJA1054 transceiver

GW-002-x2x low-speed, single-wire with Philips AU5790*

GW-002-x3x low-speed with Philips TJA1041 transceiver

GW-002-0xx without optical CAN signal isolation

GW-002-1xx with optical CAN signal isolation

GW-002-xx0 internal supply via USB

GW-002-xx1 external supply 7 - 27V**

GW-002-xx2 external supply 12 - 30V**

GW-002-KSMxx customer-specific version, MOQ=25

* AU5790 requires external supply voltage

** External supply not available with standard 82C251 transceiver

The USB-CANmodul is available in different options:

Part Number Option

3004006 Multiport CAN-to-USB
16 CAN-channels, high-speed transceiver 82C251, galvanic
isolation, separated into 8 logical devices with 2 channels each

3204000 USB-CANmodul1
One CAN-channel, high-speed transceiver 82C251

3204001 USB-CANmodul1 with galvanic isolation
One CAN-channel, high-speed transceiver 82C251

3204002 USB-CANmodul2
Two CAN-channels, high-speed transceiver 82C251

3204003 USB-CANmodul2 with galvanic isolation
Two CAN-channels, high-speed transceiver 82C251

3204007 USB-CANmodul2, same as 3204000 but with 8 bit Expansion
Port

3204008 USB-CANmodul2, same as 3204003 but with single-wire CAN
transceiver (Philips AU5790) at the first CAN channel.

3204009 USB-CANmodul2, same as 3204002 but with low-speed CAN
transceiver (Philips TJA1054) at the first CAN channel.

USB-CANmodul

42  SYS TEC electronic GmbH 2010 L-487e_22

Part Number Option

3204011 USB-CANmodul2, same as 3204002 but with low-speed CAN
transceiver (Philips TJA1054) at both CAN channels.

3204017 USB-CANmodul2, same as 3204003 but without housing and
with wired LEDs.

3204019 USB-CANmodul2, same as 3204003 but with high-speed CAN
transceiver (NXP TJA1054) at th first CAN channel.

3404000 USB-CANmodul8 with galvanic isolation
8 CAN-channels, high-speed transceiver 82C251

3404001 USB-CANmodul16 with galvanic isolation
16 CAN-channels, high-speed transceiver 82C251

Currently available order numbers:

GW-002, GW-002-010, GW-002-021, GW-002-030, GW-002-100, GW-002-110, GW-
002-121, GW-002-130, GW-002-142, GW-002-150, 3004006, 3204000, 3204001,
3204002, 3204003, 3204007, 3204008, 3204009, 3204011, 3204017, 3204018, 3204019,
3404000, 3404001

Other accessories:

WK054 Unshielded CAN bus cable for max. 5 nodes, with removable 120
Ohm terminating resistors and configured for supply voltage input

WK-004 Shielded CAN cable for direct connection of 2 nodes with
integrated 120 Ohm terminating resistors

GW-002-Z01 Wall mounting plate

GW-002-Z02 DB-9 to 5-pin Combicon pin adapter, pinout according to
DeviceNet specification

GW-002-Z03 USB cable 3 m (A-B)

GW-002-Z04 USB cable 4.5 m (A-B)

GW-002-Z05 Mounting plate for DIN rail

 Getting Started

 SYS TEC electronic GmbH 2010 L-487e_22 43

1.8 The new sysWORXX USB-CANmoduls

1.8.1 The Multiport CAN-to-USB

The Multiport CAN-to-USB 3004006 is an industrial USB-CAN interface with 16 CAN-
channels coming in a 19” rack mounted housing. The device is structured into 8 logical
USB/CAN devices with 2 CAN-channels each. The logical devices are combined by 2
USB-hubs and connected to the PC via two USB ports (see picture below).

Power Supply

USB
Hub

USB
Hub

USB
CAN0

USB
CAN1

USB
CAN2

USB
CAN3

USB
CAN4

USB
CAN5

USB
CAN6

USB
CAN7

USB
port

USB
port

USB-CANmodul-0

CH0 CH1

USB-CANmodul-7

CH0 CH1

Figure 15: Internal structure of the Multiport CAN-to-USB

There is no separate software driver for the Multiport CAN-to-USB as it is supported by
the standard drivers used for USB-CANmodul. A special API function set was
implemented to support the extended functions of the Multiport CAN-to-USB, such as
multiple CAN-channels, baud rate configuration and acceptance mask filtering. Please
also refer to sections 2.3.4, 2.3.5 and 2.3.7. In a limited scope these extended function
are also applicable to GW-002 devices and the standard functions are applicable to the
Multiport CAN-to-USB.

The USB device numbers of the 8 logical devices are assigned sequentially. The first
logical device (counted from left side) device number 0, the second logical device has
number 1 and so on. The device numbers can be reconfigured using the
"USB-CANmodul Control" icon in the Windows Control Panel.

1.8.2 The USB-CANmodul1

The USB-CANmodul1 (ordering number 3204000 or 324001) is a cost optimized variant
of the new sysWORXX USB-CANmodul series including only one CAN-channel.
Optionally you can order this device with or without a galvanic isolation (refer to
section 1.7). Both variants has built in a high-speed CAN transceiver. There is no
Expansion Port for connecting digital inputs or outputs.

USB-CANmodul

44  SYS TEC electronic GmbH 2010 L-487e_22

1.8.3 The USB-CANmodul2

The USB-CANmodul2 (ordering number 3204002 or 324003) is a extended variant of the
new sysWORXX USB-CANmodul series including two CAN-channels. Optionally you can
order this device with or without a galvanic isolation (refer to section 1.7). Both variants
has built in a high-speed CAN transceiver. There is Expansion Port for connecting digital
inputs or outputs like the GW-002 does have too. With order number 3204007 you will get
an USB-CANmodul2 including an Expansion Port which is described in section 1.5.

1.8.4 The USB-CANmodul8 and USB-CANmodul16

Both USB-CANmodul8 (ordering number 3404000) and USB-CANmodul16 (ordering
number 3404001) are identical to the Multiport CAN-to-USB but are shipped with a table
case. The USB-CANmodul16 consists of two circuit cards of the same type like is build in
on USB-CANmodul8.

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 45

2 Software Support for Windows OS

2.1 File Structure

If during the installation of the USB-CANmodul utilities no other target path is given, then
all files will be installed in the folder
C:\Programs\SYSTEC-electronic\USB-CANmodul Utility Disk. The contents of this folder
are given in Table 10. Some folders are created depending on selected installation
options during setup process.

Sub Folder Contents
Bin\ Program files (PCANView)
Contrib\ Files contributed by other companies
 Borland Delphi\ Delphi class with demo in source (is removed)
 LabView\ LabView driver with demo
Demo\ MFC demo in source for GW-002 and MS Visual Studio 6.0

or higher
DemoGW006\ MFC demo in source for a USB-CANmodul including two

CAN-channels and MS Visual Studio 6.0 or higher
DemoCyclicMsg\ MFC demo in source for MS Visual Studio 6.0 or higher and

automatically transmitting of cyclic CAN messages using a
sysWORXX USB-CANmodul.

Docu\ Manuals
Drv\ Windows Kernel drivers
Include\ C header files for USBCAN32.DLL. The demo applications for

MS Visual Studio 6.0 refer to these files.
Lib\ Common USBCAN32.DLL and import- library for MS Visual

Studio. The demo applications refer to this import-library.
UcanDotNET\ Wrapper-DLL in source code for use with Microsoft .NET

projects.
USBcanDemoNET\ MS Visual Basic .NET demo application in source code (using

the Wrapper-DLL UcanDotNET.dll)

Table 10: Software File Structure

USB-CANmodul

46  SYS TEC electronic GmbH 2010 L-487e_22

2.2 Tools for the USB-CANmodul

2.2.1 USB-CANmodul Control

The USB-CANmodul Control tool replaces the UCAN Config tool starting at version 2.18.
This tool can be started either from the Control Panel or from the program group
"USB-CANmodul Utilities" . Figure 3 shows the tool after start up.

This tool can be used to modify the device number of the USB-CANmoduls (also refer to
section 1.1.5).

In addition, this tool can also be used to manipulate the 8-bit port expansion (refer to
section 1.5) and the CAN port for low-speed CAN transceivers (refer to section 1.4). To do
this you have to select the corresponding USB-CANmodul from the list and then click on
the "Ports… " button.

Figure 16 shows the dialog box that will appear when choosing this option.

Figure 16: Dialog Box for Manipulating the Port Expansion and the CAN Port

Initially all 8 signals are configured as inputs. With the column OE, the corresponding
signal is switched to an output. This activates the box for the output value in the OUT
column. If a signal is switched to a logical 1 in this column, then the corresponding signal
on the port expansion will be set to high. With every modification the current state of the
expansion port will be read again and shown in the IN column for the inputs. To read the
current input states without having to change an output, click on the "Update Input"
button.

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 47

The current state of the CAN port for the low-speed CAN transceiver is displayed on the
right side of the window. The signals EN and /STB are outputs and the signal /ERR is an
input. For more information refer to section 1.4.

2.2.2 PCANView (USBCAN) for Windows

The Windows utility PCANView (USBCAN) can be used to display CAN messages
transmitted via the CAN bus.

After execution of the tool a dialog box is shown for configuring the hardware parameters
(refer to Figure 5). The device number of the logical USB-CANmodul has to be filled in to
the edit field “Device-Nr.”. This device number was previously programmed with the
Windows Control Panel symbol USB-CANmodul Control (refer to section 1.1.5). Within
the drop down box “Baudrate” the baud rate on CAN bus can be selected. The option
“listen only” configures the CAN controller for only receiving CAN messages. This also
means that no acknowledge will be sent back to the sending remote CAN device. For a
logical USB-CANmodul including two CAN-channels the channel has to be selected which
should be used by the tool.

After applying the settings by clicking to the “OK” button a dialog box is shows like
displayed in Figure 6. The filter setting depends on the CAN message format you whishes
to receive: CAN identifier with 11 bits (standard frame = CAN Spec. 2.0A) or CAN
identifier with 29 bits (extended frame = CAN Spec. 2.0B). Please choose one of both
possibilities and enter the range of the CAN messages which has to be shown on receive
section of the tool. If you do not change this range, then all CAN messages will be shown.
Apply this setting by clickint to the button “OK”.

The main window of the tool appears (refer to Figure 7). This screen is divided into two
sections: Receive and Transmit:

• Receive: monitors CAN signals that are received from a node

• Transmit: monitors CAN signals sent from the host-PC to the CAN network via the
USB-CANmodul

Receive Section

The Receive section provides the following information:

• Message: identifier of the CAN message, hexadecimal format, ranging from 0 to
7FFh for 11-bit identifiers and from 0 to 1FFFFFFFh for 29-bit
identifiers

• Length: data length code of the message (ranges from 0 to 8)

• Data: values of the messages’ data bytes (up to 8) or the text Remote
request, if a remote frame has been received

• Period: period of time between the reception of the last two messages with this
identifier

• Count: number of messages received with this identifier (no remote frames)
since last user reset

• RTR-Per.: period of time between the reception for the last two remote frames

• RTR-Cnt.: number of remote frames with this identifier

USB-CANmodul

48  SYS TEC electronic GmbH 2010 L-487e_22

Transmit Section

The Transmit section provides the following information:

• Message: identifier of the CAN message, hexadecimal format, ranging from 0 to
7FFh for 11-bit identifiers and from 0 to 1FFFFFFFh fro 29-bit identifiers

• Length: data length code of the message (ranges from 0 to 8)

• Data: values of the messages’ data bytes (up to 8) or the text Remote
request, if a remote frame shall be sent

• Period: period of time between the last two message sent

Note:

If, at creation of the message, the period was set to 0, the text Wait is shown. In this case
the message can only be transmitted manually using the <Space> bar. Or the message is
sent automatically after a matching remote frame has been received.

• Count: number of messages sent with this identifier (no remote frames) since
last user reset

• Trigger: reason for the last transmission of the message Manual: manual
transmission by the user pressing the <Space> bar

• Time: period of time has passed for periodical sending

• RTR: remote frame has been received

Note:

Both sections are sorted by the CAN identifiers. That means no chronology is displayed.

In order to edit the Transmit list, the following menu commands are available:

• Transmit � New...: Create a new transmit message. The editor
 window for the new message is shown.

• Transmit � Delete: Delete the currently selected message from
 the transmit list.

• Transmit � Edit...: Edit the currently selected message.

• Transmit � Clear all: Delete the entire transmit list.

• Client � Reset: Reset the message counters and reset the
 connected USB-CANmodul. Deletes the
 receive list.

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 49

2.3 Description of the USBCAN-library

The USBCAN-library is a function library for application programs. At Windows 2000/XP
or higher it is a Dynamic Linked Library (DLL – with the file name USBCAN32.DLL) It
serves as an interface between the system driver layer and an application program. The
USBCAN-Library for the USB-CANmodul enables easy access to the USB-CAN system
driver functions. It administers the opened USB-CANmodul and translates the USB data
into CAN messages.

Add the file USBCAN32.LIB to your project for linking the USBCAN32.DLL to your own
Microsoft Visual C/C++ project. Starting the application program automatically loads the
DLL. If the USBCAN32.LIB is not linked to the project, or you are using another
environment (e.g. Borland C++ Builder), load the DLL manually with the Windows function
LoadLibrary() and add the library functions with the function GetProcAdress() (refer to the
demo application “DemoGW-006”). There was a .NET wrapper DLL implemented for
Microsoft .NET applications described in section 2.4.

The PUBLIC calling convention of the DLL functions provides a standardized interface to
the user. This standard interface ensures that users of other programming languages than
C/C++ (Pascal, etc.) are able to use these functions.

Within this manual the DLL is called USBCAN-library because the API functions (also
called USBCAN-API) are also implemented for other platforms at which the library has
another file name (e.g. “USBCANCE.DLL” under Windows CE) or at which the library is
not a DLL (e.g. under Linux).

Folders <SETUP_DIR>\DEMO.API, <SETUP_DIR>\DEMOGW006 and
<SETUP_DIR>\DEMOCYCLICMSG contains example programs written using MFC in
Microsoft VisualC/C++6.0 and 7.0. These example projects demonstrates the use of the
DLL API functions.

2.3.1 Attributes of the USBCAN-library

With USBCAN-library, it is possible to use 64 USB-CANmoduls simultaneously with one
application program, as well as with several application programs (using Windows CE
only 9 modules). However, it is not possible to use one USB-CANmodul with several
application programs.

Three states within the software are generated for each USB-CANmodul when using this
DLL.

After starting the application program and loading the DLL, the software is now in the
DLL_INIT state. Concurrently, all required resources for the DLL have been created.

Calling the library function UcanInitHardware() and/or UcanInitHardwareEx() causes the
software to change into the HW_INIT state. This state contains all resources required for
communication with the USB-CANmodul. It is not possible to transmit or to receive CAN
messages in this state.

If the application software calls the library function UcanInitCan(), UcanInitCanEx() or
UcanInitCanEx2() the state changes into CAN_INIT. In this state it is possible to transmit
or to receive CAN messages.

USB-CANmodul

50  SYS TEC electronic GmbH 2010 L-487e_22

Return with the library function UcanDeinitCan() into the state HW_INIT and with the
library function UcanDeinitHardware() into the state DLL_INIT. It is possible to close the
application program only after this sequence is completed.

Note:

Make sure to return to the state DLL_INIT before closing the application program.

DLL loaded

DLL unloaded

DLL_INIT HW_INIT CAN_INIT

UcanInitHardware() UcanInitCan()

UcanDeinitHardware() UcanDeinitCan()

Figure 17: Software State Diagram

The number of functions differs in different software states. For example, the function
UcanWriteCanMsg() causes an error at the state DLL_INIT. Table 11 shows the different
functions within each state.

If multiple USB-CANmoduls are used in one application, these states have to be
considered for each USB-CANmodul that is used. If the first USB-CANmodul is in the
state CAN_INIT, the second one can still be in the DLL_INIT state.

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 51

 State Functions overage sysWORXX
 GW-

001
GW-
002

multi-
channel

single-
channel

 DLL_INIT UcanSetDebugMode()
UcanGetVersion()
UcanGetVersionEx()
UcanInitHwConnectControl()
UcanInitHwConnectControlEx()
UcanInitHardware()
UcanInitHardwareEx()
UcanDeinitHwConnectControl()
UcanGetModuleTime()

X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X

 HW_INIT UcanGetFwVersion()
UcanGetHardwareInfo()
UcanGetHardwareInfoEx2()
UcanGetStatus()
UcanGetStatusEx()
UcanResetCan()
UcanResetCanEx()
UcanInitCan()
UcanInitCanEx()
UcanInitCanEx2()
UcanWriteCanPort()
UcanWriteCanPortEx()
UcanReadCanPort()
UcanReadCanPortEx()
UcanConfigUserPort()
UcanWriteUserPort()
UcanReadUserPort()
UcanReadUserPortEx()
UcanDefineCyclicCanMsg()
UcanReadCyclicCanMsg()
UcanDeinitHardware()

X
X

XH0
X

XH0
X

XH0
X
X

XH0
-
-
-
-
-
-
-
-
-
-
X

X
X

XH0
X

XH0
X

XH0
X
X

XH0
X

XH0
X

XH0
X
X
X
X
-
-
X

X
X
X

CH0
X

CH0
X

CH0
CH0

X
CH0

X
CH0

X
X
X
X
X
X
X
X

X
X

XH0
X

XH0
X

XH0
X
X

XH0
-
-
-
-
-
-
-
-

XH0
XH0

X

 CAN_INIT UcanSetTxTimeout()
UcanSetBaudrate()
UcanSetBaudrateEx()
UcanSetAcceptance()
UcanSetAcceptanceEx()
UcanReadCanMsg()
UcanReadCanMsgEx()
UcanWriteCanMsg()
UcanWriteCanMsgEx()
UcanGetMsgCountInfo()
UcanGetMsgCountInfoEx()
UcanEnableCyclicCanMsg()
UcanGetMsgPending()
UcanGetCanErrorCounter()
UcanDeinitCan()
UcanDeinitCanEx()

-
X

XH0
X

XH0
X

XH0
X

XH0
-
-
-
-
-
X

XH0

-
X

XH0
X

XH0
X

XH0
X

XH0
X

XH0
-
-
-
X

XH0

X
CH0

X
CH0

X
CH0

X
CH0

X
CH0

X
X
X
X

CH0
X

-
X

XH0
X

XH0
X

XH0
X

XH0
X

XH0
XH0
XH0
XH0

X
XH0

Table 11: Software State Functions

USB-CANmodul

52  SYS TEC electronic GmbH 2010 L-487e_22

Meaning of entries in Table 11:

 "-" Function not supported

 "X" Function supported without limitations

 "CH0" Function supported for each module with one CAN-channel and/or for
CAN-channel 0 of a logical module with two CAN-channels, because
the function parameter for selecting the channel number is missing.

 "XH0" Function only supported with function parameter selecting CAN-
channel 0 of a logical module, because the hardware does only have
one CAN-channel.

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 53

2.3.2 Functions of the USBCAN-library

This section describes the various functions provided by USBCAN-library. Most of the
functions return a value of the type UCANRET containing an error code. The meaning of
this code is the same for each function. Besides the syntax, the meaning and the
parameters of each function, the possible error codes are shown.

Some of the extended functions have an additional parameter for support of multi CAN
instances and enable operations on a single CAN-channel on Multiport CAN-to-USB
3004006 or USB-CANmodul2 3204002/3204003. These extended functions are also
applicable on GW-002 or GW-001, as long as CAN cannel 0 is used. Otherwise the
functions returns with error code USBCAN_ERR_ILLCHANNEL (see section 2.3.3). All
standard (single-instance) functions are applicable for Multiport CAN-to-USB 3004006 as
well, but do not provide the possibility to access other CAN-channels than CAN 0. If
channel other than CAN0 is used, the function returns with error code
USBCAN_ERR_ILLCHANNEL (see section 2.3.3).

USB-CANmodul

54  SYS TEC electronic GmbH 2010 L-487e_22

2.3.2.1 General functions

UcanSetDebugMode

Syntax:

BOOL PUBLIC UcanSetDebugMode (DWORD dwDbgLevel_p,
_TCHAR* pszFilePathName_p,
DWORD dwFlags_p);

Usability:

DLL_INIT, HW_INIT, CAN_INIT since version 3.11

Description:

This function enables the creation of a debug log file out of the USBCAN-library. If this
feature has already been activated via the USB-CANmodul Control, the content of the
“old” log file will be copied to the new file. Further debug information will be appended to
the new file.

Parameter:

dwDbgLevel_p: Bit mask which enables the activation of debug information
to be written into the debug log file. This Bit mask has the
same meaning as the “LOG-Level” of the
USB-CANmodul Control and therefore is not referred to in
detail.

pszFilePathName_p: Path leading to a text-based file which is written by the
USBCAN-library with debug information. This parameter may
be set to NULL. In this case only the new value of parameter
dwDbgLevel_p will be set.

dwFlags_p: Additional flag parameter. Value 0 will create a new debug
log file. If the file referring to parameter pszFilePathName_p
does already exist, the old content will be deleted upon
opening. Value 1 though will append all new debug
information to an existing file.

Return value:

If FALSE returns, the debug log file could not be created. A possible reason could be that
the directory path which is set by the parameter pszFilePathName_p does not exist.

Example:

// set debug mode for USBCAN API
UcanSetDebugMode (0xE0C00B03L , // = default Debug-Level
 _T("C :\\MyAppPath\\MyApp.log"),
 0); // = no append mode

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 55

UcanGetVersion

Syntax:

DWORD PUBLIC UcanGetVersion (void);

Usability:

DLL_INIT, HW_INIT, CAN_INIT

Description:

This function returns the software version number of the USBCAN-library. It is overage an
should not be used in current projects. Use the function UcanGetVersionEx() instead of.

Parameter:

none

Return value:

Software version number as DWORD with the following format:

Bit 0 to 7: least significant digits of the version number in binary format

Bit 8 to 15: most significant digits of the version number in binary format

Bit 16 to 30: reserved

Bit 31: 1 = customer specific version

Example:

DWORD dwVersion;
_TCHAR szVersion[8];
...
// get version number
dwVersion = UcanGetVersion ();

// convert into a string
_stprintf (szVersion, _T(„V%d.%2d“), (dwVersion & 0xff00) >> 8,
 dwVersion & 0xff);
...

USB-CANmodul

56  SYS TEC electronic GmbH 2010 L-487e_22

UcanGetVersionEx

Syntax:

DWORD PUBLIC UcanGetVersionEx (tUcanVersionType Ver Type_p);

Usability:

DLL_INIT, HW_INIT, CAN_INIT, version 2.16 and higher only

Description:

This function returns the version numbers of the individual software modules.

Parameter:

VerType_p: Type of version information shows from which software module the
version is to be returned. Table 12 lists all possible values for this
parameter. The format of the version information differs from that of the
UcanGetVersion() function.

VerType_p Value Meaning

kVerTypeUserDll
kVerTypeUserLib

0x0001 Returns the version of the file USBCAN-library.

kVerTypeSysDrv 0x0002 Reterns the version of the file USBCAN.SYS
(device driver).

kVerTypeNetDrv 0x0004 Returns the version of the file UCANNET.SYS
(network driver).

kVerTypeSysLd 0x0005 Returns the version of the file USBCANLD.SYS
(firmware loader of USB-CANmodul GW-001).

kVerTypeSysL2 0x0006 Returns the version of the file USBCANL2.SYS
(firmware loader of USB-CANmodul GW-002).

kVerTypeSysL3 0x0007 Returns the version of the file USBCANL3.SYS
(firmware loader of Multiport CAN-to-USB).

kVerTypeSysL4 0x0008 Returns the version of the file USBCANL4.SYS
(firmware loader of USB-CANmodul1 3204000 /
3204001).

kVerTypeSysL5 0x0009 Returns the version of the file USBCANL5.SYS
(firmware loader of USB-CANmodul2 3204002 /
3204003).

kVerTypeCpl 0x000A Returns the version of the file USBCANCL.CPL
(USB-CANmodul Control from Windows Control
Panel).

Table 12: Constants for the type of version information

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 57

Return value:

Software version number as DWORD using the following format:

Bit 0-7: Version (Macro USBCAN_MAJOR_VER)

Bit 8-15: Revision (Macro USBCAN_MINOR_VER)

Bit 16-31: Release (Macro USBCAN_RELEASE_VER)

Example:

DWORD dwVersion;
_TCHAR szVersion[16];
...
// Get USBCAN-library version number.
dwVersion = UcanGetVersionEx (kVerTypeUserDll);

// convert into a string.
_stprintf (szVersion, _T(„V%d.%02d.%d“),
 USBCAN_MAJOR_VER(dwVersion),
 USBCAN_MINOR_VER(dwVersion),
 USBCAN_RELEASE_VER(dwVersion));
...

UcanGetFwVersion

Syntax:

DWORD PUBLIC UcanGetFwVersion (
 tUcanHandle UcanHandle_p);

Usability:

HW_INIT, CAN_INIT version 2.18 and higher

Description:

This function returns the version number of the software in the USB-CANmodul.

Parameter:

UcanHandle_p: USB-CAN handle that was received with the function
UcanInitHardware() or UcanInitHardwareEx().

Return value:

Software version number as DWORD in the following format:

Bit 0-7: Version (Macro USBCAN_MAJOR_VER)

Bit 8-15: Revision (Macro USBCAN_MINOR_VER)

Bit 16-31: Release (Macro USBCAN_RELEASE_VER)

The version number format is the same format as in the function UcanGetVersionEx().

USB-CANmodul

58  SYS TEC electronic GmbH 2010 L-487e_22

UcanInitHwConnectControl

Syntax:

UCANRET PUBLIC UcanInitHwConnectControl (
 tConnectControlFkt
 fpConnectControlFkt_p);

Usability:

DLL_INIT, HW_INIT, CAN_INIT

Description:

Initializes the supervision for recently connected USB-CANmoduls. If a new module is
connected to the PC, the callback function that is indicated in the parameter will be called.
This callback function is also called if a module is disconnected from the PC.

Parameter:

fpConnectControlFkt_p: Address to the callback function that has to be called if a new
USB-CANmodul is connected or disconnected. This address
may not be NULL!

The callback function must have the following format (see section 2.3.7):

void PUBLIC UcanConnectControlFkt (
DWORD dwEvent_p,
DWORD dwParam_p);

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_WARN_NULL_PTR

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 59

UcanInitHwConnectControlEx

Syntax:

UCANRET PUBLIC UcanInitHwConnectControlEx (
tConnectControlFktEx fpConnectControlFktEx_p,
void* pCallbackArg_p);

Usability:

DLL_INIT, HW_INIT, CAN_INIT (version 3.00 and above)

Description:

Initializes the supervision for recently connected USB-CANmoduls. If a new module is
connected to the PC, the callback function that is indicated in the parameter will be called.
This callback function is also called if a module is disconnected from the PC.

Unlike function UcanInitHwConnectControl(), this function has an additional parameter,
which is also passed to the callback function. This parameter can be used to handle user-
specific information, such as the used CAN instance for example.

Attention:

This function must not be used simultaneously with function UcanInitHwConnectControl()
within the same application!

Parameter:

fpConnectControlFkt_p: Address to the callback function that has to be called if a new
USB-CANmodul is connected or disconnected. This address
must not be NULL!

pCallbackArg_p: User-specific parameter that is passed to the callback
function as well.

The callback function must have the following format (see section 2.3.7):

void PUBLIC UcanConnectControlFktEx (
DWORD dwEvent_p,
DWORD dwParam_p,
void* pArg_p);

Return Value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_WARN_NULL_PTR

USB-CANmodul

60  SYS TEC electronic GmbH 2010 L-487e_22

UcanDeinitHwConnectControl

Syntax:

UCANRET PUBLIC UcanDeinitHwConnectControl (void);

Usability:

DLL_INIT, HW_INIT, CAN_INIT

Description:

This function finishes the supervision of the recently connected or disconnected
USB-CANmoduls. This function must be called after the function
UcanInitHwConnectControl() or UcanInitHwConnectControlEx() was called within an
application and before closing this application.

Return value:

Error code of the function.

USBCAN_SUCCESSFUL

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 61

UcanInitHardware

Syntax:

UCANRET PUBLIC UcanInitHardware (
tUcanHandle* pUcanHandle_p,
BYTE bDeviceNr_p,
tCallbackFkt fpCallbackFkt_p);

Usability:

DLL_INIT

Description:

Initializes a USB-CANmodul. The software changes into the state HW_INIT. From this
point, other functions as they are defined in Table 11 can be called. If the function was
executed successfully, the function transfers a USB-CAN handle to the variable
*pUcabHandle_p. Other functions have to be called with this handle.

Parameter:

pUcanHandle_p: Pointer to the variable for the USB-CAN Handle. This pointer
may not be NULL!

bDeviceNr_p: Device number of the USB-CANmodul (0 – 254). The value
USBCAN_ANY_MODULE (= 255) makes sure that the first
allocated USB-CANmodul is used.

fpCallbackFkt_p: Address to the callback function of this USB-CANmodul. This
value can be NULL. The callback function will not be called if
corresponding events appear. This address can also be
same as one that is already used from other
USB-CANmoduls, because the callback function contains
the associated USB-CAN Handle.

The callback function must have the following format (see section 2.3.7):

void PUBLIC UcanCallbackFkt (
tUcanHandle UcanHandle_p,
DWORD bEvent_p);

USB-CANmodul

62  SYS TEC electronic GmbH 2010 L-487e_22

Return value:

Error code of the function.
USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_HWINUSE
USBCAN_ERR_ILLHW
USBCAN_ERR_MAXMODULES
USBCAN_ERR_RESOURCE
USBCAN_ERR_ILLVERSION
USBCAN_ERR_ILLPARAM
USBCAN_ERR_IOFAILED
USBCAN_ERR_BUSY
USBCAN_ERR_TIMEOUT
USBCAN_ERR_DATA
USBCAN_ERR_ABORT
USBCAN_ERR_DISCONNECT
USBCAN_ERRCMD_...

Example:

UCANRET bRet;
tUcanHandle UcanHandle;

...
// initializes a USB-CANmodul without callback func tion
bRet = UcanInitHardware (&UcanHandle, USBCAN_ANY_MO DULE, NULL);
...

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 63

UcanInitHardwareEx

Syntax:

UCANRET PUBLIC UcanInitHardwareEx (
tUcanHandle* pUcanHandle_p,
BYTE bDeviceNr_p,
tCallbackFktEx fpCallbackFktEx_p
void* pCallbackArg_p);

Usability:

DLL_INIT (version 3.00 and higher)

Description:

Initializes a USB-CANmodul. The software changes into the state HW_INIT. From this
point, other functions as they are defined in Table 11 can be called. If the function was
executed successfully, the function transfers a USB-CAN handle to the variable
*pUcabHandle_p. Other functions have to be called with this handle.

Unlike function UcanInitHardware(), this function has an additional parameter, which is
also passed to the callback function.

Parameter:

pUcanHandle_p: Pointer to the variable for the USB-CAN Handle. This pointer
may not be NULL!

bDeviceNr_p: Device number of the USB-CANmodul (0 – 254). The value
USBCAN_ANY_MODULE (= 255) makes sure that the first
allocated USB-CANmodul is used.

fpCallbackFkt_p: Address to the callback function of this USB-CANmodul. This
value can be NULL. The callback function will not be called if
corresponding events appear. This address can also be
same as one that is already used from other
USB-CANmoduls, because the callback function contains
the associated USB-CAN Handle.

pCallbackArg_p: User-specific parameter that is passed to the callback
function as well.

The callback function must have the following format (see section 2.3.7):

void PUBLIC UcanCallbackFktEx (
tUcanHandle UcanHandle_p,
DWORD bEvent_p,
BYTE bChannel_p,
void* pArg_p);

USB-CANmodul

64  SYS TEC electronic GmbH 2010 L-487e_22

Return value:

Error codes of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_HWINUSE
USBCAN_ERR_ILLHW
USBCAN_ERR_MAXMODULES
USBCAN_ERR_RESOURCE
USBCAN_ERR_ILLVERSION
USBCAN_ERR_ILLPARAM
USBCAN_ERR_IOFAILED
USBCAN_ERR_BUSY
USBCAN_ERR_TIMEOUT
USBCAN_ERR_DATA
USBCAN_ERR_ABORT
USBCAN_ERR_DISCONNECT
USBCAN_ERRCMD_...

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 65

UcanDeinitHardware

Syntax:

UCANRET PUBLIC UcanDeinitHardware (
tUcanHandle UcanHandle_p);

Usability:

HW_INIT, CAN_INIT

Description:

Shuts down an initialized USB-CANmodul that was initialized with UcanInitHardware() or
UcanInitHardwareEx(). The software returns to the state DLL_INIT. After the function call,
the USB-CAN handle is not valid. That means, execution of the valid functions (see Table
4) for HW_INIT and CAN_INIT is no longer possible.

Parameter:

UcanHandle_p: USB-CAN handle received with the function UcanInitHardware()
or UcanInitHardwareEx().

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_ILLHW

Note:

This function has to be called before closing the application, otherwise other applications
are no longer able to access this specific USB-CANmodul.

USB-CANmodul

66  SYS TEC electronic GmbH 2010 L-487e_22

UcanGetModuleTime

Syntax:

UCANRET PUBLIC UcanGetModuleTime (
tUcanHandle UcanHandle_p,
DWORD* pdwTime_p);

Usability:

HW_INIT, CAN_INIT version 3.01 or higher

Description:

This function reads the current time stamp from the device.

Parameter:

UcanHandle_p: USB-CAN-handle, that was returned by UcanInitHardware()
or UcanInitHardwareEx().

pdwTime_p: Pointer to a variable where the time stamp is to be stored to.

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_ILLPARAM
USBCAN_ERR_ILLHW
USBCAN_ERR_BUSY
USBCAN_ERR_IOFAILED
USBCAN_ERR_TIMEOUT
USBCAN_ERR_DATA
USBCAN_ERR_ABORT
USBCAN_ERR_DISCONNECT
USBCAN_ERRCMD_...

Note:

The execution of this function as well as the transfer of the time stamp needs run-time. In
other words, after this function has returned successfully, the time stamp might be out-
dated. The accuracy of this time stamp depends on many factors and is unpredictable on
non real-time operating systems.

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 67

UcanInitCan

Syntax:

UCANRET PUBLIC UcanInitCan (
tUcanHandle UcanHandle_p,
BYTE bBTR0_p,
BYTE bBTR1_p,
DWORD dwAMR_p,
DWORD dwACR_p);

Usability:

HW_INIT

Description:

Initializes the CAN interface of a USB-CANmodul. The software changes into the state
CAN_INIT. Now it is possible to transmit and receive CAN messages. Table 11 shows the
possible functions in this state.

Parameter:

UcanHandle_p: USB-CAN handle received with the function
UcanInitHardware() or UcanInitHardwareEx().

bBTR0_p: Baud rate register 0 (refer to section 2.3.4)

bBTR1_p: Baud rate register 1 (refer to section 2.3.4)

dwAMR_p: Acceptance Mask Register (refer to section 2.3.5)

dwACR_p: Acceptance Code Register (refer to section 2.3.5)

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_RESOURCE
USBCAN_ERR_BUSY
USBCAN_ERR_IOFAILED
USBCAN_ERR_ILLPARAM
USBCAN_ERR_ILLHW
USBCAN_ERR_DATA
USBCAN_ERR_ABORT
USBCAN_ERR_DISCONNECT
USBCAN_ERR_TIMEOUT
USBCAN_ERRCMD_…

USB-CANmodul

68  SYS TEC electronic GmbH 2010 L-487e_22

UcanInitCanEx

Syntax:

UCANRET PUBLIC UcanInitCanEx (
tUcanHandle UcanHandle_p,
tUcanInitCanParam* pInitCanParam_p);

Usability:

HW_INIT, version 2.16 or higher

Parameter:

UcanHandle_p: USB-CAN handle, that was received with the function
UcanInitHardware() or UcanInitHardwareEx().

pInitCanParam_p: Pointer to an initialization structure

typedef struct
{
 DWORD m_dwSize; // Size of this structure in bytes
 BYTE m_bMode; // CAN Transmission Mode
 // (see able below)
 BYTE m_bBTR0; // Baud rate register 0 of the SJA1000
 BYTE m_bBTR1; // Baud rate register 1 of the SJA1000
 BYTE m_bOCR; // Output control register of the SJA1000
 // (should always be 0x1A)
 DWORD m_dwAMR; // Acceptance filter mask of the SJA1000
 DWORD m_dwACR; // Acceptance filter code of the SJA1000
 DWORD m_dwBaudrate; // Baudrate register for Multiport,
 // USB-CANmodul1 and USB-CAN modul2

 // number of entries in receive buffer in USBCAN- library
 WORD m_wNrOfRxBufferEntries;

 // number of entries in transmit buffer in USBCAN -library
 WORD m_wNrOfTxBufferEntries;

} tUcanInitCanParam;

Note:

The configuration of the baud rate differs significantly between the older USB-CANmodul
versions (GW-001 and GW-002) and the new sysWORXX modules. For standardized
baud rate values (see section 2.3.4), the baud rate registers BTR0 and BTR1 are as well
applicable for the new sysWORXX modules. Therefore set m_dwBaudrate to
USBCAN_BAUDEX_USE_BTR01.

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 69

The mode of CAN transmission is configured by an 8-bit bit-mask. The following table
shows all possible constants/modes:

Constant Value Meaning
kUcanModeNormal 0x00 normal transmit- and receive mode
kUcanModeListenOnly 0x01 listen-only mode; transmitted CAN messages

are not sent out via CAN-bus. Received
CAN-messages of remote nodes are not
acknowledged.

kUcanModeTxEcho 0x02 UcanReadCanMsg() also returns transmitted
messages as transmit echo. (see function
UcanReadCanMsg())
(not available for GW-001)

Table 13: Constants for CAN transmission mode

Description:

Initializes the CAN interface of a USB-CANmodul with expanded parameters. This
function works like the function UcanInitCan(). However, it should not be called in
combination with UcanInitCan().

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_RESOURCE
USBCAN_ERR_BUSY
USBCAN_ERR_IOFAILED
USBCAN_ERR_ILLPARAM
USBCAN_ERR_ILLHW
USBCAN_ERR_DATA
USBCAN_ERR_ABORT
USBCAN_ERR_DISCONNECT
USBCAN_ERR_TIMEOUT
USBCAN_ERRCMD_…

USB-CANmodul

70  SYS TEC electronic GmbH 2010 L-487e_22

UcanInitCanEx2

Syntax:

UCANRET PUBLIC UcanInitCanEx2 (
tUcanHandle UcanHandle_p,
BYTE bChannel_p
tUcanInitCanParam* pInitCanParam_p);

Usability:

HW_INIT version 3.00 and higher

Parameter:

UcanHandle_p: USB-CAN-handle, that was received with function
UcanInitHardware() or UcanInitHardwareEx().

bChannel_p: CAN-channel, which is to be initialized.
USBCAN_CHANNEL_CH0 for CAN-channel 0
USBCAN_CHANNEL_CH1 for CAN- channel 1

pInitCanParam_p: Pointer a structure containing the initialization data

Structure tUcanInitCanParam is described with function UcanInitCanEx().

Description:

Initializes the specified CAN-channel of a USB-CANmodul. For GW-001 and GW-002 only
CAN-channel 0 can be initialized. Use this function alternatively for function
UcanInitCanEx().

Return value:

Error codes of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_RESOURCE
USBCAN_ERR_BUSY
USBCAN_ERR_IOFAILED
USBCAN_ERR_ILLPARAM
USBCAN_ERR_ILLHW
USBCAN_ERR_DATA
USBCAN_ERR_ABORT
USBCAN_ERR_DISCONNECT
USBCAN_ERR_TIMEOUT
USBCAN_ERRCMD_…

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 71

UcanSetTxTimeout

Syntax:

UCANRET PUBLIC UcanSetTxTimeout (
tUcanHandle UcanHandle_p,
BYTE bChannel_p,
DWORD dwTxTimeout_p);

Usability:

CAN_INIT since version 3.10, only for multi-channel modules

Description:

Is this function called with a timeout value bigger than 0 milliseconds then firmware
controls all transmit CAN messages by this timeout. If a CAN message cannot be sent
during this timeout then firmware changes to a special state whereas all further transmit
CAN messages for the specified channel will be deleted automatically. At each deleted
transmit CAN message firmware sets the new CAN driver state
USBCAN_CANERR_TXMSGLOST. When the CAN message could be sent later then
firmware leaves this special state.

This feature is to prevent that transmit CAN messages of a channel blocks transmit CAN
messages of the other channel caused by not connected remote CAN device or any
physical problems on CAN bus.

Parameter:

UcanHandle_p: USB-CAN handle received with the function
UcanInitHardware() or UcanInitHardwareEx().

bChannel_p: CAN-channel for setting the timeout
USBCAN_CHANNEL_CH0 for channel 0
USBCAN_CHANNEL_CH1 for channel 1

dwTxTimeout_p: Transmission Timeout in milliseconds. The value 0 switches
off the timeout control.

Return value: Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_CANNOTINIT
USBCAN_ERR_BUSY
USBCAN_ERR_IOFAILED
USBCAN_ERR_ILLHW
USBCAN_ERR_ILLCHANNEL
USBCAN_ERR_DATA
USBCAN_ERR_ABORT
USBCAN_ERR_DISCONNECT
USBCAN_ERR_TIMEOUT
USBCAN_ERRCMD_…

USB-CANmodul

72  SYS TEC electronic GmbH 2010 L-487e_22

UcanResetCan

Syntax:

UCANRET PUBLIC UcanResetCan (tUcanHandle UcanHandle _p);

Usability:

HW_INIT, CAN_INIT

Description:

Resets the CAN controller in the USB-CANmodul and erases the CAN message buffer.
This function needs to be called if a BUSOFF event occurred. Starting at version 2.17 a
CAN status error (readable via UcanGetStatus()) is also cleared.

Parameter:

UcanHandle_p: USB-CAN handle received with the function UcanInitHardware()
or UcanInitHardwareEx().

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_CANNOTINIT
USBCAN_ERR_BUSY
USBCAN_ERR_IOFAILED
USBCAN_ERR_ILLHW
USBCAN_ERR_ILLCHANNEL
USBCAN_ERR_DATA
USBCAN_ERR_ABORT
USBCAN_ERR_DISCONNECT
USBCAN_ERR_TIMEOUT
USBCAN_ERRCMD_…

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 73

UcanResetCanEx

Syntax:

UCANRET PUBLIC UcanResetCanEx (
tUcanHandle UcanHandle_p,
BYTE bChannel_p,
DWORD dwResetFlags_p);

Usability:

HW_INIT, CAN_INIT, version 3.00 and higher

Description:

Resets parametered global features of features of a separate CAN-channel of a
USB-CANmodul (see function UcanResetCan()). For GW-001, GW-002 and
USB-CANmodul1 only features of CAN-channel 0 can be reset.

Parameter:

UcanHandle_p: USB-CAN handle received with the function
UcanInitHardware() or UcanInitHardwareEx().

bChannel_p: CAN-channel that is to be reset
USBCAN_CHANNEL_CH0 for channel 0
USBCAN_CHANNEL_CH1 for channel 1

dwResetFlags_p: The flags of this parameter specify what components are to
be reset (see list below). The logical combination of different
flags is possible.

USBCAN_RESET_ALL ...0x00000000:

Reset all components. However, the firmware is not reset completely.

USBCAN_RESET_NO_STATUS 0x00000001:

Skip reset of the CAN error status (not supported for GW-001 and/or GW-002).

USBCAN_RESET_NO_CANCTRL...0x00000002:

Skip reset of the CAN controller.

USBCAN_RESET_NO_TXCOUNTER 0x00000004:

Skip reset of the transmit message counter.

USBCAN_RESET_NO_RXCOUNTER...0x00000008:

Skip reset of the receive message counter.

USBCAN_RESET_NO_TXBUFFER_CH..0x00000010:

Skip reset of the transmit buffers of a specific CAN-channel (CAN-channel is
specified by parameter bChannel_p).

USBCAN_RESET_NO_TXBUFFER_DLL ..0x00000020:

Skip reset of the transmit buffer for both CAN-channels within the DLL.

USB-CANmodul

74  SYS TEC electronic GmbH 2010 L-487e_22

USBCAN_RESET_NO_TXBUFFER_FW .. 0x00000080:

Skip reset of the transmit buffers of both CAN-channels within the device’s
firmware.

USBCAN_RESET_NO_RXBUFFER_CH... 0x00000100:

Skip reset of the receive buffers of a specific CAN-channel (CAN-channel is
specified by parameter bChannel_p).

USBCAN_RESET_NO_RXBUFFER_DLL ... 0x00000200:

Skip reset of both receive message counters within the DLL

USBCAN_RESET_NO_RXBUFFER_SYS... 0x00000400:

Skip reset of the receive message counter of both CAN-channels within the Kernel-
Mode driver.

USBCAN_RESET_NO_RXBUFFER_FW .. 0x00000800:

Skip reset of receive message counters of both CAN-channels within the device’s
firmware.

USBCAN_RESET_FIRMWARE..0xFFFFFFFF:

Complete reset of the device firmware.

There are the following predefined combinations:

USBCAN_RESET_ONLY_STATUS:.. 0x0000FFFE

Reset of the CAN error status only.

USBCAN_RESET_ONLY_CANCTRL:... 0x0000FFFD

Only resets the CAN controller of the USB-CANmodul. This has to be done after
each bus-off state because the CAN controller cannot leave this state automatically.

USBCAN_RESET_ONLY_RXBUFFER_FW:..0x0000F7FF

Only resets the receive buffer within the firmware of the USB-CANmodul.

USBCAN_RESET_ONLY_TXBUFFER_FW:..0x0000FF7F

Only resets the transmit buffer within the firmware of the USB-CANmodul.

USBCAN_RESET_ONLY_RXCHANNEL_BUFF: .. 0x0000FEFF

Reset of the receive buffer of only one CAN-channel.

USBCAN_RESET_ONLY_TXCHANNEL_BUFF:... 0x0000FFEF

Reset of the transmit buffer of o nly one CAN-cannel.

USBCAN_RESET_ONLY_RX_BUFF: ..0x0000F0F7

Reset of the receive buffers in all software parts and reset of the receive message
counter.

USBCAN_RESET_ONLY_TX_BUFF:...0x0000FF0B

Reset of the transmit buffers in all software parts and reset of the transmit message
counter.

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 75

USBCAN_RESET_ONLY_ALL_BUFF:... 0x0000F003

Reset off all message buffers (receive and transmit buffers) in all software parts
and reset of the receive and transmit message counter.

USBCAN_RESET_ONLY_ALL_COUNTER: ..0x0000FFF3

Reset of the receive and transmit counter.

Important:

If the constants USBCAN_RESET_NO_... should be combined, a logical OR has to be
used.

Exapmle:

 dwFalgs = USBCAN_RESET_NO_COUNTER_ALL |
 USBCAN_RESET_NO_BUFFER_ALL;

If the constants USBCAN_RESER_ONLY_... has to be combined, a logical AND has to be
used.

Example:

 dwFalgs = USBCAN_RESET_ONLY_RX_BUFF &
 USBCAN_RESET_ONLY_STATUS;

For GW-002 the constant USBCAN_RESET_ONLY_RX_BUFF_GW02 has to be used
instead of USBCAN_RESET_ONLY_RX_BUFF. But in this case the transmit buffer in
module firmware will be reset too.

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_CANNOTINIT
USBCAN_ERR_BUSY
USBCAN_ERR_IOFAILED
USBCAN_ERRCMD_…
USBCAN_ERR_ILLHW
USBCAN_ERR_ILLCHANNEL
USBCAN_ERR_DATA
USBCAN_ERR_ABORT
USBCAN_ERR_DISCONNECT
USBCAN_ERR_TIMEOUT

USB-CANmodul

76  SYS TEC electronic GmbH 2010 L-487e_22

UcanDeinitCan

Syntax:

UCANRET PUBLIC UcanDeinitCan (tUcanHandle UcanHandl e_p);

Usability:

CAN_INIT

Description:

Shuts down the CAN interface of a USB-CANmodul. This function sets the operating
voltage of the CAN controller to 0 V. After calling this function, all CAN messages received
from CAN bus are ignored and not transferred to the PC.

Parameter:

UcanHandle_p: USB-CAN handle received with the function
UcanInitHardware() or UcanInitHardwareEx().

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_CANNOTINIT
USBCAN_ERR_BUSY
USBCAN_ERR_IOFAILED
USBCAN_ERR_ILLHW
USBCAN_ERR_ILLCHANNEL
USBCAN_ERR_DATA
USBCAN_ERR_ABORT
USBCAN_ERR_DISCONNECT
USBCAN_ERR_TIMEOUT
USBCAN_ERRCMD_…

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 77

UcanDeinitCanEx

Syntax:

UCANRET PUBLIC UcanDeinitCanEx (
tUcanHandle UcanHandle_p ,
BYTE bChannel_p);

Usability:

CAN_INIT

Description:

Shuts down a selective CAN interface of a USB-CANmodul. This function sets the
operating voltage of the CAN controller to 0 V. After calling this function, all CAN
messages received from CAN bus are ignored and not transferred to the PC.

Parameter:

UcanHandle_p: USB-CAN handle received with the function
UcanInitHardware() or UcanInitHardwareEx().

bChannel_p: CAN-channel that is to be shut down.
USBCAN_CHANNEL_CH0 for CAN-channel 0
USBCAN_CHANNEL_CH1 for CAN-channel 1

Return value:

error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_CANNOTINIT
USBCAN_ERR_BUSY
USBCAN_ERR_IOFAILED
USBCAN_ERR_ILLHW
USBCAN_ERR_ILLCHANNEL
USBCAN_ERR_DATA
USBCAN_ERR_ABORT
USBCAN_ERR_DISCONNECT
USBCAN_ERR_TIMEOUT
USBCAN_ERRCMD_…

USB-CANmodul

78  SYS TEC electronic GmbH 2010 L-487e_22

UcanGetHardwareInfo

Syntax:

UCANRET PUBLIC UcanGetHardwareInfo (
tUcanHandle UcanHandle_p,
tUcanHardwareInfo* pHwInfo_p);

Usability:

HW_INIT, CAN_INIT

Description:

This function returns the hardware information of a USB-CANmodul. This function is
especially useful if a USB-CANmodul has been initialized with the device number
USBCAN_ANY_MODULE. Afterwards, the hardware information contains the device
number of the initialized USB-CANmodul.

Parameter:

UcanHandle_p: USB-CAN handle received with the function
UcanInitHardware() or UcanInitHardwareEx().

pHwInfo_p: Address to the hardware information structure (see
description below).

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_ILLPARAM
USBCAN_ERR_ILLHW

typedef struct
{
 BYTE m_bDeviceNr; // Device number
 tUcanHandle m_UcanHandle; // USB-CAN handle
 DWORD m_dwReserved; // reserved
 BYTE m_bBTR0; // Baud rate register 0
 BYTE m_bBTR1; // Baud rate register 1
 BYTE m_bOCR; // Output control register
 DWORD m_dwAMR; // Acceptance mask register
 DWORD m_dwACR; // Acceptance code register
 BYTE m_bMode; // CAN controller mode
 // (see tUcanMode)
 DWORD m_dwSerialNr; // Serial number
 // of the USB-CANmoduls
} tUcanHardwareInfo;

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 79

Note:

The parameters m_bMode and m_dwSerialNr are only available with the software version
2.16 and higher.

Example:

UCANRET bRet;
tUcanHandle UcanHandle;
tUcanHardwareInfo HwInfo;
_TCHAR szDeviceNr[24];

...
// initialize USB-CANmodul
bRet = UcanInitHardware (&UcanHandle, USBCAN_ANY_MO DULE, NULL);

// no error?
if (bRet == USBCAN_SUCCESSFUL)
{
 // get hardware information
 UcanGetHardwareInfo (UcanHandle, &HwInfo);

 // change the device number into a string
 _stprintf (szDeviceNr, _T(„device number = %d“),
 HwInfo.m_bDeviceNr);
 ...
}
...

USB-CANmodul

80  SYS TEC electronic GmbH 2010 L-487e_22

UcanGetHardwareInfoEx2

Syntax:

UCANRET PUBLIC UcanGetHardwareInfoEx2 (
tUcanHandle UcanHandle_p,
tUcanHardwareInfoEx* pHwInfoEx_p,
tUcanChannelInfo* pCanInfoCh0_p,
tUcanChannelInfo* pCanInfoCh1_p);

Usability:

HW_INIT, CAN_INIT ,version 3.00 and higher

Description:

This function returns the extended hardware information of a USB-CANmodul. For the
Multiport CAN-to-USB 3004006, USB-CANmodul1 and USB-CANmodul2, the hardware
information of each CAN-channel is returned separately.

Parameter:

UcanHandle_p: USB-CAN handle received with the function
UcanInitHardware() or UcanInitHardwareEx().

pHwInfoEx_p: Pointer to extended hardware information structure (see
description below).

pCanInfoCh0_p: Pointer to information structure used for CAN-channel 0.
This parameter may be set to NULL.

pCanInfoCh1_p: Pointer to information structure used for CAN-channel 1.
This parameter may be set to NULL.

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_ILLPARAM
USBCAN_ERR_ILLHW

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 81

typedef struct
{
 DWORD m_dwSize; // number of Bytes of
 // this structure
 tUcanHandle m_UcanHandle; // USB-CAN-Handle
 BYTE m_bDeviceNr; // device number
 DWORD m_dwSerialNr; // serial number
 DWORD m_dwFwVersionEx; // Firmware Version
 DWORD m_dwReserved; // reserved
 DWORD m_dwProductCode; // Hardware Type

} tUcanHardwareInfoEx;

typedef struct
{
 DWORD m_dwSize; // size of this structure in bytes
 BYTE m_bMode; // CAN-mode (see tUcanMode)
 BYTE m_bBTR0; // Bus Timing Register 0
 BYTE m_bBTR1; // Bus Timing Register 1
 BYTE m_bOCR; // Output Control Register
 DWORD m_dwAMR; // Acceptance Mask Register
 DWORD m_dwACR; // Acceptance Code Register
 DWORD m_dwBaudrate; // Baudrate Register for Multport,
 // USB-CANmodul1 und USB -CANmodul2
 BOOL m_fCanIsInit; // is TRUE when CAN-channel was
 // initialised
 WORD m_wCanStatus; // last CAN state
 // (see UcanGetStatus())

} tUcanChannelInfo;

Use the following macros for getting information about the support of several new
features:

USBCAN_CHECK_SUPPORT_CYCLIC_MSG(pHwIndoEx)
This Macro checks whether the logical USB-CANmodul supports the automatic
transmission of cyclic CAN messages.

USBCAN_CHECK_SUPPORT_TWO_CHANNEL(pHwIndoEx)
This Macro checks whether the logical USB-CANmodul supports two CAN-
channels.

USBCAN_CHECK_SUPPORT_TERM_RESISTOR(pHwIndoEx)
This Macro checks whether the logical USB-CANmodul supports to read back the
state of the termination resistor.

USBCAN_CHECK_SUPPORT_USER_PORT(pHwIndoEx)
This Macro checks whether the logical USB-CANmodul supports a programmable
Expansion Port (refer to section 1.5).

USBCAN_CHECK_SUPPORT_RBUSER_PORT(pHwIndoEx)
This Macro checks whether the logical USB-CANmodul supports a programmable
Expansion Port including the storing of the last output configuration to a non-volatile
memory. After next power-on this configuration will be automatically set to the
Expansion Port.

USB-CANmodul

82  SYS TEC electronic GmbH 2010 L-487e_22

USBCAN_CHECK_SUPPORT_RBCAN_PORT(pHwIndoEx)
This Macro checks whether the logical USB-CANmodul supports a programmable
CAN Port (for low-speed CAN transceivers) including the storing of the last output
configuration to a non-volatile memory. After next power-on this configuration will
be automatically set to the CAN Port.

Example:

UCANRET bRet;
tUcanHandle UcanHandle;
tUcanHardwareInfoEx HwInfoEx;

...
// init USB-CANmodul
bRet = UcanInitHardware (&UcanHandle, USBCAN_ANY_MO DULE, NULL);
if (bRet == USBCAN_SUCCESSFUL)
{
 memset (&HwInfoEx, 0, sizeof (HwInfoEx));
 HwInfoEx.m_dwSize = sizeof (HwInfoEx);

 // get the extended hardware information
 bRet = UcanGetHardwareInfoEx2 (UcanHandle, &HwI nfoEx,
 NULL, NULL);
 if (bRet == USBCAN_SUCCESSFUL)
 {
 TRACE1 ("product code = 0x%04X\n" ,
 HwInfoEx->m_dwProductCode & USBCAN_PROD CODE_MASK_PID);

 // check whether two CAN-channels are suppo rted
 if (USBCAN_CHECK_SUPPORT_TWO_CHANNEL (&HwInfoEx))
 {
 ...
 }
 ...
 }
 ...
}

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 83

UcanGetMsgCountInfo

Syntax:

UCANRET PUBLIC UcanGetMsgCountInfo (
tUcanHandle UcanHandle_p,
tUcanMsgCountInfo* pMsgCountInfo_p);

Usability:

CAN_INIT , version 3.00 and higher

Description:

Reads the counters for transmitted and received CAN messages from the device.

Parameter:

UcanHandle_p: USB-CAN-handle, that was returned by UcanInitHardware()
or UcanInitHardwareEx().

pMsgCountInfo_p: Pointer to a structure of type tUcanMsgCountInfo where the
counters are to be stored to

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_BUSY
USBCAN_ERR_IOFAILED
USBCAN_ERRCMD…
USBCAN_ERR_ILLHW
USBCAN_ERR_ILLPARAM
USBCAN_ERR_DATA
USBCAN_ERR_ABORT
USBCAN_ERR_DISCONNECT
USBCAN_ERR_TIMEOUT

typedef struct
{
 WORD m_wSentMsgCount; // Counter for transmitted CAN-messages
 WORD m_wRecvdMsgCount; // Counter for received CAN-messages

} tUcanMsgCountInfo;

USB-CANmodul

84  SYS TEC electronic GmbH 2010 L-487e_22

UcanGetMsgCountInfoEx

Syntax:

UCANRET PUBLIC UcanGetMsgCountInfoEx (
tUcanHandle UcanHandle_p,
BYTE bChannel_p,
tUcanMsgCountInfo* pMsgCountInfo_p);

Usability:

CAN_INIT, version 2.16 and higher

Description:

Reads the counters for transmitted and received CAN messages of a specific CAN-
channel from the device.

Parameter:

UcanHandle_p: USB-CAN-handle, that was returned by UcanInitHardware()
or UcanInitHardwareEx().

bChannel_p: CAN-channel to read the counters from.
USBCAN_CHANNEL_CH0 for CAN-channel 0
USBCAN_CHANNEL_CH1 for CAN-channel 1

pMsgCountInfo_p: Pointer to a structure of type tUcanMsgCountInfo where the
counters are to be stored to

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_BUSY
USBCAN_ERR_IOFAILED
USBCAN_ERR_ILLHW
USBCAN_ERR_ILLPARAM
USBCAN_ERR_DATA
USBCAN_ERR_ABORT
USBCAN_ERR_DISCONNECT
USBCAN_ERR_TIMEOUT
USBCAN_ERRCMD…

Structure tUcanMsgCountInfo is described with function UcanGetMsgCountInfo().

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 85

UcanGetStatus

Syntax:

UCANRET PUBLIC UcanGetStatus (
tUcanHandle UcanHandle_p,
tStatusStruct* pStatus_p);

Usability:

HW_INIT, CAN_INIT

Description:

This function returns the error status from the USB-CANmodul. If an error occurred on the
USB-CANmodul, the red status LED starts blinking and a status message is sent to the
PC. If a callback function has been handed over to the function UcanInitHardware() or
UcanInitHardwareEx(), this callback function is called, as well as the event
USBCAN_EVENT_STATUS. After calling the function UcanGetStatus(), the error state on
the USB-CANmodul is erased and the red status LED stops blinking. Starting at version
2.17 a CAN status error must be cleared by calling the function UcanResetCan.

Parameter:

UcanHandle_p: USB-CAN handle received with the function
UcanInitHardware() or UcanInitHardwareEx().

pStatus_p: Error status of the USB-CANmodul.

typedef struct
{
 WORD m_wCanStatus; // present CAN status
 WORD m_wUsbStatus; // present USB status

} tStatusStruct;

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_ILLPARAM
USBCAN_ERR_ILLHW

USB-CANmodul

86  SYS TEC electronic GmbH 2010 L-487e_22

The WORD m_wCanStatus, found in the tStatusStruct structure, returns the following
values:

USBCAN_CANERR_OK = 0x0000

 No error

USBCAN_CANERR_XMTFULL = 0x0001

 Transmit buffer in CAN controller is overrun

USBCAN_CANERR_OVERRUN = 0x0002

 Receive buffer in CAN controller is overrun

USBCAN_CANERR_BUSLIGHT = 0x0004

 Error limit 1 in CAN controller exceeded, CAN controller is in state “Warning
limit” now

USBCAN_CANERR_BUSHEAVY = 0x0008

 Error limit 2 in CAN controller exceeded, CAN controller is in state “Error
Passive” now

USBCAN_CANERR_BUSOFF = 0x0010

 CAN controller is in BUSOFF state

USBCAN_CANERR_QOVERRUN = 0x0040

 Receive buffer in module is overrun

USBCAN_CANERR_QXMTFULL = 0x0080

 Transmit buffer in module is overrun

USBCAN_CANERR_REGTEST = 0x0100

 CAN controller not found (hardware error)

USBCAN_CANERR_TXMSGLOST = 0x0400

 A transmit CAN message was deleted automatically by the
 firmware because transmission timeout run over (refer to
 function UcanSetTxTimeout()).

This WORD is bit oriented; it can indicate multiple errors simultaneously.

WORD m_wUsbStatus is becoming obsolete and is retained only for compatibility
purposes. It retains the value 0.

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 87

UcanGetStatusEx

Syntax:

UCANRET PUBLIC UcanGetStatusEx (
tUcanHandle UcanHandle_p,
BYTE bChannel_p
tStatusStruct* pStatus_p);

Usability:

HW_INIT, CAN_INIT , version 3.00 and higher

Description:

This function returns the error status of a specific CAN-channel from the USB-CANmodul.
This function may be used alternatively for function UcanGetStatus().

Structure tStatusStruct is described in section UcanGetStatus().

Parameter:

UcanHandle_p: USB-CAN handle received with the function
UcanInitHardware() or UcanInitHardwareEx().

pStatus_p: Error status of the USB-CANmodul.

bChannel_p: Specifies the CAN-channel of which the status is to be
returned.
USBCAN_CHANNEL_CH0 for CAN-channel 0
USBCAN_CHANNEL_CH1 for CAN-channel 1

Return value:

error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_ILLPARAM
USBCAN_ERR_ILLHW

USB-CANmodul

88  SYS TEC electronic GmbH 2010 L-487e_22

UcanSetBaudrate

Syntax:

UCANRET PUBLIC UcanSetBaudrate (
tUcanHandle UcanHandle_p,
BYTE bBTR0_p,
BYTE bBTR1_p);

Usability:

CAN_INIT

Description:

Changes the baud rate configuration of the USB-CANmodul.

Parameter:

UcanHandle_p: USB-CAN handle received with the function
UcanInitHardware() or UcanInitHardwareEx().

bBTR0_p: Baud rate register 0 (refer to section 2.3.4)

bBTR1_p: Baud rate register 1 (refer to section 2.3.4)

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_CANNOTINIT
USBCAN_ERR_BUSY
USBCAN_ERR_IOFAILED
USBCAN_ERR_ILLHW
USBCAN_ERR_ILLCHANNEL
USBCAN_ERR_DATA
USBCAN_ERR_ABORT
USBCAN_ERR_DISCONNECT
USBCAN_ERR_TIMEOUT
USBCAN_ERRCMD_…

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 89

UcanSetBaudrateEx

Syntax:

UCANRET PUBLIC UcanSetBaudrateEx (
tUcanHandle UcanHandle_p,
BYTE bChannel_p
BYTE bBTR0_p,
BYTE bBTR1_p,
DWORD dwBaudrate_p);

Usability:

CAN_INIT , version 3.00 and higher

Description:

Changes the baud rate configuration of a specific CAN-channel of the USB-CANmodul.
This function may be used alternatively for function UcanSetBaudrate().

Parameter:

UcanHandle_p: USB-CAN handle received with the function
UcanInitHardware() or UcanInitHardwareEx().

bChannel_p: CAN-channel that is to be changed
USBCAN_CHANNEL_CH0 for CAN-channel 0
USBCAN_CHANNEL_CH1 for CAN-channel 1

bBTR0_p: Baud rate register BTR0 (refer to section 2.3.4)

bBTR1_p: Baud rate register BTR1 (refer to section 2.3.4)

dwBaudrate_p: Baud rate register for all sysWORXX modules (refer to
section 2.3.4)

Note:

The configuration of the baud rate differs significantly between the older USB-CANmodul
versions (GW-001 and GW-002) and the new sysWORXX modules. For standardized
baud rate values (see section 2.3.4), the baud rate registers BTR0 and BTR1 are as well
applicable for the new sysWORXX modules. Therefore set m_dwBaudrate to
USBCAN_BAUDEX_USE_BTR01.

USB-CANmodul

90  SYS TEC electronic GmbH 2010 L-487e_22

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_CANNOTINIT
USBCAN_ERR_BUSY
USBCAN_ERR_IOFAILED
USBCAN_ERR_ILLHW
USBCAN_ERR_ILLCHANNEL
USBCAN_ERR_DATA
USBCAN_ERR_ABORT
USBCAN_ERR_DISCONNECT
USBCAN_ERR_TIMEOUT
USBCAN_ERRCMD_…

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 91

UcanSetAcceptance

Syntax:

UCANRET PUBLIC UcanSetAcceptance (
tUcanHandle UcanHandle_p,
DWORD dwAMR_p,
DWORD dwACR_p);

Usability:

CAN_INIT

Description:

Changes the acceptance Mask Register of the USB-CANmodul.

Parameter:

UcanHandle_p: USB-CAN handle received with the function
UcanInitHardware() or UcanInitHardwareEx().

dwAMR_p: Acceptance Mask Register (see section 2.3.5)

dwACR_p: Acceptance Code Register (see section 2.3.5)

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_CANNOTINIT
USBCAN_ERR_BUSY
USBCAN_ERR_IOFAILED
USBCAN_ERR_ILLHW
USBCAN_ERR_ILLCHANNEL
USBCAN_ERR_DATA
USBCAN_ERR_ABORT
USBCAN_ERR_DISCONNECT
USBCAN_ERR_TIMEOUT
USBCAN_ERRCMD_…

USB-CANmodul

92  SYS TEC electronic GmbH 2010 L-487e_22

UcanSetAcceptanceEx

Syntax:

UCANRET PUBLIC UcanSetAcceptanceEx (
tUcanHandle UcanHandle_p,
BYTE bChannel_p
DWORD dwAMR_p,
DWORD dwACR_p);

Usability:

CAN_INIT version 3.00 and higher

Description:

Changes the acceptance Mask Register of a specific CAN-channel of the
USB-CANmodul. This function may be used alternatively for function
UcanSetAcceptance().

Parameter:

UcanHandle_p: USB-CAN handle received with the function
UcanInitHardware() or UcanInitHardwareEx().

bChannel_p: CAN-channel that is to be changed
USBCAN_CHANNEL_CH0 for CAN-channel 0
USBCAN_CHANNEL_CH1 for CAN-channel 1

dwAMR_p: Acceptance Mask Register (see section 2.3.5)

dwACR_p: Acceptance Code Register (see section 2.3.5)

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_CANNOTINIT
USBCAN_ERR_BUSY
USBCAN_ERR_IOFAILED
USBCAN_ERR_ILLHW
USBCAN_ERR_ILLCHANNEL
USBCAN_ERR_DATA
USBCAN_ERR_ABORT
USBCAN_ERR_DISCONNECT
USBCAN_ERR_TIMEOUT
USBCAN_ERRCMD_…

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 93

UcanReadCanMsg

Syntax:

UCANRET PUBLIC UcanReadCanMsg (
tUcanHandle UcanHandle_p,
tCanMsgStruct* pCanMsg_p);

Usability:

CAN_INIT

Description:

Reads a CAN message from the buffer. If the buffer contains no CAN messages, this
function returns a warning. If a buffer overrun occurred, this function returns a valid CAN
message and a warning.

Parameter:

UcanHandle_p: USB-CAN handle received with the function
UcanInitHardware() or UcanInitHardwareEx().

pCanMsg_p: Address to a CAN message structure. This address must not
be NULL.

typedef struct
{
 DWORD m_dwID; // CAN identifier
 BYTE m_bFF; // CAN frame format
 BYTE m_bDLC; // CAN data length code
 BYTE m_bData[8]; // CAN data
 DWORD m_dwTime; // Receipt time in ms

} tCanMsgStruct;

The CAN-frame format is a bit mask that specifies the format of the CAN-message. The
following table lists all valid values:

Constant Value Description
USBCAN_MSG_FF_STD 0x00 CAN2.0A message with 11-bit CAN-ID
USBCAN_MSG_FF_ECHO 0x20 transmit echo; Is only received if mode

kUcanModeTxEcho was enabled at
initialization time.

USBCAN_MSG_FF_RTR 0x40 CAN Remote Frame
USBCAN_MSG_FF_EXT 0x80 CAN2.0B message with 29-bit CAN-ID

Table 14: Constants for the CAN-frame format

USB-CANmodul

94  SYS TEC electronic GmbH 2010 L-487e_22

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_CANNOTINIT
USBCAN_ERR_ILLPARAM
USBCAN_ERR_ILLHW
USBCAN_ERR_ILLCHANNEL
USBCAN_WARN_NODATA
USBCAN_WARN_SYS_RXOVERRUN
USBCAN_WARN_DLL_RXOVERRUN
USBCAN_WARN_FW_RXOVERRUN

Example:

tUcanHandle UcanHandle;
tCabMsgStruct CanMsg;
UCANRET bRet;

...
while (1)
{
 // read CAN-message
 bRet = UcanReadCanMsg (UcanHandle, &CanMsg);

 // No error? Print CAN-message
 if (USBCAN_CHECK_VALID_RXCANMSG (bRet))
 {
 PrintCanMsg (&CanMsg);
 if (USBCAN_CHECK_WARNING (bRet))
 {
 PrintWarning (bRet);
 }
 }
 // No warning? Print error
 else if (USBCAN_CHECK_ERROR (bRet))
 {
 PrintError (bRet);
 break ;
 }
 else
 {
 break ;
 }
}
...

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 95

Note:

In order to avoid receive buffer overflows it is recommended to call function
UcanReadCanMsg() cyclically (e.g. in a loop) as long as a valid CAN-message was
received.

A valid CAN-message was read, even if a warning was returned (except
USBCAN_WARN_NODATA). You can use the macro
USBCAN_CHECK_VALID_RXCANMSG() for checking whether a valid CAN message
was stored to the CAN message structure (like shown in upper example).

The variable m_dwTime of structure tCanMsgStruct contains a time stamp of 32 bit but
only 24 bits are valid. The reason for this is that this time stamp is generated on the
hardware. For compatibility reasons, this is the same implementation for all sysWORXX
USB-CANmoduls. You have to keep this in mind if time differences are calculated by
using this time stamp. We recommend using the macro USBCAN_CALC_TIMEDIFF().

Example:

DWORD dwTimeDiff, dwOldTime;
...
 dwTimeDiff = USBCAN_CALC_TIMEDIFF (dwOldTime,
 CanMsg.m_dwTime);
 dwOldTime = CanMsg.m_dwTime;
...

USB-CANmodul

96  SYS TEC electronic GmbH 2010 L-487e_22

UcanReadCanMsgEx

Syntax:

UCANRET PUBLIC UcanReadCanMsgEx (
tUcanHandle UcanHandle_p,
BYTE* pbChannel_p
tCanMsgStruct* pCanMsg_p,
DWORD* pdwCount_p);

Usability:

CAN_INIT ,version 3.00 and higher

Description:

Reads a CAN message from the buffer of a specific CAN-channel. If the buffer contains
no CAN messages, this function returns a warning. If a buffer overrun occurred, this
function returns a valid CAN message and a warning. This function may be used
alternatively for function UcanReadCanMsg().

Parameter:

UcanHandle_p: USB CAN handle received with the function
UcanInitHardware() or UcanInitHardwareEx().

pCanMsg_p: Address to a CAN message structure. This address must not
be NULL.

bChannel_p: CAN-channel to read data from
USBCAN_CHANNEL_CH0 for CAN-channel 0
USBCAN_CHANNEL_CH1 for CAN-channel 1
If USBCAN_CHANNEL_ANY is given, the function will write
the number of the CAN-channel that received CAN
messages to this parameter

pdwCount_p: Address to a variable that specifies the maximum number of
CAN messages to be read. This function writes the actual
number of CAN messages that were read from the device to
this variable. If this parameter is set to NULL, only one CAN
message is read from the device.

The structure tCanMsgStruct is described in function UcanReadCanMsg().

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 97

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_CANNOTINIT
USBCAN_ERR_ILLPARAM
USBCAN_ERR_ILLHW
USBCAN_ERR_ILLCHANNEL
USBCAN_WARN_NODATA
USBCAN_WARN_SYS_RXOVERRUN
USBCAN_WARN_DLL_RXOVERRUN
USBCAN_WARN_FW_RXOVERRUN

Example:

tUcanHandle UcanHandle;
tCabMsgStruct RxCanMsg[16];
UCANRET bRet;
BYTE bChannel;
DWORD dwCount;

while (1)
{
 // read up to 16 CAN messages
 bChannel = USBCAN_CHANNEL_ANY;
 dwCount = sizeof (RxCanMsg) / sizeof (tCabMsgStruct);
 bRet = UcanReadCanMsgEx (UcanHandle, &bChannel,
 &RxCanMsg, &dwCount);

 // No error? print CAN-message
 if (USBCAN_CHECK_VALID_RXMSG (bRet))
 {
 PrintCanMessages (&RxCanMsg[0], dwCount);
 if (USBCAN_CHECK_WARNING (bRet))
 {
 PrintWarning (bRet);
 }
 }
 // No warning? Print error
 else if (USBCAN_CHECK_WARNING (bRet))
 {
 PrintError (bRet);
 break ;
 }
 else
 {
 break ;
 }
}
...

USB-CANmodul

98  SYS TEC electronic GmbH 2010 L-487e_22

Note:

In order to avoid receive buffer overflows it is recommended to call function
UcanReadCanMsg() cyclically (e.g. in a loop) as long as a valid CAN-message was
received.

A valid CAN-message was read, even if a warning was returned (except
USBCAN_WARN_NODATA). You can use the macro
USBCAN_CHECK_VALID_RXCANMSG() for checking whether a valid CAN message
was stored to the CAN message structure (like shown in upper example).

Since software version 3.05 the size of the receive buffer (maximum number of CAN
messages) is configurable (see function UcanInitCanEx() and structure
tUcanInitCanParam)

The variable m_dwTime of structure tCanMsgStruct contains a time stamp of 32 bit but
only 24 bits are valid. The reason for this is that this time stamp is generated on the
hardware. For compatibility reasons, this is the same implementation for all sysWORXX
USB-CANmoduls. You have to keep this in mind if time differences are calculated by
using this time stamp. We recommend using the macro USBCAN_CALC_TIMEDIFF().

Example:

DWORD dwTimeDiff, dwOldTime;
...
 dwTimeDiff = USBCAN_CALC_TIMEDIFF (dwOldTime,
 CanMsg.m_dwTime);
 dwOldTime = CanMsg.m_dwTime;
...

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 99

UcanWriteCanMsg

Syntax:

UCANRET PUBLIC UcanWriteCanMsg (
tUcanHandle UcanHandle_p,
tCanMsgStruct* pCanMsg_p);

Usability:

CAN_INIT

Description:

Transmits a CAN message through the USB-CANmodul.

Parameter:

UcanHandle_p: USB-CAN handle received with the function
UcanInitHardware() or UcanInitHardwareEx().

pCanMsg_p: Address to a CAN message structure. This address must not
be NULL.

typedef struct
{
 DWORD m_dwID; // CAN identifier
 BYTE m_bFF; // CAN frame format *)
 BYTE m_bDLC; // CAN data length code
 BYTE m_bData[8]; // CAN data
 DWORD m_dwTime; // has no meaning in this function

} tCanMsgStruct;

*) The meaning of CAN frame format is given with function UcanReadCanMsg(). For
transmission of CAN messages, bit USBCAN_MSG_FF_ECHO has no meaning.

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_CANNOTINIT
USBCAN_ERR_ILLPARAM
USBCAN_ERR_DLL_TXFULL
USBCAN_ERR_ILLHW
USBCAN_ERR_ILLCHANNEL
USBCAN_WARN_FW_TXOVERRUN

USB-CANmodul

100  SYS TEC electronic GmbH 2010 L-487e_22

UcanWriteCanMsgEx

Syntax:

UCANRET PUBLIC UcanWriteCanMsgEx (
tUcanHandle UcanHandle_p,
BYTE bChannel_p
tCanMsgStruct* pCanMsg_p
DWORD* pdwCount_p);

Usability:

CAN_INIT , version 3.00 and higher

Description:

Transmits one ore more CAN messages through the specified CAN-channel of the
USB-CANmodul. This function may be used alternatively for function UcanWriteCanMsg().

Parameter:

UcanHandle_p: USB CAN handle received with the function
UcanInitHardware() or UcanInitHardwareEx().

pCanMsg_p: Address to a CAN message structure. This address must not
be NULL.

bChannel_p: CAN-channel to read data from
USBCAN_CHANNEL_CH0 for CAN-channel 0
USBCAN_CHANNEL_CH1 for CAN-channel 1

pdwCount_p: Address to a variable that specifies the maximum number of
CAN messages to be transmitted. After calling, this function
writes the actual number of CAN messages that were sent to
this variable. If this parameter is set to NULL, only one CAN
message will be transmitted.

The structure tCanMsgStruct is described with function UcanWriteCanMsg().

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_CANNOTINIT
USBCAN_ERR_ILLPARAM
USBCAN_ERR_DLL_TXFULL
USBCAN_ERR_ILLHW
USBCAN_ERR_ILLCHANNEL
USBCAN_WARN_FW_TXOVERRUN
USBCAN_WARN_TXLIMIT

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 101

Note:

If this function is called for transmitting more than one CAN messages, then the return
code has also to be checked for the warning USBCAN_WARN_TXLIMIT. Receiving this
return value only a part of the CAN messages was stored to the transmit buffer in
USBCAN32.DLL. The variable which is referenced by the parameter pdwCount_p gets the
number of successfully stored CAN messages. The part which was not stored to the
transmit buffer has to be tried to be sent again by the application. Otherwise they will be
lost.

You can use the macro USBCAN_CHECK_TX_NOTALL() for checking the return value
whether some CAN messages could not be copied to the transmit buffer (see lower
example). The macro USBCAN_CHECK_TX_SUCCESS() checks whether all CAN
messages could be stored to the transmit buffer while the macro
USBCAN_CHECK_TX_OK() checks whether one CAN message at least was stored to
the transmit buffer.

Example:

tUcanHandle UcanHandle;
tCabMsgStruct TxCanMsg[10];
UCANRET bRet;
DWORD dwCount;

...
{
 // transmit up to 10 CAN messages
 dwCount = sizeof (TxCanMsg) / sizeof (tCabMsgStruct);
 bRet = UcanWriteCanMsgEx (UcanHandle, USBCAN_CH ANNEL_CH0,
 &TxCanMsg, &dwCount);

 // Check whether no error occurred
 if (USBCAN_CHECK_TX_OK (bRet))
 {
 // check whether a part of the array was no t sent
 if (USBCAN_CHECK_TX_NOTALL (bRet))
 {
 ...
 }
 // check whether there was another warning
 else if (USBCAN_CHECK_WARNING (bRet))
 {
 PrintWarning (bRet);
 }
 }
 // check wheher an error occurred
 else if (USBCAN_CHECK_ERROR (bRet))
 {
 PrintError (bRet);
 }
}
...

USB-CANmodul

102  SYS TEC electronic GmbH 2010 L-487e_22

UcanGetMsgPending

Syntax:

UCANRET PUBLIC UcanGetMsgPending (
tUcanHandle UcanHandle_p,
BYTE bChannel_p,
DWORD dwFlags_p,
DWORD* pdwCount_p);

Usability:

CAN_INIT , version 3.06 and higher, only sysWORXX modules

Description:

This function returns the number of the CAN messages which are currently stored to the
buffers within the several software parts. The parameter dwFlags_p specifies which
buffers should be checked. Should the function check more than one buffer, then the
number of CAN messages will be added before writing to the variable which is referenced
by the parameter pdwCount_p.

Parameter:

UcanHandle_p: USB CAN handle received with the function
UcanInitHardware() or UcanInitHardwareEx().

bChannel_p: CAN-channel to read data from
USBCAN_CHANNEL_CH0 for CAN-channel 0
USBCAN_CHANNEL_CH1 for CAN-channel 1

dwFlags_p: Specifies which buffers should be checked (refer to
Table 15). The several flags can be combined. In that case
the number of CAN messages will be added.

pdwCount_p: Address to a variable.
After calling this function writes the number of CAN
messages stored to the specified buffer(s) to this variable.
This parameter must not be NULL.

Constant
USBCAN_PENDING…

Value Meaning

..._FLAG_RX_DLL 0x00000001 Checks the number of messages of
receive buffer within USBCAN-libarary.

..._FLAG_RX_FW 0x00000004 Checks the number of messages of

receive buffer within module formware.
..._FLAG_TX_DLL 0x00000010 Checks the number of messages of

transmit buffer within USBCAN-library

..._FLAG_TX_FW 0x00000040 Checks the number of messages of

transmit buffer within module firmware.

Table 15: Constants for the flags parameter in function UcanGetMsgPending()

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 103

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_ILLPARAM
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHW
USBCAN_ERR_ILLHWTYPE
USBCAN_ERR_ILLCHANNEL
USBCAN_ERR_CANNOTINIT
USBCAN_ERRCMD_…

Note:

After function UcanGetMsgPending() returned to the application, the number of the CAN
messages can already be changed within the several software parts. When the
application calls this function to often, the performance can spiral downward.

USB-CANmodul

104  SYS TEC electronic GmbH 2010 L-487e_22

UcanGetCanErrorCounter

Syntax:

UCANRET PUBLIC UcanGetCanErrorCounter (
tUcanHandle UcanHandle_p,
BYTE bChannel_p,
DWORD * pdwTxCount_p,
DWORD* pdwRxCount_p);

Usability:

CAN_INIT , version 3.06 and higher, only sysWORXX modules

Description:

Returns the current error counters from CAN controller. This values are directly read from
the hardware.

Parameter:

UcanHandle_p: USB-CAN handle received with the function
UcanInitHardware() or UcanInitHardwareEx().

bChannel_p: CAN-channel to read data from
USBCAN_CHANNEL_CH0 for CAN-channel 0
USBCAN_CHANNEL_CH1 for CAN-channel 1

pdwTxCount_p: Address to a DWORD variable.
After calling this function writes the current state of the
transmit error counter to this variable. This parameter must
not be NULL.

pdwRxCount_p: Address to a DWORD variable.
After calling this function writes the current state of the
receive error counter to this variable. This parameter must
not be NULL.

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_ILLPARAM
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHW
USBCAN_ERR_ILLHWTYPE
USBCAN_ERR_ILLCHANNEL
USBCAN_ERR_CANNOTINIT
USBCAN_ERRCMD_…

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 105

2.3.2.2 Functions for automatic transmission

The following functions can only be used for the new sysWORXX modules (not for
GW-001 and GW-002). They are used to automatic transmission of cyclic CAN messages
by the module firmware. This results a better cycle time as a Windows PC application
could realize.

Note:

The accuracy of the cycle time also depends on the configured CAN baud rate. A jitter of
10 milliseconds is a result of using a CAN baud rate of 10 kbit per sec.

There is a maximum of 16 CAN messages which can be defined for the automatic
transmission of cyclic CAN messages. Two modes are available for the automatic
transmission. The first mode is called “parallel mode” the second one is called “sequential
mode”.

In parallel mode the cycle times of all defined CAN messages are checked within a
process cycle. When a cycle time of a defined CAN message is over it will be sent to the
CAN bus. The cycle time of a defined CAN message relates to the previous transmission
of the same CAN message (refer to Figure 18).

time

CAN message 1 CAN message 2

cycle time 1 cycle time 2

Figure 18: Examle for parallel mode with two defined CAN messages

In sequential mode the defined CAN messages are considered as a list of CAN messages
which should be sent sequentially to the CAN bus. The cycle time of a defined CAN
message relates to the transmission of the previously defined CAN message (refer to
XXX). You can define a CAN message including the same CAN identifier but different
data bytes more than once in sequential mode.

USB-CANmodul

106  SYS TEC electronic GmbH 2010 L-487e_22

time

CAN message 1 CAN message 2

cycle time 1 cycle time 2

Figure 19: Example of sequential mode with two defined CAN messages

Important:

The transmission of CAN messages by calling the function UcanWriteCanMsg() or
UcanWriteCanMsgEx() can be influenced by the automatic transmission of cyclic CAN
messages. When the CAN bus load is much increased (50% and more) the CAN
messages from application are processed more rarely. The result can be that the function
UcanWriteCanMsg() or UcanWriteCanMsgEx() returns the warning indicating a receive
overrun.

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 107

UcanDefineCyclicCanMsg

Syntax:

UCANRET PUBLIC UcanDefineCyclicCanMsg (
tUcanHandle UcanHandle_p,
BYTE bChannel_p,
tCanMsgStruct* pCanMsgList_p,
DWORD dwCount_p);

Usability:

HW_INIT, CAN_INIT, version 3.06 and higher, only sysWORXX modules

Description:

The function defines a set of up to 16 CAN messages within firmware of a
USB-CANmodul for the automatic transmission of cyclic CAN messages. Call function
UcanEnableCyclicCanMsg() for enabling the automatic transmission. Please note that
UcanDefineCyclicCanMsg() completely exchanges a previously defined set of CAN
messages.

Parameter:

UcanHandle_p: USB-CAN handle received with the function
UcanInitHardware() or UcanInitHardwareEx().

bChannel_p: CAN-channel to transmit to
USBCAN_CHANNEL_CH0 for CAN-channel 0
USBCAN_CHANNEL_CH1 for CAN-channel 1

pCanMsgList_p: Address to an array of type tCanMsgStruct containing a set
of CAN messages for automatic transmission. The member
m_dwTime of the structure tCanMsgStruct specifies the
cycle time. This parameter may only be NULL when
dwCount_p is zero too.

dwCount_p: Specifies the number of CAN messages included within the
array. The value range is 0 to 16. A previously defined set of
CAN messages will only be deleted by specifying the number
of 0 CAN messages.

Refer to the function UcanWriteCanMsg() for the definition of the structure tCanMsgStruct.

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_ILLPARAM
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHW
USBCAN_ERR_ILLHWTYPE
USBCAN_ERR_ILLCHANNEL
USBCAN_ERRCMD_…

USB-CANmodul

108  SYS TEC electronic GmbH 2010 L-487e_22

UcanReadCyclicCanMsg

Syntax:

UCANRET PUBLIC UcanReadCyclicCanMsg (
tUcanHandle UcanHandle_p,
BYTE bChannel_p,
tCanMsgStruct* pCanMsgList_p,
DWORD* pdwCount_p);

Usability:

HW_INIT, CAN_INIT, version 3.06 and higher, only sysWORXX modules

Description:

The function reads back the set of CAN messages which was previously defined for
automatic transmission of cyclic CAN messages.

Parameter:

UcanHandle_p: USB-CAN handle received with the function
UcanInitHardware() or UcanInitHardwareEx().

bChannel_p: CAN-channel to transmit to
USBCAN_CHANNEL_CH0 for CAN-channel 0
USBCAN_CHANNEL_CH1 for CAN-channel 1

pCanMsgList_p: Address to an array of type tCanMsgStruct receiving the set
of CAN messages for automatic transmission. This
parameter must not be NULL.

pdwCount_p: Address to a variable of type DWORD where the function
should copy to the number of defined CAN messages within
the set.

Refer to the function UcanWriteCanMsg() for the definition of the structure tCanMsgStruct.

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_ILLPARAM
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHW
USBCAN_ERR_ILLHWTYPE
USBCAN_ERR_ILLCHANNEL
USBCAN_ERRCMD_…

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 109

UcanEnableCyclicCanMsg

Syntax:

UCANRET PUBLIC UcanEnableCyclicCanMsg (
tUcanHandle UcanHandle_p,
BYTE bChannel_p,
DWORD dwFlags_p);

Usability:

HW_INIT, CAN_INIT, version 3.06 and higher, only sysWORXX modules

Description:

This function specifies the mode of the automatic transmission and specifies whether the
automatic transmission of a previous defined set of defined CAN messages should be
enabled or disabled. Additionally separate CAN messages of the set can be locked or
unlocked.

Parameter:

UcanHandle_p: USB-CAN handle received with the function
UcanInitHardware() or UcanInitHardwareEx().

bChannel_p: CAN-channel
USBCAN_CHANNEL_CH0 for CAN-channel 0
USBCAN_CHANNEL_CH1 for CAN-channel 1

dwFlags_p: Specifies flags containing the mode, the enable state and the
locking state (refer to Table 16). These flags can be
combined.

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_ILLPARAM
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHW
USBCAN_ERR_ILLHWTYPE
USBCAN_ERR_ILLCHANNEL
USBCAN_ERR_CANNOTINIT
USBCAN_ERRCMD_…

USB-CANmodul

110  SYS TEC electronic GmbH 2010 L-487e_22

Constant
USBCAN_CYCLE…

Value Meaning

..._FLAG_START 0x80000000 When this flag is set, the automatic
transmission will be started, otherwise
it will be stopped.

..._FLAG_SEQUMODE 0x40000000 When this flag is set, the “sequential
mode” is processed, otherwise the
“parallel mode” is processed.

..._FLAG_NOECHO 0x00010000 When this flag is set, the sent cyclic
CAN messages are not received back
using transmit echo.

..._FLAG_LOCK_0 until

..._FLAG_LOCK_15
0x00000001 -
0x00008000

When same of these flags are set,
the appropriate CAN message from
the set is not sent to the CAN bus
(locked state).

Table 16: Constants for the flags parameter in function UcanEnableCyclicCanMsg()

2.3.2.3 Functions for the CAN Port

The following functions can only be used with the GW-002-XXX, Multiport CAN-to-USB
and USB-CANmodul2 (not applicable for GW-001). They are an expansion for using the
USB-CANmodul with a low-speed CAN transceiver (e.g.: GW-002-010, GW-002-020,
GW-002-030). If these functions are used with the GW-001 variant, then the error code
USBCAN_ERRCMD_ILLCMD will be returned. Use of these functions with the GW-002
(82C251 high-speed CAN transceiver) or USB-CANmodul1 has no effect. However no
error message will be returned either. In order to be able to use these functions, the
header file USBCANLS.H must be included in addition to the USBCAN32.H header file.

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 111

UcanWriteCanPort

Syntax:

UCANRET PUBLIC UcanWriteCanPort (
tUcanHandle UcanHandle_p,
BYTE bValue_p);

Usability:

HW_INIT, CAN_INIT, version 2.15 or higher

Description:

Writes a value to the CAN port interface. Thus additional signals such as Standby (STB)
and Enable (EN) on a low-speed CAN transceiver can be controlled.

Parameter:

UcanHandle_p: USB-CAN handle received with the function
UcanInitHardware() or UcanInitHardwareEx().

bOutValue_p: New output value for the CAN port interface (see Table 17).

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_BUSY
USBCAN_ERR_IOFAILED
USBCAN_ERR_ILLHW
USBCAN_ERR_DATA
USBCAN_ERR_ABORT
USBCAN_ERR_DISCONNECT
USBCAN_ERR_TIMEOUT
USBCAN_ERRCMD_…

Note:

Following initialization of the USB-CANmodul with the function UcanInitCan(), these
signals are already set for immediate operation of the USB-CANmodul.

Since software version 3.00, the last saved output values are restored after power-on on
the sysWORXX modules.

USB-CANmodul

112  SYS TEC electronic GmbH 2010 L-487e_22

UcanWriteCanPortEx

Syntax:

UCANRET PUBLIC UcanWriteCanPortEx (
tUcanHandle UcanHandle_p,
BYTE bChannel_p,
BYTE bOutValue_p);

Usability:

HW_INIT, CAN_INIT , version 3.00 and higher

Description:

Writes a value to the CAN port interface. Thus additional signals such as Standby (STB)
and Enable (EN) on a low-speed CAN transceiver can be controlled. This function may be
used alternatively for function UcanWriteCanPort().

Parameter:

UcanHandle_p: USB-CAN handle received with the function
UcanInitHardware() or UcanInitHardwareEx().

bChannel_p: CAN-channel to read data from
USBCAN_CHANNEL_CH0 for CAN-channel 0
USBCAN_CHANNEL_CH1 for CAN-channel 1

bOutValue_p: New output value for the CAN port interface (see Table 17).

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_BUSY
USBCAN_ERR_IOFAILED
USBCAN_ERR_ILLHW
USBCAN_ERR_DATA
USBCAN_ERR_ABORT
USBCAN_ERR_DISCONNECT
USBCAN_ERR_TIMEOUT
USBCAN_ERRCMD_…

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 113

UcanReadCanPort

Syntax:

UCANRET PUBLIC UcanReadCanPort (
tUcanHandle UcanHandle_p,
BYTE* pbValue_p);

Usability:

HW_INIT, CAN_INIT, version 2.15 or higher

Description:

Reads the current input value from the CAN port interface. Thus the additional signal
(ERR for error) can be read on a low-speed CAN transceiver. It is also possible to read
the state/constant for the terminating resistor on devices with high-speed transceivers
(currently only supported for USB-CANmodul2).

Parameter:

UcanHandle_p: USB-CAN handle received with the function
UcanInitHardware() or UcanInitHardwareEx().

pbInValue_p: Address pointing to a variable that contains the read input
value following the successful return of this function. This
variable then has the following meanings (see also
section 1.4):

Constant Bit
value

Description

UCAN_CANPORT_TRM 0x10 [IN] termination resistor
UCAN_CANPORT_ERR 0x20 [IN] error signal of low speed CAN transceiver
UCAN_CANPORT_STB 0x40 [OUT] stand-by signal of low speed CAN

transceiver
UCAN_CANPORT_EN 0x80 [OUT] enable signal of low speed CAN

transceiver

Table 17: Constants for low speed CAN port

USB-CANmodul

114  SYS TEC electronic GmbH 2010 L-487e_22

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_BUSY
USBCAN_ERR_IOFAILED
USBCAN_ERR_ILLHW
USBCAN_ERR_ILLPARAM
USBCAN_ERR_DATA
USBCAN_ERR_ABORT
USBCAN_ERR_DISCONNECT
USBCAN_ERR_TIMEOUT
USBCAN_ERRCMD_…

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 115

UcanReadCanPortEx

Syntax:

UCANRET PUBLIC UcanReadCanPortEx (
tUcanHandle UcanHandle_p,
BYTE bChannel_p
BYTE* pbInValue_p,
BYTE* pbLastOut_p);

Usability:

HW_INIT, CAN_INIT , version 3.00 or higher

Description:

Reads the current input value from the specified CAN-channel. This function may be used
alternatively for function UcanReadCanPort().

Parameter:

UcanHandle_p: USB CAN handle received with the function
UcanInitHardware() or UcanInitHardwareEx().

bChannel_p: CAN-channel to read data from
USBCAN_CHANNEL_CH0 for CAN-channel 0
USBCAN_CHANNEL_CH1 for CAN-channel 1

pbInValue_p: Address pointing to a variable that contains the read input
value following the successful return of this function (see
Table 17).

pbLastOut_p: Address pointing to a variable that contains the last written
output value (using UcanWriteCanPort() or
UcanWRiteCanPortEx()) following the successful return of
this function. This parameter may be NULL.

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_BUSY
USBCAN_ERR_IOFAILED
USBCAN_ERR_ILLHW
USBCAN_ERR_ILLPARAM
USBCAN_ERR_DATA
USBCAN_ERR_ABORT
USBCAN_ERR_DISCONNECT
USBCAN_ERR_TIMEOUT
USBCAN_ERRCMD_…

USB-CANmodul

116  SYS TEC electronic GmbH 2010 L-487e_22

2.3.2.4 Functions for the Expansion Port

The following functions can only be used with the GW-002-XXX, Multiport CAN-to-USB
3004006 and USB-CANmodul2 3204002/3204003. They are an expansion for the use of
the USB-CANmodul with the expansion port. If these functions are used with the GW-001,
then the error code USBCAN_ERRCMD_ILLCMD will be returned. In order to use these
functions, the file USBCANUP.H must be included in addition to the USBCAN32.H header
file.

Note:

These functions are also applicable to for USB-CANmodul1. But as the USB-CANmodul1
does not feature an Expansion Port, these functions are ignored and the functions return
with error code USBCAN_SUCCESSFUL.

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 117

UcanConfigUserPort

Syntax:

UCANRET PUBLIC UcanConfigUserPort (
tUcanHandle UcanHandle_p,
BYTE bOutEn_p);

Usability:

HW_INIT, CAN_INIT, version 2.16 or higher

Description:

Configures the expansion port (refer to section 1.5). Each individual pin of the 8-bit port
can be used as an input or an output. The logical value 0 of a bit in the parameter
bOutputEnable_p defines the corresponding pin on the expansion port to function as an
input and a logical 1 defines it as an output.

Parameter:

UcanHandle_p: USB-CAN handle received with the function
UcanInitHardware() or UcanInitHardwareEx().

bOutEn_p: Configuring the 8-bit port as input or output.
Bit X = 0: Pin X = input
Bit Y = 1: PinY = output

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_BUSY
USBCAN_ERR_IOFAILED
USBCAN_ERR_ILLHW
USBCAN_ERR_DATA
USBCAN_ERR_ABORT
USBCAN_ERR_DISCONNECT
USBCAN_ERR_TIMEOUT
USBCAN_ERRCMD_…

Note:

After connecting the USB-CANmodul to the PC all expansion port pins are configured as
inputs.

Since software version 3.00, the last saved configuration is restored after power-on on sys
WORXX modules.

USB-CANmodul

118  SYS TEC electronic GmbH 2010 L-487e_22

UcanWriteUserPort

Syntax:

UCANRET PUBLIC UcanWriteUserPort (
tUcanHandle UcanHandle_p,
BYTE bOutValue_p);

Usability:

HW_INIT, CAN_INIT, version 2.16 or higher

Description:

Writes a value to the expansion port. In order to write to output lines, the corresponding
bits resp. port pins must be configured as outputs using the UcanConfigUserPort()
function.

Parameter:

UcanHandle_p: USB-CAN handle received with the function
UcanInitHardware() or UcanInitHardwareEx().

bOutValue_p: New output value for the expansion port outputs. Each bit in
this parameter corresponds to matching pin on the
expansion port.

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_BUSY
USBCAN_ERR_IOFAILED
USBCAN_ERR_ILLHW
USBCAN_ERR_DATA
USBCAN_ERR_ABORT
USBCAN_ERR_DISCONNECT
USBCAN_ERR_TIMEOUT
USBCAN_ERRCMD_…

Note:

For GW-002 the supply voltage for the expansion port (pin 10, refer to Table 6) is
connected only after the function UcanInitCan() is called. After the USB-CANmodul has
been connected to the PC, all expansion port pins are configured as inputs. No time
critical switching procedures can be performed with this function using the expansion port,
since the reaction time is influenced by multiple factors.

Since software version 3.00, the last saved configuration of the outputs is restored after
power-on on sysWORXX modules.

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 119

UcanReadUserPort

Syntax:

UCANRET PUBLIC UcanReadUserPort (
tUcanHandle UcanHandle_p,
BYTE* pbInValue_p);

Usability:

HW_INIT, CAN_INIT, version 2.16 or higher

Description:

Reads the current input value from the expansion port.

Parameter:

UcanHandle_p: USB-CAN handle received with the function
UcanInitHardware() or UcanInitHardwareEx().

pbInValue_p: Address pointing to a variable that contains the read input
value following the successful return of this function. This
variable then contains the state of the 8-bit expansion port.
Each bit in this parameter corresponds to matching pin on
the expansion port.

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_BUSY
USBCAN_ERR_IOFAILED
USBCAN_ERR_ILLHW
USBCAN_ERR_ILLPARAM
USBCAN_ERR_DATA
USBCAN_ERR_ABORT
USBCAN_ERR_DISCONNECT
USBCAN_ERR_TIMEOUT
USBCAN_ERRCMD_…

Note:

After the USB-CANmodul has been connected to the PC, all expansion port pins are
configured as inputs (except sysWORXX modules, see above). This function can also be
used to read back the states of ports configured as outputs.

USB-CANmodul

120  SYS TEC electronic GmbH 2010 L-487e_22

UcanReadUserPortEx

Syntax:

UCANRET PUBLIC UcanReadUserPortEx (
tUcanHandle UcanHandle_p,
BYTE* pbInValue_p,
BYTE* pbLastOutEn_p,
BYTE* pbLastOutVal_p);

Usability:

HW_INIT, CAN_INIT , version 3.00 and higher

Description:

Reads the current input value from the expansion port. This function may be used
alternatively for function UcanReadUserPort().

Parameter:

UcanHandle_p: USB-CAN handle received with the function
UcanInitHardware() or UcanInitHardwareEx().

pbInValue_p: Address pointing to a variable that contains the read input
value following the successful return of this function. This
variable then contains the state of the 8-bit expansion port.
Each bit in this parameter corresponds to matching pin on
the expansion port.

pbLastOutEn_p: Address pointing to a variable that contains the configuration
data following the successful return of this function
(configuration that was previously done with
UcanConfigUserPort()). This parameter may be NULL.

pbLastOutVal_p: Address pointing to a variable that contains the last output
value following the successful return of this function. (output
value that was written with UcanWriteUserPort()).This
parameter may be NULL.

Return value: Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_BUSY
USBCAN_ERR_IOFAILED
USBCAN_ERR_ILLHW
USBCAN_ERR_ILLPARAM
USBCAN_ERR_DATA
USBCAN_ERR_ABORT
USBCAN_ERR_DISCONNECT
USBCAN_ERR_TIMEOUT
USBCAN_ERRCMD_…

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 121

2.3.3 Error Codes of the Functions

The functions of the USBCAN-library return an error code with the type of UCANRET.
Each return value represents an error. The only exception is the function
UcanReadCanMsg() which can also return warnings. The warning
USBCAN_WARN_NODATA indicates that no CAN messages are in the buffer. Other
warnings show the calling function that an event has occurred but a valid CAN message is
transferred.

All possible return codes for the functions of the USBCAN-library are listed below:

USBCAN_SUCCESSFUL

Value: 0x00

Description:

This message returns if the function is executed successfully.

USBCAN_ERR_RESOURCE

Value: 0x01

Description:

This error message returns if one resource could not be generated. In this case the
term resource means memory and handles provided by Windows.

USBCAN_ERR_MAXMODULES

Value: 0x02

Description:

An application has tried to open more than 64 USB-CANmoduls. The standard
version of the USBCAN-library only supports up to 64 USB-CANmoduls at the
same time (under Windows CE only 9). This error also appears if several
applications try to access more than 64 USB-CANmoduls. For example, application
1 has opened 60 modules, application 2 has opened 4 modules and application 3
wants to open a module. Application 3 receives this error message.

USBCAN_ERR_HWINUSE

Value: 0x03

Description:

An application tries to initialize a USB-CANmodul with the device number x. If this
module has already been initialized by its own or by another application, this error
message is returned.

USB-CANmodul

122  SYS TEC electronic GmbH 2010 L-487e_22

USBCAN_ERR_ILLVERSION

Value: 0x04

Description:

This error message returns if the firmware version of the USB-CANmodul is not
compatible to the software version of the USBCAN-library. In this case, install the
USB-CAN driver again.

USBCAN_ERR_ILLHW

Value: 0x05

Description:

This error message returns if a USB-CANmodul with the device number x is not
found. If the function UcanInitHardware() or UcanInitHardwareEx() has been called
with the device number USBCAN_ANY_MODULE, and the error code appears, it
indicates that no module is connected to the PC or all connected modules are
already in use.

USBCAN_ERR_ILLHANDLE

Value: 0x06

Description:

This error message returns if a function received an incorrect USB-CAN handle.
The function first checks which USB-CANmodul is initialized to this handle. This
error occurs if no module has been initialized to this handle.

USBCAN_ERR_ILLPARAM

Value: 0x07

Description:

This error message returns if a wrong parameter is transferred to this function. For
example, the value NULL has been handed over to a pointer variable instead of a
valid address.

USBCAN_ERR_BUSY

Value: 0x08

Description:

This error message can occur if several threads are accessing a USB-CANmodul
within a single application. After the other threads have finished their tasks, the
function may be called again.

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 123

USBCAN_ERR_TIMEOUT

Value: 0x09

Description:

This error message occurs if the function transmits a command to the
USB-CANmodul but no answer is returned. To solve this problem, close the
application, disconnect the USB-CANmodul, and connect it again.

USBCAN_ERR_IOFAILED

Value: 0x0A

Description:

This error message occurs if the communication to the USB-CAN driver was
interrupted. This happens, for example, if the USB-CANmodul is disconnected
during the execution of a function.

USBCAN_ERR_DLL_TXFULL

Value: 0x0B

Description:

The function UcanWriteCanMsg() or UcanWriteCanMsgEx() first checks if the
transmit buffer within the USBCAN-library has enough capacity to store new CAN
messages. If the buffer is full, this error message returns. The CAN message
transferred to the function UcanWriteCanMsg() or UcanWriteCanMsgEx() will not
be written into the transmission buffer in order to protect other CAN messages from
overwriting. Since software driver version 3.05 the size of the transmit buffer is
configurable (see function UcanInitCanEx() and Struktur tUcanInitCanParam)

USBCAN_ERR_MAXINSTANCES

Value: 0x0C

Description:

In this software version, a maximum amount of 64 applications are able to have
access to the USBCAN-library (under Windows CE only 9). If more applications
attempt access to the DLL, this error message will occur. In this case, it is not
possible to initialize a USB-CANmodul.

USBCAN_ERR_CANNOTINIT

Value: 0x0D

Description:

If a USB-CANmodul is initialized with the function UcanInitHardware() or
UcanInitHardwareEx(), the software changes into the state HW_INIT. Functions like
UcanReadCanMsg() or UcanWriteCanMsg() return this error message while in
HW_INIT state. With the function UcanInitCan(), the software changes into
CAN_INIT state. In this state, it is possible to read and transmit CAN messages.

USB-CANmodul

124  SYS TEC electronic GmbH 2010 L-487e_22

USBCAN_ERR_DISCONNECT

Value: 0x0E

Description:

This error code occurs if a function from USBCAN-library was called for a
USB-CANmodul that was plugged-off from the computer recently.

USBCAN_ERR_NOHWCLASS

Value: 0x0F

Description:

This error code is deprecated and is not used any more.

USBCAN_ERR_ILLCHANNEL

Value: 0x10

Description:

This error code is returned if an extended function of the USBCAN-library was
called with parameter bChannel_p = USBCAN_CHANNEL_CH1, but
USB-CANmodul GW-001, GW-002 or USB-CANmodul1 was used.

USBCAN_ERR_ILLHWTYPE

Value: 0x12

Description:

This error code occurs if an extended function of the USBCAN-library was called for
a Hardware which does not support the feature.

USBCAN_ERRCMD_NOTEQU

Value: 0x40

Description:

This error code occurs during communication between the PC and a
USB-CANmodul. The PC sends a command to the USB-CANmodul, then the
module executes the command and returns a response to the PC. This error
message returns if the answer does not correspond to the command.

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 125

USBCAN_ERRCMD_REGTST

Value: 0x41

Description:

The software tests the CAN controller on the USB-CANmodul when the CAN
interface is initialized. Several registers of the CAN controller are checked. This
error message returns if an error appears during this register test.

USBCAN_ERRCMD_ILLCMD

Value: 0x42

Description:

This error message returns if the USB-CANmodul receives a non-defined
command. This error shows a version conflict between the firmware in the
USB-CANmodul and the USBCAN-library.

USBCAN_ERRCMD_EEPROM

Value: 0x43

Description:

The USB-CANmodul has a serial EEPROM. This EEPROM contains the device
number and the serial number. If an error occurs while reading these values, this
error message is returned.

USBCAN_ERRCMD_ILLBDR

Value: 0x47

Description:

The Multiport CAN-to-USB 3004006, USB-CAnmodul1 3204000/3204001 or
USB-CANmodul2 3204002/3204003 has been initialized with an invalid baud rate
(BTR0 und BTR1).

USBCAN_ERRCMD_NOTINIT

Value: 0x48

Description:

It was tried to access a CAN-channel of Multiport CAN-to-USB 3004006 or
USB-CANmodul2 3204002/3204003 that was not initialized.

USBCAN_ERRCMD_ALREADYINIT

Value: 0x49

Description:

The accessed CAN-channel of Multiport CAN-to-USB 3004006 or USB-CANmodul2
3204002/3204003 was already initialized.

USB-CANmodul

126  SYS TEC electronic GmbH 2010 L-487e_22

USBCAN_ERRCMD_ILLSUBCMD

Value: 0x4A

Description:

An internal error occurred in USBCAN Library. In this case an unknown sub-
command was called instead of a main command (e.g for the cyclic CAN message-
feature).

USBCAN_ERRCMD_ILLIDX

Value: 0x4B

Description:

An internal error occurred in USBCAN Library. In this case an invalid index for a list
was delivered to the firmware (e.g. for the cyclic CAN message-feature).

USBCAN_ERRCMD_RUNNING

Value: 0x4C

Description:

The caller tries to define a new list of cyclic CAN messages but this feature was
already started. For defining a new list, it is necessary to switch off the feature
beforehand.

USBCAN_WARN_NODATA

Value: 0x80

Description:

If the function UcanReadCanMsg() returns with this warning, it is an indication that
the receive buffer contains no CAN messages.

USBCAN_WARN_SYS_RXOVERRUN

Value: 0x81

Description:

If an overrun in the receive buffer on the USB-CAN system driver occurred, the
USBCAN-library is informed about this event. The function UcanReadCanMsg()
returns this warning and a valid CAN message. The warning indicates that CAN
messages are lost. However, it does not indicate the position of the lost CAN
messages.

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 127

USBCAN_WARN_DLL_RXOVERRUN

Value: 0x82

Description:

The USBCAN-library automatically requests CAN messages from the
USB-CANmodul and stores the messages into a buffer of the DLL. If more CAN
messages are received than the DLL buffer size allows, this error message returns
and CAN messages are lost. However, it does not indicate the position of the lost
CAN messages.

Since software driver version 3.05 the size of the receive buffer is configurable (see
function UcanInitCanEx() and structure tUcanInitCanParam)

USBCAN_WARN_FW_TXOVERRUN

Value: 0x85

Description:

This warning is returned by function UcanWriteCanMsg() and/or
UcanWriteCanMsgEx() if flag USBCAN_CANERR_QXMTFULL is set in the CAN
driver status. However, the transmit CAN message could be stored to the DLL
transmit buffer. This warning indicates that at least one transmit CAN message got
lost in the device firmware layer. This warning does not indicate the position of the
lost CAN message.

USBCAN_WARN_FW_RXOVERRUN

Value: 0x86

Description:

This warning is returned by function UcanWriteCanMsg() and/or
UcanWriteCanMsgEx() if flag USBCAN_CANERR_QOVERRUN or flag
USBCAN_CANERR_OVERRUN are set in the CAN driver status. The function has
returned with a valid CAN message. This warning indicates that at least one
reveived CAN message got lost in the firmware layer. This warning does not
indicate the position of the lost CAN message.

USBCAN_WARN_NULL_PTR

Value: 0x90

Description:

This warning message is returned by functions: UcanInitHwConnectControl() and/or
UcanInitHwConnectControlEx() if a NULL pointer was passed as callback function
address.

USB-CANmodul

128  SYS TEC electronic GmbH 2010 L-487e_22

USBCAN_WARN_TXLIMIT

Value: 0x91

Description:

This warning message is returned by the function UcanWriteCanMsgEx() if it was
called to transmit more than one CAN message, but a part of them could not be
stored to the transmit buffer within USBCAN-library (because the buffer is full). The
parameter pdwCount_p includes the number of CAN messages which could be
stored successfully to the transmit buffer.

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 129

2.3.4 Baud Rate Configuration

The baud rate configuration for USB-CANmodul GW-001 and GW-002 is transferred to
the function UcanInitCan() and UcanInitCanEx2() as parameter bBTR0_p and bBTR1_p.
The configuration can also be changed later by calling the function UcanSetBaudrate()
resp. UcanSetBaudrateEx(). The following values are recommended:

USBCAN_BAUD_10kBit: 0x672f // CAN baud rate 10 kBit/sec
USBCAN_BAUD_20kBit: 0x532f // CAN baud rate 20 kBit/sec
USBCAN_BAUD_50kBit: 0x472f // CAN baud rate 50 kBit/sec
USBCAN_BAUD_100kBit: 0x432f // CAN baud rate 100 kBit/sec
USBCAN_BAUD_125kBit: 0x031c // CAN baud rate 125 kBit/sec
USBCAN_BAUD_250kBit: 0x011c // CAN baud rate 250 kBit/sec
USBCAN_BAUD_500kBit: 0x001c // CAN baud rate 500 kBit/sec
USBCAN_BAUD_800kBit: 0x0016 // CAN baud rate 800 kBit/sec
USBCAN_BAUD_1MBit: 0x0014 // CAN baud rate 1 MBit/sec

Example:

tUcanHandle UcanHandle;
UCANRET bRet;

...
// initializes the hardware
bRet = UcanInitHardware (&UcanHandle, 0, NULL);
...

// initializes the CAN interface
bRet = UcanInitCan (UcanHandle,
 HIBYTE (USBCAN_BAUD_1MBit), // BTR0 for 1MBit/s
 LOBYTE (USBCAN_BAUD_1MBit), // BTR1 for 1MBit/s
 0xFFFFFFFF, // AMR: all messages received
 0x00000000); // ACR

// Error? print error
if (bRet != USBCAN_SUCCESSFUL)
 PrintError (bRet);
...

Configuration of other baud rates is also possible. The structure of the BTR0 and BTR1
registers is described below. Refer to the SJA1000 Data Sheet for detailed description.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
SJW BPR

Figure 20: Structure of baud rate register BTR0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
SAM TSEG2 TSEG1

Figure 21: Structure of baud rate register BTR1

USB-CANmodul

130  SYS TEC electronic GmbH 2010 L-487e_22

BPR: Baudrate Prescaler specifies the ratio between system clock of the SJA1000
and the bus clock on the CAN-bus.

SJW: Synchronization Jump Width specifies the compensation of the phase-shift
between the system clock and the different CAN-controllers connected to the
CAN-bus.

SAM: Sampling specifies the number of sample points used for reading the bits on
the CAN-bus. If SAM=1 three sample points are used, otherwise only one
sample point is used.

TSEG: Time Segment specifies the number of clock cycles of one bit on the CAN-
bus as well as the position of the sample points.

Figure 22: General structure of a single bit on the CAN-bus (source: SJA1000 manual)

The following mathematical connections apply:

tCLK = 1 / 16MHz (system clock)
tscl = 2 * tCLK * (BRP + 1) (bus clock)
tSYNCSEG = 1 * tscl
tTSEG1 = tscl * (TSEG1 + 1)
tTSEG2 = tscl * (TSEG2 + 1)
tBit = tSYNCSEG + tTSEG1 + tTSEG2 (time of one Bit on the CAN-bus)

Example for 125 kBit/s (TSEG1 = 1, TSEG2 = 12, BPR = 3):

tscl = 2 * tCLK * 4 = 500 ns
tSYNCSEG = 1 * tscl = 500 ns
tTSEG1 = tscl * 2 = 1000 ns
tTSEG2 = tscl * 13 = 6500 ns
tBit = tSYNCSEG + tTSEG1 + tTSEG2 = 8000 ns
1 / tBit = 125 kBit/sec

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 131

Note:

The configuration of the baud rate differs significantly between the older USB-CANmodul
versions (GW-001 and GW-002) and the new sysWORXX modules. For standardized
baud rate values (see section 2.3.4), the baud rate registers BTR0 and BTR1 are as well
applicable for the new sysWORXX modules. Therefore set m_dwBaudrate to
USBCAN_BAUDEX_USE_BTR01.

The following default values are available for sysWORXX modules:

USBCAN_BAUDEX_1MBit 0x00020354 // CAN baud rate 1 MBit/sec
USBCAN_BAUDEX_800kBit 0x00030254 // CAN baud rate 800 kBit/sec
USBCAN_BAUDEX_500kBit 0x00050354 // CAN baud rate 500 kBit/sec
USBCAN_BAUDEX_250kBit 0x000B0354 // CAN baud rate 250 kBit/sec
USBCAN_BAUDEX_125kBit 0x00170354 // CAN baud rate 125 kBit/sec
USBCAN_BAUDEX_100kBit 0x00171466 // CAN baud rate 100 kBit/sec
USBCAN_BAUDEX_50kBit 0x002F1466 // CAN baud rate 50 kBit/sec
USBCAN_BAUDEX_20kBit 0x00771466 // CAN baud rate 20 kBit/sec
USBCAN_BAUDEX_10kBit 0x80771466 // CAN-baud rate 10 kBit/sec

The following values have a sample point between 85 and 90%:

USBCAN_BAUDEX_SP2_1MBit 0x00020741 // CAN-Baudrate 1 MBit/sec
USBCAN_BAUDEX_SP2_800kBit 0x00030731 // CAN-Baudrate 800 kBit/sec
USBCAN_BAUDEX_SP2_500kBit 0x00050741 // CAN-Baudrate 500 kBit/sec
USBCAN_BAUDEX_SP2_250kBit 0x000B0741 // CAN-Baudrate 250 kBit/sec
USBCAN_BAUDEX_SP2_125kBit 0x00170741 // CAN-Baudrate 125 kBit/sec
USBCAN_BAUDEX_SP2_100kBit 0x001D1741 // CAN-Baudrate 100 kBit/sec
USBCAN_BAUDEX_SP2_50kBit 0x003B1741 // CAN-Baudrate 50 kBit/sec
USBCAN_BAUDEX_SP2_20kBit 0x00771772 // CAN-Baudrate 20 kBit/sec
USBCAN_BAUDEX_SP2_10kBit 0x80771772 // CAN-Baudrate 10 kBit/sec

Configuration of baud rates other than the values given above is possible. The register
structure for extended baud rate configuration is given below.

Bit 31 30 29 28 27 26 25 24
CLK - SMP
23 22 21 20 19 18 17 16
- BPR

15 14 13 12 11 10 9 8
- SYNC - PROPAG

7 6 5 4 3 2 1 Bit 0
- PHASE1 - PHASE2

Figure 23: Format of the extended baud rate register for Multiport and
USB-CANmodul1/2

USB-CANmodul

132  SYS TEC electronic GmbH 2010 L-487e_22

BPR: Baudrate Prescaler specifies the ration between system clock of the
microcontroller and the bus clock on CAN-bus.

SYNC: Synchronization Jump Width specifies the compensation of phase shift
between the system clock and the different CAN controllers connected to
the CAN-bus.

SAM: Sampling specifies the number of sample points used for reading the bits
on the CAN-bus. If SAM=1 three sample points are used, otherwise only
one sample point is used.

PROPAG: Programming Time Segment specifies the compensation of the physical
delay time on the CAN-bus.

PHASE: Time Segment specifies the number of clock cycles of one bit on the
CAN-bus as well as the position of the sample points.

CLK: Clock specifies the frequency of the microcontroller. If set to 0, then the
microcontroller runs with 48 MHz clock cycle internally, otherwise with
24 MHz. This influences the CAN-bus baud rate (see system clock tMCK in
the example below)

Figure 24: Generic structure of one bit on the CAN-bus (source: Atmel AT91SAM7A3
manual)

The following mathematical connections apply:

tMCK0 = 1 / 48MHz (system clock CLK=0)
tMCK1 = 1 / 24MHz (system clock CLK=1)
tCSC = tMCKx * (BRP + 1) (bus clock)
tSYNCSEG = 1 * tCSC
tPRS = tCSC * (PROPAG + 1)
tPHS1 = tCSC * (PHASE1 + 1)
tPHS2 = tCSC * (PHASE2 + 1)
tBit = tSYNCSEG + tPRS + tPHS1 + tPHS2 (time of one bit on CAN-bus)

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 133

Example for 125 kBit/s (PROPAG = 3, PHASE1 = 5, PHASE2 = 4, BPR = 23, CLK=0):

tCSC = tMCK0 * 24 = 500 ns
tSYNCSEG = 1 * tscl = 500 ns
tPRS = tCSC * 4 = 2000 ns
tPHS1 = tCSC * 6 = 3000 ns
tPHS2 = tCSC * 5 = 2500 ns
tBit = tSYNCSEG + tPRS + tPHS1 + tPHS2 = 8000 ns
1 / tBit = 125 kBit/sec

Note:

For compatibility reasons, constant USBCAN_BAUDEX_USE_BTR01 was defined. If this
constant is used for baud rate configuration of sysWORXX modules, the BTR0 and BTR1
registers become available for configuration. In this case, only the baud rates given in this
manual are available. Configuration of user-specific baud rates is not possible (error code
USBCAN_ERRCMD_ILLBDR)

Example 1:

tUcanHandle UcanHandle;
UCANRET bRet;
tUcanInitCanParam InitParam;

...

// preset init parameters
memset (&InitParam, 0, sizeof (InitParam));
InitParam.m_dwSize = sizeof (InitParam);
InitParam.m_bMode = kUcanModeNormal;
InitParam.m_bBTR0 = HIBYTE (USBCAN_BAUD_1MBit);
InitParam.m_bBTR1 = LOBYTE (USBCAN_BAUD_1MBit);
InitParam.m_bOCR = USBCAN_OCR_DEFAULT;
InitParam.m_dwAMR = USBCAN_AMR_ALL;
InitParam.m_dwACR = USBCAN_ACR_ALL;
InitParam.m_dwBaudrate = USBCAN_BAUDEX_USE_BTR01;
InitParam.m_wNrOfRxBufferEntries = USBCAN_DEFAULT_B UFFER_ENTRIES;
InitParam.m_wNrOfTxBufferEntries = USBCAN_DEFAULT_B UFFER_ENTRIES;

// initialize CAN-channel
bRet = UcanInitCanEx2 (UcanHandle, USBCAN_CHANNEL_C H0,
 &InitParam);
...

USB-CANmodul

134  SYS TEC electronic GmbH 2010 L-487e_22

Example 2:

tUcanHandle UcanHandle;
UCANRET bRet;
tUcanInitCanParam InitParam;

...

// preset init parameters
memset (&InitParam, 0, sizeof (InitParam));
InitParam.m_dwSize = sizeof (InitParam);
InitParam.m_bMode = kUcanModeNormal;
InitParam.m_bBTR0 = HIBYTE (USBCAN_BAUD_USE_B TREX);
InitParam.m_bBTR1 = LOBYTE (USBCAN_BAUD_USE_B TREX);
InitParam.m_bOCR = USBCAN_OCR_DEFAULT;
InitParam.m_dwAMR = USBCAN_AMR_ALL;
InitParam.m_dwACR = USBCAN_ACR_ALL;
InitParam.m_dwBaudrate = USBCAN_BAUDEX_SP2_125kBit ;
InitParam.m_wNrOfRxBufferEntries = USBCAN_DEFAULT_B UFFER_ENTRIES;
InitParam.m_wNrOfTxBufferEntries = USBCAN_DEFAULT_B UFFER_ENTRIES;

// initialize CAN-channel
bRet = UcanInitCanEx2 (UcanHandle, USBCAN_CHANNEL_C H0,
 &InitParam);
...

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 135

2.3.5 CAN Messages Filter Function

It is possible to filter the received CAN messages. The SJA1000 CAN controller
automatically filters messages in PeliCAN mode (Single-Filter-Mode).

The configurations of the filter are transferred to the function UcanInitCan() as parameter
dwAMR_p and dwACR_p. It is also possible to change these values later after calling the
function UcanInitCan() with the function UcanSetAcceptance().

The following mechanism is used for filtration:

AMR Bit ACR Bit Bit of the CAN ID
0 0 0
0 1 1
1 0 x
1 1 x

0 The corresponding bit of the CAN identifier has to be 0.
1 The corresponding bit of the CAN identifier has to be 1.
x The corresponding bit of the CAN identifier can be either 0 or 1.

These bits correspond to:

a) Standard frame (11-bit identifier) for GW-001/GW-002 as well as sysWORXX
modules since firmware version 3.10:

dwACR_p
31 30 ... 21 20 19 ... 16 15 14 ... 8 7 6 ... 0

⇓
dwAMR_p

31 30 ... 21 20 19 ... 16 15 14 ... 8 7 6 ... 0
⇓

CAN Identifier Data Byte 0 Data Byte 1

10 9 ... 0
R
T
R

free 7 6 ... 0 7 6 ... 0

b) Extended frame (29-bit identifier) for GW-001/GW-002 as well as sysWORXX
modules since firmware version 3.10:

USB-CANmodul

136  SYS TEC electronic GmbH 2010 L-487e_22

dwACR_p
31 30 ... 3 2 1 0

⇓
dwAMR_p

31 30 ... 3 2 1 0
⇓

CAN Identifier

28 27 ... 0
R
T
R

free

c) Standard-Frame (11-Bit-Identifier) for all sysWORXX modules until firmware version
3.09:

dwACR_p
31 30 ... 21 20 19 ... 16 15 14 ... 8 7 6 ... 0

⇓
dwAMR_p

31 30 ... 21 20 19 ... 16 15 14 ... 8 7 6 ... 0
⇓

CAN-Identifier
10 9 ... 0 Not in use

d) Extended-Frame (29-Bit-Identifier) for all sysWORXX modules until firmware version
3.09:

dwACR_p
31 30 ... 3 2 1 0

⇓
dwAMR_p

31 30 ... 3 2 1 0
⇓

CAN-Identifier
28 27 ... 0 Not in use

The macros USBCAN_SET_AMR(extended, can_id, rtr) and
USBCAN_SET_AMR(extended,can_id, rtr) as well as
USBCAN_CALCULATE_AMR(extended, from_id, to_id, rtr_only, rtr_too) und
USBCAN_CALCULATE_ACR(extended, from_id, to_id, rtr_only, rtr_too) can be used to
calculate the filter values.

The parameter extended indicates if the parameters can_id, from_id and to_id specify a
29-bit message (TRUE) or an 11-bit message (FALSE). The parameter can_id shows the
filter value as CAN identifier. The parameters from_id and to_id specify the filter range for
CAN-identifiers. The parameters rtr, rtr_only and rtr_too can be used to filter RTR frames.
These parameters can be TRUE (=1) or FALSE (=0). If the parameter rtr_only is TRUE,
then only RTR Frames are received and parameter rtr_too is ignored. Otherwise also
RTR Frames are received, if rtr_too is set to TRUE.

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 137

Example 1:

tUcanHandle UcanHandle;
UCANRET bRet;

...
// initializes the hardware
bRet = UcanInitHardware (&UcanHandle, 0, NULL);
...

// initializes the CAN interface
// filters 11-bit CAN messages with ID 0x300 to 0x3 ff,
// RTR unimportant
bRet = UcanInitCan (UcanHandle,
 HIBYTE (USBCAN_BAUD_1MBit),
 LOBYTE (USBCAN_BAUD_1MBit),
 USBCAN_SET_AMR (FALSE, 0x0ff , 1),
 USBCAN_SET_ACR (FALSE, 0x300 , 0));

// Error? print error
if (bRet != USBCAN_SUCCESSFUL)
 PrintError (bRet);
...

If, according to example 1, the CAN-controller receives a CAN-message with 29-bit
identifier, then it is filtered with the same configuration. However, AMR and ACR are
interpreted differently. Here, CAN-messages with 29-bit identifiers from 0x0C000000 to
0FFFFFFF are received too.

Example 2:

tUcanHandle UcanHandle;
UCANRET bRet;

...
// initializes the hardware
bRet = UcanInitHardware (&UcanHandle, 0, NULL);

// initializes the CAN-interface
// filters 11-bit CAN-messages with ID 0x600 to 0x6 7F,
// RTR-Frames unimportant
bRet = UcanInitCan (UcanHandle,
 HIBYTE (USBCAN_BAUD_1MBit),
 LOBYTE (USBCAN_BAUD_1MBit),
 USBCAN_CALCULATE_AMR (FALSE, 0x600 , 0x67F , FALSE, FALSE),
 USBCAN_CALCULATE_ACR (FALSE, 0x600 , 0x67F , FALSE, FALSE));

// error? Print error
if (bRet != USBCAN_SUCCESSFUL)
 PrintError (bRet);
...

Filter parameters for RTR frames and the first two data bytes are ignored with all
sysWORXX modules.

USB-CANmodul

138  SYS TEC electronic GmbH 2010 L-487e_22

2.3.6 Using multiple CAN-channels

The USB-CANmodul2 3204002/3204003/3204007 has 2 CAN-channels and both the
Multiport CAN-to-USB 3004006 and USB-CANmodul16 have 16 CAN-channels which are
divided into 8 logical devices with 2 channels each. In other words, each logical device
provides 2 CAN-channels, which need to get initialized. In order to use all 16 channels,
each logical device has to get initialized with function UcanInitHardware() and/or
UcanInitHardwareEx(). Furthermore, both CAN-channels of each logical device have to
be initialized by function UcanInitCanEx2(). The USB-CANmodul8 behaves like
USB-CANmodul16 but includes only 4 logical devices and 8 CAN-channels.
USB-CANmodul2 has only one logical device and 2 CAN-channels.

There are 3 constants to select a CAN-channel:

Constant Value Meaning
USBCAN_CHANNEL_CH0 0 first CAN channel
USBCAN_CHANNEL_CH1 1 second CAN channel
USBCAN_CHANNEL_ANY 255 Any CAN channel
USBCAN_CHANNEL_CAN1 0 first CAN channel
USBCAN_CHANNEL_CAN2 1 second CAN channel

Table 18: Constants for CAN-channel selection

Constant USBCAN_CHANNEL_ANY can only be used with function
UcanReadCanMsgEx() and/or UcanGetMsgPending(). For the function
UcanReadCanMsgEx() it indicates that the function shall examine, from which CAN-
channel the next CAN message is. If this function returns with error code
USBCAN_SUCCESSFUL, then it also passes the respective CAN-channel to the calling
function: USBCAN_CHANNEL_CH0 or USBCAN_CHANNEL_CH1 (see function
UcanReadCanMsgEx()).

The constants USBCAN_CHANNEL_CAN1 and USBCAN_CHANNEL_CAN2 have the
same values as USBCAN_CHANNEL_CH0 and USBCAN_CHANNEL_CH1. They were
defined because on top of the housing of USB-CANmodul2, the first channel was named
CAN1 but in the software the first channel is named 0.

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 139

2.3.7 Using the Callback Functions

The USBCAN-library provides two types of callback functions. The Connect Control
Callback function announces Plug&Play events for the USB-CANmodul (e.g.: new
USB-CANmodul connected with the PC; or taken off; ...). The second type announces
events, which occur during the work with the USB-CANmodul (e.g.: CAN-message
receive; Error status changed; ...).

From software version 3.00 an extended format (support of multiple CAN-channels) exists
for both types of the callback function.

Note:

The "Connect control callback" function has a different format than callback functions for
the other events. Make sure to use the correct format in your application. It is not possible
to use the very same implementation for both types of callback function!

Also the format of the extended callback functions differs from the format of the standard
functions. Make sure to use the extended callback functions if the extended API functions
are used. Access violations will occur during runtime otherwise!

Also note that the callback functions are declared as PUBLIC, which is defined as
“__stdcall” in Microsoft Visual Studio.

UcanConnectControlFkt

Syntax:

void PUBLIC UcanConnectControlFkt (
BYTE bEvent_p,
DWORD dwParam_p);

Description:

This callback function informs the application program if a new USB-CANmodul is
connected to the PC, or a connected USB-CANmodul has been disconnected. This
callback function is registered with the USBCAN-library by function
UcanInitHwConnectControl() and may have a different name within the application.

Parameter:

bEvent_p: Event which occurred.

USBCAN_EVENT_CONNECT = 6
USBCAN_EVENT_DISCONNECT = 7
USBCAN_EVENT_FATALDISCON = 8

dwParam_p: Additional parameter
If bEvent_p = 8, then the parameter is returned from the
USB-CAN-Handle of the disconnected module. No
messages are received from this module and no messages
can be sent. The corresponding USB CAN-Handle is invalid;
in other instances, the parameter is 0.

USB-CANmodul

140  SYS TEC electronic GmbH 2010 L-487e_22

UcanConnectControlFktEx

Syntax:

void PUBLIC UcanConnectControlFktEx (
DWORD dwEvent_p,
DWORD dwParam_p,
void* pArg_p);

Description:

This callback function informs the application program if a new device is connected to the
PC, or a connected device has been disconnected. This callback function is registered
with the USBCAN-library by function UcanInitHwConnectControlEx() and may have a
different name within the application.

Parameter:

bEvent_p: Event which occurred.

USBCAN_EVENT_CONNECT = 6
USBCAN_EVENT_DISCONNECT = 7
USBCAN_EVENT_FATALDISCON = 8

dwParam_p: Additional parameter
If bEvent p = 8, then the parameter is returned from the
USB-CAN-Handle of the disconnected module. No
messages are received from this module and no messages
can be sent. The corresponding USB-CAN-Handle is invalid;
in other instances, the parameter is 0.

pArg_p: Additional user-parameter, which was handed over to
function UcanInitHwConnectControlEx(). as parameter
pCallbackArg_p

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 141

UcanCallbackFkt

Syntax:

void PUBLIC UcanCallbackFkt (
tUcanHandle UcanHandle_p,
BYTE bEvent_p);

Description:

This callback function informs the application program if an event occurred on an
initialized USB-CANmodul. This callback function is registered with the USBCAN-library
by function UcanInitHardware() and may have a different name within the application.

Parameter:

UcanHandle_p: USB-CAN handle of the USB-CANmodul where the event
occurred. This handle is returned with the function
UcanInitHardware().

bEvent_p: Event which occurred.

USBCAN_EVENT_INITHW = 0
USBCAN_EVENT_INITCAN = 1
USBCAN_EVENT_RECEIVE = 2
USBCAN_EVENT_STATUS = 3
USBCAN_EVENT_DEINITCAN = 4
USBCAN_EVENT_DEINITHW = 5

USB-CANmodul

142  SYS TEC electronic GmbH 2010 L-487e_22

UcanCallbackFktEx

Syntax:

void PUBLIC UcanCallbackFktEx (
tUcanHandle UcanHandle_p,
DWORD dwEvent_p,
BYTE bChannel_p,
void* pArg_p);

Description:

This callback function informs the application program if an event occurred on an
initialized device. This callback function is registered with the USBCAN-library by function
UcanInitHardwareEx() and may have a different name within the application.

Parameter:

UcanHandle_p: USB-CAN handle of the USB-CANmodul where the event
occurred. This handle is returned with the function
UcanInitHardwareEx().

bEvent_p: Event which occurred.

USBCAN_EVENT_INITHW = 0
USBCAN_EVENT_INITCAN = 1
USBCAN_EVENT_RECEIVE = 2
USBCAN_EVENT_STATUS = 3
USBCAN_EVENT_DEINITCAN = 4
USBCAN_EVENT_DEINITHW = 5

bChannel_p: CAN-channel, which released the event

USBCAN_CHANNEL_CH0 = 0
USBCAN_CHANNEL_CH1 = 1
USBCAN_CHANNEL_ANY = 255

pArg_p: Additional user-parameter, which was handed over to
function UcanInitHwConnectControlEx() as parameter
pCallbackArg_p

All callback functions have to be initialized before being called by the USBCAN-library.

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 143

The events have the following meaning:

USBCAN_EVENT_INITHW: ..0x00

The USB-CANmodul is initialized successfully.

Parameter bChannel_p has no meaning here.

USBCAN_EVENT_INITCAN: ..0x01

The CAN interface is initialized successfully.

Parameter bChannel_p returns the CAN-channel that was initialized.

USBCAN_EVENT_RECEIVE: ...0x02

A CAN message is received.

Parameter bChannel_p returns the CAN-channel that was received last by the
hardware.

USBCAN_EVENT_STATUS: ..0x03

The error status at the USB-CANmodul has changed.

Parameter bChannel_p returns the CAN-channel, which CAN error state has been
changed.

USBCAN_EVENT_DEINITCAN: ...0x04

The CAN interface is shut down.
Parameter bChannel_p returns the CAN-channel that is being shut down.

USBCAN_EVENT_DEINITHW: ...0x05

The USB-CANmodul is shut down.

Parameter bChannel_p has no meaning here.

USBCAN_EVENT_CONNECT: ...0x06

A new USB-CANmodul is connected.

Parameter dwParam_p has no meaning here.

USBCAN_EVENT_DISCONNECT: ...0x07

A USB-CANmodul is disconnected.

Parameter dwParam_p has no meaning here.

USBCAN_EVENT_FATALDISCON: 0x08

A USB-CANmodul in either HW_INIT or CAN_INIT state is disconnected from the
computer. Data loss is possible.

The parameter dwParam p contains the USB-CAN handle of the disconnected
module. The handle can no longer be used.

Note:

The callback functions should not call the functions of the USBCAN-library directly. This
can lead to undesired results. The best method for using the callback functions is to wait
for an event in the main program (e.g. with the Win32 function WaitForMultipleObjects())
and then to call the DLL functions from there after the event has occurred. The callback
functions only set the corresponding event (i.e. with the Win32 function SetEvent()).

USB-CANmodul

144  SYS TEC electronic GmbH 2010 L-487e_22

Example:

tUcanHandle UcanHandle_g;
tCanMsgStruct CanRxMsg_g;
...

void main (void)
{
UCANRET bRet;

 // initilizes the first callback function
 bRet = UcanInitHwConnectControl (UcanConnectContr olFkt);

 if (bRet == USBCAN_SUCCESSFUL)
 {
 // wait for event
 // e.g. with WaitForMultipleObjects(...) func tion
 // react to events accordingly:

 case INIT:
 // open USB-CANmodul with USBCAN_ANY_MODULE a nd
 // initialize second callback function
 bRet = UcanInitHardware (&UcanHandle_g, USBCA N_ANY_MODULE,
 UcanCallbackFkt);

 // initialize CAN interface
 bRet = UcanInitCan (UcanHandle_g, 0x00 , 0x14 , 0xFFFFFFFFL,
 0x00000000L);

 case RECV:
 // read CAN message
 bRet = UcanReadCanMsg (UcanHandle_g, &CanRxMs g_g);
 }
 ...
}
void PUBLIC UcanConnectControlFkt (BYTE bEvent_p, DWORD
 dwParam_p)
{
UCANRET bRet;

 // which event did occur?
 switch (bEvent_p)
 {
 // new USB-CANmodul connected
 case USBCAN_EVENT_CONNECT:
 // Send signal to main function, so that the USB-CANmodul
 // can now be initialized.
 // i.e. with SetEvent(INIT)
 ...
 break ;
 // USB-CANmodul disconnected
 case USBCAN_EVENT_DISCONNECT:
 ...
 break ;
 }
}

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 145

void PUBLIC UcanCallbackFkt (tUcanHandle UcanHandle_p,
 BYTE bEvent_p)
{
 // what event appeared?
 switch (bEvent_p)
 {
 // CAN message received
 case USBCAN_EVENT_RECEIVE:
 // signal that the CAN message can be read
 // i.e. with SetEvent (RECV);
 break ;

 // changes error status
 case USBCAN_EVENT_STATUS:
 // signal that the CAN status can be read
 // i.e. with SetEvent (STATUS);
 break ;
 ...
 }
}

USB-CANmodul

146  SYS TEC electronic GmbH 2010 L-487e_22

2.4 Class library for .NET programming languages

In order to use the USBCAN32.DLL with.NET programming languages such as Visual
basic .NET, Managed C++ and C#, a Wrapper class UcanDotNET.USBcanServer was
developed in VB .NET. This class lies in the dynamic link library (DLL) named
UCANDOTNET.DLL. In order to include the DLL into own projects, the following steps
under Visual Studio .NET become necessary:

- go to menu -> “Projects” and click on entry “Add reference…”, the dialog window “Add
reference” appears

- Click on “Browse” button and select the UCANDOTNET.DLL

- Press OK to confirm

Sample for creating an object of class USBcanServer in Visual Basic .NET:

Dim WithEvents m_USBcan As UcanDotNET.USBcanServer

Note:

The Wrapper class is included as source code. That means it can be changed by user
expanding new features of the USBCAN32.DLL or improving the Wrapper.

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 147

2.4.1 Methods of class USBcanServer

GetFwVersion

Syntax C#:

public int USBcanServer.GetFwVersion();

Syntax Visual Basic:

Public USBcanServer.GetFwVersion() as Integer

Usability:

HW_INIT, version 3.01 and higher

Description:

Returns the firmware version number of the device.

Parameter:

none

Return value:

Firmware version number as Integer with the following format:

Bit 0-7: Version

Bit 8-15: Revision

Bit 16-31: Release

USB-CANmodul

148  SYS TEC electronic GmbH 2010 L-487e_22

GetUserDllVersion

Syntax C#:

public int USBcanServer.GetUserDllVersion();

Syntax Visual Basic:

Public USBcanServer.GetUserDllVersion() as Integer

Usability:

DLL_INIT, HW_INIT, CAN_INIT, version 3.01 and higher

Description:

Returns the version number of the USBCAN-library.

Parameter:

none

Return value:

Software version number as Integer with the following format:

Bit 0-7: Version

Bit 8-15: Revision

Bit 16-31: Release

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 149

InitHardware

Syntax C#:

public byte USBcanServer.InitHardware(byte bDeviceN r_p =
USBCAN_ANY_MODULE);

Syntax Visual Basic:

Public Function USBcanServer.InitHardware(_
Optional ByVal bDeviceNr_p As Byte _
 = USBCAN_ANY_MODULE) As Byte

Usability:

DLL_INIT, HW_INIT, CAN_INIT, version 3.01 and higher

Description:

Initializes the device with the corresponding device number.

Parameter:

bDeviceNr_p: device number (0 – 254). Value
USBCAN_ANY_MODULE (= 255) is used to indicate that the
first available device shall be used.

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_HWINUSE
USBCAN_ERR_ILLHW
USBCAN_ERR_MAXMODULES
USBCAN_ERR_RESOURCE
USBCAN_ERR_ILLVERSION

USB-CANmodul

150  SYS TEC electronic GmbH 2010 L-487e_22

Shutdown

Syntax C#:

public byte USBcanServer.Shutdown();

Syntax Visual Basic:

Public Function USBcanServer.Shutdown() as Byte

Usability:

HW_INIT, version 3.01 and higher

Description:

Shuts down an initialized device that was initialized with method InitHardware() or
InitCan(). The software returns to the state DLL_INIT.

Parameter:

none

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 151

InitCan

Syntax C#:

public USBcanServer.InitCan(
byte bChannel_p = USBCAN_CHANNEL_CH0,
short wBTR_p = USBCAN_BAUD_1MBit,
int dwBaudrate_p = USBCAN_BAUDEX_USE_BTR01,
int dwAMR_p = USBCAN_AMR_ALL,
int dwACR_p = USBCAN_ACR_ALL,
byte bMode_p = tUcanMode.kUcanModeNormal,
byte bOCR_p = USBCAN_OCR_DEFAULT);

Syntax Visual Basic:

Public Function InitCan(Optional ByVal bChannel_p A s Byte = _
USBCAN_CHANNEL_CH0, _
Optional ByVal wBTR_p As Short = USBCAN_BAUD_1MBit, _
Optional ByVal dwBaudrate_p As Integer = _
USBCAN_BAUDEX_USE_BTR01, _
Optional ByVal dwAMR_p As Integer = USBCAN_AMR_ALL, _
Optional ByVal dwACR_p As Integer = USBCAN_ACR_ALL, _
Optional ByVal bMode_p As Byte = _
tUcanMode.kUcanModeNormal, _
Optional ByVal bOCR_p As Integer = USBCAN_OCR_DEFAU LT)
As Byte

Usability:

HW_INIT, version 3.01 and higher

Description:

Initializes a specific CAN-channel of a device. With GW-001 and GW-002 only channel 0
is available.

Parameter:

bChannel_p: CAN-channel, to be initialized.
USBCAN_CHANNEL_CH0 for CAN- channel 0
USBCAN_CHANNEL_CH1 for CAN- channel 1

wBTR_p: Baud rate register BTR0 as high byte,
Baud rate register BTR1 as low byte

dwBaudrate_p: Baud rate register of Multiport CAN-to-USB and
USB-CANmodul1/2

dwAMR_p: Acceptance filter mask (see section 2.3.5)

dwACR_p: Acceptance filter code

bMode_p: Transmission mode of CAN-channel

bOCR_p: Output-Control-Register

USB-CANmodul

152  SYS TEC electronic GmbH 2010 L-487e_22

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_RESOURCE
USBCAN_ERR_BUSY
USBCAN_ERR_IOFAILED
USBCAN_ERRCMD_…

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 153

ResetCan

Syntax C#:

public byte USBcanServer.ResetCan(byte pbChannel_p)

Syntax Visual Basic:

Public Function USBcanServer.ResetCan(_
 ByVal pbChannel_p As Byte) As Byte

Usability:

HW_INIT, CAN_INIT, version 3.01 and higher

Description:

Resets a CAN-channel of a device. (see function UcanResetCan()). With GW-001 and
GW-002 only CAN-channel 0 is available.

Parameter:

bChannel_p: CAN-channel, to be reset.
USBCAN_CHANNEL_CH0 for CAN- channel 0
USBCAN_CHANNEL_CH1 for CAN- channel 1

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_CANNOTINIT
USBCAN_ERR_BUSY
USBCAN_ERR_IOFAILED
USBCAN_ERRCMD_…

USB-CANmodul

154  SYS TEC electronic GmbH 2010 L-487e_22

GetHardwareInfo

Syntax C#:

public byte USBcanServer.GetHardwareInfo(
ref tUcanHardwareInfoEx pHwInfo_p,
ref tUcanChannelInfo pCanInfoCh0_p,
ref tUcanChannelInfo pCanInfoCh1_p);

Syntax Visual Basic:

Public Function USBcanServer.GetHardwareInfo(_
ByRef pHwInfo_p As tUcanHardwareInfoEx, _
ByRef pCanInfoCh0_p As tUcanChannelInfo, _
ByRef pCanInfoCh1_p As tUcanChannelInfo) As Byte

Usability:

HW_INIT, CAN_INIT, version 3.01 and higher

Description:

Returns the extended hardware information of a device. With Multiport CAN-to-USB
3004006 and USB-CANmodul2 3204002/3204003 the information for both CAN-channels
is returned separately.

Parameter:

pHwInfo_p: Pointer to structure where the extended hardware
information is to be stored.
(see function UcanGetHardwareInfoEx2).

pCanInfoCh0_p: Pointer to structure where the information of CAN-channel 0
is to be stored.

pCanInfoCh1_p: Pointer to structure where the information of CAN-channel 1
is to be stored.

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_ILLPARAM

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 155

GetStatus

Syntax C#:

public byte USBcanServer.GetStatus(byte bChannel_p,
ref tStatusStruct pStatus_p);

Syntax Visual Basic:

Public Function USBcanServer.GetStatus(_
ByVal pbChannel_p As Byte, _
ByRef pStatus_p As tStatusStruct) As Byte

Usability:

HW_INIT, CAN_INIT, version 3.01 and higher

Description:

Returns the error status of a specific CAN-channel. Structure tStatusStruct is described
with function UcanGetStatus().

Parameter:

bChannel_p: CAN-Channel, to be used.
USBCAN_CHANNEL_CH0 for CAN-Channel 0
USBCAN_CHANNEL_CH1 for CAN-Channel 1

pStatus_p: Error status of the device.

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_ILLPARAM

USB-CANmodul

156  SYS TEC electronic GmbH 2010 L-487e_22

SetBaudrate

Syntax C#:

public byte USBcanServer.SetBaudrate(
byte bChannel_p = USBCAN_CHANNEL_CH0,
short wBTR_p = USBCAN_BAUD_1MBit,
int dwBaudrate_p = USBCAN_BAUDEX_USE_BTR01);

Syntax Visual Basic:

Public Function USBcanServer.SetBaudrate(_
Optional ByVal bChannel_p As Byte = USBCAN_CHANNEL_ CH0, _
Optional ByVal wBTR_p As Short = USBCAN_BAUD_1MBit, _
Optional ByVal dwBaudrate_p As Integer =
USBCAN_BAUDEX_USE_BTR01) As Byte

Usability:

CAN_INIT, version 3.01 and higher

Description:

This function is used to configure the baud rate of specific CAN-channel of a device.

Parameter:

bChannel_p: CAN-Channel, which is to be configured.
USBCAN_CHANNEL_CH0 for CAN-Channel 0
USBCAN_CHANNEL_CH1 for CAN-Channel 1

wBTR_p: Baud rate register BTR0 as high byte,
Baud rate register BTR1 as low byte

dwBaudrate_p: Baud rate register of Multiport CAN-to-USB 3004006 or
USB-CANmodul1/2

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_CANNOTINIT
USBCAN_ERR_BUSY
USBCAN_ERR_IOFAILED
USBCAN_ERRCMD_…

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 157

SetAcceptance

Syntax C#:

public byte USBcanServer.SetAcceptance(
byte bChannel_p = USBCAN_CHANNEL_CH0,
int dwAMR_p = USBCAN_AMR_ALL,
int dwACR_p = USBCAN_ACR_ALL);

Syntax Visual Basic:

Public Function USBcanServer.SetAcceptance(_
Optional ByVal bChannel_p As Byte = USBCAN_CHANNEL_ CH0, _
Optional ByVal dwAMR_p As Integer = USBCAN_AMR_ALL, _
Optional ByVal dwACR_p As Integer = USBCAN_ACR_ALL)
As Byte

Usability:

CAN_INIT, version 3.01 and higher

Description:

This function is used to change the acceptance filter values for a specific CAN-channel on
a device.

Parameter:

bChannel_p: CAN-Channel, which is to be configured.
USBCAN_CHANNEL_CH0 for CAN-Channel 0
USBCAN_CHANNEL_CH1 for CAN-Channel 1

dwAMR_p: Acceptance filter mask (see section 2.3.5)

dwACR_p: Acceptance filter code

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_CANNOTINIT
USBCAN_ERR_BUSY
USBCAN_ERR_IOFAILED
USBCAN_ERRCMD_…

USB-CANmodul

158  SYS TEC electronic GmbH 2010 L-487e_22

ReadCanMsg

Syntax C#:

public byte USBcanServer.ReadCanMsg(ref byte pbChan nel_p,
ref tCanMsgStruct[] pCanMsg_p,
ref int pdwCount_p = 0);

Syntax Visual Basic:

Public Function USBcanServer.ReadCanMsg(ByRef pbCha nnel_p As
Byte,
ByRef pCanMsgStruct_p() As tCanMsgStruct,
Optional ByRef dwCount_p As Integer = 0) As Byte

Usability:

CAN_INIT, version 3.01 and higher

Description:

Reads one or more CAN-messages from the buffer of the specified CAN-channel.

Parameter:

pbChannel_p: Pointer to a variable containing the CAN-Channel to read
from.
USBCAN_CHANNEL_CH0 for CAN-Channel 0
USBCAN_CHANNEL_CH1 for CAN-Channel 1
If USBCAN_CHANNEL_ANY is given, then this function
writes the CAN-channel to this variable, where the message
was read from.

pCanMsg_p: Address to a CAN message structure. This address must not
be NULL.

pdwCount_p: Address to a variable that specifies the maximum number of
CAN messages to be read.
This function writes the actual number of CAN messages
that were read from the device to this variable.

Structure tCanMsgStruct is described with function UcanReadCanMsg().

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_CANNOTINIT
USBCAN_ERR_ILLPARAM
USBCAN_WARN_NODATA
USBCAN_WARN_SYS_RXOVERRUN
USBCAN_WARN_DLL_RXOVERRUN

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 159

WriteCanMsg

Syntax C#:

public byte USBcanServer.WriteCanMsg(byte bChannel_ p,
ref tCanMsgStruct[] pCanMsg_p
ref int dwCount_p = 0);

Syntax Visual Basic:

Public Function USBcanServer.WriteCanMsg(_
ByVal pbChannel_p As Byte, _
ByRef pCanMsgStruct_p() As tCanMsgStruct,
Optinal ByRef dwCount_p As Integer) As Byte

Usability:

CAN_INIT, version 3.01 and higher

Description:

Transmits one ore more CAN messages through the specified CAN-channel of the
device.

Parameter:

bChannel_p: CAN-Channel, which is to be used.
USBCAN_CHANNEL_CH0 for CAN-Channel 0
USBCAN_CHANNEL_CH1 for CAN-Channel 1

pCanMsg_p: Address to a CAN message structure. This address must not
be NULL.

dwCount_p: After return this variable holds the number of CAN messages
which was successfully stored to the transmit buffer. This
value may be less than the number of elements within the
array of CAN messages if not all CAN messages could be
stored to the transmit buffer. In that case the function returns
the warning USBCAN_WARN_TX_LIMIT.

Structure tCanMsgStruct is described with function UcanWriteCanMsg().

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_CANNOTINIT
USBCAN_ERR_ILLPARAM
USBCAN_ERR_DLL_TXFULL

USB-CANmodul

160  SYS TEC electronic GmbH 2010 L-487e_22

Example for Visual Basic .NET:

' variable for return value
Dim bRet As Byte = 0
' array of tCanMsgStruct with length 1
Dim canMsgStruct(0) As UcanDotNET.USBcanServer.tCanMsgStruct

' initialize the first element with a new structure instance
canMsgStruct(0) = _
 UcanDotNET.USBcanServer.tCanMsgStruct.CreateIns tance(&H123)

' fill message data with some value
canMsgStruct(0).m_bData(0) = &HAB
canMsgStruct(0).m_bData(1) = &HCD
canMsgStruct(0).m_bData(2) = &HEF
canMsgStruct(0).m_bData(3) = &H12
canMsgStruct(0).m_bData(4) = &H34
canMsgStruct(0).m_bData(5) = &H56
canMsgStruct(0).m_bData(6) = &H78
canMsgStruct(0).m_bData(7) = &H90

' send message
bRet = m_USBcan.WriteCanMsg(_
 UcanDotNET.USBcanServer.USBCAN_CHANNEL_CH0 , _
 canMsgStruct)
' check return value
' ……

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 161

GetMsgCountInfo

Syntax C#:

public byte USBcanServer.GetMsgCount(
byte bChannel_p,
ref short wRecvdMsgCount_p, _
ref short wSentMsgCount_p);

Syntax Visual Basic:

Public Function USBcanServer.GetMsgCount(_
ByVal bChannel_p As Byte, _
ByRef pwRecvdMsgCount_p As Short, _
ByRef pwSentMsgCount_p As Short) As Byte

Usability:

CAN_INIT, version 3.01 and higher

Description:

Reads the message counters of the specified CAN-channel.

Parameter:

bChannel_p: CAN-Channel, which is to be used.
USBCAN_CHANNEL_CH0 for CAN-Channel 0
USBCAN_CHANNEL_CH1 for CAN-Channel 1

pwRecvdMsgCount_p: pointer to variable for receive message counter.

pwSentMsgCount_p: pointer to variable for transmit message counter.

Return value:

Error code of the function.

USBCAN_SUCCESSFUL
USBCAN_ERR_MAXINSTANCES
USBCAN_ERR_ILLHANDLE
USBCAN_ERR_CANNOTINIT
USBCAN_ERR_BUSY
USBCAN_ERR_IOFAILED
USBCAN_ERR_ILLCMD
USBCAN_WARN_NOTEQU

USB-CANmodul

162  SYS TEC electronic GmbH 2010 L-487e_22

GetCanStatusMessage

Syntax C#:

public static String USBcanServer.GetCanStatusMessa ge(
short wCanStatus_p);

Syntax Visual Basic:

Public Shared Function USBcanServer.GetCanStatusMes sage(_
ByVal wCanStatus_p As Short) As String

Usability:

CAN_INIT, version 3.01 and higher

Description:

Returns the specified status code as a string message.

Parameter:

wCanStatus_p: CAN status code (see USBCAN API function
UcanGetStatus())

Return value:

String message

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 163

GetBaudrateMessage

Syntax C#:

public static String USBcanServer.GetBaudrateMessag e(
byte bBTR0_p, byte bBTR1_p);

Syntax Visual Basic:

Public Shared Function USBcanServer.GetBaudrateMess age(_
ByVal bBTR0_p As Byte, ByVal bBTR1_p As Byte) As St ring

Usability:

CAN_INIT, version 3.01 and higher

Description:

Returns a string containing the BTR register values.

Parameter:

bBTR0_p: Baud rate register 0

bBTR1_p: Baud rate register 1

Return value:

String message

USB-CANmodul

164  SYS TEC electronic GmbH 2010 L-487e_22

GetBaudrateExMessage

Syntax C#:

public static String USBcanServer.GetBaudrateExMess age(
int dwBTR_p);

Syntax Visual Basic:

Public Shared Function USBcanServer.GetBaudrateExMe ssage(_
ByVal dwBTR_p As Integer) As String

Usability:

CAN_INIT, version 3.01 and higher

Description:

Returns a string containing the specified baud rate.

Parameter:

dwBTR_p: Baud rate as 32-bit value

Return value:

String message

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 165

2.4.2 Event of class USBcanServer

Class USBcanServer passes the callback events of the USBCAN32.DLL to the application
as .NET events.

CanMsgReceivedEvent

Syntax C#:

public event USBcanServer.CanMsgReceivedEvent(
byte bChannel_p);

Syntax Visual Basic:

Public Event USBcanServer.CanMsgReceivedEvent(_
ByVal bChannel_p As Byte)

Description:

A new CAN-message was received.

Parameter:

bChannel_p: CAN-Channel that received the message.
USBCAN_CHANNEL_CH0 for CAN-Channel 0
USBCAN_CHANNEL_CH1 for CAN-Channel 1
USBCAN_CHANNEL_ANY for any Channel

InitHwEvent

Syntax C#:

public event USBcanServer.InitHwEvent();

Syntax Visual Basic:

Public Event USBcanServer.InitHwEvent()

Description:

Device was initialized.

USB-CANmodul

166  SYS TEC electronic GmbH 2010 L-487e_22

InitCanEvent

Syntax C#:

public event USBcanServer.InitCanEvent(byte bChanne l_p);

Syntax Visual Basic:

Public Event USBcanServer.InitCanEvent(_
ByVal bChannel_p As Byte)

Description:

Specified CAN-channel was initialized.

Parameter:

bChannel_p: CAN-Channel that was initialized.
USBCAN_CHANNEL_CH0 for CAN-Channel 0
USBCAN_CHANNEL_CH1 for CAN-Channel 1

StatusEvent

Syntax C#:

public event USBcanServer.StatusEvent(byte bChannel _p);

Syntax Visual Basic:

Public Event USBcanServer.StatusEvent(ByVal bChanne l_p As Byte)

Description:

Error status for the specified CAN-Channel has changed.

Parameter:

bChannel_p: CAN-Channel, which error status has been changed.
USBCAN_CHANNEL_CH0 for CAN-Channel 0
USBCAN_CHANNEL_CH1 for CAN-Channel 1

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 167

Example of an event handler for the status event in Visual Basic .NET:

Private Sub USBcan_Status(ByVal bChannel_p As Byte) _
 Handles m_USBcan.StatusEvent

 ' status of USB-CANmodul changed
 Dim status As UcanDotNET.USBcanServer.tStatusStruct
 Dim bRet As Byte = 0

 bRet = m_USBcan.GetStatus(bChannel_p, status)
 If bRet = UcanDotNET.USBcanServer.USBCAN_SUCCESSFUL Then
 Console.WriteLine("CAN status of channel "
 + bChannel_p.ToString() + ": " +
 status.m_wCanStatus.ToStr ing("X4"))
 Else
 Console.WriteLine("Error while reading status: "
 + bRet.ToString("X2"))
 End If

End Sub

DeinitCanEvent

Syntax C#:

public event USBcanServer.DeinitCanEvent(byte bChan nel_p);

Syntax Visual Basic:

Public Event USBcanServer.DeinitCanEvent(_
ByVal bChannel_p As Byte)

Description:

The CAN-channel was shut down..

Parameter:

bChannel_p: CAN-Channel, which status has been changed.
USBCAN_CHANNEL_CH0 for CAN-Channel 0
USBCAN_CHANNEL_CH1 for CAN-Channel 1

USB-CANmodul

168  SYS TEC electronic GmbH 2010 L-487e_22

DeinitHwEvent

Syntax C#:

public event USBcanServer.DeinitHwEvent()

Syntax Visual Basic:

Public Event USBcanServer.DeinitHwEvent()

Description:

The device was shut down.

ConnectEvent

Syntax C#:

public static event USBcanServer.ConnectEvent();

Syntax Visual Basic:

Public Shared Event USBcanServer.ConnectEvent()

Description:

A new device was connected to the USB-port.

DisconnectEvent

Syntax C#:

public static event USBcanServer.DisconnectEvent();

Syntax Visual Basic:

Public Shared Event USBcanServer.DisconnectEvent()

Description:

A previously shut down device was disconnected from the USB-port.

 Software Support for Windows OS

 SYS TEC electronic GmbH 2010 L-487e_22 169

FatalDisconnectEvent

Syntax C#:

public event USBcanServer.FatalDisconnectEvent();

Syntax Visual Basic:

Public Shared Event USBcanServer.FatalDisconnectEve nt()

Description:

A device was disconnected from the USB-port without prior shutdown.

USB-CANmodul

170  SYS TEC electronic GmbH 2010 L-487e_22

3 Software support for Linux OS

The software package with order number SO-1068 contains a driver for the Linux Kernel
2.6 in source code for x86-compatible CPUs, a library with all API functions as well as a
demo application. This manual describes the driver since version 2.00.

3.1 Installation of the driver under Linux

There are two conditions for installing the driver under Linux OS:

1) You need to be logged in as “super user”.

2) Kernel sources need to be installed for compiling the kernel driver.

Unzip the archive in a directory of your choice and run the shell script initdriver.sh . You
will be asked whether you want to recompile the kernel driver. Answer with “y” for yes
because the binary is not a content of the archive. The reason for is that Linux OS is able
to run under several different CPUs.

Furthermore, the kernel driver for the USB-CANmodul has only been tested for some
Linux Kernel Versions (currently 2.6.13, 2.6.16 and 2.6.18 using SUSE distribution, 2.6.24
using Ubuntu distribution, 2.6.25 at 64 bit processor using SUSE distribution). There is the
possibility that the kernel driver cannot be compiled without errors if any changes were
made in newer Linux Kernel Versions. In this case, please make your own changes to the
sources of the USB-CANmodul device driver.

After successful compiling of the driver you will be asked whether the debug mode of the
kernel driver should be activated. Within this mode, the driver will redirect all debug
outputs to the function printk(). Therefore, you will find the debug outputs in
/var/log/messages. For now, answer this question with “n” for no.

Since driver version V2.02 the loader driver also automatically updates the firmware of
sysWORXX USB-CANmoduls.

 Software support for Linux OS

 SYS TEC electronic GmbH 2010 L-487e_22 171

3.2 API functions under Linux

In driver version V2.00 the API functions under Linux are located in two static libraries,
Host.Lin/library/libusbcanr.a (for release mode) and Host.Lin/library/libusbcand.a (for
debug mode) of the archive. These functions correspond to those under Windows (see
section 2.3). However, not all functions are available under Linux. Table 19 lists all
available functions under Linux.

Since driver version V2.02 two dynamic libraries are delivered instead of static libraries.
With shell script initdriver.sh, both libraries are copied to the path /usr/local/lib and
symbolic links are created. libusbcan.so is used for the release mode and
libusbcand.so for the debug mode.

USB-CANmodul

172  SYS TEC electronic GmbH 2010 L-487e_22

Functions available Functions not available
UcanGetVersionEx()
UcanInitHardware()
UcanInitCan()
UcanResetCan()
UcanGetStatus()
UcanSetBaudrate()
UcanSetAcceptance()
UcanReadCanMsg()
UcanWriteCanMsg()
UcanDeinitCan()
UcanDeinitHardware()

UcanGetVersion() (obsolete)
UcanGetFwVersion()
UcanInitHwConnectControl()
UcanInitHwConnectControlEx()
UcanDeinitHwConnectControl()
UcanInitHardwareEx()
UcanGetModuleTime()
UcanGetHardwareInfo()
UcanGetHardwareInfoEx2()
UcanInitCanEx()
UcanInitCanEx2()
UcanSetBaudrateEx()
UcanSetAcceptanceEx()
UcanResetCanEx()
UcanReadCanMsgEx()
UcanWriteCanMsgEx()
UcanGetStatusEx()
UcanGetMsgCountInfo()
UcanGetMsgCountInfoEx()
UcanConfigUserPort()
UcanWriteUserPort()
UcanReadUserPort()
UcanReadUserPortEx()
UcanWriteCanPort()
UcanWriteCanPortEx()
UcanReadCanPort()
UcanReadCanPortEx()
UcanDefineCyclicCanMsg()
UcanReadCyclicCanMsg()
UcanEnableCyclicCanMsg()
UcanGetMsgPending()
UcanGetCanErrorCounter()
UcanDeinitCanEx()

Table 19: Available functions under Linux OS

 Software support for Linux OS

 SYS TEC electronic GmbH 2010 L-487e_22 173

The following API functions differ from those under Windows:

UCANRET UcanInitHardware (tUcanHandle* pUcanHandle_ p,
BYTE bDeviceNr_p,
void* pReserved_p);

Function UcanInitHardware() does not support a callback function. Thus the third
parameter is marked as “reserved”.

UCANRET UcanSetDeviceNr (tUcanHandle UcanHandle_p,
BYTE bDeviceNr_p);

Function UcanSetDeviceNr() can be used to configure a new device number for a
USB-CANmodul.

UCANRET UcanSetDebugMode (DWORD dwDbgLevel_p,
void* pReserved_p,
DWORD dwReserved_p);

Function UcanSetDebugMode() changes the debug LOG-Level for debug outputs
of the USBCAN-library. 0xE0000B03 is the default value for the library
libusbcand.a. Refer to section 3.3 and read the function description in section 2.3.2
for more information.

3.3 Logging debug information

If there are problems with the driver it would be helpful to send us a debug log file with the
debug information of the USBCAN-library. Under Linux OS you need to use libusbcand.a
instead of libusbcanr.a in your application to activate the debug outputs. These outputs
are redirected to the function printf() since library version 2.00. Consequently, the debug
information will appear at the standard output. Please copy these outputs to a file and
send it to our support address.

With the USBCAN-API function UcanSetDebugMode() you can specify which debug
information should be printed out.

Sometimes we cannot locate the problem from the debug log file. In this case, it would be
helpful if you also send us the debug outputs from kernel driver. Therefore, you should
answer the question whether you want to activate the debug outputs of the kernel driver in
shell script initdriver.sh with “y” for yes. If you do not use this shell script for loading the
kernel drivers you need to set the parameter “debug” to 1:

 Insmod usbcanlx.ko debug=1

 Insmod usbcan.ko debug=1

USB-CANmodul

174  SYS TEC electronic GmbH 2010 L-487e_22

The debug outputs of the kernel driver are redirected to the function printk() if the
parameter debug is set to 1. Therewith, the debug information will appear in file
/var/log/messages.

 Software support for Windows CE OS

 SYS TEC electronic GmbH 2010 L-487e_22 175

4 Software support for Windows CE OS

The software package with order number SO-1091 contains a driver for Windows CE, a
USBCAN-library as DLL and a demo application in source code for Microsoft eMbedded
Visual C++ 4.0. The following Windows CE versions and CPU types are tested with the
driver:

Windows CE version CPU type Tested at CPU
5.0 ARMV4I Intel PXA255

Intel PXA270
6.0 X86 Intel Atom

Table 20: tested Windows CE versions and CPU types

On request we can build a driver for other CPU types too. Please contact our support
department for this.

4.1 Installation of the driver under Windows CE

After unzipping the archive, you will find the driver in subfolder Driver\XXX whereas XXX
marks the CPU type. For example, the driver for CPU type ARMV4I is located in subfolder
Driver\ARMV4I. The name of the driver file in each case is UsbCanDrv.dll .

This driver in its current version supports the following USB-CANmoduls:

 GW-002, USB-CANmodul1 (3204000 and 3204001) and all derivates of
USB-CANmodul2 (3204001, 3204003, …)

Prior to connecting the USB-CANmodul to your Windows CE device, copy the driver to the
subfolder \Windows. Now connect the USB-CANmodul with your Windows CE device. If
the USB-CANmodul is connected for the first time, a window “Unidentified USB device”
appears. Type in the name of the driver: usbcandrv (no capitalization rules). Now you can
access the USB-CANmodul with an application. You can use our ConsoleDemo.exe for
example. It sends 100 CAN messages with 1 MBit/sec and prints out received CAN
messages in the mean time.

USB-CANmodul

176  SYS TEC electronic GmbH 2010 L-487e_22

4.2 API functions under Windows CE

UsbCanCE.dll contains the API functions for the USB-CANmodul. This USBCAN-library
is located in subfolder Lib\XXX whereas XXX marks the CPU type. This DLL contains all
functions that are also available in USBCAN32.DLL under Windows 2000/XP/Vista –
except for three functions:

UcanInitHwConnectControl()

UcanInitHwConnectControlEx()

UcanDeinitHwConnectControl()

Please refer to section 2.3 for the description of all available functions.

There are some more differences between UsbCanCE.dll an USBCAN32.dll:

- Under Windows CE up to 9 USB-CANmoduls can only be used simultaneously at one
Windows CE device.

- Function UcanGetVersionEx() only can be run with the parameters kVerTypeUserDll,
kVerTypeUserLib and kVerTypeSysDrv.

- The call of UcanDeinitCan() or UcanDeinitCanEx() can take up to two seconds until
return from this function.

4.3 Logging debug information

If there are problems with the driver it would be helpful if you send us a debug log file with
debug information of the USBCAN-library. Using the current version Windows CE, it is
momentarily only possible to activate this feature by calling the function
UcanSetDebugMode() in your application. Please refer to section 2.3.2 for more
information.

 Index

 SYS TEC electronic GmbH 2010 L-487e_22 177

5 Index

Acceptance Filter 135

ACR 135

AMR 135

API Functions 53

Baud Rate 3

Baud Rate Configuration 129

Borland C++ Builder 49

Callback Event
UcanDotNET.DLL

CanMsgReceivedEvent 165
ConnectEvent 168
DeinitCanEvent 167
DeinitHwEvent 168
DisconnectEvent 168
FatalDisconnectEvent 169
InitCanEvent 166
InitHwEvent 165
StatusEvent 166

USBCAN-library
USBCAN_EVENT_CONNECT 143
USBCAN_EVENT_DEINITCAN 143
USBCAN_EVENT_DEINITHW 143
USBCAN_EVENT_DISCONNECT 143
USBCAN_EVENT_FATALDISCON 143
USBCAN_EVENT_INITCAN 143
USBCAN_EVENT_INITHW 143
USBCAN_EVENT_RECEIVE 143
USBCAN_EVENT_STATUS 143

callback function58, 59, 61, 63, 85, 127, 139,
143

Callback Function
USBCAN-library

UcanCallbackFkt 141
UcanCallbackFktEx 142
UcanConnectControlFkt 139
UcanConnectControlFktEx 140

CAN Messages Filter 135

CAN port 35, 46, 111, 112, 113

CAN Supply Voltage 34

CAN transceiver 35

CAN-frame format 93

CAN-Status
USBCAN_CANERR_BUSHEAVY 86
USBCAN_CANERR_BUSLIGHT 86
USBCAN_CANERR_BUSOFF 86
USBCAN_CANERR_OK 86
USBCAN_CANERR_OVERRUN 86
USBCAN_CANERR_QOVERRUN 86
USBCAN_CANERR_QXMTFULL 86

USBCAN_CANERR_REGTEST 86
USBCAN_CANERR_TXMSGLOST 71, 86
USBCAN_CANERR_XMTFULL 86

Constant
kUcanModeListenOnly 69
kUcanModeNormal 69
kUcanModeTxEcho 69
kVerTypeCpl 56
kVerTypeNetDrv 56
kVerTypeSysDrv 56
kVerTypeSysL2 56
kVerTypeSysL3 56
kVerTypeSysL4 56
kVerTypeSysL5 56
kVerTypeSysLd 56
kVerTypeUserDll 56
kVerTypeUserLib 56
UCAN_CANPORT_EN 113
UCAN_CANPORT_ERR 113
UCAN_CANPORT_STB 113
UCAN_CANPORT_TRM 113
USBCAN_BAUDEX_USE_BTR01 133
USBCAN_CHANNEL_ANY 138
USBCAN_CHANNEL_CAN1 138
USBCAN_CHANNEL_CH0 138
USBCAN_CHANNEL_CH1 138
USBCAN_CYCLIC_FLAG_LOCK_XX 110
USBCAN_CYCLIC_FLAG_NOECHO 110
USBCAN_CYCLIC_FLAG_SEQUMODE 110
USBCAN_CYCLIC_FLAG_START 110
USBCAN_MSG_FF_ECHO 93, 99
USBCAN_MSG_FF_EXT 93
USBCAN_MSG_FF_RTR 93
USBCAN_MSG_FF_STD 93
USBCAN_PENDING_FLAG_RX_DLL 102
USBCAN_PENDING_FLAG_RX_FW 102
USBCAN_PENDING_FLAG_TX_DLL 102
USBCAN_PENDING_FLAG_TX_FW 102
USBCAN_RESET_ALL 73
USBCAN_RESET_FIRMWARE 74
USBCAN_RESET_NO_CANCTRL 73
USBCAN_RESET_NO_RXBUFFER_CH 74
USBCAN_RESET_NO_RXBUFFER_DLL 74
USBCAN_RESET_NO_RXBUFFER_FW 74
USBCAN_RESET_NO_RXBUFFER_SYS 74
USBCAN_RESET_NO_RXCOUNTER 73
USBCAN_RESET_NO_STATUS 73
USBCAN_RESET_NO_TXBUFFER_CH 73
USBCAN_RESET_NO_TXBUFFER_DLL 73
USBCAN_RESET_NO_TXBUFFER_FW 74
USBCAN_RESET_NO_TXCOUNTER 73
USBCAN_RESET_ONLY_ALL_BUFF 75
USBCAN_RESET_ONLY_ALL_COUNTER 75
USBCAN_RESET_ONLY_CANCTRL 74
USBCAN_RESET_ONLY_RX_BUFF 74
USBCAN_RESET_ONLY_RX_BUFF_GW002

 75
USBCAN_RESET_ONLY_RXBUFFER_FW 74
USBCAN_RESET_ONLY_RXCHANNEL_BUFF 74
USBCAN_RESET_ONLY_STATUS 74
USBCAN_RESET_ONLY_TX_BUFF 74

USB-CANmodul

178  SYS TEC electronic GmbH 2010 L-487e_22

USBCAN_RESET_ONLY_TXBUFFER_FW 74
USBCAN_RESET_ONLY_TXCHANNEL_BUFF

 74

debug information 29, 173, 176

Demo Program 3, 15

DEMO.API 49

DEMOCYCLICMSG 49

DEMOGW006 49

DLL 3, 15, 49

EEPROM 3

Error Code
USBCAN_ERR_BUSY 122
USBCAN_ERR_CANNOTINIT1 123
USBCAN_ERR_DISCONNECT 124
USBCAN_ERR_DLL_TXFULL 123
USBCAN_ERR_HWINUSE 121
USBCAN_ERR_ILLCHANNEL 124
USBCAN_ERR_ILLHANDLE 122
USBCAN_ERR_ILLHW 122
USBCAN_ERR_ILLHWTYPE 124
USBCAN_ERR_ILLPARAM 122
USBCAN_ERR_ILLVERSION 122
USBCAN_ERR_IOFAILED 123
USBCAN_ERR_MAXINSTANCES 123
USBCAN_ERR_MAXMODULES 121
USBCAN_ERR_NOHWCLASS 124
USBCAN_ERR_RESOURCE 121
USBCAN_ERR_TIMEOUT 123
USBCAN_ERRCMD_ALREADYINIT 125
USBCAN_ERRCMD_EEPROM 125
USBCAN_ERRCMD_ILLBDR 125, 133
USBCAN_ERRCMD_ILLCMD 110, 116, 125
USBCAN_ERRCMD_ILLIDX 126
USBCAN_ERRCMD_ILLSUBCMD 126
USBCAN_ERRCMD_NOTEQU 124
USBCAN_ERRCMD_NOTINIT 125
USBCAN_ERRCMD_REGTST 125
USBCAN_ERRCMD_RUNNING 126
USBCAN_SUCCESSFUL 121
USBCAN_WARN_DLL_RXOVERRUN 127
USBCAN_WARN_FW_RXOVERRUN 127
USBCAN_WARN_FW_TXOVERRUN 127
USBCAN_WARN_NODATA 126
USBCAN_WARN_NULL_PTR 127
USBCAN_WARN_SYS_RXOVERRUN 126
USBCAN_WARN_TXLIMIT 128

Error Codes 121

Expansion Port 36, 116, 118, 119, 120

File Structure 45

Function
libusbcan.a

UcanSetDeviceNr 173
UcanDotNET.DLL

GetBaudrateExMessage 164
GetBaudrateMessage 163
GetCanStatusMessage 162
GetFwVersion 147
GetHardwareInfo 154

GetMsgCountInfo 161
GetStatus 155
GetUserDllVersion 148
InitCan 151
InitHardware 149
ReadCanMsg 158
ResetCan 153
SetAcceptance 157
SetBaudrate 156
Shutdown 150
WriteCanMsg 159

USBCAN-library
UcanConfigUserPort 117
UcanDefineCyclicCanMsg 107
UcanDeinitCan 76, 77, 176
UcanDeinitCanEx 176
UcanDeinitHardware 65
UcanDeinitHwConnectControl 60, 176
UcanEnableCyclicCanMsg 109
UcanGetCanErrorCounter 104
UcanGetFwVersion 57
UcanGetHardwareInfoEx2 80
UcanGetHardwarInfo 78
UcanGetModuleTime 66
UcanGetMsgCountInfo 83
UcanGetMsgCountInfoEx 84
UcanGetMsgPending 102
UcanGetStatus 85
UcanGetStatusEx 87
UcanGetVersion 55
UcanGetVersionEx 56, 176
UcanInitCan 67
UcanInitCanEx 68
UcanInitCanEx2 70, 138
UcanInitHardware 61, 138, 173
UcanInitHardwareEx 63
UcanInitHwConnectControl 58, 176
UcanInitHwConnectControlEx 59, 176
UcanReadCanMsg 93
UcanReadCanMsgEx 96, 138
UcanReadCanPort 113
UcanReadCanPortEx 115
UcanReadCyclicCanMsg 108
UcanReadUserPort 119
UcanReadUserPortEx 120
UcanResetCan 72
UcanResetCanEx 73
UcanSetAcceptance 91
UcanSetAcceptanceEx 92
UcanSetBaudrate 88
UcanSetBaudrateEx 89
UcanSetDebugMode 54, 173
UcanSetTxTimeout 71
UcanWriteCanMsg 99
UcanWriteCanMsgEx 100
UcanWriteCanPort 111
UcanWriteCanPortEx 112
UcanWriteUserPort 118

Hot Plug-and-Play 3

initdriver.sh 170

Installation 16, 170, 175

Introduction 3

Jumper 14

 Index

 SYS TEC electronic GmbH 2010 L-487e_22 179

LabView 15

LED 14

LIB 49

libusbcand.a 171

libusbcanr.a 171

Linux 15, 170

Macro
USBCAN-library

USBCAN_CALC_TIMEDIFF 95, 98
USBCAN_CHECK_SUPPORT_CYCLIC_MS

G 81
USBCAN_CHECK_SUPPORT_RBCAN_PO

RT 82
USBCAN_CHECK_SUPPORT_RBUSER_P

ORT 81
USBCAN_CHECK_SUPPORT_TERM_RESI

STOR 81
USBCAN_CHECK_SUPPORT_TWO_CHAN

NEL 81
USBCAN_CHECK_SUPPORT_USER_POR

T 81

Multiport CAN-to-USB 4, 41, 43, 138

network driver 31

Order Options 41

PCANView 24, 47

Scope of Delivery 14

Serial Number 78

Software 15, 45, 170, 175

Software state
CAN_INIT 49
DLL_INIT 49
HW_INIT 49

Status-LED 32

Structure
USBCAN-library

tCanMsgStruct 93, 99
tStatusStruct 85
tUcanChannelInfo 81
tUcanHardwareInfo 78
tUcanHardwareInfoEx 81
tUcanInitCanParam 68
tUcanMsgCountInfo 83

Technical Data 14

termination resistor 23, 35, 39

Traffic-LED 33

transmit echo 69

Type A Plug 3

Type B Plug 3

UCANNET.SYS 31

USB 3

USB Connectors 3

USBCAN32.DLL 49

USBCANDRV.DLL 175

USBCAN-library 49, 176

USBCANLS.H 110

USB-CANmodul Control 46

USB-CANmodul1 4, 5, 41

USB-CANmodul16 5

USB-CANmodul2 5, 41, 138

USB-CANmodul8 5

USBCANUP.H 116

Windows CE 175

USB-CANmodul

180  SYS TEC electronic GmbH 2010 L-487e_22

 Suggestions for Improvement

 SYS TEC electronic GmbH 2010 L-487e_22

Document: USB-CANmodul
Document number: , Edition February 2010

How would you improve this manual?

Did you find any mistakes in this manual? page

Submitted by:

Customer number:

Name:

Company:

Address:

Return to: SYS TEC electronic GmbH

August-Bebel-Str. 29
D-07973 Greiz
GERMANY
Fax : +49 (0) 36 61 / 62 79 99

