
®

ST20 Embedded
Toolset R1.9
User Manual

ADCS 7143840G

November 2001

Windows and WindowsNT are registered trademarks of Microsoft Corporation.

Sun and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the US and other countries.

Linux is a registered trademark of Linus Torvalds.

Red Hat is a registered trademark and RPM is a trademark of Red Hat Software, Inc.

UNIX is a registered trademark of the The Open Group in the US and other countries.

X Window System is a trademark of The Open Group.

pSOS is a trademark of Wind River Systems, Inc.

The C compiler implementation was developed from the Perihelion Software “C” Compiler and the Codemist Norcroft “C”
Compiler.

The C++ language front-end was developed under a Licence Agreement between EDISON DESIGN GROUP, Inc (EDG)
and STMicroelectronics (formerly SGS-THOMSON Microelectronics) Limited.

This product incorporates innovative techniques which were developed with support from the
European Commission under the ESPRIT Projects:

• P2701 PUMA (Parallel Universal Message-passing Architectures)

• P5404 GPMIMD (General Purpose Multiple Instruction Multiple Data Machines).

• P7250 TMP (Transputer Macrocell Project).

• P7267 OMI/STANDARDS.

• P6290 HAMLET (High Performance Computing for Industrial Applications).

• P606 STARLIGHT (Starlight core for Hard Disk Drive Applications).

STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan

Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for
the consequences of use of such information nor for any infringement of patents or other rights of third parties which may
result from its use. No license is granted by implication or otherwise under any patent or patent rights of
STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication
supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as
critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.

© 2001 STMicroelectronics. All Rights Reserved.

Document number: ADCS 7143840G (Previously identified by the series 72-TDS-505-xx.)

http://www.st.com/

Contents
Contents

Preface. ix

Part 1 - Introduction . 1

1 Toolset overview . 3

1.1 Key features .3
1.2 Toolset architecture .4
1.3 Command language .7
1.4 Toolset environment. .9
1.5 Toolset version .10

2 Getting started with the tools. 11

2.1 Introduction. .11
2.2 Building and running with an STi5500 device .13
2.3 Code and data placement example .14
2.4 Sharing target definitions .15
2.5 Creating your own defaults. .16
2.6 Creating a ROM image. .17

Part 2 - Building and running programs . 19

3 st20cc compile/link tool . 21

3.1 Introduction. .21
3.2 Command line syntax. .22
3.3 Compilation .37
3.4 Code and data placement .47
3.5 Command language .47
3.6 Order of linking .55
3.7 Program build management .58

4 Support for C++ . 59

4.1 Introduction .59
4.2 C++ driver. .60
4.3 st20cc command line .62
4.4 Libraries .63
4.5 Debugging C++ .63
ADCS 7143840G iii

Contents
5 Defining target hardware. .67

5.1 Defining target characteristics. 68
5.2 Data caches in internal SRAM . 69
5.3 Worked Example. 70
5.4 Building code for the DCU3 . 73

6 Interfacing to the target. .75

6.1 The target command. 75
6.2 ST Micro Connect and ST20-JEI Ethernet connection 77
6.3 ST Micro Connect USB connection . 78
6.4 ST Micro Connect Parallel port connection. 79
6.5 ST20-JEI and STMicro Connect trouble-shooting 80
6.6 ST20-JPI Parallel port connection . 80
6.7 Defining a simulator target . 85

7 st20run .87

7.1 Starting st20run. 87
7.2 Debugging. 91
7.3 Commands . 103

8 Debugger graphical interface .111

8.1 Starting the graphical interface . 111
8.2 Windows . 111

9 ROM systems .143

9.1 ROM system overview . 144
9.2 An example program and target configuration 145
9.3 Multiple programs . 149
9.4 Callbacks before and after the poke loop in romload() 153
9.5 STLite/OS20 awareness . 154

Part 3 - STLite/OS20 Real-Time Kernel .155

10 Introduction to STLite/OS20 .157

10.1 Overview. 157
10.2 Classes and Objects . 160
10.3 Defining memory partitions . 162
10.4 Tasks . 162
10.5 Priority. 162
10.6 Semaphores . 163
10.7 Message queues. 163
10.8 Clocks . 163
iv ADCS 7143840G

Contents
10.9 Interrupts .164
10.10 Device ID .164
10.11 Cache .164
10.12 Processor specific functions. .164

11 Getting Started with STLite/OS20 . 165

11.1 Building for STLite/OS20 .165
11.2 Starting STLite/OS20 Manually .171

12 Kernel . 173

12.1 Implementation. .173
12.2 Time logging. .174
12.3 STLite/OS20 kernel .175
12.4 Kernel header file: kernel.h .175

13 Memory and partitions . 177

13.1 Partitions .177
13.2 Allocation strategies .178
13.3 Pre-defined partitions .179
13.4 Obtaining information about partitions .181
13.5 Partition header file: partitio.h. .181

14 Tasks . 183

14.1 STLite/OS20 tasks .183
14.2 Implementation of priority and timeslicing .184
14.3 STLite/OS20 priorities .186
14.4 Scheduling .187
14.5 Creating and running a task .188
14.6 Synchronizing tasks .189
14.7 Communicating between tasks .189
14.8 Timed delays .189
14.9 Rescheduling .190
14.10 Suspending tasks .190
14.11 Killing a task .191
14.12 Getting the current task’s id .192
14.13 Stack usage .192
14.14 Task data .194
14.15 Task termination. .195
14.16 Waiting for termination .196
14.17 Deleting a task .196
14.18 Task header file: task.h .197
ADCS 7143840G v

Contents
15 Semaphores .199

15.1 Overview. 199
15.2 Use of Semaphores . 201
15.3 Semaphore header file: semaphor.h. 202

16 Message handling .203

16.1 Message queues. 203
16.2 Creating message queues . 204
16.3 Using message queues . 206
16.4 Message header file: message.h . 207

17 Real-time clocks. .209

17.1 ST20-C1 clock peripheral . 209
17.2 The ST20 timers on the ST20-C2 . 209
17.3 Reading the current time. 210
17.4 Time arithmetic . 210
17.5 Time header file: ostime.h. 212

18 Interrupts .213

18.1 Interrupt models . 213
18.2 Selecting the correct interrupt handling system 215
18.3 Initializing the interrupt handling support system 217
18.4 Attaching an interrupt handler in STLite/OS20 218
18.5 Initializing the peripheral device . 220
18.6 Enabling and disabling interrupts . 221
18.7 Example: setting an interrupt for an ASC . 222
18.8 Locking out interrupts . 223
18.9 Raising interrupts . 223
18.10 Retrieving details of pending interrupts. 224
18.11 Clearing pending interrupts. 224
18.12 Changing trigger modes . 224
18.13 Low power modes and interrupts . 225
18.14 Obtaining information about interrupts . 225
18.15 Uninstalling interrupt handlers and deleting interrupts 226
18.16 Restrictions on interrupt handlers . 226
18.17 Interrupt header file: interrup.h . 227

19 Device information. .229

19.1 Device ID header file: device.h . 229
vi ADCS 7143840G

Contents
20 Caches . 231

20.1 Introduction. .231
20.2 Initializing the cache support system .231
20.3 Configuring the caches. .232
20.4 Enabling and disabling the caches. .232
20.5 Locking the cache configuration. .233
20.6 Example: setting up the caches .233
20.7 Flushing and invalidating caches .233
20.8 Cache header file: cache.h. .234

21 ST20-C1 specific features. 235

21.1 ST20-C1 example plug-in timer module. .236
21.2 Plug-in timer module header file: c1timer.h .238

22 ST20-C2 specific features. 239

22.1 Channels .240
22.2 Two dimensional block move support .246

Appendices . 249

A Hardware breakpoint allocation. 251

A.1 DCU2 hardware .251
A.2 DCU3 hardware .252

B Glossary . 253

Index . 259
ADCS 7143840G vii

Contents
viii ADCS 7143840G

 Preface
Preface
This manual is the user manual for the R1.9 release of the ST20 Embedded Toolset,
which can be run on the following hosts:

• PC running Windows 95/98/2000/NT,

• PC running Red Hat Linux V6.2;

• Sun 4 running Solaris 2.5.1 or later.

Note: the ST Visual product is only available on Windows and Solaris platforms. The
EMI configuration tool stemi is available on Windows, see the Delivery Manual for
licensing details.

About this document set

The document set provided with the toolset comprises:

• ST20 Embedded Toolset Delivery Manual (ADCS 7257995) - provides
installation instructions, a summary of the release and a list of changes since
the previous revision.

• ST20 Embedded Toolset User Manual (this manual). The User Manual is
split into three parts:

• Part 1 presents introductory material comprising an overview of the
toolset and a ‘getting started’ guide.

• Part 2 describes how the core features of the toolset are used to build
and run application programs. The guide includes compiling and
linking, connecting to a target, loading programs, application
debugging and ROM systems.

• Part 3 is a user guide for the STLite/OS20 real-time kernel. This part
also starts with an overview and ‘getting started’ and then contains
separate chapters for each of the main features supported, that is the
kernel, memory and partition management, tasks, semaphores,
message queues, real-time clocks, interrupts, as well as the device,
cache and core-specific functions.

• ST20 Embedded Toolset Reference Manual (ADCS 7250966) - the
reference manual is divided into five distinct parts:

• ‘Advanced facilities’ describes each of the support tools provided with
the toolset, for example, an assembler, EMI tool, librarian, lister, and
ST20 instruction set simulator. It also describes facilities such as code
and data placement, the stack depth and memory map files, the use of
relocatable code units, profiling and trace facilities, using st20run
with STLite/OS20 and the advanced configuration of the STLite/OS20
kernel.

• A language reference describes how the ANSI C and C++ languages
have been implemented by the toolset and provides details of the
toolset’s preprocessing facilities.
ADCS 7143840G ix

 Preface
• A library reference provides definitions of the toolset libraries.

• An STLite/OS20 reference provides definitions of the STLite/OS20
real-time kernel functions.

• A complete command language reference describes the command
language shipped with the toolset and provides an alphabetical list of
command definitions.

• ST Visual Documentation Set - provides the following titles:

• ST Visual Make Getting Started Guide

• ST Visual Make User’s Guide

• ST Visual Other Tools

Conventions used in this manual

The following typographical conventions are used in this manual:

Command line conventions

Example command lines and directory path names are documented using UNIX/Linux
style notation which makes use of the forward slash ‘/’ delimiter. In most cases this
should be recognized by Windows hosts, if not the forward slash should be substituted
with a backslash character ‘\’. For example, the directory:

release/examples/simple

is the same as:

release\examples\simple

Command line options are prefixed by a ‘-’ hyphen; this is Windows, UNIX and Linux
compatible.

Bold type Used to denote special terminology, for example register or pin names.

Teletype Used to distinguish command options, command line examples, code
fragments, and program listings from normal text.

Italic type In command syntax definitions, used to represent an argument or
parameter. Used within text for emphasis and for book titles.

Braces {} Used to denote a list of optional items in command syntax.

Brackets [] Used to denote optional items in command syntax.

Ellipsis ... In general terms, used to denote the continuation of a series. For
example, in syntax definitions denotes a list of one or more items.

| In command syntax, separates two mutually exclusive alternatives.

A change bar in the left margin, indicates a change from the previous
version of the manual. This may indicate a change in the functionality
of the toolset or merely an updated description.
x ADCS 7143840G

 Preface
Examples of the debugging tools use the following convention to distinguish command
prompts:

‘%’ is used to indicate the operating system command prompt, for example:

% st20run

‘>’ is used to indicate the interactive command language prompt, for example:

> break
ADCS 7143840G xi

 Preface
xii ADCS 7143840G

 Part 1 - Introduction
Part 1 - Introduction
ADCS 7143840G 1

 Part 1 - Introduction
2 ADCS 7143840G

1 Toolset overview
1 Toolset overview
The ST20 Embedded Toolset supports the programming and debugging of ST20
silicon devices with a Diagnostic Controller Unit (DCU) and the ST20-C1 or C2
processor cores.

1.1 Key features

• PC Windows 95/98/2000/NT, Sun 4 Solaris 2.5.1 and Red Hat Linux V6.2
hosted toolsets.

• Development tools and support libraries, include:

• ANSI C compiler/linker driver tool st20cc, allowing the compilation
and linking of multiple files with a single tool invocation;

• Support for dynamically loadable code;

• Assembler;

• Librarian st20libr;

• Lister tool st20list;

• External memory interface configuration tool stemi, (Windows only);

• ST20 instruction set simulator providing trace and cycle time statistics;

• Full ANSI C library;

• ST20-specific libraries for mathematics and debugging;

• Bootstrap libraries;

• C++ support tools and libraries.

• Extensive diagnostic facilities, include:

• A combined loader and windowing debugger st20run, that enables:

• Code to be loaded and run on ST20 silicon or simulator targets;
• Interactive debugging, tracing and profiling;
• Use of breakpoints and watchpoints for debugging;
• The creation and display of instruction traces.

• File I/O in diagnostic mode.

• STLite/OS20 Real-time multi-tasking kernel supports specific ST20-C1/C2
core features and facilitates portability of programs between ST20 platforms.

• A powerful and common command language interface provides:

• Flexible control of linking;

• Creation of debugging scripts;

• Fine grain code and data placement.

• Two modes of booting:

• Boot-from-ROM;

• Boot via diagnostic controller (DCU) - diagnostic mode.
ADCS 7143840G 3

1.2 Toolset architecture
1.2 Toolset architecture

The ST20 Embedded Toolset architecture is described below in terms of developing a
C program. C++ development is described in Chapter 4.

The ST20Embedded Toolset architecture for developing C programs can be divided
into the following groups of tools:

• Tools to compile and link a program for blowing onto ROM, accessed via
st20cc;

• Debugging tools for testing a program under development, accessed via
st20run and st20sim the ST20 instruction set simulator;

• Support tools, such as the librarian and lister tools st20libr and
st20list.

Figure 1.1 shows the overall architecture of the ST20 Embedded Toolset.

Figure 1.1 ST20 Embedded Toolset architecture for ANSI C

st20icc

.c

.h

.s

st20link

.tco

.map.cfg

st20cc

.hex .bin .mot ROM
blower ROM

st20libr

.tco .lib

.lib

simulator

debug

.hex

.lku

LOAD

LOAD

DCU
.cfg

.s
Preprocessed

profile

st20run

.cfg

.c

.lib

st20listANY DISPLAY

Host/target
Host

interface

Note: File extensions are explained in Chapter 3.

.dbg

.rcu

output †

† Preprocessed output is sent to standard out

interface
boardstemi.cfg

.cfg .cfg

.cfg
4 ADCS 7143840G

1 Toolset overview
1.2.1 st20cc driver tool

st20cc acts as a wrapper for an ANSI C compiler and a compacting linker. It provides
a single tool interface to the compilation and linking phases of development,
simplifying the command line and reducing the number of development steps.

st20cc takes C source and assembly code, compiles it and links it with any object or
library file specified as input, to produce a file in one of the formats described in
section 1.2.7.

st20cc is described in detail in Chapter 3.

1.2.2 st20run program load, run and debug tool

st20run is a multi-purpose diagnostic tool which enables applications to be loaded
and run on either silicon or a simulator. It includes a debugger Graphical User
Interface (GUI). st20run is described in detail in Chapter 7.

1.2.3 st20libr librarian

st20libr takes as input object files or existing libraries and combines them into a
single library file which can then be passed to the linker. st20libr is described in
detail in the "ST20 Embedded Toolset Reference Manual".

1.2.4 stemi configuration tool

stemi generates configuration values for ST External Memory Interface (EMI)
devices. The tool requires a PC host running Windows and is described in the "ST20
Embedded Toolset Reference Manual".

1.2.5 st20list lister

st20list is a file lister. It can display most of the file types used by the toolset and
has options to modify the display format. st20list is described in detail in the "ST20
Embedded Toolset Reference Manual".

1.2.6 st20sim simulator

st20sim is the ST20 Embedded Toolset instruction set simulator, which simulates a
ST20-C1 or ST20-C2 processor core. It can generate trace data and cycle time
statistics and may be invoked directly or as a target for st20run. st20sim is
described in detail in the "ST20 Embedded Toolset Reference Manual". Access via
st20run is described in Chapter 6 and Chapter 7.
ADCS 7143840G 5

1.2 Toolset architecture
1.2.7 Loadable file types

The toolset can produce loadable output in the following formats:

• ROM image files in one of a number of standard ROM image formats. A ROM
image file is suitable for blowing directly into a ROM.

• Linked unit files, which can be loaded at run-time. These files are used during
development when the overhead of producing ROMs is undesirable or when
the final system architecture is not yet fixed. They can be loaded onto ST20
silicon or simulator targets.

• Relocatable code units that can be loaded dynamically at runtime.

All three output types can be debugged using st20run.

1.2.8 Diagnostic controller unit

ST20 parts include a Diagnostic Controller Unit (DCU). This is the interface for loading
and debugging code. Toolsets versions R1.8.1 and earlier, only support parts with a
DCU2. This toolset also supports ST20 parts (such as the STV0396 and the STi5514)
that include the DCU3 which provides improved debugging facilities.

This toolset release does not make significant use of the new features that DCU3
provides over DCU2, but it supports all the tools’ functionality provided in previous
toolsets on both DCU2 and DCU3 based devices.

1.2.9 Host interface

The toolset supports connections from the following hosts:

• a Sun workstation running Solaris 2.5.1 or later;

• a PC running Windows 95/98/2000/NT;

• a PC running Red Hat Linux V6.2.

A hardware target will generally be an ST20 development board with a JTAG test
access port (TAP) connected to an on-chip Diagnostic Control Unit (DCU). There are
several methods of connecting the development board to the host:

• All hosts (Solaris, Windows and Linux) may be connected to the target
hardware via Ethernet.

• PC Windows hosts may also be connected using the host parallel port.

• Windows 98 and Windows 2000 hosts may be connected to the target
hardware using the host Universal Serial Bus port (USB).

Chapter 6 describes the various options for interfacing to the target hardware.

In the remainder of this document Solaris hosts are usually referred to as UNIX hosts.
6 ADCS 7143840G

1 Toolset overview
1.3 Command language

A common command language is supported by the tools st20cc, st20run,
st20sim, st20libr and stemi. Each of these tools uses a subset of the command
language and certain key commands are recognized and used by more than one tool.
The command language is described in the "ST20 Embedded Toolset Reference
Manual".

Commands may be submitted to a tool:

• indirectly via a command file, this is a text file containing a list of commands
and optional comments,

• or, in the case of the st20run debugging interface, interactively at the
command line or via the debugging graphical interface.

In general, if a command is submitted which a particular tool does not use then the
tool will ignore the command and proceed. Note: any exceptions to this are
documented on a command basis in the "ST20 Embedded Toolset Reference
Manual".

Command files may be specified on a tool command line by specifying the appropriate
command line option; they may also be nested within other command files by using
the include command.

The command language supports different types of commands, including:

• file access, (for example to include a named file);

• system definition, (for example to define the target);

• system configuration, (for example to allocate memory regions);

• action commands, (for example to initialize a memory location or set a
breakpoint.)

The term target is used to describe either the hardware or simulator that will run the
application, or a definition of the hardware or simulator, including the processor type
and memory.

1.3.1 Command procedures

It is very useful to group commands which perform a particular task into a command
procedure, which may then be called as required. Command procedures are similar to
C functions. Each procedure is given a name and executes one or more commands.

Procedures have the following format:

proc procedure_name {
command list

}

For example, a command procedure might contain all the command language
commands used to link and run an application on a particular target. Alternatively a
collection of procedures might be written to define a number of targets.The target
command which is used to specify a target to st20run requires a command
procedure defining the target.
ADCS 7143840G 7

1.3 Command language
Within this manual, command procedures which are used to define, build or load a
system are also known as ‘configuration procedures’. Typically they contain the
commands which define the target and the application and are used as input to
st20cc. They may also contain the commands which st20run uses to load code.

Command procedures may be grouped together into one or more command files also
known as ‘configuration files’. It is good practice to give configuration files a standard
file extension; the toolset uses the extension .cfg. Default configuration files for ST20
chip variants and evaluation boards are supplied with the toolset and may be used to
run the supplied example programs. Note: user command files must not use the same
names as the default command files supplied in the directory $ST20ROOT/stdcfg,
see section 1.4.

Command procedures facilitate flexibility, enabling design definitions to be reused and
shared. Systems may be easily reconfigured by calling a different command
procedure and default platforms can be established by making a set of procedures
globally visible, see section 1.4.1. The design process is simplified by having the
ability to build up a single command procedure which may be input to each tool in the
design cycle. Only those commands relevant to the particular tool will be executed.

Example

proc fax {
 chip STi5512
 memory EPROM 0x70000000 (16 * K) ROM
}

In this example the procedure fax defines an STi5512 chip with 16 Kbytes of EPROM
starting at address 0x70000000.

Calling command procedures

In order to call a particular command procedure, the procedure must first be defined. If
it is defined in a command file, the file must first be made known to the tool. This is
achieved by:

• specifying the command file on the command line, or

• referencing the command file with an include command:

• from st20run in interactive mode;

• from another command file which is then made known to the command
line;

• from a defaults file which is on the toolsets search path, as described
in section 1.4.1.

The required command procedure can then be simply called by name, either from
another command file or on the command line. For example:

st20cc hello.c -T hello.cfg -p phone
8 ADCS 7143840G

1 Toolset overview
Where: hello.c is the application source file,

-T hello.cfg specifies a command file which contains:

proc phone {
.....
}

and -p phone calls the procedure phone which is defined in hello.cfg.

1.4 Toolset environment

Assuming the toolset is correctly installed, the following set -up should be complete:

• Your path should be set up to find the bin directory in the release directory.

• The environment variable ST20ROOT should be set to the root of the
installation.

• A start-up script must be installed as described in section 1.4.1. This file
contains some predefined command procedures, and is read by st20cc,
st20run, st20sim and st20libr, on start-up. This file is necessary for the
correct operation of the tools.

• The directory stdcfg should be installed in the release directory. This
directory contains the default configuration files introduced in section 1.3.1.

• The directory board should be installed in the release directory. This directory
contains target configuration files that will work on a selection of ST20 devices
and evaluation boards.

• The directory examples should be installed in the release directory. This
directory contains the example files supplied with the toolset.

Details of how to install the toolset and set up the toolset environment variables are
included in the ‘Delivery Manual’ which accompanies this release.

1.4.1 Start-up command language scripts

Up to three command language scripts are automatically executed on starting up the
tools that support the command language: st20cc, st20run, st20sim, st20libr
and stemi. On starting up, these tools will try to find and execute a script in each of
three start-up command files. On a Sun running Solaris or PC running Linux, they will
search for and execute the following start-up files in the following order:

1 st20rc in the directory named by the environment variable ST20ROOT;

2 .st20rc in your home directory (defined by the environment variable HOME);

3 .st20rc in the current directory.

On a PC running Windows, the tools will search as follows:

1 st20rc in the directory named by the environment variable ST20ROOT;

2 st20.rc in the directory named by the environment variable HOME;

3 st20.rc in the current directory.
ADCS 7143840G 9

1.5 Toolset version
Note: under Windows the HOME environment variable is set by the user, for
example:

set HOME=C:\home

Under WindowsNT, if HOME is not set, then the home directory is derived from
the system environment variables HOMEDRIVE and HOMEPATH as in the
concatenation: %HOMEDRIVE%%HOMEPATH%.

The start-up command language script in the st20rc file in the toolset directory
named by the environment variable ST20ROOT is supplied with the toolset and care
must be taken not to overwrite or delete any of the commands or procedures supplied
in this file. It is permissible for you to add commands and procedures to this file. Due
to the order in which the files are executed it is also possible to overwrite values
defined in the start-up file in the root directory file by values defined in the start-up files
in either the home or current directory. Similarly values defined in the start-up file in
the current directory may overwrite those defined in either the root or home
directories.

Command language scripts placed in one of these files will be executed whenever
st20cc, st20run, st20sim, st20libr or stemi starts up. This is a powerful
facility for making command procedures globally visible and easy to share. Default
command and configuration files should be placed in the appropriate start-up
command file.

Example

st20rc start-up file
include boardprocs.cfg
include targets.cfg

In this example the configuration file boardprocs.cfg is supplied with the toolset in
the board directory. It contains configuration procedures for common ST evaluation
boards.

1.5 Toolset version

The command st20toolsetversion can determine the toolset version for ST20
toolset version R1.9 and later releases. See the alphabetical list of commands in
Part 5 of the "ST20 Embedded Toolset Reference Manual".

Toolset versions R1.6.2 to R1.8.1 can be determined by writing a procedure to probe
the availability of particular commands in the toolset. An example procedure for
identifying early toolset versions is provided in the scripts subdirectory within the
examples directory supplied with the toolset.
10 ADCS 7143840G

2 Getting started with the tools
2 Getting started with the tools
2.1 Introduction

This chapter gives step-by-step instructions on how to use the tools to compile and
run a simple example program. It shows you how to:

• build a program as a linked unit (see section 1.2.7) and run it on silicon and the
simulator;

• use configuration files to control the compile/link tool st20cc and the program
load/debug tool st20run;

• use configuration files to place code and data in memory;

• share target definitions;

• create your own defaults;

• build and debug a ROM system.

The toolset must be installed before attempting the examples. Installation details for
the toolset are included in the ‘Delivery Manual’ which accompanies this release.

The examples described in section 2.2 through to section 2.5 build a linked unit using
st20cc and then download it to the target using st20run. A linked unit is used for a
rapid turnaround build-debug cycle, where the entire program is loaded from a host
and executed out of RAM. The example given in section 2.6 describes how to
generate a ROM image file. A ROM image file can be downloaded to the target by
st20run or can run stand-alone.

2.1.1 Example files

A set of example files is provided with the release, in the examples subdirectory of
the release directory. Copy the examples directory tree to a local working directory.
The examples used in this chapter can be found in the getstart subdirectory of the
examples directory.

The examples demonstrate the ease with which an application can be built and run on
both the simulator and silicon. The examples are based around a STi5500 device
which has a ST20-C2 core and runs on an EVAL-5500 demonstrator board.
Modification of the examples to run on an alternative device or board is straightforward
and is discussed in section 2.1.2.

The STi5500 has 4K of internal memory starting at 0x80000000, and the first 320
bytes are reserved for the processor’s use. The EVAL-5500 board has 4 Mbytes of
external DRAM starting at 0x40000000. A ROM generation example assumes a target
with a further 512 Kbytes of ROM starting at 0x7FF80000. The memory map is shown
in Figure 2.1.
ADCS 7143840G 11

2.1 Introduction
Figure 2.1 Memory map for ST20-C2 example

2.1.2 Using an alternative target

If you want to build a program to run on an alternative target you will need to change
the configuration information that is passed to st20cc and st20run. The example
file st20tp3.cfg contains the definitions for an ST20-TP3 device in an appropriate
ST evaluation board and st20dc1.cfg contains the relevant definitions for an
ST20-DC1 device. To use the ST20-TP3 in the above examples, simply replace
instances of sti5500.cfg, eval5500 and eval5500sim with st20tp3.cfg,
evaltp3 and evaltp3sim respectively.

In addition you may need to copy and edit the target definitions given in the supplied
examples. Details of how to use the target command are given in Chapter 6.

2.1.3 Configuration

The use of configuration files and procedures is explained in Chapter 5. Commands
are grouped together into procedures which together form a configuration file. When
st20cc or st20run is invoked, a configuration file and a command procedure are
specified on the command line and the tool will execute the specified command
procedure, which may in turn call other command procedures.

The tools use a common target description together with other details which are
specific to a particular tool. For example, st20cc needs to know details about the
stack and heap requirements of the program, while st20run needs to know about the
target connections, see Figure 2.2.

80000000

40000000

7FF80000

7FFFFFFF
ROM (512 Kbytes)

DRAM (4 Mbytes)

40400000

80000140SRAM (4 Kbytes)

80001000
12 ADCS 7143840G

2 Getting started with the tools
Figure 2.2 High-level overview of a configuration file

The toolset has a flexible approach to how command procedures are grouped within
configuration files, so that each system can organize its configuration files to reflect its
particular requirements.

2.2 Building and running with an STi5500 device

In practice you will need to use a target definition that represents your target system.
The examples in this section target an STi5500 and use an appropriate ST evaluation
board. In order to use this target, its description must be supplied to the tools.

The example consists of the following files, found in the getstart subdirectory of the
examples directory:

• hello.c : Program source code.
• sti5500.cfg : Command file describing the target configuration.

2.2.1 Running the program on silicon

The development steps to build, run and debug the program are as follows.

1 Compile and link for an STi5500:

st20cc hello.c -T sti5500.cfg -p link -g

where:

hello.c : The program to be compiled and linked.
-T sti5500.cfg : Specifies the command file which describes the

hardware and application configuration.
-p link : Specifies the command language procedure to

execute. This is found in sti5500.cfg.
-g : Includes information for debugging

The command file sti5500.cfg specifies the target hardware and the
memory requirements for the stack and heap of the program. The resultant
linked unit file will be called hello.lku.

Target
description

st20cc
specific

command

st20run
specific

command

Configuration file

procedures procedures

References
ADCS 7143840G 13

2.3 Code and data placement example
2 To run the program on an appropriate ST evaluation board, use the st20run
command line as follows:

st20run -i sti5500.cfg -t eval5500 hello.lku

where:

-i sti5500.cfg : Specifies the configuration file
-t eval5500 : Specifies the hardware target to run the program on.
hello.lku : The linked unit to be loaded.

3 To debug the program with graphical user interface (GUI), use the st20run
command line as follows:

st20run -i sti5500.cfg -t eval5500 hello.lku -g

When the debugger is invoked with a linked unit and the -g or -d option on the
command line, a breakpoint is set on main() and the program is run until this
breakpoint is hit. Step the program with the Step button (located on the ‘Code
Window’) and note that the program’s output appears in the Xterm (Unix and
Linux) or DOS (Windows) window.

Select Exit: no save in the File menu of the Code Window to close the
debugger GUI.

Using an alternative target such as the ST20-TP3 is described in section 2.1.2.

2.2.2 Running the program on the simulator

The program may be run on the simulator by making some simple changes to the
st20run command line:

1 Compile and link as in section 2.2.1.

2 On the st20run command line replace the target eval5500 with
eval5500sim as follows:

st20run -i sti5500.cfg -t eval5500sim hello.lku

3 To debug the program on the simulator, use the command line:

st20run -i sti5500.cfg -t eval5500sim hello.lku -g

2.3 Code and data placement example

This example uses a modified version of the simple hello.c which includes some
data elements. It illustrates the use of the place command which changes the default
placement of a program component in memory. The following example files are used
and may be found in the getstart subdirectory of the examples directory:

• helloplc.c : Program source code.
• sti5500.cfg : Command file describing the application without

placement.

In order to demonstrate the place statements we first build the program using the
default memory mapping, then build the program with placement directives and
compare the resultant memory mappings.
14 ADCS 7143840G

2 Getting started with the tools
2.3.1 Building the linked unit

This is performed in the same way as in the example in section 2.2.1, except that an
option is added to generate a map file for demonstration purposes:

1 Compile and link for an EVAL-5500:

st20cc helloplc.c -T sti5500.cfg -p link -g -M hello.map

where everything is as before except:

-M hello.map : Specifies the name of the map file.

2 Compile and link for a EVAL-5500 using placement directives:.

st20cc helloplc.c -T sti5500.cfg -p placelink -g -M place.map

where everything is as before except:

-p placelink :Link procedure with place commands
-M place.map :Specifies the name of the new map file.

3 Compare the map files:

hello.map : Shows default placements.
place.map : Shows placement using command in place.cfg.

Note the address of all the default sections and the symbols main, bill and
fred.

Look at the procedure placelink in the file sti5500.cfg. This calls the procedure
link, which we used for the example in section 2.1.1, and then places all default non
zero-initialized data in internal memory, all default zero-initialized data (BSS) in
internal memory and all code for the module helloplc.c in internal memory.

2.4 Sharing target definitions

In a multi-user environment it is useful to share target definitions so that all developers
are working from a common base. This example shows how to achieve this. The
example consists of the following files found in the getstart subdirectory of the
examples directory:

• hello.c : Program source code.
• sti5500.cfg : Command file describing the application configuration.

In this example a configuration file is moved to a common area and this area is made
known to the tools

2.4.1 Move to a common directory

Move sti5500.cfg to a common directory, such as /st20tools/sharecfg.
ADCS 7143840G 15

2.5 Creating your own defaults
2.4.2 Start-up file

All the tools read a standard configuration file in your home directory on start-up. This
file is called .st20rc for UNIX and Linux platforms or st20.rc for Windows
platforms, (see section 1.4.1). Under Windows, the home directory is specified by the
HOME environment variable.

An example start-up file called st20rc is included in the getstart subdirectory of
the examples directory. This file should be copied to your home directory, for
example:

cp st20rc $HOME/.st20rc (UNIX and Linux)
copy st20rc %HOME%\st20.rc (Windows)

This start-up file contains the following command:

directory /st20tools/sharecfg

If your default configuration files are in a directory other than the one given above then
you will need to modify the directory command accordingly.

2.4.3 Building and running a program

This is exactly the same as before except that this time the tools will find the common
file sti5500.cfg.

2.5 Creating your own defaults

The toolset is supplied with default definitions of simple simulator targets which can be
found in the directory stdcfg in the release directory. It is easy to create your own
defaults and this example shows how to achieve this.

The filename for any user configuration file must be different to those supplied the
stdcfg directory. For example, you may create target definitions in a file
mydefs.cfg. This may be shared by placing it in a shared directory (for example /
st20tools/sharecfg) or may be kept personal by placing it in a private directory.
This configuration file may be included by placing the following line in your start-up file
after any relevant directory command (see section 2.4.2):

include mydef.cfg

(The start-up file is called .st20rc under UNIX and Linux or st20.rc under
Windows). Your new defaults will then be seen by the toolset.
16 ADCS 7143840G

2 Getting started with the tools
2.6 Creating a ROM image

Creating a ROM image is very similar to creating a linked unit file. The difference is
that ROM loader code must be linked with the application instead of DCU loader code.
This is done by specifying the output format for a ROM image to st20cc. In the
example below, a ROM image is built, and then run on the simulator and then run on
target hardware. This example only works when run via st20run as the ROM image
produced does not perform the pokes for the External Memory Interface. See
Chapter 9 for a fuller description of stand alone ROM systems.

Note: Running this example on EVAL-5500 requires the FLASH memory to be
‘burned’ with the ROM image hello.hex. An example flash burn program is provided
in the flash subdirectory of the examples directory.

1 Compile and link for an EVAL-5500 ROM:

st20cc hello.c -T sti5500.cfg -p link -g -M hello.map -romimage

where:

hello.c : The program to be compiled and linked.
-T sti5500.cfg : Specifies the command file which describes the

hardware and application configuration.
-p link : Specifies the command language procedure to

execute.
-romimage : Specify that the output file should be a ROM image.

By default this is in hexadecimal format.

The command file sti5500.cfg specifies the target hardware and the stack
and heap requirements of the program.

Note: the ROM file generated is called hello.hex, and contains all ROM
segments in the target description (in this case there is only one ROM
segment).

Open the map file and note that the program code, def_code, has been
placed with an attribute MVTORAM. This indicates that the bootstrap will move
the code from ROM to RAM before it is executed.

2 Run the program on the simulator:

ROM files can be executed on a simulator using st20run, but not from the
command line. Using st20run in interactive debugging mode the following
can be used:

st20run -i sti5500.cfg -t eval5500sim -d
>fill hello.hex
>go
>quit

where:

-i sti5500.cfg : Specifies the command file containing the target
definitions.

-t eval5500sim : Specifies the simulator target to run the program on.
ADCS 7143840G 17

2.6 Creating a ROM image
-d : Specifies interactive mode.
>fill hello.hex : Loads the hex file into memory.
>go : Starts the hex file executing.
>quit : Exits st20run.

3 Run the program on the EVAL-5500 target hardware without the debugging
GUI:

To run the program from ROM (in which the image hello.hex has been
burnt) we must connect to the target:

st20run -i sti5500.cfg -t eval5500 -d

>go : Starts the hex file executing.
>quit : Exits st20run.

where:

-i sti5500.cfg : Specifies the command file containing the target
definitions.

-t eval5500 : Specifies the target to connect and run.
-d : Specifies interactive mode.

4 Debug the program on the EVAL-5500 target hardware with the debugging
GUI:

To debug the program in ROM with the debugger we must connect to the
target, tell the debugger about the program contained in the ROM and set
breakpoints as necessary:

st20run -i sti5500.cfg -t eval5500 -g hello.dbg

Bring up the Command Console Window (by selecting in the Windows menu)
and type:

>break -h main : Sets a breakpoint on main.
>go : Starts the hex file executing.

where:

-i sti5500.cfg : Specifies the command file containing the target
definitions.

-t eval5500 : Specifies the target to connect and debug.
-g : Specifies graphical interface mode.

See Chapter 9 for a detailed discussion and full example of ROM debugging.
18 ADCS 7143840G

 Part 2 - Building and running programs
Part 2 - Building and running programs
ADCS 7143840G 19

 Part 2 - Building and running programs
20 ADCS 7143840G

3 st20cc compile/link tool
3 st20cc compile/link tool
3.1 Introduction

This chapter describes the compile/link tool st20cc. The chapter gives details of the
command line options to run the tool and describes different modes of invoking the
tool.

st20cc is the driver program to an ANSI C compiler, C++ preprocessor and a
compacting linker. st20cc provides a simple single tool interface which enables you
to compile and link your source files to generate:

• a fully developed design in the form of a ROM image suitable for blowing into
ROM and running on a ST20 processor;

• a development system in the form of a linked unit, which can then be
debugged using st20run, and loaded and run on a variety of ST20 targets
including a simulator and processor cores;

• a relocatable code unit (RCU) that can be dynamically loaded at runtime.

st20cc takes as input user code in the form of C or C++ source, assembly source,
object files or libraries, and produces object files, linked units, ROM image files or
relocatable code units. st20cc is driven by both command line options and a
powerful command language which determine the compilation and linkage performed
and the type of output file produced.

Figure 3.1 shows st20cc in the context of the ST20 Embedded Toolset development
model.

Figure 3.1 st20cc development model

Note: information which pertains solely to C++ programs is described separately in
Chapter 4. This chapter should still be read by C++ developers, as it is still broadly
relevant and contains details of command line options which are common to both C
and C++.

st20cc

ROM

ROM

blower

st20run

Compile
and link

ROM
image

Linked
unit

RCU

Development ST20 target

Program

ProgramLoad and
debug
ADCS 7143840G 21

3.2 Command line syntax
3.1.1 Summary of default behavior

By default st20cc will:

• Look for and execute a start-up command language script as described in
section 1.4.1.

• Preprocess, assemble or compile and then link input files, generating a linked
unit in the current directory.

• Compile/assemble as directed by input file suffix, for example, a .c file
compiles as ANSI C, a .cxx file is compiled as C++ and a .s file is
assembled. See section 3.2.6 and section 4.2.

• Apply local optimizations if applicable and optimize in favor of speed rather
than optimum memory usage.

• Append debugging data to assembly files or minimal debugging data to C
source files.

• Display any warning messages during compilation.

The following sections describe the options which modify this default behavior of
st20cc.

3.2 Command line syntax

To invoke st20cc use the following command line:

➤ st20cc {options | operands}

where options is a list of options given in Table 3.1 and operands is a list of input files.
Allowable file types are listed in Table 3.2. Filenames may have the following format:

• The first character of a filename may be:

• alphanumeric

• an underscore ‘_’

• Subsequent characters may be:

• alphanumeric

• an underscore ‘_’

• a commercial at sign ‘@’

• a percentage sign ‘%’

If no input files are specified either directly or indirectly via the command line, and the
-V option is not specified, then a brief help page is written to the standard error
output. A full help page may be displayed by specifying the -help option. If no input
files are specified via the command line, and the -V option is specified, then the
version string of st20cc is written to standard error output.

If either the -V or -help options are specified on the command line then all other
options are ignored.
22 ADCS 7143840G

3 st20cc compile/link tool
3.2.1 Command options

Options may be:

• entered using the environment variable ST20CCARG, see section 3.2.9.

• entered directly on the command line,

• entered indirectly via a command file, see section 3.5.4.

If all three methods are used, options will be executed in the above order.

A detailed description of the st20cc options is given in Table 3.1. For C++ users,
additional options are available which are listed in Table 4.2.

Option Description

-A
Assemble the input file to produce an object file. The compiler phase is
suppressed.

-B directory Specify the directory containing the tools called by st20cc.

-C
Run the preprocessor and then terminate. The preprocessed source file
is sent to standard output. Compilation is suppressed. Comments are
preserved in the preprocessed output.

-D name[=value]

Define a name. If the value is given then a name is defined and assigned
that value. This has the same effect as the #define preprocessor
directive in the C language. See the “Preprocessing” chapter in the "ST20
Embedded Toolset Reference Manual".

-EDU
Force processing of -D (define) before -U (undefine). See the
“Preprocessing” chapter in the "ST20 Embedded Toolset Reference
Manual". †

-H Display file searching diagnostics for #include preprocessor directives.

-I directory Add directory to the list of directories to be searched for source files in
#include preprocessor directives.

-L directory Add directory to the list of directories to be searched for libraries. This
option is passed to the linker.

-M mapfile Generate a module information file called mapfile. This option is passed
to the linker.

-MA Sort symbols in the map file by address.

-MM Sort symbols in the map file by the associated module/library name.

-MN Sort symbols in the map file by symbol name.

-MS Sort symbols in the map file by the defining source file name.

-N
Do not copy the debug information from the .tco files into the .dbg file.
See section 3.2.7.

-NS Do not execute any start-up command scripts. See section 3.5.1.

-O0 Disable optimization. See section 3.3.4.

-O1 Enable local optimization. This is the compiler default. See section 3.3.4.

-O2 Enable both global and local optimization. See section 3.3.4.

Table 3.1 st20cc options
ADCS 7143840G 23

3.2 Command line syntax
-P
Run the preprocessor and then terminate. The preprocessed source file
is sent to standard output. Compilation is suppressed.

-PPE
Run the preprocessor, generating #line output and then terminate. The
preprocessed source file is sent to standard output. Compilation is
suppressed.

-S

Compile each source file to assembly language and write it to a file.
Assembly is suppressed and no object files are produced. By default
output files are placed in the directory from which st20cc is invoked.
They are named after the corresponding source input files and given the
extension .s.

-T scriptfile Specify a command file. st20cc passes this option on to the linker.

-U name
Disable a name definition. This is equivalent to the #undef preprocessor
directive. See the “Preprocessing” chapter in the "ST20 Embedded
Toolset Reference Manual".

-V
Print version information on standard error as it executes. The default is
not to produce this information.

-V18-cmdline-order
Apply options in the order they would have been applied in R1.8 and
earlier toolsets. See section 3.2.2.

-Wtool arg1,arg2, ...

Pass the argument(s) as separate arguments to compilation and link tools
called by st20cc. Arguments must be separated by commas. tool can
be one of the following:
0 st20icc ANSI C compiler
1 st20link Toolset linker
3 st20edg C++ preprocessor
6 st20libr Toolset librarian
See Chapter 4 for further details of C++ tools.
See also, section 3.2.3.

-c

Produce an object file for each source file and suppress the linking phase
of the compilation. By default object files are placed in the directory from
which st20cc is invoked. They are named after the corresponding source
input files and given the extension .tco.
If this option is not specified, the default is to perform linking, and to remove
all intermediate object files.

-c1 Generate code for the ST20-C1 processor core.

-c2 Generate code for the ST20-C2 processor core.

-cpp Allow C++ style comments in the source file.

-debug-runtime

Link in the debug run-time kernel. The debug library is used instead of
the standard deployment library. This enables access to various runtime
kernel debugging features. Further details are provided under the heading
"Debug and deployment kernels" in section 3.2.5.

-depend [file] Generate makefile dependencies into the named file. See section 3.7.

-dl
Build an RCU with an entry point that returns import and export
parameters, see the "ST20 Embedded Toolset Reference Manual".

-e symbol Use symbol as the name of the main entry point address of the program.
st20cc passes this option to the linker.

Option Description

Table 3.1 st20cc options
24 ADCS 7143840G

3 st20cc compile/link tool
-falign number

Change the alignment for nested structs and unions to number of
bytes. See section 3.3.6 of this manual and the section “Changing the
alignment of structures and unions” in the “Implementation details”
chapter of the "ST20 Embedded Toolset Reference Manual".

-fcheck-macros Generate warning messages on #defined but unused macros. †

-fcheck-referenced
Report all externally visible functions and variables which are declared
but un-referenced and have file scope. †

-fcheck-side-effects
Provide information on how the compiler has treated routines with respect
to side-effects. †

-fdisable-device
Means volatile == access via device instructions. If you do not wish to
use this option then the pragma ST_device(ident) can be used, see
the "ST20 Embedded Toolset Reference Manual".

-fdisable-text
Disable checks for invalid text after #else or #endif preprocessor
directives. ANSI compliance check. †

-fdisable-type Disable checks for invalid type casts. ANSI compliance check. †

-fdisable-zero Disable check for zero sized arrays. ANSI compliance check. †

-filled
When generating a ROM image, cause all unused areas within the ROM
to be filled with the value 0xFF. This value may be changed using the -
filledval option. This option may not be used with the -rcu option.

-filledval value
Cause the byte value specified to be used when generating filled ROM
images. This is used in conjunction with the filled option. This option
may not be used with the -rcu option.

-finl-asm
Inline all functions which include __asm in their definitions.
-finl-functions must also be specified.

-finl-ffc Inline simple function calls that do not precede their call. This option can
only be used in conjunction with -finl-functions. See section 3.3.5.

-finl-functions
Inline all simple function calls that do precede their call and that meet the
inline function size criteria. See section 3.3.5.

-finl-none Do not inline-expand functions declared inline.

-finl-timeslice Insert timeslice instructions for code compiled for ST20-C1 targets.

-finlc count

Specify the maximum count of call sites for inlining a function. Inlining
stops when count is reached. Further information is given in section 3.3.5
under the heading “ Command line options for controlling function
inlining”.

-finll
Only inline functions which are in loops. Further information is given in
section 3.3.5 under the heading “ Command line options for controlling
function inlining”.

-finls size
Set the maximum function size for inlining. Further information is given in
section 3.3.5 under the heading “ Command line options for controlling
function inlining”.

Option Description

Table 3.1 st20cc options
ADCS 7143840G 25

3.2 Command line syntax
-fp

Provide floating point support for the functions atof, printf, sprintf,
sscanf, strtod and vsprintf. If this option is used ‘fp’ will be added
to any name supplied to the -runtime option, see section 3.2.5.See the
“Libraries introduction” chapter of the "ST20 Embedded Toolset
Reference Manual" for more information about the floating point libraries.

-fshift Treat all right shifts of signed integers as arithmetic shifts.

-fsigned-char
Change the signedness property of plain char and plain bit-fields to be
signed. The default is to compile as unsigned.

-fsoftware Perform a number of software quality checks.

-fspace Optimize for space. See section 3.3.4.

-ftime Optimize for time. This is the compiler default. See section 3.3.4.

-funroll-loops=n Enable loop unrolling, specifying the maximum number of times to unroll
a loop with n. n should be an integer greater than 1. See section 3.3.4.

-g
Generate comprehensive debugging data. The default is to produce
minimal debugging data.

-help Display full help information for st20cc.

-in-suffices filetype =
[.ext1, .ext2 ..]

Allow one or more file extensions to be associated with a file type.
Where filetype may be one of the following:
cppfile (C++ files)
cfile (C files)
linkfile (Object files)
libfile (Library files)
asmfile (Assembler files)
See also, section 3.2.3.

-lib Create a library as output.

-make
Do a make style date check to avoid recompilation or relinking. See
section 3.7.

-makeinfo
Display the reasoning behind the make process. This option must be used
in conjunction with -make, see section 3.7.

-mpoint-check
Insert run-time code to check that pointers are correctly aligned, and that
NULL pointers are not de-referenced.

-mstack-check Insert run-time code to check that the stack does not overflow.

-nolibsearch Do not search ST20ROOT/libs when linking. See section 3.2.4.

-nostdinc Do not compile with standard include paths. See section 3.2.4.

-nostdlib Do not link with standard include files. See section 3.2.4.

-o [outfile]

Place the output in outfile. This applies to an executable file, object file,
assembler file or preprocessed source code. For file types other than
ROM files, if no filename is given, the tool derives the output filename
from the filename stem of the first input object file, adding the appropriate
extension. By default the output file is placed in the directory from which
st20cc is invoked.

Option Description

Table 3.1 st20cc options
26 ADCS 7143840G

3 st20cc compile/link tool
-off type

Set the format of the output file from the linker to type; the default is a
linked unit (lku). Formats other than linked units are all ROM formats and
cause a ROM image file to be produced. This option is passed to the
linker. See Table 3.3 for possible values of type and their meaning.
This option may not be used with the -rcu option.

-p procedure Call the command procedure.

-place-exact

Force the linker to place sections in the order in which they appear in the
configuration (.cfg) file, rather than the order they are defined in the object
(.tco) file, see the “Code and data placement” chapter of "ST20 Embedded
Toolset Reference Manual".

-quiet Suppress close down messages from st20cc.

-rcu
Generate a relocatable code unit (RCU) which may be dynamically
loaded. This option may not be specified with any of the ROM generation
options that is the -off, -filled or -filledval options.

-rcuheap value The value of the heap size for the RCU, expressed in decimal. Defaults
to 0. This option may only be specified if the -rcu option is used.

-rculoc slot-value

The value of the user slot in the RCU header. Four fields or ‘slot’s may be
defined by the user to hold their own data. slot may take a value from 0
to 3 and value may be an appropriate value expressed in decimal, up to
8 digits long. Defaults to 0.This option may only be specified if the -rcu
option is used.

-rcustack value The value of the stack size for the RCU, expressed in decimal. Defaults
to 0. This option may only be specified if the -rcu option is used.

-romimage

Create a ROM image output file in hex format. ROM segments not
associated with a romimage command are output to a single file, see
section 3.2.7. An alternative ROM format can be specified using -off.
-romimage cannot be used with either of the -off lku or -rcu options.

-runtime name
Selects the runtime libraries to link in.These are used instead of the default
runtime libraries. name is the name of a configuration file that references
the required libraries, see section 3.2.5.

-search_env {path}
Specify a new environment for ST20ROOT, which is valid for the current
st20cc session. Any tools called by st20cc will see the new path for
ST20ROOT.

-sk mapfile
Generate a map file containing stack depth analysis. See the “Stack depth
and memory maps” chapter of "ST20 Embedded Toolset Reference
Manual".

-suffix [ext] Define the extension that object files are named with.

-ttool name

Use name as the full pathname of the tool to be invoked by st20cc. tool
can be one of the following:
0 st20icc ANSI C compiler - default compiler
1 st20link Toolset linker- default linker
3 st20edg C++ preprocessor
6 st20libr Toolset librarian
See Chapter 4 for further details of C++ tools.

-use-stderr
Send stdout and stderr to different files. This option is only available on
Windows. See section 3.2.10 for further explanation.

Option Description

Table 3.1 st20cc options
ADCS 7143840G 27

3.2 Command line syntax
3.2.2 Command line parameter order

The order of parameters on the st20cc command line is significant. By default,
st20cc now passes command line options to sub-tools (for example, the compiler
and the linker) in the order that they appear on the st20cc command line. There are
exceptions to this, for example -Iincludefile must come before other include files.

The st20cc command line option -V18-cmdline-order forces the command line
arguments to be passed as they would have been under R1.8 and earlier toolsets.
Library files and any directories specified via the -L command line option are linked in
reverse order. This option must appear first on the command line of st20cc and may
be made the default behavior by adding the following command to the st20cc.cfg
file:

st20ccoptions "-V18-cmdline-order"

3.2.3 Preconfiguring st20cc

In $ST20ROOT/stdcfg, there is a command file called st20cc.cfg which is used
to preconfigure st20cc. It is executed when st20cc starts up and is written using the
toolset command language, see the "ST20 Embedded Toolset Reference Manual".
Currently this file is supplied with some structured variables which associate file
extensions with file types.

-v Display detailed progress information at the terminal as st20cc runs.

-wa Suppress messages warning of ‘=’ in conditional expressions. †

-warn-unused
st20cc warns of any functions or global variables which are not used in
the linked program. Potentially these can be removed to reduce memory
problems.

-wc Disable nested comment warnings. †

-wd Suppress messages warning of deprecated function declarations. †

-wf Suppress messages warning of implicit declarations of extern int(). †

-wn Suppress messages warning of implicit narrowing or lower precision. †

-ws Suppress warning messages about possible side effects. †

-wtg Suppress messages warning of trigraphs. †

-wv Suppress messages warning of non-declaration of void functions. †

-ww Suppress all warning messages.

-z string Reserved for internal use.

Entries marked with † after the description are not supported for C++.

Option Description

Table 3.1 st20cc options
28 ADCS 7143840G

3 st20cc compile/link tool
Typically these might be set to the following values:

main C compiler
in_suffices.cfile=".c .C .icc .h .H"
C++ processor
in_suffices.cppfile=".cxx .cpp .CXX .CPP"
linker objects
in_suffices.linkfile=".TCO .tco .TC1 .tc1 .TC2 .tc2"
linker libaries
in_suffices.libfile=".LIB .lib"
assembler
in_suffices.asmfile=".s .S"

If the settings supplied in st20cc.cfg meet your requirements you may not wish to
edit this file. However, you may add to or edit the above definitions and you may also
include commandline commands in this file.

The commandline command, see the "ST20 Embedded Toolset Reference Manual",
enables you to create a command line option for st20cc that triggers an option
currently supported by st20edg, st20icc, st20link or st20lib. In effect
commandline enables you to abbreviate the -Wn st20cc command line option. The
commandline command should only ever be executed from st20cc.cfg, as this is
seen only by st20cc.

Note: the st20cc command line options, -in-suffices and -Wn can still be used.
-in-suffices specified on the command line may override settings defined in
st20cc.cfg.

3.2.4 File search rules

All tools in the toolset, including st20cc, access system files via the environment
variable ST20ROOT, which contains the root directory pathname for the toolset. If the
tools called by st20cc are in a different directory, the directory pathname can be
supplied on the command line by using the -B option.

st20cc also recognizes the directory command language command, as
described in the "ST20 Embedded Toolset Reference Manual". In addition the -I and
-L options to st20cc enable you to specify additional directories for st20cc to
search for source files when compiling and linking respectively. Any directory specified
by the -I option will be searched first before the root directory defined by ST20ROOT.

Directories are searched in the following order:

• For files included in the compilation by the #include <....> predefine:

i -I directories specified on the command line

ii $ST20ROOT/include (header files supplied with the toolset)

• For files included in the compilation by the #include “....” predefine:

i current directory

ii -I directories specified on the command line

iii $ST20ROOT/include (header files supplied with the toolset)
ADCS 7143840G 29

3.2 Command line syntax
• For files specified to st20cc for linking:

i current directory

ii $ST20ROOT/lib (libraries supplied with the toolset)

iii $ST20ROOT/stdcfg (default definitions supplied with the toolset)

iv -L directories specified on the command line

v directories specified with the directory command in command files,
see section 3.5.3.

The command option -search_env {path} enables a new environment to be set for
ST20ROOT, for the current session of st20cc.

The command options -nostdlib -nostdinc and -nolibsearch can be used to
stop default searching:

• -nostdlib instructs st20cc not to link in the C libraries. If -nostdlib is
used, a main entry point must be specified on the command line by using the
-e option. Any libraries required must be specified either directly on the
command line, see section 3.2.6, or via a configuration file using file
commands to reference the library files, see section 3.5.

• -nolibsearch instructs st20cc not to use any of the files in $ST20ROOT/
libs. This option would be used in conjunction with the -L option to specify
and access the user’s own libraries. If -nolibsearch is used, a main entry
point may need to be specified on the command line by using the -e option.

• -nostdinc instructs st20cc not to use any of the files in $ST20ROOT/
include. This option would be used in conjunction with the -I option to
specify and access the user’s own header files.

File searching diagnostics can be displayed by specifying the -H option, this will
display a message for each #include preprocessor directive used.

3.2.5 Runtime libraries

The runtime libraries can be selected by specifying the -runtime name command
line option. name is the name of a configuration file which uses file commands to
reference the required library files.

The configuration filename takes the form:

nametype[fp].cfg

Where: name can be:

• c - selects the default runtime libraries;

• os20 - selects the STLite/OS20 runtime libraries;

• psos - selects the pSOS runtime libraries;

• name - a name which selects a user defined runtime library.

name is supplied as an argument to the -runtime option.
30 ADCS 7143840G

3 st20cc compile/link tool
type is either lku, rom, or rcu depending on whether the runtime library
supports a linked unit, a ROM image file or a relocatable code unit. type must
be included in the filename but is not specified to -runtime.

fp is optional and selects a runtime system which uses the floating point
mathematics libraries. If the -fp command line option is used ‘fp’ will be
automatically added.

.cfg denotes a configuration file, see section 3.5.

For example:

myruntimelku.cfg
myruntimerom.cfg
muruntimelkufp.cfg

st20cc will select the configuration file depending on the name supplied to
-runtime and on whether it is creating a linked unit or ROM image file.

For example:

st20cc hello.c -runtime myruntime -T appcontrol.cfg -p helloapp

In this example st20cc creates a linked unit, so the runtime libraries are selected
from the file myruntimelku.cfg.

Debug and deployment kernels

When selecting the runtime libraries, st20cc also supports the selection of either a
‘deployment’ kernel or a ‘debug’ kernel. By default st20cc uses the deployment
kernel associated with the selected runtime library. At present the only runtime
libraries which are supplied with a pre-built debug kernel are the STLite/OS20 runtime
libraries.

A debug kernel differs from a deployment kernel in that it has additional debugging
facilities. These facilities will vary between runtime libraries, for example, the STLite/
OS20 debug kernel includes a time logging capability, which can help the developer
analyze certain characteristics of their system or isolate problems. Once development
is complete and the need for debugging features has ceased the user may switch over
to using the deployment kernel; typically the deployment kernel is the kernel which is
included in the final delivery. The deployment kernel does not include time-logging.

The debug kernel is selected by using the -debug-runtime option to st20cc,
which selects the prebuilt debug kernel library rather than the standard deployment
kernel library. For example, the following command line will create a linked unit using
the debug version of the STLite/OS20 run-time kernel:

st20cc hello.c -debug-runtime -runtime os20 -T sti5500.cfg -p link

Once debugging is complete, the application can be rebuilt using the deployment
kernel by just removing the -debug-runtime option from the command line:

st20cc hello.c -runtime os20 -T sti5500.cfg -p link

For further details of the STLite/OS20 runtime kernel see Chapter 12.
ADCS 7143840G 31

3.2 Command line syntax
3.2.6 Input files

Table 3.2 lists the accepted input file types to st20cc. The file extensions listed in
Table 3.2 should be used so that st20cc can recognize the file type, they may be in
upper or lower case.

Command files are specified on the command line using the -T option. All other input
file types may be specified directly on the command line.

C source files are by convention given a .c filename extension. If a source file is
specified without an extension or with a non-standard filename extension, st20cc will
assume it is a C source file.

Assembler source files are by convention given a .s extension and must be given an
extension other than .c.

UNIX/Windows incompatibility

Files in MS-DOS/Windows format should be converted to UNIX format to be compiled
under UNIX. Note: Windows is insensitive to the case of filenames (for example A.c,
a.c, a.C and A.C are all the same). This can have an effect on ROM image files and
hence memory segments.

3.2.7 Output files

st20cc can be invoked to compile, link, assemble or preprocess input. Figure 3.2.
illustrates the main output file types which may be generated.

File type Description

file.c A C language source file which is to be preprocessed, compiled and linked.

file.h A C language header file which is to be passed to the compiler.

file.s An assembly language source file which is to be assembled and linked.

file.tco An object file to be passed directly to the linker.

file.lib A library file to be passed directly to the linker.

file.cfg A command language file, used to control linking, which is passed directly to the linker.

Note: C++ input file types are listed in section 4.2

Table 3.2 st20cc input file types
32 ADCS 7143840G

3 st20cc compile/link tool

Figure 3.2 st20cc primary output files

Input file types Options Output file types†

.c -c .tco

st20cc

.c -S .s

.c -C, -P, -PPE
standard output

.s -c

and.h

.c .h

.s

.lib.tco

Default

-off type

.lkuSettings

.type

Linked object
file

Object file

Assembly
source file

Preprocessed
C source sent to

and

or

Processing

and compiled

Preprocessed
compiler suppressed

LinkedDefault
Settings

Default
Settings

.s -A .tco Object file
and assembled
(compiler suppressed)

Where type
can be a ROM
image file‡ or
linked unit

†In all cases an output filename can be specified by using the -o option

Default case: generate linked unit

Suppress linker:

An equivalent option for an assembly
source file is:

Suppress assembler and linker:

Preprocess only:

‡See Table 3.3

Preprocessed,
compiled
and linked

Preprocessed,
assembled
and linked

Preprocessed
and compiled

Preprocessed
and assembled

Preprocessed

Preprocessed

.c -rcu .rcuCompiled

Generate relocatable code unit:
Relocatable
code unit
ADCS 7143840G 33

3.2 Command line syntax
By default st20cc will attempt to build a linked object file also known as a linked unit.
C source files and header files will be preprocessed, compiled and linked. Assembly
source files will be preprocessed, assembled and linked. Input files which have
already been compiled (that is library files and object files) will be linked.

The following options are used to suppress the linker, compiler or assembler:

• Option -c suppresses the linker. The input will be preprocessed and either
assembled or compiled to produce object files.

• Option -S suppresses the linker and assembler and will generate
preprocessed assembly source files.

• Options -C, -P and -PPE invoke the preprocessor and suppress the compiler.
Output will be directed to standard output unless an output file is specified.

• Option -A can be used to process an assembly source file and is equivalent (in
this case) to option -c.

• Option -rcu can be used to generate a relocatable code unit, which may then
be dynamically loaded. This option must not be used in conjunction with
options to generate a ROM image file.

• Option -lib can be used to generate a library as output.

For file types other than a ROM image file, the tool derives the output filename from
the filename stem of the first input object file or the name specified using the -o option
and adds the correct extension:

• .ext for a ROM image file, as shown in Table 3.3;

• .lku for a linked unit file;

• .tco for a compiled object file;

• .s for an assembly source file;

• .dbg for a debug information file;

• .rcu for a relocatable code unit;

• .lib for an object code library.

Compiled object files may have the default extension .tco changed by specifying the
-suffix command line option.

A debug information file is always generated in addition to the linked unit or ROM
image file. If the -N option is used the debug information in the .tco files is not copied
into the .dbg file. In order for the debugger to find the debug information, either the
.dbg or the .tco files must be in the same directory as the associated .lku file. If,
for any reason, the .lku file is copied or moved to a different directory then the .dbg
file should be moved or copied to the same directory. If the -N option is used it is good
practice to keep all the .tco files in a single build tree. If the debugger cannot find the
.dbg file, in interactive mode it prompts the user for a pathname.

When producing a linked unit file, st20cc can be instructed to generate a memory
map and a map of stack depth analysis, see section 3.2.8.
34 ADCS 7143840G

3 st20cc compile/link tool
Specifying an output file using -o

The -o option enables an output file to be specified and can be used with any of the
file types generated by st20cc. Filenames may only contain alphanumeric characters
or underscores ‘_’ . The filename specified will be used for the output filename (unless
it is a ROM image, see below) and to derive the name of the debug information file.

If more than one .c or .s file is specified on the command line then the -o option
should only be specified if the command generates a single linked output file, either a
linked unit or a ROM image file. If linkage is suppressed by using any of the -c, -S or
-P options then multiple input files will cause multiple output files to be generated,
thus conflicting with the use of the -o option. In this case if the -o option is specified,
an error occurs and no processing takes place.

Specifying a ROM image file

The -romimage option can be used to specify a ROM image file in hexadecimal
format. If the -romimage option is supplied then any ROM segments not associated
with a romimage command are output to one ROM output file. The format of this file
is derived from the -off option (see below), and if that is not supplied then defaulted
to type hex. The name of the ROM image output file is supplied by the -o option, or
derived from the first input object file with a filename extension dependent upon the
ROM type. See also section 3.5.5.

Alternatively, the -off type option can be used to specify a ROM file in a different
format, where type may be one of the values listed in Table 3.3. The output file is
placed in the directory in which st20cc is invoked. The name of the output file is
derived from the associated ROM segment name and the extension from the ROM
image type. If an alternative filename is required for the ROM file then the romimage
command should be used, see section 3.5.6.

The default output format for -off is .lku, that is a standard linked unit.

ROM image files are compacted by the linker in order to reduce the size of ROM
required to store the application code.

-off type Filename extension Description

binary .bin Binary ROM format

hex .hex Hexadecimal ROM format

lku .lku Linked unit

srecord .mot Motorola S-Record ROM format

Table 3.3 Input and output formats to -off type
ADCS 7143840G 35

3.2 Command line syntax
3.2.8 Map files

st20cc can be instructed to generate a memory map file which gives detailed
information about:

• the size of the program;

• how much space there is remaining for data;

• which libraries are linked in;

• where symbols have been placed in memory.

Map files are of particular use when placing code and data, (see section 3.4), to see
exactly where symbols have been placed. Map files are generated by specifying the
-M option on the command line.

The -sk command line option can also be used to give an analysis of the stack
requirements of the program and is of particular use when space is limited and the
stack is required to be kept to a minimum.

Both types of map file are described in detail in the “Stack depth and memory maps”
chapter of "ST20 Embedded Toolset Reference Manual".

3.2.9 Environment variable

st20cc options and operands may be specified using the environment variable
ST20CCARG. This provides an easy method of setting up default values for st20cc
command line options. Options and operands specified by this method will be treated
as though they appeared on the command line.

The syntax for ST20CCARG is:

[options]

Options specified via ST20CCARG are placed before the command line options to
st20cc. As later options override earlier ones, options specified via the command
line may override those specified by ST20CCARG. If ST20CCARG is not present then it
is treated as if it contained no options.

3.2.10 Errors

If a compilation or assembly error occurs for an operand, st20cc will continue to
compile or assemble subsequent operands; however, the link and bootable generation
phase will not be performed.

If the -o option and more than one .c or.s file is specified then an error is flagged
and no compilation, assembly or preprocessing takes place.

Standard error stream on Windows

On Windows hosts it may be useful to send stdout and stderr to different files and this
can be done using the option -use-stderr. This option is not available in UNIX or
Linux. For example, to send all output to file std.out:

st20cc -p c2 demo.c > std.out
36 ADCS 7143840G

3 st20cc compile/link tool
The following NT command line separates stdout and stderr and redirects them to two
files std.out and std.err respectively:

st20cc -p c2 -use-stderr demo.c > std.out 2> std.err

3.2.11 Example st20cc command lines

st20cc hello.c -T appcontrol.cfg -p helloapp

This example compiles and links the source file hello.c into a linked unit file named
hello.lku. The name of the output file is derived from the input file and the
extension .lku added. appcontrol.cfg is a command file which contains a
command language procedure called helloapp which is specified to describe the
target device and to control linking, see section 3.5 for further details. The example is
compiled for an ST20-C1 processor core which is defined by the command procedure.
A debug information file hello.dbg will also be generated.

st20cc hello.c -off hex -T appcontrol.cfg -p helloapp

This example is similar to the previous example, except that instead of generating a
linked unit, the command outputs a hexadecimal ROM image file.

st20cc -c1 -c hello.c

This example compiles the source file hello.c into an object file named
hello.tco. The name of the output file is derived from the input file and the
extension .tco added. The command compiles for a ST20-C1 processor core and
linkage is suppressed. See section 3.3.1.

3.3 Compilation

This section describes the compilation facilities and options provided by st20cc. The
toolset compiler used by st20cc is an ANSI standard C compiler which conforms to
ISO/IEC 9899:1990 Programming languages - C. When processing C++ code,
st20cc invokes the Edison Design Group preprocessor to convert C++ into C, see
Chapter 4 for details.

3.3.1 Selecting the processor core

A target processor core must be selected; there is no default. The processor cores
supported are the ST20-C1 and ST20-C2. These may selected by specifying the -c1
and -c2 options respectively. The recommended method is to specify either the chip
or processor command within a procedure in a startup file, and call the procedure
on the st20cc command line using the -p option. See section 3.5.1 and section
3.5.5.

If a chip or processor command contradicts the use of the -c1 and -c2 st20cc
command line options, then st20cc will generate an error.
ADCS 7143840G 37

3.3 Compilation
3.3.2 Using the assembler

Assembler source files which have the .s file extension will be automatically passed
to the assembler, suppressing the compilation phase. Any preprocessor directives in
the input assembly source file will be preprocessed.

Assembly files have basic debug data generated automatically and can be debugged
by st20run. A number of macros are provided in asmdebug.h which may be used in
assembler source files to allow backtracing and symbolic debugging. These are
documented in the “Support for assembly debugging” chapter of the "ST20 Embedded
Toolset Reference Manual".

Note: the -S option will compile a C source file into an assembler source file. The
assembler phase is suppressed.

The use of the assembler is described in the “Assembly-level programming” chapter of
the "ST20 Embedded Toolset Reference Manual", together with examples of how it is
invoked. The file name conventions for assembler files and the command options
which may be used with the assembler are listed there. That chapter also describes
the syntax of assembler directives.

3.3.3 Using the preprocessor

The preprocessor is automatically invoked as part of assembly and compilation for all
C source or assembly files. In addition source and header files may be submitted to
st20cc for ‘preprocessing only’ by using the -C, -P or -PPE command line options.
The preprocessor implements translation phases 1 to 4 of the ANSI Standard, section
2.1.1.2. The -C option additionally preserves comments in the preprocessed output
and the -PPE option outputs #line information. These three options suppress
compilation and can be thought of as ‘preprocess-only’ mode.

The preprocessor is used to resolve preprocessor directives (that is directives with a
‘#’ prefix) and to perform macro expansion. Note: that the preprocessor both resolves
any #pragma directives it encounters in the input and preserves them in the
preprocessed output, in order that they may be re-processed by other tools. The
output from preprocess-only mode may be fed back into the compiler or assembler for
further processing.

In preprocess-only mode, a target processor type need not be specified. In this case
the preprocessor symbol __CORE__ takes the value ‘-1’ which is a dummy value. If a
target processor is specified then __CORE__ will be set as normal.

Preprocess-only mode generates a text file which by default is sent to standard out
(stdout). The -o command line option can be used to direct this output to a file.

The ‘Preprocessing’ chapter of the "ST20 Embedded Toolset Reference Manual"
describes the preprocessing directives and macros supported by st20cc.
38 ADCS 7143840G

3 st20cc compile/link tool
3.3.4 Compiling with optimization enabled

Compiling source code with optimization enabled generates highly efficient object
code. The purpose of optimization is to improve the execution time of object code as
well as the program’s use of memory, that is workspace, stack and code size. The
options -ftime and -fspace control whether the optimization performed is
predominantly to improve execution time or memory use. Optimization does not affect
the functionality of the program. Compile times will be slower when a high level of
optimization is performed. st20cc implements both local and global levels of
optimization:

• The global optimizations include: constant propagation, common
subexpression elimination, strength reduction, loop invariant code motion and
tail-call optimization. The optimizer examines each function as a single unit,
enabling it to obtain as much information as possible about that function, while
performing the optimization. Global optimizations are more complex than local
optimizations; generally the more information available to the optimizer the
better chance the optimizer has of improving code. The pragma
ST_nosideeffects enables the behavior of individual functions to be
clarified. The #pragma preprocessor directive is described in the "ST20
Embedded Toolset Reference Manual".

• The local optimizations include: flowgraph, peephole and redundant store
elimination. To perform these optimizations efficiently, the optimizer only needs
to operate on short sequences of code.

When optimization is enabled st20cc is also able to perform inline function
expansion which also improves the execution time of the program by removing
function calls, see section 3.3.5.

Advantages of enabling optimization

The advantages of enabling the optimizing features of st20cc are that:

• It saves development time by relieving the need to optimize code manually.

• Because the compiler can be relied upon to transform code into a more
efficient form, more emphasis can be placed on writing more readable, and
hence more maintainable code.

• There are some optimizations which cannot be written into the source code
and can only be performed by the optimizing compiler at compile time.

• The compiler is able to analyze the cost against effectiveness of potential
optimizations and will only apply an optimization where a saving can be made
in either execution time or memory space.
ADCS 7143840G 39

3.3 Compilation
When optimization should not be used

If it is required to debug a program, it may be wise to disable optimization using the
-O0 command line option. st20cc will generate debug information when optimization
is enabled if requested with the -g option. However, the debugger will produce more
accurate results if optimization is disabled at compile time.

Also note that assembler code inserted with the __asm statement is not globally
optimized by st20cc. Global optimization is suppressed for any function which
contains the __asm code and a warning message is generated. The __optasm
statement should be used instead, see the “Assembly-level programming” chapter of
the "ST20 Embedded Toolset Reference Manual".

Optimization options

• Disable optimization -O0

The option -O0 disables all optimization which can be specifically enabled at
the command line using the -O1 and -O2 options.

• Enable local optimization -O1

This option is enabled by default and applies the following local optimizations:

• Flowgraph optimization, including dead code elimination.

• Peephole optimization.

• Redundant store elimination.

The global optimization workspace allocation by coloring is also enabled.

• Enable local and global optimization -O2

This option, enables the following local and global optimizations:

• All optimizations enabled by option -O1.

• Constant propagation.

• Global common subexpression elimination.

• Loop invariant code motion.

• Strength reduction.

• Tail-call optimization.

• Tail recursion optimization.

• Optimize for time -ftime

This option controls how optimization is applied once it has been enabled by
either the -O1 or -O2 options. It instructs st20cc to perform only those
optimizations which will not reduce the speed of the program. Where a choice
exists between generating faster, but larger code over slower, more compact
code, it will generate the faster code. This option is enabled by default.
40 ADCS 7143840G

3 st20cc compile/link tool
• Optimize for space -fspace

The reverse of the -ftime option, that is, only performing those optimizations
which will not increase the size of the program. Where a choice exists between
generating faster, but larger code over slower, more compact code, it will
generate the more compact code.

• Optimize with loop unrolling

The -funroll-loops=n option may be used in conjunction with other
optimizing options. Specifying various integers greater than 1 for value will
generally, but not always, lead to a significant performance increase. Almost
certainly specifying this option will result in a slight increase in code size.

There is no definitive list of which optimizations will be applied for each of the -ftime
or -fspace options; this will vary depending on the code being optimized. There are
circumstances where code optimized with -fspace will run faster than with -ftime.
On critical sections of code it may be worth seeing the effect of this optimization.

Enable side effects information messages

The -fcheck-side-effects option enables the generation of information
messages about the ‘side effect’ characteristics of functions as st20cc performs
optimization. The messages report the actions of st20cc to give visibility of how
functions are treated with respect to side effects. The messages are purely
informational and do not signal any required user response.

Side effects are discussed as part of the description of the pragma
ST_nosideeffects in the "ST20 Embedded Toolset Reference Manual".

Disable side effect warning messages

The -ws option disables messages warning that functions marked as side effect free
may in fact still cause side effects.

Language considerations

Before st20cc can optimize a function call it has to be sure that the optimization will
not effect the functionality of the code. Therefore it will treat function calls with caution,
assuming that they may modify global variables, unless it can deduce with certainty
their true behavior.

The following language features affect the implementation of optimization.

• const keyword

The const keyword states that after it is initialized, a variable cannot
subsequently be modified by the program. For a const variable, st20cc
does not have to make worst case assumptions about its being modified when
ambiguous modifications are seen. If a variable is never modified, then
declaring it as const will, in general, allow st20cc to do a better job of
optimizing. Note: when pointers to const objects are used, for example:

const char *p;

the const keyword does not guarantee that the char will not be modified, just
that it will not be modified through pointer p.
ADCS 7143840G 41

3.3 Compilation
• volatile keyword

The volatile keyword states that a variable may change asynchronously, or
have other unknown side effects. st20cc will not move or remove any loads
or stores to a volatile variable. volatile should be used for variables shared
between parallel threads (or variables modified by interrupt routines), or
variables which are mapped onto hardware devices.

• register keyword

The register keyword is taken as a hint to the compiler to allocate the
variable at a small workspace offset.

3.3.5 Inline code

The toolset provides different levels of support for inlining instructions and functions:

• Special keywords __asm or __optasm can be used to insert sequences of
assembly level instructions into C programs. These keywords and their use are
described in the “Assembly-level programming” chapter of "ST20 Embedded
Toolset Reference Manual".

• A facility known as ‘inline function expansion’ enables a function body to be
substituted in place of a call to the function. It is supported as follows:

• The keyword __inline can be used in a function definition or
declaration to specify that the function is to be expanded inline.

• The pragma #pragma ST_inline can be used after the function
declaration to specify that the function is to be expanded inline.

• A command line option is provided to enable automatic inlining of
simple functions.

• Further command line options are provided to control the extent of
inline function expansion applied by the compiler.

Inline function expansion

Inline function expansion is the substitution of the function body in place of a call to the
function.

Inlining functions may improve the execution time of the program, because the inline
substitution of the function body removes the overhead of a function call and also
creates the potential for further optimizations such as constant propagation. Local and
global optimizations selected by the command line options and described in section
3.3.4, are performed by st20cc after it has performed any inline function expansion.
The improvements in program efficiency must be balanced against the other effect of
inlining which is, that the code size of the program’s executable is potentially larger.

You may explicitly mark a function as a candidate for inlining or may use a command
line option to specify that st20cc is to consider all simple functions as candidates for
inlining. In either case the compiler will only inline a function provided various criteria
are met, which are described below.
42 ADCS 7143840G

3 st20cc compile/link tool
Criteria for inlining

st20cc will attempt to apply inline function expansion provided the following criteria
are met:

• Optimization is enabled - this is the default. Optimization is only disabled if the
command line option -O0 is specified.

• The compilation generates only minimal debugging information, which is the
default. The command line option -g which generates full debugging
information suppresses inline function expansion.

• The function definition and the function calls are in the same compilation file.

• The function definition precedes the function call, or

the function definition does not precede the function call and the command line
option -finl-ffc is specified. (See below.)

• The function has a constant number of formal parameters.

• The function is called directly and not via a pointer.

When the function is recursive then the first call to the function will be expanded inline,
subsequent recursive calls to the function, will not be expanded.

In-line assembly code

Functions which contain __asm code may be in-lined, however global optimization is
disabled for such functions. If the __optasm statement is used in place of any __asm
statement, then the compiler will be able to apply global optimization to the assembly
code, including inline function expansion.

Note: the use of __optasm does carry some restrictions. Both assembly constructs
are described in the "ST20 Embedded Toolset Reference Manual".

Reducing code size

For those applications where code size is critical, it may be useful to consider the
following optimization which st20cc implements:

If st20cc can reduce the code size of the object file by not generating redundant
code then it will do so. For example, when inline function expansion is performed the
body of a function will be made redundant if all the following conditions are met:

• For all calls to the function, inline function expansion is performed.

• The address of the function is not referenced, that is, it is not accessed
through a pointer.

• The function is not externally visible or shared by other files.

If the above conditions are met then st20cc will not generate code for the function.
ADCS 7143840G 43

3.3 Compilation
Marking a function for inline expansion

The two mechanisms provided to enable you to indicate that a specific function is to
be compiled inline are:

• The keyword __inline which can be used in a function declaration or
function definition, as in the following example:

static __inline int fn_add(int x, int y)
{
 return X + Y;
}

• The pragma #pragma ST_inline which can be used after the function
declaration, but before function definition:

int fn_add(int x, int y);
#pragma ST_inline (fn_add)

A call to the function fn_add (as defined by one of the above mechanisms), for
example:

a = fn_add(b, c);

would cause the compiler to generate the following code:

a = b + c;

These two mechanisms are equivalent to each other, and it is a matter of
programming style as to which is adopted.

Selecting automatic inlining

When the -finl-functions option is specified, all simple functions in the
compilation file, not just those marked with the __inline keyword or the ST_inline
pragma, are treated as potential candidates for inlining.

The -finl-functions option instructs st20cc to automatically inline simple
function calls provided the following condition is met, in addition to those already listed
above:

• the code size of the function is no more than 20 instructions in the intermediate
compiler language representation, used by st20cc. In the intermediate
representation, a sequence of instructions has at most one operator and a
single intermediate instruction equates to between 1 and 3 assembly level
instructions. For example, a direct load or store intermediate instruction maps
to a single assembly instruction, however, instructions which include an
operator such as addition equate to three assembly instructions.

If, your code also contains __asm code which you wish to be automatically in-lined
then you must specify the -finl-asm option in addition to the -finl-functions
option. Global optimization is suppressed.
44 ADCS 7143840G

3 st20cc compile/link tool
Command line options for controlling function inlining

A number of command line options are provided to control the inlining of functions
within a file. These options apply to functions marked for inlining by the __inline
keyword or the ST_inline pragma as well as to functions affected by the use of the
-finl-functions option.

• The -finl-ffc option instructs st20cc to inline function calls which
precede their definition. This option is potentially expensive in terms of
memory used and compilation time. It should therefore be used with caution.
The -finl-ffc option must be used in conjunction with the
-finl-functions option, and removes the restriction that the function
definition precedes the function call.

• The -finl-none option instructs st20cc to not inline-expand functions
declared inline.

The following three options provide some control over the size of the final object file.
These options apply to both explicit inlining with the __inline keyword or the
ST_inline pragma and to automatic inlining selected with the -finl-functions
command line option.

• The -finls size option allows the maximum code size of a function, for which
st20cc may apply inline function expansion, to be specified. size is measured
in intermediate instruction representation where a single intermediate
instruction approximately equates to between 1 and 3 assembly level
instructions.

• The -finll option instructs st20cc to inline functions only in loops.

• The -finlc count option allows the maximum number of call sites to be
specified for inline function expansion.This option stops inlining when count is
reached. For example, if there are ten nested function calls and -finlc 2 is
used with -finl-functions, the first two calls are inlined, the remainder are
not.

3.3.6 Compatibility with other C implementations

A number of options are provided which may assist with the porting of existing C code
to the ST20 family of processors.

Arithmetic right shifts

By default, st20cc implements right shifts of signed integers as logical shifts; the
command line option -fshift switches the implementation. This allows correct
working of programs which assume that right shifts of signed values propagate the
sign.

Signedness of char

By default st20cc implements plain chars as unsigned chars. The command line
option -fsigned-char switches the implementation to signed char, plain bit-fields
are also signed. Details of type representation are given in the “Implementation
details” chapter of the "ST20 Embedded Toolset Reference Manual".
ADCS 7143840G 45

3.3 Compilation
Alignment of structs/unions

By default, st20cc aligns structs and unions on a word boundary. The command
line option -falign number modifies any nested structures or unions to the specified
byte boundary. The -falign option does not affect the packing of the structure
members themselves. Thus, the alignment will never be less than that required for
any element of the struct or union. The use of this option is described in more
detail under the heading “Changing the alignment of structures and unions” in the
“Implementation details” chapter of the "ST20 Embedded Toolset Reference Manual".

Some C implementations align a struct/union according to the strictest alignment
requirements of the fields of the struct/union; this can be achieved using the
-falign1 option.

3.3.7 Software quality check

The -fsoftware option allows policing of software quality requirements. The option
requires all externally visible definitions to be preceded by a declaration (from a
header file), thus guaranteeing consistency.

When the -fsoftware option is used st20cc reports:

• all forward static declarations which are unused when the function is
defined.

• all repeated macro definitions (this is when macros are redefined to the same
value; redefining a macro to a different value is always diagnosed as an error).

3.3.8 Runtime checking options

The -mpoint-check and -mstack-check command line options cause the
compiler to insert run-time code to perform checking.

Details of how to generate and interpret an analysis of stack depth are given in the
“Stack depth and memory maps” chapter of the "ST20 Embedded Toolset Reference
Manual".

Enable pointer dereference checks

When the -mpoint-check option is specified, st20cc inserts a check each time a
pointer is dereferenced. This check ensures that the pointer is not NULL and that the
pointer is correctly aligned for the type of object being accessed. For example, in the
following code,

int *pi;
char *pc;
*pc = (char)(*pi);

two pointer checks will be inserted, one to check that pi is not NULL and that it points
to a word-aligned object, and another to check that pc is not NULL.

Note: that no check is inserted if a pointer is assigned or read but not dereferenced.
For example, no checks will be inserted in the following code:

int *pi1, *pi2;
pi1 = pi2;
46 ADCS 7143840G

3 st20cc compile/link tool
Enable stack checks

When the -mstack-check option is specified, st20cc inserts a check on entry to
each function. This check ensures that the stack has enough space available for the
function’s workspace, plus a margin for calling library functions which do not contain
stack checks. This margin is currently 150 words.

As the stack check always ensures that there is a margin free below a function’s
workspace, any leaf functions (functions which do not call other functions) whose
workspace fits into this margin do not require a stack check. st20cc will automatically
suppress the stack check for such functions.

The function that is called to perform the stack checking is dependant on the runtime
system used. The default version will only work with single threaded programs. For
information which is relevant when STLite/OS20 is used, see section 14.13.

3.4 Code and data placement

The ST20 toolset provides users with fine granularity code and data placement. The
user is given control over the placement of all symbols in memory. The mechanism for
doing this operates at two levels:

A program is made up of sections such as code, const, data, bss. The user can
define their own sections. If they do not define any sections then a set of default
sections are used and st20cc generates a linked list of sections with default
ordering.

The user is also able via the toolset command language to define a memory map for
the application program in detail, specifying start and end addresses and the memory
type for specific ranges of memory. Named sections from the application program can
then be placed into named memory segments.

By defining a memory segment to start at a particular address, it is possible to force a
symbol to be placed at a particular address.

Code and data placement is described in the "ST20 Embedded Toolset Reference
Manual". See section 3.5.7 of this chapter for a list of commands.

3.5 Command language

st20cc can interpret the command language introduced in Chapter 1 and defined in
the "ST20 Embedded Toolset Reference Manual". st20cc uses a number of
commands to control the linking of the application and optionally, the format of any
ROM file.

The command language subset supported by st20cc enables you to build a recipe
for linking your application and also provides a record of how the linkage was
performed.

Commands are submitted to st20cc via one or more command files which may be
entered on the command line using the -T option, for example:

st20cc hello.c -T hello.cfg -p phone
ADCS 7143840G 47

3.5 Command language
Where: hello.c is the application source file,

-T hello.cfg specifies a command file

and -p phone calls the command procedure phone which is specified in
hello.cfg.

Commands may also be specified in default command files, see section 3.5.1.

The commands which are used to describe the application and load it onto a target
are known as configuration commands. st20cc and st20run both use configuration
commands. st20cc uses configuration commands to define the target and describe
its memory, to specify how code and data is to be placed in memory and to describe
the format of ROM images. st20run uses configuration commands to load the code
onto the target. st20run also uses the command language interactively to debug the
running code. Because the tools use a common language and share the use of
certain commands, for example the configuration commands which define the target
and memory, there are opportunities for sharing common command definitions and
procedures. For this reason some thought should be given as to how command files
will be used. For single-user, single target systems, all configuration commands may
be placed into a single file. For larger systems with multiple users or targets the
configuration commands and procedures may be grouped into a number of files as
appropriate. Chapter 5 provides a worked example. This chapter concentrates on the
commands used by st20cc.

The commands recognized by st20cc are listed in functional groups in the sections
which follow and are identified by “st20cc” in the “Tool environment” field of each
command definition in the "ST20 Embedded Toolset Reference Manual".

3.5.1 Start-up scripts

On start-up, st20cc will try to find and execute the scripts in the start-up command
files described in section 1.4.1, before processing any command line arguments. This
behavior may be turned off by the -NS command line option.

These start-up scripts may contain user-defined default command procedures. For
example, if the following command:

include hello.cfg

was placed in the start-up file in the directory named by the environment variable
HOME, then the command line in the example in section 3.5 could be modified as
follows:

st20cc hello.c -p phone
48 ADCS 7143840G

3 st20cc compile/link tool
3.5.2 Symbol handling commands

These commands perform standard symbol handling tasks.

The define command defines a constant integer variable with a given value. This
can be used to avoid hard-coding constant values in the code of the program and to
access segment and section information about the program. The forward command
creates a forward reference to the specified symbol. This allows names to be made
known to the linker in advance, or forces linking of library modules that would
otherwise be ignored.

The entrypoint command specifies the main entrypoint for the program. If no main
entry is defined an error will be returned. For C programs the supplied linker command
start-up file defines the system main entrypoint, however, if the st20cc
-nolibsearch option is used an entrypoint must be specified. A Relocatable Code
Unit (RCU) must also have an entrypoint specified. The st20cc -e option also
specifies a main entry point and is equivalent to entrypoint.

The import and export commands provide support for importing and exporting
functions between applications. The commands are designed to be used with the
functions provided in dl.h.

RCUs and the use of the import and export commands is described in the “Building
and running relocatable code” chapter of the "ST20 Embedded Toolset Reference
Manual"

3.5.3 File handling commands

These commands all perform file or directory handling.

The directory command adds a directory pathname to the file search path for
command files, object files and library files. This command may be used in a
command file but it must not be hidden within a command language construct such as
a command procedure or an if or while loop.

The file command enables an input file to be specified, this may be an object file or
a library file. Source files cannot be specified.

Command Description

define Define a const int symbol

entrypoint Define the main entry point of the program.

export Specify the name of a function that is to be exported from the program.

forward Create a forward reference to a symbol.

import Specify the name of a function that is to be imported into the program.

Command Description

directory Add a directory to the search path.

file Enable an input file to be specified to the linker.

include Insert a command file.
ADCS 7143840G 49

3.5 Command language
The include command enables another command file to referenced. The
commands within the included file will be executed at the point the include
command is specified. Any number of command files may be included within a
command file and be nested to any level. include has the same restrictions as the
directory command, that is, it must not be used within a command procedure or
within other command language constructs.

3.5.4 st20cc options commands

This command enables st20cc command line options to be included in a command
file. Any of the options in Table 3.1 may be specified.

3.5.5 Hardware configuration commands

This group of commands enables you to specify the target hardware or simulator.

The chip command provides the processor core type based on the chip type.
Additionally it defines memory segments of on-chip memory regions and declares
variables in the created program that correspond to the addresses of on-chip
peripherals.

The processor command enables the target ST20 processor to be specified and can
be used instead of the chip command when the chip being used is not supported by
the chip command.

The memory map is defined by specifying a number of memory commands so that
each required memory segment is defined. (If the chip command has been used
internal memory segments associated with the core will already be defined.) Once the
memory map is defined it can be referred to by other commands such as those used
to handle code and data placement. The memory command may also be used to
reserve memory or perform absolute placement.

Command Description

commandline Define a command line option for st20cc, see section 3.2.3.

st20ccoptions
Enable one or more st20cc command options to be specified in a
command file.

Command Description

bootiptr
Define the ROM boot address by setting up the initial value of the Iptr
register.

chip Define the chip type.

emidelay Cause specified delay in EMI configuration for ROM systems.

memory Define a memory segment.

poke Write a value to an address.

processor Define the processor core.
50 ADCS 7143840G

3 st20cc compile/link tool
For example:

memory tracebuffer 0xc0000000 16 RAM

This reserves 16 bytes of RAM as a trace buffer, see section 7.3.10.

Note: that a memory segment of type DEBUG should be defined for use by the
debugger.

The poke and bootiptr commands are only required when ROM output is to be
produced, however, it is good practice to always include them. The bootiptr
command defines the value of the Iptr at which the device starts executing. On
ST20-C1 cores it must be specified and the Iptr must be in a ROM segment, word
aligned and be the base of a memory segment. For an ST20-C2 core the Iptr must
specify a half-word aligned address two bytes below the top of a ROM segment. The
poke command is used to initialize peripherals such as an external memory interface
(EMI).

The emidelay command allows insertion of delays in a ROM bootstrap sequence.

Creating a ROM image

When creating a ROM image, a ROM segment must be defined that includes the base
address from which the device boots. Depending on the processor type this must be
specified as follows:

• For an ST20-C1 (which has a variable ROM boot address) the base of the
ROM segment must match the value specified for the bootiptr Iptr.

For example:

bootiptr 0x70000000.
memory EPROM 0x70000000 (16 * K) ROM

• For an ST20-C2, the ROM segment must include the address 0x7ffffffe
that is, two bytes from the top of memory. For example:

memory EPROM 0x7fff9C00 (25 * 1024) ROM

3.5.6 Rom file control commands

The commands in this group are all optional and modify a ROM image file.

The initstack command specifies the top address of an initial small stack area
which is used by the ROM loader code, before it moves to the main stack, specified by
the stack command. If the initstack command is not specified then a default
value is used. The romimage command enables you to override the default filename
stem given to a ROM image file, to specify the base address of the ROM image and to
specify that multiple output files are to be generated for a single segment.

For further details see the initstack and romimage command descriptions in the
"ST20 Embedded Toolset Reference Manual").

Command Description

initstack Define the top address of the initial stack used by the ROM loader code.

romimage Define properties of a ROM image file.
ADCS 7143840G 51

3.5 Command language
3.5.7 Code and data placement commands

This group of commands are used to place sections of code and data in memory.

The place command is the principal command in this group and is used to place
sections of code or data within a specified memory segment. The name of the
memory segment is defined by a previous memory command. Sections are either
defined using the ST_section pragma within the application source code or refer to
default section names provided by st20cc.

The heap command is used to define the size of the heap, which is the area of
memory that the C library function malloc uses. The stack command is used to
define the size of the main stack (this is the stack, within which the application begins
execution). The stack command is mandatory. If the heap command is not specified
a zero sized heap is assumed.

The store command is optional and is only required if you wish to specify where
sections, which reside in RAM at run-time, are stored in ROM before they are loaded
into RAM. Where there are multiple ROM segments, store defines which ROM
segment a specific section is stored in. By default all sections are stored in the first
ROM segment encountered in the configuration procedure.

The bootdata command is also optional. The default is to place the boot data in
either the largest segment of RAM or the first segment of ROM, as appropriate.

The addressof, sizeof and sizeused commands are all optional and enable
information to be extracted about a specified memory segment.

The chapter “Code and data placement” in the "ST20 Embedded Toolset Reference
Manual" describes how to define memory segments and place code and data within
them. It also describes the default memory placements used if you do not specify any
place commands.

Command Description

addressof Return the address of the given memory segment or program section.

bootdata Place the boot data block.

heap Define the heap and optionally its size.

place Place section in a named memory segment.

stack Define the stack and optionally its size.

sizeof Return the size of the given memory segment or program section.

sizeused Return the amount used in the given memory segment.

store Specify ROM segment that a section is stored in.
52 ADCS 7143840G

3 st20cc compile/link tool
3.5.8 System startup/shutdown support

The commands in this group are optional and define the order in which functions that
have the ST_onshutdown or ST_onstartup pragmas specified will be invoked.

Both functions take a priority argument, if a priority is not supplied the priority defaults
to 0.

For functions where the ST_onstartup pragma is specified the most positive priority
runs first and the most negative priority runs last. Functions for which the
ST_onstartup pragma is specified but whose order is not specified using
startorder will be called after all functions that have been ordered with the
startorder command.

Behavior for ST_onshutdown is inverted, the most negative priority runs first and
functions whose order is not specified will be called before all functions that have been
ordered with the endorder command.

If startorder or endorder are not called at all the effective priority of a functions is
in both cases more negative that the most negative integer supported.

Command Description

endorder
Define the order in which functions that have the ST_onshutdown attribute
will be invoked.

startorder
Define the order in which functions that have the ST_onstartup attribute
will be invoked.
ADCS 7143840G 53

3.5 Command language
3.5.9 Other commands

The following commands are also available when running st20cc:

Command Description

addhelp Add help for a procedure.

cd Change current working directory.

clinfo Turn on command language trace output.

clerror Raise an error from a command language program.

clsymbol Get information on command language symbols.

eval Execute a command language procedure.

fclose Closes open file.

feof Tests for end-of-file marker.

fgets Reads one line from a file.

fopen Opens a file for reading, writing or appending.

fputs Writes the specified string to a file.

help Output help on command language.

mknum Convert operand to a number.

mkstr Convert operand to a string.

mv Move a file.

parse Execute string operand as a command language program.

pwd Print current working directory.

remove Remove a when or command language symbol.

rewind Moves the file pointer to the start of the file.

rm Remove a file.

sys Execute a host command.

write Send a message to the debugger output.
54 ADCS 7143840G

3 st20cc compile/link tool
3.6 Order of linking

This section explains the order in which st20cc links object files and libraries. In
particular it explains how the order that library files are presented on the st20cc
command line can affect what is linked or even whether the linked unit is created
successfully.

First some terms, for the purposes of this description:

• A module is a single object file generated by the compiler and may contain
multiple sections. Usually this is synonymous with a .tco file.

• A symbol is a generic term for any object (data item or function).

3.6.1 Rules for linking

st20cc is the front end to st20icc (the compiler) and st20link (the linker) and
simply calls these tools with the appropriate command lines. There are thus two levels
of command line parsing for st20cc to perform.

st20cc applies the following general rules when linking:

• Object files (.tco) files and source files are included unconditionally.

• If any part of a module in a library is needed all of that module is linked.

• The libraries are searched in the order determined by st20cc, (see section
3.6.2 below).

• Standard libraries (for example, for printf, strlen.) appear last in the link
(for example adding a strlen in a private library overrides the standard
libraries supplied with the toolset).

• No library can contain duplicate symbols.

• Libraries (.lib) files specified on the command line are added to the list of
libraries to be searched before configuration files are processed and therefore
they are linked before any libraries referenced in a configuration file.

The search for any required symbols starts with the list of symbols already defined by
the modules which have already been linked. If it is not found, then the list of symbols
defined by all the libraries is searched, starting at the beginning of the list, and
continues through all the modules and libraries until the symbol is found, or the end of
the list is reached (in which case an error is reported). This may result in a previously
unused module being linked in, in which case its symbols will be added to the list of
defined symbols (checking for duplicates), and adds any unresolved symbols to the
list of unresolved symbols. The search then start again with the next unresolved
symbol.
ADCS 7143840G 55

3.6 Order of linking
3.6.2 Generating the link list

st20cc generates a list of modules to pass to the linker using the following rules:

• Object files (.tco) are placed first in the link list in the order they are specified
on the command line.

• C and C++ source files that are compiled are placed in the link list, in the order
they are specified on the command line.

• Library files (.lib) are placed after any object files in the link list, in the order
they are specified on the command line.

• Configuration files (.cfg) appear on the link list in command line order after all
other files.

Examples

st20cc -p c2 a.c b.c

In this example st20cc links a.tco to b.tco and then links the standard libraries.

st20cc -p c2 main.c a.lib b.lib

In this example st20cc links main.tco using the libraries a.lib and then b.lib.

st20cc -p c2 main.c a.lib -T b.cfg

This command line causes st20cc to link main.tco using a.lib followed by any
libraries referenced in b.cfg.

Library examples

Consider the following example that uses the source files main.c, one.c, two.c and
three.c, where:

main.c:

extern void a(void);
extern void b(void);

int main(void)
{
 a();
 b();
}

one.c:

#include <stdio.h>

void a(void)
{
 printf("function a in file one.c\n");
}

void b(void)
{
 printf("function b in file one.c\n");
}

56 ADCS 7143840G

3 st20cc compile/link tool
two.c:

#include <stdio.h>

void a(void)
{
 printf("function a in file two.c\n");
}

three.c:

#include <stdio.h>

void b(void)
{
 printf("function b in file three.c\n");
}

To create the library files one.lib, two.lib and three.lib see “Using the
librarian tool” in the "ST20 Embedded Toolset Reference Manual":

The following commands demonstrate how the order that these libraries are
presented on the st20cc command line effect the link, map files are generated using
the -M option to demonstrate which libraries are used to obtain symbols:

st20cc -p c2 main.c one.lib two.lib three.lib -M out1.map

This example links using the symbols a and b in one.lib and ignores the others (not
needed).

st20cc -p c2 main.tco two.lib three.lib one.lib -M out2.map

This example links using the symbol a from two.lib and b from three.lib
ignoring one.lib (not needed).

st20cc -p c2 main.tco two.lib one.lib three.lib -M out3.map

The link fails because the symbol a is supplied by two.lib and the symbol b is
supplied by one.lib which also contains the symbol a, this clashes with the symbol
a in two.lib.

The order of linking also has an impact on code size. Bringing in a module which
contains many sections that are not needed, increases the code because the memory
in a segment is filled from the bottom up and this causes an increase in the number of
prefix commands required to achieve calls or jumps, this therefore affects the speed
and sizeof the code.

3.6.3 Backward compatibility

The -V18-cmdline-order command line option can be used to force the command
line arguments to be passed as they would have been under R1.8 and earlier toolsets.
See section 3.2.2 for details.
ADCS 7143840G 57

3.7 Program build management
3.7 Program build management

st20cc provides some simple program build management facilities. The -depend
option will create a file containing makefile dependencies of the supplied source files.
This file can be included into a makefile to ensure that build dependencies are always
kept up to date.

The -make, and associated -makeinfo, provide a simple method of instructing
st20cc to avoid unnecessary builds. If the -make option is given to st20cc, the tool
will avoid recompilation of a file using the following rules:

• Does the object file exist?

• Is the source file dated later than the object file?

• Are any #include files dated later than the object file? (the #include file list
is stored in the object file).

A similar process is used to avoid the creation of linked units, ROM images and
libraries.

-makeinfo must be used in conjunction with -make in order to produce information
about the make process. If the -make option is not used, then -makeinfo has no
effect.

58 ADCS 7143840G

4 Support for C++
4 Support for C++
The ST20 Embedded Toolset currently provides only minimal support for C++, for
example, templates are not supported. This chapter describes what support is
provided by the toolset and its limitations.

4.1 Introduction

Using the ST20 Embedded Toolset, C++ programs follow a similar development path
to C programs. The st20cc compile/link driver provides a single tool user interface to
all stages of the C++ compilation and link, which the user can control via command
line options.The C++ program can then be run and debugged via st20run, in a
similar manner to a C program.

When processing C++ code, st20cc invokes the Edison Design Group preprocessor
to convert C++ into C. This process is invisible.

The toolset’s current implementation of the EDG 2.40 preprocessor supports the ISO
C++ standard with the following omissions:

• Universal character set escapes.

• Try/catch around entire function.

• Templates.

• Standard Template Libraries.

In addition the throwing of exceptions is not thread-safe.

Note: because this toolset uses a preprocessor supplied by a third party which may
change in subsequent releases, STMicroelectronics cannot guarantee C++ object and
library compatibility. Users may have to re-compile C++ source code when migrating
to subsequent releases of the toolset.

For further information on the C++ language, the reader is referred to the definitive
text ‘The C++ Programming Language’ by Bjarne Stroustrup, Addison-Wesley ISBN
0-201-88954-4.

The chapter “C++ Language Features for the EDG preprocessor” in the "ST20
Embedded Toolset Reference Manual" provides details of language implementation
for the EDG preprocessor.
ADCS 7143840G 59

4.2 C++ driver
4.2 C++ driver

The compile/link tool st20cc, presents an integrated compiler interface to the user.
For C++ programs it invokes the phases of a C++ program compilation in the correct
order. Figure 4.1 illustrates how the compilation driver st20cc processes a typical
C++ compilation command:

st20cc fileA.cxx fileB.icc fileC.c fileD.tco fileE.lib -p c2

where:

• fileA.cxx is a C++ module

• fileB.icc is a C++ preprocessed module

• fileC.c is a C module

• fileD.tco is an object module

• fileE.lib is a library

• -p c2 calls the command language procedure c2, see Chapter 3.

The command produces the file fileA.lku.

Figure 4.1 Phases invoked by the st20cc command

C++ Preprocessor

 C Compiler

Linker

fileA.icc

fileB.tco

Output: fileA.lku

Input: fileC.c

Input: fileD.tcoInput: fileE.lib

 fileC.tco

Input: fileB.icc

 fileA.tco

Input: fileA.cxx
60 ADCS 7143840G

4 Support for C++
4.2.1 C++ preprocessor phase

The C++ preprocessor, st20edg, is the first phase invoked by st20cc. st20cc
causes the C++ preprocessor to translate the C++ code into C code with filename
extension .icc.

For example, compiling the file:

fileA.cxx

will generate the file:

fileA.icc

The C++ preprocessor places certain constraints on the preprocessing #pragma
directive.The ‘Preprocessing’ chapter of the "ST20 Embedded Toolset Reference
Manual" describes these constraints and a number of C++ specific preprocessing
macros.

4.2.2 C compilation phase

The C compiler, st20icc, is invoked by st20cc to compile the intermediate C code,
(generated by the C++ preprocessor), into object code. st20cc takes the C translated
files (filename extension .icc) and passes them to the C compiler which produces an
object module with filename extension .tco.

For example compiling the files:

fileA.cxx fileB.icc fileC.c

will generate the intermediate files:

fileA.tco fileB.tco fileC.tco

4.2.3 Linking phase

Once the compilation phase is complete, st20cc combines the C++ object modules
and libraries to form a linked unit, resolving external references between modules.
st20cc takes the object files (filename extension .tco) and the library files (filename
extension .lib), and generates a linked unit. For example linking the files:

fileA.cxx fileB.ixx fileC.c fileD.tco fileE.lib

will generate the file: fileA.lku
ADCS 7143840G 61

4.3 st20cc command line
4.3 st20cc command line

This section describes the support provided by the compile/link tool st20cc for C++.
The st20cc command line syntax is as described in Chapter 3. Table 4.1 lists the
additional input file types that are accepted to support C++.

Table 4.2 lists additional st20cc command line options which are provided to support
C++.

Note that many of the standard st20cc command line options described in Chapter 3
are also applicable to C++ programs. Options not supported for C++, are marked with
a ‘†’ in Table 3.1.

4.3.1 Environment variables

One additional environment variable is supplied (ST20EDGARG) which may contain the
default switches to the C++ preprocessor. For UNIX and Linux use, this should only
contain spaces in the list of values if all the values are enclosed inside double
quotation marks for example, “value list”. Preferably all quotes and spaces
should be removed, for example:

setenv ST20EDGARG “-tused,-i” (UNIX and Linux)
set ST20EDGARG=-tused,-i (Windows)

File type Description

file.cxx A C++ source file.

file.icc A C++ preprocessed file.

Table 4.1 C++ input files

Option Description

-F Run only the C++ preprocessor.

-CXX=string
Change the default extension of the C++ source files from .cxx to the
string specified as argument of the option. For example:
st20cc -CXX=.xyz fileA.xyz

-diag-suppress list Suppress the warnings specified by number in list.

-display-error-number Display error/warning numbers.

-exceptions
Exception handling enabled. Exception handling is not thread safe in
this release of the toolset. By default exception handling is not enabled.

-i
Leave the intermediate .icc files in the current directory during the
compilation process.

-no-rtti Suppress run-time type information.

-rtti Enable run-time type information.

Table 4.2 st20cc options for C++
62 ADCS 7143840G

4 Support for C++
4.3.2 TMPDIR directory full

st20cc creates a number of temporary files during the compilation process. It places
these files in the standard UNIX and Linux or Windows temporary directory or in the
directory specified by the TMPDIR (UNIX and Linux) or TMP (Windows) environment
variable. If there is not enough space in the directory, the compilation will be aborted.

4.4 Libraries

The C++ libraries provide library support for the C++ preprocessor. They consist of the
following:

• libC.lib. C++ Standard Library (excluding I/O Stream Library).

• libCx.lib. C++ Standard Library (excluding I/O Stream Library) for use
when exceptions are enabled.

• libCnew.lib. C++ New Library.

• libCnewx.lib. C++ New Library for use when exceptions are enabled.

• libCvirt.lib. C++ Virtual Function Library.

The Standard Template Libraries are not included in this toolset release.

4.5 Debugging C++

This section describes the support provided by the toolset for debugging C++
programs. This includes extensions to the toolset command language as well as
support provided by st20run and the debugging GUI.

4.5.1 Class Member Variables

Access to the member variables of a C++ class can be achieved, using the command
language print command, in the same way that C structures can be accessed.

Variable access can also be augmented with class information in the same way as in
C++.

For example:

If the source code contains the classes:

class fruit {
public:
 char *name;
 int colour;
};

class apple : public fruit {
public:
 char *name;
};

apple a;
apple *aptr = &a;
ADCS 7143840G 63

4.5 Debugging C++
the values of the variables used can be printed by using the print command:

> print a
> print *aptr
> print a.name
> print a->name
> print a.colour
> print a.fruit::name
> print a->fruit::name[3]

When print lists the contents of a class it will show the member variable and also
the class to which it belongs:

> print a
{
 fruit::name
 fruit::colour
 apple::name
}

4.5.2 Class Member Functions

Function references used by the command language refer to member functions by
using C++ style notation:

> break apple::identify ## break on apple::identify()
> addressof apple::identify ## print the address of apple::identify()

4.5.3 Global Variable Scoping

Preceding a variable name with a double colon ‘::’ indicates that the global variable
is required.

> print ::globalvar

4.5.4 Member Variable Scoping

When finding the value of a variable the debugger follows the same scoping rules as
C++. Therefore when stopped inside a member function, giving the name of a
member variable will provide the value of that member variable, except when that
variable name has been superseded by a local variable. Assuming we have stopped in
apple::identify(void) then

> print name ##print the member variable name
“apple”
> print fruit::name ##print the name member of the fruit class
“fruit”
64 ADCS 7143840G

4 Support for C++
4.5.5 Overloaded Functions

C++ allows a function to be defined more than once with different numbers and types
of parameters. The debugger handles these functions by including the parameter list
with the function name. It is therefore possible to set a breakpoint on one version of a
function by specifying the parameter list to select the correct version:

> break “func(int,char*)”

When specifying functions in this way it is necessary to enclose the expression in
double quotes, or the interpreter will misinterpret the expression. Due to the way the
function symbols are stored it is also necessary to exactly match the stored symbol
when selecting functions in this way. It can be helpful to use the symbols command to
show a list of suitable matches to show exactly how the symbols are stored, however,
it is much easier to use the break command to list all possible versions of the
function.

If the function specified to the break command is unique then a breakpoint is set. If the
function specified is overloaded and only the function name is specified then an error
occurs, no processing takes place and a list of possible matches is produced:

> break func
func\1 => func(int)()
func\2 => func(int,char*)()
func\3 => func(int,int,char*)()

It is then possible to set a breakpoint on one of these functions by specifying the
function name and the version number:

> break func\2

4.5.6 Nested Classes

The variable and class scoping can also be extended for use in nested classes:

class enclose {
public:
 class inner {
 public:
 int h;
 void print(void);
 };
};

If we have stopped in enclose::inner::print(void)

> print h ## print member h
20
> print enclose::inner::h ## print member h of the inner class
20 ## which is in turn a member of the enclose class
ADCS 7143840G 65

4.5 Debugging C++
4.5.7 References

The compilation chain of this toolset causes the C++ source to be precompiled into C.
This has the side effect of implementing all the reference variables as pointers, and it
is therefore impossible for the debugger to know what is a pointer and what is a
reference. Hence, all reference variables will act like pointer variables as far as the
debugger is concerned.

4.5.8 Class Static Variables

When a class is defined as containing a static member variable this variable is not
actually included in the structure definition of the class. It must be defined separately:

int classname::staticvar = 0;

Access to this variable is then only possible via that name:

> print classname::staticvar

4.5.9 Not supported

Support is currently not available for:

• Class breakpoints

• Breakpoints on specific instances of classes

• Pointer to member operators (.* and ->*)
66 ADCS 7143840G

5 Defining target hardware
5 Defining target hardware
A target system needs to be described, including its memory size, core type and
which diagnostic controller unit (DCU) it uses for debugging, before code can be built
for it by st20cc, or loaded by st20run. This information is given to the tools as a
command language procedure containing a series of command language commands.
(The command language is described in the "ST20 Embedded Toolset Reference
Manual".)

Parts of the target descriptions are used by the compile/link tool st20cc, the
application load/debug tool st20run and the simulator st20sim. To build the code,
st20cc needs to know the type of target, in order to link in the correct libraries. It also
needs to know where the memory is, in order to place the code and data space
correctly. To run the application, st20run needs to know how to initialize the target
hardware, how to load the code onto the target, how to interact with the running code,
which DCU is used by the silicon, and where to find the code and data. When an
application is run on a simulator, the simulator needs to know which core it is
simulating and where the memory is.

The commands listed in Table 5.1 can be used in a command language procedure to
define target characteristics.

The commands used by st20cc to define the application software or target are called
configuration commands. Descriptions of targets are saved as command language
procedure definitions, each containing the configuration commands to describe the
target. These procedures are normally referenced on the command line of st20cc
and st20sim using the p option, or by target commands in st20run.

These procedure definitions are normally saved in a configuration file which will act as
a database of available targets. By convention, configuration files are given a .cfg
extension. Configuration files are used for linking, in order to place the code and data
in hardware memory segments. The same files may also be used for running and
debugging the application, telling st20run how to initialize and interact with the
target. When running on a simulator, the configuration is used to notify the simulator of
the hardware it is simulating. The tools will ignore any commands which they do not
support.

Command Description

bootiptr iptr Define the initial Iptr of an ST20C1 core.

chip type Define the type of the chip variant.

memory name base size type Declare a memory segment for the current target connection.

poke address value Write to the memory of the current target connection.

processor type Define the type of processor on the target

register name address options Associate symbolic name to peripheral register address.

reset Reset the current target connection.

Table 5.1 Target configuration commands
ADCS 7143840G 67

5.1 Defining target characteristics
5.1 Defining target characteristics

A target configuration typically includes:

• The type of chip variant, defined by the chip command, for example:

 chip ST20TP3

Used by st20run to provide variant specific capabilities such as processor
type, DCU, peripheral memory definitions, register definitions and a variant-
specific trap handler (to keep watchdogs alive, for example). This is used by
st20cc to define standard characteristics of processors such as the
processor type, internal memory and peripheral memory. See section 5.1.1.

The toolset needs to know which diagnostic controller is being targeted
because the base addresses, trap handler and inform routines used are
different. The toolset identifies the type of DCU from the chip command. If no
chip command is executed then by default the toolset builds for and expects
to find a DCU2 diagnostic controller. Building for a DCU3 is described in
section 5.4.

• Alternatively, the type of processor, defined by a processor command, for
example:

 processor c1

Used by st20cc, st20run and st20sim to determine which core to compile
and link for, or execute on, or simulate, when the chip is not supported by the
chip command.

• The amount, type and location of memory and memory mapped devices on
the target board, each segment defined by one memory command, for
example:

 memory EXTERNAL 0x4000000 (4 * M) RAM

Used by st20cc when placing sections and by st20run and st20sim to
understand the memory layout of the target. Each target configuration must
provide one memory segment for st20run to load the breakpoint trap handler
into. This memory segment has the type DEBUG and name ‘TRAPHANDLER’
and must be at least 1024 bytes in size, for example:

 memory TRAPHANDLER 0x40000000 (1 * K) DEBUG

Note: that the chip command will define an INTERNAL memory segment.

• Any initialization of memory or memory mapped devices, using poke
commands. These commands are used by st20cc to initialize the target
when a ROM image is generated. They are also used by st20run to initialize
the target so it is suitable for application load and interactive debug, for
example;

poke 0x00002060 1 -device

If the -device option is set, a device write is performed. Device writes are
required when accessing on-chip devices of ST20-C2 core based chips.
68 ADCS 7143840G

5 Defining target hardware
• Any register definitions for the target, defined by the register command, for
example:

 register DEV1STATUS 0x50000000 -group DEV1

Used by st20run when displaying registers.

• For ST20-C1 cores the starting value of the Iptr register should be defined
using a bootiptr command.

• In order for st20run to load and debug an application, the target board must
be reset using the reset command, unless the system being debugged is
already connected and running.

5.1.1 ST chip and board definitions

The stdcfg release directory contains many useful default configuration procedures
which are automatically pulled in by the toolset. For example, using the chip
command will automatically access one or more of these files.

The board release directory also contains procedures that define various ST20
evaluation boards. To use these procedures, add the following line to your
configuration file:

include boardprocs.cfg

This may be added to a start-up file as shown in section 1.4.1.

5.2 Data caches in internal SRAM

On some ST20 devices the memory used by the data cache can be treated as extra
internal SRAM if the data cache is not enabled. See your device datasheet for details.

On such devices the use of the data cache effectively reduces the amount of internal
SRAM available to the application. However, the processor is not prevented from
writing to this memory which can cause cache corruption. It is therefore important that
the data cache memory is protected from being used by the application by reserving it
during the link process. The recommended method of doing this is to call the
command procedure "dcache_internal". This will automatically reserve the top 2K
of internal memory. For example:

proc sti5500board_dcache {
 chip STi5500
 dcache_internal

}

For devices that do not have this feature, do not call dcache_internal as this will
waste internal memory.
ADCS 7143840G 69

5.3 Worked Example
5.3 Worked Example

For example, consider a target system with a STi5500 (ST20-C2 core) with 4 Kbytes
of internal SRAM starting at address 0x80000000 (the first usable address of which is
0x80000140), 2 Mbytes of external DRAM starting at 0x40000000, some external
devices starting at 0x50000000 and 4 Mbytes of ROM starting at 0x7fc00000 as
shown in Figure 5.1:

Figure 5.1 Target st20board memory map

The following command language procedure definition can be used to describe the
hardware characteristics of the example system. The procedure is called
STi5500board:

proc STi5500board {
 chip STi5500
 memory EXTERNAL 0x40000000 (2*M) RAM
 memory TRAPHANDLER (0x40000000+2*M-1*K) (1*K) DEBUG
 memory DEVICE1 (0x50000000) (1*K) DEVICE
 memory DEVICE2 (0x50000100) (16) DEVICE
 register DEV1STATUS 0x50000000
 memory FLASH (0x7fc00000) (4*M) ROM
}

Note: that in this example the chip command will define a memory segment for
internal memory (called INTERNAL) and that the debug segment is declared to be
within the EXTERNAL memory segment.

Note: a target system which has a memory mapped data cache that is in use, should
reserve the top 2 Kbytes of the INTERNAL memory segment for the data cache. This
will prevent code or data being placed in the memory region used by the data cache.

The following example shows how the procedure "dcache_internal" (found in the
supplied configuration procedure cache.cfg) can be used to define a segment used
exclusively by the data cache:

 proc STi5500board_dcache {
 STi5500board
 dcache_internal
 }

2M DRAM

0x80000000

Memory map
of example ST20 board

0x40000000

4K SRAM

 0x50000000
Devices

4M ROM
ox7fc00000
70 ADCS 7143840G

5 Defining target hardware
To enable st20run to load and run programs any ST20 external memory interface
(EMI) devices must be initialized by poke commands, because the external memory
cannot be accessed until the EMI is initialized. The commands can be defined in a
different procedure.

proc STi5500emi {
 poke -d 0x00002000 0x00000570
 poke -d 0x00002004 0x0000fff0
 poke -d 0x00002008 0x0000ff46
 ...
 poke -d 0x00002038 0x00004006
 poke -d 0x0000203c 0x00000000
 poke -d 0x00002060 0x00000001
}

Other target specific initializations, such as peripheral setup, can be performed using
poke commands and will normally be written as peripheral specific initialization
procedures.

To use st20run to load and debug the target, the target board must be reset using
the reset command and the system memory of the processor should be initialized by
calling the procedure st20c2MemoryInit. This reset, together with calls to the
previous procedures can be put into a further procedure that when executed has a
complete description of an initialized target.

proc hw5500 {
 reset
 st20c2MemoryInit
 sti5500board
 sti5500emi
}

The procedure can be invoked by st20run by associating it with a target using the
target command, for example:

target eval5500 tap "jei_soc chitty" hw5500

These procedures and the target definition can be put into a single configuration file
sti5500.cfg. This file can be supplied explicitly to st20run using the -i option or
alternatively it can be included into one of the command language startup files, for
example:

>st20run -i sti5500.cfg -t eval5500

When st20run connects to eval5500 (using the st20run -t option or the
connect command) it will invoke the procedure. The same procedure can be used to
define the characteristics of a simulation. This is done by creating a simulated target
that invokes the procedure.

For example:

target eval5500sim st20sim "st20sim -q -f sti5500.cfg -p
hw5500" hw5500
ADCS 7143840G 71

5.3 Worked Example
Target definitions procedures and st20cc

The procedures that are used by st20run (and st20sim) that define the target can
be used by st20cc in the process of building programs. To build a linked unit (.lku
file) that can be loaded by st20run an additional command procedure is required
that defines the stack and heap requirements of the program.

For example:

proc link5500 {
 hw5500
 heap EXTERNAL (100*K)
 stack EXTERNAL (20*K)
}

This can be used by st20cc using the -p option:

>st20cc -T sti5500.cfg -p link5500 hello.c -g

This will produce the program hello.lku that can be run on the target hardware
using:

>st20run -i sti5500.cfg -t eval5500 hello.lku

or onto a simulation of the target using

>st20run -i sti5500.cfg -t eval5500sim hello.lku

A ROM image can be built by extending the linkage procedure to define placement of
the code into the ROM segment:

proc link5500 {
 ...
 place def_code FLASH
}

st20cc is instructed to build a ROM image using the following command:

>st20cc -T sti5500.cfg -p link5500 hello.c -off hex -g

The ROM image that is created will contain the information defined by the poke
commands (in sti55emi) to enable the EMI to be programmed.
72 ADCS 7143840G

5 Defining target hardware
5.4 Building code for the DCU3

Users must use the chip command before linking and running code on devices with
DCU3 diagnostic controllers. This ensures that the correct DCU type and base
address are used.

For example, to build a program myprog.c for a STi5514, the commands might look
like the following:

proc myboard {
 chip STi5514
 memory EXTERNAL 0x40000000 0x10000 RAM
 stack EXTERNAL
 heap EXTERNAL
}
st20cc -T mydemo.cfg -p myboard myprog.c

The set of command file procedures utilized to build and run on a DCU3 part is
different from the command file procedures for a DCU2 part. An existing application
built for a DCU2 part must therefore be linked again to run on a DCU3 part.
ADCS 7143840G 73

5.4 Building code for the DCU3
74 ADCS 7143840G

6 Interfacing to the target
6 Interfacing to the target
This chapter describes the different types of possible targets, including simulators that
can be connected to the host. The chapter describes how to use the toolset command
language to create a target definition.

This toolset supports the following target types:

• ST20 with ST20-C1 or ST20-C2 core and a diagnostic controller unit (DCU) on
chip.

• ST20 simulator.

In this chapter, the term target is used to mean any software simulator or hardware
which can run an ST20 application.

This toolset supports connections from the following hosts:

• a Sun workstation running Solaris 2.5.1 (or later) and X-Windows;

• a PC running Windows 95/98/2000/NT;

• a PC running Red Hat Linux V6.2.

A hardware target will generally be a ST20 development board with a JTAG test
access port (TAP) connected to an on-chip Diagnostic Control Unit (DCU). There are
several methods of connecting the development board to the host:

• via an interface connected to a host parallel port;

• via an interface connected to an Ethernet network;

• via an interface connected to a host Universal Serial Bus port (USB).

This chapter describes how to set up the target descriptions. Descriptions of the
named targets may be held in files, so that once the files are set up, the named targets
can be used by many applications without target-specific coding. The descriptions are
in the form of command language commands.

Installation information relevant to the interfaces is given in the ‘ST20 Embedded
Toolset Delivery Manual’.

6.1 The target command

The target command is used by st20run to declare a target name and defines how
the target is accessed, that is the interface to the target. For hardware targets, this
uniquely defines a physical target. The details of the target interface description
depend on the type of interface and are described below. The target command used
without any arguments will list the defined targets.

st20cc and st20sim ignore the target command.

The target command syntax to define a target is:

target name interface_type interface_arguments [command]
ADCS 7143840G 75

6.1 The target command
where: the target name is the name given in the connect command to define the target
currently being used.

The interface_type and interface_arguments define how st20run will access
the target. Some possible values are given in Table 6.1. These are described
in more detail below.

The command language statement command will be executed to initialize the
target when it is connected using the connect command.

For example, the following target commands define one simulator target called
oursim and one hardware target called st20.

target oursim st20sim "st20sim -q -f st20hw.cfg" mysim
target st20 tap "jei_soc miracle" st20boardhw

The target commands may be listed in a targets file. The targets file is normally
referenced by an include statement in the st20run start-up file, as described in
section 7.1.2. The configuration procedures should be defined before the target, so
the targets file is normally of the form:

Targets file
include hwconfig.cfg
target sim st20sim "st20sim -q -f st20hw.cfg" mysim
target st20 tap "jei_soc miracle" st20boardhw
target st20micro tap "jei_soc 138.198.7.25" myboard

Chapter 7 describes how to run or debug an application on a defined target.

Each physical target can be given any number of names, and any number of physical
targets can share the same name. An application may be run using a shared target
name, in which case the first free physical target with that name will be selected.

Value of interface_type and _arguments Type of interface

st20sim "simulator_command_line" ST20 simulator. See section 6.7.

tap "jei_soc IP_address" or

tap "jei_soc host_name"

ST20-JEI or ST Micro Connect connecting Ethernet
to an ST20 core test access port. (Windows, UNIX
and Linux). See section 6.2.

tap "jpi_ppi parallel_port_device_name"
ST20 -JPI connecting parallel port device_name to a
ST20 core test access port. (Windows Only). See
section 6.6.

tap "hti_ppi parallel_port_device_name"
ST Micro Connect connecting parallel port
device_name to a ST20 core test access port.
(Windows Only). See section 6.4.

tap "hti_usb usb_port_device_name"
ST Micro Connect connecting USB port device_name
to a ST20 core test access port. (Windows Only).
See section 6.3.

Table 6.1 Interface types
76 ADCS 7143840G

6 Interfacing to the target
For example:

target st20 tap "jei_soc miracle1" st20boardhw
target st20 tap "jei_soc miracle2" st20boardhw
target st20 tap "jei_soc miracle3" st20boardhw

You can now use the target name st20 for an application which can be run on any of
the target definitions.

6.2 ST Micro Connect and ST20-JEI Ethernet connection

ST Micro Connect and ST20-JEI allow connection from an Ethernet based UNIX,
Linux or Windows host to a single JTAG based ST20 development board. Once
connected, the development target can be accessed by the toolset.

ST Micro Connect or ST20-JEI should be connected to the Ethernet network, as
shown in Figure 6.1.

Figure 6.1 Interfacing to Ethernet via ST20-JEI

A hardware target must be of type tap. This signifies an ST20 Test Access Port, in
this case connected to the host through an ST Micro Connect or ST20-JEI interface,
as shown in Figure 6.1.

For Ethernet networked hardware targets, connected via an ST Micro Connect or
ST20-JEI, the interface arguments are:

"jei_soc IP_address" or
"jei_soc host_name"

where jei_soc signifies that an ST Micro Connect or ST20-JEI interface is being
used and IP_address or host_name maps to the internet protocol (IP) address of the
ST Micro Connect or ST20-JEI.

For example, if the target is an ST20 connected via an ST Micro Connect or ST20-JEI
which has the IP address 138.198.7.25, then the target command is of the form:

target name tap "jei_soc 138.198.7.25" config_proc

where name is the name being defined for the target and config_proc is the command
language target configuration procedure defining and initializing the target.

Host

Ethernet
network

ST20
target

test

access
port

JTAG

ST Micro Connect

ST20-JEI /
ADCS 7143840G 77

6.3 ST Micro Connect USB connection
6.3 ST Micro Connect USB connection

The ST20 toolset supports connections to ST Micro Connect over USB (Universal
Serial Bus) under Windows 98 and Windows 2000. ST Micro Connect should be
connected to the PC, as shown in Figure 6.2. For more information about installing
ST Micro Connect, please refer to the ‘ST Micro Connect datasheet’ - ADCS 7154764.
Note: this method of connecting to a PC is not available to Linux hosts.

A hardware target must be of type tap. This signifies an ST20 Test Access Port, in
this case connected to the host through the ST Micro Connect USB interface, as
shown in Figure 6.2.

Figure 6.2 Connecting to ST Micro Connect over USB

The interface argument for this type of interface is of the form:

"hti_usb ST_Micro_Connect_USB_device_name"

where hti_usb signifies that the ST Micro Connect is directly connected to the PC’s
USB interface. ST_Micro_Connect_USB_device_name refers to one of the following:

• The reserved name "usb" which signifies the ST Micro Connect interface that
is currently connected to the USB interface. This is the simplest option, but can
only be used if there is only one ST Micro Connect connected to the USB
interface. If there is more than one device connected it will need to be
identified using either the unique name or the serial number described below.

• The unique name allocated to the ST Micro Connect interface when first
connected to the PC, for example: HTI1, HTI2. This name can be determined
by connecting the ST Micro Connect to the USB interface and starting up the
Windows Device Manager. The connected ST Micro Connect interfaces are
listed in the "ST Debug Interfaces" section. The ST Micro Connect’s name and
serial number are listed in the device’s properties. The name given to a
particular ST Micro Connect interface will always be the same on a particular
PC, but maybe different on other PCs.

• The serial number of the ST Micro Connect interface. This is actually the
device’s Ethernet address which can be found on the case or in the Windows
Device Manager properties dialog described above. The serial number will
always be the same for a particular ST Micro Connect interface, irrespective of
the PC it is connected to.

PC host
ST20
target

test

access
port

JTAG

USB ST Micro Connect
78 ADCS 7143840G

6 Interfacing to the target
For example, if the target is an ST20 connected via an ST Micro Connect which is
itself the only ST Micro Connect connected to the PC’s USB interface, then the
target command is of the form:

target name tap "hti_usb usb" config_proc

where name is the name being defined for the target and config_proc is the command
language target configuration procedure that defines and initializes the target.

If the device has the unique name HTI1 and the serial number
00:80:e1:42:02:01, then the target command could be either of the following:

target name tap "hti_usb hti1" config_proc
target name tap "hti_usb 00:80:e1:42:02:01" config_proc

6.4 ST Micro Connect Parallel port connection

The ST20 toolset supports connection to a single ST Micro Connect over a parallel
port. Supported modes are ECP mode, nibble mode and Byte mode. ST Micro
Connect should be connected to the PC, as shown in Figure 6.3. The parallel port
driver is installed as part of the ST Micro Connect installation, refer to the ‘ST Micro
Connect datasheet’ - ADCS 7154764 for details. Note: this method of connecting to a
PC is not available on Linux hosts.

Figure 6.3 Connecting to ST Micro Connect over Parallel Port

A hardware target must be of type tap. This signifies an ST20 Test Access Port, in
this case connected to the host through the ST Micro Connect parallel port interface,
as shown in Figure 6.3

The interface argument for this type of interface is of the form:

"hti_ppi parallel_port_device_name"

where hti_ppi signifies that the ST Micro Connect is directly connected to the PC’s
parallel port interface.

For example, if the target is an ST20 connected via an ST Micro Connect to the
parallel port LPT1:, then the target command is of the form:

target name tap "hti_ppi lpt1" config_proc

where name is the name being defined for the target and config_proc is the command
language target configuration procedure that defines and initializes the target.

PC host
ST20
target

test

access
port

JTAG

Parallel ST Micro Connect
port
ADCS 7143840G 79

6.5 ST20-JEI and STMicro Connect trouble-shooting
6.5 ST20-JEI and STMicro Connect trouble-shooting

For the ST20-JEI and ST Micro Connect the target command provides the ability to
set the clock speed of the JTAG interface. It is possible for the JTAG connection to run
faster than the target hardware can cope with, this is signified by the messages:

target not responding
communication timed out

The clock speed of the JTAG interface is set by adding an assignment to the tckdiv
parameter in the target definition. The JTAG clock frequency is divided by this
parameter. This parameter takes powers of 2 ranging from 20 to 222. A value other
than a power of 2 is rounded up to the next power of 2. The default value is 1.

As an example the following target definition instructs the ST20-JEI myjei to set its
clock frequency to run at half the default speed:

target myjei tap "jei_soc myjei tckdiv=8" "reset;tp3"

6.6 ST20-JPI Parallel port connection

This section provides guidance on configuring, trouble-shooting and connecting to the
PC/ST20-JPI parallel port interface. Connecting to a parallel port is supported only for
PC Windows hosts.

An ST20-JPI parallel port interface connects the TAP to the parallel port of the host
PC, as shown in Figure 6.4.

Figure 6.4 Connecting to a PC parallel port

PC host ST20-JPI
ST20
target

test

access
port

JTAG

Parallel
port
80 ADCS 7143840G

6 Interfacing to the target
6.6.1 PC Parallel port modes

There are a number of modes a PC’s parallel port can be put into, to achieve the bi-
directional communications required by st20run. The supplied parallel port driver
only supports a subset of them; EPP, byte and nibble modes. The mode is usually
selected from the PC’s BIOS setup screen; to use the driver you must select the
appropriate mode for your PC.

The most common modes you will see are as follows:

• 4-bit or nibble mode is the most widely supported parallel port mode. It should
be possible to use it on most PCs, however, it provides the lowest performance
of the all the modes. It is sometimes referred to as “AT” or “compatible” mode
on some PCs.

• 8-bit, byte, or bi-directional mode is available on most modern PCs. It provides
better performance than 4-bit mode.

• EPP mode is available on most modern PCs. It provides the highest
performance of the modes supported by the parallel port drivers.

• ECP mode is not supported by the ST20-JPI. Modern PCs tend to have this
enabled by default. EPP, byte or nibble mode must be selected before the
parallel port can be used.

• PS/2 mode is not supported by the ST20 toolset’s parallel port drivers.

6.6.2 Driver configuration using vppiset.exe

Certain driver parameters can be modified either for diagnostic or tuning purposes. A
tool called vppiset.exe has been provided with the toolset to simplify the setting of
these parameters. Figure 6.5 shows vppiset.exe running with the default parallel
port options selected.

Figure 6.5 vppiset.exe main window
ADCS 7143840G 81

6.6 ST20-JPI Parallel port connection
The program allows the following settings to be defined:

• Port type selects the parallel port mode to use. The default setting is “Auto
Detect”. If “Auto Detect” is selected the driver will attempt to choose the
optimum mode for your PC (see section 6.6.1 for more information). If any of
the other modes are selected, the driver will be forced to use that mode and
will not detect if it is compatible with the PC hardware.

• Access mode tells the parallel port driver how to access the port. The default
setting is “Synchronous” which provides the best performance without using
interrupts. Interrupt mode can improve performance on many PCs,
however, STMicroelectronics has found that some machines do not
conform to the IEEE 1284 parallel port specification which may result in
unreliable behavior. Problems can occur sporadically, often on an
apparently working system. We suggest that if you experience
communications related problems such as the system stopping or time-
outs you revert to synchronous mode.

• The read and write thresholds set the maximum number of bytes transferred in
a single burst. Increasing this number may improve parallel port performance;
reducing it will improve operating system responsiveness.

• Poll delay sets the period of time in milliseconds to sleep between each poll of
the parallel port. The default value for this is 1 millisecond which is the smallest
interval possible. Increasing this value will improve operating system
responsiveness at the cost of reduced parallel port performance.

The settings are not used by the driver until the “Apply” button is activated. Use the
“Restore” button to revert to the current used settings. The “Default” button reverts to
the default settings.

6.6.3 Trouble-shooting

The parallel port driver attempts to determine the optimum configuration for your
system. However, if st20run will not connect to a ST20-JPI it is a good idea to try out
the lowest performance parallel port modes first. The mode can either be set from the
PC’s BIOS setup screen or the drivers can be forced to use a particular mode. See
section 6.6.1 and section 6.6.2.

If st20run rejects a connection with a “cannot connect to target...”
message this indicates that it cannot talk to the ST20-JPI at all. This could be caused
by:

• An ST20-JPI with no power.

• A bad connection between the PC and the ST20-JPI.

• An ECP mode Windows driver. If Windows 95 has installed an ECP device
driver rather than the normal printer port driver the st20run ST20-JPI driver
will reject the connection. To overcome this, use the System/Device Manager
to change the driver.

• Target not specified in configuration file.
82 ADCS 7143840G

6 Interfacing to the target
A “cannot boot...” or “target is not responding” error from st20run
could be caused by:

• Interrupt problems. STMicroelectronics has found that some PCs operate
outside the IEEE 1284 parallel port specification which means that interrupts
could be missed at random points in communication. If this is the case we
suggest that the parallel port driver is forced into synchronous mode (see
section 6.6.2).

• Incorrectly set up interrupts caused by an IRQ clash with another device. See
section 6.6.2 for details on enabling synchronous access mode.

• Excessive external interference. Certain electrical devices such as televisions
or power supplies in close proximity to the ST20-JPI have been found to cause
reliability problems.

• An EPP device driver from the OS-Link toolset already installed (Windows 95/
98 only). The OS-Link toolset’s EPP driver is not compatible with the one used
in the DCU toolset. To remove this driver from the system, the line:

device=c:\st20swc\tools\vb045st.386

should be removed from the [386Enh] section of the
 C:\Windows\System.ini file.

• “Noisy” parallel port interface card. STMicroelectronics has found that some
parallel ports (mainly parallel port interfaces integrated onto the motherboard)
produce interference that the ST20-JPI cannot cope with. A revised ST20-JPI
is available (DB221A.2) which has a fix for this problem.

If there does not appear to be a significant performance advantage between using the
parallel port driver in polled mode and interrupt driven EPP mode then the problem
could be:

• The driver defaulting to polled mode. If the driver fails to detect an interrupt it
will default to polled mode. This can be caused by another driver being
installed that has already claimed the IRQ or an incorrectly configured parallel
port. See section 6.6.2 for details on enabling synchronous access mode.

If nibble mode has been enabled but st20run will not connect then the problem could
be:

• Nibble mode is enabled in the PC’s BIOS set up but the port type is still set to
some other mode in vppiset.exe. See section 6.6.2 for details on setting
the port type.

• Nibble mode is enabled in vppiset.exe but some other mode (usually ECP)
is enabled in the PC’s BIOS setup.

The following is a known problem and workaround with certain PCs:

• The driver fails to detect nibble mode on certain models of HP OmniBook. The
BIOS allows “PS/2 mode” or “AT mode” to be selected from the BIOS setup
utility. “AT mode” should be selected and the driver should be forced into nibble
port mode using vppiset.exe (see section 6.6.2).
ADCS 7143840G 83

6.6 ST20-JPI Parallel port connection
6.6.4 Windows registry

The driver parameters set by vppiset.exe are stored as entries in the Windows
registry. The entries listed below are all of type DWORD. They can be edited using the
Windows’ utility regedit.exe.

Under Windows 95 the registry entries are located at:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\VxD\vppist

Under Windows NT the registry entries are located at:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\vppist

6.6.5 Connecting to a parallel port

A hardware target must be of type tap. This signifies a ST20 Test Access Port, in this
case connected to the host through a ST20-JPI interface. The ST20-JPI is connected
to a parallel port of a PC host, as in Figure 6.4.

The interface argument for this type of interface is of the form:

"jpi_ppi parallel_port_device_name"

where jpi_ppi signifies that the ST20-JPI is directly connected to a parallel port on
the PC.

Key Default Description

PortType Auto

Specifies the port type to be used by the driver. If this entry is not defined
the driver will attempt to determine this automatically. The valid values
for this key are:

0 - Auto Detect

1 - Nibble

2 - Byte

3 - EPP

AccessMode Auto

Specifies whether the port will used in interrupt or polled mode. If this
entry is not defined the driver will attempt to determine this automatically.
The valid values for this key are:

0 - Auto Detect

1 - Polled Mode

2 - Interrupt Driven Mode

3 - Synchronous Mode

IRQ Auto
Specifies the IRQ used by the parallel port driver. If this entry is not
defined, the driver will attempt to detect the IRQ automatically.

ReadThreshold 512 The maximum number of bytes to be read in a single burst.

WriteThreshold 512 The maximum number of bytes to be written in a single burst.

PollDelay 1
The minimum number of milliseconds which have to elapse before the
kernel may re-schedule the polling routine.

Table 6.2 Registry entries
84 ADCS 7143840G

6 Interfacing to the target
For example, if the target is a ST20 connected via a ST20-JPI to the parallel port
LPT1:, then the target command is of the form:

target name tap "jpi_ppi lpt1" config_proc

where name is the name being defined for the target and config_proc is the command
language target configuration procedure defining the target.

6.7 Defining a simulator target

A simulator target must be of type st20sim. The interface argument is a command
line to run the simulator, including options. The possible interface options are those
listed in Table 6.3 plus any appropriate st20sim options, as listed in the “Using the
ST20 simulator tool” chapter of the "ST20 Embedded Toolset Reference Manual".

The simulator does not see the procedure given at the end of the target command,
so the -p option is used to give information about the simulated target to the
simulator. For example, the following target command defines the simulator target
oursim, with a target configuration defined by the command language procedure
mysim:

target oursim st20sim "st20sim -q -p mysim" mysim

If the command language procedure mysim is not defined in a start-up file then the file
that defines it will need to be given to st20sim using the -f option.

target oursim st20sim "st20sim -q -f st20hw.cfg -p mysim" mysim

Option Description

-f command_file Execute the command_file, which may contain processor and memory
commands.

-p command_proc Execute the procedure command_proc, which may contain processor and
memory commands.

-quiet
Do not display the version and copyright messages. Also suppress some run-
time diagnostic messages.

Table 6.3 Simulator interface options
ADCS 7143840G 85

6.7 Defining a simulator target
86 ADCS 7143840G

7 st20run
7 st20run
The st20run tool is used for tasks connected with executing an application on a
target, including initializing the target, loading code, debugging, tracing and profiling.
You can control the debugging, tracing and profiling functionality through breakpoints.
Code may be executed on target hardware or a ST20 simulator.

The st20run tool loads and runs ST20 programs on ST20 targets. While the
program is running, the st20run tool provides file and input/output services to the
program through the debug functions.

You can run the st20run tool in batch mode or interactively. In interactive mode, you
can use it as a command line debugger. A windowing graphical interface is also
provided which allows you to monitor what is happening while controlling the
st20run facilities with a mouse through buttons, menus and commands.

The debugger graphical interface is described in Chapter 8. Defining a target is
described in Chapter 5. Interfacing to a target is described in Chapter 6.

The "ST20 Embedded Toolset Reference Manual" includes descriptions of:

• using st20run with STLite/OS20;

• the debugging libraries supplied, which you may use in an application to aid
debugging;

• profiling;

• tracing program execution;

• the command language.

7.1 Starting st20run

7.1.1 st20run command line

A st20run session is started with a command line. To invoke st20run, use the
following command line:

➤ st20run {options} {filename}

where: filename is the pathname of a linked unit (.lku) code file to be loaded and
executed on the target or a debug information file (.dbg).

options is a list of zero or more of the options given in Table 7.1. You may enter
options in upper or lower case, in any order, separated by spaces.

If you give no filename or options then st20run will show brief help information.
ADCS 7143840G 87

7.1 Starting st20run
st20run can be used in one of three modes:

• st20run can be invoked with the graphical interface described in Chapter 8.
The graphical interface is selected by using the -gui command line option.
st20run will open a graphical interface window.

• st20run can be invoked in command language mode by using the -debug
command line option. In this interactive mode, st20run will display a
command language prompt (>).

• st20run can be invoked in batch mode by using the -batch command line
option or by specifying a linked unit without the -gui or -debug options.

If neither -gui nor -debug nor -batch is specified, then st20run will start in batch
mode if a target and linked unit are specified or command language mode if just a
target is specified.

If -gui or -debug are specified on the command line with a target and linked unit,
then the debugger will set a breakpoint on main and start the application.

When running in batch mode, if the application executes a debugbreak function call
then st20run will switch into command language mode.

The default (simulator) target definitions are found in the file stddefs.cfg in the
stdcfg subdirectory of the directory specified by the environment variable
ST20ROOT.
88 ADCS 7143840G

7 st20run

7.1.2 Start-up scripts

One or more start-up command language scripts may be executed automatically on
starting up st20run. On starting up, st20run will normally execute the scripts listed
in section 1.4.1 in Chapter 1 before processing any command line arguments. This
behavior may be turned off by the -nostartup command line option.

The start-up command files normally include the files containing the target
commands for the available targets, and the target configuration commands:

st20run start-up file
directory /st20/examples
include target.cfg

Useful procedures:
...

Option Description

-a[rgs] “arguments” Pass arguments to main (int main(int argc, char *argv[])).

-b[atch] Run in batch mode. See section 7.1.

-c[ore] [cmd_file] Create a hosted address space. See section 7.2.9.

-d[ebug] Start command language debugging. See section 7.1.

-define var[=string] Set variables to initial string values.

-g[ui] Start the graphical interface. See section 7.1.

-i[nclude] cmd_file Execute a command language script. cmd_file is executed before -t or
{filenames} parameters are processed.

-l[ibrary] directory Include directory in the search path.

-log log_file Direct the log output to log_file in addition to sending it to the display
screen.

-nostartup Do not execute any start-up command scripts. See section 7.1.2.

-p[rofile]
Apply flat profiling to the program in batch mode and output to the display
screen once the program has terminated.

-r[etries] number If the target is busy retry number times before failing, see the -sleep
option.

-s[leep] time time is the time in seconds to wait between retries when the target is
busy, see the -retries option.

-t[arget] target Connect to the specified target, as defined in a target command. This
is required for loading. See Chapter 5.

-v[erbose] Display extra progress messages.

Table 7.1 st20run command line options
ADCS 7143840G 89

7.1 Starting st20run
7.1.3 Examples

The following command line will run a program hello.lku in batch mode on the
target hardware named tgt:

% st20run -t tgt hello.lku
hello world
hello world

The following command line will start debugging the program hello.lku on the
target tgt using the graphical interface:

% st20run -t tgt -g hello.lku

The following command line will start interactive command language debugging of the
program hello.lku on the target tgt:

% st20run -t tgt -d hello.lku
> breakpoint hit at <hello.c 2> ## breaks at main
....
> quit

The following command line will load the core dump script save.in, which will load
the saved state that was previously created by a session command:

% st20run -core save.in

The following command line will execute the commands in the file hw.cfg before
loading the linked unit code file hello.lku onto target tgt:

% st20run -i hw.cfg -t tgt hello.lku

The following command line will search /u/mylibs/ for files, as well as the default
debugger search path:

% st20run -l /u/mylibs/ -i hw.cfg -t tgt hello.lku

The following command line will not execute a start-up command script:

% st20run -i hw.cfg -t tgt -nostartup hello.lku

The following command line will connect to the target c1sim and enter interactive
debugging with a command language prompt:

% st20run -t c1sim -d

The following command line will load hello.lku onto the default ST20-C1 target:

% st20run -t c1 hello.lku

The following command line will load hello.lku onto the default ST20-C1 target and
pass the arguments into the main procedure:

% st20run -t c1 hello.lku -a “one”

In this example argv[0] will be set to “hello.lku” and argv[1] will be set to
“one”. See the “Implementation details” chapter of the "ST20 Embedded Toolset
Reference Manual" for a description of the arguments to main.
90 ADCS 7143840G

7 st20run
7.2 Debugging

This section describes the debugging facility provided by st20run, which can be
used to debug application software. A debugging process runs on the host, while the
application may run on a target ST20 or a simulator.

The debugger allows the user to explore the state of the application. The debugger is
controlled by a combination of:

• options on the st20run command line,

• using the graphical interface interactively and

• using the command language either interactively or using scripts.

The debugger supports symbolic debugging of C and C++ code and assembler code.
It provides the following facilities:

• reading and writing to memory and registers,

• a breakpoint facility that allows the program to be stopped when code is about
to be executed or selected variables have been written to or read from;

• a single stepping facility that allows a task to be single stepped at the source
level or at the assembly code level;

• a stack trace facility;

• the ability to display the values of variables and display memory;

• a simple interpreter to enable structured C or C++ variables to be displayed;

• a programmable command language that allows complex break points to be
set and enables debugging scripts to be generated;

• support for multiple connections, multiple programs and multi-tasking
applications;

• profiling;

• tracing.

Depending on the run-time operating system used, a facility to find the tasks of a
program is also provided.

The user controls, through the debugger, when the application runs and when it stops.
Interactive debugging may be performed using target hardware, as shown in Figure
7.1, or using a simulator running on the host.

The target hardware or simulator runs the application (which is to be debugged). The
st20run process, running on the host, provides user i/o services for the application
and provides the debugger’s user interface, displaying the state of the program and
passing commands to the Diagnostic Controller Unit (DCU) as requested by the user,
see section 7.2.4.

The debugger is not synchronous with the application, so the user has full access to
the debugger while code is running on the target or simulator.
ADCS 7143840G 91

7.2 Debugging
Figure 7.1 Interactive debugging system

7.2.1 Starting debugging

Building the code

In order to use symbolic debugging with ANSI C code, the program should be
compiled with the full debugging data option, -g, selected on the command line of the
build tool st20cc. For example:

st20cc -g -T appcontrol.cfg -p helloapp hello.c

This example compiles and links the source file hello.c into a linked unit named
hello.lku. The name of the output file is derived from the input file and the
extension .lku is added. appcontrol.cfg is a command file which contains a
command language procedure called helloapp which is specified to describe the
target device and to control linking. By default all the symbolic debugging information
is put into a debug information file which is generated with the extension .dbg.

C code compiled without debugging information is capable of providing a stack trace
but cannot provide other symbolic information. In particular, C source code cannot be
displayed or referenced.

Code built from assembler code always includes debugging information and does not
need the -g option when assembling.

Running the debugger

The interactive debugger is started by invoking the st20run tool, either with the -gui
option to use the graphical interface or with the -debug option for command line
control.

For symbolic debugging, the debugger must have access to the debug files for the
application. In GUI or command language mode, the debug files for an application are
automatically read-in when a linked unit is specified on the st20run command line,
or when a linked unit is loaded via the load command. Debug files can also be loaded
on the st20run command line and via the program -new command.

Host Target hardware

user i/o

debug services

Diagnostic
controller

Applicationst20run
92 ADCS 7143840G

7 st20run
GUI session files

A session file may be submitted to the debugger using the -i option, in order to
initialize the state of the debugging GUI. This file can contain the saved state of a
previous debugging session. The session file contains window, program and break
commands and is saved via the Save session option on the File menu of the
debugging GUI, see Chapter 8.

If a saved session file is included on the command line via the -i option, then further
connect or load commands should not be submitted via the command line.

A session file may have the extension .ses and the be included as follows:

st20run -g -i filename.ses

7.2.2 The breakpoint trap handler

On target hardware a breakpoint trap handler has to be installed to enable the
debugger to interact with the target and to access the register state of the CPU when
a breakpoint occurs. When the trap handler is first required, the debugger searches
for a memory segment that has been declared with the attribute DEBUG.The
debugger loads a breakpoint trap handler into this segment and installs the trap
handler, which is then used for breakpoints and target/host interaction. (If necessary a
trap handler other than the default can be used by specifying the traphandler
command after the chip command within the configuration file. See Chapter 23
“Alphabetical list of commands” in the "ST20 Embedded Toolset Reference Manual"
for details of the traphandler command.

Note: when the breakpoint trap handler is running all interrupts are disabled. Support
is included in the breakpoint trap handlers delivered with the toolset to keep an
enabled watchdog timer alive while the breakpoint trap handler is running.

7.2.3 The inform mechanism

Input/output functions such as debugmessage and printf operate via an ‘inform’
mechanism. The host installs a relocatable code unit (RCU) for this inform mechanism
in the DEBUG segment, following the breakpoint trap handler.

The debugger adds the debug information file ‘.dbg’ for this RCU to its program list.

If the inform information is corrupted the debugger reports the error message:

‘Can’t handle informs’

If a spurious inform signal is sent to the debugger it is also possible to get the error:

‘Unidentified target poke; address 0xn, data 0xn’

On an inform operation the target signals the host via the DCU and waits in a busy
loop until the communication is complete. Interrupts are still enabled whilst the inform
operation is running. If the debugger is not connected then the inform operation does
not occur. The informs command can be used to turn the inform mechanism on and
off.

See Chapter 23 “Alphabetical list of commands” in the "ST20 Embedded Toolset
Reference Manual" for details of the informs command.
ADCS 7143840G 93

7.2 Debugging
7.2.4 The Diagnostic Control Unit (DCU)

The DCU is coupled to the ST20 CPU, either ST20-C1 or ST20-C2, providing
hardware support for debugging target applications.

The toolset provides support for two DCU variants, DCU2 and DCU3. DCU2 has a
fixed feature set. DCU3 has a fixed pool of features, but the number and configuration
of those features is defined during chip implementation. For example, a DCU3 could
be implemented to have between zero and thirty-one compare blocks (compare
blocks are used to implement breakpoints). Appendix A describes the hardware
breakpoint allocation scheme. For further information describing the DCU hardware,
refer to the device data sheet.

The DCU communicates with the outside world via two mechanisms. A simple packet
based protocol allows the host/target interface (for example, ST Micro Connect) to
communicate with the DCU via the test access port (TAP) interface. Through this
mechanism the host can peek and poke target memory and the target can communi-
cate event information and requests for I/O services to the host. The DCU can also be
programmed to respond to signals sent via the target’s trigger-in pin and can raise
either a pulse or level signal on the target’s trigger-out pin. These can be used with, for
example, a Logic State Analyzer (LSA) to coordinate tracing elements of system
behavior on a given event or set of events.

The DCU can stop and take control of the target by stalling the CPU or by causing the
breakpoint trap handler to run. The stall mechanism is used in two places. On reset, if
the debugger is connected to the target, then the CPU is stalled directly prior to
executing the chip’s default boot sequence. The stall mechanism is also used when
the trace buffer is full and is to be downloaded to the host. The DCU invokes the
breakpoint trap handler to stop the user’s application from running when an event
such as a hardware breakpoint occurs, or when the user has issued the stop
command through the debugger.

For access to CPU registers or, (on an ST20-C2) to peripherals that are mapped into
the PeripheralSpace, the breakpoint trap handler must be running. All other registers
(memory mapped) and memory regions can be accessed via the DCU at any time.

DCU registers are memory mapped into a region of memory that can be peeked and
poked through the host/target interface. Whilst CPU registers can only be accessed
when the breakpoint trap handler is running and the application is stopped, the DCU
provides a register that mirrors the state of the CPU’s Iptr register, and a register that
encodes information about the CPU’s current status, for example, whether the CPU is
busy or idle. These registers can be sampled by st20run, allowing profiling that does
not affect the application’s real-time behavior.

On receiving an event such as a breakpoint, the debugger can execute command
sequences via the when command. Through this mechanism complex debug
scenarios can be managed. This method of managing a complex debug scenario is
not appropriate when the application needs to be run in real-time. This requirement is
met by a DCU facility called sequencing. This mechanism allows an event raised by
one DCU function to enable or disable another DCU function. This is handled without
executing the breakpoint trap handler or stalling the CPU, and therefore without
94 ADCS 7143840G

7 st20run
stopping the application. For example, DCU tracing might be enabled on a code
breakpoint being hit, or a trigger-in signal being received. Another common scenario
is enabling a breakpoint to stop in a commonly executed code section when some
other condition is true, say when a count has reached a chosen value.

7.2.5 Examining memory and registers

At any time the memory of the target can be displayed, with the display command
or GUI Memory Window, without the target having to be stopped. CPU registers can
only be displayed when the target is stopped using the display -r command or GUI
Register Window. On some targets on-chip peripheral registers can only be displayed
when the target is stopped. Again, the display -r command should be used for
this purpose. Similarly if an on-chip device requires non-word aligned access to be
made to it, the display -r command must be used.

The register command can be used to give symbolic names to register addresses
which are interpreted by the display and modify commands. This command can
also be used to group sets of registers together for display purposes.

7.2.6 Defining the run-time system

The debugger has several run-time system specific modules that enable it to find
tasks and interpret data structures in an RTOS specific way. The runtime command
is used to define which run-time system the debugger should apply. For example, to
make the debugger STLite/OS20 aware:

runtime c2os20

The runtime command is described in Chapter 23 "Alphabetical list of commands" in
the "ST20 Embedded Toolset Reference Manual".

7.2.7 Disconnecting from target hardware

You can end a debugging session by using either quit or disconnect commands.
This does not stop an application running on the target. When disconnect is used
the debugger closes the current address space, see section 7.2.13. The quit
command in effect issues a disconnect for every address space that is connected.

The address space may alternatively be disconnected by executing the function
debugdisconnect from within the running application. Again this enables the
application to continue running on the target. For applications loaded by the debugger
in batch mode, the debugexit function will cause the debugger to quit. This function
is not supported for interactive use.
ADCS 7143840G 95

7.2 Debugging
7.2.8 Connecting to target hardware that is already booted

To connect to target hardware that is already booted (either from ROM, or from a
previous st20run invocation), setup a connect procedure that does not reset the
target. This connect procedure should use the same chip command and memory
segment definitions as a resetting connect procedure. It could also load the symbolic
debug information of the running program (a .dbg file) using the program -new
command, and if the program produces output to the host screen, the inform
mechanism could be enabled using the command informs -enable.

Such a connect procedure will look something like this:

proc conn_noreset {
chip STi5512
memory EXTERNAL ...
memory ...
...
program -new myprog.dbg
informs -enable

}

target noreset1 tap "..." conn_noreset

If this connect procedure and target definition are in the file conn.cfg, the noreset1
target could be connected to and debugged as follows:

% st20run -i conn.cfg -t noreset1 -d
> peek 0x40002000
> ...
> stop
> ...
> go

Running an application from ROM is described in Chapter 9

7.2.9 Saving state in a core dump file

Sometimes it may be preferred to save the state of an application in a core dump file.
The state may then be explored by reading the dump file without using any target
hardware, or the dump file may be reloaded and execution resumed, if the state
allows. Saving the state keeps a record for future inspection or reference. Saving the
state also frees any target hardware so that, for example, it may be used by other
users while the application is being debugged.

The state of the application may be dumped at any time using the core command,
which produces a hexadecimal dump with extension .hex, and a command language
script file with extension .in to restore the state:

st20run -d
> ## debug session
>core -save coredump ## create coredump.hex and coredump.in
> ## resume debugging
96 ADCS 7143840G

7 st20run
Subsequent debugging may be performed on a dump file using the core command:

% st20run -d
> core -load coredump.in ## enter core dump debugging mode
> include coredump.in ## restore debugger state
> ## debug session

A dump may be loaded onto target hardware or a simulator by including the core
dump script file. After restoring, it may be possible to resume execution, depending on
the restored state.

% st20run
> connect target
> reset
> go
> ... ## debug from dump
> quit
%

The -core option can be used to load a core dump as st20run starts.

7.2.10 Code and data breakpoints

A code breakpoint may be set during interactive debugging on a source statement or
address range. When a task (that is; a process, or thread of execution) hits the
breakpoint it will be stopped immediately before executing that statement or
instruction. A statement can have more than one breakpoint set on it.

When an application is multi-tasking, the debugger can treat the code breakpoints of
each task as distinct and distinguish between shared code executed by different tasks.
For example, a breakpoint may be set in one task so that only that task can hit the
breakpoint, while another task executing the same code will not be stopped.
Alternatively, a breakpoint may be set so that it stops any task executing that line of
code.

A data breakpoint may be set during interactive debugging on a program variable or
address range and may watch for read accesses, write accesses or both read and
write accesses. If such an access is made to a variable or address range then that
task will be stopped. Executing a data breakpoint results in the task being stopped
after the access is made.

Code breakpoints are implemented through two mechanisms. Software code
breakpoints are implemented by patching a breakpoint instruction into the code at the
location of the instruction to be stopped on. The breakpoint instruction causes the
breakpoint trap handler to be run. Code breakpoints can also be implemented using
the hardware breakpoint facility provided by the DCU.

If the type of breakpoint required is not explicitly specified, then the type of breakpoint
setup will be dependent on the memory type at the breakpoint address. For example,
if the breakpoint address is a source line in RAM, then a software code breakpoint will
be setup, but if the breakpoint address is a source line in ROM then a hardware
breakpoint will be setup.
ADCS 7143840G 97

7.2 Debugging
It is unlikely that in normal use the limit on the number of software breakpoints that
can be setup will ever be reached, but the number of hardware breakpoints available
is limited. Refer to Appendix A for a description of how the debugger allocates
hardware breakpoints.

A data breakpoint may be put on an expression, provided that expression defines a
block of memory. For example, an array element which has an expression as a
subscript may be used.

If a breakpoint address is in a function’s stack frame (data breakpoint), the breakpoint
is removed when the function returns.

Breakpoints can be set that are local to a particular function or procedure call, so
allowing recursive programs to be debugged interactively.

Breakpoints may be set and modified with the break command, and then listed,
deleted, enabled and disabled via the events command. Disabling a breakpoint
allows a breakpoint to be temporarily turned off.

Breakpoints may also be set and modified from the graphical interface, as described
in Chapter 8.

Hidden breakpoints are set by the debugger while executing step and stepout
commands

When a breakpoint is set, an event identifier is returned. This number is output to
identify the event whenever the breakpoint is hit or listed.

> eventnum = break mux ## assign returned event id to eventnum

The when command associates a command language script with an event. When the
event is hit the script is executed. The wait command makes the debugger pause,
not executing the next command language command until the application hits an
event. The event identifier may be used as a parameter to a when or wait command
in order to wait or act on a specific event.

A one-shot breakpoint may also be set which will automatically be removed after it has
been hit for the first time. Counted breakpoints are also supported, which are hit when
a variable, statement or address has been accessed a given number of times.

Note:

• A DCU cannot set breakpoints on addresses in an ST20-C2’s
PeripheralSpace.

• A DCU cannot monitor reads to a variable cached in a devices workspace
cache.
98 ADCS 7143840G

7 st20run
7.2.11 Stopping the target

A target can be stopped by:

• a stop command,

• the application hitting a breakpoint,

• the application executing a user breakpoint.

If the state of the target allows, a stopped target address space can be made to
continue by giving the go command. The interrupts command can allow the target
to restart with interrupts enabled or disabled.

A target address space is stopped by busy waiting in the breakpoint trap handler with
interrupts disabled. A simulator address space is stopped by the simulator not
executing any more instructions.

When an address space stops, st20run tries to find the state of the target when
execution stopped, including the values held by the Iptr and Wptr registers. To do this
st20run will perform the following steps:

• identify the task that was executing;

• save the task state, which is usually a subset of the target registers;

• symbolically locate to the source code that corresponds to the Iptr;

• trace back from the Wptr to find all the function calls;

• identify the reason why the execution stopped.

The task state can be modified using the alter command. The go command will
then start the processor executing in the modified task state.

7.2.12 Single stepping

During interactive debugging, a stopped task can be made to execute the next
statement, instruction or line of code. This facility is called single stepping and is
performed using the step command. If a task single steps at a function or procedure
call, it may optionally step through the function or step over it. Stepping through
means that the task executes as far as the first statement or instruction within the
function. Stepping over means that the task executes as far as the return from the
function.

The stepout command may be used to step out of a function, that is, to continue
execution of a task until a specified function returns.

Multiple instructions occurring on the same line may be executed using the step
-line command.

step -hardware causes the step command to use a hardware breakpoint to
implement the step.

As mentioned in section 7.2.10, stepping is implemented using either software or
hardware code breakpoints. Both software and hardware code breakpoint steps can
be interrupted through either a scheduling event or an interrupt.
ADCS 7143840G 99

7.2 Debugging
A software step is implemented by patching a software breakpoint instruction into the
code at the start of the next statement (or next instruction). The step is completed
when the software breakpoint instruction is executed.

Another break event may occur before the step is completed. For example, if a
breakpoint is set on a function entry point and the user is stepping through a
statement that contains a call to that function. In this case, when the user steps the
statement, the function breakpoint is reported. The user must continue from the
breakpoint before the step is completed.

In a multi-tasking application, if the code is shared between tasks, other tasks may
execute the software breakpoint instruction before the one being stepped. If the
debugger is aware of the stack space used for tasks, for example using the STLite/
OS20 runtime library, then the step completion will only occur within the original task.

When using the step command to step through ROM, the debugger uses a hardware
breakpoint. A single address breakpoint is used. That is, a breakpoint is set at the end
of the code being stepped. This leads to the same stepping behavior described for a
software step.

The command step -hardware is implemented through a hardware code
breakpoint and will complete for the next Iptr that is outside the range of the code
being stepped. Therefore if there is a timeslice (and the new Iptr is not within the
range of the step - a rare scenario, but possible), then the step will complete in the
next scheduled task. Or if there is an interrupt, the step will complete in the interrupt
handler.

7.2.13 Address spaces

In the context of st20run, an address space is a processor state, that is, the contents
of memory, the CPU registers and any peripheral registers. The address space may
be either:

• the state of a hardware or simulator target, in which case it is called a target
address space, or

• a loaded core dump or trace dump, in which case it is called a hosted address
space.

st20run allows you to use more than one address space at any one time. If several
targets or several core dumps or both are in use simultaneously then each has a
separate address space.

A target address space is created by the connect command and disconnected by the
disconnect command. A hosted address space is created with the core command.
One address space can be copied to another address space using the copy
command. This allows, for example, a core dump to be loaded onto a target. Both
target and hosted address spaces may be removed by using the space -delete
command.

Two address spaces can be compared using the compare command. For example,
this could be used to verify that a ROM has been correctly generated by comparing a
100 ADCS 7143840G

7 st20run
hosted address space (including the expected ROM image) with the target address
space. One address space can be updated with values from another address space
using the copy command.

Every address space has an identifier. Some commands can take an address space
identifier as an argument; if no identifier is given then the current address space is
sought from the debugger context. The debugger context is updated when a connect
or core command has occurred or the context command has been used.

Each address space must be associated with a processor type, defined using a chip
or processor command. This tells st20run what registers exist, how to
disassemble code and how to format addresses.

Each address space also has one or more memory segments associated with it, using
the memory command. This tells st20run which addresses can be read and written
and prevents st20run from referencing memory addresses that are not defined.

Address spaces can be examined using the display and peek commands and can
be updated for example using the poke command. The peek and poke commands
do not check the specified address against known memory segments.

7.2.14 Programs

In the context of st20run, the term program is used to mean the linked output from
st20cc, either a linked unit, ROM image file or a relocatable code unit (RCU). For
linked units the name of the program is the name of the linked unit, for ROM image
files and RCUs the name of the program is the name of the debug information file
generated by st20cc. The code for a complete application may be split between
several programs to allow different sections of code to be loaded independently.

For each debugging session every program is given an integer program identifier, for
example 0, 1, 2, 3, ... Some commands can take a program identifier as an argument;
if no identifier is given then the program is sought from the debugger context. The
debugger context is updated when a program -new or load command has
occurred or the context command has been used.

The program command can be used to display information about programs. This
command can also take a program identifier as a parameter in which case the details
of that program are displayed.

The program command may also take a program key as a parameter. A ‘program
key’ is an identifier which is allocated at link time and is unique to that linked output.
Usually it is only allocated to ROM image files although it may be allocated to a linked
unit if the code specifically references the program key. See the subsections “The
program key” and “Setting the value of the program key” in section 9.3.2 for further
details.

The ‘current’ program is the program that is executing. The program command has
several options which operate on the current program.

For full details of the program command see the "ST20 Embedded Toolset
Reference Manual".
ADCS 7143840G 101

7.2 Debugging
7.2.15 Tasks

A task (sometimes called a process or a thread of execution) is a sequential section of
code, with associated state, which can be run in parallel with other tasks. A multi-task
application is managed by a run-time system, which controls the sharing of CPU time
between the tasks and communication between the tasks. The default run-time
system uses the special instructions and registers provided by the ST20 to support
multi-tasking.

Each task has a task identifier used in the command language. Some commands can
take a task identifier as an argument; if no identifier is given then the current task is
sought from the debugger context. The debugger context is updated when a
breakpoint has occurred or the context command has been used.

The task -update command/task window can be used to locate all the tasks in an
address space. This command can also take a task identifier as a parameter in which
case the last known state of that task is displayed.

7.2.16 Examining variables

The value of an expression may be output using the print command. A simple C
expression syntax is supported to enable the values of structured variables to be
displayed.

The debugger can distinguish between instances of automatic variables declared in
shared code. An automatic variable is a C variable which is declared inside a function,
so multiple executions of the function code give rise to multiple instances of the
variable.

Each task that executes the shared code will have a different instance of any variable
declared in the shared code. Each instance will be in a different memory location and
may have a different value. In this case the user must be careful when inspecting the
value of a variable that the correct task is being inspected. A task may be selected by
default or explicitly as a command option.

A function that is called recursively may also cause multiple instances of automatic
variables. The debugger is able to distinguish these instances by their frames, that is
their locations on the stack.

C static variables have only one instance within a program and are not associated with
a particular task. If a data breakpoint is set on a C static variable then any task
accessing that variable will stop.

Two variables that have the same name need to be distinguished by the debugger.
They may have the same name because:

• they are different instances of an automatic variable or

• they have been defined as different local variables in different functions.

Instances of automatic variables can only be distinguished by identifying the frame, as
described above.
102 ADCS 7143840G

7 st20run
Two variables defined in different functions or compilation units can be distinguished
by their scope. The scope of a variable is defined as the section of code where the
variable is uniquely defined. In some cases it will be sufficient to specify a program or
task; otherwise a statement reference can be used.

7.2.17 Stack trace

Whenever it locates to a point in the code, the debugger attempts to identify the
sequence of function calls that led to the current context. It does this by working
backwards through the stack to find where each function was called from, and
identifying the source for the calling function. This procedure is called backtracing. If
the debugger cannot backtrace then it cannot display the full stack trace.

The debugger will stop backtracing when it has backtraced 1000 times. This is used to
prevent the debugger going into an endless loop.

Backtracing depends on the debugger being able to find the appropriate debug
records. The debugger can backtrace:

• from C code when it has found the debug records, whether or not the -g
compiler debug option was used.

• from assembly code when it has found the debug records and the appropriate
macros have been used on function definition and work space adjust.

The backtrace can be displayed using the where command or the call stack window,
which gives details of the nested function calls of the task which have not returned.
Each function call of a stack trace is called a frame and is allocated a number known
as the frame identifier. The frame identifiers are shown in the stack trace in the first
column.

7.3 Commands

st20run has a scripting language defined in the "ST20 Embedded Toolset Reference
Manual". Commands can be entered interactively at the command language prompt,
including executing a command language script from a command file. A command file
can be used as a batch file from the st20run command line using the -i option.
Commands may also be sent by the application to st20run.

The commands recognized by st20run are listed in functional groups in the following
sections and are identified by “st20run” in the tool environment section of each
command definition in the "ST20 Embedded Toolset Reference Manual".
ADCS 7143840G 103

7.3 Commands
7.3.1 Hardware configuration

The hardware configuration commands listed in Table 7.2 can be used to define and
describe available target hardware and simulators.

7.3.2 Target interface commands

A target, defined by a target command, can be connected, described, reset and
disconnected using the commands listed in Table 7.3.

> include target.cfg
> target oursim st20sim "st20sim -q -f st20hw.cfg" mysim
> connect oursim

Any number of targets can be connected at any one time. A target cannot be
manipulated by the debugger until the debugger has connected to it with the connect
command. The current target is identified by the command language variable
spaceid, which is set by the connect command or by the context command, see
section 7.3.4.

7.3.3 Boot commands

Programs can be loaded and run on a defined and connected target using the
commands listed in Table 7.4.

Command Description

chip Define the chip type.

memory Declare a memory segment for the connected target.

poke Write to the memory of the connected target.

processor Define the core type of the processor.

Table 7.2 Hardware configuration commands

Command Description

connect Connect to a target.

disconnect Close the current target connection.

reset Resets a target board st20run is connected to.

target Define or list hardware or simulator targets.

Table 7.3 Target interface commands

Command Description

bootiptr Defines an applications initial Iptr.

fill Copy a ROM file into the memory of the connected target.

load Load the specified linked unit file (.lku).

go Start executing on the connected target.

modify Modify register values.

Table 7.4 Boot commands
104 ADCS 7143840G

7 st20run
load and go can be used to boot from a linked unit file.

> connect target1 ## connect to target1
> load hello.lku ## load the application hello.lku
> go ## run the application

fill, modify and go can be used to start the processor running a ROM image.

> connect c1target
> fill rom1.hex
> modify -r iptr 0x4000000 ## Set initial iptr
> go

Note that for ST20-C2 processors the default boot register state, for example Iptr and
Wptr are fixed, but for ST20-C1 systems the reset value of these registers is device
implementation dependant.

7.3.4 Debugging commands

The commands in Table 7.5 provide access to the symbolic facilities of the debugger.
They enable symbolic information to be loaded into the debugger, and statement
mapping and source browsing to be implemented.

Command Description

addressof Output the address of the specified statement/symbol.

context Display, define and manipulate debugger context information.

core Create a hosted address space.

entry Output the statement reference for the specified symbol.

informs Enables/disables debug input/output.

modules List the modules (source files) of the program.

program Display, define and manipulate program information.

runtime Define the run-time system.

space Output information on address spaces.

statement Output the source statement corresponding to the specified address.

sizeof Output the sizeof of the specified statement/symbol.

symbols List the symbols in the program.

task Output information on known tasks.

Table 7.5 Debugging commands
ADCS 7143840G 105

7.3 Commands
7.3.5 Execution commands

Table 7.6 lists the commands to halt or continue execution of one or more tasks, and
to single step execution of a task.

The application program can be stopped using the stop command. This facility may
be used if, for example, a task is stuck in a loop.

>stop
task 2 main stopped at <hello.c 14>

A stopped task may be resumed using the go command.

7.3.6 Event commands

Events can be breakpoints, timers or pre-defined events. Special command language
variables exist which hold pre-defined event identifiers which are listed in the
“Command language programming” chapter of the "ST20 Embedded Toolset
Reference Manual". The user can create breakpoint and timer events and test against
all event identifiers.

Each event has a unique integer identifier, which is returned by the command that sets
the event. The identifier is used as an argument by subsequent commands operating
on the event. The identifier of the last event to be hit is held in the command language
variable eventid.

The events commands are listed in Table 7.7.

An event can be disabled, which means that the event cannot be hit until it has been
enabled again.

Command Description

interrupts Set the global interrupt behavior on restart after an event.

go Start / continue execution.

restart Set the debugger back to its starting state after loading.

step Execute next instruction, statement or line of code.

stepout Continue execution of a function until it returns.

stop Stop execution.

Table 7.6 Execution commands

Command Description

break Set or modify a breakpoint.

events List, delete, enable or disable events.

remove Remove a when statement or command language symbol.

wait Wait for an event to be hit.

when Execute commands when an event is hit.

timer Create, list, delete, enable or disable a timer event.

Table 7.7 Event commands
106 ADCS 7143840G

7 st20run
The command wait can be used to explicitly wait for an event to be hit before
executing the next command. A when statement can be used to associate a command
language script with an event hit.

7.3.7 Profiling

Profiling is controlled by the profile command or the -p command line option.
Profiling by either method is described in the "ST20 Embedded Toolset Reference
Manual".

7.3.8 Task State Commands

When a task is stopped, its state can be examined and altered by the commands in
Table 7.8.

7.3.9 Window management

The graphical interface windows can be managed using the window command. This
command can open and close windows and set their current and default
characteristics. The command has several forms for performing different types of
window operations.

7.3.10 Tracing

Tracing program execution is described in the "ST20 Embedded Toolset Reference
Manual".

7.3.11 Low level debugging

When a target is connected, the commands listed in Table 7.9 are available to inspect
and modify the contents of the memory space and registers of the target. These
commands can be used for testing the target hardware, low-level debugging and to
emulate booting from ROM.

Command Description

alter Write to a register for the defined task.

print Interpret a C expression.

program Display, define and manipulate program information.

space Output information on address spaces.

task Output information on known tasks.

where Generate a stack trace (that is. a function call trace).

Table 7.8 Task state commands
ADCS 7143840G 107

7.3 Commands
A memory viewing function allows segments of memory to be viewed in various
formats. A low level view of a task can be selected allowing its code to be
disassembled, its workspace to be examined and allowing the use of breakpoints and
single stepping at instruction level.

7.3.12 File handling commands

Table 7.10 lists the commands for handling files and directories.

The directory and searchpath commands perform similar actions, but can be
used in different circumstances.

The directory command can only be used at top level, that is, not in a procedure or
loop. It is also understood by other tools, so it can be used in start-up files.

The searchpath command is not understood by other tools.

Command Description

compare Compares two address space memories and registers.

copy
Copies the source address space memory and registers to the destination
address space.

display Display a block of memory or register of the connected target.

dump Save memory to a file.

fill Copy a ROM file into the memory of the connected target.

memset Fill a block of memory with one value.

modify Write to memory on the connected target.

peek Read the memory of the connected target.

poke Write to the memory of the connected target.

register Associate symbolic name to peripheral register address.

Table 7.9 Low level commands

Command Description

cd Change the current working directory.

directory Add pathname to the search path.

include Execute the commands in the filename.

mv Move a file.

pwd Output the pathname of the current working directory.

rm Remove list of files from the file store.

searchpath Add pathname to the search path or output the search path.

Table 7.10 File handling commands
108 ADCS 7143840G

7 st20run
7.3.13 Other commands

Table 7.11 lists the other commands available when running st20run.

Command Description

addhelp Associates a help string with a procedure name.

clinfo Turn on command language trace output.

clerror Raise an error from a command language program.

clsymbol Get information on command language symbols.

eval Execute a command language procedure.

fclose Closes open file.

feof Tests for end-of-file marker.

fgets Reads one line from a file.

fopen Opens a file for reading, writing or appending.

fputs Writes the specified string to a file.

help Output helpful information.

log Copy all input commands and outputs to a file.

parse Executes a parsed string.

quit Exits the debugger.

rewind Moves the file pointer to the start of the file.

session Saves the current debugging session to a file.

sys Execute a hosts system command.

write Print a message to the debugger output.

Table 7.11 Miscellaneous commands
ADCS 7143840G 109

7.3 Commands
110 ADCS 7143840G

8 Debugger graphical interface
8 Debugger graphical interface
The debugger has a windowing interface, which gives access to the features of the
debugger by means of a keyboard, mouse, windows, menus, buttons and dialogue
boxes. This chapter describes the windowing interface, the uses of the menu
selections and buttons and the meanings of the displays.

The windowing interface supports multiple tasks, programs and address spaces.
Tasks, programs and address spaces are explained in Chapter 7. If you are not using
these facilities, you can ignore all references to tasks, programs and address spaces.

8.1 Starting the graphical interface

Building code for debugging is described in Chapter 7. The -gui option on the
st20run command line starts the graphical interface. For example, the following
command will start the graphical interface with the compiled application code
hello.lku using the target tp3:

st20run -gui -t tp3 hello.lku

The target may be a hardware target or a simulator. The st20run command line is
described in Chapter 7.

A saved debugging session, see section 8.3.3 can be included from the command line
by:

st20run -gui -i filename.ses

where filename.ses is the name of the file, in which the session is saved.

8.2 Windows

The menus and buttons of the windowing interface give access to many features of
the debugger. Where more complex features are needed, the full functionality of the
debugger can be accessed by typing commands in the Command Console Window,
see section 8.17 or via the Command Execution Window, see section 8.10. The
command language is described in the "ST20 Embedded Toolset Reference Manual".

Several different types of window are provided, as listed in Table 8.1 and described in
section 8.3 onwards. Each window displays certain information about the state of the
application, the state of the target and the state of the debugger.

Each window has menus to control the display and to perform debugger operations.
The meaning of each menu item is displayed at the bottom of the window when the
item is selected. Every window has a File menu, which includes a Close option to
close the window, except the Code Window which has an Exit option to close down
the debugging session. At least one Code Window will always exist the final one of
which cannot be closed via Close.

Pressing the right-mouse button in a window will usually pop-up a context menu
containing commonly used menu options. Only menu items that are valid for the
current window, selection, or highlight will be in the pop-up menu. These items are a
subset of the items available from the window’s menu bar.
ADCS 7143840G 111

8.2 Windows
8.2.1 Controlling the GUI

Code Windows are the ‘main’ control windows of the graphical debugger. All other
windows can be opened from these and are opened with the data context of the Code
Window from which they are opened, see section 8.2.5.

8.2.2 Child windows

Symbols, Map, Callstack, Variables, Registers, Memory and Command Execution
Windows are child windows of the Code Window from which they are opened. They
will take their data contexts from the parent Code Window, and If the parent window is
closed then they will close automatically.

8.2.3 Window Types

Window Display Menu and button operations

Code Window Source or instruction code. Exit st20run, open windows, load and
save options, control execution and space,
set and clear breakpoints, evaluate
expressions, set colors.

Symbols Window Modules and symbols. Apply a module and locate to a symbol.
Set breakpoint. Open Variables and
Memory Windows.

Map Window (Micro-
soft Windows only)

Memory segments, program
sections and symbols.

Locate to a symbol. Set breakpoint.

Callstack Window Stack trace or instruction stack Locate source in Code Window. Change
call stack.

Variables Window Values of expressions. Evaluate C expressions. Open Memory
Window.

Registers Window Values of registers. Save register values. Add and edit
registers.

Memory Window Contents of memory. Set breakpoints at addresses. Dump and
fill memory to or from file. Set and edit
memory.

Tasks Window Tasks and their current status. Open Code Window. Stop / continue task.

Targets Window Available targets and current
address spaces.

Connect, disconnect or delete an address
space. Open Code Window.

Command Console
Window

Manual command history.
Debugger output

Enter debugger commands.

Command Execution
Window

Debugger command and result Submit, Enable and disable command.

Trace Window Traced jumps and source code Create or interpret a trace.

Trace Generation Win-
dow

View and setup trace parameters.

Events Window Events. Create and delete events and change
event characteristics.

Profile Window Profile results. Stop and start profiling. Load and save
profile results.

Table 8.1 Window types
112 ADCS 7143840G

8 Debugger graphical interface
8.2.4 Display state

For each task of the application, the debugger interrogates the state of the task only
when the task hits an event. The displayed state of a stopped task is normally the
current state of that task. When the task is running, the displayed state is the state
when the task was last stopped, called the last known state.

In some cases you can apply an operation to a particular object by selecting the object
in the window display before selecting the operation from the menu. Clicking on or
wiping over displayed text selects the text that is highlighted and also selects the line it
is in. Double clicking on the display will select a word in the display.

Application program output is displayed in the console from which st20run was
started.

8.2.5 Data Contexts and Windows

Windows and window elements may have a ‘data context’. Data items will be
interpreted within that context as appropriate. For example, the Task Window has an
address space context and will only list the tasks that are present in that address
space.

Data contexts are required to allow a data item to be uniquely identified. The different
forms of data context are:

• Address space, see section 7.2.13.

• Task, see section 7.2.15.

• Program, see section 7.2.14.

• Location:

• high-level: <module-name line-number statement>

• low-level: an address

• Frame: callstack frame number.

As an example of the effect of data contexts, consider selecting a variable on a line of
source code displayed in the Code Window and selecting Print. To uniquely identify
the variable the debugger will use the Code Window’s address space and program, it
will apply a scope based on the currently loaded module name and the line number on
which the variable was selected, and it will apply the frame currently selected on the
Callstack Window. If no frame is selected then the debugger will use the last known
execution frame of the Code Window’s task.

A window inherits its data context from the Code Window it is opened from (or the
parent Code Window if opened from a different type of window). On the following
windows, this initial data context can be amended by selecting the Change Context
option from the View menu:

• Events

• Trace Generation
ADCS 7143840G 113

8.2 Windows
• Memory

• Command Execution

• Callstack

A standard Context Chooser appears displaying the current settings and allowing
them to be changed. Any inappropriate fields are grayed out.

The Variables Window is a special case. Each variable added to the window has its
own data context (displayed in the Scope field for the currently selected variable).
114 ADCS 7143840G

8 Debugger graphical interface
8.3 Code Window

At least one Code Window will always be displayed. When multiple address spaces
are used then there will be at least one Code Window per address space. Creating a
new address space from the Targets Window will automatically open a Code Window
with that space context.

A Code Window can be opened from the Windows menu of the Target Window or the
Task Window. Another Code Window with the same initial data context can be opened
from the Code Window’s Windows menu.

The Code Window may display C or C++ source code, assembler source code or
processor instructions. Execution of the application can be controlled from this
window, including halting, continuing, single stepping, setting breakpoints, and
displaying the values of variables, loading programs, trace files and core files.

A code display shows the last known state of the current task, and by default is
updated whenever a task hits an event. An execution marker is displayed indicating
the current stopped position in the code. The code lines are numbered, and clicking
on a line number sets or clears a breakpoint.

Clicking on a code line sets this as the currently selected line and a selection
marker is displayed. If this is a valid code line then the line’s address and statement
reference will be shown in the prompt display at the base of the Code Window. If the
name of an in-scope variable is highlighted then its value will be shown in the prompt
display.

The Code Window also has a set of buttons, used to perform the most common step
and execution operations; and list boxes to select a context, that is, a program, module
and task. Tasks, programs and address spaces are explained in Chapter 7. If you are
not using multiple tasks, programs and address spaces, you can ignore these list
boxes.

Each Code Window has an associated Symbols Window, Map Window and Callstack
Window. Symbols Windows are described in section 8.4. Map Windows are described
in section 8.5. Callstack Windows are described in section 8.6.

8.3.1 Buttons

The Code Window buttons are used to perform the common execution operations.

Go Continue execution of all tasks in the window’s address space.

Stop Interrupt execution of all tasks in the window’s address space.

Locate Change the code display back to the last stopped position of the
current task. This button is denoted by a forward arrow ➞ .

Step Step the current task. If source code is displayed then execute one
C source statement. If the statement is a function call, then execute
the first statement of the function. If instructions are displayed then
execute one instruction.
ADCS 7143840G 115

8.2 Windows
Step Over Step the current task, stepping over function calls. If source code is
displayed, then one C source statement is executed. If the
statement is a function call, then the function is executed until it
returns.

Step Out Complete execution of the selected call stack function (on the
Callstack Window), that is, execute until the selected function
returns. If no callstack frame is selected then step out one frame
level.

Step To Allow execution to proceed to the selected code line.

Find Search for a string in the display (with wrap around). Press ENTER
after entering the text to perform the search or select a previous
string.

>> Search for the next occurrence of the string selected by Find.

8.3.2 List boxes

The list boxes are provided to select the context from all the possible programs,
modules and tasks.

Program Select one from the list of programs, (linked units). Selecting a
program updates the associated Symbols and Map Windows.

Module Displays currently loaded module. Modules can be selected from
the Symbols Window (accessible from the right-mouse button).

Task Select one from the list of tasks, that is, threads of execution.

8.3.3 File menu

Open Text Select a text file for display in the Code Window. If this is
recognized as a source code module of a loaded program then the
Code Window’s program context will change to this program.

Load program

Load a program, (a linked unit), into the Code Window’s address
space.

Load Dbg Load a debugger symbols file (.dbg file), see section 3.2.7.

Load Trace, new space

Create a hosted address space; open a Code Window with this
space context; load the selected trace file. Note: to load a trace file
into an existing address space, use the Load trace option on the
Trace Window.

Include cfg Include the selected configuration file. This will submit all the
commands contained in the file to the debugger.
116 ADCS 7143840G

8 Debugger graphical interface
Add Directory

Add the selected directory to the debugger’s search path for
locating files.

Identify runtime

Identify the runtime system for this address space.

Load core, new space

Create a hosted address space; open a Code Window with this
space context; load the selected core .in file and go into core
dump debugging.

Save core Create a core file from this address space.

Select Log File

Creates a log file to which all debugger input and output can be
written.

Logging Toggles logging on/off for debugger input and output to the
previously selected file.

Save session Save the current state of the current debugging session. If a file
extension is not provided then the default extension .ses will be
used. The saved session file contains window, program and break
commands.

Restore session

Load a saved debugging session. Restoring a session re-displays
the windows, reconnects to targets, reloads programs, and
restores breakpoints; it does not attempt to run any programs.

Enter Include Change the code display to the source code file named in the
selected #include statement.

Exit Include Change the code display back to where Enter Include was
selected.

Close Close this window. This will close all this window’s child windows. If
this is the only Code Window then this option will be grayed. If this
is the last Code Window for a particular address space then this
action will prompt to delete the address space.

Exit st20run Exit from the debugger. A dialog will prompt whether to save the
session.

Exit: no save Exit the debugger immediately with no prompt to save.

8.3.4 View menu

Go to line Go to specified line number.

Find text Find a text string in the currently loaded file.
ADCS 7143840G 117

8.2 Windows
Find Procedure

Locate source code to highlighted procedure name.

Locate Exec Line

Locate source code to current execution line.

Instructions Toggle the code display between the source code and disassem-
bled instructions.

8.3.5 Command menu

Go See button bar Go.

Stop See button bar Stop.

Restart Restart the current address space. Reruns the connect
configuration procedure, reloads all programs, recomputes and
resets breakpoints.

Change Exec Line

Changes the current execution line to the selected line without
executing any instructions (modifies the Iptr).

Set Breakpoint

Set a breakpoint on current selection line.

Set Break On Task

Set a task specific breakpoint on the current selection line. This
stops execution when the window’s current task hits the breakpoint.

Set Break On Frame

Set a frame specific breakpoint on the current selection line. This
stops execution when it is hit within the window’s current frame.

Set Break Trace On

Tracing begins when this breakpoint is hit (execution is not
stopped).

Set Break Trace Off

Tracing stopped when this breakpoint is hit (execution is not
stopped).

Delete Breakpoint

Delete all breakpoints on the current selection line.

Delete All Delete all breakpoints in the current address space.

Step See button bar Step.

Step Line Step a complete source code line, executing each statement.

Step Over See button bar Step Over.
118 ADCS 7143840G

8 Debugger graphical interface
Step Out See button bar Step Out.

Step To See button bar Step To.

Step Instruction

Single step a machine instruction.

Step Minimal Step into functions compiled with minimal debugging.

Step Thru Minimal

Step through functions compiled with minimal debugging.

Display Variable

Add highlighted variable to Variables Window.

Print Variable Print value of highlighted variable on Command Console Window.

Print* Variable Dereference and print value of highlighted variable on Command
Console Window.

Print String Print value of highlighted variable on the Command Console
Window as a null-terminated string.

8.3.6 Options menu

The update options are mutually exclusive. Different Code Windows can be set to
different update options.

Follow Events Update the Code Window whenever any event is hit and switch its
selected task to that of the last stopped event. This is the default
operation.

Follow This Task

Update the Code Window whenever the selected task hits an
event.

Follow Task Window

Switch the Code Window task to reflect the currently selected task
in the list on the Task Window. This option is to allow easy
examination of the current position of each task, using the Task
Window as a selection control.

Fixed Set the Code Window to not update automatically on events. It will
only be updated when the user carries out an action, for example:
‘Locates’, or enters a command.

8.3.7 Windows menu

Windows will be opened with the Code Window’s data context as appropriate. If the
required window is already displayed it will be brought to the front.

Command Console There is only one Command Console Window.

Targets There is only one Targets Window.
ADCS 7143840G 119

8.2 Windows
Events One per address space.

Task One per address space.

Trace One per address space.

Trace Generation

One per address space.

Profile One per address space.

Code Multiple windows. Opened with the initial data context of the Code
Window.

Variable Multiple windows. These are child windows of the Code Window.

Memory Multiple windows. These are child windows of the Code Window.

Register Multiple windows. These are child windows of the Code Window.

Cmd Execution

Multiple windows. These are child windows of the Code Window.

Callstack One per Code window. This is a child window of the Code Window.

Symbols One per Code window. This is a child window of the Code Window.

Map (Microsoft Windows only) One per Code Window. This is a child
window of the Code Window.

8.3.8 Preferences menu

The Preferences menu provides options for setting the default appearance of
Windows. Using this requires the HOME environment variable to point to a directory
which may be written to.

Save as Default
Save the current size and position of this Code Window as the
default settings for Code Windows.

Save All as Default

Save the current size and position of all windows as the default
settings for their type.

Background colour

Select the text background color.

Text colour Select the foreground text color.

Code font (Microsoft Windows only) Select the font for window contents.

Label font (Microsoft Windows only) Select the font for labels and controls.
120 ADCS 7143840G

8 Debugger graphical interface
8.4 Symbols Window

One Symbols Window is associated with each Code Window. It is opened from the
Windows menu of a Code Window or by pressing the right-mouse button while in a
Code Window. It is used to display and select modules (source code files) of the
currently selected program, and the associated symbols.

With no module selected, all the symbols of the program are displayed. Selecting a
module causes the symbols of the module and the module details to be displayed.
The selected module can be applied to the Code Window by clicking on the Locate
module button or the Locate Module option in the Command menu. Selecting a
symbol causes the details of the symbol to be displayed. Similarly clicking on the
Locate symbol button or the Locate symbol option in the Command menu locates
the source code display of the associated Code Window to the currently selected
symbol.

Typing into the Find Module or Find Symbol fields automatically scrolls the Modules
or Symbols list to the matching name.

8.4.1 File menu

Close Close the Symbols Window.

8.4.2 Command menu

Locate Module

Apply the selected module to the associated Code Window.

Locate Symbol

Locate the associated Code Window to the selected symbol. This
causes the Code Window to load the module containing the symbol
and locate the display to the definition of the symbol.

Set Breakpoint

Put an event on the selected symbol. If the symbol is a function
then the event is a breakpoint; if the symbol is a variable then the
event is a data breakpoint.

8.4.3 Windows menu

Memory Open Memory Window with address of selected symbol.

Variable Add selected symbol to Variables Window.
ADCS 7143840G 121

8.2 Windows
8.4.4 Preferences menu

The Preferences menu provides options for setting the default appearance of
Symbols Windows. Using this requires the HOME environment variable to point to a
directory which may be written to.

Save as Default
Save the current size and position of this Symbols Window as the
default settings for Symbols Windows.

8.4.5 Buttons

Locate module

Load and display the selected module in the associated Code
Window.

Locate module & Close

Load and display the selected module in the associated Code
Window and close the Symbols Window.

Locate symbol

Locate the associated Code Window to the selected symbol.

Locate symbol & Close

Locate the associated Code Window to the selected symbol and
close the Symbols Window.
122 ADCS 7143840G

8 Debugger graphical interface
8.5 Map Window

Microsoft Windows only.

One Map Window is associated with each Code Window. It is opened from the
Windows menu of a Code Window or by pressing the right-mouse button while in a
Code Window. It is used to display and select the memory segments and program
sections of the currently selected program, and the associated symbols.

With no memory segment or program section selected, all the symbols of the program
are displayed. Selecting a memory segment causes only those symbols placed within
the memory segment to be displayed and similarly selecting a program section
causes only those symbols placed within the program section to be displayed.
Selecting a symbol and then clicking on the Locate symbol button or the Locate
symbol option in the Command menu locates the source code display of the
associated Code Window to the currently selected symbol.

Typing into the Find field and then pressing ENTER searches for a symbol which
matches the entered text. If no program section is selected then the search is over the
currently selected memory region and if no memory region is selected then the search
is over all the symbols in the program.

8.5.1 File menu

Close Close the Map Window.

8.5.2 Command menu

Locate symbol

Locate the associated Code Window to the selected symbol. This
causes the Code Window to load the module containing the symbol
and locate the display to the definition of the symbol.

Set breakpoint

Put an event on the selected symbol. If the symbol is a function
then the event is a breakpoint; if the symbol is a variable then the
event is a data breakpoint.

8.5.3 Find menu

Find Open a dialog to find a symbol within the currently selected
program section, memory region or program (also updates the
Find field).

Find next Find the next occurrence of a symbol which matches the text in the
Find field.
ADCS 7143840G 123

8.2 Windows
8.5.4 Preferences menu

The Preferences menu provides options for setting the default appearance of
Windows. Using this requires the HOME environment variable to point to a directory
which may be written to.

Save as Default
Save the current size and position of this Map Window as the
default settings for Symbols Windows.

8.5.5 Buttons

Find next Find the next occurrence of a symbol which matches the text in the
Find field.

Locate symbol

Locate the associated Code Window to the selected symbol.
124 ADCS 7143840G

8 Debugger graphical interface
8.6 Callstack Window

One Callstack Window is associated with each Code Window. It is opened from the
Windows menu of a Code Window

When the Code Window is in source code mode, by default this lists the execution
callstack for the Code Window’s task. Selecting a frame in the list will locate the Code
Window display to the corresponding code line if the relevant module is accessible.

If a frame is selected then choosing Step Out on the Code Window will step out to that
line. Similarly if a frame is selected, choosing a Display or Print option on the Code
Window will use the selected frame context (see section 8.2.5.)

If the Code Window is in instruction mode then by default the Callstack Window will
display the current stack contents, with a marker indicating the current Wptr position.

8.6.1 File menu

Close Close the Callstack Window.

8.6.2 View menu

Code Window’s mode

Callstack Window follows the instruction/source mode setting of the
associated Code Window.

Source Code mode

Displays source code callstack (if available).

Instructions mode

Displays machine stack.

Change Context

Displays Context Chooser. Allows selection of ‘Follow Code
Window’ context (the default), or allows selection of a different task.

8.6.3 Command menu

Step Out Step out to selected frame.

Change Frame Change execution point to selected frame without executing code
(changes Wptr).

8.6.4 Preferences menu

The Preferences menu provides options for setting the default appearance of
Windows. Using this requires the HOME environment variable to point to a directory
which may be written to.

Save As Default

Save the current size and position of this Callstack Window as the
default settings for Callstack Windows.
ADCS 7143840G 125

8.2 Windows
126 ADCS 7143840G

8.7 Variables Window

A Variables Window is a child window of a Code Window. It is opened from the
Windows menu of a Code Window. Alternatively choosing to ‘Display’ a variable’s
value on the Code Window will open a Variables Window if an appropriate one does
not exist.

The Variables Window is used to monitor the values of variables defined in the
application program, or of C expressions using application variables. The values of the
expressions in the display can be updated as the application proceeds. The address
of the selected variable or expression and its data context is shown in the Scope
display. The data context of the variable is taken from the parent Code Window at the
time of it being added to the Variables Window.

Clicking on an array or structure in the Variables display will toggle between an
expanded and shrunk display of the array or structure. Clicking on a value in the
Values display will open a dialogue box to change the value.

The expressions are entered in the Add variable field; by selecting an expression in
the Code Window and selecting the Code Window Display option; or by selecting a
variable’s symbol on the Symbols Window and selecting the Variable option. The
values can be displayed in a range of formats. The values shown may be updated
when an event occurs or held fixed, depending on the selection in the Options menu.

8.7.1 File menu

Close Close the Variables Window.

8.7.2 View menu

The View menu controls the display format of the selected variable.

Hexadecimal Display integer values in hex.

ASCII Display integer values in ASCII.

Decimal Display integer values in decimal.

Octal Display integer values in octal.

Binary Display integer values in binary.

Rtos View Treat selected item as an RTOS variable. This is a toggle switch,
where the variable is either displayed in RTOS mode or not. By
default, variables are displayed in RTOS mode. This option is
independent of the Hexadecimal, ASCII, Decimal, Octal and Binary
options.

Value Display value of the selected item.

Dereference Dereference the selected item.

String Dereference the selected item as a null-terminated string.

Array Elements
Open a dialog to define how many elements of the array are
displayed.

8 Debugger graphical interface
Change Context

Displays Context Chooser. Allows the currently selected variable’s
program, task, location or frame to be amended.

Delete Delete the selected item from the list of variables.

8.7.3 Options menu

The Options menu controls the update mode of the window.

On Event Update the values whenever an event occurs.

Fixed Do not update the values.

8.7.4 Windows menu

Memory Open Memory Window displaying selected variable’s address.

8.7.5 Preferences menu

The Preferences menu provides options for setting the default appearance of
Variables Windows. Using this requires the HOME environment variable to point to a
directory which may be written to.

Save as Default
Save the current size and position of this Variables Window as the
default settings for Variables Windows.
ADCS 7143840G 127

8.2 Windows
8.8 Registers Window

A Register Window is a child window of a Code Window. It is opened from the
Windows menu of a Code Window. It displays all the target CPU registers for the its
address space. The Registers Window also allows registers to be modified and for
registers to be added and deleted.

8.8.1 File menu

Save Open a dialog to select a file and save the contents of the
Registers Window to it.

Close Close the Registers Window.

8.8.2 View menu

The View menu is used to control the format of the display.

Binary Display register values in ASCII.

Hexadecimal Display register values in hexadecimal.

Octal Display register values in octal.

Signed Decimal
Display register values as signed decimal.

Unsigned Decimal
Display register values as unsigned decimal.

8.8.3 Edit menu

The Edit menu is used to modify the values of registers, to add registers and to delete
registers.

Edit selected Open a dialog to modify that value of the selected register in the
registers display.

Add Open a dialog to add a register to an existing register group or to a
new register group.

Delete Delete the selected register.

8.8.4 Preferences menu

The Preferences menu provides options for setting the default appearance of
Registers Windows. Using this requires the HOME environment variable to point to a
directory which may be written to.

Save as Default
Save the current size and position of this Registers Window as the
default settings for Registers Windows.
128 ADCS 7143840G

8 Debugger graphical interface
8.9 Memory Window

A Memory Window is a child window of a Code Window. It is opened from the
Windows menu of a Code Window or Symbols Window, or Variables Window. It
displays the contents of a section of memory in the parent Code Window’s address
space.

The memory data may be interpreted and displayed in a variety of formats, including
characters, integers, floating point numbers and disassembled code. A memory
location can be selected for setting a breakpoint.

The memory locations displayed is controlled by the Address field which can be
entered as an address or as a valid symbol name. The size of the area of memory
displayed is controlled by the Lines and Columns options. If enabled resizing the
window increases/decreases the number of lines and columns. Buttons allow paging
through memory.

8.9.1 Boxes or buttons

Memory display

Address Displays the start address of the display. Values can be entered as
addresses or symbols. Press ENTER after amending the value to
update the displayed memory.

Lines Controls the number of lines displayed. Press ENTER after
amending the value to update the displayed memory.

Cols Controls the number of columns displayed. Press ENTER after
amending the value to update the displayed memory.

Scrolling memory

<< Page back through memory. The size of the “page” is controlled by
the Columns and Lines settings.

>> Page forward through memory. The size of the “page” is controlled
by the Columns and Lines settings.

> Step one line forward in memory.

< Step one line back in memory.

Searching memory

Find Search for a string in the display (with wrap around). Press ENTER
after entering the text to perform the search or select a previous
string.

>> Search for the next occurrence of the string selected by Find.
ADCS 7143840G 129

8.2 Windows
8.9.2 File menu

Save Contents Select a file and save the currently displayed data to it.

Dump Memory

Opens the Memory Dump dialog. Allows entry of a file name, start
address, length, and file type. This area of memory will be dumped
to the file in a file type format of hexadecimal, binary, or S-record.

Fill Memory Opens the Memory Fill dialog. Allows entry of a file name, start
address, and file type. The file contents will be read into memory.
The start address can be omitted for hexadecimal and S-record file
types, in which case the memory will be filled starting at the original
dump address.

Close Close the Memory Window.

8.9.3 View menu

Change Context

Displays Context Chooser. Allows program, task, location or
frame to be amended. This context is applied to any symbol name
entered into the Address field.

Hexadecimal Display integers as hexadecimal.

Decimal Display integers as signed decimals.

Unsigned Decimal

Display integers as unsigned decimals.

Ascii Display integers as ASCII characters

Binary Display integers as unsigned binary.

Octal Display integers as unsigned octal.

Char Display the data as 1-byte integers.

Short Display the data as 2-byte integers.

Long Display the data as 4-byte integers.

Float Display the data as 4-byte IEEE floating point numbers.

Double Display the data as 8-byte IEEE floating point numbers.

Instructions Disassemble the data and display it as instruction mnemonics.

Strings Display the data as null-terminated strings.

Statement Display integers as addresses of statement references.
130 ADCS 7143840G

8 Debugger graphical interface
8.9.4 Command menu

The Command menu is used to set breakpoints on selected addresses.

Set Breakpoint Set a breakpoint on the selected address.

Set Data Breakpoint

Set a data breakpoint on the selected address.

Locate to source

Locate the associated Code Window to the source code at the
selected address in the display.

Edit selection Open a dialog to allow the value at the selected address in the
display to be modified.

Set memory Open a dialog to set a memory range with a repeated byte value.

8.9.5 Preferences menu

The Preferences menu provides options for setting the default appearance of
Memory Windows. Using this requires the HOME environment variable to point to a
directory which may be written to.

Save as Default
Save the current size and position of this Memory Window as the
default settings for Memory Windows.

Follow dimension

If enabled then the number of lines and columns displayed by the
Memory Window is determined by the size of the Memory Window.
ADCS 7143840G 131

8.2 Windows
8.10 Command Execution Window

The Command Execution Window is a child window of a Code Window. It is opened
from Windows menu of the Code Window.

This window allows a series of command language expressions to be entered. These
will be submitted to the debugger each time an event occurs. The output is displayed
in this window. The commands can also be submitted manually and can also be
disabled and enabled.

8.10.1 Boxes and buttons

Update output

Buttons controlling the output. Append appends to the output
display, Replace replaces it.

Commands A field in which debugger commands are entered.

8.10.2 File menu

Close Close the Command Execution Window.

8.10.3 View menu

Clear command

Clears the Commands field.

Clear output Clears output display.

Change Context

Displays Context Chooser. Allows program, task, location,
address or frame to be amended. This context is applied to any
submitted command.

8.10.4 Command menu

Submit Manually submit the debugger commands immediately.

Disable/Enable

Disable or enable the automatic submission of commands when an
event occurs.

8.10.5 Preferences menu

Using this requires the HOME environment variable to point to a directory which may be
written to.

Save As Default

Save the current size and position of this window as the default for
Command Execution Windows.
132 ADCS 7143840G

8 Debugger graphical interface
8.11 Tasks Window

One Tasks Window is associated with each address space. It is opened from the
Windows menu of a Code Window. The Tasks Window lists all the current tasks in the
address space and their status. For multi-tasking programs, this gives the facility to
navigate between the tasks and monitor their progress.

Selecting a task displays its details and its current Iptr, Wptr, Areg, Breg and Creg
register values.

8.11.1 File menu

Close Close the Tasks Window.

8.11.2 Command menu

Go Continue execution of all tasks in the address space.

Stop Interrupt execution of all tasks in the address space.

Refresh Refresh the window with the status of all tasks.

8.11.3 Windows menu

Code Open or bring to the front a Code Window for the selected task.

8.11.4 Preferences menu

The Preferences menu provides options for setting the default appearance of the
Tasks Window. Using this requires the HOME environment variable to point to a
directory which may be written to.

Save as Default
Save the current size and position of the Tasks Window as the
default settings.
ADCS 7143840G 133

8.2 Windows
8.12 Events Window

One Events Window is associated with each address space. It is opened from the
Windows menu of a Code Window. The Events Window is used for creating and
editing events. Each address space may have one Events Window.

8.12.1 Event modification

A event may be modified by selecting it from the list of current events, modifying its
attributes and then pressing the Update button or Update Event in the Command
menu.

8.12.2 Event Creation

An event may be created by pressing the Add button, selecting the type of event
required, setting the expression for the event in the Expression field, setting other
attributes as necessary and pressing the Update button. The expression for an event
may be the name of a symbol, an address or a code location (of the format <filename
line statement>). Event creation may be abandoned by pressing the Cancel button.

8.12.3 Buttons

Enable Enables the selected event.

Disable Disables the selected event.

Delete Deletes the selected event.

Add Initiates creation of a new event.

Update Updates the selected event or confirms creation of an event.

Cancel Cancels the creation of an event.

Locate Locate the associated Code Window to the source code at the
selected event.

8.12.4 File menu

Close Close the Events Window.

8.12.5 View menu

Change Context

Displays Context Chooser. Allows program, task, location or frame
to be amended. This context is applied to any symbol name
entered into the Expression field.
134 ADCS 7143840G

8 Debugger graphical interface
8.12.6 Command menu

Enable Event Enables the selected event.

Disable Event Disables the selected event.

Delete Event Deletes the selected event.

Add Event Initiates creation of a new event.

Update Event Updates the selected event or confirms creation of an event.

Cancel Add Cancels the creation of an event.

Locate source Locate the associated Code Window to the source code at the
selected event.

Disable global Disable or enable global interrupts on restart from an event.

8.12.7 Preferences menu

The Preferences menu provides options for setting the default appearance of the
Events Windows. Using this requires the HOME environment variable to point to a
directory which may be written to.

Save as Default
Save the current size and position of this Events Window as the
default settings for all Events Windows.
ADCS 7143840G 135

8.2 Windows
8.13 Profile Window

The Profile Window is opened from the Windows menu of a Code Window. It is used
for profiling application code. Profiling is described in the "ST20 Embedded Toolset
Reference Manual". Each address space may have one Profile Window.

8.13.1 Buttons

Start Start profiling.

Stop Stop profiling.

8.13.2 File menu

New Deletes all profile information in the Profile Results area.

Load profile Load the a previously saved profile.

Save profile Save the text in the Profile Results area to a file.

Close Close the Profile Window.

8.13.3 Options menu

Start Start profiling.

Stop Stop profiling.

Period Open a dialog in which the sampling period (in microseconds) may
be viewed and set.

Sample Enables or disables sample based profiling.

Idle Enables or disables idle based profiling.

Flat Info Displays a flat profile.

Call Info Displays a call graph profile.

Idle Info Displays idle period information.

Wrap Idle Trace Enables wrap mode, whereby once the maximum number of idle
periods is reached the start of the list is overwritten.

Idle Size Open a dialog in which the maximum number of idle records may
be viewed and set.

8.13.4 Preferences menu

The Preferences menu provides options for setting the default appearance of the
Profile Windows. Using this requires the HOME environment variable to point to a
directory which may be written to.

Save as Default
Save the current size and position of this Profile Window as the
default settings for all Profile Windows.
136 ADCS 7143840G

8 Debugger graphical interface
8.14 Trace Window

The Trace Window is opened from the Windows menu of a Code Window. It is used
for viewing and interpreting traces. Tracing is described in the "ST20 Embedded
Toolset Reference Manual".

Each address space may have one Trace Window. If there are no address spaces, a
trace may be loaded into a hosted address space via the Load Trace: new space
item on the File menu of the Code Window.

A list of the jumps in the trace is displayed, with an index. The jump records are
arranged in pages of 1000 records. Selecting a jump will load the appropriate C
source file if possible and locate the line in the source code display.

The Trace Window is updated when the trace is ended or when the Refresh button is
clicked.

8.14.1 Browse buttons

Browse buttons are provided to browse through the trace.

Start Go to the start of the trace.

<<= Go back to the previous page of trace records.

=>> Go on to the next page of trace records.

End Go to the end of the trace.

Go To Open a dialogue box to go to a trace record.

Prev Moves the selection to the previous trace record.

Next Moves the selection to the next trace record.

Refresh Refreshes the list of jumps.

8.14.2 Toggle buttons

Two toggle buttons are provided.

Statements Include source code location statements in the display and when
saving a trace.

Instructions Shows instructions in the source code display region.

8.14.3 File menu

New trace Reset tracing in preparation for a new trace.

Load trace Load a previously saved trace.

Save trace Save the current trace.

Load source Load any ASCII source file.

Close Close the Trace Window.
ADCS 7143840G 137

8.2 Windows
8.14.4 Preferences menu

The Preferences menu provides options for setting the default appearance of the
Trace Windows. Using this requires the HOME environment variable to point to a
directory which may be written to.

Save as Default
Save the current size and position of this Trace Window as the
default settings for all Trace Windows.
138 ADCS 7143840G

8 Debugger graphical interface
8.15 Trace Generation Window

The Trace Generation Window is opened from the Windows menu of a Code Window.
It is used to view and set the parameters for generating a trace. The concepts and
terms are explained in the "ST20 Embedded Toolset Reference Manual". The
parameters set in the window can be applied by clicking on the Apply button, and the
window can be closed by clicking on the Close button or selecting Close in the File
menu.

8.15.1 Buffer configuration

Size The trace buffer size in words.

Location The trace buffer base address. The base address must be a
multiple of its size. It may be a symbol or an address taken from the
Symbols Window (see section 8.4).

8.15.2 Recording mode buttons

These affect the information recorded during tracing.

Jump Froms If selected, the ‘jump from’ addresses will be recorded.

Jump Tos If selected, the ‘jump to’ addresses will be recorded.

Stall If selected, the target CPU will be stalled if necessary in order to
write each jump record to the buffer.

8.15.3 Buffer full action buttons

These select the behavior when the trace buffer becomes full. Only one may be
selected.

Wrap on full Wrap around occurs when the buffer is full.

Extract & go The application is suspended and the buffer contents extracted
when the buffer is full. The application and tracing then continues.

Stop on full The application is suspended and the buffer contents extracted
when the buffer is full. Tracing is then disabled.

8.15.4 Start and stop buttons and status displays

Two buttons are provided for starting and stopping tracing:

 Start Now Starts tracing immediately.

 Stop Now Stops tracing immediately.

The following fields display start and stop status information:

Commence The details of when the tracing will start.

Halt The details of when the tracing will stop.
ADCS 7143840G 139

8.2 Windows
Note that tracing can be started or stopped:

• on a breakpoint;

• manually.

Also tracing can be stopped when the trace buffer is full by selecting Stop on full. Not
all combinations of starting and stopping conditions are permitted; the valid
combinations are listed in the “Tracing program execution” chapter of the "ST20
Embedded Toolset Reference Manual".

8.15.5 File menu

Close Close the Trace Generation Window.

8.15.6 View menu

Change Context

Displays Context Chooser. Allows program to be amended. This
context is applied to any symbol name entered into the Location
field.

8.15.7 Preferences menu

The Preferences menu provides options for setting the default appearance of the
Trace Generation Windows. Using this requires the HOME environment variable to
point to a directory which may be written to.

Save as Default
Save the current size and position of this Trace Generation Window
as the default settings for all Trace Generation Windows.
140 ADCS 7143840G

8 Debugger graphical interface
ADCS 7143840G 141

8.16 Targets Window

There is only one Targets Window. It is opened from the Windows menu of a Code
Window. It lists all the current address spaces and the available targets. Selecting an
address space displays its details.

A selected address space can be Connected, Disconnected or Deleted.

8.16.1 File menu

Load Core Create a hosted address space; open a Code Window with this
space context; load the selected core .in file and go into core
dump debugging mode.

Close Close the Targets Window.

8.16.2 Command menu

Connect Create a new address space and connect to the currently selected
target. This will open a Code Window with this address space
context.

Disconnect Disconnect the selected address space from its target. The current
information in the debugger is preserved, allowing it to be viewed in
other windows.

Delete Disconnect the selected address space and delete all the
associated debugger data. This closes all windows with this
address space context.

Copy Copy the selected address space into another address space
selected from a dialog.

Compare Compare the selected address space with another address space
selected from a dialog. The comparison output is displayed on the
Command Console Window.

Identify runtime

Identify the runtime system of the selected address space to the
debugger.

8.16.3 Windows menu

Code Open a new Code Window with the selected address space
context.

8.16.4 Preferences menu

The Preferences menu provides options for setting the default appearance of the
Targets Window. Using this requires the HOME environment variable to point to a
directory which may be written to.

Save as Default
Save the current size and position of the Targets Window as the
default settings.

8.2 Windows
8.17 Command Console Window

The Command Console Window is opened automatically when a message is
displayed in the Command Console Window (for example, when an event occurs). You
can manually type debugger commands in the Command Console Window, or select
a previously entered command from the command history. Commands are submitted
in the context of the selected address space, program or task. Output from manually
typed commands are displayed in the Command Console Window, and also the
results of print commands.

List buttons or boxes at the top of the Command Console Window give the currently
selected address space, program and task, and allow a different space, program or
task to be selected. The space is indicated by the name of the address space, the
symbol ‘=>’ followed by the target to which the address space is connected. The
program is shown as the name of the linked unit file. The selected space is also shown
in the window title.

8.17.1 File menu

The File menu provides options for restarting the application or closing down the
debugger.

Close Close the Command Console Window.

8.17.2 Preferences menu

The Preferences menu provides options for setting the default appearance of the
Command Console Windows. Using this requires the HOME environment variable to
point to a directory which may be written to.

Save as Default

Save the current size and position of the Command Console
Window as the default settings.
142 ADCS 7143840G

9 ROM systems
9 ROM systems
This chapter describes advanced topics related to designing ROM systems using the
ST20 toolset. It describes the ROM bootstrap, how ROM programs make external
calls, STLite/OS20 awareness, compatibility with earlier toolsets and the chapter has
particular emphasis on debugging ROM systems. It explains some of the differences
between debugging a system which is downloaded to the target from a linked unit and
debugging a stand-alone ROM system; it also describes how to debug multiple
programs on a ROM system.

A ROM image can be produced as a binary file (without location information), a
hexadecimal file or a Motorola S-record file. The example used in this chapter is
based on a hexadecimal file.

Details of how to build a ROM image are given in Chapter 2 through to Chapter 5.
Details of the command language used by the toolset are given in the "ST20
Embedded Toolset Reference Manual". The Toolset Reference Manual also contains
a chapter entitled “Using st20run with STLite/OS20”, which may be helpful when
debugging ROM systems.
ADCS 7143840G 143

9.1 ROM system overview
9.1 ROM system overview

When booting from a host, chip and C/C++ language initialization is performed by
st20run. When booting from ROM, these tasks must be performed by the ROM
code. When st20cc generates a ROM image file it adds bootstrap code to set up the
processor and the C/C++ language runtime system. This is called automatically on
device reset, before calling the program’s ‘main’ function.

The ROM C-startup bootstrap code performs the following tasks:

1 Set up a temporary workspace for itself in internal memory. If initstack had
been specified at link time, the Wptr will be set to this command’s argument,
otherwise the Wptr will not be modified. See section 9.4.

2 Call PrePokeLoopCallback, as described in section 9.4.

3 Perform all pokes encountered during the link phase.

4 Call PostPokeLoopCallback, as described in section 9.4.

5 Set up the program’s workspace (specified at link time with the stack
command).

6 Set up the static link (the pointer to all global data, see the “Implementation
details” chapter of the "ST20 Embedded Toolset Reference Manual").

7 Copy the program code from ROM to RAM if required.

8 Initialize data segments (where statics such as ‘static int x=3’ are contained
and zero bss segments (where statics such as ‘static int y’) are contained.

9 Set up a setjmp-longjmp pair for the romrestart function, see the "ST20
Embedded Toolset Reference Manual".

10 Install default trap handlers for breakpoints (all cores) and errors (ST20-C2
cores only).

11 Call all C++ static class constructors and functions flagged with #pragma
ST_onstartup.

12 Set up a setjmp-longjmp pair for exit.

13 Call the main function of the program.

Note: Source for the bootstrap is shipped with the toolset, so it can be modified for
programs which require a bespoke bootstrap procedure.

Note: In section 7.2.4 the effect of various debugging commands on the diagnostic
control unit is described. It may be helpful to read this section in order to understand
the possible states the debugging session can be placed in.
144 ADCS 7143840G

9 ROM systems
9.2 An example program and target configuration

An example is provided to illustrate the key issues connected with debugging ROM
systems. This example utilizes some of the features commonly encountered in set-top
box software. The example files can be found in the romdebug subdirectory of the
examples directory. The example program prints out a set of messages while
flashing the LED then uses the on-chip watchdog timer to reset itself.

If the target is reset (for example, by a watchdog timer) while st20run is connected
the target will stall. The target can only be recovered from the stall state by using the
restart command. The example calls the function debugcommand to execute a
command language procedure which will perform a restart after a watchdog reset has
occurred.

The examples below apply to an STi5500 device on an EVAL-5500 board. They may
be run on a ST20-TP3 device on an STB3-EVAL board by replacing instances of
STi5500MB159 with ST20TP3MB193B and adding a target definition to the
example.cfg file (using the existing definition as a basis,
mk_STi5500_MB159_gen could be replaced with mk_ST20TP3_MB193B_gen and
keen with the name of your target board).

The example can be built and debugged as a linked unit or as a ROM image.

The definition of targets using the mk_<chip_type>_<board_type>_gen
command language procedures defines targets using the default board specification
procedures which can be found in the boards directory. These default board
specification procedures are used by both st20cc when linking and st20run when
loading and debugging. Examining these default procedures, we find several
commands key to target definition.

• The chip command specifies the variant of the ST20, and defines:

• The processor core type.

• The system memory, declared to be RESERVED.

• The internal memory.

• Cache and interrupt management.

• A watchdog keep-alive trap handler (see section 7.2.2).

• The memory command specifies a memory segment, see the ‘ST20
Embedded Toolset Command Language Reference Manual - 72-TDS-533 ’ for
full details of this command.

Stack and heap segments and their sizes are defined. When the size of heap is not
specified, it is allocated the remainder of the segment it is in.

The system memory initialization procedure, ST20C2MemoryInit, clears various
system locations but does not set locations 0x80000040 through 0x8000013c
because these are used by the debugger for trap handlers.
ADCS 7143840G 145

9.2 An example program and target configuration
An External Memory Interface (EMI) configuration procedure is also called by most
default procedures. This performs a series of pokes in order to allow the board to
access EXTERNAL memory.

Instructions to build the example both as a linked unit and as a ROM system have
been included so that the differences associated with building and debugging the two
formats are demonstrated.

9.2.1 Building a linked unit

A linked unit is generated with the command:

 st20cc example.c led.c watchdog.c -p STi5500MB159 -M example.map -g -O0
-DENABLE_WATCHDOG

The command outputs the linked unit file example.lku, the debug information file
example.dbg and the memory map file example.map.

The -DENABLE_WATCHDOG option defines the ENABLE_WATCHDOG symbol to
example.c, enabling the use of the watchdog_reset function. This is an external
command language procedure which can be found in example.cfg.

9.2.2 Running and debugging the LKU

The linked unit is loaded onto the target, run and debugged using st20run:

 st20run -i example.cfg -t keen example.lku -g

The target keen (identified in the command line by -t keen and defined within
example.cfg) has a connect procedure which resets the board (reset), tells the
debugger about the hardware, initializes the system memory and configures the
External Memory Interface (EMI).

The debugger is activated by the st20run command line option -g. On startup the
debugger sets a breakpoint on main and executes a go command so that the GUI
appears with the program ‘waiting’ at the breakpoint on main.

By default, breakpoints will be of software type (that is, instructions poked into the
code).

9.2.3 Building a ROM image

A ROM image file is generated with the command:

st20cc example.c led.c watchdog.c -p STi5500MB159 -M example_ram.map -g
-O0 -DENABLE_WATCHDOG -romimage -o example_ram.hex

The -DENABLE_WATCHDOG option defines the ENABLE_WATCHDOG symbol to
example.c, enabling the use of the watchdog_reset function. This is an external
command language procedure which can be found in example.cfg.

All pokes encountered during the link phase will be converted to a table in the ROM
image and will be executed by the bootstrap code, so as STi5500MB159 performs
EMI configuration, the ROM image will have access to EXTERNAL memory when
running. The example output files are generated with the name “example_ram”
because they are executed in RAM.
146 ADCS 7143840G

9 ROM systems
By default, program code will be moved to RAM by the bootstrap. Such code will be
listed as MVTORAM in the map file. To execute code from ROM, the following command
must be included at link time:

place def_code FLASH

This can be done by adding -T example.cfg to the command line used to create
the ROM image, and exchanging the -p STi500MB159 option with -p
STi5500MB159_rom.

A debug information file, example_ram.dbg, is created. A ROM image file named
example_ram.hex is created which represents the memory segment FLASH.

Use a flash-burn linked unit (see the flash subdirectory of the examples directory)
or a programmer to burn the ROM/FLASH with the ROM image example_ram.hex.

9.2.4 Debugging the ROM image

ROM systems may be debugged provided there is a connection to the host from the
on-chip diagnostic control unit of the ST20. ROM systems may be debugged from a
reset-processor state or the debugger may be connected while the program is
running.

Debugging a boot-from-ROM system (reset)

This debugging mode is started with the following command:

 st20run -i example.cfg -t keen -g

The target keen (identified in the command line by -t keen) has a connect procedure
which resets the board, tells the debugger about the hardware, initializes the system
memory and configures the EMI.

The user must then tell the debugger about their program’s debugging information.
This may be done with the command:

program -new example_ram.dbg

If there is more than one ‘C’ or ‘C++’ program on the ROM, a program -new
command must be performed for each corresponding debugging information (.dbg)
file.

The user may set initial breakpoints at this stage. If the code is in MVTORAM,
breakpoints must be of hardware type; this is because software breakpoints would be
overwritten when code is moved from ROM by the bootstrap.

The user may start the ROM system by invoking the go command.

If the processor is reset (for instance, by a watchdog timeout) or the program must be
re-started, the command restart should be used. The commands reset followed
by go are not adequate. The command restart executes the connect procedure,
sets up breakpoints and executes a go command.
ADCS 7143840G 147

9.2 An example program and target configuration
It is important that the connect procedure is executed because this will define the core
type, the default register values, the cache and interrupt control procedures and
perform EMI programming (which is necessary if the trap handler is not located in
internal SRAM).

If the debugger is connected, the chip always stalls on reset. Bit 31 of the DCU2 (or bit
0 of the DCU3) control register is set when the CPU is stalled.

Debugging a running system

To make the example in the romdebug directory suitable for connecting to as a
running system, it should be recompiled and programmed to ROM without the
-DENABLE_WATCHDOG option. This turns off the calling of the external command
language procedure watchdog_reset, which is inappropriate in this case. This is
because a debugger is not always connected and the procedure uses the restart
command. The restart command will not work when connected to a target whose
connect procedure does not perform a reset and EMI initialization.

This debugging mode is started with the following command:

 st20run -i example.cfg -t keen_nr -g

The target keen_nr (identified in the command line by -t keen_nr) has a connect
procedure which does not perform a reset, ST20C2MemoryInit, or configure the
EMI - a reset would halt the running program and the other operations were already
carried out by the ROM image’s bootstrap code in order to start the program.
However, the connect procedure does specify the memory segments to the debugger.

By default the debugger’s input/output will not appear after connecting to a running
system. These are enabled with the debugger command informs -enable and may
be disabled with the command informs -disable.

The user must provide the debugger with the program’s debug information using the
command:

program -new example_ram.dbg

At this stage the stop button may be pressed and breakpoints may be set. If a
runtime is in use (for example STLite/OS20), the debugger should be told at this point
with the runtime command.

If at a later time the processor is reset, the procedures for initializing the system
memory and programming the EMI must be called manually before the restart
command is issued. Otherwise, the issues discussed under the heading "Debugging a
boot-from-ROM system (reset)" apply.
148 ADCS 7143840G

9 ROM systems
9.3 Multiple programs

In section 9.2, a simple example program was run from ROM. This section describes
the case where multiple programs are run from ROMs.

9.3.1 Calling to another program

An example of calling from one program to another is provided in the dualboot
subdirectory of the examples directory. This example may be built for both ST20-C2
and ST20-C1 cores. The dualboot-pre_1_8_1 example directory contains the
example in a form which may be built with earlier toolsets. This example may be built
for ST20-C2 cores only. The examples illustrate the closing down of STLite/OS20
which must be done before calling another program.

Some key points that are relevant for a ST20-C2 core are illustrated and discussed
below to emphasize their importance.

The following code assumes the operating system has been terminated at this point.

(See the “ROM restart functions” chapter of the "ST20 Embedded Toolset Reference
Manual" for an example of closing the operating system.)

debugsetmutexfn(NULL, NULL) ;
DISABLE_CACHES ;

if (!debugconnected()) {
 __asm {
 ldab 0xffff, 0; /* disable all traps */
 trapdis;

 ldab 0xffff, 1;
 trapdis;
 }
} else {
 __asm {
 ldab 0xfffe, 0; /* disable all traps except */
 trapdis; /* the debug trap */

 ldab 0xfffe, 1;
 trapdis;
 }
}
debugcommand(“runtime c2rtl”, &res) ;
__asm {
 ld address ; /* the entrypoint of the main app */
 ldmemstartval; /* load 0x80000140 in areg */
 gajw; /* sets the Wptr */
 pop; /* remove the old Wptr */

 gcall ; /* call ‘address’ */
}

ADCS 7143840G 149

9.3 Multiple programs
The debug mutex callback function must be reset to NULL before calling the second
program.

Caches must be disabled so that when code is moved from ROM to RAM in the C
start-up bootstrap for the second program, it is written back to RAM not just to the data
cache.

If the debugger is connected, the breakpoint-trap bit in the status register must be left
set; if the debugger is not connected, it must be cleared. The breakpoint-trap bit is
tested by the C-startup sequence of the second program; if clear it will install a default
breakpoint trap handler, if set the current trap handler will be left in place.

Important note: incorrectly setting or clearing the breakpoint-trap bit at this stage will
cause dual-boot systems to fail.

On ST20-C1 systems, bit 23 of the status register is used to replicate the functionality
of the ST20-C2 core’s breakpoint-trap bit.

9.3.2 Debugging multiple programs on a ROM

The debug information (.dbg) file should be specified with the command program
-new for each program on the ROM being debugged.

Multiple programs may share a single region of RAM for their data and for their code.
This poses a problem for the debugger because it cannot determine which program is
using a shared region of memory at a given point in time. As an example, if a
breakpoint is hit while the target is executing, the target will return the value of the
current Iptr to the debugger. The debugger will search its list of programs for source
code which corresponds to this address. If more than one program has code or data at
this address during the system’s life span, there will be a symbolic information conflict
between each program.

This is resolved by the notion of a ‘current’ program, which is the program currently
executing at a given instant in time. The current program is searched first by the
debugger when performing symbolic lookups. If a match is not found, any remaining
enabled programs are then searched.

The program command has a -current option to cater for specifying the current
program. Programs may also be disabled from symbolic lookup and re-enabled with
the -disable and -enable options. The enabled/disabled state of a program may
be displayed with the -detail option. The current program may be displayed with the
context command.
150 ADCS 7143840G

9 ROM systems
The program key

A 32 bit unique program key is generated by the linker every time it is invoked, and this
program key is placed in a global integer in the application program with the name
_ST_ProgramIdentifier. The C-startup sequence for a ROM image will execute
an ST_onstartup function which issues the remote debug command, where x is the
hexadecimal value of _ST_ProgramIdentifier:

program -current -uid 0xx

This command notifies the debugger of the current program and ensures the
debugger starts using this newly executing program for symbolic cross-referencing as
early on in the program’s life span as is practicably possible.

The program key may also be specified with the program command options
-enable and -disable, for example:

program -enable -uid 0x1234abcd

Preventing program notification

The ST_onstartup function described above may be omitted from a ROM system by
using the following option with st20cc:

-W1 p_ST_NoProgramNotify=1

Setting the value of the program key

The value of the program key may be explicitly specified at link time, instead of being
given a unique value by the linker. This is done by providing the following option to
st20cc, where x is the value to be given to the program key:

-W1 p_ST_ProgramIdValue=x

Disabling programs

It may be useful in some circumstances to disable a program when the memory it
uses will be reused by a program which cannot identify itself as the current program. A
typical example is an arrangement with a booter program, a main program and one or
more relocatable code units (RCUs) loaded by the main program. The booter program
and the RCUs share the same RAM. Just before the booter program calls the main
program, it issues the following remote command, where x is the value of
_ST_ProgramIdentifier.

program -disable -uid 0xx

When RCU(s) are loaded later by the main program, there will be no symbolic conflict
for the memory shared by the booter and one or more RCUs. It is recommended that
booter programs always disable themselves in the above manner to aid future
compatibility. If the processor is restarted, the booter program will need to be re-
enabled.
ADCS 7143840G 151

9.3 Multiple programs
Compatibility with earlier toolsets

The debugger will handle ROM images built with ST20 Embedded Toolset version
R1.6.2 upwards. However, it may need assistance where multiple programs exist on a
ROM, of which some are built with toolsets earlier than R1.8.1. This is because these
will not issue a program -current command as an ST_onstartup function.
Assistance is in the form of either modifying current code or interaction with the
program call mechanism. Assistance may not be necessary when the code from
multiple programs is executed from ROM because all Iptr values will be unique.

If the code is modifiable, the best approach is to create an instance of the variable int
_ST_ProgramIdentifier for each program which is built with any toolset earlier
than version R1.8.1, and place a ‘unique’ value in each. Each program should be
provided with an ST_onstartup function which issues a remote debug command,
where x is the hexadecimal value of _ST_ProgramIdentifier:

program -current -uid 0xx

Each function should have a startorder value of at least 100000 to be executed before
any system ST_onstartup functions and to allow for future toolset development (see
startorder, in Chapter 23 of the "ST20 Embedded Toolset Reference Manual").
The booter should disable itself before calling the main program as described above
under the heading "Disabling programs".

If the code is not modifiable, the user will have to interact during the debug session to
provide assistance to the debugger. The debugger should be connected to the ROM
system, and all the .dbg files specified with the command program -new. Before
starting the system with go, the following command should be entered, where n is the
debugger id of the booter program:

program -current n

A breakpoint should be set on romload of the main program and the system started.
When this breakpoint is hit, the following command should be entered, where m is the
debugger id of the main program:

program -current m

The following command should be entered, where n is the debugger id of the booter
program:

program -disable n
152 ADCS 7143840G

9 ROM systems
9.4 Callbacks before and after the poke loop in romload()

The set of poke commands encountered during the link phase of a ROM program is
performed at run-time by the function romload. There is no such automatic
mechanism for configuration scripts which read memory or perform conditional
memory operations. To perform this function, one user-supplied function may be
called prior to these pokes being carried out, and another user-supplied function may
be called after the pokes.

These functions must be defined as:

void PrePokeLoopCallback(void)
void PostPokeLoopCallback(void)

They should both be defined in a source module called initfuncs.c which is
compiled to a file called initfuncs.tco. The header file initfuncs.h must be
included in initfuncs.c. The object file initfuncs.tco may then be linked into
the main program to override stub functions provided in the toolset libraries. Note the
object file initfuncs.tco must not be placed in a library; this object file must be
specified to st20cc at link time. Also note if one of the callback functions is
implemented as described above, the other must be implemented in the same file,
even if this is merely a stub.

The user supplied functions may not access static data because it has not been set up
at this stage in the bootstrap phase. The functions may declare local variables subject
to stack allocation (see below). They should not call functions which have yet to be
copied from ROM to RAM.

The functions romload, PrePokeLoopCallback and PostPokeLoopCallback
use internal memory for their workspace. If the command initstack was present
during the link phase, the function romload will set the contents of the Wptr to the
argument of this command as one of its first operations, and before the callback
functions are called. Otherwise the Wptr will not be altered; if the processor was reset
it will thus contain 0x80000140 on an ST20-C2 core, or 0x80000000 on an ST20-C1
core. The function romload and the default callback functions use seven words
above the Wptr value.

If the callback functions use any stack or call any functions, the user must allocate
local workspace in internal memory. This is done by specifying the top of a negatively
growing stack for user and compiler generated local variables.

For example, to allocate 32 words for the user-supplied callbacks, at the start of
romload the Wptr must be set to:

Wptr at reset + 32*4
= 0x80000140 + 32*4
= 0x800001C0

and this may be achieved by using the following command in the link phase:

initstack 0x800001C0
ADCS 7143840G 153

9.5 STLite/OS20 awareness
Note: seven words above this stack are used by romload so the Wptr must be set at
least seven words below the top of the internal memory segment.

The most convenient way of determining the number of stack words required by a
PrePokeLoopCallback or PostPokeLoopCallback function is to use the stack
depth analysis feature in st20cc.

9.5 STLite/OS20 awareness

The debugger determines STLite/OS20 state by reading symbolically referenced data
structures in the target. If the current program is not specified, the following message
may be displayed when the remote command runtime os20 is issued, and the target
may crash.

Warning: Incompatible OS/20 interface version number found.

The remedy to the above problem is to apply one of the techniques described under
the heading "Compatibility with earlier toolsets" in section 9.3.2. Note the current
program must be correctly specified before the runtime os20 command is issued. If
the st20cc option -runtime os20 is used, the runtime os20 command will be
issued remotely from an ST_onstartup function, which is why program notification
should be carried out by a higher priority ST_onstartup function.
154 ADCS 7143840G

 Part 3 - STLite/OS20 Real-Time Kernel
Part 3 - STLite/OS20 Real-Time Kernel
ADCS 7143840G 155

 Part 3 - STLite/OS20 Real-Time Kernel
156 ADCS 7143840G

10 Introduction to STLite/OS20
10 Introduction to STLite/OS20
Multi-tasking is widely accepted as an optimal method of implementing real-time
systems. Applications may be broken down into a number of independent tasks which
co-ordinate their use of shared system resources, such as memory and CPU time.
External events arriving from peripheral devices are made known to the system via
interrupts.

The STLite/OS20 real-time kernel provides comprehensive multi-tasking services:
Tasks synchronize their activities and communicate with each other via semaphores
and message queues. Real world events are handled via interrupt routines and
communicated to tasks using semaphores. Memory allocation for tasks is selectively
managed by STLite/OS20 or the user and tasks may be given priorities and are
scheduled accordingly. Timer functions are provided to implement time and delay
functions.

The STLite/OS20 real-time kernel is common across all ST20 microprocessors,
facilitating the portability of code. The kernel is re-implemented for each core, taking
advantage of chip-specific features to produce a highly efficient multi-tasking
environment for embedded systems developed for the ST20.

The API (Application Programming Interface) defined in this document corresponds to
the 2.08 version of STLite/OS20.

10.1 Overview

The STLite/OS20 kernel features:

• A high degree of hardware integration.

• Multi-priority pre-emptive scheduling based on sixteen levels of priority.

• Semaphores.

• Message queues.

• Timers.

• Memory management.

• Interrupt handling.

• Very small memory requirement.

• Context switch time of 6 microseconds or less.

• Common across all ST20 microprocessors.

Each STLite/OS20 service can be used largely independently of any other service and
this division into different services is seen in several places:

• each service has its own header file, which defines all the variables, macros,
types and functions for that service, see Table 10.1.

• all the symbols defined by a service have the service name as the first
component of the name, see below.
ADCS 7143840G 157

10.1 Overview
10.1.1 Naming

All the functions in STLite/OS20 follow a common naming scheme. This is:

service_action[_qualifier]

where service is the service name, which groups all the functions, and action is the
operation to be performed. qualifier is an optional keyword which is used where there
are different styles of operation, for example, most interrupt_ functions use
interrupt levels, however those with a _number suffix use interrupt numbers.

Header Description

c1timer.h ST20-C1 timer plug-in functions

cache.h Cache functions

callback.h Callback functions

chan.h ST20-C2 specific functions

device.h Device information functions

interrup.h Interrupt handling support functions

kernel.h Kernel functions

message.h Message handling functions

move2d.h Two dimensional block move functions (ST20-C2 specific).

ostime.h Timer functions

partitio.h Memory functions

semaphor.h Semaphore functions

tasks.h Task functions

Table 10.1 STLite/OS20 header files
158 ADCS 7143840G

10 Introduction to STLite/OS20
10.1.2 How Part 3 - STLite/OS20 Real-Time Kernel is organized

The division of STLite/OS20 functions into services is used throughout this part. Each
of the major service types is described separately, using a common layout:

• An overview of the service, and the facilities it provides.

• A list of the macros, types and functions defined by the service header file.

The remaining sections of this introductory chapter describe the main concepts on
which STLite/OS20 is founded. It is advisable to read the remainder of this chapter if
you are a first time user.

A ‘Getting started’ which describes how to start using STLite/OS20 is provided in
Chapter 11.

Chapter 12 describes the STLite/OS20 scheduling kernel.

Chapter 13 describes STLite/OS20 memory and partitions.

Chapter 14 describes STLite/OS20 tasks.

Chapter 15 describes STLite/OS20 semaphores.

Chapter 16 describes STLite/OS20 message handling.

Chapter 17 describes support for real-time clocks.

Chapter 18 describes STLite/OS20 interrupt handling.

Chapter 19 describes STLite/OS20 functions for obtaining ST20 device information.

Chapter 20 describes STLite/OS20 support for caches.

Chapter 21 describes a facility for providing timer support for STLite/OS20 when run
on an ST20-C1 core.

Chapter 22 describes support for some ST20-C2 specific features such as channel
communication, high priority processes and two dimensional block moves.

Related STLite/OS20 material

A detailed description of each of the functions in STLite/OS20 is given in “Part 4 -
STLite/OS20 functions” of the "ST20 Embedded Toolset Reference Manual".

“Part 1 - Advanced facilities” of the Toolset Reference Manual also contains informa-
tion which is pertinent to STLite/OS20 in the chapters:

• “Using st20run with STLite/OS20”,

• “Advanced configuration of STLite/OS20”,

• “Building and running relocatable code”.
ADCS 7143840G 159

10.2 Classes and Objects
10.2 Classes and Objects

STLite/OS20 uses an object oriented style of programming. This will be familiar to
many people from C++, however it is useful to understand how this has been applied
to STLite/OS20, and how it has been implemented in the C language.

Each of the major services of STLite/OS20 is represented by a class, that is:

• Memory partitions.

• Tasks.

• Semaphores.

• Message queues.

• Channels.

A class is a purely abstract concept, which describes a collection of data items and a
list of operations which can be performed on it.

An object represents a concrete instance of a particular class, and so consists of a
data structure in memory which describes the current state of the object, together with
information which describes how operations which are applied to that object will affect
it, and the rest of the system.

For many classes within STLite/OS20, there are different flavors. For example, the
semaphore class has FIFO and priority flavors. When a particular object is created,
which flavor is required must be specified by using a qualifier on the object creation
function, and that is then fixed for the lifetime of that object. All the operations
specified by a particular class can be applied to all objects of that class, however, how
they will behave may depend on the flavor of that class. So the exact behavior of
semaphore_wait() will depend on whether it is applied to a FIFO or priority
semaphore object.

Once an object has been created, all the data which represents that object is
encapsulated within it. Functions are provided to modify or retrieve this data.

To provide this abstraction within STLite/OS20, using only standard C language
features, most functions which operate on an object take the address of the object as
their first parameter. This provides a level of type checking at compile time, for
example, to ensure that a message queue operation is not applied to a semaphore.
The only functions which are applied to an object, and which do not take the address
of the object as a first parameter are those where the object in question can be
inferred. For example, when an operation can only be applied to the current task, there
is no need to specify its address.

Warning: the internal layout of any of the structure should not be referenced
directly. This can and does change between implementations and releases,
although the size of the structure will not change.
160 ADCS 7143840G

10 Introduction to STLite/OS20
10.2.1 Object Lifetime

All objects can be created using one of two functions:

class_create
class_init

Normally the class_create version of the call can be used. This will allocate
whatever memory is required to store the object, and will return a pointer to the object
which can then be used in all subsequent operations on that object.

However, if it is necessary to build a system with no dynamic memory allocation
features or to have more control over the memory which is allocated, then the
class_init calls can be used. This leaves memory allocation up to the user, and
allowing a completely static system to be created if required. For class_init calls the
user must provide pointers to the data structures, and STLite/OS20 will use these
data structures instead of allocating them itself.

When using class_create calls, the memory for the object structure is normally
allocated from the system partition (the one exception to this is that tdesc_t
structures are allocated from the internal partition). Thus the partitions must be
initialized before any class_create calls are made. Normally this is done
automatically as described in Chapter 11. Chapter 13 describes the system and
internal partitions in more detail.

The number of objects which can be created is only limited to the available memory,
there are no fixed size lists within STLite/OS20’s implementation.

When an object is no longer required, it should be deleted by calling the appropriate
class_delete function. If objects are not deleted and memory is reused, then STLite/
OS20 and the debugger’s knowledge of valid objects will become corrupted. For
example, if an object is defined on the stack and initialized using class_init then it
must be deleted before the function returns and the object goes out of scope.

Using the appropriate class_delete function will have a number of effects:

• The object is removed from any lists within STLite/OS20, and so will no longer
appear in the debugger’s list of known objects.

• The object is marked as deleted so any future attempts to use it will result in
an error.

• If the object was created using class_create then the memory allocated for
the object will be freed back to the appropriate partition.

Note: the objects created using both class_create and class_init are deleted
using class_delete.

Once an object has been deleted, it cannot continue to be used. Any attempt to use a
deleted object will cause a fatal error to be reported. In addition, if a task is blocked on
an object (for example it has performed a semaphore_wait()), and the object is
then deleted, the task will be rescheduled, but will immediately raise a fatal error.
ADCS 7143840G 161

10.3 Defining memory partitions
10.3 Defining memory partitions

Memory blocks are allocated and freed from memory partitions for dynamic memory
management. STLite/OS20 supports three different types of memory partition, heap,
fixed and simple, as described in Chapter 13. The different styles of memory partition
allow trade-offs between execution times and memory utilization.

An important use of memory partitions is for object allocation. When using the
class_create_ versions of the library functions to create objects, STLite/OS20 will
allocate memory for the object. In this case STLite/OS20 uses two pre-defined
memory partitions (system and internal) for its own memory management. These
partitions need to be defined before any of the create_ functions are called. This is
normally performed automatically, see Chapter 11.

10.4 Tasks

Tasks are the main elements of the STLite/OS20 multi-tasking facilities. A task
describes the behavior of a discrete, separable component of an application,
behaving like a separate program, except that it can communicate with other tasks.
New tasks may be generated dynamically by any existing task.

Each task has its own data area in memory, including its own stack and the current
state of the task. These data areas can be allocated by STLite/OS20 from the system
partition or specified by the user. The code, global static data area and heap area are
all shared between tasks. Two tasks may use the same code with no penalty. Sharing
static data between tasks must be done with care, and is not recommended as a
means of communication between tasks without explicit synchronization.

Applications can be broken into any number of tasks provided there is sufficient
memory. The overhead for generating and scheduling tasks is small in terms of
processor time and memory.

Tasks are described in more detail in Chapter 14.

10.5 Priority

The order in which tasks are run is governed by each tasks priority. Normally the task
which has the highest priority will be the task which runs. All tasks of lower priority will
be prevented from running until the highest priority task deschedules.

In some cases, when there are two or more tasks of the same priority waiting to run,
they will each be run for a short period, dividing the use of the CPU between the tasks.
This is called timeslicing.

A task’s priority is set when the task is created, although it may be changed later.
STLite/OS20 provides the user with sixteen levels of priority.

Some members of the ST20 family of micro-cores implement an additional level of
priority via hardware processes.
162 ADCS 7143840G

10 Introduction to STLite/OS20
STLite/OS20 supports the following system of priority for tasks running on a ST20-C2
processor:

• Tasks are normally run as low priority processes, and within this low priority
rating may be given a further priority level specified by the user. Low priority
tasks of equal priority are timesliced to share the processor time. Low priority
tasks only run when there are no high priority processes waiting to run.

• Tasks may be created to run as high priority processes, in which case they are
never timesliced and will run until they terminate or have to wait for a time or
communication before they deschedule themselves. High priority tasks should
be kept as short as possible to prevent them from monopolizing system
resources. High priority tasks can interrupt low priority tasks that are running.

On an ST20-C1 there is no hardware priority support. STLite/OS20 allows the user to
define individual task priorities, and tasks of equal priority will be timesliced. High
priority processes are not supported on the ST20-C1.

To implement multi-priority scheduling, STLite/OS20 uses a scheduling kernel which
needs to be installed and started, before any tasks are created. This is described in
Chapter 12. Further details of how priority is implemented is given in section 14.2.

10.6 Semaphores

STLite/OS20 uses semaphores to synchronize multiple tasks. They can be used to
ensure mutual exclusion and control access to a shared resource.

Semaphores may also be used for synchronization between interrupt handlers and
tasks and to synchronize the activity of low priority tasks with high priority processes.

Semaphores are described in more detail in Chapter 15.

10.7 Message queues

Message queues provide a buffered communication method for tasks and are
described in Chapter 16. On the ST20-C2 they should not be used from tasks running
as high priority processes and there are some restrictions on their use from interrupt
handlers.

10.8 Clocks

STLite/OS20 provides a number of clock functions to read the current time, to pause
the execution of a task until a specified time and to time-out an input communication.
Chapter 17 provides an overview of how time is handled in STLite/OS20. Time-out
related functions are described in Chapter 14, Chapter 15 and Chapter 16.

On the ST20-C2 microprocessor, STLite/OS20 makes use of the device’s two clock
registers, one high resolution, the other low resolution. The number of clock ticks is
device dependent and is documented in the device datasheet.
ADCS 7143840G 163

10.9 Interrupts
The ST20-C1 microprocessor does not have its own clock and so a clock peripheral is
required when using STLite/OS20. This may be provided on the ST20 device or on an
external device. A number of functions are required, one to initialize the clock and the
others to provide the interface between the clock and the STLite/OS20 functions.
STLite/OS20 provides some example sources of such functions which the user can
modify for their particular device, see Chapter 21 for details.

10.9 Interrupts

A comprehensive set of interrupt handling functions is provided by STLite/OS20 to
enable external events to interrupt the current task and to gain control of the CPU.
These functions are described in Chapter 18.

10.10 Device ID

Support is provided for obtaining the ID of the current device, see Chapter 19.

10.11 Cache

A number of functions are provided to use the cache support provided on ST20
devices, see Chapter 20.

10.12 Processor specific functions

The STLite/OS20 API has been designed to be consistent across the full range of
ST20 processors. However, some processors have additional features which it may
be useful to take advantage of. It should be remembered that using these functions
may reduce the portability of any programs to other ST20 processors. See Chapter 21
and Chapter 22.
164 ADCS 7143840G

11 Getting Started with STLite/OS20
11 Getting Started with STLite/OS20
This chapter describes how to start using STLite/OS20 and write a simple application.
The concepts and terminology used in this chapter are introduced in Chapter 10.

11.1 Building for STLite/OS20

Normally using STLite/OS20 can be almost transparent. All that is necessary is to
specify to the linker that the STLite/OS20 runtime system is to be used using the
-runtime option. For example:

st20cc -p STi5500MB159 -runtime os20 app.tco -o system.lku

This ensures that by the time the user’s main function starts executing:

• the STLite/OS20 scheduler has been initialized and started.

• the interrupt controller has been initialized.

• the system and internal partitions have been initialized.

• thread safe versions of malloc and free have been set up.

• protection has been installed to ensure that when multiple threads call debug
functions, device-independent I/O functions or stdio functions concurrently,
all operations are handled correctly.

(st20cc is described in Chapter 3 and the toolset command language is described in
the "ST20 Embedded Toolset Reference Manual"‘).

11.1.1 How it works

To initialize STLite/OS20 requires some cooperation between the linker configuration
files, and the run time start up code:

• By specifying the -runtime os20 option to the linker, the configuration file
os20lku.cfg or os20rom.cfg is used instead of the normal C runtime files.
This replaces a number of the standard library files with STLite/OS20 specific
versions.

• Some modules within the STLite/OS20 libraries contain functions which are
executed at start time automatically (through the use of the #pragma
ST_onstartup).

• A number of symbols are defined by the linker in the STLite/OS20
configuration files, and through the use of the chip command. This allows the
library code to pick up chip specific definitions, for example, the base address
of the interrupt level controller and the amount of available internal memory.

• The heap defined in the configuration files is used for the system partition and
so memory for objects defined via class_create functions is allocated from
this heap area. malloc and free are redefined to allocate memory from the
system partition.

• The internal partition is defined to be whatever memory is left unused in the
INTERNAL memory segment.
ADCS 7143840G 165

11.1 Building for STLite/OS20
All the functions which are called at start up time are standard STLite/OS20 functions.
So if the start up code is not doing what is required for a particular application, it is
simple to replace it with a custom runtime system and pick and choose which libraries
to replace from the C or STLite/OS20 runtimes. The chapter entitled “Advanced
configuration of STLite/OS20” in the "ST20 Embedded Toolset Reference Manual",
provides details of how the STLite/OS20 kernel may be recompiled or reconfigured to
meet specific application needs. Although this should be done with care and may not
be suitable for a production system.

Note: that a ST20-C1 timer module is not installed automatically, because this
requires knowledge of how any timer peripherals are being used by the application.
See Chapter 21 for further details.

11.1.2 Initializing partitions

The two partitions used internally by STLite/OS20, the system and internal partitions,
are set up automatically when the st20cc -runtime os20 linker command line
option is used. However, this relies on information which the user must provide in the
linker configuration file.

The system partition uses the memory which is reserved using the heap command.
As malloc and free have been redefined to operate on the system partition, the two
statements:

malloc(size);

and

memory_allocate(system_partition, size);

are now equivalent.

Similarily calloc is equivalent to memory_allocate_clear, free is equivalent to
memory_deallocate and realloc is equivalent to memory_reallocate.

The internal partition is defined to be whatever memory is left unused in the
INTERNAL segment. Thus an INTERNAL segment must be defined.

This involves the STLite/OS20 configuration files defining a number of global
variables which are read by STLite/OS20 at start up. These are defined using the
addressof, sizeof and sizeused commands in the configuration file to give
details of the unused portion of the INTERNAL segment.
166 ADCS 7143840G

11 Getting Started with STLite/OS20
11.1.3 Example

The following example shows how to write a simple STLite/OS20 program, in this
case a simple terminal emulator, see Figure 11.1. The code is written to run on an
STi5500 evaluation board, but can be easily ported to another target. The device
datasheet should be referred to for device specific details.

Figure 11.1 Example program schematic

To keep the example concise, some code which does not demonstrate the use of
STLite/OS20 is omitted here. The full source code is provided with the STLite/OS20
examples in the examples/os20/getstart directory.

The software is structured as two tasks, one handling characters passing from the
keyboard and out of the serial port, the other handling characters received from the
serial port and being displayed on the console. In addition there is an interrupt handler
which services interrupts from the serial hardware.

First some constants and global variables need to be defined:

#define CPU_FREQUENCY 40000000
#define BAUD_RATE 9600

#define SERIAL_TASK_STACK_SIZE 1024
#define SERIAL_TASK_PRIORITY 10
#define SERIAL_INT_STACK_SIZE 1024

ring_t serial_rx_ring, serial_tx_ring;
semaphore_t serial_rx_sem;
int serial_mask = ASC_STATUS_RxBUF_FULL;

task_t *serial_tasks[2];
char serial_int_stack[SERIAL_INT_STACK_SIZE];

This defines some constants which are needed to initialize the serial port hardware, in
particular the CPU frequency, which is needed when programming the serial port
hardware’s baud rate generator and may need to be changed when run on another
CPU.

serial_int

serial_tx_ring

serial_rx_ring

tty_to_serial

serial_to_tty

ASC
Hardware

Interrupt
handler

Ring buffer Task
ADCS 7143840G 167

11.1 Building for STLite/OS20
It also defines some constants which are needed when setting up the tasks and
interrupts, and global variables which are used for communication between the
interrupt handler and tasks (the ring buffers and semaphore).

To initialize this system, an initialization function serial_init is provided:

void serial_init(int loopback)
{
#pragma ST_device(asc)

volatile asc_t* asc = asc1;

/* Initialise the PIO pins */
pio1->pio_pc0_rw = PIO1_PC0_DEFAULT;
pio1->pio_pc1_rw = PIO1_PC1_DEFAULT;
pio1->pio_pc2_rw = PIO1_PC2_DEFAULT;

/* Initial the Rx semaphore */
semaphore_init_fifo(&serial_rx_sem, 0);

/* Initialise the ring buffers */
ring_init(&serial_rx_ring);
ring_init(&serial_tx_ring);

/* Install the interrupt handler */
interrupt_install(ASC1_INT_NUMBER, ASC1_INT_LEVEL,

serial_int, (void*)asc);
interrupt_enable(ASC1_INT_LEVEL);

/* Initialize the serial port hardware */
asc->asc_baud = CPU_FREQUENCY / (16 * BAUD_RATE);
asc->asc_control = ASC_CONTROL_DEFAULT |

(loopback ? ASC_CONTROL_LOOPBACK : 0);
asc->asc_intenable = serial_mask;

/* Create the tasks */
serial_tasks[0] = task_create(serial_to_tty, (void*)asc,

SERIAL_TASK_STACK_SIZE,
SERIAL_TASK_PRIORITY, "serial0", 0);

serial_tasks[1] = task_create(tty_to_serial, (void*)asc,
SERIAL_TASK_STACK_SIZE,
SERIAL_TASK_PRIORITY, "serial1", 0);

if ((serial_tasks[0] == NULL) || (serial_tasks[1] == NULL)) {
printf("task_create failed\n");
debugexit(1);

}
}

First the PIO pins need to be set up so that the serial port is connected to the PIO pins
(this involves configuring them as ‘alternate mode’ pins, see the device datasheet for
details). Next the semaphore used to synchronize the interrupt handler with the
receiving task is initialized. Initially this is set to zero to indicate that there are no
buffered characters. Each time a character is received, the semaphore will be
signalled, in effect keeping a count of the number of buffered characters. This means
that the receiving task does not need to check whether the buffer is empty or not when
it is run, as long as it waits on the semaphore once per character.
168 ADCS 7143840G

11 Getting Started with STLite/OS20
After initializing the ring buffers, the interrupts are initialized. This connects the
interrupt handler (serial_int) to the interrupt number (ASC1_INT_NUMBER). Note
that the interrupt level is not configured here. As this may be shared by several
interrupt numbers it is good practice to initialize all the levels which are being used in
one central location rather than in each module which uses them (see the definition of
main at the end of this example).

Next the serial port hardware needs to be configured. This sets up the baud rate,
enables the port (possibly enabling loopback mode), and enables the interrupts.
Initially only receive interrupts are enabled, as there are no characters to transmit yet.
However, the handler needs to be notified as soon as a character is received, so
receive interrupts are permanently enabled.

Finally the two tasks which will manage the serial communication are created. This
will allocate the task’s stacks from the system partition, and start them running imme-
diatly.

The next part of the software is the interrupt handler:

void serial_int(void* param)
{

int status;
#pragma ST_device(asc)

volatile asc_t* asc = (volatile asc_t*)param;

while ((status = (asc->asc_status & serial_mask)) != 0) {
switch(status) {

case ASC_STATUS_RxBUF_FULL:
ring_write(&serial_rx_ring, asc->asc_rxbuf);
semaphore_signal(&serial_rx_sem);
break;

case ASC_STATUS_TxBUF_EMPTY:
asc->asc_txbuf = ring_read(&serial_tx_ring);
if (ring_empty(&serial_tx_ring)) {

serial_mask &= ~ASC_STATUS_TxBUF_EMPTY;
asc->asc_intenable = serial_mask;

}
break;

}
}

}

This is constructed as a while loop, so that when the loop exits, there are certain to
be no interrupts pending1. The code needs to be written this way, as the interrupt level
is set up to trigger on a rising edge, and so the interrupt must go inactive to guarantee
that the next interrupt is seen as a low-to-high transition. An alternative way of
constructing this as a high level triggered interrupt is possible, which would cause the
interrupt handler to be entered as long as there are pending interrupts.

Inside the loop the code checks for the two cases we are interested in, the receive
buffer being full (that is containing a character), and the transmit buffer being empty.
Note that the status register is masked by the variable serial_mask. This ensures

1. The possibility of error interrupts is ignored in this simple example!
ADCS 7143840G 169

11.1 Building for STLite/OS20
that the code does not check for the transmit buffer being empty when there are no
characters to transmit.

The first task takes characters received from the serial port and displays them on the
console:

void serial_to_tty(void* param)
{

char c;
while (running) {

semaphore_wait(&serial_rx_sem);
c = ring_read(&serial_rx_ring);
debugwrite(1, &c, 1);

}
}

This just waits for the semaphore to be signalled, at which point there must be a
character in the ring buffer, so this is read and printed.

The second task is slightly more complex. This takes characters typed on the
keyboard and sends them to the serial port:

void tty_to_serial(void* param)
{

long int c;
long int flag;
const clock_t initial_delay = ONE_SECOND / 100;
clock_t delay = initial_delay;

#pragma ST_device(asc)
volatile asc_t* asc = (volatile asc_t*)param;

while (running) {
flag = debugpollkey(&c);
if (flag == 1) {

interrupt_lock();
ring_write(&serial_tx_ring, (char)c);
serial_mask |= ASC_STATUS_TxBUF_EMPTY;
asc->asc_intenable = serial_mask;
interrupt_unlock();

} else {
task_delay(delay);
if (delay < (ONE_SECOND / 10)) delay *= 2;

}
}

}

This code has to poll the keyboard, otherwise while it was waiting for keyboard input it
would prevent other tasks doing output. So the code polls the keyboard, and if no
character is read, waits for a short while.

If a character is received, then it needs to be written into the transmit ring buffer, and
the transmit serial interrupt enabled. This is the only piece of code which needs to be
executed with interrupts disabled, as the updating of the ring buffer, serial_mask
and the serial port’s interrupt enable register needs to be atomic.
170 ADCS 7143840G

11 Getting Started with STLite/OS20
Finally a small test harness needs to be provided:

int main(int argc, char* argv[])
{

int loopback = (argc > 1);
device_id_t devid = device_id();

printf("-- Simple Terminal Emulator ---\n");
printf("OS/20 version %s\n", kernel_version());
printf("Device %x (%s)\n\n", devid.id, device_name(devid));

/* Initialise the interrupt system for the chip */
interrupt_init(ASC1_INT_LEVEL, serial_int_stack,

sizeof(serial_int_stack),
interrupt_trigger_mode_rising,
interrupt_flags_low_priority);

interrupt_enable(INTERRUPT_GLOBAL_ENABLE);

serial_init(loopback);

while (1) {
debugmessage(".");
task_delay(ONE_SECOND);

}
}

First this dumps some information to the screen about the STLite/OS20 version and
which chip it is running on. Next the interrupt system is initialized, setting up the stack
and trigger mode for the interrupt which is going to be used, before enabling global
interrupts. The test application is then started, and finally the task goes into an infinite
loop dumping a character periodically.

The application can be built as follows:

st20cc -p STi5500MB159 example.c -o example.tco -g -c
st20cc -p STi5500MB159 example.tco -o system.lku -runtime os20 -M system.map

The first st20cc command compiles the source file into a .tco. The second
command links the application code with the run time libraries, specifying that an
STLite/OS20 runtime is to be used.

It can now be run as normal:

st20run -t major2 system.lku -args loopback

This uses a target called major2, and specifies an argument so that the code can be
run in loopback mode.

11.2 Starting STLite/OS20 Manually

If the -runtime option to st20link cannot be used, then it is still possible to use
STLite/OS20.

The linker is called with the normal ANSI C runtime libraries and the OS20 libraries
are included. This could be achieved, for example, by the following:

st20cc -p STi5500MB159 -T myfile.cfg app.tco -o system.lku
ADCS 7143840G 171

11.2 Starting STLite/OS20 Manually
Where myfile.cfg includes the following commands:

file os20.lib
file os20intc1.lib
file os20ilc1.lib

Note: the two libraries os20intc1.lib and os20ilc1.lib may need to be
replaced by alternative libraries for some devices, see section 18.2 for further details.

STLite/OS20 must then be started and initialized by making the relevant calls from the
user code. The order in which initialization and object creation can occur is strictly
defined:

1 partition_init_type can be called to initialize the system and internal
partitions. Being able to call this before kernel_initialize is a special
dispensation for backward compatibility, is not required, and is not encouraged
for new programs.

2 kernel_initialize should normally be the first STLite/OS20 call made.

3 All class _init and _create functions can now be called, apart from tasks.
This allows objects to be created while guaranteed to still be in single threaded
mode.

4 kernel_start can now be called to start the multi-tasking kernel. STLite/
OS20 is now fully up and running.

5 Tasks can now be created by calling task_create or task_init, together
with any other STLite/OS20 call.

The one exception to this list is the interrupt system. This has been designed so that it
can be used even when the remainder of STLite/OS20 is not being used. Thus calls to
interrupt_init_controller, interrupt_init, interrupt_install and
any other interrupt_ function can be made at any point. Obviously any interrupt
handlers which run before the kernel has started, should not make calls which can
cause tasks to be scheduled, for example semaphore_signal.

There is one other piece of initialization which must be performed for the ST20-C1.
Before any time functions are used, a timer module needs to be installed. For an
example of how to do this see Chapter 21.

When STLite/OS20 is used, the heap functions (malloc, calloc, free and
realloc), debug functions, device-independent I/O functions and stdio functions are
thread-safe, see the section “Concurrency support for libraries” in the “Libraries
introduction” in the "ST20 Embedded Toolset Reference Manual". Note: although
thread-safe versions of the heap functions are used they are not mapped to the
STLite/OS20 memory management functions as they are when the -runtime option
is used, see section 11.1.2.
172 ADCS 7143840G

12 Kernel
12 Kernel
To implement multi-priority scheduling, STLite/OS20 uses a small scheduling kernel.
This is a piece of code which makes scheduling decisions based on the priority of the
tasks in the system. It is the kernel’s responsibility to ensure that it is always the task
which has the highest scheduling priority that is the one which is currently running.

The toolset is supplied with two prebuilt STLite/OS20 kernel libraries: the deployment
kernel and debug kernel. The debug kernel is provided to support debugging.
Currently the only difference between the two kernels is that the debug kernel has an
additional time logging facility. Apart from specific references to the ‘debug kernel’, the
term ‘kernel’ when used in this chapter applies to either kernel.

12.1 Implementation

The kernel maintains two vitally important pieces of information:

1 Which is the currently executing task, and thus what priority is currently being
executed.

2 A list of all the tasks which are currently ready to run. This is actually stored as
a number of queues, one for each priority, with the tasks stored in the order in
which they will be executed.

The kernel is invoked whenever a scheduling decision has to be made. This is on
three possible occasions:

1 When a task is about to be scheduled, the scheduler is called to determine if
the new task is of higher priority than the currently executing task. If it is, then
the state of the current task is saved, and the new one installed in its place, so
that the new task starts to run. This is termed ‘preemption’, because the new
task has preempted the old one.

2 When a task deschedules, for example it waits on a message queue which
does not have any messages available, then the scheduler will be invoked to
decide which task to run next. The kernel examines the list of processes which
are ready to run, and picks the one with the highest priority.

3 Periodically the scheduler is called to timeslice the currently executing task. If
there are other tasks which are of the same priority as the current task, then
the state of the current task will be saved onto the back of the current priority
queue, and the task at the front of the queue installed in its place. In this way
all processes at the same priority get a chance to run.

In this way the kernel ensures that it is always the highest priority task which runs.

The scheduler code is installed as a scheduler trap handler, which causes the ST20
hardware to invoke the scheduling software whenever a scheduling operation is
required.
ADCS 7143840G 173

12.2 Time logging
12.2 Time logging

For code running on targets with a ST20-C2 core, STLite/OS20 can be configured to
maintain a record of the amount of time each task spends running on the processor.
This time logging facility is not available on ST20-C1 cores.

For ST20-C2 cores, the easiest way to perform time logging is to link with the STLite/
OS20 debug kernel. This is done by specifying the -debug-runtime option together
with the -runtime os20 option to st20cc. For example:

st20cc hello.c -debug-runtime -runtime os20 -T sti5500.cfg -p link

This facility is introduced under the heading "Debug and deployment kernels" in
section 3.2.5.

The use of -debug-runtime to select the STLite/OS20 debug kernel supersedes an
earlier method of enabling time logging by defining CONF_TIME_LOGGING and
CONF_INTERRUPT_TIME_LOGGING in conf.h and rebuilding the kernel. This
method is still available and is described in the chapter “Advanced configuration of
STLite/OS20” in the "ST20 Embedded Toolset Reference Manual".

12.2.1 Using time logging

The toolset offers the following debugging features in the debug kernel:

• Task time logging maintains a record of the amount of time each task spends
running on the processor. The data collected can be accessed using the
task_status function.

• Interrupt time logging maintains a record of the amount of time in each
interrupt and the number of times the interrupt has been called. The functions
interrupt_status and interrupt_status_number are used to return
this information.

• System time logging maintains a record of kernel idle time and up-time. The
functions kernel_idle and kernel_time return kernel idle time and kernel
up-time respectively. Kernel up-time being the time elapsed since the kernel
started.

“Part 4 - STLite/OS20 functions” of the "ST20 Embedded Toolset Reference Manual"
contains descriptions of each of the above functions.

On an ST20-C2, time spent executing high priority processes is not visible to the
mechanism used to record idle time. Thus, the time taken to execute a high priority
process will be added to the duration of the task or interrupt that was preempted by
the high priority process.

Note: all time logging is slightly intrusive. Logging is performed by the target in the
scheduler trap and when an interrupt is handled. This could subtly alter the real time
performance of the system being logged, however, in most cases the difference in
performance should be negligible.
174 ADCS 7143840G

12 Kernel
12.3 STLite/OS20 kernel

The primary operations which can be performed on the STLite/OS20 kernel is its
installation and start. This is done by calling the functions kernel_initialize()
and kernel_start(). Normally, if the st20cc -runtime os20 option is specified
when linking, this is performed automatically. However, if STLite/OS20 is being started
manually the initialization of the STLite/OS20 kernel is usually performed as the first
operation in main():

if (kernel_initialize () != 0) {
printf (“Error : initialise. kernel_initialize failed\n”);
exit (EXIT_FAILURE);
}
... initialize memory and semaphores ...
if (kernel_start () != 0) {
printf(“Error: initialize. kernel_start failed\n”);
exit(EXIT_FAILURE);
}

12.4 Kernel header file: kernel.h

All the definitions related to the kernel are in the single header file, kernel.h, see
Table 12.1:

Function Description

kernel_idle Return the kernel idle time.

kernel_initialize Initialize for preemptive scheduling.

kernel_start Starts preemptive scheduling regime.

kernel_time Return the kernel up-time.

kernel_version Return the STLite/OS20 version number.

Table 12.1 Functions defined in kernel.h
ADCS 7143840G 175

12.4 Kernel header file: kernel.h
176 ADCS 7143840G

13 Memory and partitions
13 Memory and partitions
Memory management on many embedded systems is vitally important, because
available memory is often quite small, and must be used efficiently. For this reason
three different styles of memory management have been provided with STLite/OS20,
see section 13.2. These give the user flexibility in controlling how memory is allocated,
allowing a space/time trade-off to be performed.

13.1 Partitions

The basic job of memory management is to allow the application program to allocate
and free blocks of memory from a larger block of memory, which is under the control of
a memory allocator. In STLite/OS20 these concepts have been combined into a
partition, which has three properties:

1 The block of memory for which the partition is responsible.

2 The current state of allocated and free memory.

3 The algorithm to use when allocating and freeing memory.

The method of allocating/deallocating memory is the same whatever style of partition
is used, only the algorithm used (and thus the interpretation of the partition data
structures) changes.

There is nothing special about the memory which a partition manages. It can be a
static or local array, or an absolute address which is known to be free. It can also be a
block allocated from another partition, (see the example given in the description of
partition_delete). This can be useful to avoid having to explicitly free all the
blocks allocated:

• Allocate a block from a partition, and create a second partition to manage it.

• Allocate memory from the partition as normal.

• When finished, rather than freeing all the allocated blocks individually, free the
whole partition (as a block) back to the partition from which it was first
allocated.

The STLite/OS20 system of partitions can also be exploited to build fault-tolerance
into an application, by implementing different parts of the application, using different
memory partitions. Then if a fault occurs in one part of the application it does not
necessarily effect the whole application.
ADCS 7143840G 177

13.2 Allocation strategies
13.2 Allocation strategies

Three types of partition are currently supported in STLite/OS20:

1 Heap partitions use the same style of memory allocator as the traditional C
runtime malloc and free functions. Variable sized blocks can be allocated,
with the requested size of memory being allocated by memory_allocate,
and the first available block of memory will be returned to the user. Blocks of
memory may be deallocated using memory_deallocate, in which case they
are returned to the partition for re-use. When blocks are freed, if there is a free
block before or after it, it will be combined with that block to allow larger
allocations.

Although the heap style of allocator is very versatile, it does have some
disadvantages. It is not deterministic, the time taken to allocate and free
memory is variable because it depends upon the previous allocations/
deallocations performed and lists have to be searched. Also the overhead
(additional memory which the allocator consumes for its own use) is quite
high, with several additional words being required for each allocation.

2 The fixed partition overcomes some of these problems, by fixing the size of the
block which can be allocated when the partition is created, using
partition_create_fixed or partition_init_fixed. This means that
allocating and freeing a block takes constant time (it is deterministic), and
there is a very small memory overhead. Thus this partition ignores the size
argument when an allocation is preformed by memory_allocate and uses
instead the size argument passed by either partition_create_fixed or
partition_init_fixed.

Blocks of memory may be deallocated using memory_deallocate, in which
case they are returned to the partition for re-use.

3 Finally the simple partition is a trivial allocator, which just increments a pointer
to the next available block of memory. This means that it is impossible to free
any memory back to the partition, but there is no wasted memory when
performing memory allocations. Thus this partition is ideal for allocating
internal memory. Variable sized blocks of memory can be allocated, with the
size of block being defined by the argument to memory_allocate and the
time taken to allocate memory is constant.

The properties of the three partition types are summarized in Table 13.1.

Table 13.1 Partition properties

Properties Heap Fixed Simple

Allocation method

As requested by
memory_allocate
or
memory_reallocate

Fixed at creation by
partition_create_fixed
or
partition_init_fixed.

As requested by
memory_allocate
or
memory_reallocate

Deallocation possible Yes. Yes. No.

Overhead size (bytes) 12 4 0

Deterministic No. Yes. Yes.
178 ADCS 7143840G

13 Memory and partitions
13.3 Pre-defined partitions

STLite/OS20 has been designed not to require any dynamic memory allocation itself.
This allows the construction of deterministic systems, or for the user to take over all
memory allocation.

However, for convenience, all of the object initialization functions (for example,
task_init, semaphore_init_fifo) are also available with a creation style of
interface (for example,. task_create, semaphore_create_fifo), where STLite/
OS20 will perform the memory allocation for the object. In these cases STLite/OS20
will use two pre-defined partitions:

• The system_partition is used for all object allocation, including
semaphores, message queues and the static portion of the task’s data
structure, including the task’s stack. Normally this is managed as a heap
partition.

• The internal_partition is used just for the allocation of the dynamic part
of a task’s data structure by task_create. To minimize context switch time,
this data should be placed in internal memory (see section 14.1 for more
information about a task’s state). Thus the internal_partition should
manage a block of memory from the ST20’s internal memory. Normally this is
managed as a simple partition, to minimize wastage of internal memory.

These partitions must be defined before any of the object creation functions are
called, and because they are independent of the kernel this can be done before kernel
initialization if required.

Normally, if the st20cc -runtime os20 option is specified when linking, this
initialization is performed automatically, see Chapter 11.

If STLite/OS20 is being started manually, the following can be done:

partition_t *system_partition;
partition_t *internal_partition;
static int internal_block[200];
static int external_block[100000];
#pragma ST_section(internal_block, “internal_part”)

void initialize_partitions(void)
{
 static partition_t the_system_partition;
 static partition_t the_internal_partition;

 if (partition_init_simple(&the_internal_partition,
 (unsigned char*)internal_block, sizeof(internal_block)) !=0){
 printf(“partition creation failed \n”);
 return;
 }
 if (partition_init_heap(&the_system_partition,
 (unsigned char*)external_block, sizeof(external_block)) !=0){
 printf(“partition creation failed \n”);
 return;
 }

 system_partition = &the_system_partition;
 internal_partition = &the_internal_partition;
}

ADCS 7143840G 179

13.3 Pre-defined partitions
The section internal_part is then placed into internal memory by adding a line to
the application configuration file:

place internal_part INTERNAL

13.3.1 Calculating partition sizes

In order to calculate the size of system and internal partitions, several pieces of
information are needed for each object created using the _create functions (for
example, task_create, message_create_queue, semaphore_create_fifo):

• The amount of memory the object requires. Each object is defined by a data
structure or type, (refer to individual chapters). For example, task_t, refer to
‘Chapter 14 Tasks’. Table 13.2 lists the different types of object structure that
may be created and their memory requirement.

• The amount of memory needed for tasks’ stacks, created using
task_create.

• The amount of overhead the memory allocation function requires for the
object. The number of words used depend on whether the object is allocated
from a heap, fixed or simple partition. All objects are allocated from the system
partition which is managed as a heap partition. The exception is the object
structure tdesc_t which is allocated from the internal partition (normally
managed as a simple partition).Table 13.1 shows the memory overhead
associated for each partition type.

• Any additional allocations performed by the user’s application.

Object structure Size (words) Size (Bytes) Notes

chan_t 4 16 ST20-C2 specific.

semaphore_t 6 24

message_queue_t 19 76

partition_t 15 60

task_t 9 36

tdesc_t
6
9

24
36

ST20-C2 specific
ST20-C1 specific

Table 13.2 Object size requirement
180 ADCS 7143840G

13 Memory and partitions
13.4 Obtaining information about partitions

When memory is dynamically allocated it is important to have knowledge of how much
memory is used or how much memory is available in a partition. The status of a
partition can be retrieved with a call to the following function:

#include <partitio.h>
int partition_status(
 partition_t* Partition,
 partition_status_t* Status,
 partition_status_flags_t flags);

The information returned includes the total memory used, the total amount of free
memory, the largest block of free memory and whether the partition is in a valid state.

partition_status() will return the status of heap, fixed and simple partitions by
storing the status into the partition_status_t structure which is passed as a
pointer to partition_status().

For fixed partitions the largest free block of memory will always be the same as the
block size of a given fixed partition.

13.5 Partition header file: partitio.h

All the definitions related to memory partitions are in the single header file,
partitio.h, see Table 13.3.

Table 13.4 lists the types defined by partitio.h.

Function Description

memory_allocate Allocate a block of memory from a partition.

memory_allocate_clear Allocate a block of memory from a partition and clear to zero.

memory_deallocate Free a block of memory back to a partition.

memory_reallocate Reallocate a block of memory from a partition.

partition_create_simple Create a simple partition.

partition_create_heap Create a heap partition.

partition_create_fixed Create a fixed partition.

partition_delete Delete a partition.

partition_init_simple Initialize a simple partition.

partition_init_heap Initialize a heap partition.

partition_init_fixed Initialize a fixed partition.

partition_status Get the status of a partition.

Table 13.3 Functions defined in partitio.h

Types Description

partition_t A memory partition.

partition_stuatus_flags_t Additional flags for partition_status.

Table 13.4 Types defined by partitio.h
ADCS 7143840G 181

13.5 Partition header file: partitio.h
182 ADCS 7143840G

14 Tasks
14 Tasks
Tasks are separate threads of control, which run independently. A task describes the
behavior of a discrete, separable component of an application, behaving like a
separate program, except that it can communicate with other tasks. New tasks may be
generated dynamically by any existing task.

Applications can be broken into any number of tasks provided there is sufficient
memory. When a program starts, there is a single main task in execution. Other tasks
can be started as the program executes. These other tasks can be considered to
execute independently of the main task, but share the processing capacity of the
processor.

14.1 STLite/OS20 tasks

A task consists of a data structure, stack and a section of code. A task’s data structure
is known as its state and its exact content and structure is processor dependent. In
STLite/OS20 it is divided into two parts and includes the following elements:

• dynamic state defined in the data structure tdesc_t, which is used directly by
the CPU to execute the process. The fields of this structure vary depending on
the processor type. The most important elements of this structure are the
machine registers, in particular the instruction (Iptr) and workspace (Wptr)
pointers. A task priority is also used to make scheduling decisions. While the
task is running the Iptr and Wptr are maintained by the CPU, when the task is
not executing they are stored in tdesc_t. On the ST20-C1 the Tdesc register
points to the current task’s tdesc_t.

• static state defined in the data structure task_t, which is used by STLite/
OS20 to describe the task, and which does not usually change while the task
is running. It includes the task’s state (that is; being created, executing,
terminated) and the stack range (used for stack checking).

The dynamic state should be stored in internal memory to minimize context switch
time. The state is divided into two in this way so that only the minimum amount of
internal memory needs to be used to store tdesc_t.

A task is identified by its task_t structure and this should always be used when
referring to the task. A pointer to the task_t structure is called the task’s ID, see
section 14.12.

The task’s data structure may either be allocated by STLite/OS20 or by the user
declaring the tdesc_t and task_t data structures. (These structures are defined in
the header file task.h). The code for the task to execute is provided by the user
function. To create a task, the tdesc_t and task_t data structures must be
allocated and initialized and a stack and function must be associated with them. This
is done using the task_create or task_init functions depending on whether the
user wishes to control the allocation of the data structures or not. See section 14.5.
ADCS 7143840G 183

14.2 Implementation of priority and timeslicing
14.2 Implementation of priority and timeslicing

Readers familiar with the ST20 micro-core and STLite/OS20 priority handling may
wish to skip to section 14.3 which introduces the facilities provided by STLite/OS20 for
influencing priority.

STLite/OS20 implements 16 levels of priority. Tasks are run as the lowest priority
hardware process for the target hardware with a STLite/OS20 priority specified by the
user. STLite/OS20 tasks sit on top of the processes implemented by the hardware and
use features of the hardware to ensure efficient implementation.

On the ST20-C1, there is no hardware support for multiple priorities.

However on the ST20-C2, the hardware supports two priorities of processes, high and
low, see Figure 14.1.

Figure 14.1 ST20-C2 priorities

High priority processes take precedence over low priority processes, for example,
STLite/OS20 tasks. Thus on the ST20-C2, for critical sections of code it is possible to
create tasks which use the hardware’s high priority processes directly.

ST20-C2 high priority processes run outside of the STLite/OS20 scheduler, and so
some restrictions have to be placed on them:

• They cannot use priority based semaphores

• They cannot use message queues

In addition they inherit two features of the hardware scheduler:

• Tasks are not timesliced, they execute until they voluntarily deschedule

• The units of time are different with high priority processes running
considerably faster than low priority processes. The clock times are device
dependent so check the datasheet for actual timings.

Hardware processor

High priority processes Low priority processes

STLite/OS20 kernel

STLite/OS20 task priorities
184 ADCS 7143840G

14 Tasks
14.2.1 Timeslicing on the ST20-C1

On the ST20-C1 microprocessor timeslicing is supported by a timeslice instruction. By
default timeslicing is disabled by the compiler. However, if the application is compiled
with the st20cc option -finl-timeslice then timeslice instructions will be
inserted by the compiler. Note, that the runtime libraries are compiled without
timeslicing, so it is not possible to timeslice in a library function.

If a timeslice instruction is executed when a timeslice is due and timeslicing is enabled
then the current process will be timesliced, that is, the current process is placed on the
back of the scheduling queue and the process on the front of the scheduling queue is
loaded into the CPU for execution.

On some ST20-C1 devices the timeslice clock is provided by peripheral modules and
this timeslice clock must be enabled for timeslicing to work. See the device datasheet
for details.

Note timeslicing is implemented independently of the clocking peripheral discussed in
Chapter 21.

Further details are given in the ‘ST20-C1 Core Instruction Set Reference Manual 72-
TRN-274’.

14.2.2 Timeslicing on the ST20-C2

The ST20-C2 microprocessor contains two clock registers. The high priority clock
register and the low priority clock register, see Chapter 17.

After a set number of ticks of the high priority clock a timeslice period is said to have
ended. When two timeslice period ends have occurred while the same task (low
priority hardware process) has been continuously executing, the processor will
attempt to deschedule the task. This will occur after the next j or lend instruction is
executed. When this happens the task is descheduled and the next waiting task is
scheduled, see Figure 14.2.
ADCS 7143840G 185

14.3 STLite/OS20 priorities
High priority processes are never timesliced and will run until completion, or until they
have to wait for a communication.

Figure 14.2 Timeslicing on the ST20-C2

A task will nominally run for between one and two timeslice periods. The compiler
inserts instructions which allow timeslicing (for example j) at suitable points in the
code, in order to minimize latency and prevent tasks monopolizing processor time.

If an STLite/OS20 task is preempted by a higher priority STLite/OS20 task then when
the lower priority tasks resumes it will start its timeslice period from the beginning of
the timeslice period. However, if an STLite/OS20 task is interrupted by an interrupt or
preempted by a high priority process then it will resume the timeslice period from the
point where the interrupt or high priority process released the period. Therefore the
STLite/OS20 task will loose some of its timeslice.

Further details are given in the ‘ST20-C2 Core Instruction Set Reference Manual 72-
TRN-273’.

14.3 STLite/OS20 priorities

The number of STLite/OS20 task priorities and the highest and lowest task priorities
are defined using the macros in the header file task.h, see section 14.18.
Numerically higher priorities preempt lower priorities, for example, 3 is a higher priority
than 2.

A task’s initial priority is defined when it is created, see section 14.5. The only task
which does not have its priority defined in this way is the root task, that is, the task
which starts STLite/OS20 running by calling kernel_start. This task starts running
with the highest priority available, MAX_USER_PRIORITY.

If a task needs to know the priority it is running at or the priority of another task, it can
call the following function:

int task_priority (task_t* Task)

Priority

Lower

Higher

Time

jt1 t2 t1 t1

t4

j
j

timeslice
period

task completion
186 ADCS 7143840G

14 Tasks
task_priority() retrieves the STLite/OS20 priority of the task specified by Task
or the priority of the currently active task if Task is NULL.

The priority of a task can be changed using the task_priority_set () function:

int task_priority_set (task_t* Task, int NewPriority);

task_priority_set() sets the priority of the task specified by Task, or of the
currently active task if Task is NULL. If this results in the current task’s priority falling
below that of another task which is ready to run, or a ready task now has a priority
higher than the current task’s, then tasks may be rescheduled. This function is only
applicable to STLite/OS20 tasks not to high priority hardware processes.

14.4 Scheduling

An active task may either be running or waiting to run. STLite/OS20 ensures that:

• The currently executing task is always the one with the highest priority.

If a task with a higher priority becomes ready to run then the STLite/OS20
scheduler will save the current task’s state and will make the higher priority
task the current task. The current task will run to completion unless it is
preempted by a higher priority task, and so on. Once a task has completed,
the next highest priority task will start executing.

• Tasks of equal priority are timesliced, to ensure that they all get the chance to
run. (When compiling for an ST20-C1 a command line option needs to be
given, see section 14.2.1).

Each task of the same priority level will execute in turn for a period of time
known as a timeslice. See section 14.2.

The kernel scheduler can be prevented from preempting or timeslicing the current
task, by using the following pair of functions:

void task_lock (void);
void task_unlock (void);

These functions should always be called as a pair and can be used to create a critical
region where one task is prevented from preempting another. Calls to task_lock()
can be nested, and the lock will not be released until an equal number of calls to
task_unlock() have been made. Once task_unlock () is called, the scheduler
will start the highest priority task which is available, running. This may not be the task
which calls task_unlock ().

If a task voluntarily deschedules, for example, by calling semaphore_wait then the
critical region will be unlocked and normal scheduling resumes. In this case the
subsequent task_unlock has no effect. It should still be included in case the task
did not deschedule, for example, the semaphore count was already greater than zero.

Note that when this lock is in place the task can still be interrupted by interrupt
handlers and high priority processes (on the ST20-C2). Interrupts can be disabled and
enabled using the interrupt_lock () and interrupt_unlock () functions, see
Chapter 18.
ADCS 7143840G 187

14.5 Creating and running a task
14.5 Creating and running a task

The following functions are provided for creating and starting a task running:

#include <task.h> #include <task.h>

task_t* task_create (int task_init(
void (*Function)(void*), void (*Function)(void*),
void* Param, void* Param,
int StackSize, void* Stack,
int Priority, int StackSize,
const char* Name, task_t* Task,
task_flags_t flags); tdesc_t* Tdesc,

int Priority,
const char* Name,
task_flags_t flags);

Both functions set up a task and start the task running at the specified function. This is
done by initializing the data structures tdesc_t and task_t and associating a
function with them.

Using either task_create or task_init, the function is passed in as a pointer to
the task’s entry point. Both functions take a single pointer to be used as the argument
to the user function. A cast to void* should be performed in order to pass in a single
word sized parameter (for example,. an int). Otherwise a data structure should be
set up.

The functions differ in how the task’s data structure is allocated. task_create will
allocate memory for the task’s stack, control block task_t and task descriptor
tdesc_t, whereas task_init enables the user to control memory allocation. The
task’s control block and task descriptor should be declared before the call to
task_init.

task_create and task_init both require the stack size to be specified. Stack is
used for a function’s local variables and parameters, as a guide each function uses:

• Four words for the task to remove itself if it returns.

• Four extra words for the initial user stack.

• On the ST20-C2 six words are needed by the hardware scheduler (for state
which is saved into ‘negative workspace’).

• In some cases the full CPU context needs to be saved on the task’s stack. On
the ST20-C1 this is always needed when a task is preempted (7 words). On
the ST20-C2 it is only needed if a task’s priority is changed by another task, or
it is suspended (11 words).

• Then recursively:

• Space for local variables declared in the function, (add up the number
of words).

• Space for calls to extra functions. For a library function allow 150 words
for worst case.
188 ADCS 7143840G

14 Tasks
For details of data representation, see the “Implementation Details” chapter of the
"ST20 Embedded Toolset Reference Manual".

Both functions require an STLite/OS20 priority level to be specified for the task and a
name to be associated with the task for use by the debugger. The priority levels are
defined in the header file task.h by the macros OS20_PRIORITY_LEVEL,
MAX_USER_PRIORITY and MIN_USER_PRIORITY, see section 14.18.

For tasks running on an ST20-C2, both functions also enable the task to be elevated
to a high priority process. In this case the STLite/OS20 task priority will not be used.
High priority processes have restrictions associated with them as described in section
14.2.

14.5.1 Creating a task for an RCU

Two functions are provided for creating a task in a relocatable code unit:
task_create_sl and task_init_sl. The chapter “Building and running
relocatable code” in the "ST20 Embedded Toolset Reference Manual" provides details
of using STLite/OS20 with relocatable code units.

14.6 Synchronizing tasks

Tasks synchronize their actions with each other using semaphores, as described in
Chapter 15.

14.7 Communicating between tasks

Tasks communicate with each other by using message queues, as described in
Chapter 16.

14.8 Timed delays

The following two functions cause a task to wait for a certain length of time as
measured in ticks of the timer.

void task_delay(clock_t delay);
void task_delay_until(clock_t delay);

Both functions wait for a period of time and then return. task_delay_until waits
until the given absolute reading of the timer is reached. If the requested time is before
the present time, then the task does not wait.

task_delay waits until the given time has elapsed, that is, it delays execution for the
specified number of timer ticks. If the time given is negative, no delay takes place.

task_delay or task_delay_until may be used for data logging or causing an
event at a specific time. A high priority task can wait until a certain time; when it wakes
it will preempt any lower priority task that is running and perform the time-critical
function.
ADCS 7143840G 189

14.9 Rescheduling
When initiating regular events, such as for data logging, it may be important not to
accumulate errors in the time between ticks. This is done by repeatedly adding to a
time variable rather than rereading the start time for the delay. For example, to initiate
a regular event every delay ticks:

#include <ostime.h>

clock_t time;
time = time_now();
for (;;)
{
 time = time_plus (time, delay);
 task_delay_until(time);
 initiate_regular_event ();
}

14.9 Rescheduling

Sometimes, a task needs to voluntarily give up control of the CPU so that another task
at the same priority can execute, that is, terminate the current timeslice. This may be
achieved with the function:

void task_reschedule (void);

This provides a clean way of suspending execution of a task in favor of the next task
on the scheduling list, but without losing priority. The task which executes
task_reschedule is added to the back of the scheduling list and the task at the
front of the scheduling list is promoted to be the new current task.

A task may be inadvertently rescheduled when the task_priority_set () function
is used, see section 14.3.

14.10 Suspending tasks

Normally a task will only deschedule when it is waiting for an event, such as for a
semaphore to be signalled. This requires that the task itself call a function indicating
that it is willing to deschedule at that point (for example, by calling
semaphore_wait). However, sometimes it is useful to be able to control a task,
causing it to forcibly deschedule, without it explicitly indicating that it is willing to be
descheduled. This can be done by suspending the task.

When a task is suspended, it will stop executing immediately. When the task should
start executing again, another task must resume it. When it is resumed the task will be
unaware it has been suspended, other than the time delay.

Task suspension is in addition to any other reason that a task is descheduled. Thus a
task which is waiting on a semaphore, and which is then suspended, will not start
executing again until both the task is resumed, and the semaphore is signalled,
although these can occur in any order.
190 ADCS 7143840G

14 Tasks
A task is suspended using the call:

 int task_suspend(task_t* Task)

where Task is the task to be suspended. A task may suspend itself by specifying
Task as NULL. The result is 0 if the task was successfully suspended, -1 if it failed.
This call will fail if the task has terminated. A task may be suspended multiple times by
executing several calls to task_suspend. It will not start executing again until an
equal number of task_resume calls have been made.

A task is resumed using the call:

 int task_resume(task_t* Task)

where Task is the task to be resumed. The result is 0 if the task was successfully
resumed, -1 if it failed. The call will fail if the task has terminated, or is not suspended.

It is also possible to specify that when a task is created, it should be immediately
suspended, before it starts executing. This is done by specifying the flag
task_flags_suspended when calling task_create or task_init. This can be
useful to ensure that initialization is carried out before the task starts running. The task
is resumed in the usual way, by calling task_resume, and it will start executing from
its entry point.

14.11 Killing a task

Normally a task runs to completion and then exits. It may also choose to exit early by
calling task_exit(). However, it is also possible to force a task to exit early, using
the function:

int task_kill(task_t* task, int status,
task_kill_flags_t flags);

This will stop the task immediately, cause it to run the exit handler (if there is one), and
exit.

Sometimes it may be desirable for a task to prevent itself being killed temporarily, for
example, while it owns a mutual exclusion semaphore. To do this the task can make
itself immortal by calling:

void task_immortal(void);

and once it is willing to be killed again calling:

void task_mortal(void);

While the task is immortal, it cannot be killed. However, if an attempt was made to kill
the task whilst it was immortal, it will die immediately it makes itself mortal again by
calling task_mortal.

Calls to task_immortal and task_mortal nest correctly, so the same number of
calls need to be made to both functions before the task becomes mortal again.
ADCS 7143840G 191

14.12 Getting the current task’s id
14.12 Getting the current task’s id

Several functions are provided for obtaining details of a specified task. The following
function returns a pointer to the task structure of the current task:

task_t* task_id (void)

While task_id is very efficient when called from a task, it will take a long time to
execute when called from a high priority process, and cannot be called from an
interrupt handler. To avoid these problems an alternative function is available:

task_context_t task_context(task_t** task, int* level)

This will return whether it was called from a task, interrupt, or high priority process. In
addition if task is not NULL, and task_context is called from a task or high priority
process, it will assign the current task ID to the task_t pointed to by task. Similarly
if level is not NULL, and task_context is called from an interrupt handler, then it
will assign the current interrupt level to the int pointed to by level. The advantage
in not requiring the current task_t or interrupt level is that this function may operate
considerably faster when this information does not have to be found.

Both of these function may be used in conjunction with task_wait, see section
14.16.

The function:

const char*task_name(task_t *task);

returns the name of the specified task, or if task is NULL, the current task. (The
task’s name is set when the task is created).

14.13 Stack usage

A common problem when developing applications is not allocating enough stack for a
task, or the need to tune stack allocation to minimize memory wastage. STLite/OS20
provides a couple of techniques which can be used to address this.

The first technique is to enable stack checking in the compiler see section 3.3.8. This
adds an additional function call at the start of each of the user’s functions, just before
any additional stack is allocated. The called stack check function can then determine
whether there is sufficient space available for the function which is about to execute.

As STLite/OS20 is multi-threaded, a special version of the stack check function needs
to be used, which can determine the current task, and details about the task’s stack.
When using -runtime os20 to link the application, the stack check function is linked
in automatically. Otherwise it is necessary to link with the configuration file
os20scc1.cfg (for a C1 target) or os20scc2.cfg (for a C2 target) to ensure the
correct function is linked in.

Whilst stack checking has the advantage that a stack overflow is reported immediately
it occurs, it has a number of problems:

• there is a run time cost incurred every function call to perform the check;

• it cannot report on functions which are not recompiled with stack checking
enabled.
192 ADCS 7143840G

14 Tasks
An alternative technique is to determine experimentally, how much stack a task uses
by giving the task a large stack initially, running the code, and then seeing how much
stack has been used. To support this STLite/OS20 normally fills a task’s stack with a
known value. As the task runs it will write its own data into the stack, altering this
value, and later the stack can be inspected to determine the highest address which
has not been altered.

To support this STLite/OS20 provides the function:

int task_status(task_t* Task, task_status_t *Status,
task_status_flags_t Flags);

This function can be used to determine information about the task’s stack, in particular
the base and size specified when the task was created, and the amount of stack which
has been used.

Stack filling is enabled by default, however, in some cases the user may want to
control it, so two functions are provided:

int task_stack_fill(task_stack_fill_t* fill);

returns details about the current stack fill settings, and:

int task_stack_fill_set(task_stack_fill_t* fill);

allows them to be altered. Stack filling can be enabled or disabled, or the fill value
changed. By default it is enabled, and the fill value set to 0x12345678.

By placing a call to task_stack_fill_set in a start-up function, before the STLite/
OS20 kernel is initialized, it is possible to control the filling of the root task’s stack.

To determine how much stack has been used task_status can be called, with the
Flags parameter set to task_status_flags_stack_used. For this to work
correctly, task stack filling must have been enabled when the task was created, and
the fill value must have the same value as the one which was in effect when the task
was created.
ADCS 7143840G 193

14.14 Task data
14.14 Task data

STLite/OS20 provides one word of ‘task-data’ per task. This can be used by the
application to store data which is specific to the task, but which needs to be accessed
uniformly from multiple tasks.

This is typically used to store data which is required by a library, when the library can
be used from multiple tasks but the data is specific to the task. For example, a library
which manages an I/O channel may be called by multiple tasks, each of which has its
own I/O buffers. To avoid having to pass an I/O descriptor into every call it could be
stored in task-data.

Although only one word of storage is provided, this is usually treated as a pointer,
which points to a user defined data structure which can be as large as required.

Two functions provide access to the task-data pointer:

void* task_data_set (task_t* Task, void* NewData);

task_data_set() sets the task-data pointer of the task specified by Task.

void* task_data(task_t* Task);

task_data() retrieves the task-data pointer of the task specified by Task.

If Task is NULL both functions use the currently active task.

When a task is first created (including the root task), its task-data pointer is set to
NULL (0). For example:

typedef struct {
 char buffer[BUFFER_SIZE];
 char* buffer_next;
 char* buffer_end;
} ptd_t;

char buffer_read(void)
{
 ptd_t *ptd;

 ptd = task_data(NULL);
 if (ptd->buffer_next == ptd->buffer_end) {
 ... fill buffer ...
 }
 return *(ptd->buffer_next++);
}

int main()
{
 ptd_t *ptd;
 task_t *task;

 ... create a task ...

 ptd = memory_allocate(system_partition, sizeof(ptd_t));
 ptd->buffer_next = ptd->buffer_end = ptd->buffer;
 task_data_set(task, ptd);

}

194 ADCS 7143840G

14 Tasks
14.15 Task termination

A task terminates when it returns from the task’s entry point function.

A task may also terminate by using the following function:

void task_exit(int param);

In both cases an exit status can be specified. When the task returns from its entry
point function, the exit status is the value that the function returns. If task_exit is
called then the exit status is specified as the parameter. This value is then made
available to the ‘onexit’ handler if one has been installed (see below).

Just before the task terminates (either by returning from its entry point function, or
calling task_exit), it will call an ‘onexit’ handler. This function allows any application
specific tidying up to be performed before the task terminates. The onexit handler is
installed by calling:

task_onexit_fn_t task_onexit_set(task_onexit_fn_t fn);

The onexit handler function must have a prototype of:

void onexit_handler(task_t *task, int param)

When the handler function is called, task specifies the task which has exited, and
param is the task’s exit status.

The function task_onexit_set_sl is provided to set the task onexit handler and
specify a static link.

The following code example shows how a task’s exit code can be stored in its task-
data (see section 14.14), and retrieved later by another task which is notified of the
termination through task_wait.

void onexit_handler(task_t* task, int param)
{
 task_data_set(NULL, (void*)param);
}

int main()
{
 task_t *Tasks[NO_USER_TASKS];

 /* Set up the onexit handler */
 task_onexit_set(onexit_handler);

 ... create the tasks ...

 /* Wait for the tasks to finish */
 for (i=0; i<NO_USER_TASKS; i++) {
 int t;
 t = task_wait(Tasks, NO_USER_TASKS, TIMEOUT_INFINITY);
 printf(“Task %d : exit code %d\n”, t, (int)task_data(Tasks[t]));
 Tasks[t] = NULL;
 }
}

ADCS 7143840G 195

14.16 Waiting for termination
14.16 Waiting for termination

It is only safe to free or otherwise reuse a task’s stack, once it has terminated.

The following function waits until one of a list of tasks terminates or the specified
timeout period is reached:

int task_wait(task_t **tasklist, int ntasks,
const clock_t *timout);

Timeouts for tasks are implemented using hardware and so do not increase the
application’s code size. Any task can wait for any other asynchronous task to
complete. A parent task should, for example, wait for any children to terminate. In this
case task_wait can be used inside a loop.

After task_wait has indicated that a particular task has completed, any of the task’s
data including any memory dynamically loaded or allocated from the heap and used
for the task’s stack, can be freed. The task’s state: its control block task_t and
descriptor tdesc_t may also be freed. (task_delete can be used to free task_t
and tdesc_t, see section 14.17).

The timeout period for task_wait may be expressed as a number of ticks or it may
take one of two values: TIMEOUT_IMMEDIATE indicates that the function should
return immediately, even if no tasks have terminated, and TIMEOUT_INFINITY
indicates that the function should ignore the timeout period, and only return when a
task terminates. The header file ostime.h must be included when using this
function.

14.17 Deleting a task

A task can be deleted by using the task_delete function:

#include <task.h>
int task_delete(task_t* task);

This will remove the task from the list of known tasks and allow its stack and data
structures to be reused.

If the task was created using task_create then task_delete calls
memory_deallocate in order to free the task’s state (both static task_t and
dynamic tdesc_t) and the task’s stack.

A task must have terminated before it can be deleted, if it has not task_delete will
fail.
196 ADCS 7143840G

14 Tasks
14.18 Task header file: task.h

All the definitions related to tasks are in the single header file, task.h, see
Table 14.1, Table 14.2 and Table 14.3.

Function Description

task_context Return the current execution context.

task_create Create an STLite/OS20 task.

task_create_sl Create an STLite/OS20 task specifying a static link.

task_data Retrieve a task’s data pointer.

task_data_set Sets a task’s data pointer.

task_delay Delay the calling task for a period of time.

task_delay_until Delay the calling task until a specified time.

task_delete Delete a task.

task_exit Exits the current task.

task_id Find current task’s id.

task_immortal Make the current task immortal.

task_init Initialize an STLite/OS20 task.

task_init_sl Initialize an STLite/OS20 task specifying a static link.

task_kill Kill a task.

task_lock Prevent task rescheduling.

task_mortal Make the current task mortal.

task_name Returns the task’s name.

task_onexit_set Setup a function to be called when a task exits.

task_onexit_set_sl Setup a function to be called when a task exits and specify a static link.

task_priority Retrieve a task’s priority.

task_priority_set Set a task’s priority.

task_reschedule Reschedule the current task.

task_resume Resume a suspended task.

task_suspend Suspend a task.

task_stack_fill Return the task fill configuration.

task_stack_fill_set Set the task stack fill configuration.

task_status Return status information about the task.

task_unlock Allow task rescheduling.

task_wait Waits until one of a list of tasks completes.

Table 14.1 Functions defined in task.h
ADCS 7143840G 197

14.18 Task header file: task.h
Types Description

task_context_t Result of task_context.

task_flags_t Additional flags for task_create and task_init.

task_kill_flags_t Additional flags for task_kill.

task_onexit_fn_t Function to be called on task exit.

task_state_t State of a task (for example: active, deleted).

task_stack_fill_state_t Whether stack filling is enabled or disabled.

task_stack_fill_t Stack filling state (specifies enables and value).

task_status_flags_t Additional flags for task_status.

task_status_t Result of task_status.

task_t A task’s static state.

tdesc_t A task’s dynamic state.

Table 14.2 Types defined in task.h

Macro Description

OS20_PRIORITY_LEVELS Number of STLite/OS20 task priorities. Default is 16.

MAX_USER_PRIORITY Highest user task priority. Default is 15.

MIN_USER_PRIORITY Lowest user task priority. Default is 0.

Table 14.3 Macros defined in task.h
198 ADCS 7143840G

15 Semaphores
15 Semaphores
Semaphores provide a simple and efficient way to synchronize multiple tasks.
Semaphores can be used to ensure mutual exclusion, control access to a shared
resource, and synchronize tasks.

15.1 Overview

A semaphore structure semaphore_t contains two pieces of data:

• A count of the number of times the semaphore can be taken.

• A queue of tasks waiting to take the semaphore.

Semaphores are created using one of the following functions:

semaphore_t* semaphore_create_fifo (int value);
void semaphore_init_fifo(semaphore_t *sem, int value);
semaphore_t* semaphore_create_priority (int value);
void semaphore_init_priority (semaphore_t *sem, int value);

or if a timeout capability is required while waiting for a semaphore, use the timeout
versions of the above functions:

semaphore_t* semaphore_create_fifo_timeout (int value);
void semaphore_init_fifo_timeout(
 semaphore_t *sem, int value);
semaphore_t* semaphore_create_priority_timeout (int value);
void semaphore_init_priority_timeout (
 semaphore_t *sem, int value);

The create_ versions of the functions will allocate memory for the semaphore
automatically, while the init_ versions enable the user to specify a pointer to the
semaphore, using the data structure semaphore_t.

The semaphores which STLite/OS20 provides differ in the way in which tasks are
queued. Normally tasks are queued in the order which they call semaphore_wait, in
which case this is termed a FIFO semaphore. Semaphores of this type are created
using semaphore_create_fifo or semaphore_init_fifo or by using one of the
timeout versions of these functions.

However, sometimes it is useful to allow higher priority tasks to jump the queue, so
that they will be blocked for a minimum amount of time. In this case a second type of
semaphore can be used, a priority based semaphore. For this type of semaphore,
tasks will be queued based on their priority first, and the order which they call
semaphore_wait second. Semaphores of this type are created using
semaphore_create_priority or semaphore_init_priority or one of the
timeout versions of these functions.

Semaphores may be acquired by the function:

void semaphore_wait (semaphore_t* Sem);
ADCS 7143840G 199

15.1 Overview
For semaphores created via one of the timeout functions, then the following function
may also be used:

int semaphore_wait_timeout(
 semaphore_t* Sem
 const clock_t *timeout);

When a task wants to acquire a semaphore, it calls semaphore_wait. At this point if
the semaphore count is greater than 0, then the count will be decremented, and the
task continues. If however, the count is already 0, then the task will add itself to the
queue of tasks waiting for the semaphore and deschedule itself. Eventually another
task should release the semaphore, and the first waiting task will be able to continue.
In this way, when the task returns from the function it will have acquired the
semaphore.

If you want to make certain that the task does not wait indefinitely for a particular
semaphore then the timeout versions of the semaphore functions may be used. Note
that these functions cannot use the hardware support for semaphores, and so are
larger and slower than the non-timeout versions.

semaphore_wait_timeout enables a timeout to be specified. If this time is reached
before the semaphore is acquired then the function will return and the task continues
without acquiring the semaphore. Two special values may be specified for the timeout
period:

• TIMEOUT_IMMEDIATE causes the semaphore to be polled and the function to
return immediately. The semaphore may or may not be acquired and the task
continues.

• TIMEOUT_INFINITY causes the function to behave the same as
semaphore_wait, that is, the task will wait indefinitely for the semaphore to
become available.

When a task wants to release the semaphore, it calls semaphore_signal:

void semaphore_signal (semaphore_t* Sem);

This will look at the queue of waiting tasks, and if the queue is not empty, remove the
first task from the queue, and start it running. If there are no tasks waiting, then the
semaphore count will be incremented, indicating that the semaphore is available.

If a semaphore is deleted using semaphore_delete then how the memory is
released will depend on whether the semaphore was created by the create or init
version of the function. See the functional description of semaphore_delete in
“Part 4 - STLite/OS20 functions” in the "ST20 Embedded Toolset Reference Manual".

An important use of semaphores is for synchronization between interrupt handlers
and tasks. This is possible because while an interrupt handler cannot call
semaphore_wait, it can call semaphore_signal, and so cause a waiting task to
start running.

FIFO semaphores can also be used to synchronize the activity of low priority tasks
with high priority tasks.
200 ADCS 7143840G

15 Semaphores
15.2 Use of Semaphores

Semaphores can be defined to allow a given number of tasks simultaneous access to
a shared resource. The maximum number of tasks allowed is determined when the
semaphore is initialized. When that number of tasks have acquired the resource, the
next task to request access to it will wait until one of those holding the semaphore
relinquishes it.

Semaphores can protect a resource only if all tasks that wish to use the resource also
use the same semaphore. It cannot protect a resource from a task that does not use
the semaphore and accesses the resource directly.

Typically, semaphores are set up to allow at most one task access to the resource at
any given time. This is known as using the semaphore in binary mode, where the
count either has the value zero or one. This is useful for mutual exclusion or
synchronization of access to shared data. Areas of code protected using semaphores
are sometimes called critical regions.

When used for mutual exclusion the semaphore is initialized to one, indicating that no
task is currently in the critical region, and that at most one can be. The critical region is
surrounded with calls to semaphore_wait at the start and semaphore_signal at
the end. Thus the first task which tries to enter the critical region will successfully take
the semaphore, and any others will be forced to wait. When the task currently in the
critical region leaves, it releases the semaphore, and allows the first of the waiting
tasks into the critical region.

Semaphores are also used for synchronization. Usually this is between a task and an
interrupt handler, with the task waiting for the interrupt handler. When used in this way
the semaphore is initialized to zero. The task then performs a semaphore_wait on
the semaphore, and will deschedule. Later the interrupt handler will perform a
semaphore_signal, which will reschedule the task. This process can then be
repeated, with the semaphore count never changing from zero.

All the STLite/OS20 semaphores can also be used in a counting mode, where the
count can be any positive number. The typical application for this is controlling access
to a shared resource, where there are multiple resources available. Such a
semaphore allows N tasks simultaneous access to a resource and is initialized with
the value N. Each task performs a semaphore_wait when it wants a device. If a
device is available the call will return immediately having decremented the counter. If
no devices are available then the task will be added to the queue. When a task has
finished using a device it calls semaphore_signal to release it.
ADCS 7143840G 201

15.3 Semaphore header file: semaphor.h
15.3 Semaphore header file: semaphor.h

All the definitions related to semaphores are in the single header file, semaphor.h,
see Table 15.1 and Table 15.2.

Function Description

semaphore_create_fifo Create a FIFO queued semaphore

semaphore_create_fifo_timeout Create a FIFO queued semaphore with timeout

semaphore_create_priority Create a priority queued semaphore

semaphore_create_priority_timeout Create a priority queued semaphore with timeout

semaphore_delete Delete a semaphore

semaphore_init_fifo Initialize a FIFO queued semaphore

semaphore_init_fifo_timeout Initialize a FIFO queued semaphore with timeout

semaphore_init_priority Initialize a priority queued semaphore

semaphore_init_priority_timeout Initialize a priority queued semaphore with timeout

semaphore_signal Signal a signal

semaphore_wait Wait for a signal

semaphore_wait_timeout Wait for a semaphore or a timeout

Table 15.1 Functions defined in semaphor.h

Types Description

semaphore_t A semaphore

Table 15.2 Types defined in semaphor.h
202 ADCS 7143840G

16 Message handling
16 Message handling
A message queue provides a buffered communication method for tasks. Message
queues also provide a way to communicate without copying the data, which can save
time. Message queues are, however, subject to the following restriction:

• Message queues may only be used from interrupt handlers if the timeout
versions of the message handling functions are used and a timeout period of
TIMEOUT_IMMEDIATE is used, see section 16.3. This prevents the interrupt
handler from blocking on a message claim.

16.1 Message queues

An STLite/OS20 message queue implements two queues of messages, one for
message buffers which are currently not being used (known as the ‘free’ queue), and
the other holds messages which have been sent but not yet received (known as the
‘send ’ queue). Message buffers rotate between these queues, as a result of the user
calling the various message functions.

The movement of messages between the two queues is illustrated in Figure 16.1.

Figure 16.1 Message queues

message_release()

message_claim()message_send()

message_receive()

free

queue

send

queue
ADCS 7143840G 203

16.2 Creating message queues
16.2 Creating message queues

Message queues are created using one of the following functions:

#include <message.h> #include <message.h>

message_queue_t* message_create_queue(void message_init_queue (
size_t MaxMessageSize, message_queue_t* MessageQueue,
unsigned int MaxMessages); void* memory,

size_t MaxMessageSize,
unsigned int MaxMessages);

or by using timeout versions of the above functions:

#include <message.h>

message_queue_t* message_create_queue_timeout(
size_t MaxMessageSize,
unsigned int MaxMessages);

#include <message.h>

void message_init_queue_timeout(
message_queue_t* MessageQueue,
void* memory,
size_t MaxMessageSize,
unsigned int MaxMessages);

These functions create a message queue for a fixed number of fixed sized messages,
each message being preceded by a header, see Figure 16.2. The user must specify
the maximum size for a message element and the total number of elements required.

Figure 16.2 STLite/OS20 message elements

message_create_queue and message_create_queue_timeout allocates the
memory for the queue automatically from the system partition.

message_init_queue and message_init_queue_timeout requires the user to
allocate the memory for the message queue. This needs to be large enough for
storing all the messages (rounded up to the nearest word size) plus a header, for each
message.

The total amount of memory needed (in bytes) can be calculated using the macro:

MESSAGE_MEMSIZE_QUEUE(maxMessageSize, maxMessages)

where maxMessageSize is the size of the message, and maxMessages is the
number of messages.

message header message
204 ADCS 7143840G

16 Message handling
As long as both of the parameters can be determined at compile time, this macro can
be completely evaluated at compile time, and so can be used as the dimension of an
array, for example:

typedef struct {
int tag;
char msg[10];

} msg_t;
#define NUM_MSG 10
char msg_buffer[MESSAGE_MEMSIZE_QUEUE(sizeof(msg_t), NUM_MSG);

Alternatively this can be done by calling the function memory_allocate. This
function will return a pointer to the allocated memory, which should be passed to
message_init_queue or message_init_queue_timeout as the parameter
MessageQueue.

Note that these functions cannot use the hardware support for semaphores, and so
are larger and slower than the non-timeout versions.

Example

#include <message.h>
#include <partitio.h>

#define MSG_SIZE 512
#define MAX_MSGS 10

#define QUEUE_SIZE MESSAGE_MEMSIZE_QUEUE(MSG_SIZE,MAX_MSGS)

#define EXIT_SUCCESS 0
#define EXIT_FAILURE -1

int myqueue_create(void)
{
 void *msg_queue;
 message_queue_t *msg_queue_struct;

 /* allocate memory for message queue itself */

 msg_queue = memory_allocate(system_partition,QUEUE_SIZE);
 if (msg_queue == 0)
 {
 return(EXIT_FAILURE);
 }

/* allocate memory for message struct which holds details of queue */

 msg_queue_struct = memory_allocate(system_partition,sizeof(
 message_queue_t));
 if (msg_queue_struct == 0)
 {
 memory_deallocate(system_partition,msg_queue);
 return(EXIT_FAILURE);
 }

 message_init_queue(msg_queue_struct,msg_queue,MSG_SIZE,MAX_MSGS);
 return(EXIT_SUCCESS);
}

ADCS 7143840G 205

16.3 Using message queues
16.3 Using message queues

Initially all the messages are on the free queue. The user allocates free message
buffers by calling either of the following functions, which can then be filled in with the
required data:

void* message_claim(void* message_claim_timeout(
message_queue_t* queue); message_queue_t* queue

const clock_t* time);

Both functions claim the next available message in the message queue.
message_claim_timeout enables a timeout to be specified but can only be used if
the message queue was created with a timeout capability. If the timeout is reached
before a message buffer is acquired then the function will return NULL. Two special
values may be specified for the timeout period:

• TIMEOUT_IMMEDIATE causes the message queue to be polled and the
function to return immediately. A message buffer may or may not be acquired
and the task will continue.

• TIMEOUT_INFINITY causes the function to behave the same as
message_claim, that is, the task will wait indefinitely for a message buffer to
become available.

When the message is ready it is sent by calling message_send(), at which point it is
added to the send queue.

Messages are removed from the send queue by a task calling either of the functions:

void* message_receive(void* message_receive_timeout(
message_queue_t* queue); message_queue_t* queue

const clock_t* time);

Both functions return the next available message. message_receive_timeout
provides a timeout facility which behaves in a similar manner to
message_claim_timeout in that it returns NULL if message does not become
available. If TIMEOUT_IMMEDIATE is specified the task will continue whether or not a
message is received and if TIMEOUT_INFINITY is specified the function will behave
as message_receive and wait indefinitely.

Finally when the receiving task has finished with the message buffer it should free it by
calling message_release(), which will add it to the free queue, where it is again
available for allocation.

If the size of the message is variable, the user should specify that the message is
sizeof(void*), and then use pointers to the messages as the arguments to the
message functions. The user is then responsible for allocating and freeing the real
messages using whatever techniques are appropriate.

Message queues may be deleted by calling message_delete_queue(). If the
message queue was created using message_create_queue or
message_create_queue_timeout then this will also free the memory allocated for
the message queue. If it was created using message_init_queue or
message_init_queue_timeout then the user is responsible for freeing any
memory which was allocated for the queue.
206 ADCS 7143840G

16 Message handling
16.4 Message header file: message.h

All the definitions related to messages are in the single header file, message.h, see
Table 16.1 and Table 16.2.

Function Description

message_claim Claim a message buffer

message_claim_timeout Claim a message buffer with timeout

message_create_queue Create a fixed size message queue

message_create_queue_timeout Create a fixed size message queue with timeout

message_delete_queue Delete a message queue

message_init_queue Initialize a fixed size message queue

message_init_queue_timeout Initialize a fixed size message queue with timeout

message_receive Receive the next available message from a queue

message_receive_timeout Receive the next available message from a queue
or timeout

message_release Release a message buffer

message_send Send a message to a queue

Table 16.1 Functions defined in message.h

Types Description

message_hdr_t A message buffer header

message_queue_t A message queue

Table 16.2 Types defined in message.h
ADCS 7143840G 207

16.4 Message header file: message.h
208 ADCS 7143840G

17 Real-time clocks
17 Real-time clocks
Time is very important for real-time systems. STLite/OS20 provides some basic
functions for manipulating quantities of time:

The ST20 traditionally regards time as circular. That is, the counters which represent
time can wrap round, with half the time period being in the future, and half of it in the
past. This behavior means that clock values should only be manipulated using time
functions. STLite/OS20 provides functions to:

• Add and subtract quantities of time.

• Determine if one time is after another.

• Return the current time.

17.1 ST20-C1 clock peripheral

The ST20-C1 microprocessor does not have its own clock so a clock peripheral is
required when using STLite/OS20.

A number of functions are required to support the clock functions provided by STLite/
OS20. STLite/OS20 provides the sources for a number of library functions to support
a clock peripheral running on an ST20-MC2 device. These functions may be copied
and modified to support other clock peripherals, see Chapter 21.

Note the STLite/OS20 kernel and interrupt controller must be initialized (as described
in Chapter 21) before the clock peripheral is initialized.

17.2 The ST20 timers on the ST20-C2

An ST20-C2 processor has two on-chip real-time 32-bit clocks, called timers, one with
low resolution and one with high resolution. The following details are relevant for some
ST20-C2 devices. You should check the figures given in the device datasheet as the
timing values vary with different processor revisions.

The low resolution clock can be used for timing periods up to approximately 38 hours,
with a resolution of 64 µsec. The low resolution clock is accessed by low priority tasks.
The high resolution clock can be used for timing periods up to approximately half an
hour with a resolution of 1 µsec. The high resolution clock is accessed by high priority
tasks. Longer periods can be timed with either timer by explicitly incrementing a
counter.

The clocks start at an undefined value and wrap round to 0 on the next tick after
hexadecimal FFFFFFFF, or, if treated as signed, to the most negative integer on the
next tick after the most positive integer. The tick rate of the clocks is derived from the
processor input ClockIn, and the speed and accuracy depends on the speed and
accuracy of the input clock.
ADCS 7143840G 209

17.3 Reading the current time
For ST20 variants with power-down capability, the clocks pause when the ST20 is in
power-down mode.

17.3 Reading the current time

The value of a timer (or clock) is read using time_now which returns the value of the
timer for the current priority.

#include <ostime.h>
clock_t time_now (void);

The time at which counting starts will be no later than the call to kernel_start.

17.4 Time arithmetic

Arithmetic on timer values should always be performed using special modulo
operators. These routines perform no overflow checking and so allow for timer values
‘wrapping round’ to the most negative integer on the next tick after the most positive
integer.

clock_t time_plus(const clock_t time1, const clock_t time2);
clock_t time_minus(const clock_t time1, const clock_t time2);
int time_after(const clock_t time1, const clock_t time2);

time_plus adds two timer values together and returns the sum allowing for any
wrap-around. For example, if a number of ticks is added to the current time using
time_plus then the result is the time after that many ticks.

time_after subtracts the second value from the first and returns the difference
allowing for any wrap-around. For example, if one time is subtracted from another
using time_after then the result will be the number of ticks between the two times.
If the result is positive then the first time is after the second. If the result is negative
then the first time is before the second.

time_after determines whether the first time is after the second time. One time is
considered to be after another if the one is not more than half a full timer cycle later
than the other. Half a full cycle is 231 ticks. The function returns the integer value 1 if
the first time is after the second, and otherwise it returns zero.

Some of these concepts are shown in Figure 17.1.

Low priority High priority

Interval between ticks 64 µsec 1 µsec

Ticks per second 15625 1000000

Approximate full timer cycle 76.35 hours 1.193 hours

Table 17.1 Summary of clock intervals for parts operating at 40Mhz
210 ADCS 7143840G

17 Real-time clocks
Figure 17.1 Time arithmetic

Time arithmetic is modulo 232. In applications running for a long time, some care must
be taken to ensure that times are close enough together for arithmetic to be
meaningful. For example, subtracting two times which are more than 231 ticks apart
will produce a result that must be interpreted with care. Very long intervals can be
tracked by counting a number of cycles of the clock.

Now

After Now

Before Now

80000000H7FFFFFFFH

x ticks

time_minus (Now, x)

time_plus (Now, y)0 FFFFFFFF

y ticks

Past

Future
ADCS 7143840G 211

17.5 Time header file: ostime.h
17.5 Time header file: ostime.h

All the definitions related to time are in the single header file, ostime.h, see
Table 17.2.

Table 17.3 lists the types defined by ostime.h.

Function Description

time_after Return whether one time is after another

time_minus Subtract two clock values

time_now Return the current time

time_plus Add two clock values

Table 17.2 Functions defined in ostime.h

Types Description

clock_t Number of processor clock ticks

Table 17.3 Types defined by ostime.h
212 ADCS 7143840G

18 Interrupts
18 Interrupts
Interrupts provide a way for external events to control the CPU. Normally, as soon as
an interrupt is asserted, the CPU will stop executing the current task, and start
executing the interrupt handler for that interrupt. In this way the program can be made
aware of external changes as soon as they occur. This switch is performed completely
in hardware, and so can be extremely rapid. Similarly when the interrupt handler has
completed, the CPU will resume execution of the interrupted task, which will be
unaware that it has been interrupted.

The interrupt handler which the CPU executes in response to the interrupt is called the
first level interrupt handler. This piece of code is supplied as part of STLite/OS20, and
simply sets up the environment so that a normal C function can be called. The STLite/
OS20 API allows a different user function to be associated with each interrupt, and
this will be called when the interrupt occurs. Each interrupt also has a parameter
associated with it, which will be passed into the function when it is called. This could
be used to allow the same code to be shared between different interrupt handlers.

18.1 Interrupt models

The interrupt hardware on different ST20 processors is similar, but there are a number
of variations.

The basic hardware unit is called the interrupt controller. This receives the interrupt
signals, and alerts the CPU when interrupts go active. Interrupts can be programmed
to be active when high, or low, or on a rising, falling or both edges of the signal, this is
called the trigger mode by STLite/OS20.

On some processors, interrupt sources are connected directly to the interrupt
controller, similar to the example shown in Figure 18.1.

Figure 18.1 Example: peripherals directly attached to the interrupt controller

Interrupt

Controller
CPU

Peripherals

Interrupt
Levels

3

1

4

2

5

ADCS 7143840G 213

18.1 Interrupt models
The relative priority of the interrupts is defined by the interrupt level, with numerically
higher interrupts interrupting numerically lower priority interrupts. Thus, an interrupt
level 3 will interrupt an interrupt level 2 which will interrupt an interrupt level 1. As the
connection between the peripheral and the interrupt controller is fixed when the device
is designed, so is the relative priority of the peripheral’s interrupts.

Some ST20 processors have a second piece of interrupt hardware, called the
interrupt level controller, see the example in Figure 18.2. This allows the relative
priority of different interrupt sources to be changed. Each peripheral generates an
interrupt number, which is fixed for the peripheral. This is fed into the interrupt level
controller, which selects for each interrupt number which interrupt level should be
generated. The interrupt level controller can be programmed to select the interrupt
level which each interrupt number generates, thus allowing the relative priorities to be
changed in software. As there are generally more interrupt numbers than interrupt
levels, it is possible to multiplex several interrupt numbers onto a single interrupt level.

An important distinction is that interrupt levels are prioritized, numerically higher
interrupt levels preempt lower ones, however there is no order between interrupt
numbers.

Figure 18.2 Example: peripherals mapped via an interrupt level controller

There are two types of interrupt controller for ST20 processors: IntC-1 and IntC-2.
Both interrupt controllers provide the same services but the IntC-2 has a register
layout that makes it capable of supporting more interrupt levels in the future, see
Table 18.1.

There are three types of interrupt level controller for ST20 processors: ILC-1, ILC-2
and ILC-3.

ILC-1 type interrupt level controllers support up to 32 interrupt numbers and the trigger
mode logic is part of the interrupt controller. All interrupt numbers attached to the
same level share the same trigger mode.

Interrupt

Controller
CPU

Peripherals

Interrupt

Numbers

Interrupt

Levels

1

4

7

3

5

10
11

0
1

7

2
6

Interrupt level
controller
214 ADCS 7143840G

18 Interrupts
ILC-2 type interrupt level controllers support up to 32 interrupt numbers but there is
support for programmable trigger modes and an enable and disable facility for all
interrupt numbers.

ILC-3 type interrupt level controllers currently supports up to 128 interrupt numbers,
each of which can have a programmable trigger mode and enable status.

STLite/OS20 functions provide support for all ST20 interrupt models.

18.2 Selecting the correct interrupt handling system

STLite/OS20 contains two libraries to support different interrupt controller
combinations:

Additionally STLite/OS20 contains four libraries to support different interrupt level
controller combinations:

In order for STLite/OS20 to operate properly the correct libraries must be linked in.
When using the st20cc -runtime os20 option, the linker needs to select the
appropriate IntC and ILC libraries. When using the chip command, the correct
libraries will always be selected. If the chip command is not used then IntC-1 and
ILC-1 libraries will be used to preserve backward compatibility.

In addition to providing support for the ILC-1, the ILC-1 library can support systems
without an interrupt level controller and systems that have an ILC-2. In both these
cases the support is not optimal. The ILC-None library uses much less RAM than its
ILC-1 counterpart. The ILC-2 library supports the extra features the ILC-2 provides.

Library Description Devices

os20intc1.lib

IntC-1 ST20GP6, ST20MC2, ST20TP3, ST20TP4,
STV3500, STV0396, STi5500, STi5505, STi5508,
STi5510, STi5512, STi5514, STi5516, STi5518,
STi5519, STi5580, ST20-C1 simulator, ST20-C2
simulator

os20intc2.lib IntC-2 ST20DC1, ST20DC2.

Table 18.1 Interrupt controller libraries

Library Description Devices

os20ilcnone.lib ILC-None ST20-C1 simulator, ST20-C2 simulator.

os20ilc1.lib
ILC-1 ST20DC1, ST20DC2, ST20GP6, ST20MC2,

ST20TP3, ST20TP4, STi5500, STi5505, STi5508,
STi5510, STi5512, STi5580

os20ilc2.lib ILC-2 STi5518, STi5519

os20ilc2b.lib ILC-2B STV0396

os20ilc3.lib ILC-3 STi5514, STi5516, STV3500

Table 18.2 Interrupt level controller libraries
ADCS 7143840G 215

18.2 Selecting the correct interrupt handling system
Note that the interrupt function definitions given in this chapter, list the interrupt level
controllers they can be used with. If a function is used which is not applicable to the
interrupt level controller on the device used then that function will not be provided and
the application will fail at link time. This can cause link errors if the interrupt calls are
used inappropriately. There are no warnings issued at compile time.

18.2.1 Compiling legacy code

The IntC-1 and IntC-2 libraries provide an identical set of function calls. There are no
problems compiling code for either interrupt controller.

On ILC-2 and ILC-3 interrupt level controllers new function calls have been introduced
to provide support for the newer features of these controllers. This may cause
problems when reusing existing code. In particular be aware that calls to
interrupt_enable and interrupt_disable should be replaced with calls to
interrupt_enable_number and interrupt_disable_number. Code that does
not do this will compile and link cleanly but interrupts will never be serviced because
they are not enabled. Table 18.3 describes the migration path between ILCs.

Note: that at reset the ILC-2 hardware is configured to be backwards compatible with
the ILC-1. The fastest way to bring old code up on these chips is to link in the ILC-1
library instead of the ILC-2 support. An STLite/OS20 configuration option is provided
to support this when st20cc -runtime os20 is used. See the chapter “Advanced
configuration of STLite/OS20” in the "ST20 Embedded Toolset Reference Manual".

ILC library Legacy code Recommended replacement

ILC-1 interrupt_enable
(INTERRUPT_GLOBAL_ENABLE)

interrupt_enable_global() †

interrupt_disable
(INTERRUPT_GLOBAL_DISABLE)

interrupt_disable_global() †

interrupt_pending_number interrupt_test_number †

ILC-2 All changes recommended for ILC-1 plus:

interrupt_enable interrupt_enable_number ‡

(May require multiple calls.)

interrupt_disable interrupt_disable_number ‡

(May require multiple calls.)

ILC-3 All changes recommended for ILC-2 plus:

interrupt_pending_number interrupt_test_number ‡

† This change is optional and will make code easier to port in the future.

‡ This change is mandatory on the ILC-3 and the default ILC-2 library. See also the Note below.

Table 18.3 Migration path for ILCs
216 ADCS 7143840G

18 Interrupts
18.2.2 Linking legacy code

The only method of linking that is recommended is to use the command st20cc
-runtime os20 in conjunction with the application using the chip command. New
programs should all follow this methodology.

Linking STLite/OS20 applications using st20cc -Tos20.cfg is not recommended.
For back compatibility, if it is used, the IntC-1 and ILC-1 support libraries are linked in.
Do not write new code using this option.

Linking os20.lib directly is also no longer recommended. os20.lib does not
contain any of the interrupt functions. To link legacy code os20.lib should be
followed by the correct combination of interrupt controller and interrupt level controller
libraries (see Table 18.1 and Table 18.2 above). Do not write new code using this
option.

18.3 Initializing the interrupt handling support system

Before any interrupt handling routines are written the interrupt hardware needs to be
configured and initialized in order that STLite/OS20 knows which hardware model is
being targeted.

Both the interrupt controller and interrupt level controller have a number of
configuration registers which must be correctly programmed before the peripheral can
assert an interrupt signal. This also varies for each device and typically will include
setting the Mask register to enable/disable individual interrupts (see section 18.6) and
the TriggerMode register, see below.

The interrupt_init_controller function enables you to specify how the
interrupt controller and interrupt level controller (if present) are configured.

#include <interrup.h>
void interrupt_init_controller(
void* interrupt_controller,
int interrupt_levels,
void* level_controller,
int interrupt_numbers,
int input_offset);

The base address and number of inputs supported by the interrupt controller and (if
applicable) the interrupt level controller, on the target ST20 device must be specified.
These details are device specific and can be obtained from the device datasheet.

Normally if st20cc -runtime os20 is used when linking, then this will be performed
automatically before the user’s application starts to run.

Next each interrupt level must be initialized. The interrupt_init() function is
used to initialize a single interrupt level in the interrupt controller:

#include <interrup.h>
int interrupt_init(
int interrupt,
void* stack_base,
size_t stack_size,
interrupt_trigger_mode_t trigger_mode,
interrupt_flags_t flags);
ADCS 7143840G 217

18.4 Attaching an interrupt handler in STLite/OS20
This function enables an area of stack to be defined and also specifies the trigger
mode associated with an interrupt level, that is, whether the interrupt is active when
the signal is high, or low, or on a rising, falling or both edges of the signal. The stack is
used to execute all interrupt handlers attached at that level so must be large enough to
accommodate the largest interrupt handler.

18.3.1 Calculating stack size

The area of stack must be large enough for each interrupt handler to execute within. It
must accommodate all the local variables declared within a handler and must take
account of any further function calls that the handler may make. Note: the following:

As a general rule an interrupt handler uses the following workspace:

• Eight words of save state.

• Five words for internal pointers, for ILC-None or ILC-1 interrupt libraries, seven
words for ILC-2 and eight words for ILC-3.

• Space for the user’s initial stack frame (four words on an ST20-C2, three
words on an ST20-C1).

• Then recursively:

• Space for local variables declared in the function, (add up the number
of words).

• Space for calls to extra functions. For a library function allow 150 words
for worst case.

For details of data representation, see the “Implementation Details” chapter of the
"ST20 Embedded Toolset Reference Manual".

18.4 Attaching an interrupt handler in STLite/OS20

An interrupt handler is attached to an interrupt, using the interrupt_install()
function:

#include <interrup.h>
int interrupt_install (

int Number,
int Level,
void (*Handler)(void* Param),
void* Param);

Once the interrupt handler is attached the interrupt should be enabled by calling
interrupt_enable or interrupt_enable_number as described in section 18.6.

The function interrupt_install_sl enables an interrupt to be installed for use
with relocatable code units. The chapter “Building and running relocatable code” in
the "ST20 Embedded Toolset Reference Manual" provides details of using STLite/
OS20 with relocatable code units.
218 ADCS 7143840G

18 Interrupts
18.4.1 Attaching interrupt handlers directly to peripherals

If there is no interrupt level controller on the ST20, then only one handler can be
attached to each interrupt level (and the interrupt number specified to the
interrupt_install function must be specified as -1). interrupt_install will
then associate the specified interrupt handler with a particular interrupt level.

Example

#include <interrup.h>
int interrupt_stack[500];
void interrupt_handler(void* param);

int intrpt_stack[500];
void intrpt_handler(void* param);

interrupt_init(4, interrupt_stack, sizeof(interrupt_stack),
interrupt_trigger_mode_rising, 0);
interrupt_install(-1, 4, interrupt_handler, NULL);

interrupt_init(2, intrpt_stack, sizeof(intrpt_stack),
interrupt_trigger_mode_low_level, 0);
interrupt_install(-1, 2, intrpt_handler, NULL);
interrupt_enable(2);
interrupt_enable(4);

interrupt_enable_global();

18.4.2 Attaching interrupt handlers using an interrupt level controller

On devices which have an interrupt level controller, then multiple handlers can be
attached to each level, one for each interrupt number. The act of attaching the
interrupt handler at a level will result in the interrupt controller being programmed to
generate the chosen interrupt level. When an interrupt occurs at an interrupt level
which has multiple interrupt numbers attached, STLite/OS20 will arrange to call all the
appropriate handlers for interrupts which are pending. To do this it will loop, checking
for pending interrupts at the current level, until there are none outstanding. When
multiple interrupt numbers are pending, the numerically highest will be called first.

Example:

#include <interrup.h>
int interrupt_stack[500];
void interrupt_handler(void* param);
void intrpt_handler(void* param);

interrupt_init(4, interrupt_stack, sizeof(interrupt_stack),
interrupt_trigger_mode_rising, 0);
interrupt_install(10, 4, interrupt_handler, NULL);
interrupt_install(3, 4, intrpt_handler, NULL);
/* for ILC-2 or ILC-3 type interrupt level controllers
* interrupt_enable(4) would be replaced by
* interrupt_enable_number(10)
* interrupt_enable_number(3)
*/

interrupt_enable(4);
interrupt_enable_global();
ADCS 7143840G 219

18.5 Initializing the peripheral device
18.4.3 Routing interrupts to external pins

ILC-3 supports the function of routing interrupts to external pins (called interrupt
outputs), where additional hardware can handle the interrupt. Typically this would be
used for multi-CPU systems. To set up this mode of operation, interrupt_install
is used, and the interrupt level is specified as: (-1 minus the number of the interrupt
output). For example:

 /* Direct interrupt number 4 to external interrupt output 2 */
 interrupt_install(4, -3, NULL, NULL);

18.4.4 Efficient interrupt layouts

STLite/OS20 does not install the interrupt handler supplied to interrupt_install
as the first level handler. Instead it installs its own optimized interrupt handlers to
determine which interrupt number caused that interrupt level to be raised and then
sets up the workspace to make C calls. STLite/OS20 picks the best code it can to
minimize interrupt latency. Carefully laying out interrupts can assist this.

The most efficient case is when a single interrupt number is attached to an interrupt
level, there is little work to be done and every address can be precalculated by
interrupt_install. Devices that require absolute minimum latency should be
attached like this.

For the ILC-1 and ILC-2 there are no further optimizations that can be made.

ILC-3 has more than 32 interrupt numbers. The ST20 is a 32-bit processor and
therefore ILC-3 registers cross the word boundary of the machine. When two interrupt
numbers attached to the same level are spread across more than one word the work
required to determine the source of the interrupt increases. Thus bunching interrupt
numbers between word boundaries will minimize interrupt latency.

Example:

/* good layout (for ILC-3) */
interrupt_install(1, 1, intrpt_handler1, NULL);
interrupt_install(31, 1, intrpt_handler2, NULL);

/* poor layout (crosses word boundary) */
interrupt_install(3, 2, intrpt_handler3, NULL);
interrupt_install(33, 2, intrpt_handler4, NULL);

18.5 Initializing the peripheral device

Each peripheral device has its own interrupt control register(s) which must be
programmed in order for the peripheral to assert an interrupt signal. This is device
dependent and so will vary between devices, but will usually involve specifying which
events should cause an interrupt to be raised. The example in section 18.7 shows a
setup for an Asynchronous Serial Controller (ASC). It is important that these device
registers are set up after the interrupt controller and interrupt level controller. (Likewise
when deleting interrupts it is important that the peripheral device interrupt control
register(s) are reprogrammed first, see section 18.15).
220 ADCS 7143840G

18 Interrupts
18.6 Enabling and disabling interrupts

The following two functions can be used to set or clear the global enables bit
INTERRUPT_GLOBAL_ENABLE in the interrupt controller’s Set_Mask register:

#include <interrup.h>
void interrupt_enable_global();
void interrupt_disable_global();

When the global enables bit is set then any enabled interrupt can be asserted. When
the global enables bit is not set then no interrupts can be asserted regardless of
whether they are individually enabled. These two functions apply to all interrupt
controllers.

18.6.1 Enabling and disabling interrupts without an ILC or with ILC-1

The following two functions take an interrupt level and set or clear the corresponding
bit in the interrupt controller Set_Mask register:

#include <interrup.h>
int interrupt_enable (int Level);
int interrupt_disable (int Level);

This can be used to enable or disable the associated interrupt level.

Although the global enables bit can be set or cleared by these functions (as
INTERRUPT_GLOBAL_ENABLE) this use is no longer recommended. These functions
return -1 if an illegal interrupt level is passed in.

Although both functions work on all existing ST20 processors they are not guaranteed
to work for future processors with ILC-2 or ILC-3 interrupt level controllers. Thus their
use is only recommended for use on chips with no interrupt level controller or with
ILC-1.

The following two functions are similar to those above but take a mask which contains
bits to be set or cleared in the interrupt controller Set_Mask register depending on the
operation being performed.

#include <interrup.h>
void interrupt_enable_mask (int Mask);
void interrupt_disable_mask (int Mask);

Like the previous functions the global enables bit can be set or cleared using the mask
functions (as 1 << INTERRUPT_GLOBAL_ENABLE) and again it is no longer
recommended. Similarly these functions are only recommended for use on chips with
no interrupt level controller or with ILC-1.

18.6.2 Enabling and disabling interrupts with ILC-2 or ILC-3

The following two functions apply only to ILC-2 or ILC-3 interrupt level controllers and
are used to enable and disable interrupt numbers.

#include <interrup.h>
int interrupt_enable_number (int Number);
int interrupt_disable_number (int Number);

These functions allow specific interrupt numbers to be enabled and disabled
independently by writing to the interrupt level controllers Enable registers.
ADCS 7143840G 221

18.7 Example: setting an interrupt for an ASC
18.7 Example: setting an interrupt for an ASC

This example shows how an interrupt could be set for an Asynchronous Serial
Controller on an STi5500 device, this device has an ILC-1 type interrupt level
controller. The example demonstrates the steps described in the previous sections to:

• Initialize the interrupt controller, see section 18.3.

• Attach an interrupt handler, see section 18.4.

• Program the peripheral device registers, see section 18.5.

• Enable an interrupt, see section 18.6.

#define INTERRUPT_NUMBERS 18
#define INTERRUPT_INPUT_OFFSET 18
#define INTERRUPT_CONTROLLER 0x20000000
#define INTERRUPT_LEVEL_CONTROLLER 0x20011000
#define ASC0_INTERRUPT_NUMBER 9
#define ASC_INTERRUPT_LEVEL 5

typedef struct {
 int asc_BaudRate;
 int asc_TxBuffer;
 int asc_RxBuffer;
 int asc_Control;
 int asc_IntEnables;
 int asc_Status;
} asc_t;

volatile asc_t* asc0 = (asc_t*)0x20003000;

#define ASC_MODE_8D 0x01
#define ASC_STOP_1_0 0x08
#define ASC_RUN 0x80
#define ASC_RXEN 0x100

#define ASC_BAUD_9600 (40000000 / (16*9600))

#define ASC_RX_BUF_FULL 1

interrupt_init_controller((void*)INTERRUPT_CONTROLLER, 8,
 (void*)INTERRUPT_LEVEL_CONTROLLER,
 INTERRUPT_NUMBERS, INTERRUPT_INPUT_OFFSET);

interrupt_init(ASC_INTERRUPT_LEVEL, ser_stack, sizeof(ser_stack),
 interrupt_trigger_mode_high_level, 0);

interrupt_enable_global();

if (interrupt_install(ASC0_INTERRUPT_NUMBER, ASC_INTERRUPT_LEVEL,
 ser_handler, NULL) == 0) {
 asc->asc_Control = ASC_MODE_8D | ASC_STOP_1_0 | ASC_RUN | ASC_RXEN;
 asc->asc_BaudRate = ASC_BASE_9600;
 asc->asc_intEnables = ASC_RX_BUF_FUL;
 interrupt_enable(ASC_INTERRUPT_LEVEL);
}

222 ADCS 7143840G

18 Interrupts
If this example were transferred to a device with an ILC-2 or ILC-3 interrupt level
controller the call to interrupt_enable (last line) would become:-

interrupt_enable_number(ASC0_INTERRUPT_NUMBER);

In section 18.15 an example is given of how to remove this interrupt.

18.8 Locking out interrupts

All interrupts to the CPU can be globally disabled or re-enabled using the following two
commands:

#include <interrupt.h>
void interrupt_lock (void);
void interrupt_unlock (void);

These functions should always be called as a pair and will prevent any interrupts from
the interrupt controller having any effect on the currently executing task while the lock
is in place. These functions can be used to create a critical region in which the task
cannot be preempted by any other task or interrupt. Calls to interrupt_lock() can
be nested, and the lock will not be released until an equal number of calls to
interrupt_unlock() have been made.

Note: that locking out interrupts is slightly different from disabling an interrupt.
Interrupts are locked by changing the ST20’s Enables register, which causes the CPU
to ignore the interrupt controller (and any other external device), while disabling an
interrupt modifies the interrupt controller’s Mask register, and so can be used much
more selectively. On the ST20-C2 locking interrupts also prevents high priority
processes from interrupting and disable channels and timers.

A task must not deschedule with interrupts locked, as this can cause the scheduler to
fail. When interrupts are locked calling any function that may not be called by an
interrupt service routine is illegal.

18.9 Raising interrupts

The following functions can be used to force an interrupt to occur:

#include “interrup.h”
int interrupt_raise (int Level);
int interrupt_raise_number (int Number);

The first function will raise the specified interrupt level and should be used when
peripherals are attached directly to the interrupt controller. The second function will
raise the specified interrupt number and is for use when an interrupt level controller is
present.

Note that neither function should be used to raise level sensitive interrupts. They will
be immediately cleared by the interrupt hardware.
ADCS 7143840G 223

18.10 Retrieving details of pending interrupts
18.10 Retrieving details of pending interrupts

The following functions will return details of pending interrupts:

#include <interrupt.h>
int interrupt_pending (void);
int interrupt_pending_number (void);
int interrupt_test_number (int Number);

The first function returns which interrupt levels are pending, that is, those interrupts
which have been set by a peripheral, but their interrupt handlers have not yet run. This
function should be used when peripherals are attached directly to the interrupt
controller. The second function returns which interrupt numbers are pending, that is,
all the interrupts which are currently set by peripherals. The ST20 C compiler treats
int as a 32-bit quantity, thus interrupt_pending_number can not be used on
ILC-3 type interrupt level controllers because they have too large a quantity of
interrupt numbers.

The final function can be used to test if any one specific interrupt number is pending.
This function applies to any interrupt level controller because it does not return a
mask.

18.11 Clearing pending interrupts

The following functions can be used to prevent a raised interrupt signal from causing
an interrupt event to occur:

#include “interrupt.h”
int interrupt_clear (int level);
int interrupt_clear_number (int Number);

The first function clears the specified pending interrupt level and should be used when
peripherals are attached directly to the interrupt controller. The second function will
clear the specified interrupt number and is for use when an interrupt level controller is
present. If the specified number is the only pending interrupt number attached to the
interrupt level then the pending interrupt level is also cleared.

On ILC-1 only interrupts asserted in software by interrupt_raise_number can be
cleared in this way.

18.12 Changing trigger modes

This section applies only to ST20 variants with ILC-2 or ILC-3. On these devices the
following function can be used to change a specific interrupt number’s trigger mode.

#include <interrup.h>
int interrupt_trigger_mode_number(
int Number,
interrupt_trigger_mode_t trigger_mode);

When interrupt_init is called the user supplies a default trigger mode for all
interrupt numbers attached to that interrupt level. When an interrupt is installed then
the trigger mode will be set to this default. interrupt_trigger_mode_number can
be used to change away from the default behavior set by interrupt_init.
224 ADCS 7143840G

18 Interrupts
18.13 Low power modes and interrupts

This section applies only to ST20 variants with ILC-2 or ILC-3. On these devices the
following function can be used to configure which external interrupts can wake the
ST20 from low power mode.

#include <interrup.h>
int interrupt_wakeup_number(
int Number,
interrupt_trigger_mode_t trigger_mode);

Once the ST20 has been placed in low power mode the device can be woken either
when its real-time wake-up alarm triggers or when an external interrupt request is
asserted. The external request is active high or active low, it cannot be edge triggered.

Note that on some ST20 variants not all external interrupt pins can be used to wake
the device from low power mode, exact details can be found from the appropriate
device datasheet.

18.14 Obtaining information about interrupts

The following two functions can be used to obtain interrupt state information:

#include <interrup.h>
int interrupt_status(int Level, interrupt_status_t* Status,
interrupt_status_flags_t flags);

int interrupt_status_number(
int Number,
interrupt_status_number_t* status,
interrupt_status_number_flags_t flags);

The first function provides information about the state of an interrupt level. This
includes the number of interrupt handlers attached to this level and the current state of
the interrupt stack, specifically the stack’s base, size and peak usage.

The second function provides information about the state of an interrupt number. For
standard STLite/OS20 kernels this includes only the interrupt level to which this
interrupt number is attached.

On the debug kernel interrupt_status and interrupt_status_number
provide extra timing information. This extra data is not available on the deployment
kernel because it would decrease interrupt performance. See the chapter “Advanced
configuration of STLite/OS20” in the "ST20 Embedded Toolset Reference Manual" for
further details.
ADCS 7143840G 225

18.15 Uninstalling interrupt handlers and deleting interrupts
18.15 Uninstalling interrupt handlers and deleting interrupts

The following function can be used to uninstall an interrupt handler:

#include <interrup.h>
int interrupt_uninstall(
int Number,
int Level);

Before interrupt_uninstall is used, the interrupt must be disabled on the actual
peripheral device by programming the peripheral’s interrupt control register(s) and
then using one of the functions:

interrupt_disable
interrupt_disable_mask
interrupt_disable_number

A replacement trap handler may then be swapped in using interrupt_install or
the interrupt may be deleted, using interrupt_delete if it is no longer required. If a
replacement trap handler is installed the interrupt must be re-enabled on the
peripheral device by programming its interrupt control register(s).

The following function will delete an initialized interrupt, allowing the interrupt level’s
stack to be freed:

#include <interrup.h>
int interrupt_delete(int Level);

The interrupt must be disabled by programming the peripheral’s interrupt control
register(s) and uninstalled by calling interrupt_uninstall before
interrupt_delete is called.

Example

This example demonstrates how to delete the interrupt set up by the example given in
section 18.7.

asc->asc_intEnables = 0;
interrupt_disable(ASC_INTERRUPT_LEVEL);
interrupt_uninstall(ASC0_INTERRUPT_NUMBER, ASC_INTERRUPT_LEVEL);
interrupt_delete(ASC_INTERRUPT_LEVEL);

18.16 Restrictions on interrupt handlers

Certain restrictions must be kept in mind when using interrupts on the ST20. These
restrictions, and their ramifications for C are as follows:

• Descheduling and timeslicing are automatically disabled for interrupt handlers.

Channel communications (on the ST20-C2) and any other descheduling
operation are not permitted.

• Interrupt handlers must not use 2D block move instructions unless the existing
block move state is explicitly saved and restored by the handler.

• Interrupt handlers must not cause traps.

Care should be taken here to make sure that instruction sequences are not
generated which could cause errors and therefore a trap to be taken. It is
suggested that in the simplest case an interrupt handler should disable all
traps.
226 ADCS 7143840G

18 Interrupts
18.17 Interrupt header file: interrup.h

All the definitions related to interrupts are in the single header file, interrup.h, see
Table 18.4.

Function Description ILC library

interrupt_clear Clear a pending interrupt. ILC-None, ILC-1

interrupt_clear_number Clear a pending interrupt number. ILC-1, ILC-2, ILC-3

interrupt_delete Delete an interrupt level. ILC-None, ILC-1,
ILC-2, ILC-3

interrupt_disable Disable an interrupt level. ILC-None, ILC-1

interrupt_diable_global Global disable interrupts. ILC-None, ILC-1,
ILC-2, ILC-3

interrupt_disable_mask Disable one or more interrupts. ILC-None, ILC-1

interrupt_disable_number Disable an interrupt number. ILC-2, ILC-3

interrupt_enable Enable an interrupt level. ILC-None, ILC-1

interrupt_enable_global Globally enable interrupts. ILC-None, ILC-1,
ILC-2, ILC-3

interrupt_enable_mask Enable one or more interrupts. ILC-None, ILC-1

interrupt_enable_number Enable an interrupt number. ILC-2, ILC-3

interrupt_init Initialize an interrupt level. ILC-None, ILC-1,
ILC-2, ILC-3

interrupt_init_controller Initialize the interrupt controller. ILC-None, ILC-1,
ILC-2, ILC-3

interrupt_install Install an interrupt handler. ILC-None, ILC-1,
ILC-2, ILC-3

interrupt_install_sl Install an interrupt handler and specify
a static link.

ILC-None, ILC-1,
ILC-2, ILC-3

interrupt_lock Lock all interrupts. ILC-None, ILC-1,
ILC-2, ILC-3

interrupt_pending Return pending interrupt levels. ILC-None, ILC-1

interrupt_pending_number Return pending interrupt numbers. ILC-None, ILC-1,
ILC-2

interrupt_raise Raise an interrupt level. ILC-None, ILC-1

interrupt_raise_number Raise an interrupt number. ILC-1, ILC-2, ILC-3

interrupt_status Report the status of an interrupt level. ILC-None, ILC-1,
ILC-2, ILC-3

interrupt_status_number Report the status of an interrupt
number.

ILC-1, ILC-2, ILC-3

interrupt_test_number Test whether an interrupt number is
pending.

ILC-1, ILC-2, ILC-3

Table 18.4 Functions defined in interrup.h
ADCS 7143840G 227

18.17 Interrupt header file: interrup.h
The full ILC library names are given in Table 18.2.

Types and macros defined to support interrupts are listed in Table 18.5 and
Table 18.6.

interrupt_trigger_mode_number Change the trigger mode of an interrupt
number.

ILC-2, ILC-3

interrupt_uninstall Uninstall an interrupt handler. ILC-None, ILC-1,
ILC-2, ILC-3

interrupt_unlock Unlock all interrupts. ILC-None, ILC-1,
ILC-2, ILC-3

interrupt_wakeup_number Set wakeup status of an interrupt
number.

ILC-2, ILC-3

Types Description

interrupt_flags_t Additional flags for interrupt_init.

interrupt_status_t Structure describing the status of an interrupt level.

interrupt_status_flags_t Additional flags for interrupt_status.

interrupt_status_number_t
Structure describing the status of an interrupt
number.

interrupt_status_number_flags_t
Additional flags for
interrupt_status_number.

interrupt_trigger_mode_t
Interrupt trigger modes (used in
interrupt_init).

Table 18.5 Types defined in interrup.h

Macro Description

INTERRUPT_GLOBAL_ENABLE Global interrupt enables bit number

Table 18.6 Macros defined in interrup.h

Function Description ILC library

Table 18.4 Functions defined in interrup.h
228 ADCS 7143840G

19 Device information
19 Device information
Two functions are provided to return information about the ST20 family of devices.
device_id returns the ID of the current device. device_name takes a device ID as
input and returns a brief description of the device.

Device Identifiers are defined by the IEEE1149.1 (JTAG) Boundary-Scan Standard.
This is a 32 bit number composed of a number of fields. STLite/OS20 defines a type to
describe this, device_id_t. This is a union with three fields:

• id which allows the code to be manipulated as a 32 bit quantity.

• jtag which views the value as defined by the JTAG standard.

• st which views the value as used by STMicroelectronics. This divides the
device code into a family and device code.

jtag and st are structs of bit-fields, which allows the elements to be accessed
symbolically.

The identification code is made up as in Table 19.1.

19.1 Device ID header file: device.h

All the definitions related to device identification are in the single header file,
device.h, see Table 19.2.

Table 19.2 Functions defined in device.h

Table 19.3 Types defined in device.h

bits jtag st meaning

31-28 revision revision Mask revision

27-22 device_code family 2010 – STAR family

21-12 device_code Device code

11-1 manufacturer manufacturer 3210 – STMicroelectronics

0 JTAG_bit JTAG_bit 1 – fixed by JTAG

Table 19.1 Composition of identification code

Function Description

device_id Returns the ID of the current device.

device_name Returns the name of the current device.

Types Description

device_id_t Device ID.
ADCS 7143840G 229

19.1 Device ID header file: device.h
230 ADCS 7143840G

20 Caches
20 Caches
Cache provides a way to reduce the time taken for the CPU to access memory and so
can greatly increase system performance.

20.1 Introduction

All ST20 processors that support cache use similar hardware and the operation of the
caches is the same, however, the blocks of memory that can be cached vary between
ST20 devices, see the appropriate device datasheets for details.

The ST20 cache system provides a read-only instruction cache and a write-back data
cache.

There is a risk when using cache that the cache can become incoherent with main
memory, meaning that the contents of the cache conflicts with the contents of main
memory. For example, devices that perform direct memory access (DMA) modify the
main memory without updating the cache, leaving its contents invalid. For this reason
enabling the data cache for blocks of memory accessed by the DMA engine is not
recommended. Note that on an ST20-C2 core, device access instructions (generated
with #pragma ST_device) bypass the cache and can be used to solve some cache
coherency issues.

20.1.1 Data caches with internal SRAM

Some ST20 devices have a data cache which must be reserved by the linker in order
to prevent it from being corrupted by the application. This is described in section 5.2.

20.2 Initializing the cache support system

Before any call is made to the cache handling routines the cache control hardware
needs to be configured and initialized in order that STLite/OS20 knows which
hardware model is being targeted.

If the st20cc -runtime os20 command is used when linking, then the cache
controller will be configured automatically before the user’s application starts to run.

If st20cc -runtime os20 is not used the cache_init_controller function
enables you to specify how the cache control hardware is configured:

#include <cache.h>
void cache_init_controller(
void* cache_controller,
cache_map_data_t cache_map);

Both the cache controller address and the cache map are device specific. The cache
controller address can be obtained from the device datasheet. The correct cache map
can be found in the cache_init_controller function definition, see “Part 4 -
STLite/OS20 functions” in the "ST20 Embedded Toolset Reference Manual".
ADCS 7143840G 231

20.3 Configuring the caches
Note: some ST20 devices have two base addresses one for the instruction cache and
one for the data cache, for example the STi5514 and the STV0396. In this case the
base address that should be passed to the cache_init_controller function is
the numerically smaller of these addresses.

20.3 Configuring the caches

On any ST20 device with a data cache the cache_config_data function is used to
configure the data cache to treat certain blocks of memory as cacheable or non-
cacheable. Note that by default all configurable blocks are set to non-cacheable
therefore for all devices with a data cache the use of the cache_config_data
function is vital to achieve maximum performance.

#include <cache.h>
int cache_config_data(
 void* start_address,
 void* end_address,
 cache_config_flags_t flags);

There are two types of ST20 instruction cache, configurable and fixed. A fixed
instruction cache can only be enabled or disabled, it cannot be selectively applied to
specific blocks of memory.

On devices which have a configurable instruction cache the function
cache_config_instruction is used to enable or disable specific blocks of
memory. A configurable instruction cache, like the data cache, will by default treat all
configurable blocks as non-cacheable. For devices with a configurable instruction
cache the use of cache_config_instruction is necessary to achieve maximum
performance.

#include <cache.h>
int cache_config_instruction(
 void* start_address,
 void* end_address,
 cache_config_flags_t flags);

20.4 Enabling and disabling the caches

The caches are enabled using the following two functions:

#include <cache.h>
int cache_enable_data();
int cache_enable_instruction();

The first function invalidates the data cache (see section 20.7), before writing to the
EnableDCache register thereby enabling the data cache. The second function is
similar but operates on the EnableICache register.

If the target application requires the caches to be disabled at some later point the
following two functions can be used.

#include <cache.h>
int cache_disable_data();
int cache_disble_instruction();

Disabling the cache can potentially take a long time to complete, during this time the
processor will be unable to handle interrupts or perform any other time critical task.
232 ADCS 7143840G

20 Caches
20.5 Locking the cache configuration

The cache can be locked using the following function:

int cache_lock();

It is recommended that all cache configuration is performed at boot time and then
never modified. To prevent accidental modification ST20 devices can lock the cache
configuration preventing it from being changed until the hardware is reset.

20.6 Example: setting up the caches

This example shows how the caches could be set up for STi5510 devices. This
example demonstrates the steps described in the previous sections to:

• Initialize and configure the cache hardware, see section 20.2.

• Enable the data and instruction caches, see section 20.4.

• Lock the cache configuration, see section 20.5.

This example uses the header file <chip/STi5510addr.h> supplied in the ST20
Embedded Toolset’s standard configuration files directory: $ST20ROOT/include.
The header file contains the base address of the cache controller, defined as
CacheControlAddr.

#include <chip/STi5510addr.h>
#include <cache.h>

cache_init_controller((void*) CacheControlAddr, cache_map_sti5510);

cache_enable_instruction();

/* cache all possible memory */
cache_config_data(0x80000000, 0x7fffffff, cache_config_enable);

/* except region required for DMA */
cache_config_data(0x40010000, 0x4001ffff, cache_config_disable);

cache_enable_data();
cache_lock();

20.7 Flushing and invalidating caches

When the cache is enabled any data written to main memory will be stored in the
cache and marked as dirty so that at some point in the future it can be properly stored
to main memory. A cache flush causes all dirty cache lines to be written immediately
to main memory.

Invalidating a cache causes the cache to forget its entire contents thus forcing it to
reload all data from main memory.

Note: that on ST20 devices, flushing the cache will also cause it to be invalidated.
After a cache flush all data will be reloaded from main memory.
ADCS 7143840G 233

20.8 Cache header file: cache.h
In some applications it is useful to force a cache flush or invalidate, this can be
achieved using the following three functions:

int cache_flush_data(void* reserved1, void* reserved2);
int cache_invalidate_data(void* reserved1, void* reserved2);
int cache_invalidate_instruction(void* reserved1, void* reserved2);

Each of these functions takes two arguments that are reserved for future use by
STLite/OS20, users must supply NULL as each argument.

20.7.1 Relocatable code units

When caches are enabled extra care must be taken when handling relocatable code
units. The advise given in the chapter “Building and running relocatable code” in the
"ST20 Embedded Toolset Reference Manual" should be followed to ensure cache
coherency is maintained.

20.8 Cache header file: cache.h

All the definitions related to the caches are in the single header file, cache.h, see
Table 20.1.

The types defined to support the cache API are listed in Table 20.2.

Function Description

cache_config_data Configure the data cache.

cache_config_instruction Configure the instruction cache.

cache_disable_data Disable the data cache.

cache_disable_instruction Disable the instruction cache.

cache_enable_data Enable the data cache.

cache_enable_instruction Enable the instruction cache.

cache_flush_data Flush the data cache.

cache_init_controller Initialize the cache controller.

cache_invalidate_data Invalidate the data cache.

cache_invalidate_instruction Invalidate the instruction cache.

cache_lock Lock the cache configuration.

cache_status Report the cache status

Table 20.1 Functions defined in cache.h

Types Description

cache_config_flags_t Additional flags for cache_config_data.

cache_map_data_t
Description of cacheable memory available on a particular ST20 variant
(used by cache_init_controller).

cache_status_t Structure describing the status of the cache.

Table 20.2 Types defined in cache.h
234 ADCS 7143840G

21 ST20-C1 specific features
21 ST20-C1 specific features
STLite/OS20 has many features, some of which depend on a timer peripheral being
present, for example, functions such as semaphore_wait_timeout and
time_now.

The ST20-C1 core does not have a built-in timer peripheral. In order, for the ST20-C1
version of STLite/OS20 to provide the full API, you will need to incorporate a timer
plug-in module into any applications built for the ST20-C1 cores. The plug-in module
is board specific, but the interface is generic enough to allow STLite/OS20 to take
advantage of any timer peripherals that are present.

STLite/OS20 can be used with or without the plug-in module, however, when
accessing timer related functions without a plug-in module present, a run-time error
occurs so take care when not using the plug-in module.

Internally STLite/OS20 uses a standardized low level timer API which accesses
functions provided by the plug-in module via function pointers, see Figure 21.1. This is
so that the application can be built with or without the plug-in module. Linkage
between STLite/OS20 and the plug-in module is performed at run-time as opposed to
compile-time so that the only change needed to the application is an additional call to
the plug-in module’s initialization function.

Figure 21.1 Plug-in timer model for the ST20-C1

STLite/OS20 API

Plug-in timer module

Programmable timer peripheral
ADCS 7143840G 235

21.1 ST20-C1 example plug-in timer module
The plug-in module must provide an initialization function which the application can
call. Upon calling the initialization function, the module will initialize the programmable
timer and pass a structure detailing all of the functions’ locations into STLite/OS20 via
a function called timer_initialize. This is a STLite/OS20 ST20-C1 specific
function call. At this stage the plug-in module is linked into the STLite/OS kernel.

The syntax of the timer API is consistent with the remainder of STLite/OS20. The
naming convention has an object oriented approach:

<class>_<type_of_operation>

Table 21.1 Internal STLite/OS20 Timer API

Before the plug-in module is initialized, the STLite/OS20 kernel must be initialized and
started by calling kernel_initialize and kernel_start, additionally the
interrupt controller must be initialized by calling interrupt_init_controller.

Finally note that because the timer module is outside of STLite/OS20 the number of
ticks per second is defined by the plug-in timer module. This has the advantage that
the ticks per second can be tailored for the specific application, a short tick when high
accuracy is required, a longer tick when long durations need to be timed. Note that
this means care must be taken when porting code to a different device as the number
of ticks per second is likely to change.

21.1 ST20-C1 example plug-in timer module

A plug-in module is provided as example code for the ST20MC2 and ST20DC1
evaluation boards. This can be found in the examples/os20/c1timer directory.
The readme file supplied with the example explains how to build and run the example.

This example contains two completely separate timer modules dc1timer.c and
mc2timer.c. These can each be used standalone if required (that is only one need
be linked to your application). However, the supplied example has a single timer
initialize function called c1_timer_initialize that uses device_id to determine
which timer module to use.

Function Description

timer_read Read the timer.

timer_set Set the timer.

timer_enable_int Enable the timer interrupt

timer_disable_int Disable the timer interrupt

timer_raise_int Raise a timer interrupt
236 ADCS 7143840G

21 ST20-C1 specific features
21.1.1 PWM peripheral

Both timer plug-in modules use the on-chip PWM peripheral to provide the timer
functionality. This peripheral is described here in sufficient detail to explain how the
example works.

The PWM peripheral has a programmable timer which you program to cause an
interrupt at a specified time.

The CaptureCount register is a 32-bit counter that is incremented regularly. The
Compare register is set by your application. When the value in the CaptureCount
register becomes equal to the value in the Compare register an interrupt is gener-
ated.

Table 21.2 provides a list of registers which are actively used by the plug-in module.

Control

The Control register controls the top level function of the PWM peripheral. In
particular it contains a Capture enable bit that causes the CaptureCount register to
start counting and a Capture prescale value which controls the rate at which the
CaptureCount register runs. By default, the prescale value is set to 0.

InterruptEnable

The InterruptEnable controls which events will cause an interrupt to be asserted. In
particular the register contains a bit which when set will cause an interrupt to be
asserted then the CaptureCount register becoming equal to the Compare register.

CaptureCount

The CaptureCount register is a 32-bit counter that is clocked by the system clock.
The counter can be prescaled by the Capture prescale value stored in the Control
register.

Compare

The Compare register contains the time which is compared against the
CaptureCount register. When these are equal the timer will request an interrupt
depending on the state of the InterruptEnable register.

Register Description

Control Used to initialize PWM peripheral.

InterruptEnable Enable and disable interrupts by this register.

CaptureCount 32-bit counter.

Compare Time at which an event should occur.

Table 21.2 PWM registers used by the plug-in module.
ADCS 7143840G 237

21.2 Plug-in timer module header file: c1timer.h
21.2 Plug-in timer module header file: c1timer.h

All the definitions related to ST20-C1 plug-in timer modules are defined in a single
header file, c1timer.h, see Table 21.3.

Function Description

timer_initialize Initialize the timer plug-in module

timer_interrupt Notify STLite/OS20 that the timer has expired.

Table 21.3 Functions defined in c1timer.h

Types Description

timer_api_t Set of function pointers to be used as a plug-in timer module.
238 ADCS 7143840G

22 ST20-C2 specific features
22 ST20-C2 specific features
Additional features:

• Channels

The ST20-C2 support a point-to-point unidirectional communications channel,
which can be used for communication between tasks on the same processor,
and with hardware peripherals on the ST20.

• High priority processes

High priority processes run outside of the normal STLite/OS20 scheduling
regime, using the ST20’s hardware scheduler. A high priority process is
created using the task_create or task_init functions and specifying the
task_flags_high_priority_process flag. High priority processes will
always pre-empt normal STLite/OS20 tasks (irrespective of the task’s priority),
and as this takes advantage of the ST20’s hardware scheduler, high priority
processes can respond faster than a normal STLite/OS20 task.

In general, high priority processes should be regarded as the equivalent of
interrupt handlers for those peripherals which have a channel style interface.

However, because high priority processes run outside of the STLite/OS20
scheduling regime, they only have very limited access to STLite/OS20 library
functions. In general they can only call functions which are implemented
directly in hardware, in particular this means they can only use channels and
FIFO based semaphores, not priority based semaphores or message queues.

• Two dimensional block move

A number of instructions are provided which allow two dimensional blocks or
memory to be moved efficiently. This is especially useful in graphical
applications.
ADCS 7143840G 239

22.1 Channels
22.1 Channels

STLite/OS20 supports the use of channels by all tasks (both normal, that is, low and
high priority).

Channels are a way of transferring data from one task to another, and they also
provide a way of synchronizing the actions of tasks. If one task needs to wait for
another to reach a particular state, then a channel is a suitable way of ensuring that
happens.

If one task is sending and one receiving on the same channel then whichever tries to
communicate first will wait until the other communicates. Then the data will be copied
from the memory of the sending task to the memory of the receiving task and both
tasks will then continue. If only one task attempts to communicate then it will wait
forever.

A channel communicates in one direction, so if two tasks need bidirectional
communication, then two channels are needed, one in each direction. Any data can
be passed down a channel, but the user must ensure that the tasks agree a protocol
in order to interpret the data correctly.

It is the responsibility of the programmer to ensure that:

• data sent by one task is received by another;

• there is never more than one task sending on one channel;

• there is never more than one task receiving on one channel;

• the amount of data sent and received are the same;

• the type of data sent and received are the same.

If any of these rules are broken then the effect is not defined.

Channels between tasks are created by using the data structure chan_t and
initializing it by calling a library function. Channel input and output functions are then
used to pass data. Separate functions exist for input and output and the two must be
paired for communication between two tasks to take place. The header file chan.h
declares the chan_t data type and channel library functions.

If one task has exclusive access to a particular resource and acts as a server for the
other tasks, then channels can also act as a queuing mechanism for the server to wait
for the next of several possible inputs and handle them in turn.

A channel used to communicate between two tasks on the same processor is known
as a ‘soft channel’. A channel used to communicate with a hardware peripheral is
known as a ‘hard channel’.

When the STLite/OS20 scheduler is enabled (by calling kernel_start), channel
communication will result in traps to the kernel, which will ensure that correct
scheduling semantics are maintained.
240 ADCS 7143840G

22 ST20-C2 specific features
22.1.1 Creating a channel

STLite/OS20 refers to channels using a chan_t structure. This needs to be initialized
before it can be used, by using one of the following functions:

chan_t *chan_create(void)
chan_t *chan_create_address(void *address)
chan_init(chan_t *chan);
void chan_init_address(chan_t *chan, void *address);

The _create versions allocate memory for the data structure from the system
partition and initialize the channel to their default state. chan_create creates a ‘soft’
channel, chan_create_address creates a ‘hard’ channel.

The _init versions also initialize a channel, but the allocation of memory for chan_t
is left to the user. chan_init initializes a ‘soft’ channel and chan_init_address
initializes a ‘hard’ channel:

For example:

#include <chan.h>
/* Initialize a soft channel */
chan_t soft_chan;
chan_init(&soft_chan);

/* Initialize a hard channel to link 0 input channel */
chan_t chan0;
chan_init_address(&chan0, (void*)0x80000010);

22.1.2 Communications over channels

Once a channel has been initialized, there are several functions available for
communications:

void chan_in(chan_t *chan, void* cp, int count);
void chan_out(chan_t *chan, const void* cp, int count);

int chan_in_int(chan_t *chan);
void chan_out_int(chan_t *chan, int data);

char chan_in_char(chan_t *chan);
void chan_out_char(chan_t *chan, char data);

These functions will transfer a block of data (chan_in and chan_out), an integer
(chan_in_int and chan_out_int) or a character (chan_in_char and
chan_out_char).

Each call of one these functions represents a single communication. The task will not
continue until the transfer is complete.

Care needs to be taken to ensure that data is only transferred in one direction across
the channel, and that the sending and receiving data is the same length, as this is not
checked for at run time.
ADCS 7143840G 241

22.1 Channels
For example, the following code will use channel my_chan to send a character
followed by an integer followed by a string:

#include <chan.h>
char ch1;
int n1;

chan_out_char (my_chan, ch1);
chan_out_int (my_chan, n1);
chan_out (my_chan, ”Hello”, 5);

To receive this data on channel my_chan, the following code could be used:

#include <chan.h>
char ch, buffer[5];
int n;

ch = chan_in_char (my_chan);
n = chan_in_int (my_chan);
chan_in (my_chan, buffer, 5);

22.1.3 Reading from several channels

There are many cases where a receiving task needs to listen to several channels and
wishes to detect which one has data ready first. The ST20-C2 micro-kernel provides a
mechanism to handle this situation called an alternative input. This is implemented in
STLite/OS20 by the following function:

int chan_alt(chan_t ** chanlist, int nchans,
const clock_t *timeout);

chan_alt takes as parameters an array of channel pointers, and a count of the
number of elements in the array. It returns the index of the selected channel, starting
at zero for the first channel. The selected channel may then be read, using the input
functions described above in section 22.1.2. Any channels that become ready and are
not read will continue to wait. In addition an optional timeout may be provided, which
allows chan_alt to be used in a polling mode, or wait until a specified time before
returning, whether a channel has become ready for reading or not. Timeouts for
channels are implemented using hardware and so do not increase the application’s
code size.

Normally chan_alt is used with the time-out value TIMEOUT_INFINITY, in which
case only one of the channels becoming ready (that is, one of the sending tasks that is
trying to send) will cause it to return. When one or more channels are ready then one
will be selected. If no channel becomes ready then the function will wait for ever. Note:
that the header file ostime.h must be included when using this function.
242 ADCS 7143840G

22 ST20-C2 specific features
To input from an array of channels, the returned index can be used as an index into
the channel array, for example:

#include <chan.h>
#include <ostime.h>
#define NUM_CHANS 5

chan_t *data_chan[NUM_CHANS];

int selected, x;

...

selected = chan_alt(data_chan, NUM_CHANS, TIMEOUT_INFINITY);
x = chan_in_int(data[selected]);
deal_with_data (x, selected);

chan_alt is implemented so that it does not poll while it is waiting, but is woken by
one of the input channels becoming ready. This means that the processor is free to
perform other processing while the task is waiting.

When it is necessary to poll channels, this can be performed by specifying a timeout
of TIMEOUT_IMMEDIATE. This will cause the function to perform a single poll of the
channels to identify whether any channel is ready. If no channel is ready then it returns
-1.

Polling channels is inefficient and should only be used when there is a significant
interval between polls, since otherwise the processor can be occupied entirely with
polling. Polling is usually only used when a task is performing some regular or ongoing
task and occasionally needs to poll one or more input channels for control signals or
feedback.

Finally, it is also possible to specify that chan_alt should only wait until a specified
time before returning, even if none of the specified channel has become ready for
input. If the list consists of only one channel then this becomes a time-out for a single
channel input. If no channel becomes ready before the clock reaches the given time,
then the function returns and the task continues execution.

When used in this way chan_alt returns on the occurrence of the earlier of either an
input becoming ready on any of the channels or the time. The time given is an
absolute time which is compared with the timer for the current priority.

The value -1 is returned if the time expires with no channel becoming ready. If a
channel becomes ready before the time then the index of the channel in the list
(starting from 0) is returned.
ADCS 7143840G 243

22.1 Channels
For example, the following code imposes a time out of wait ticks when reading from a
single channel chan:

#include <ostime.h>
#include <chan.h>
int time_out_time, selected, x;

time_out_time = time_plus (time_now (), wait);
selected = chan_alt (&chan, 1, &time_out_time);

switch (selected)
{
 case 0: /* channel input successful */
 x = chan_in_int (chan);
 deal_with_data (x);
 break;
 case -1: /* channel input timed out */
 deal_with_time_out ();
 break;
 default:
 error_handler ();
 break;
}

The use of timers is described in Chapter 17.

22.1.4 Deleting channels

Channels may be deleted using channel_delete, see the function description in
“Part 4 - STLite/OS20 functions” in the "ST20 Embedded Toolset Reference Manual",
for full details.
244 ADCS 7143840G

22 ST20-C2 specific features
22.1.5 Channel header file: chan.h

All the definitions related to ST20-C2 channel specific functions are in the single
header file, chan.h, see Table 22.1 and Table 22.2.

Function Description

chan_alt Waits for input on one of a number of channels

chan_create Create a soft channel.

chan_create_address Create a hard channel.

Chan_delete Delete a channel.

chan_in Input data from a channel

chan_in_char Input character from a channel

chan_in_int Input integer from a channel

chan_init Initialize a channel

chan_init_address Initialize a hardware channel

chan_out Output data to a channel

chan_out_char Output character to a channel

chan_out_int Output integer to a channel

chan_reset Reset channel.

Table 22.1 Functions defined in chan.h

Types Description

chan_t A channel

Table 22.2 Types defined in chan.h
ADCS 7143840G 245

22.2 Two dimensional block move support
22.2 Two dimensional block move support

Graphical applications often require the movement of two dimensional blocks of data,
for example to perform windowing, overlaying. The ST20-C2 contains instructions to
perform efficient copying, overlaying and clipping of graphics data based on byte sized
pixels.

A two dimensional array can be implemented by storing rows adjacently in memory.
Given any two two-dimensional arrays implemented in this way, the instructions
provided can copy a section (a block) of one array to a specified address in the other.

Figure 22.1 Two dimensional block move

To perform a two dimensional move, 6 parameters are required (see Figure 22.1),
these are:

• The address of the first element of the source block to be copied
– this is called the source address.

• The address of the first element of the destination block
– this is called the destination address.

• The number of bytes in each row in the block to be copied
– this is called the width of the block.

• The number of rows in the block to be copied
– this is called the length of the block.

• The number of bytes in each row in the source array
– this is called the source stride.

• The number of bytes in each row in the destination array
– this is called the destination stride.

The two stride values are needed to allow a block to be copied from part of one array
to another array where the arrays can be of differing size.

Width

Source stride Destination
stride

Source
address Destination

address

Le
ng

th
246 ADCS 7143840G

22 ST20-C2 specific features
None of the two dimensional moves has any effect if either the width or length of the
block to copy is equal to zero. Also a two dimensional block move only makes sense if
the source stride and destination stride are both greater or equal to the width of the
block being moved. The effect of the two dimensional moves is undefined if the source
and destination blocks overlap.

Instructions are provided which allow a whole block to be moved, or only the zero or
non-zero values.

STLite/OS20 provides three functions which give access to these instructions:

void move2d_all(const void *src, void *dst,
int width, int nrows,
int srcwidth, int dstwidth);

void move2d_non_zero(const void *src, void *dst,
int width, int nrows,
int srcwidth, int dstwidth);

void move2d_zero(const void *src, void *dst,
int width, int nrows,
int srcwidth, int dstwidth);

where:

• move2_all copies the whole of the block of nrows rows each of length
bytes from the source to the destination.

• move2d_non_zero copies the non zero bytes in the block leaving the bytes in
the destination corresponding to the zero bytes in the source unchanged. This
can be used to overlay a non rectangular picture onto another picture.

• move2d_zero copies the zero bytes in the block leaving the bytes in the
destination corresponding to the non zero bytes in the source unchanged. This
can be used to mask out a non rectangular shape from a picture.

22.2.1 Two dimensional block move header file: move2d.h

All the definitions related to ST20-C2 two dimensional block move specific functions
are in the single header file, move2d.h, see Table 22.3.

All functions are callable from an STLite/OS20 task or a high priority process (HPP),
however, none of them can be called from an interrupt service routine.

Function Description Callable from ISR/
HPP

move2d_all Two dimensional block move. HPP

move2d_non_zero Two dimensional block move of non-zero bytes. HPP

move2d_zero Two dimensional block move of zero bytes. HPP

Table 22.3 Functions defined in move2d.h
ADCS 7143840G 247

22.2 Two dimensional block move support
248 ADCS 7143840G

 Appendices
Appendices
ADCS 7143840G 249

 Appendices
250 ADCS 7143840G

A Hardware breakpoint allocation
A Hardware breakpoint allocation
This appendix describes the rules that govern how many hardware breakpoints and
data watchpoints can be setup with respect to the diagnostic controller unit (DCU)
used. An overview of the facilities provided by the DCU to support debugging is given
in section 7.2.4. For information describing the DCU hardware, refer to the device data
sheet.

A.1 DCU2 hardware

A DCU2 contains the following breakpoint resources:

• One code breakpoint block configured with up to two single address
breakpoints.

• One code breakpoint block configured with up to two single address
breakpoints or as a code breakpoint count, or as a code breakpoint range
block.

• One data breakpoint block.

A.1.1 DCU2 allocation rules

• Both code breakpoint blocks can support two breakpoints giving a maximum of
four code breakpoints.

• For a breakpoint block to contain two code breakpoints, each breakpoint must
be an enabled single address breakpoint that is not a counted breakpoint. The
following break commands setup single address code breakpoints:

> break -hardwarebreakpoint func

> break -hardwarebreakpoint <main.c 24>

• If a code breakpoint block contains a disabled breakpoint, then that block can
only contain that breakpoint.

• If a code breakpoint block contains a code breakpoint that is sequenced by or
sequences another DCU2 function, then that breakpoint block can only contain
that breakpoint.

• Only one counted code breakpoint can be setup.

• Only one code breakpoint over an address range can be setup.

• A counted breakpoint and a ranged breakpoint cannot be setup at the same
time.

• One data breakpoint can be setup.

• If a breakpoint block contains two code breakpoints, neither breakpoint may be
disabled.
ADCS 7143840G 251

A.2 DCU3 hardware
A.2 DCU3 hardware

A DCU3 can be implemented with between 0-31 ‘compare blocks’, each configurable
as either code breakpoints (code breakpoint mode) or as data breakpoints (data
breakpoint mode).

The number of compare blocks a DCU3 has is dependent on its implementation. For
the STV0396 and the STi5514, the first devices to include DCU3, the DCU3 has
been implemented with four compare blocks.

A.2.1 DCU3 allocation rules

• A compare block can be setup to support either one or two code breakpoints
or a single data breakpoint function.

• A compare block in code breakpoint mode can be setup as a counted
breakpoint or as a ranged breakpoint.

• In code breakpoint mode a compare block supports a maximum of two
breakpoints.

• For a compare block to contain two code breakpoints, each breakpoint must
be an enabled single address breakpoint that is not a counted breakpoint.

• In code breakpoint mode a compare block can only contain one breakpoint if
that breakpoint is either disabled or will generate a trigger out signal.

• If a code breakpoint block contains a code breakpoint that is sequenced by or
sequences another DCU3 function, then that compare block can only contain
that breakpoint.

• In data breakpoint mode a compare block can contain one data breakpoint.
252 ADCS 7143840G

B Glossary
B Glossary
address space

In the context of the toolset debugger a memory and register state.

Areg
The register at the top of the evaluation stack. See evaluation stack.

atomic
An atomic operation is one in which no interruption can take place in between
loading, modifying and storing a variable or data structure.

base of memory
The lowest address in the memory space. The ST20 has a signed address space,
so the lowest address is MostNeg.

Breakpoint
See Code breakpoint.

Breg
The register in the middle of the evaluation stack. See evaluation stack.

C1
The ST20-C1 core.

C2
The ST20-C2 core.

call graph profiling

A type of execution profiling which estimates the percentage of the total run-time
spent in each function and its children, and counts the number of times each
function is called, and by which function. cf. flat profiling.

call stack
The stack of nested function calls which have not returned within the current task.

channel
A mechanism for synchronized, unbuffered communication between tasks, or with
a peripheral.

Code breakpoint
A breakpoint on an instruction.

command file
A file containing a script written in command language.

command language
A language used to control the ST20 Embedded Toolset tools: st20cc, st20run,
st20sim, st20libr and stemi.
ADCS 7143840G 253

configuration
configuration
An arrangement of hardware or software elements or both. The settings of
registers to control the behavior of peripherals, or the commands to set such
registers.

configuration file
A command file describing the application or target configuration.

core
The CPU silicon module ST20-C1 or ST20-C2.

core dump
A file which contains a record of the state of memory and CPU registers.

Creg
The register at the bottom of the evaluation stack. See evaluation stack.

cycle time definition file
A simulator control file, which defines the cycle times to execute each instruction
and to perform memory accesses.

Data breakpoint
A breakpoint on data.

DCU
Diagnostic Controller Unit, see diagnostic controller.

debugger
A tool to aid the finding of faults in a program.

device
A silicon chip or a peripheral.

diagnostic controller
A silicon module which has access to the state of the CPU and memory, which is
used for monitoring and controlling execution during debugging.

driver tool
The tool st20cc used to build binary code from source files and libraries.

evaluation stack
Three registers, arranged as a hardware stack, used for evaluating expressions
and holding instruction arguments and results.

execution profiling

A type of profiling which estimates the percentage of the total run-time spent in
each function and counts the number of times each function is executed. cf call
graph profiling.

flat profiling

A type of execution profiling which estimates the percentage of the total run-time
spent in each function. cf call graph profiling.
254 ADCS 7143840G

B Glossary
frame
The area of stack for a function call which has not yet returned. One level in the
call stack.

function profiling

A type of profiling which measures how much each function is executed. Function
profiling may be flat or produce a call graph.

hardware configuration
A description of the target hardware. This may take the form of a configuration file.

hex format
A ROM ASCII format used by the linker when generating a ROM image file
suitable for blowing a ROM device.

idle profiling

A type of profiling which measures how much time the processor is idle.

Iptr
The instruction pointer, a register which holds the address of the next instruction to
be executed.

JEI
A host/target interface between a JTAG port on a ST20 target board and an
Ethernet network, connected to one or more UNIX, Linux or Windows hosts.

JPI
A host/target interface between a JTAG port on a ST20 target board and a PC
parallel port, where the PC is running Windows.

JTAG port
A standard serial test access port, primarily for testing, but used on the ST20 for
communications with the DCU.

link
A communications connection.

linked unit
A single file which has been produced by the linker and is suitable for loading onto
a target device via the DCU.

lister
A tool for interpreting binary code files.

lku file
Linked unit file.

MinInt
The minimum integer, 0x80000000, which is also the base address of memory
and may be used as a null pointer.
ADCS 7143840G 255

module
module
A section of a library containing the code from one object file which can be
separately loaded.

MostNeg
The most negative integer, 0x80000000, which is also the base address of
memory and may be used as a null pointer.

MostPos
The most positive integer, 0x7FFFFFFF, which is also the top address of memory.

mutex
A mutual exclusion flag used to acquire exclusive access to an object. The mutex
is ‘locked’ to prevent simultaneous access to data or a process by several threads,
that is, only one thread may access the protected object at a time. Once the thread
has finished with the object the mutex is ‘unlocked’ and the object is made avail-
able.

OS/20
See STLite/OS20

OS-Link
A serial communications link.

process
A task. A section of code that can run in parallel to other processes.

processor
A hardware device that can execute a program.

profiling

Compiling statistics on how much each section of code is used during an
application run. See flat profiling, idle profiling.

programmable engine
A hardware device with a degree of programmability that is dedicated to a
particular task, for example, as an MPEG encoder or software modem.

pseudo-op
A statement in assembler code that is not a processor instruction but is a signal to
control the simulator.

S-record format
A ROM ASCII format used by the linker when generating a ROM image file
suitable for blowing a ROM device

sampling
A profiling technique in which the state of the CPU is tested at regular intervals.

segment of memory
A named block of memory or memory-mapped peripherals.
256 ADCS 7143840G

B Glossary
ST Micro Connect
A host/target interface allowing connection between an Ethernet, Parallel port or
USB based host to an ST development board with debug support. Ethernet
connection is supported for UNIX, Linux and Windows hosts; Parallel port and
USB connection is supported for Windows hosts. See Chapter 6 or the ‘ST Micro
Connect datasheet’ - ADCS 7154764 for further details.

ST20
A family of 32-bit processors that contain a number of modules, including a core
and peripherals, some of which may be application-specific.

ST20-C1
A 32-bit ST20 core designed for low power applications and as an embedded
programmable engine.

ST20-C2
A 32-bit ST20 core designed with on-chip multi-tasking support for real time
applications. Used for example, in set-top box and digital versatile disc (DVD)
applications and in digital TV.

st20cc
A tool for building ST20 binary code from ANSI C source code.

st20libr
A librarian for ST20 libraries.

st20list
A lister for ST20 binary code.

st20run
A tool for loading, running and debugging code on a ST20 target from a host.

st20sim
An ST20 simulator.

statistics tag
A pseudo-op used to turn statistics generation on or off.

STLite/OS20
A run-time system that uses the on-chip microcode support for multi-tasking.

TAP
Test Access Port.

target
A hardware processor (or possibly a simulator) that will run the application
program.

task
A section of code that can run in parallel to other tasks, sometimes called a
process.
ADCS 7143840G 257

test access port
test access port
A serial JTAG port, primarily for testing, but used on the ST20 for communications
with the DCU.

thread
A task.

time profiling

A type of profiling which estimates how much processor time is used by each
function.

timer
A clock.

trace tag
A pseudo-op used to change the level of tracing.

Watchpoint
See Data breakpoint.

Wdesc
Workspace descriptor.

word
Four bytes.

work space
Memory used for local data.

workspace descriptor
Wdesc. The ST20-C2 CPU register that holds a pointer to local data (normally to
the current stack position) and the priority bit.

workspace pointer
Wptr. The pointer part of the workspace descriptor that points to local data,
normally to the current stack position.

Wptr
Workspace pointer.
258 ADCS 7143840G

Index
Index
Symbols

#pragma
ST_inline, 42, 44
ST_nosideeffects, 39

__asm, 42
__inline, 42, 44
__optasm, 42

Numerics
2D block move, 239, 246–247

A
Add button, 134
Address space, 100–101, 253
ANSI C language

compatibility issues, 45
use when optimizing, 41

Applications
running, 87–109

Apply button, 139
Areg, 253
Arithmetic

right shift, 45
Assembler

invoking, 38
Automatic variables, 102

B
Backwards compatibility, 172, 216, 217
Base of memory, 253
board release directory, 9
bootiptr command, 67
Bootstrap

commands, 104
Breakpoint, 97
Breakpoint see Code breakpoint
Breakpoint trap handler, 68, 93
Breg, 253

C
C implementation

compatibility issues, 45
C++ language support, 59–66
C1 core, 253
C2 core, 253
Cache, 70, 231–234

corruption, 69
example, 233

cache_config_data library function, 232

cache_disable_data library function, 232
cache_disable_instruction library function,

232
cache_enable_data library function, 232
cache_enable_instruction library function,

232
cache_flush_data library function, 234
cache_init_controller library function, 231
cache_invalidate_data library function, 234
cache_invalidate_instruction library

function, 234
cache_lock library function, 233
Call graph profiling, 253
Call stack, 253
Callstack

debugger window, 125
Cancel button, 134
chan_alt library function, 242
chan_in library function, 241
chan_in_char library function, 241
chan_in_init library function, 241
chan_init library function, 241
chan_init_address library function, 241
chan_out library function, 241
chan_out_char library function, 241
chan_out_init library function, 241
chan_t

data structure, 180, 240
Channel, 253
Channel I/O, 239–245
char

signedness, 45
Character

signedness, 45
chip command, 67
Class, 160–161
Clock

speed, 80
Clocks see time, timers
Code

breakpoint, 251, 253
debugger window, 115
placement in memory, 52

Command
file, 253

see also Configuration file
procedures, 7

Command console
debugger window, 142

Command execution
debugger window, 132

Command language, 253
introduction, 7
start-up scripts, 9

Command line conventions, x
ADCS 7143840G 259

Index
Command line options
st20cc, 22
st20run, 87

Commands button, 132
Compare block, 252
Compatibility

earlier toolsets, 152
other C implementations, 45

Compiler, 37–47
C++, 59–66
makefiles, 58
optimizing, 39–42
options

for debugging, 92
Configuration, 254

procedures, 8
Configuration file, 67, 254
connect command, 100
const, 41
Conventions used in this manual, x
copy command, 100
Core, 254

compiling for, 37
dump, 254
see also processor command

Creg, 254
Cycle time definition file, 254

D
Data

breakpoint, 251, 254
cache, 69, 70
placement in memory, 52

DCU, see Diagnostic controller
Debugger, 91–103, 254

graphical interface, 111–142
Debugging

C++, 63
commands, 105
compiler option, 92
interactively, 91
ROM systems, 143–154
Save session, 93
st20run, 87–109
starting, 111
STLite/OS20 kernel, 31

Delete button, 134
Device, 254
Diagnostic controller, 6, 68, 94, 254

breakpoint allocation, 251
DCU3, 73
interface, 75–85

Disable button, 134
disconnect command, 100

Display
variables, 102

Driver tool, 21–58
see st20cc

Dump
file, 96

E
EDG C++ front end, 59–66
EMI initialization, 71

from ROM, 72
Enable button, 134
End button, 137
Environment variables

HOME, 9, 10
HOMEDRIVE, 10
HOMEPATH, 10
ST20CCARG, 36
ST20EDGARG, 62
ST20ROOT, 9, 29
TMP, 63
TMPDIR, 63

Error
compilation, 36

Ethernet connection, 77
Evaluation stack, 254
Event

commands, 106
number, 98

Events
debugger window, 134

Examining
variables, 102

Examples
code and data placement, 14
creating default definitions, 16
debugging a ROM system, 145
linked unit, 13
ROM image, 17
running on hardware, 13
running on the simulator, 14
sharing target definitions, 15

examples release directory, 9
Execution

commands, 106
Execution profiling, 254
Extract and go button, 139

F
File

access, 29
Filename

format for st20cc, 22
Find button, 116
260 ADCS 7143840G

Index
Find next button, 124
Flat profiling, 254
Frame, 102, 255

identifier, 103
stack tracing, 103

Function
inline expansion, 42
profiling, 255

G
Go button, 115
Go To button, 137
Graphical interface

to debugger, 111–142
GUI, see Graphical interface

H
Hardware

configuration, 255
file, 104

targets
Ethernet connection, 77
Parallel port connection, 79, 80
USB connection, 78

Hex
format, 255

HOME environment variable, 10
HOMEDRIVE environment variable, 10
HOMEPATH environment variable, 10
Host

debugging from, 92
interface, 75–85

I
Idle profiling, 255
Inform mechanism, 93
Initialization

of memory partitions for STLite/OS20, 179
of target hardware, 70

In-line assembler code, 42
command line options, 42

Inspecting
variables, 102

Instructions button, 137
Interactive debugging, 91
Interfacing to target, 75–85, 104
Internal partition

initialization, 166
link error, 180

Interrupt controller, 213–218
Interrupt level controller, 213–218, 219–221, 224,

225
interrupt_clear library function, 224

interrupt_clear_number library function, 224
interrupt_delete library function, 226
interrupt_disable library function, 221
interrupt_disable_global library function,

221
interrupt_disable_mask library function, 221
interrupt_disable_number library function,

221
interrupt_enable library function, 221
interrupt_enable_global library function,

221
interrupt_enable_mask library function, 221
interrupt_enable_number library function,

221
interrupt_init library function, 217–219
interrupt_init_controller library function,

217
interrupt_install library function, 218–219
interrupt_install_sl library function, 218
interrupt_lock library function, 223
interrupt_pending library function,

224
interrupt_pending_number library function,

224
interrupt_raise library function, 223
interrupt_raise_number library function, 223
interrupt_status library function, 225
interrupt_status_number library function,

225
interrupt_test_number library function, 224
interrupt_trigger_mode_number library

function, 224
interrupt_uninstall library function, 226
interrupt_unlock library function, 223
interrupt_wakeup_number library function,

225
Interrupts, 213–228

restrictions, 226
Iptr, 255

J
JEI see ST20-JEI
JPI see ST20-JPI
JTAG port, 255

clock speed, 80

K
Kernel see STLite/OS20 Real-time kernel
kernel_initialize library function, 175
ADCS 7143840G 261

Index
L
Library

C++, 63
Link, 255
Linked unit, 21, 255
Linker, 21–58

makefiles, 58
Lister, 255

see Binary lister
lku see Linked unit
Locate button, 115, 134
Locate module and Close button, 122
Locate module button, 122
Locate symbol and Close button, 122
Locate symbol button, 122, 124
Loop unrolling, 41

M
Macro

definition, 46
Makefiles, 58
Map

debugger window, 123
memory, 36
stack depth analysis, 36

Memory
debugger window, 129
interface initialization, 71
placing code and data, 47, 52
set-up for STLite/OS20, 177–181

memory command, 67
Message handling

with STLite/OS20, 203–207
message_claim library function, 206
message_claim_timeout library function, 206
message_create_queue library function, 204
message_create_queue_timeout library

function, 204
message_delete_queue library function, 206
message_hdr_t

data structure, 207
message_init_queue library function, 204
message_init_queue_timeout library func-

tion, 204
MESSAGE_MEMSIZE_QUEUE macro, 204
message_queue_t

data structure, 180, 207
message_receive library function, 206
message_receive_timeout library function,

206
message_release library function, 206
message_send library function, 206
MinInt, 255
Module, 256

MostNeg, 256
MostPos, 256
Motorola S-record ROM format, 35
move2d_all library function, 247
move2d_non_zero library function, 247
move2d_zero library function, 247
Multi-tasking

see STLite/OS20 Real-time kernel
Mutex, 256

N
Next button, 137

O
Objects

creating, 161
deleting, 161

Operating system
see STLite/OS20 Real-time kernel

Optimizing object code, 39–42
for space, 41
for time, 40
language considerations, 41

Options
see Command line options

Order of st20cc options, 28
os20lku.cfg configuration command file, 165
os20rom.cfg configuration command file, 165
OS-Link, 256

P
Parallel port, 78, 80, 84

configuration, 81–84
modes, 81

Partition
calculating size, 180
internal or system

link error, 180
partition_init_heap library function, 179
partition_init_simple library function, 179
partition_status library function, 181
partition_t

data structure, 180, 181
Pointer dereference checks, 46
poke command, 67, 68
Porting C, 45
PostPokeLoopCallback function, 153
PrePokeLoopCallback function, 153
Preprocessor

C++, 59–66
invoking, 38

Prev button, 137
262 ADCS 7143840G

Index
Printing
variables, 102

Priority
STLite/OS20 implementation, 162, 184

Process
see tasks

Processor, 256
processor command, 67
Profile

debugger window, 136
Profiling, 256

call graph, 253
execution, 254
flat, 254
function, 255
idle, 255
time, 258

Program, 101
identifier, 101
key, 101, 151

Programmable engine, 256
Programmable timer peripheral, 235
Pseudo-ops for simulator, 256

R
RAM, 256
Real-time clocks, 209–212
Recursive functions, 98, 102
Refresh button, 137
register, 42
register command, 67
Registers

debugger window, 128
Reset, 216
reset command, 67
Right shift, 45
Right-mouse button, 111
ROM

base address, 51
bootstrap, 144
commands, 51
EMI initialization, 72
image file, 21, 35

example, 17
systems, 143–154

Root task
STLite/OS20, 186, 194

Running
applications, 87–109

Runtime
optional checks, 46

runtime os20, 165, 217

S
Sampling, 256
Save session

debug option, 93
Segment of memory, 256
semaphore_create_fifo library function, 199
semaphore_create_fifo_timeout library

function, 199
semaphore_create_priority library function,

199
semaphore_create_priority_timeout li-

brary function, 199
semaphore_init_fifo library function, 199
semaphore_init_fifo_timeout library func-

tion, 199
semaphore_init_priority library function,

199
semaphore_init_priority_timeout library

function, 199
semaphore_signal library function, 200
semaphore_t

data structure, 180, 199
semaphore_wait library function, 199
semaphore_wait_timeout library function, 200
Semaphores, 199–202
Shared code, 97
Shift right, 45
Signedness of char, 45
Simulator

accessed using st20run, 85
target definition, 85

Single step, 99
Space

optimizing compilation, 41
space command, 100
SRAM

data cache, 69
S-record ROM format, 35, 256
ST Micro Connect, 257

Ethernet to JTAG interface, 77
Parallel port interface, 79
USB interface, 78

ST_inline, 42, 44
ST20, 257
ST20-C1, 257
ST20-C2, 257

channel communications, 239–245
st20cc, 21–58, 257

command line options, 23
commands for linking, 47–54
compilation, 37–47
debugging option, 92
order of options, 28
See also Compiler
ADCS 7143840G 263

Index
ST20CCARG environment variable, 36
st20edg C++ compiler, 61
ST20EDGARG environment variable, 62
ST20-JEI Ethernet to JTAG interface, 77, 255
ST20-JPI Parallel port interface, 80–85, 255
st20libr, 257
st20list, 257
ST20ROOT environment variable, 9, 29
st20run, 87–109, 257
st20sim, 257
Stack, 102

checking, 47
trace, 92, 103

Stack usage, 192
Start button, 136, 137
Start Now button, 139
Starting

the debugger, 111
Start-up script, 9, 48, 89
Statements button, 137
Static

unused declarations, 46
variables, 102

Statistics
tag, 257

stdcfg release directory, 8, 9
Step button, 115
Step Line button, 118
StepOut button, 116
StepOver button, 116
Stepping, 99

over, 99
through, 99

StepTo button, 116
STLite/OS20 Real-time kernel, 155–247, 257

cache functions, 231–234
clock functions, 209–212
creating and running a task, 188
debug kernel version, 174
debugging, 154
example program, 167–171
getting started, 165–172
implementation of kernel, 173
interrupting tasks, 213–228
linking the kernel, 30–31, 165–172
memory set-up, 177–181
message handling, 203–207
objects and classes, 160–161
priority, 162, 184
scheduling, 187, 190
synchonizing tasks, 199–202
terminating a task, 195
time delays, 189
time logging, 174

Stop button, 115, 136

Stop Now button, 139
Stop on full button, 139
Stopping, 106
Structures, 46
Symbols

debugger window, 121
System partition

initialization, 166
link error, 180

T
TAP, see Test access port
target command, 75
Targets, 7, 257

debugger window, 141
description, 67–73
initialization, 70
interfacing, 75–85, 104
names, 75–77

task_context library function, 192
task_create library function, 188, 239
task_data library function, 194
task_data_set library function, 194
task_delay library function, 189
task_delay_until library function, 189
task_delete library function, 196
task_exit library function, 195
task_id library function, 192
task_immortal library function, 191
task_init library function, 188, 239
task_kill library function, 191
task_lock library function, 187
task_mortal library function, 191
task_name library function, 192
task_onexit_set library function, 195
task_priority library function, 186
task_priority_set library function, 187
task_reschedule library function, 190
task_resume library function, 191
task_stack_fill library function, 193
task_stack_fill_set library function, 193
task_status library function, 193
task_suspend library function, 191
task_t

data structure, 180, 183
task_unlock library function, 187
task_wait library function, 196
Tasks, 102, 257

data, 194
debugger window, 133
killing, 191
see also STLite/OS20 Real-time kernel
state commands, 107
terminating, 195
264 ADCS 7143840G

Index
tckdiv target parameter, 80
tdesc_t

data structure, 180, 183
Test access port, 258
Thread, see Tasks
Time

logging, 174
optimizing compilation, 40
profiling, 258
real-time clocks, 209–212
slicing, 187

ST20-C1, 185
ST20-C2, 185

time_after library function, 210
time_minus library function, 210
time_now library function, 210
time_plus library function, 210
Timer, 258
timer_initialize library function, 236
Timers

support for ST20-c1, 235–238
TMP environment variable, 63
TMPDIR environment variable, 63
Toolset

environment, 9
features, 3
version, 10

Trace
debugger window, 137
generation

debugger dialogue box, 139
debugger window, 139

tag, 258
Trigger mode, 213, 224
Two dimensional block move, 239, 246–247

U
Unions, 46
Unrolling loops, 41
Update button, 134
Update output button, 132
USB connection, 78

V
Variables

automatic, 102
debugger window, 126
displaying the value, 102
static, 102

Version
toolset, 10

volatile, 42
vppiset.exe parallel port configuration, 81

W
Warnings

selective enabling
st20cc, 46

Watchpoint see Data breakpoint
Wdesc, 258
Windowing interface to debugger, 111–142
Word, 258
Work space, 258

descriptor, 258
pointer, 258

Wptr, 258
Wrap on full button, 139
ADCS 7143840G 265

Index
266 ADCS 7143840G

	ST20 Embedded Toolset R1.9 User Manual
	Contents
	Preface
	Part 1 - Introduction
	1 Toolset overview
	1.1 Key features
	1.2 Toolset architecture
	Figure 1.1 ST20 Embedded Toolset architecture for ANSI C
	1.2.1 st20cc driver tool
	1.2.2 st20run program load, run and debug tool
	1.2.3 st20libr librarian
	1.2.4 stemi configuration tool
	1.2.5 st20list lister
	1.2.6 st20sim simulator
	1.2.7 Loadable file types
	1.2.8 Diagnostic controller unit
	1.2.9 Host interface

	1.3 Command language
	1.3.1 Command procedures

	1.4 Toolset environment
	1.4.1 Start-up command language scripts

	1.5 Toolset version

	2 Getting started with the tools
	2.1 Introduction
	2.1.1 Example files
	Figure 2.1 Memory map for ST20-C2 example

	2.1.2 Using an alternative target
	2.1.3 Configuration
	Figure 2.2 High-level overview of a configuration file

	2.2 Building and running with an STi5500 device
	2.2.1 Running the program on silicon
	2.2.2 Running the program on the simulator

	2.3 Code and data placement example
	2.3.1 Building the linked unit

	2.4 Sharing target definitions
	2.4.1 Move to a common directory
	2.4.2 Start-up file
	2.4.3 Building and running a program

	2.5 Creating your own defaults
	2.6 Creating a ROM image

	Part 2 - Building and running programs
	3 st20cc compile/link tool
	3.1 Introduction
	Figure 3.1 st20cc development model
	3.1.1 Summary of default behavior

	3.2 Command line syntax
	3.2.1 Command options
	Table 3.1 st20cc options

	3.2.2 Command line parameter order
	3.2.3 Preconfiguring st20cc
	3.2.4 File search rules
	3.2.5 Runtime libraries
	3.2.6 Input files
	Table 3.2 st20cc input file types

	3.2.7 Output files
	Figure 3.2 st20cc primary output files
	Table 3.3 Input and output formats to -off type

	3.2.8 Map files
	3.2.9 Environment variable
	3.2.10 Errors
	3.2.11 Example st20cc command lines

	3.3 Compilation
	3.3.1 Selecting the processor core
	3.3.2 Using the assembler
	3.3.3 Using the preprocessor
	3.3.4 Compiling with optimization enabled
	3.3.5 Inline code
	3.3.6 Compatibility with other C implementations
	3.3.7 Software quality check
	3.3.8 Runtime checking options

	3.4 Code and data placement
	3.5 Command language
	3.5.1 Start-up scripts
	3.5.2 Symbol handling commands
	3.5.3 File handling commands
	3.5.4 st20cc options commands
	3.5.5 Hardware configuration commands
	3.5.6 Rom file control commands
	3.5.7 Code and data placement commands
	3.5.8 System startup/shutdown support
	3.5.9 Other commands

	3.6 Order of linking
	3.6.1 Rules for linking
	3.6.2 Generating the link list
	3.6.3 Backward compatibility

	3.7 Program build management

	4 Support for C++
	4.1 Introduction
	4.2 C++ driver
	Figure 4.1 Phases invoked by the st20cc command
	4.2.1 C++ preprocessor phase
	4.2.2 C compilation phase
	4.2.3 Linking phase

	4.3 st20cc command line
	Table 4.1 C++ input files
	Table 4.2 st20cc options for C++
	4.3.1 Environment variables
	4.3.2 TMPDIR directory full

	4.4 Libraries
	4.5 Debugging C++
	4.5.1 Class Member Variables
	4.5.2 Class Member Functions
	4.5.3 Global Variable Scoping
	4.5.4 Member Variable Scoping
	4.5.5 Overloaded Functions
	4.5.6 Nested Classes
	4.5.7 References
	4.5.8 Class Static Variables
	4.5.9 Not supported

	5 Defining target hardware
	Table 5.1 Target configuration commands
	5.1 Defining target characteristics
	5.1.1 ST chip and board definitions

	5.2 Data caches in internal SRAM
	5.3 Worked Example
	Figure 5.1 Target st20board memory map

	5.4 Building code for the DCU3

	6 Interfacing to the target
	6.1 The target command
	Table 6.1 Interface types

	6.2 ST Micro Connect and ST20-JEI Ethernet connection
	Figure 6.1 Interfacing to Ethernet via ST20-JEI

	6.3 ST Micro Connect USB connection
	Figure 6.2 Connecting to ST Micro Connect over USB

	6.4 ST Micro Connect Parallel port connection
	Figure 6.3 Connecting to ST Micro Connect over Parallel Port

	6.5 ST20-JEI and STMicro Connect trouble-shooting
	6.6 ST20-JPI Parallel port connection
	Figure 6.4 Connecting to a PC parallel port
	6.6.1 PC Parallel port modes
	6.6.2 Driver configuration using vppiset.exe
	Figure 6.5 vppiset.exe main window

	6.6.3 Trouble-shooting
	6.6.4 Windows registry
	Table 6.2 Registry entries

	6.6.5 Connecting to a parallel port

	6.7 Defining a simulator target
	Table 6.3 Simulator interface options

	7 st20run
	7.1 Starting st20run
	7.1.1 st20run command line
	Table 7.1 st20run command line options

	7.1.2 Start-up scripts
	7.1.3 Examples

	7.2 Debugging
	Figure 7.1 Interactive debugging system
	7.2.1 Starting debugging
	7.2.2 The breakpoint trap handler
	7.2.3 The inform mechanism
	7.2.4 The Diagnostic Control Unit (DCU)
	7.2.5 Examining memory and registers
	7.2.6 Defining the run-time system
	7.2.7 Disconnecting from target hardware
	7.2.8 Connecting to target hardware that is already booted
	7.2.9 Saving state in a core dump file
	7.2.10 Code and data breakpoints
	7.2.11 Stopping the target
	7.2.12 Single stepping
	7.2.13 Address spaces
	7.2.14 Programs
	7.2.15 Tasks
	7.2.16 Examining variables
	7.2.17 Stack trace

	7.3 Commands
	7.3.1 Hardware configuration
	Table 7.2 Hardware configuration commands

	7.3.2 Target interface commands
	Table 7.3 Target interface commands

	7.3.3 Boot commands
	Table 7.4 Boot commands

	7.3.4 Debugging commands
	Table 7.5 Debugging commands

	7.3.5 Execution commands
	Table 7.6 Execution commands

	7.3.6 Event commands
	Table 7.7 Event commands

	7.3.7 Profiling
	7.3.8 Task State Commands
	Table 7.8 Task state commands

	7.3.9 Window management
	7.3.10 Tracing
	7.3.11 Low level debugging
	Table 7.9 Low level commands

	7.3.12 File handling commands
	Table 7.10 File handling commands

	7.3.13 Other commands
	Table 7.11 Miscellaneous commands

	8 Debugger graphical interface
	8.1 Starting the graphical interface
	8.2 Windows
	8.2.1 Controlling the GUI
	8.2.2 Child windows
	8.2.3 Window Types
	Table 8.1 Window types

	8.2.4 Display state
	8.2.5 Data Contexts and Windows

	8.3 Code Window
	8.3.1 Buttons
	8.3.2 List boxes
	8.3.3 File menu
	8.3.4 View menu
	8.3.5 Command menu
	8.3.6 Options menu
	8.3.7 Windows menu
	8.3.8 Preferences menu

	8.4 Symbols Window
	8.4.1 File menu
	8.4.2 Command menu
	8.4.3 Windows menu
	8.4.4 Preferences menu
	8.4.5 Buttons

	8.5 Map Window
	8.5.1 File menu
	8.5.2 Command menu
	8.5.3 Find menu
	8.5.4 Preferences menu
	8.5.5 Buttons

	8.6 Callstack Window
	8.6.1 File menu
	8.6.2 View menu
	8.6.3 Command menu
	8.6.4 Preferences menu

	8.7 Variables Window
	8.7.1 File menu
	8.7.2 View menu
	8.7.3 Options menu
	8.7.4 Windows menu
	8.7.5 Preferences menu

	8.8 Registers Window
	8.8.1 File menu
	8.8.2 View menu
	8.8.3 Edit menu
	8.8.4 Preferences menu

	8.9 Memory Window
	8.9.1 Boxes or buttons
	8.9.2 File menu
	8.9.3 View menu
	8.9.4 Command menu
	8.9.5 Preferences menu

	8.10 Command Execution Window
	8.10.1 Boxes and buttons
	8.10.2 File menu
	8.10.3 View menu
	8.10.4 Command menu
	8.10.5 Preferences menu

	8.11 Tasks Window
	8.11.1 File menu
	8.11.2 Command menu
	8.11.3 Windows menu
	8.11.4 Preferences menu

	8.12 Events Window
	8.12.1 Event modification
	8.12.2 Event Creation
	8.12.3 Buttons
	8.12.4 File menu
	8.12.5 View menu
	8.12.6 Command menu
	8.12.7 Preferences menu

	8.13 Profile Window
	8.13.1 Buttons
	8.13.2 File menu
	8.13.3 Options menu
	8.13.4 Preferences menu

	8.14 Trace Window
	8.14.1 Browse buttons
	8.14.2 Toggle buttons
	8.14.3 File menu
	8.14.4 Preferences menu

	8.15 Trace Generation Window
	8.15.1 Buffer configuration
	8.15.2 Recording mode buttons
	8.15.3 Buffer full action buttons
	8.15.4 Start and stop buttons and status displays
	8.15.5 File menu
	8.15.6 View menu
	8.15.7 Preferences menu

	8.16 Targets Window
	8.16.1 File menu
	8.16.2 Command menu
	8.16.3 Windows menu
	8.16.4 Preferences menu

	8.17 Command Console Window
	8.17.1 File menu
	8.17.2 Preferences menu

	9 ROM systems
	9.1 ROM system overview
	9.2 An example program and target configuration
	9.2.1 Building a linked unit
	9.2.2 Running and debugging the LKU
	9.2.3 Building a ROM image
	9.2.4 Debugging the ROM image

	9.3 Multiple programs
	9.3.1 Calling to another program
	9.3.2 Debugging multiple programs on a ROM

	9.4 Callbacks before and after the poke loop in romload()
	9.5 STLite/OS20 awareness

	Part 3 - STLite/OS20 Real-Time Kernel
	10 Introduction to STLite/OS20
	10.1 Overview
	Table�10.1 STLite/OS20 header files
	10.1.1 Naming
	10.1.2 How Part 3 - STLite/OS20 Real-Time Kernel is organized

	10.2 Classes and Objects
	10.2.1 Object Lifetime

	10.3 Defining memory partitions
	10.4 Tasks
	10.5 Priority
	10.6 Semaphores
	10.7 Message queues
	10.8 Clocks
	10.9 Interrupts
	10.10 Device ID
	10.11 Cache
	10.12 Processor specific functions

	11 Getting Started with STLite/OS20
	11.1 Building for STLite/OS20
	11.1.1 How it works
	11.1.2 Initializing partitions
	11.1.3 Example
	Figure�11.1 Example program schematic

	11.2 Starting STLite/OS20 Manually

	12 Kernel
	12.1 Implementation
	12.2 Time logging
	12.2.1 Using time logging

	12.3 STLite/OS20 kernel
	12.4 Kernel header file: kernel.h
	Table�12.1 Functions defined in kernel.h

	13 Memory and partitions
	13.1 Partitions
	13.2 Allocation strategies
	Table�13.1 Partition properties

	13.3 Pre-defined partitions
	13.3.1 Calculating partition sizes
	Table�13.2 Object size requirement

	13.4 Obtaining information about partitions
	13.5 Partition header file: partitio.h
	Table�13.3 Functions defined in partitio.h
	Table�13.4 Types defined by partitio.h

	14 Tasks
	14.1 STLite/OS20 tasks
	14.2 Implementation of priority and timeslicing
	Figure�14.1 ST20-C2 priorities
	14.2.1 Timeslicing on the ST20-C1
	14.2.2 Timeslicing on the ST20-C2
	Figure�14.2 Timeslicing on the ST20-C2

	14.3 STLite/OS20 priorities
	14.4 Scheduling
	14.5 Creating and running a task
	14.5.1 Creating a task for an RCU

	14.6 Synchronizing tasks
	14.7 Communicating between tasks
	14.8 Timed delays
	14.9 Rescheduling
	14.10 Suspending tasks
	14.11 Killing a task
	14.12 Getting the current task’s id
	14.13 Stack usage
	14.14 Task data
	14.15 Task termination
	14.16 Waiting for termination
	14.17 Deleting a task
	14.18 Task header file: task.h
	Table�14.1 Functions defined in task.h
	Table�14.2 Types defined in task.h
	Table�14.3 Macros defined in task.h

	15 Semaphores
	15.1 Overview
	15.2 Use of Semaphores
	15.3 Semaphore header file: semaphor.h
	Table�15.1 Functions defined in semaphor.h
	Table�15.2 Types defined in semaphor.h

	16 Message handling
	16.1 Message queues
	Figure�16.1 Message queues

	16.2 Creating message queues
	Figure�16.2 STLite/OS20 message elements

	16.3 Using message queues
	16.4 Message header file: message.h
	Table�16.1 Functions defined in message.h
	Table�16.2 Types defined in message.h

	17 Real-time clocks
	17.1 ST20-C1 clock peripheral
	17.2 The ST20 timers on the ST20-C2
	Table�17.1 Summary of clock intervals for parts operating at 40Mhz

	17.3 Reading the current time
	17.4 Time arithmetic
	Figure�17.1 Time arithmetic

	17.5 Time header file: ostime.h
	Table�17.2 Functions defined in ostime.h
	Table�17.3 Types defined by ostime.h

	18 Interrupts
	18.1 Interrupt models
	Figure�18.1 Example: peripherals directly attached to the interrupt controller
	Figure�18.2 Example: peripherals mapped via an interrupt level controller

	18.2 Selecting the correct interrupt handling system
	Table�18.1 Interrupt controller libraries
	Table�18.2 Interrupt level controller libraries
	18.2.1 Compiling legacy code
	Table�18.3 Migration path for ILCs

	18.2.2 Linking legacy code

	18.3 Initializing the interrupt handling support system
	18.3.1 Calculating stack size

	18.4 Attaching an interrupt handler in STLite/OS20
	18.4.1 Attaching interrupt handlers directly to peripherals
	18.4.2 Attaching interrupt handlers using an interrupt level controller
	18.4.3 Routing interrupts to external pins
	18.4.4 Efficient interrupt layouts

	18.5 Initializing the peripheral device
	18.6 Enabling and disabling interrupts
	18.6.1 Enabling and disabling interrupts without an ILC or with ILC-1
	18.6.2 Enabling and disabling interrupts with ILC-2 or ILC-3

	18.7 Example: setting an interrupt for an ASC
	18.8 Locking out interrupts
	18.9 Raising interrupts
	18.10 Retrieving details of pending interrupts
	18.11 Clearing pending interrupts
	18.12 Changing trigger modes
	18.13 Low power modes and interrupts
	18.14 Obtaining information about interrupts
	18.15 Uninstalling interrupt handlers and deleting interrupts
	18.16 Restrictions on interrupt handlers
	18.17 Interrupt header file: interrup.h
	Table�18.4 Functions defined in interrup.h
	Table�18.5 Types defined in interrup.h
	Table�18.6 Macros defined in interrup.h

	19 Device information
	Table�19.1 Composition of identification code
	19.1 Device ID header file: device.h
	Table�19.2 Functions defined in device.h
	Table�19.3 Types defined in device.h

	20 Caches
	20.1 Introduction
	20.1.1 Data caches with internal SRAM

	20.2 Initializing the cache support system
	20.3 Configuring the caches
	20.4 Enabling and disabling the caches
	20.5 Locking the cache configuration
	20.6 Example: setting up the caches
	20.7 Flushing and invalidating caches
	20.7.1 Relocatable code units

	20.8 Cache header file: cache.h
	Table�20.1 Functions defined in cache.h
	Table�20.2 Types defined in cache.h

	21 ST20-C1 specific features
	Figure�21.1 Plug-in timer model for the ST20-C1
	Table�21.1 Internal STLite/OS20 Timer API
	21.1 ST20-C1 example plug-in timer module
	21.1.1 PWM peripheral
	Table�21.2 PWM registers used by the plug-in module.

	21.2 Plug-in timer module header file: c1timer.h
	Table�21.3 Functions defined in c1timer.h

	22 ST20-C2 specific features
	22.1 Channels
	22.1.1 Creating a channel
	22.1.2 Communications over channels
	22.1.3 Reading from several channels
	22.1.4 Deleting channels
	22.1.5 Channel header file: chan.h
	Table�22.1 Functions defined in chan.h
	Table�22.2 Types defined in chan.h

	22.2 Two dimensional block move support
	Figure�22.1 Two dimensional block move
	22.2.1 Two dimensional block move header file: move2d.h
	Table�22.3 Functions defined in move2d.h

	Appendices
	A Hardware breakpoint allocation
	A.1 DCU2 hardware
	A.1.1 DCU2 allocation rules

	A.2 DCU3 hardware
	A.2.1 DCU3 allocation rules

	B Glossary

	Index

