PRELIMINARY PRODUCT INFORMATION

MOS INTEGRATED CIRCUIT μ PD78F0058

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD78F0058 is a product of the μ PD780058 Subseries in the 78K/0 Series and equivalent to the μ PD780058 with a flash memory in place of internal ROM. This device is incorporated with a flash memory which can be programmed without being removed from the substrate.

Functions are described in detail in the following user's manuals, which should be read when carrying out design work.

 μ PD780058, 780058Y Subseries User's Manual : U12013E 78K/0 Series User's Manual Instruction : IEU-1372

FEATURES

• Pin-compatible with mask ROM versions (except VPP pin)

Flash memory : 60 Kbytes^{Note 1}
 Internal high-speed RAM : 1024 bytes
 Internal expansion RAM : 1024 bytes^{Note 2}

• Buffer RAM : 32 bytes

• Operable with the same power supply voltage as that of mask ROM version (VDD = 1.8 to 5.5 V)

Notes 1. The flash memory capacity can be changed with the memory size switching register (IMS).

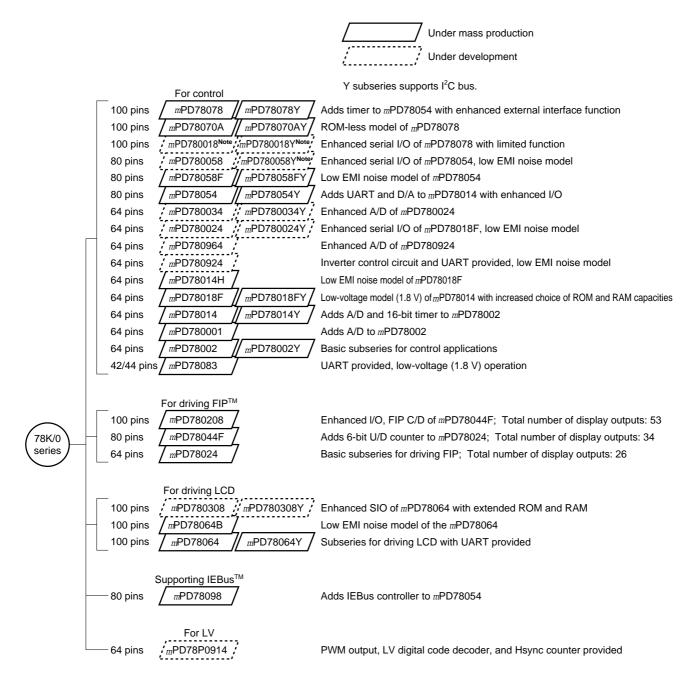
2. The internal expansion RAM capacity can be changed with the internal expansion RAM size switching register (IXS).

Remark For the differences between the flash memory versions and the mask ROM versions, refer to 1. DIFFERENCES BETWEEN μ PD78F0058 AND MASK ROM VERSIONS.

ORDERING INFORMATION

Part Number	Package	Internal ROM
μPD78F0058GC-3B9	80-pin plastic QFP (14 $ imes$ 14 mm, resin thickness 2.7 mm)	Flash memory
μ PD78F0058GC-8BT ^{Note}	80-pin plastic QFP (14 \times 14 mm, resin thickness 1.4 mm)	Flash memory
μ PD78F0058GK-BE9	80-pin plastic TQFP (fine pitch) (12 \times 12 mm)	Flash memory

Note Under planning


Caution Two types of packages are available for μ PD78F0058GC (refer to 6. PACKAGE DRAWINGS). For the suppliable package, consult an NEC sales representative.

The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production.

78K/0 SERIES DEVELOPMENT

The products in the 78K/0 series are listed below. The names enclosed in boxes are subseries names.

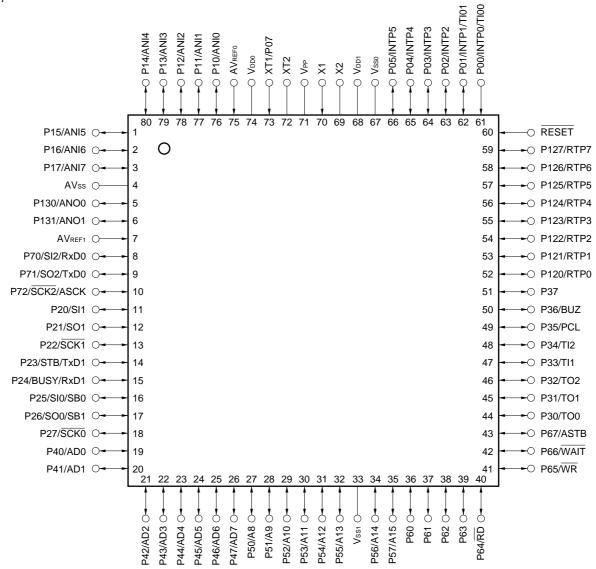
Note Under planning

The following lists the main functional differences.

	Function	ROM		Tir	ner		8-bit	10-bit	8-bit	Carried Justicutes as	I/O	VDD MIN.	External
Subseries		Capacity	8-bit	16-bit	Watch	WDT	A/D	A/D	D/A	Serial Interface	"	Value	Expansion
For	μPD78078	32 K-60 K	4 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	3 ch (UART: 1 ch)	88	1.8 V	0
control	μPD78070A	_									61	2.7 V	
	μPD780018	48 K-60 K							-	2 ch (Time division 3-wire: 1 ch)	88		
	μPD780058	24 K-60 K	2 ch						2 ch	3 ch (Time division UART: 1 ch)	68	1.8 V	
	μPD78058F	48 K-60 K								3 ch (UART: 1 ch)	69	2.7 V	
	μPD78054	16 K-60 K										2.0 V	
	μPD780034	8 K-32 K					-	8 ch	-	3 ch (UART: 1 ch,	51	1.8 V	
	μPD780024						8 ch	_		Time division 3-wire: 1 ch)			
	μPD780964		3 ch	Note	-		ı	8 ch		2 ch (UART: 2 ch)	47	2.7 V	
	μPD780924						8 ch	-					
	μPD78014H		2 ch	1 ch	1 ch					2ch	53	1.8 V	
	μPD78018F	8 K-60 K											
	μPD78014	8 K-32 K										2.7 V	
	μPD780001	8 K		_	_					1 ch	39		-
	μPD78002	8 K-16 K			1 ch		_				53		0
	μPD78083				-		8 ch			1 ch (UART: 1 ch)	33	1.8 V	_
For FIP	μPD780208	32 K-60 K	2 ch	1 ch	1 ch	1 ch	8 ch	_	_	2 ch	74	2.7 V	-
driving	μPD78044F	16 K-40 K									68		
	μPD78024	24 K-32 K									54		
For LCD driving	μPD780308	48 K-60 K	2 ch	1 ch	1 ch	1 ch	8 ch	_	-	3 ch (Time division UART: 1 ch)	57	2.0 V	-
	μPD78064B	32 K								2 ch (UART: 1 ch)			
	μPD78064	16 K-32 K											
For IEBus	μPD78098	32 K-60 K	2 ch	1 ch	1 ch	1 ch	8 ch	_	2 ch	3 ch (UART: 1 ch)	69	2.7V	0
For LV	μPD78P0914	32 K	6 ch	_	-	1 ch	8 ch	_	-	2 ch	54	4.5 V	0

Note 10-bit timer: 1 channel

OVERVIEW OF FUNCTION


	Item	Function					
Internal	Flash memory	60 Kbytes ^{Note 1}					
memory	High-speed RAM	1024 bytes					
-	Expansion RAM	1024 bytes ^{Note 2}					
	Buffer RAM	32 bytes					
Memory space)	64 Kbytes					
General-purpo	se registers	8 bits × 32 registers (8 bits × 8 registers × 4 banks)					
Instruction cyc	le	On-chip instruction execution time cycle modification function					
	When main system clock selected	0.4 μs/0.8 μs/1.6 μs/3.2 μs/6.4 μs 12.8 μs (at 5.0-MHz operation)					
	When subsystem clock selected	122 μs (at 32.768-kHz operation)					
Instruction set		 16-bit operation Multiplication/division (8 bits × 8 bits,16 bits ÷ 8 bits) Bit manipulation (set, reset, test, Boolean operation) BCD correction, etc. 					
I/O ports		Total : 68 • CMOS input : 2 • CMOS I/O : 62 • N-ch open drain I/O : 4					
A/D converter		8-bit resolution × 8 channels					
D/A converter		8-bit resolution × 2 channels					
Serial interface		3-wired serial I/O/SBI/2-wire serial I/O mode selectable : 1 channel 3-wired serial I/O mode (MAX. 32-byte on-chip automatic transmission/reception function) : 1 channel 3-wired serial I/O/UART mode (on-chip time division transfer function) selectable : 1 channel					
Timer		16-bit timer/event counter : 1 channel 8-bit timer/event counter : 2 channels Watch timer : 1 channel Watchdog timer : 1 channel					
Timer output		3 (14-bit PWM output capable: 1)					
Clock output		19.5 kHz, 39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz, 1.25 MHz, 2.5 MHz, 5.0 MHz (main system clock: at 5.0-MHz operation) 32.768 kHz (subsystem clock: at 32.768-kHz operation)					
Buzzer output		1.2 kHz, 2.4 kHz, 4.9 kHz, 9.8 kHz (main system clock: at 5.0-MHz operation)					
Vectored-interrupt Maskable		Internal: 13, External: 7					
source Non-maskable		Internal : 1					
Software		1					
Test input		Internal: 1, External: 1					
Power supply	voltage	V _{DD} = 1.8 to 5.5 V					
Operating amb	pient temperature	$T_A = -40 \text{ to } +85^{\circ}\text{C}$					
Package		• 80-pin plastic QFP (14 × 14 mm, resin thickness 2.7 mm) • 80-pin plastic QFP (14 × 14 mm, resin thickness 1.4 mm) • 80-pin plastic TQFP (fine pitch) (12 × 12 mm)					

- Notes 1. The flash memory capacity can be changed with the memory size switching register (IMS).
 - 2. The internal expansion RAM capacity can be changed with the internal expansion RAM size switching register (IXS).
 - 3. Under planning

PIN CONFIGURATION (Top View)

- 80-pin plastic QFP (14 \times 14 mm, resin thickness 2.7 mm) μ PD78F0058GC-3B9
- 80-pin plastic QFP (14 \times 14 mm, resin thickness 1.4 mm) μ PD78F0058GC-8BT^{Note}
- 80-pin plastic TQFP (fine pitch) (12 \times 12 mm) μ PD78F0058GK-BE9

Note Under planning

Cautions 1. Connect the $\ensuremath{\mathsf{VPP}}$ pin directly to $\ensuremath{\mathsf{Vss}}$ in normal operation mode

2. Connect the AVss pin to Vsso.

Remark When the μPD78F0058 is used in application fields that require reduction of the noise generated from inside the microcontroller, the implementation of noise reduction measures, such as supplying voltage to V_{DD0} and V_{DD1} individually and connecting V_{SS0} and V_{SS1} to different ground lines, is recommended.

A8-A15 : Address Bus PCL : Programmable Clock

AD0-AD7 : Address/Data Bus $\overline{\text{RD}}$: Read Strobe

ANI0-ANI7 : Analog Input RESET : Reset

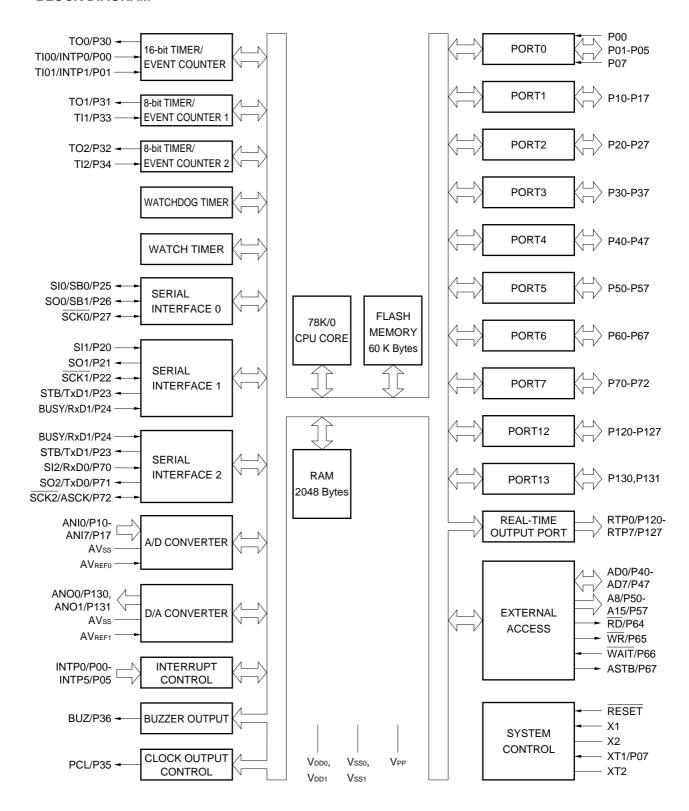
ANO0, ANO1: Analog Output RTP0-RTP7: Real-Time Output Port

ASCK: Asynchronous Serial Clock RxD0, RxD1: Receive Data

ASCK : Asynchronous Serial Clock RxD0, RxD1 : Receive Data
ASTB : Address Strobe SB0, SB1 : Serial Bus

AVss : Analog Ground SI0-SI2 : Serial Input
BUSY : Busy SO0-SO2 : Serial Output

BUZ : Buzzer Clock STB : Strobe
INTP0-INTP6 : Interrupt from Peripherals TI00, TI01 : Timer Input
P00-P05, P07 : Port0 TI1, TI2 : Timer Input


P40-P47 : Port4 VPP : Programming Power Supply

P70-P72 : Port7 $\overline{\text{WR}}$: Write Strobe

P120-P127 : Port12 X1, X2 : Crystal (Main system Clock)
P130, P131 : Port13 XT1, XT2 : Crystal (Subsystem Clock)

BLOCK DIAGRAM

CONTENTS

1.	DIFFERENCES BETWEEN MPD78F0058 AND MASK ROM VERSIONS	9
2.	PIN FUNCTIONS	10
	2.1 Port Pins	10
	2.2 Non-Port Pins	
	2.3 Pin I/O Circuits and Recommended Connection of Unused Pins	14
3.	MEMORY SIZE SWITCHING REGISTER (IMS)	18
4.	INTERNAL EXPANSION RAM SIZE SWITCHING REGISTER (IXS)	19
5.	FLASH MEMORY PROGRAMMING	
	5.1 Selection of Transmission Method	
	5.2 Function of Flash Memory Programming	
	5.3 Connection of Flashpro	22
6.	PACKAGE DRAWINGS	24
ΑP	PPENDIX A. DEVELOPMENT TOOLS	27
ΔΡ	PPENDIX B RELATED DOCUMENTS	29

1. DIFFERENCES BETWEEN μ PD78F0058 AND MASK ROM VERSIONS

The μ PD78F0058 is a product provided with a flash memory which enables on-board reading, erasing, and rewriting of programs with device mounted on target system. The functions of the μ PD78F0058 (except the functions specified for flash memory and mask option of P60 to P63 pins) can be made the same as those of the mask ROM versions by setting the memory size switching register (IMS) and internal expansion RAM size switching register (IXS).

Table 1-1 shows the differences between the flash memory version (μ PD78F0058) and the mask ROM versions (μ PD780053, 780054, 780055, 780056, and 780058).

Table 1-1. Differences between μ PD78F0058 and Mask ROM Versions

Item	μPD78F0058	Mask ROM Versions
Internal ROM structure	Flash memory	Mask ROM
Internal ROM capacity	60 Kbytes	μPD780053 : 24 Kbytes μPD780054 : 32 Kbytes μPD780055 : 40 Kbytes μPD780056 : 48 Kbytes μPD780058 : 60 Kbytes
Internal expansion RAM capacity	1024 bytes	μPD780053 : None μPD780054 : None μPD780055 : None μPD780056 : None μPD780058 : 1024 bytes
Internal ROM capacity changeable/not changeable with memory size switching register (IMS)	Changeable ^{Note 1}	Not changeable
Internal expansion RAM capacity changeable/not changeable with internal expansion RAM size switching register (IXS)	Changeable ^{Note 2}	Not changeable
IC pin	Not provided	Provided
V _{PP} pin	Provided	Not provided
P60 to P63 pin mask option with internal pull-up resistors	Not provided	Provided

Notes 1. Flash memory is set to 60 Kbytes by RESET input

2. Internal expansion RAM is set to 1024 bytes by RESET input.

Caution The noise resistance and noise radiation differ between flash memory versions and mask ROM versions. When considering the replacement of flash memory versions with mask ROM versions in the process from trial manufacturing to mass production, adequate evaluation should be carried out using CS products (not ES products) of mask ROM versions.

Remark Only the μ PD780058 and 78F0058 are provided with IXS.

2. PIN FUNCTIONS

2.1 Port Pins (1/2)

Pin Name	I/O		After Reset	Alternate Function	
P00	Input	Port 0	Input only	Input	INTP0/TI00
P01	I/O	7-bit input/output port.	Input/output can be specified bit-wise.	Input	INTP1/TI01
P02			When used as an input port, an internal pull-up resistor can be connected by		INTP2
P03			software.		INTP3
P04					INTP4
P05					INTP5
P07Note 1	Input		Input only	Input	XT1
P10-P17	I/O	Port 1 8-bit input/output port. Input/output can be spec When used as an input connected by software.	port, an internal pull-up resistor can be	Input	ANIO-ANI7
P20	I/O	Port 2		Input	SI1
P21		8-bit input/output port.	ette al letraceta		SO1
P22		Input/output can be spectified When used as an input	port, an internal pull-up resistor can be		SCK1
P23		connected by software.			STB/TxD1
P24					BUSY/RxD1
P25					SI0/SB0
P26					SO0/SB1
P27					SCK0
P30	I/O	Port 3		Input	TO0
P31		8-bit input/output port. Input/output can be spec	rified hit-wise		TO1
P32			port, an internal pull-up resistor can be		TO2
P33]	connected by software.			TI1
P34					TI2
P35					PCL
P36					BUZ
P37					_

- **Notes 1.** When using P07/XT1 pin as an input port, set 1 to the bit 6 (FRC) of the processor clock control register. Do not use the feedback resistor of the subsystem clock oscillator.
 - 2. When using P10/ANI0 to P17/ANI7 pins as analog inputs of A/D converter, the internal pull-up resistor is automatically set unused.

2.1 Port Pins (2/2)

Pin Name	I/O	Func	After Reset	Alternate Function		
P40-P47	I/O	When used as an input port, an internation	bit input/output port. put/output can be specified in 8-bit units. hen used as an input port, an internal pull-up resistor can be			
P50-P57	I/O	Port 5 8-bit input/output port. LED can be driven directly. Input/output can be specified bit-wise. When used as an input port, an internationnected by software.	output can be specified bit-wise. used as an input port, an internal pull-up resistor can be			
P60	I/O	Port 6	N-ch open drain input/output	Input	_	
P61		8-bit input/output port.	port. LED can be driven			
P62		Input/output can be specified bit-wise.	directly.			
P63						
P64			When used as an input port,	Input	RD	
P65			an internal pull-up resistor can		WR	
P66			be connected by software.		WAIT	
P67					ASTB	
P70	I/O	Port 7		Input	SI2/RxD0	
P71		3-bit input/output port. Input/output can be specified bit-wise. When used as an input port, an internal	al null-un recistor can be		SO2/TxD0	
P72		connected by software.	ai puil-up resistor carr be		SCK2/ASCK	
P120-P127	I/O	Port 12 8-bit input/output port. Input/output can be specified bit-wise. When used as an input port, an internacionnected by software.	Input	RTP0-RTP7		
P130, P131	I/O	Port 13 2-bit input/output port. Input/output can be specified bit-wise. When used as an input port, an internationnected by software.	Input	ANO0, ANO1		

2.2 Non-Port Pins (1/2)

Pin Name	I/O	Funciton	After Reset	Alternate Function
INTP0	Input	External interrupt request input by which the effective edge (rising	Input	P00/TI00
INTP1		edge, falling edge, or both rising edge and falling edge) can be		P01/TI01
INTP2		specified.		P02
INTP3				P03
INTP4				P04
INTP5				P05
SI0	Input	Serial interface serial data input.	Input	P25/SB0
SI1				P20
SI2				P70/RxD
SO0	Output	Serial interface serial data output.	Input	P26/SB1
SO1				P21
SO2				P71/TxD
SB0	I/O	Serial interface serial data input/output.	Input	P25/SI0
SB1				P26/SO0
SCK0	I/O	Serial interface serial clock input/output.	Input	P27
SCK1				P22
SCK2				P72/ASCK
STB	Output	Strobe output for serial interface automatic transmission/reception.	Input	P23/TxD1
BUSY	Input	Busy input for serial interface automatic transmission/reception.	Input	P24/RxD1
RxD0	Input	Serial data input for asynchronous serial interface.	Input	P70/SI2
RxD1				P24/BUSY
TxD0	Output	Serial data output for asynchronous serial interface.	Input	P71/SO2
TxD1				P23/STB
ASCK	Input	Serial clock input for asynchronous serial interface.	Input	P72/SCK2
TI00	Input	External count clock input to 16-bit timer (TM0).	Input	P00/INTP0
TI01		Capture trigger signal input to capture register (CR00).		P01/INTP1
TI1		External count clock input to 8-bit timer (TM1).	-	P33
TI2		External count clock input to 8-bit timer (TM2).	-	P34
ТО0	Output	16-bit timer output (shared with 14-bit PWM output).	Input	P30
TO1		8-bit timer output.		P31
TO2				P32
PCL	Output	Clock output (for trimming of main system clock and subsystem clock).	Input	P35
BUZ	Output	Buzzer output.	Input	P36
RTP0-RTP7	Output	Real-time output port to output data in synchronization with triggers.	Input	P120-P127
AD0-AD7	I/O	Lower address/data bus for extending memory externally.	Input	P40-P47
A8-A15	Output	Higher address bus for extending memory externally.	Input	P50-P57
RD	Output	Strobe signal output for read operation of external memory.	Input	P64
WR		Strobe signal output for write operation of external memory.	Input	P65

2.2 Non-Port Pins (2/2)

Pin Name	I/O	Funciton	After Reset	Alternate Function
WAIT	Input	Inserting wait for accessing external memory.		P66
ASTB	Output	Strobe output which externally latches address information output to port 4 and port 5 to access external memory.	Input	P67
ANI0-ANI7	Input	A/D converter analog input.	Input	P10-P17
ANO0, ANO1	Output	D/A converter analog output.	Input	P130, P131
AV _{REF0}	Input A/D converter reference voltage input (shared with analog power supply).		_	-
AV _{REF1}	Input	D/A converter reference voltage input.	_	-
AVss	_	A/D converter ground potential. Voltage equal to Vsso.		-
RESET	Input	System reset input.	_	_
X1	Input	Connecting crystal resonator for main system clock oscillation.	_	_
X2	-		_	_
XT1	Input	Connecting crystal resonator for subsystem clock oscillation.	Input	P07
XT2	_		_	_
V _{DD0}	-	Positive power supply voltage for ports.	_	_
Vsso	-	Ground potential of ports.	_	_
V _{DD1}	_	Positive power supply (except ports and analog parts).	_	_
Vss1	-	Ground potential (except ports and analog parts).	_	_
V _{PP}	-	Applying high-voltage for program write/verify. Connected directly to Vsso in normal operation mode.	_	_

2.3 Pin I/O Circuits and Recommended Connection of Unused Pins

Table 2-1 shows the I/O circuit type of each pin and the recommended connection of unused pins. For the configuration of each I/O circuit type, refer to Figure 2-1.

Table 2-1. I/O Circuit Type of Each Pin (1/2)

Pin Name	I/O Circuit Type	I/O	Recommended Connection when Not Used
P00/INTP0/TI00	2	Input	Connected to Vsso.
P01/INTP1/TI01	8-C	I/O	Independently connected to Vsso through a resistor.
P02/INTP2			
P03/INTP3			
P04/INTP4			
P05/INTP5			
P07/XT1	16	Input	Connected to VDD0.
P10/ANI0-P17/ANI7	11-D	I/O	Independently connected to VDD0 or VSS0 through a resistor.
P20/SI1	8-C		
P21/SO1	5-H		
P22/SCK1	8-C		
P23/STB/TxD1	5-H		
P24/BUSY/RxD1	8-C		
P25/SI0/SB0	10-B		
P26/SO0/SB1			
P27/SCK0			
P30/TO0	5-H		
P31/TO1			
P32/TO2			
P33/TI1	8-C		
P34/TI2			
P35/PCL	5-H		
P36/BUZ			
P37			
P40/AD0-P47/AD7	5-N		Independently connected to VDD0 through a resistor.
P50/A8-P57/A15	5-H		Independently connected to VDDO or VSSO through a resistor.
P60-P63	13-K		Independently connected to VDD0 through a resistor.
P64/RD	5-H		Independently connected to VDDO or VSSO through a resistor.
P65/WR			
P66/WAIT			
P67/ASTB			
P70/SI2/RxD0	8-C		
P71/SO2/TxD0	5-H		
P72/SCK2/ASCK	8-C		
P120/RTP0-P127/RTP7	5-H		
P130/ANO0, P131/ANO1	12-C		Independently connected to Vsso through a resistor.

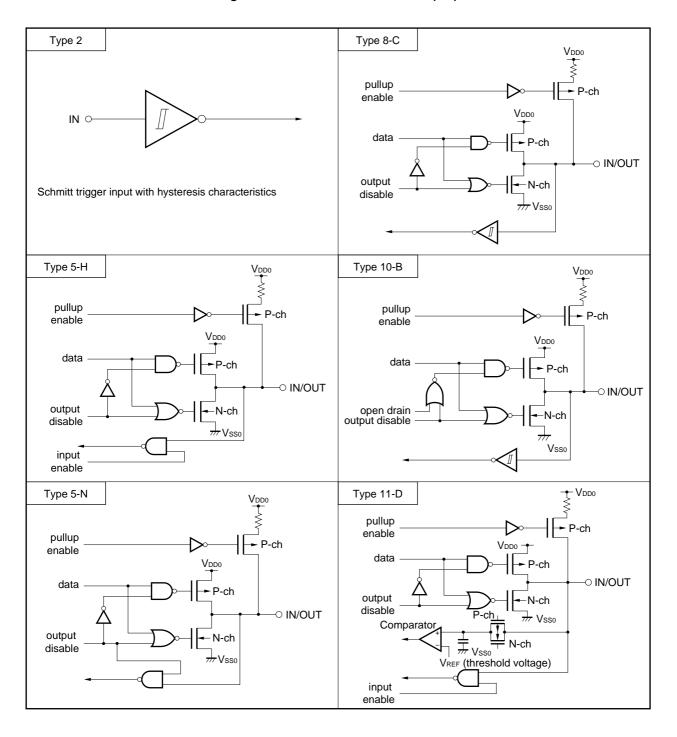


Table 2-1. I/O Circuit Type of Each Pin (2/2)

Pin Name	I/O Circuit Type	I/O	Recommended Connection when Not Used
RESET	2	Input	_
XT2	16	-	Open
AV _{REF0}	_		Connected to Vsso.
AVREF1			Connected to VDDO.
AVss			Connected to Vsso.
VPP			Connected directly to Vsso.

Figure 2-1. List of Pin I/O Circuits (1/2)

▼ V_{DD0} Type 12-C Type 16 feedback cut-off pullup enable P-ch V_{DD0} P-ch data -○ IN/OUT output disable -N-ch Vsso input enable Analog output voltage XT1 XT2 N-ch ₩ Vsso Type 13-K -○ IN/OUT data N-ch output disable V_{DD0} RD P-ch Medium breakdown input buffer

Figure 2-1. List of Pin I/O Circuits (2/2)

3. MEMORY SIZE SWITCHING REGISTER (IMS)

This register sets a part of internal memory unused by software. The memory mapping can be made the same as that of mask ROM versions with different types of internal memory (ROM and RAM) by setting the memory size switching register (IMS).

The IMS is set with an 8-bit memory manipulation instruction.

RESET input sets the IMS to CFH.

Symbol 3 2 1 0 Address At reset R/W IMS RAM2 RAM1 RAM0 ROM3 ROM2 ROM1 ROM0 0 FFF0H CFH R/W ROM3 ROM2 ROM1 ROM0 Selection of Internal ROM Capacity 1 0 1 0 24 Kbytes 1 0 0 32 Kbytes 1 0 1 0 40 Kbytes 48 Kbytes 1 1 0 0 56 Kbytes^{Note} 1 1 1 60 Kbytes 1 Others Setting prohibited RAM2 RAM1 RAM0 Selection of Internal High-speed RAM Capacity 1 1024 bytes Others Setting prohibited

Figure 3-1. Format of Memory Size Switching Register

Note When using external device expansion function, set the internal ROM capacity to less than 56 Kbytes.

Table 3-1 shows the IMS set value to make the memory mapping the same as those of mask ROM versions.

Target Mask ROM Versions	IMS Set Value
μPD780053	C6H
μPD780054	C8H
μPD780055	CAH
μPD780056	ССН
μPD780058	CFH

Table 3-1. Set Value of Memory Size Switching Register

4. INTERNAL EXPANSION RAM SIZE SWITCHING REGISTER (IXS)

This register sets the internal expansion RAM capacity by software. The memory mapping can be made the same as that of mask ROM versions with different types of internal expansion RAM by setting the internal expansion RAM size switching register (IXS).

The IXS is set with an 8-bit memory manipulation instruction.

RESET input sets the IXS to 0AH.

Figure 4-1. Format of Internal Expansion RAM Size Switching Register

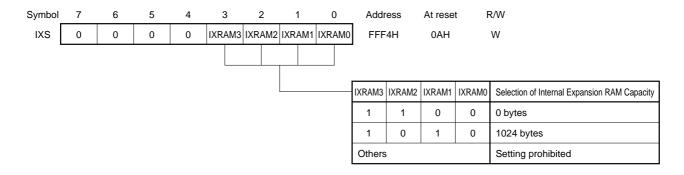


Table 4-1 shows the IXS set value to make the memory mapping the same as those of mask ROM versions.

Table 4-1. Set Value of Internal Expansion RAM Size Switching Register

Target Mask ROM Versions	IMS Set Value
μPD780053	0CH
μPD780054	
μPD780055	
μPD780056	
μPD780058	0AH

Remark Even if a μ PD78F0058 program in which MOV IXS, #0CH is written is executed on the μ PD780055 and 780056, the operation will not be affected.

5. FLASH MEMORY PROGRAMMING

Writing to a flash memory can be performed without removing the memory from the target system (on-board). Writing is performed connecting the dedicated flash programmer (Flashpro) to the host machine and the target system.

Remark Flashpro is a product of Naitou Densei Machidaseisakusho Co., Ltd.

5.1 Selection of Transmission Method

Writing to a flash memory is performed using the Flashpro with a serial transmission mode. One of the transmission method is selected from those in Table 5-1. The selection of the transmission method is made by using the format shown in Figure 5-1. Each transmission method is selected by the number of VPP pulses shown in Table 5-1.

Table 5-1. List of Transmission Method

Transmission Method	Channels	Pin	V _{PP} Pulses
3-wired serial I/O	3	P27/SCK0	0
		P26/SO0/SB1	
		P25/SI0/SB0	
		P22/ SCK1	1
		P21/SO1	
		P20/SI1	
		P72/SCK2/ASCK	2
		P71/SO2/TxD0	
		P70/SI1/RxD0	
UART	2	P71/SO2/TxD0	8
		P70/SI2/RxD0	
		P23/TxD1	9
		P24/RxD1	
Pseudo 3-wired serial I/O ^{Note}	1	P32/TO2 (serial clock input/output)	12
		P31/TO1 (serial data output)	
		P30/TO0 (serial data input)	

Note Serial transmission is performed by controlling the port using software.

Caution Select a communication system always using the number of VPP pulses shown in Table 5-1.

10 V
VPP VDD
VSS

1 2 n

RESET
VSS

VSS

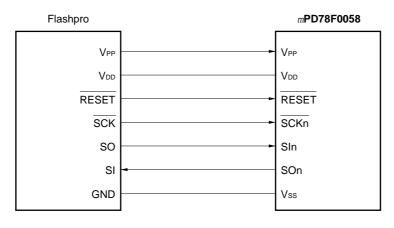
VSS

Figure 5-1. Format of Transmission Method Selection

5.2 Function of Flash Memory Programming

Operations such as writing to a flash memory are performed by various command/data transmission and reception operations according to the selected transmission method. Table 5-2 shows major functions of flash memory programming.

Table 5-2. Major Functions of Flash Memory Programming


Functions	Descriptions
Reset	Used to stop write operation and detect transmission cycle.
Batch verify	Compares the entire memory contents with the input data.
Block verify	Compares the contents of the specified memory blocks with the input data.
Batch delete	Deletes the entire memory contents.
Block delete	Deletes the contents of the specified memory block, setting 16 Kbytes as one memory block.
Convergence	Prevents over-deletion.
Batch blank check	Checks the deletion status of the entire memory.
Block blank check	Checks the deletion status of the specified block.
High-speed write	Performs write to the flash memory based on the write start address and the number of data to be written (number of bytes).
Continuous write	Performs continuous write based on the information input with high-speed write operation.
Status	Used to confirm the current operating mode and operation end.
Oscillation frequency setting	Sets the frequency of the resonator.
Delete time setting	Sets the memory delete time.
Baud rate setting	Sets the transmission rate in transmission using UART system.
Convergence time setting	Sets the correction time in convergence.
Silicon signature read	Outputs the device name and memory capacity, and device block information.

5.3 Connection of Flashpro

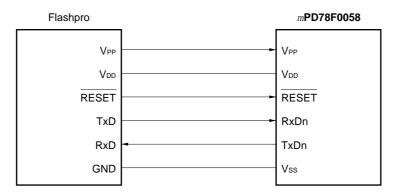

The connection of the Flashpro and the μ PD78F0058 differs according to the transmission method. The connection for each transmission method is shown in Figures 5-2 to 5-4.

Figure 5-2. Connection of Flashpro for 3-wired Serial I/O System

n = 0-2

Figure 5-3. Connection of Flashpro for UART System

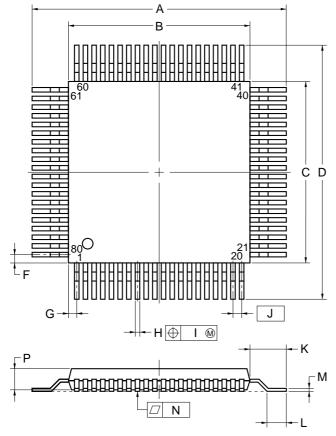
n = 0, 1

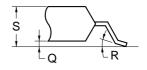
P31 (serial output)

Vss

SI

GND


Figure 5-4. Connection of Flashpro for Pseudo 3-wired Serial I/O System


6. PACKAGE DRAWINGS

80-pin plastic QFP (14 \times 14) (Unit: mm)

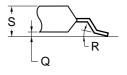
80 PIN PLASTIC QFP (14 · 14)

detail of lead end

NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	17.2±0.4	0.677±0.016
В	14.0±0.2	$0.551^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.2±0.4	0.677±0.016
F	0.825	0.032
G	0.825	0.032
Н	0.30±0.10	0.012+0.004
T	0.13	0.005
J	0.65 (T.P.)	0.026 (T.P.)
K	1.6±0.2	0.063±0.008
L	0.8±0.2	0.031+0.009
М	0.15 ^{+0.10} -0.05	$0.006^{+0.004}_{-0.003}$
N	0.10	0.004
Р	2.7	0.106
Q	0.1±0.1	0.004±0.004
R	5° ±5°	5° ±5°
S	3.0 MAX.	0.119 MAX.
		S80GC-65-3B9-4

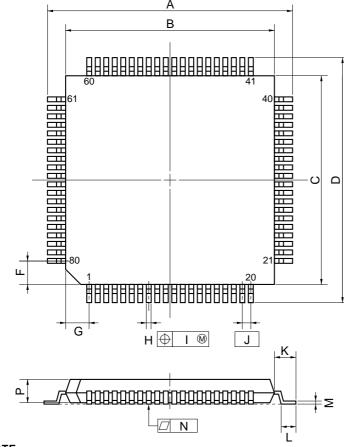

S80GC-65-3B9-4

80-pin plastic QFP (14 \times 14) (Unit: mm)

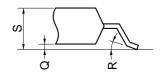
80 PIN PLASTIC QFP (14 · 14)

detail of lead end

NOTE


Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	17.20±0.20	0.677±0.008
В	14.00±0.20	0.551 ^{+0.009} -0.008
С	14.00±0.20	$0.551^{+0.009}_{-0.008}$
D	17.20±0.20	0.677±0.008
F	0.825	0.032
G	0.825	0.032
Н	0.32±0.06	$0.013^{+0.002}_{-0.003}$
- 1	0.13	0.005
J	0.65 (T.P.)	0.026 (T.P.)
K	1.60±0.20	0.063±0.008
L	0.80±0.20	$0.031^{+0.009}_{-0.008}$
М	0.17+0.03	0.007+0.001
N	0.10	0.004
Р	1.40±0.10	0.055±0.004
Q	0.125±0.075	0.005±0.003
R	3°+7°	3°+7°
S	1.70 MAX.	0.067 MAX.


P80GC-65-8BT

80-pin plastic TQFP (fine pitch) (12 \times 12) (Unit: mm)

80 PIN PLASTIC TQFP (FINE PITCH) (\square 12)

detail of lead end

NOTE

Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	14.0±0.2	0.551+0.009
В	12.0±0.2	$0.472^{+0.009}_{-0.008}$
С	12.0±0.2	0.472+0.009
D	14.0±0.2	0.551+0.009
F	1.25	0.049
G	1.25	0.049
Н	0.22 ^{+0.05} -0.04	0.009±0.002
- 1	0.10	0.004
J	0.5 (T.P.)	0.020 (T.P.)
K	1.0±0.2	$0.039^{+0.009}_{-0.008}$
L	0.5±0.2	0.020+0.008
М	$0.145^{+0.055}_{-0.045}$	0.006±0.002
N	0.10	0.004
Р	1.05	0.041
Q	0.05±0.05	0.002±0.002
R	5°±5°	5°±5°
S	1.27 MAX.	0.050 MAX.

P80GK-50-BE9-4

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD78F0058.

Language Processing Software

RA78K/0 ^{Notes 1, 2, 3, 4}	78K/0 Series common assembler package
CC78K/0Notes 1, 2, 3, 4	78K/0 Series common C compiler package
DF780058Notes 1, 2, 3, 4, 8	Device file for μPD780058 Subseries
CC78K/0-LNotes 1, 2, 3, 4	78K/0 Series common C compiler library source file

Flash Memory Writing Tools

Flashpro II (FL-PR2)	Dedicated flash writter Product of Naitou Densei Machidaseisakusho Co., Ltd.
FA-80GCNote 8	Adapter for flash memory writting
FA-80GKNote 8	Product of Naitou Densei Machidaseisakusho Co., Ltd.

Debugging Tool

IE-78000-R	78K/0 Series common in-circuit emulator
IE-78000-R-A	78K/0 Series common in-circuit emulator (for integrated debugger)
IE-78000-R-BK	78K/0 Series common brake board
IE-780308-R-EM	μ PD780308 Subseries common emulation board
EP-780058GC-R ^{Note 8}	Emulation probe for μPD780058 Subseries
EV-9200GC-80	Socket to be mounted on a target system board made for the 80-pin plastic QFP (GC-3B9, GC-8BT type)
EP-780058GK-RNote 8	Emulation probe for μPD780058 Subseries
TGK-080SDW	Adapter to be mounted on a target system board made for the 80-pin plastic QFP (GK-BE9 type) Product of TOKYO ELETECH Corporation Consult NEC sole agent for purchase.
SM78K0Notes 5, 6, 7	78K/0 Series common system simulator
ID78K0Notes 4, 5, 6, 7	Integrated debugger for IE-78000-R-A
SD78K/0 ^{Notes 1, 2}	Screen debugger for IE-78000-R
DF780058Notes 1, 2, 3, 4, 5, 6, 7, 8	Device file for μPD780058 Subseries

- Notes 1. PC-9800 Series (MS-DOSTM) based
 - 2. IBM PC/AT $^{\text{TM}}$ and compatibles (PC DOS $^{\text{TM}}$ /IBM DOS $^{\text{TM}}$ /MS-DOS) based
 - 3. HP9000 Series 300TM (HP-UXTM) based
 - **4.** HP9000 Series 700TM (HP-UX) based, SPARCstationTM (SunOSTM) based, EWS4800 Series (EWS-UX/V) based
 - 5. PC-9800 Series (MS-DOS + WindowsTM) based
 - 6. IBM PC/AT and compatibles (PC-DOS/IBM DOS/MS-DOS + Windows) based
 - 7. NEWSTM (NEWS-OSTM) based
 - 8. Under development

Real-time OS

RX78K/0 ^{Notes 1, 2, 3, 4}	78K/0 Series real-time OS
MX78K0Notes 1, 2, 3, 4	78K/0 Series OS

Fuzzy Inference Development Support System

FE9000 ^{Note 1} /FE9200 ^{Note 5}	Fuzzy knowledge data creation tool
FT9080Note 1/FT9085Note 2	Translator
FI78KNotes 1, 2	Fuzzy inference module
FD78K0Notes 1, 2	Fuzzy inference debugger

- Notes 1. PC-9800 Series (MS-DOS) based
 - 2. IBM PC/AT and compatibles (PC DOS/IBM DOS/MS-DOS) based
 - 3. HP9000 Series 300 (HP-UX) based
 - **4.** HP9000 Series 700 (HP-UX) based, SPARCstation (SunOS) based, EWS4800 Series (EWS-UX/V) based
 - 5. IBM PC/AT and compatibles (PC DOS/IBM DOS/MS-DOS + Windows) based
- Remarks 1. For third party development tools, refer to the 78K/0 Series Selection Guide (U11126E)
 - 2. The RA78K/0, CC78K/0, SM78K0, ID78K0, SD78K/0, and RX78K/0 are used in combination with the DF780058.

APPENDIX B. RELATED DOCUMENTS

Device Related Documents

Document Name		Document No.	
		English	
μPD780058, 780058Y Subseries User's Manual	U12013J	Planned	
μPD780053, 780054, 780055, 780056, 780058 Preliminary Product Information	U12182J	Planned	
μPD78F0058 Preliminary Product Information	U12092J	This manual	
78K/0 Series User's Manual Instruction	IEU-849	IEU-1372	
78K/0 Series Instruction Table	U10903J	_	
78K/0 Series Instruction Set	U10904J	_	

Development Tools Documents (User's Manual)

Document Name		Document No.	
		Japanese	English
RA78K Series Assembler Package	Operation	EEU-809	EEU-1399
	Language	EEU-815	EEU-1404
RA78K Series Structured Assembler Preprocessor		EEU-817	EEU-1402
CC78K Series C Compiler	Operation	EEU-656	EEU-1280
	Language	EEU-655	EEU-1284
CC78K0 C Compiler	Operation	U11517J	U11517E
	Language	U11518J	U11518E
CC78K/0 C Compiler Application Note	Programming Know-how	EEA-618	EEA-1208
CC78K Series Library Source File		EEU-777	_
IE-78000-R		EEU-810	U11376E
IE-78000-R-A		U10057J	U10057E
IE-78000-R-BK		EEU-867	EEU-1427
IE-78308-R-EM		U11362J	U11362E
EP-780058GC-R		Planned	Planned
EP-780058GK-R		Planned	Planned
SM78K0 System Simulator Windows based	Reference	U10181J	U10181E
SM78K Series System Simulator	External Parts User Open Interface Specification	U10092J	U10092E
ID78K0 Integrated Debugger EWS based	Reference	U11151J	_
ID78K0 Integrated Debugger PC based	Reference	U11539J	U11539E
ID78K0 Integrated Debugger Windows based	Guide	U11649J	U11649E
SD78K0 Screen Debugger	Introduction	EEU-852	
PC-9800 Series (MS-DOS) based	Reference	U10952J	_
SD78K/0 Screen Debugger	Guide	EEU-5024	EEU-1414
IBM PC/AT (PC DOS) based	Reference	U11279J	U11279E

Caution The contents of the above related documents are subject to change without notice. The latest documents should be used for design, etc.

Embedded Software Documents (User's Manual)

Document Name		Document No.	
		Japanese	English
78K/0 Series Real-time OS	Basic	U11537J	_
	Installation	U11536J	_
	Technical	U11538J	_
OS for 78K/0 Series MX78K0	Basic	EEU-5010	_
Fuzzy Knowledge Data Creation Tool		EEU-829	EEU-1438
78K/0, 78K/II, 87AD Series Fuzzy Inference Development Support System Translator		EEU-862	EEU-1444
78K/0 Series Fuzzy Inference Development Support System Fuzzy Inference Module		EEU-858	EEU-1441
78K/0 Series Fuzzy Inference Development Support System Fuzzy Inference Debugger		EEU-921	EEU-1458

Other Documents

D	Document No.	
Document Name		English
IC PACKAGE MANUAL	C10943X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grade on NEC Semiconductor Devices	C11531J	C11531E
Reliable Quality Maintenance on NEC Semiconductor Devices	C10983J	C10983E
Electrostatic Discharge (ESD) Test	MEM-539	_
Semiconductor Devices Quality Guarantee Guide	C11893J	MEI-1202
Microcomputer Product Series Guide	U11416J	_

Caution The contents of the above related documents are subject to change without notice. The latest documents should be used for design, etc.

[MEMO]

[MEMO]

[MEMO]

NOTES FOR CMOS DEVICES —

1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 800-366-9782 Fax: 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130 Tel: 253-8311

Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A.

Sao Paulo-SP, Brasil Tel: 011-889-1680 Fax: 011-889-1689

J96. 8

FIP, IEBus, and QTOP are trademarks of NEC Corporation.

MS-DOS and Windows are trademarks of Microsoft Corporation.

IBM DOS, PC/AT, and PC DOS are trademarks of IBM Corporation.

HP9000 Series 300, HP9000 Series 700, and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

SunOS is a trademark of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M4 96.5