Dji”ﬁamlc C

For Rabbit Semiconductor Microprocessors
Integrated C Development System

Function Reference Manual

019-0113 » 040930 - F

Table of Contents

Alphabetical Listing of Dynamic C Functions

Group Listing of Dynamic C Functions

Arithmetic

Bit Manipulation

Character

Data Encryption

Dynamic Memory Allocation
ECC

Error Handling

Extended Memory

Fast Fourier Transforms
File Compression

File System

Floating-Point Math

Global Positioning System
HDLC Protocol (Rabbit 3000)
I/O

I2C Protocol

Interrupts

Low-Level Flash Access
MD5

MicroC/OS-II

Chapter 1: Function Descriptions

Notice to Users

Xiii
Miscellaneous
Multitasking
NAND Flash
Number-to-String Conversion
Partitions
Pulse Width Modulation (Rabbit 3000)
Quadrature Decoder (Rabbit 3000)
Rabbit 3000
Real-Time Clock
Serial Communication
Serial Flash
Serial Packet Driver
SPI
Stdio
String Manipulation
String-to-Number Conversion
System
User Block
Watchdogs

423

Z-World Software End User License Agreement 425

Alphabetical Listing of Dynamic C Functions

Symbols COf_SErAQELS ..ovvvvrrrreeeeeeeeenns 34
COf_SEIAPULCevvrrrreeeeeeneeenns 35
_SysIsSoftResetcccueueee 384 COF_SEIAPULS «vrveeeerereeeereseens 36
XAllOC e 407 COf_SErATEAd wvoveeeeresveeereseen, 37
DG 2 LI 410 COF_SEAWNILE cvvvveererreeereseen, 38
A COf_SErBOELC ..oovvvrrrrereeeneennnns 33
COf_SErBOELS ...occvvvrrrereeeneeenns 34
8BS v, 1 COF_SErBPULC +.vveeereeennnn, 35
ACOS vveeireeeireeesireeesseeesreeenns 2 COf_SErBpULS ...ovvviveiieirinnne 36
o' S 3 cof_serBreadocovvuennnnnnnns 37
O, e 4 cof_SerBWIiteooveveveveeeeennnn. 38
AESIECTYP vvereeeeeeeeeeereereen, 5 cof_SerCgetCcccvvvreeereneeanne 33
AESIecryptStreamcoeen..... 6 cof_SerCgetsccovvvveeeeenerenne 34
AESENCIYPL vveereeeeeeeseereeneeen, 7 cof_SerCputecccvvveeeeeneeenne 35
AESencryptStreamc.eue..... 8 cof_SerCputsccccveeeeeeeeeeenne 36
AESeXpandKeyeovvveeveernennn. 9 cof_serCreadcccveeeeeneeenne 37
AESINItSIeam oeeeeeeeeeeeenin, 10 cof_SerCWIiteocvevevereeeneeennn. 38
BB e 11 cof_SerDQELC ...uvvvrrreeeeeeeenns 33
AS e 12 cof_SerDQELS ...cccvvvereeeeeeeeenne 34
AN e 13 COf_SErDPULCevvvreeeeeeeaeennee 35
A2 e 14 Cof_SerDPULSuvvvereeeeeeeeennns 36
AOF e 15 cof serDreadcoeveveeeennnn. 37
O e 16 cof_serDWIItecceeveverereneennn. 38
GOl e 17 cof_SErEQetC ...cccvvvrreeereneeenne 33
COf_SEIEQELS ..vvvvevrvrrerrssireenn 34
B COf_SEIEPULS ..vvvvevrevreeerniireenn. 36
cof _SerEWriteoeeveveeerenennn. 38
T B — 3
BItRAPOIE +...vvvvoeveeesevee. 20 COf_SEFQRS ..ovvvvvvrrvveennnnas A
BItRAPOt] vvevovverreeerereene 21 COf_SEFPULS ovvvvvvrrvveeennoes 36
BItWIPOME +.vvvoveeevesvoenn. 22 Cof_serfread ..covevvereencnnnenens 37
BItWIPOM «.veeveeeee e, 23 COf_SEPWIIE woovevrerarencnaneress 38
COMPressFileoccvveeerrieeeennnns 39
C COPAUSE ..evvveeareesieesressree e 40
(0/0] 1= = S 40
CalculateECC256vvvvvvnnnen. 24 CORESUME .vovovevvvverereeeeeenns 41
CEIl vt 26 COS e 42
ChkCorrectECC256 25 (00 | T 42
chkHardResetevveeeeeeriennnns 27
ChKSOFtRESEL ...vveeveereeeeceens 27 D
ChKWDTO .o, 28 .
clockDoublerOffoceeen. 29 DecompressHi 1€ o, 43
clockDoubleroncee..... 29 defineErrorHandler 44
CloselnputCompressedFile ... 30 gzlg |\/| Z‘rg
CloseOutputCompressedFile30 Delays;: P
(00] 1o 13 R 31 QY SEC e
cof_pKtXTecaivecccvvvveenn. 31 DERYTICKS oo jg
cof_pktXSendoccvveerriuveenn. 32 Disble HW_WDT ...
cof_seEreadcccvveeeeeneeenne 37
COf_SEIAQELC ..vvvvevrrrieeraireenn. 33
Y Dynamic C Function Reference Manual

E

errlogFormatEntry 51
errlogFormatRegDuUmMp 52
errlogFormatStackDump 53
errlogGetHeaderInfo 49
errlogGetMEeSSage ...vvveeeereennnee 54
errlogGetNthENtryc.vee... 50
errlogReadHeader 54
EXCEPLION covevieeiiiieeeeee e 55
EXIT cerirreiee e e ee e e 56
EXP uunrrrreeeeeneeaanrereeeaaa e 57
F

1= 0 J O 58
fUOSE vevvvieee e 59
{e1= (<Y 60
foreate (FS2) .ovvvvvvvvveeeeeeennnnns 61
foreate unusedvvvveeeeeeeeenns 62
foreate_unused (FS2) veveeeeenne. 63
fdeete vvirniiiiiiiiiiee e, 64
FAEIEE (FS2) wvrvererrereerereeneenns 65
FAIUSH (FS2) ovrverereereeseseeneenns 66
FEECPIX vvrreeeeeeereiiinrreeeeeeeeeians 67
FHECPIXINY veveereeeeiiirreeeee e 68
fftreal .ovvveviei 69
H14== 110 \V A 70
flash_erasechip ...ccovvveeeeeeeeenns 71
flash_erasesectorueeeeeeeeennns 72
flash_gettypeocevvvveeereeerenns 73
T T 1 74
flash_ 180 «vevvereeeereereseeneeen, 75
flash_readsectorcceeeeeeeennns 76
flash_sector2xwindow 77
flash_ WIitesectorvveeeeeeeennns 78
11 oo G 79
111070 [P 80
fopen_rd (FSL) ...ccovvveeereeerenns 81
fopen_rd (FS2) ...ccvvvveeeeeeerennns 82
fOPEN_ W weeeeieiiiiiireeeee e 83
fopen_ wr (FS2) ..ccovvveeeeeeernnne 84
forceSoftRESELeeeeeveveeeeennnee. 85
11157 o [PUUT 86
Fread (FS2) wevvvererereerereeneeenns 87
FIEXP vevrrrreeeeee i 88
fs format (FS1) ..ccovveeereeernnns 89
fs format (FS2) ...covvveeereeerennns 90
fs get_flash IX (FS2) vevvreerennn. 97
fs get IX (FS2) .oovvvrrrerereeernnnns 98
fs get IX_Size (FS2) vuuvereeerennne 99
fs_get_other_Ix (FS2) 100
fs_get_ram Ix (FS2)ee...... 101
fS NIt (FSL) vovvveiiirrreeeeeeeeeinns 91
fS NIt (FS2) vovvveviirrrerereeeeeinns 92

fs_reserve_blocks (FS1) 93

£S 8Bt IX (FS2) wervrrerrereerrenees 102
fs setup (FS2) ..oovvvvrrveeeeennn. 103
fS SYNC(FS2) .ooevvverrrrerenennn. 105
[0 SR 94
£SEK (FSL) «vrrerrerrerrerserresnens. 95
FSEEK (FS2) vererrererrerrerreseens. 96
1S 011 SO 108
FEEIl (FSL) vvrvererrerersereesnennes 106
FEl (FS2) vvrrerererrereereernennes 107
{1007 U 112
fwrite (FS1) .ooooovvvvvrrreneeennn. 110
fwrite (FS2) .ovevvvvvecrrreeeeennn. 111
G

QELCHAN wevveeeiiiiee e 113
(0= (v (o 114
getdivider19200ceeeeeennes 115
0= TSRS 116
GetVectExtern2000 117
GetVectExtern3000 118
GetVectinterneeeeeeeeeneneee. 119
gps_get_position 120
OPS_ 0t ULC .vvvveeeeeiiieeeenee 121
gps_ground_distance 122
H

(07270101070) D QR 123
hannrealcccoeeecveeeeeiinenn. 124
HDLCAropX ..eeeeeeeeereiennnnne. 125
HDLCEITorX ...occvveeeeeivveeennns 126
HDLCOPENX vvvveeeeeeeeeinnnnnie. 127
HDLCPEEKX cvrvvvvereeerereens 128
HDLCreceiveXccevvveeenns 129
HDLCsendingXcoeevvnee. 131
HDLCsendX ..coovevvvenierinennnns 130
hItWd e 131
11107 R 132
I

i2c_check_acKcooveverererennn. 144
12C NIt voeeeeeie, 145
i2c read charceeeeeennn. 145
i2¢_send_acK ...eeeeeeerrieinnnnee. 146
i2¢_send NaK ...eeeeeeeeeeennnee. 146
12C_Start_ tX vovveeereieiiieiireeennn, 147
I12C_Startw tX ...eeeeeeeeeeeennnee. 148
12C_StOP X evvrereeeeeeeiennnne 149
i2c_write charceeeeeeeuenneee. 149
INterValMS ...vvveeeeeeeeeeiinnee. 133
INtErValSEC .uvvveeeeeereeeiennnee. 133
INterval TicK .uvveeeeeeeeeeiennnnee. 134
IPrES vvveeeevrireeeeesieee e e 134

Dynamic C Function Reference Manual

IPSEL weveeeriiicrrrrreee e e e e e eannnees 135 nf_getPageCount 172
ISAlNUM oo 135 nf_getPageSize ...eveeeeeeennnnee. 173
iSAlPha ..oovvecrrreeeeee e, 136 Nf_iNitDEVICe .vvveeeeeerriennnee. 174
1< ei0 11 { IO 136 Nf_INIDIVEr wuvveeeeeeeeeieinnee, 176
ISCODONE ...evvvrveeeeeererennnne 137 nf_isBusyRBHW 177
iISCORUNNING .vvvveeeeeeeerinnnnie 137 Nf_iSBUSYSLALUS veveeeerrrnnnnnee. 178
ISAIGIt vevereieirrreeeeeeeeeeennnee 138 Nf_readPagevveeeeeeeeieennnnee. 179
ISOraph vovvevecrrrreeeee e 139 Nf_WItePage ..vvveeeeeeeeiennnee. 180
ISIOWEN evveeiiee e 139
1o 10| TR 140 O
ISPUNCL «ocrenacmensasninannanscsenns 141 OpenlnputCompressedFile181
ISPACE -oovvvrerrerrirreeeens 140 OpenOutputCompressedFile ..182
ISUPDE o 142 OS ENTER_CRITICAL 183
ISXAIGIL oo 142 OS EXIT_CRITICAL 183
oY= 143 OSFIAGACCEDL wvvvorverrreee. 184
K OSFIagCreate ...veveevevveeeernnne 186
OSFIQDE .o 187
KBNIt v 150 OSFlagPendcccevvveeeernne 188
OSFIaQPOSt ..o 190
L OSFIagQUETY ..vvvveeireeeeernne 191
1ADS oo 150 OSINIt ceiiiiiii e, 192
XD oevveeee oo 151 OSMbBOXACCEPL .oevvvvvveeeenene 192
0 wvveeeereeeeeeeeeeeeeeeeeeeee 151 OSMDOXCreateceeeeeeeennnns 193
[og 10 oo 152 OSMbOXDEccvveniiiinenen, 194
[ong J 11/ S TTTTTT TR 152 OSMboxPendccoeevenvnen. 195
100PERT .o, 153 OSMbOXPOStceveviniiienrnnen, 196
OODINIE +vvveeveeeeerreeserr, 153 OSMbOXPOStOPLvveveernnee 197
T 154 OSMbBOXQUENY .eeeeevreeeennie 198
toa ... 154 OSMemMCreateueeeeeeeennnns 199
[OBN oo 155 OSMEeMGEL ...cvcvviinieieienens 200
IX_FOMMEL +evvvreeeereeesersesenene. 156 OSMemPUtcccvevviiiiieens 201
OSMEMQUENY evvveererrereernne 202
M OSMUtEXACCEPL voovvvvvereennne 203
rir_CreaePation157 R
mbr_EnumbDrive 158 OSMULEXPENT oo 206
mbr_FormatDrive 159 OSMUEXPOSE ... 207
mbr_MountPartition 160 OSMUEXQUENY ervrereereereene. 208
mbr_UnmountPartition 161 OSQACCERL evvveeeeenrreeaeennne 209
mbr_ValidatePartitions 162 OSQCTERE «.vrvvererererereeenen. 210
Md5_appendcceeeueune, 163 OSODE e 211
md5_finish ...ccccceeeeeeriennnee. 164 OSQFIUSN e, 212
MA5_iNi cooeiieeeeee e 163 OSOPENd e, 213
MEMCHr ..o e e 164 OSOPOSt vereveeereeereerrenen. 214
MEMCMP .eeevrieeeeeeeeeeneeee 165 OSQPOSLFIONt .o, 215
MEMCPY wevrvrerrerrvrneesssnnennas 166 OSQPOSIOPL vrvveeeereerrereene. 216
MEMMOVE ...eevvrreeeeeeeeeennnnne 167 OSQQUETY vrrereeereereerrereene. 217
MEMSEL oot 167 0SSchedl 0cK oo 218
MKEME .oovviieeeee e e 168 0SSchedUnlock e 218
MKEM e, 169 OSSEMACCEDL ...ovvvereerenens 219
110 | 170 OSSEMCIEEE oo 220
N OSSemPendccvvvvenvennennen. 221
OSSEMPOStvvveeeenrreeaennne 222
nf_eraseBIOCKccccvrervennns 171 OSSemQuEryoooviiiiiiins 223
vii Dynamic C Function Reference Manual

OSSetTickPerSec ..ovvvvvveeeennns 224

OSStart ..veereeerreenreesreenneens 224
OSStatINit +eeveerreerneeeeeereens 225
OSTaskChangePrio 225
OSTasKCreateccceveveeerunen. 226
OSTaskCreateExt 227
OSTaskCreateHooK 228
OSTaskDEoccveereeraeenrennns 229
OSTaskDEIHOOKccuvveeneiee. 230
OSTaskDERE] ...covvvraneenennns 231
OSTaskldIEHOOKvveenene. 232
OSTaskQUENY ...uvvrrreeereeerenns 232
OSTaskRESUMEccvuveeerenen. 233
OSTaskStatHOOK ...ecvvveeneiee. 233
OSTaskStkChKcvevniennnen. 234
OSTaskSuspend 235
OSTaskSWHOOKeeevreeennnes 236
OSTCBINItHOOK ...vvveveeeennne. 236
OSTIMEDIY .evvvveeiirieneeenne 237
OSTimeDIyHMSM 238
OSTimeDlyResume 239
OSTimeDIYSEC ...ccevvvereennne 240
OSTIiMeGEL ...c.oevvviviiniiennnen, 241
OSTIimeSet ...cvvvvvvieiiiniiennnen, 241
OSTIMETICK .uvvveeeeeurreeaennne. 242
OSTimeTickHOOK 242
OSVErSION ...coccuurvrreeeeaaeeenns 243
OULCHIS weveeeeeeeciiireee e e e 243
OULSET evvveeeeeerreeeeecirreeee e 244
p

02216 o | SRR 245
PaddrDS ... 246
PadarSScceeeeeieeeeeeen. 247
022 oo PR 248
palloc_fast ..cceevvrieveeeiiiinnenn. 249
02z Yz | PSR 250
pavail_fast ...cccceeviveeeniinnenn. 251
PCAIOC wevveveriireiiiieee e 252
(011 PSR 253
Pfirst_fast .ooceeeevrcveeneiinnnnn. 254
PITEE e 255
pfree fast ..occcvevvvieeeniiinenn, 256
PAWM v 257
PKEXCIOSE .vvvvereviireeeeeiveenns 258
PKEXQELEITOrS vovvvvveee e 258
PKEXiNItBUFfErscuvveeeeieeenn. 259
PKEXOPEN . 260
PKEXTECBIVE .vvvvvvrireeeeiireenn. 262
PKEXSEND .vvvveee e 263
PKEXSENAiNG .vvvvvvrveeeneeiveenn. 264
PKEXSEPALY .ovvvvvveeeriiveenn. 264
[0 'S SRR 265
plast_fast ...ccceeeeeriveeeeiinnenn. 266

PMOVEDEIWEEN ..eeeveerrrnnnnee. 267
pmovebetween fast 269
011 ORI 270
PNEXE weverereeeiiirrrreeeeeeeesenanns 271
PNEXt_fast ..ccovvreeeeeeereieinnne 272
POIY trreeeieeeeeeeirrreeee e e e e e 273
pool_appendcceeeereennnnee. 274
POOL NIt .evvecrrreeeeeeeeeeennnne 275
POOL_IINK ovecvrreeeeee e 276
pool_Xappendcoeennee. 277
POOL_XiNit vovervreeeeeeereieinnnne 278
POW 1rveeereeereesrrrreeeeeeesssnnnns 279
POWLO0 cevveeeeeiiiirreeeeeeeeeeeanns 279
POWErSPECEIUM vvvvreerernnnnee. 280
PPIEV evvveeeirrreeeeesireeeeesnnes 281
pPrev_fast ..ocveeeeeiieeeeiiieenn, 282
PrEMain .oveveeeeeeeeireeeeesveeeas 283
Preorder ..ooovveeeeeeueeeesesvneens 284
(0134 PR 286
PULCNAN ©evveievieeeesieeee e e 292
PULS +veveeeeeesnrreeesesineeeesssnes 293
PWIML_INIE oo 293
PWIM_SEL oeveeeeeeieeee e 294
(016 1 oo PR 295
pxalloc_fastecovcveeeiiinnenn. 296
PXCAIOC vovverveeeeriieee e e 297
(O 1= TR 298
PXFIrst_fasteeeevcveenesinnen. 299
PXFTEE wvvveveiiiieee e 300
pxfree fast ..ccccveecveeneiinnenn. 301
(O 'S SRR 302
pxlast_fast ..eeeeerieeeneiiineenn. 303
PXNEXL ©vvvveeiirreeesesreeeesssees 304
PXNEXE_faSt .uvvvreirireeeeiiveennn 305
[0V PR 306
PXPrev_fastoveevcveeeeiinnenn. 307
Q

(0 o = (o SRR 308
(o o I 1 1 R 309
(0 /o 7= o IR 309
(00 [(o NS 310
(050 4 USRI 311
R

£ ISR 312
FANG weeeiiree e 313
(£-1210 o RO URRR 313
(121010 [« H TR 314
RAPOIME ..oevveveeeieeesiee s 314
RAPOI vveeveeveeeveesiee s 315
(=510 [(oJPPP TR 317
read rc 32kHzccuueee. 317
ReadCompressedFile 316

Dynamic C Function Reference Manual

readUserBlockArray 319 SErCPEEK wovvviricrrrrieee e e 332
RES cooiieieeicrrrreeee e 321 SEFCPULC covveeerenrrrreeeeeeeeeians 333
FES trrrereeereiesrrreeeeeeesesennnnrens 320 SEFCPULS ovveeerenrrrreeeeeeeeennns 334
RESStEITOrLog .vveeeeeererennnnnee. 322 SerCrdFlUSh ..ovcvvvveeeeeeeeeees 335
FOOL2XMEM ..vevuveeerveeesareenns 322 SEICIAdFre. «.ovvvevveeerveeenien 335
MC_tiMEZONE ..vvveeeeeerereinnnnee. 323 SerCrdusedcccvvvvveeeeeeeeenns 336
(V17 (oo H PRSP 324 SEICread ..oevvveeerireeesreeenien 337
S SErCWIFIUSN .o 338
SETCWIFTE. ..uvvverreeevveee e 338
S S7AYe [0/ R 325 SICWIIE oo 339
SETACABDILS ©vvvvrersvevrrrnee 325 SEDAOSE :vvvvvesvvvvsevves 325
serAflowcontrol Off 326 SrDUABNIS ..o 325
serAflowcontrolOn 327 serDflowcontrolOff 326
SETAQELC vt 328 serDflowcontrolon ggg
(S 150 = (o
B BRI — 329
; S 1 D]0] o< o H
gﬁgik'ty_:::::::::::::::::::::::::::gg% SDPAITNY cvrrvvvrrrsserressree 331
SEIAPULC .evveeeerireeeessireeeeeans 333 SADPEEK oo 332
SETADULS +eorrveereeeeeeeseeeeeene 334 SEIDPULC vevvevrrreeeeireee e e 333
SATAEIUSA o 335 SEIDPULS vevveveereeeeeiireee e 334
SerArdFreeceeeeveciieeeenn. 335 SerDraFIush ..o 335
SEATAUSE .o 336 SIDIUFIER wovvvvvvnvsnsssssesenene ggg
S STAN (="' I 337 SerDrUsed ...
SAWIEIUS oo 338 serDread ...oovevvieviviieiieiee, 337
SEAWIFTEE .ooeeeeeeiieeeeee, 338 SerDWIHUSH oo 338
SEAWNTE weveeeieee e ceveeeeeaen. 339 SEDWIFTEE oo 338
SEBClOSE uvveeieeeeeiiveeeee, 325 SErDWIE oo 339
erBdatabits ... 305 SErEClOSe v 325
$r.Bﬂ OWCOﬂtI’OlOff 326 wEdatab| IS i 325
SerBflowcontrolon ... 327 serEflowcontrol Off 326
SEBUELC voveeereeiee e 328 serEflowcontrolon ggg
SErEQELC .vveiiieeeeee e
Bt oo e pu— 329
; S § =l0] o< o IR
ﬁgg?reek'ty_j:jjj:jj::j:j:j:j:j:j:j:j:j% STEPANLY cvrrvvvrrssserressnen 331
SEIBPULC .evvevevrnereeeeeriieeeeanns 333 STEPERK oo 332
SEBPULS +evrvvereeeeeesreeeeeee 334 SEIEPULC vevvevivveeeeeirieee e 333
SBrdelush o 335 SEEPULS vevvevevieeeeeivieee e 334
SErBrdFree ..ooveeeeeveenieeeen. 335 SrErdFIUsh oo 335
SErBIAUSED «ovvvvvrrsvevrresnee 336 SEIETUFIBE wovvvesvvvvees s o
S =T0=": o I 337 SerErdUsed ..o
SEBWIEIUS oo 338 serEread ...oovvvviiiiiiiiiieiee, 337
SErBWIFIEe ..oooeeevvniieeeeen. 338 SErEWIHIUSN oo 338
SEBWIE wvveeeeeeeeeceieeeeee, 339 STEWIFIEe v, 338
wrcdose ..o 305 SErEWNILe woeeeeiciiieeeee e, 339
erCdatabits ..o 305 SErFClOse oo 325
Hcﬂ OWCOﬂtI’OlOff 326 deatab”S 325
SerCflowcontrolon ... 37 serFflowcontrol Off 326
SEICQELC vovveeereerreevreesree e 328 serFfloweontrolon ggg
SErCEtEITOr ovvvveeeeiiiieeeenns 329 SETFQEIC wovvncnniiiiene,
SrCheckPaity vvevorveeon. 324 SErFQEtEITOr evvvveeeeivieee e 329
SErCOPEN .vvvveerireeeeesiireeeennns 330 SETFOPEN wvvvncmniiiieneens 330

iX Dynamic C Function Reference Manual

SEFPEEK wrvveeeieeeeeiccrreeeeeen, 332
SEFPULC wrvveeereeeeeiiirreeeeeen, 333
SEFPULS wrvveeeeeeeeeieinrreeeeean, 334
SerFrdFIush .oooceveeee e 335
SErFrdFree ..ooovvcveeeeeciieeeeens 335
serFrdusedccceeeeeviieeeens 336
SR (=0 [337
SerFWIFIUSh ., 338
SErFWIFIEE .oovvceveeeeecciiieeeeas 338
SEIFWIILE wvvveeeeiieeeeeecieeeeeans 339
(S = L 341
S e 340
Set32KHzZDividercccvveeennn. 342
setClockModulation 343
S 11110 JUURRR 344
SetVectExtern2000 345
SetVectExtern3000 346
SetVectinterncccceeeeeeeenns 347
sf_getPageCount 349
Sf_getPageSIizecvveviuveeeens 349
T 350
Sf_initDevicecceecuvvvveeennnn. 351
SEISWIItING vovveveeeeeiiiieeeens 352
Sf_pageTORAM ...cceevvuvveeens 352
St RAMTOPAGE ..evvvrrnvreennnns 353
sf_readDeviceRAM 354
Sf_readPagecccceeerivieennnns 355
sf readRAMccccvvveeennnn. 356
sf_writeDeviceRAM 357
Sf_WritePageceeveeviveeennnns 358
St WriteRAMoooniiieeene. 359
S ES o[1) SRR 360
SIN e 360
SINN e, 361
S 11041011 SRR 362
S [T R 363
SPIReadcocvvvviiiiiiiiiien, 364
SPIWIIE weveeeecciiirieeeeee e 365
SPIWIRd ..cvvviviiiiiiiiecien, 366
S o]0 |« SRR 367
S SRR 368
LS =10 1o IR 368
LS ({0 SR 369
LS T o) S 370
SITCMP e sieeee e 371
SICMPI e eeiieee e 372
SITCPY vevvvrreeeesrireeeessnsneeeeanns 373
S 170> o o LU 373
SUTEN eeviieeeeee e e 374
LS 107> U 374
S 1701011 R 375
S0 1e: 1) o) R 376
SINCPY wvvveeeerrnreeneesnnreeeeens 377

SUPOIK weveeeeeeiccciirreeeee e 378
S TEge o S 379
SIISPN wvvvrreeeeeeeeeeirrrrreeeeeeens 379
ST | A 380
ST (0] INRRRR 381
ST (0] 382
ST (o) 383
SysResetChaineeeeeeeeeenns 384
T

12210 IR URTTR 385
8NN evevereeeeieerireeer e ————— 386
1700 1 (o I 387
100 1| 388
106 (o 1Y/ SR 389
tOUPPEr evvveeeeiiieeeessireeee s 389
U

UPTSLETIMENS wvvveeeeeererinnnnee. 390
USE32KHZOSC ...cooeeveeeeeeennn, 391
useClockDividercoe..... 392
useClockDivider3000 393
USEMEINOSE ...ooeeeeeeeeeeeeeeeen, 394
(o = S, 394
V

VdGetFreeWdccevvvveee.. 395
VAN wevveeeeeeeeereeeeeeeeeeeeeee... 396
VdReleaseWdcoevvuvinenns 397
W

W€ IMC wvvreeereeeeeceeveeeeeen, 400
WriteFlash2coooeeeeeeevvvnnnnn. 398
WriteFlash2Arrayccceeen. 399
writeUserBlocKceevvveee.. 401
writeUserBIOCKAITaY 403
WIPOME ..ovvvvveeeeeeeeeeeeeeann, 404
(Y=o o | 405
X

N C: | Lo 406
XAllOC_SHAS ..ovvevrrrreeereeerenns 408
NC Y2] IR, 409
xCalculateECC256 411
XxChkCorrectECC256 412
XQELFIOAL vvvvevereeirrrrreeeeeeeeeians 413
XOENE veverreeeiiiirrrreeeeeeeeenans 413
XQEHONG vevveverecnrrrreeeeeeeeeinns 414
XMEM2r0Ot ..cveveveeeeieeeieeeenn, 415
XMEM2XMEM .eevivieieeeeeeeenn, 416
A001=111¢ 1| 417
XIMEMCMP c.eeevenrrrreeeeeeeeennns 418
XIEl€ESE ..oooeviviveeieeeeeeeeeeee 419

Dynamic C Function Reference Manual

D=, 1] 1| AT 420
XSEHONG trvveeeeeeereiiinrrereeeenn. 421
G 1= 0 I TTTT 422
Xi

Dynamic C Function Reference Manual

Dynamic C Function Reference Manual Xii

Group Listing of Dynamic C Functions

A AESencryptStreamcccceeeevcvveeennns 8
_ _ AESexpandKeycccveiiiiinninnnns 9
Arithmetic AESINItStreamccoceeevvcveennienennnn. 10
ADS o 1
0= (o oS 114 Dynamic Memory Allocation
[SANt et 154 PAlOC ..o 248
. [oF=!1 T [l = = A 249
0= V7 1 250
Bit Manipulation pavail_fastccccoceviiiiienieiieee 251
BIT oo 19 PCAlOC ..o 252
DIt oo 18 S £ U 253
RES oo 321 PRIrst_fastooovveeeiiniiiee e 254
FES ovverveereeseesssesssesssessseesseessnnens 320 PIFEE e 235
SET ettt 341 pfree_fast ..o, 256
= U RTRS 340 PRWM o, 257
PIASt .o 265
C SR s S 266
Character PMOVEDEIWEEN ... 267
ISAINUM e 135 PMOVEDEIWEEN FBSL wvvvvvrersssseenen 269
isalphaoccveeeieee e 136 PIEL 270
1S (U 136 PXE covvversrrrreen e 27l
HSGIE eveeeeeeeerrr oo 138 L 212
ISOrAPN ..o 139 POOL_BPPENG v 274
ISIOWEN .o 139 POOLINIL covveersssssvvvvvsssessss 275
1S o T4 T | 140 POOLIINK oo 276
1S o 03 o A 141 POOL_XBPPENG .ovvvvvvvrrrrerrssssssnn 2ri
SSDACE wovvvveeeeeeeeeee oo 140 POOl_XiNit ..ovveeeeiiiiee e 278
SUDDET oo 142 8]0 1= Y RSP TRRPRRN 281
HSKAIGI v 142 e 282
Preorderooovveeeieeeiiiee e 284
D PXAIOC wvvcviiereiciee e 295
Data Encryption pxaloc fastccccceeeeviieeeeiiiieeeenns 296
AESECTYPL .o, 5 PXCEIIOC v 297
AESdecryptStreamc.ccceeeeeeeennee. 6 PUAUISE o 298
pXfirst_fastccccoceeriienniieeiieene 299
ABSNCIYPL vt ! (O (<Y 300
Dynamic C Function Reference Manual xiii

[=S 302
[OF'S £-'S SRS 303
PXNEXE ..vveiiiieeiiee et 304
pPXNEXt_fastcccceeriiiiiiieniiee 305
[0 0= A 306
PXprev_fastccccceeeviieeee e 307
E
ECC
CaculateECC256ccceeevveevvveeeennnn. 24
ChKCorrectECC256ccevevivveennnns 25
xCalculateECC256ccceeeeennnnneee. 411
XChKCorrectECC256cccvennnee. 412

Error Handling

errflogFormatEntryccccceevviiveeens 51
errlogFormatRegDuUmpoccvveeenne 52
errlogFormatStackDump 53
errlogGetHeaderInfocceeveviiveeenns 49
errlogGEtMESSAQE ...vvveevreee e 54
errlogGetNthENtrycccceeevvivveeens 50
errlogReadHeadercccceeeivveenns 54
EXCEPLION .veiiiie i 55
RESELEITOrLOg «.vvvvvviereeeeenvieeee e 322

Extended Memory

D= | oo 407

D V7 | IS 410
PAAAr ..o 245
PaddrDScoooiiiieeee e 246
PadArSSooevieecee e 247
[£070]720.4111= 1 | [N 322
WriteFlash2cccceevveeeviieecieee, 398
WriteFlash2Arrayccceeevvveeeennee. 399
DC: 1 oo 406
XaloC_StalS ...vvvvveiiiiiee e 408
G- Y/ | [409
XQEfloat ..ooovcvieee i, 413

F

D0 =11 1| S 413
(0 =1 (0] 0o IO 414
XMEMZ2rOOL ..covvvveeeieeeeeeeeeeeeeeeeeeeeee 415
XMEMZ2XMEM ...eviieeeeeeeeee e 416
D(111= 1110 3| 417
{111 1110111 o J 418
(= (=72 S 419
NG =1 [0 421
LGS < 1] 0| 420
NG =100 IS 421
D (1= o TS 422

Fast Fourier Transforms

L1 o) D G 67
L o D11 1|V 68
fitreal .ooveeee 69
fitrealinv .oooeeeeeieceeee e, 70
hannCPIX ...oeevveeiiieeeee e 123
hannrealccccvceeeiiee e, 124
POWEISPECIIUM ...vveeeeiieeeeeeieeeeeans 280

File Compression

Closel nputCompressedFile 30
CloseOutputCompressedFile 30
CompressFileocceevieieiiiieiieeee 39
DecompressFileoovcvveeeecciveeeeenee, 43
OpenlnputCompressedFile 181
OpenOutputCompressedFile 182
ReadCompressedFilec.c...... 316

File System

fClOSE v 59
fereate (FSL) vveveevvveeeeciiieeeeeeeeenn, 60
fereate (FS2) vvvvvevvvveeeeciireeeeeieeennn 61l
fcreate unused (FS1)occcvveeeenneenn. 62
fcreate_unused (FS2)occvveeeeiienenn. 63
fdelete (FS1) .uvvvvvvrivirereiieeesiee e 64
fdelete (FS2) .uvvvvvvriiiiereiieeesiee e 65

Xiv

Dynamic C Function Reference Manual

fIlush (FS2) ...cvveeeeeieee e, 66 COS teeeurreeeeesreeeesesseeeeesssneeeeenneneeeans 42
fopen rd (FS1) ..cocovceeeeeveiieeeeeeeen, 81 (001 o [42
fopen_rd (FS2) ..cooovcvveeiviiieeeecieenn, 82 O oo 45
fopen_ wr (FSL1) ..ocovccvveiviiieeeeeieenn, 83 EXP teerrreeee e 57
fopen_ Wr (FS2) ..cccovcvevevieeeciee e, 84 fabS o 58
fread (FSL) ...ccoeeeeeiieee e, 86 L1 o 79
fread (FS2) ...ccoveveeeieee e 87 fMOd e, 80
fs format (FS1)cccovveeviiieeeeeeeenn. 89 L= 88
fs format (FS2) ..ooovcvvvvviviiieeeeiieenn, 90 [ADS .o 150
fs get flash IX (FS2) ..ccovvcvvveiiiinnenn. 97 [AEXP wovivreeee e 151
fs get IX (FS2) vvivvviiiiiiiiiee e, 98 oo RSP RR 151
fs get IX Size (FS2) .vevvcveeeeeinennn. 99 o 1 O 152
fs get_other IX (FS2) ...ccoovveennenn. 100 10707 | R 170
fs get_ram IX (FS2) ...ccccoveeeeeunnenn. 101 070 Y 273
fS NIt (FS1) vovvvvereiiiieeee e, 91 POW evvieeeiiiieeeessreeesesneee e s ssneeee e 279
fS NIt (FS2) wovvvereiiiiiee e, 92 POWI0 oiiiiiiee e 279
fs reserve_blocks (FS1)cccceeuven. 93 =0 H SRR 312
fs set IX(FS2) wvvvviieeeeeiieeeeeeieenn, 102 =100 S 313
fs satup (FS2) wovvevvvieeeeecieee e, 103 randbocveeeeeeeee e 313
fS SYNC (FS2) wevvveviieee e, 105 =100 [o [314
fSCK (FSL) coeieieeeeeeeee e, 94 SIN e 360
fSEEK (FSL) wvvvvvrviirevieeeciee e 95 SINN e 361
fSeek (FS2) ovvvieviiiiieeee e 96 S o i AR 368
FSNIFE e 108 SFANA oo 368
ftell (FS1) oo 106 TN oo 385
ftell (FS2) oo 107 taNh e 386
fwrite (FS1) ovveveviieee e, 110
fwrite (FS2) ..ooooveciieeeeeeee e 111 G
[X_formatcccocvvneiniinnneneen, 156 Global Positioning System
Floating-Point Math gpS_get_PoSItionccceevcveeevveeennnen. 120
oS 5 gps_get_utc e 121
ot 3 gps_ground_distanceccceeueeen. 122
01 o PR 4 H
BSEC tivvrieeeeireee e s e e e 11
L 12 HDLC Protocol (Rabbit 3000)
aan 13 HDLCAropX ...ccvveveviveeeeenireen e 125
dan? oo 14 HDLCETOrX .vvveeeeeiieeeieee e 126
e R 26 HDLCOPENX woovvvmmnnnnemnssssssssssmnneen 127
Dynamic C Function Reference Manual XV

HDLCpeekX ...ccovvveeviieeeecireee e 128 flash_gettypecceeevcvveeeeciiieee e, 73
HDLCrecaiveXcccvveeeevcvveeeennne 129 flash_init ...ococcveeeecieee e, 74
HDLCsendingXcoovveeeviveevvnnene 131 HE S (G o SR 75
HDLCsendXcccvvvvvveneiiiieeeeenne 130 flash_readsectorccceccvveviiinnenn. 76
flash_sector2xwindow 77
! flash_writesectorcccccvveeeeinnnnn. 78
1/O
BitRAPOItEcovvvvieiieieeeeeeeeenen, 20
BitRAPOrtlooveeeeeiieeeeee e, 21 MD5
BitWrPOrtEccccee v 22 mMd5_appendccceeeveeeeeriieee e 163
BitWrPortlccceeeevcieeeeeciieee e 23 Md5_finishcccocveeeiiieeecceee e 164
RAPOIEooviiiiieiieiiee e 314 MAS_ NIt e 163
RAPOrtl oveeeeeeeeeeeeeecee e, 315
V0= o =S 404 MicroC/OSHI
=t R 405 S 211
OS ENTER _CRITICALeuunnnn... 183
I2C Protocol OS EXIT_CRITICAL ..covvvvene. 183
i2c_check_ackcccceeevcveeeeeiiiieeens 144 OSFIagACCEPLvvveeeeriiiee e 184
I2C_INIt oo 145 OSFlagCreateceveevivveeeeiiiiennnnnns 186
i2c_read Charcccoevcveeriiiiiiennnnns 145 OSFIagDE ...cocoviiveeeeiiiiee i 187
i2c_send_ackccccceeeviiiieiiiiieees 146 OSFlagPendcccceeevcuveeeeeiiiineeenns 188
i2Cc_send NaKcccceeeeviiieee e 146 (O F-To] = 0 1S S 190
I2C_Start tX .ueeeeecceeeeesiieeeeesiieeeeens 147 OSFIagQUENYevveeeeeiiieeecciieeeens 191
I2C_StartW_tX .oooccvveeeeniieensiriieeeens 148 (@15 T SRR 192
I2C_SEOP_tX weveieeeeiiee e 149 OSMDBDOXACCEPL ...eveeeeieeeiieee e 192
i2C_write_charcccceevcveeei e 149 OSMDbBOXCreatecoocveeeeiiiinennnnns 193
OSMDBOXDEovvvvveeriieeriieesieene 194
Interrupts OSMBOXPEN ..o 195
GetVectExtern300ccceevcveeennen. 118 OSMboxPOSt ... 196
IPIES e e 134 OSMBOXPOSOPE .vvvvovoveeeeereren 197
[0 SRR 135 OSMBOXQUEY oo 198
SEtVECtEXtern2000cccvvveersssns 345 OSMEMCIERLE <..ovvvvrrrrrereerersessesn 199
SEtVectEXtern3000cccvvveersssnn 346 OSMEMGEL «.vvvveeeveerreereeeeeseesesseeen 200
SetVectinterncoevcveeevceeenieeennnen, 347 osMemPUt ... 201
L OSMEMQUENYcovvrviriiiieiereeee 202
OSMULEXACCEPL ..vvvveerreeeeeiiieeeenns 203
Low-Level Flash Access OSMULEXCIeatecvvveveveevivviiieeean, 204
flash_erasechip ..o, 71 OSMULEXDE! ..o 205
flash_erasesectorcocuiiiinnnss 72 OSMULEXPENGovoeveererrirerianes 206
XVi Dynamic C Function Reference Manual

OSSEMACCERL ..vveeiiieeeeeerreeee e
OSSEMCreate ..ovuceeeeveeeeeeeeeeeee e

OSTaskChangePrioccceeeee.
OSTaskCreatecceeeeeeeeeeeeeennn.

OSTaskDelReqccccevvvvuvveeeiiinnenn.
OSTaskldleHOOKovvvvvreerriennns

OSTIMEDIY ..cocveveviiiiii,
OSTimeDIYyHMSMccccvvveeeee.
OSTimeDlyResumeccccvveeeen..
OSTIimeDIYSEC ..vvvvvveeeeiieirieeeene,

Dynamic C Function Reference Manual

OSTIMESEL ..oovvevevieevieee e 241
OSTIMETICK oovveeveieecieee e 242
OSTIimeTickHOOKccovvvivveeiiiennne 242
(@ 15\V4= 5 To] o IR 243
Miscellaneous
[ONGIMP e 152
(015 o] SRR 311
FUNWELCH ..vveviiiiiee e 324
SELMP e 344
Multitasking
(000]27="o 1o [31
COPELISEvvvveiiiiee et 40
CORESELevvvveiiiiee e 40
CORESUME ..ooviiiiiee e 41
DeEayMscoeevcieeee e 46
[DI= o VS = o 47
[DI= F Vi o 47
INtervalMs ...cccveeiiiiiee e 133
INtErValSEC ...ovvveeei i 133
INterval Tick ..ocvvvviviiieee e 134
ISCODONE ..o 137
ISCORUNNING ...vvveeeeeiieeeeeeieeee e 137
loopheadcccoeeeeviiieeeecieee e 153
[OOPINIT .. 153
N
NAND Flash
nf_eraseBlockccccceeeeeeeiiinnnee, 171
nf_getPageCountc.cccveeennnee. 172
nf_getPageSizecccccevevvciveeecenee 173
Nf_inNitDevICeccccevvveeeeecieee e 174
Nf_INItDriver ...cooeeeecieeeeceee e 176
nf_isBusyRBHWccccccuveeeennnee 177
Nf_iSBusyStatuscccceevevvveenennnee 178
nf_readPageccccvveeeeiiniiiieneeee 179
Nf_writePagecccevvveeeiriiieeee e 180
XVii

Number-to-String Conversion

P

Partitions
mbr_CreatePartitionccccceeen.e.
mbr_EnumDIiveccccvieeeeeeenn.
mbr_FormatDriveccccceeeeennn.
mbr_MountPartition
mbr_UnmountPartition
mbr_ValidatePartitions

Pulse Width Modulation (Rabbit
3000)

PWML_SEL .eevveeeceiiee e e e ereeeee e 294
(oo = £ (o (TR 308
ANt oo 309
gd_readcooeiiiiiee 309
(010 [(o IO 310

MKEME e 168
MKEM e 169
(=70 [(oS TR 317
read rtc 32kHzccccceeevcvveneenee. 317
8 (o (4015740 o[- 323
tM I e 387
1100 1 388
L1 (= (PR 400

PWIMLINIT 293 COf_SEIXQELC oveerererecececeeeeeeeeeeeeenns 33
PWIMLSEL oo 294 COf_SEIXQELS uvvverererereeeeeeeeeceeereeaeanns 34
0 COf_SEIXPULC veveeeeereeeeeeiieeeeciieeeeeans 35
COf_SEIXPULS .eveeeeereeeeeciieee e crieeeeans 36
Quadrature Decoder (Rabbit 3000) COf_SErXreadcoovvvenerenineeene 37
(00 = 1 (o] R 308 COf_SerXWIIte ...ccooeviiiiiiiiiiiiee 38
QAN e 309 serCheckParityccccoceeeevieeeennnnn. 324
(00 I (== EO R 309 SErXCIOSE v 325
(o [0 = (o 310 SerXdatabitsocoevcveeeeiiiiieeeeieeenn 325
serXflowcontrolOffcccecvvvenen. 326
R serXflowecontrolOncccceevvineenn. 327
Rabbit 3000 SEIXQEIC iiiieinie e 328
HDLCAIOPX veeeeveeeeeeereeeeeseeeeens 125 SErXQELEITOr vvvvviiieeee e 329
HDLCETOIX oo 126 SErXOPEN ovvviviiiiii 330
HDLCOPENX vvvvvveveerrreresssssssnnnee 127 SAXPAILY covvrvvrssssssssmsssnsmssssssssss 331
HDLCPEEKX e 128 EXPEEK covvvvrenrnenenensnsnsnensnsnsnsnsese 332
HDLCrecaVEX ..ooovrvrererrrerersenees 129 SEAXPULE cevvvveenenensnsnsnsnsnensnsnsnsnaneee 333
HDLCSENAINGX +ervvveeeeeereerereeen. 131 SEIXPULS o 334
HDLCSENAX oo 130 SerXrdFlush ...covvveiiiieeeee, 335
SErXIAFTE. ..uvveeveeiieee e 335

XViii Dynamic C Function Reference Manual

S0 (=" o [337 QELChAr . 113
SEXWIFIUSN ..o 338 OELS 1ottt 116
SEPXWIFTEE ..vvvveiiiieee e 338 KBhit .oveecieece e 150
SEPXWHTE viieeee e 339 OULCHIS ©.vveeiiiee e 243
_ L0101 | S 244
Serial Flash PrNf e 286
SI_QEPAgRCOUNL - -vvvvrs v 349 PULCHAr ..o 292
St_QetPageSIzecccoveveveeeviieennen. 349 DULS +ooneresosmssssomsessomesessommsessones 203
Sf—f nft """ mmmmmmmmm———" 350 SNPANLF e 362
SI_INIDVICE oo 351 PN e 367
SEASWIItING v, 352
Sf_pageTORAMoovvveerieieeeiee, 352 String Manipulation
St RAMTOPAQE ...coevevveecieeeciveene, 353 MEMCHr ..o 164
sf_readDeviceRAMccccoveennee. 354 MEMCMP e see e 165
sf_readPageccooeeeiiieniiinieee, 355 MEMCPY wvveerreernreeseeeseeesreeseeesaeens 166
sf_readRAM ...oceeiiiieee 356 MEMMOVE ..cevieeeereeeriree e evee e 167
sf_writeDeviceRAMcccceeeueeee. 357 MEMSEL ...vveeeeieieee e e 167
St WHtEPagE ..ovevveeecieeeciee e 358 S (o 369
St WHERAM ..o 359 S (e o RSP 370
S 1S o T 1) A 360 SIICMP et 371
. . SECMPI weeeeceeieee e 372
Serial Packet Driver
_ SUCPY v 373
CO_PKIXTECRIVE wrrsvvvsvvvssvvvsoe 31 SIICSPN et 373
R R 32 SO oo es e seese 374
PKEXCIOSE ...veivieeciiee e 258 ARG 374
PKEXQGELEITOrS ..o 258 SUTIGMD eveeroseseesosmsessosessesssmsseso 375
PROXINIBUITENS .ovvvvss v 259 SEINCMPI e 376
pkthper? """"""""""""""""""" 260 SNCPY v 377
PKIXTECEIVE wrs v 262 SUPOIK e 378
PRIXSEND v 263 SUTCHE e 379
PKIXSENAING -vvvrrvvvevvve e 264 SISPN et 379
PROXSBAPRIY v 264 S 380
SP| tOlOWEr .o, 389
ST 363 TOUPPEY oo 389
ST [364 Siring-to-Number Conversion
SPIWFILE oo 365 aof 15
SPIWIRG v 306 BOI oo 16

Dynamic C Function Reference Manual XiX

A0l e 17 w
S 1 (0o 381
SETOK oo 32 ~ Watchdogs
e I 383 Dissble HW_WDT woooooeeeoooevveee 48
Enable HW_WDTcoveveererrerennee, 48
System RItWd oo 131
_SysISSOftRESEL ...vveveviieeeeiiieee, 384 VdGetFreeWdccccceeeecveeeeccnnnnn. 395
chkHardResetccceeevvveeeeciiieeens 27 VAHItWA ..., 396
ChKSOftRESEL ..eeeeveieecceee e, 27 VANt e, 396
ChKWDTO ..ot 28 VdReleaseWdccovvveeeiieneeeeenns 397
clockDoublerOffcccoovecviieeennnn. 29
clockDoublerOnccccccceeeeviiveeeens 29
defineErrorHandlercccceevvvveenns 44
EXIT teerieee e 56
forceSoftResetvvveeeeeeeiicciieeeee. 85
getdivider19200coovvvcvrieeennn. 115
GetVectExtern2000cccvveeeeee.. 117
GetVectinterncccceeevevveeeeecenenn. 119
o= 134
[0 = S 135
PreMaiN ...c.eeveieeeeieeeeieee e e 283
set32kHzDividerococoevenriinnennn. 342
setClockModulationc....... 343
sysResetChainccccceeevveeeeccnnnenn. 384
UPdateTimErsccveeeeviieeeeeriieeeenns 390
USES2KHZOSCevveeeeiieee e 391
useClockDividerccccvveeeeeeenns 392
useClockDivider3000ccccc....... 393
USEMAINOSC ..vvveeeeeeeeeiiiinieeeeae e 394
U
User Block
readUserBlocKccccccvvveeeennnnn, 318
readUserBlockArraycccceeeeenne 319
writeUserBlocKccceeveeviveeeennee. 401
writeUserBIockArraycccee.n.... 403
XX Dynamic C Function Reference Manual

1. Function Descriptions

abs

int abs(int x);

DESCRIPTION
Computes the absolute value of an integer argument.

PARAMETERS
x Integer argument

RETURN VALUE
Absolute value of the argument.

LIBRARY
MATH.LIB

SEE ALSO
fabs

Chapter 1: Function Descriptions

acos

float acos (float x);

DESCRIPTION
Computes the arccosine of real f1oat vaue x.

Note: The Dynamic C functionsdeg () and rad () convert radians and degrees.

PARAMETERS

x Assumed to be between -1 and 1.

RETURN VALUE

Arccosine of the argument in radians.
If x isout of bounds, the function returns 0 and signals adomain error.

LIBRARY
MATH.LIB

SEE ALSO

cos, cosh, asin, atan

2 Dynamic C Function Reference Manual

acot

float acot(float x):;

DESCRIPTION
Computes the arcotangent of real f1oat vauex.

Note: The Dynamic C functionsdeg () and rad () convert radians and degrees.

PARAMETERS

x Assumed to be between -INF and +INF.

RETURN VALUE
Arccotangent of the argument in radians.

LIBRARY
MATH.LIB

SEE ALSO

tan, atan

Chapter 1: Function Descriptions

acsc

float acsc(float x):;

DESCRIPTION
Computes the arccosecant of real f1oat vauex.

Note: The Dynamic C functionsdeg () and rad () convert radians and degrees.

PARAMETERS

x Assumed to be between -INF and +INF.

RETURN VALUE
The arccosecant of the argument in radians.

LIBRARY
MATH.LIB

SEE ALSO

sin, asin

4 Dynamic C Function Reference Manual

AESdecrypt

void AESdecrypt(char *data, char *expandedkey, int nb, int nk);

DESCRIPTION

Decrypts a block of data using an implementation of the Rijndael AES cipher. The en-
crypted block of datais overwritten by the decrypted block of data.

PARAMETERS
data A block of datato be decrypted.

expandedkey A setof round keys (generated by AESexpandKey ()).

nb The block sizeto use. Block is4 * nb byteslong.
nk The key sizeto use. Cipher key is4 * nk byteslong.
LIBRARY

AES CRYPT.LIB

Chapter 1: Function Descriptions 5

AESdecryptStream

void AESdecryptStream(AESstreamState *state, char *data, int

count) ;

DESCRIPTION

Decryptsan array of bytes using the Rabbit implementation of cipher feedback mode. See
Samples\Crypt\AES STREAMTEST . C for asample program and adetailed expla-
nation of the encryption/decryption process.

PARAMETERS

state

data

count

LIBRARY

AES CRYPT.

The AESstreamState structure. Thismemory must be allocated
in the program code before calling AESdecrptyStream () :

static AESstreamState decrypt state;
An array of bytesthat will be decrypted in place.
Size of data array

LIB

Dynamic C Function Reference Manual

AESencrypt

void AESencrypt(char *data, char *expandedkey, int nb, int nk);

DESCRIPTION

Encrypts ablock of data using an implementation of the Rijndael AES cipher. The block
of datais overwritten by the encrypted block of data.

PARAMETERS
data A block of datato be encrypted
expandedkey A setof round keys (generated by AESexpandKey ())
nb The block sizeto use. Block is4 * nb byteslong

nk The key sizeto use. Cipher key is4 * nk byteslong

RETURN VALUE
None.

LIBRARY
AES CRYPT.LIB

Chapter 1: Function Descriptions 7

AESencryptStream

void AESencryptStream(AESstreamState #*state, char *data, int

count) ;

DESCRIPTION

Encryptsan array of bytes using the Rabbit implementation of cipher feedback mode. See
Samples\Crypt\AES STREAMTEST . C for asample program and adetailed expla-
nation of the encryption/decryption process.

PARAMETERS
state The AESstreamState structure. Thismemory must be allocated
in the program code before calling AESencrptyStream():
static AESstreamState encrypt state;
data An array of bytesthat will be encrypted in place.
count Size of data array.
LIBRARY
AES CRYPT.LIB
8 Dynamic C Function Reference Manual

AESexpandKey

void AESexpandKey (char *expanded, char *key, int nb, int nk, int

rounds) ;

DESCRIPTION

Prepares a key for use by expanding it into aset of round keys. A key isa*“password” to
decipher encoded data.

PARAMETERS

expanded

key
nb
nk

rounds

RETURN VALUE
None.

LIBRARY
AES CRYPT.LIB

A buffer for storing the expanded key. The size of the expanded key
is4* nb * (rounds +1).

The cipher key, the size should be 4 * nk
The block size will be 4 * nb byteslong.
The key sizewill be 4 * nk byteslong.

The number of cipher rounds to use.

Chapter 1: Function Descriptions 9

AESinitStream

void AESinitStream(AESstreamState *state, char *key, char
*init vector);

DESCRIPTION

Setsup AESstreamState to begin encrypting or decrypting a stream. Each
AESstreamState structure can only be used for one direction. See
Samples\Crypt\AES STREAMTEST. C for asample program and a detailed
explanation of the encryption/decryption process.

PARAMETERS
state An AESstreamState structureto beinitialized. This memory
must be allocated in the program code before calling
AESinitStream().
key The 16-byte cipher key, using anull pointer, will prevent an existing
key from being recalcul ated.

init vector A 16-bytearray representing theinitia state of the feedback regis-
ters. Both ends of the stream must begin with the same initialization
Vector.

RETURN VALUE
None.

LIBRARY
AES CRYPT.LIB

10 Dynamic C Function Reference Manual

asecC

float asec(float x):;

DESCRIPTION
Computes the arcsecant of real f1oat value x.

Note: The Dynamic C functionsdeg () and rad () convert radians and degrees.

PARAMETERS

x Assumed to be between -INF and +INF.

RETURN VALUE
The arcsecant of the argument in radians.

LIBRARY
MATH.LIB

SEE ALSO

CcOs, acos

Chapter 1: Function Descriptions

11

asin

float asin(float x):;

DESCRIPTION
Computesthe arcsine of rea f1oat vaue x.

Note: The Dynamic C functionsdeg () and rad () convert radians and degrees.

PARAMETERS

x Assumed to be between -1 and +1.

RETURN VALUE
The arcsine of the argument in radians.

LIBRARY
MATH.LIB

SEE ALSO

sin, acsc

12 Dynamic C Function Reference Manual

atan

float atan(float x):;

DESCRIPTION
Computes the arctangent of rea f1oat value x.

Note: The Dynamic C functionsdeg () and rad () convert radians and degrees.

PARAMETERS

x Assumed to be between -INF and +INF.

RETURN VALUE
The arctangent of the argument in radians.

LIBRARY
MATH.LIB

SEE ALSO

tan, acot

Chapter 1: Function Descriptions

13

atan2

float atan2(float y, float x);

DESCRIPTION

Computesthe arctangent of real f1oat value y/x tofindtheanglein radians between
the x-axis and the ray through (0,0) and (X,y).

Note: The Dynamic C functionsdeg () and rad () convert radians and degrees.

PARAMETERS
y The point corresponding to the y-axis
x The point corresponding to the x-axis

RETURN VALUE

If both v and x are zero, the function returns 0 and signals adomain error. Otherwise the
arctangent of v /x isreturned as follows:

Re'turned' VEIE Parameter Values
(in Radians)

angle x#0,y=#0
P1/2 x=0,y>0
—Pl/2 x=0,y<
0 x>0,y=0
Pl x<0,y=0

LIBRARY

MATH.LIB
SEE ALSO

acos, asin, atan, cos, sin, tan

14 Dynamic C Function Reference Manual

atof

float atof(char *sptr);

DESCRIPTION
ANSI String to Float Conversion (UNIX compatible).

PARAMETERS

sptr String to convert.

RETURN VALUE

The converted floating value.
If the conversionisinvalid, xtoxErrissetto 1. Otherwise xtoxErr issetto 0.

LIBRARY
STRING.LIB

SEE ALSO

atoi, atol, strtod

Chapter 1: Function Descriptions

15

atoi

int atoi(char *sptr);

DESCRIPTION
ANSI String to Integer Conversion (UNIX compatible).

PARAMETERS

sptr String to convert.

RETURN VALUE
The converted integer value.

LIBRARY
STRING.LIB

SEE ALSO
atol, atof, strtod

16 Dynamic C Function Reference Manual

atol

long atol(char *sptr);

DESCRIPTION

ANSI String to Long Conversion (UNIX compatible).

PARAMETERS

sptr String to convert.

RETURN VALUE
The converted long integer value.

LIBRARY
STRING.LIB

SEE ALSO

atoi, atof, strtod

Chapter 1: Function Descriptions

17

bit

unsigned int bit(void *address, unsigned int bit);

DESCRIPTION
Dynamic C may expand this cal inline

Reads specified bit at memory address. bit may be from 0to 31. Thisis equivalent to
the following expression, but more efficient:

(*(long *)address >> bit) & 1

PARAMETERS
address Address of byte containing bits 7-0
bit Bit location where 0 represents the |least significant bit

RETURN VALUE
1: Specified bit is set.
0: Bitisclear.

LIBRARY
UTIL.LIB

SEE ALSO
BIT

18 Dynamic C Function Reference Manual

BIT

unsigned int BIT(void *address, unsigned int bit);

DESCRIPTION
Dynamic C may expand thiscall inline.

Reads specified bit at memory address. bit may befrom 0to 31. Thisis equivalent to
the following expression, but more efficient:

(* (long *)address>>bit) &1

PARAMETERS
address Address of byte containing bits 7-0
bit Bit location where 0 represents the |least significant bit

RETURN VALUE
1: bit isset
0: bit isclear
LIBRARY
UTIL.LIB

SEE ALSO
bit

Chapter 1: Function Descriptions

19

BitRdPortE

root int BitRdPortE(unsigned int port, int bitnumber) ;

DESCRIPTION
Returns 1 or 0 matching the value of the bit read from the specified externa 1/O port.

PARAMETERS
port Address of external parallel port data register.
bitnumber Bit to read (0-7).

RETURN VALUE
0 or 1: Thevalue of the bit read.

LIBRARY
SYSIO.LIB

SEE ALSO

RdPortI, BitRdPortI, WrPortI, BitWrPortI, RdPortE, WrPortE,
BitWrPortE

20 Dynamic C Function Reference Manual

BitRdPortlI

int BitRdPortI(int port, int bitnumber);

DESCRIPTION

Returns 1 or 0 matching the va ue of the bit read from the specified internal 1/0 port.

PARAMETERS
port Address of internal parallel port data register.
bitnumber Bit to read (0-7).

RETURN VALUE
0 or 1: Thevaue of the bit read.

LIBRARY
SYSIO.LIB

SEE ALSO

RdPortI, WrPortI, BitWrPortI, BitRdPortE, RdPortE, WrPortE,
BitWrPortE

Chapter 1: Function Descriptions

21

BitWrPortE

void BitWrPortE(unsigned int port, char *portshadow,

int value,
int bitcode);

DESCRIPTION

Updates shadow register at bitcode withvalue (0or 1) and copies shadow to regis-
ter.

WARNING! A shadow register is required for this function.

PARAMETERS
port Address of external parallel port data register.
portshadow Reference pointer to a variable to shadow the current value of the
register.
value Value of 0 or 1 to be written to the bit position.
bitcode Bit position 0—7.
LIBRARY
SYSIO.LIB
SEE ALSO

RdPortI, BitRdPortI, WrPortI, BitWrPortI, BitRdPortE, RdAPortkE,
WrPortE

22 Dynamic C Function Reference Manual

BitWrPortI

void BitWrPortI(int port, char *portshadow, int wvalue, int
bitcode);
DESCRIPTION

Updates shadow register at position bitcode withvalue (0 or 1); copies shadow to
register.

WARNING! A shadow register is required for this function.

PARAMETERS
port Address of internal parallel port data register.
portshadow Reference pointer to a variable to shadow the current value of the
register.
value Value of 0 or 1 to be written to the bit position.
bitcode Bit position 0—7.
LIBRARY
SYSIO.LIB
SEE ALSO

RdPortI, BitRdPortI, WrPortI, BitRdPortE, RdPortE, WrPortE,
BitWrPortE

Chapter 1: Function Descriptions 23

CalculateECC256

long CalculateECC256 (void *data);

DESCRIPTION

Cadlculates a 3 byte Error Correcting Checksum (ECC, 1 hit correction and 2 bit detection
capability) value for a 256 byte (2048 bit) data buffer located in root memory.

PARAMETERS
data Pointer to the 256 byte data buffer

RETURN VALUE

The calculated ECCinthe 3L SBsof thelong (i.e., BCDE) result. Notethat the M SB (i.e.,
B) of thelong result is aways zero.

LIBRARY
ECC.LIB (This function was introduced in Dynamic C 9.01)

24 Dynamic C Function Reference Manual

ChkCorrectECC256

void ChkCorrectECC256 (void *data, void *old ecc, void *new_ecc);

DESCRIPTION

Checksthe old versus new ECC values for a 256 byte (2048 bit) data buffer, and if neces-
sary and possible (1 bit correction, 2 bit detection), corrects the datain the specified root
memory buffer.

PARAMETERS
data Pointer to the 256 byte data buffer
old ecc Pointer to the old (original) 3 byte ECC's buffer
new ecc Pointer to the new (current) 3 byte ECC's buffer

RETURN VALUE

0: Dataand ECC are good (no correction is necessary)
1: Datais corrected and ECC is good

2: Datais good and ECC is corrected

3: Dataand/or ECC are bad and uncorrectable

LIBRARY
ECC.LIB (This function was introduced in Dynamic C 9.01)

Chapter 1: Function Descriptions 25

ceil

float ceil(float x):;

DESCRIPTION
Computes the smallest integer greater than or equal to the given number.

PARAMETERS

x Number to round up.

RETURN VALUE
The rounded up number.

LIBRARY
MATH.LIB

SEE ALSO

floor, fmod

26 Dynamic C Function Reference Manual

chkHardReset

int chkHardReset(void);

DESCRIPTION

This function determines whether thisrestart of the board is due to a hardware reset. As-
serting the RESET line or recycling power are both considered hardware resets. A watch-
dog timeout is not a hardware reset.

RETURN VALUE

1: The processor was restarted due to a hardware reset.
0: If it was not.

LIBRARY
SYS.LIB

SEE ALSO
chkSoftReset, chkWDTO, sysIsSoftReset

chkSoftReset

int chkSoftReset(void);

DESCRIPTION

This function determines whether thisrestart of the board is due to a software reset from
Dynamic C or acall to forceSoftReset ().

RETURN VALUE

1: The board was restarted due to a soft reset.
0: If it was not.

LIBRARY
SYS.LIB

SEE ALSO
chkHardReset, chkWDTO, sysIsSoftReset

Chapter 1: Function Descriptions 27

chkWDTO

int chkWDTO(void);

DESCRIPTION
This function determines whether this restart of the board is due to a watchdog timeout.

Note: A watchdog timeout cannot be detected on a BL2000 or SmartStar.

RETURN VALUE

1: If the board was restarted due to a watchdog timeout.
0: If it was not.

LIBRARY
SYS.LIB

SEE ALSO
chkHardReset, chkSoftReset, sysIsSoftReset

28 Dynamic C Function Reference Manual

clockDoublerOn

void clockDoubleroOn() ;

DESCRIPTION
Enablesthe Rabbit clock doubler. If the doubler isaready enabled, therewill be no effect.
Also attemptsto adjust the communication rate between Dynamic C and the board to com-
pensate for the frequency change. User seria port rates need to be adjusted accordingly.
Also note that single-stepping through this routine will cause Dynamic C to lose commu-

nication with the target.

LIBRARY
SYS.LIB

SEE ALSO
clockDoublerOff

clockDoublerOff

void clockDoublerOff () ;

DESCRIPTION
Disables the Rabbit clock doubler. If the doubler is already disabled, there will be no ef-
fect. Also attempts to adjust the communication rate between Dynamic C and the board
to compensate for the frequency change. User seria port rates need to be adjusted accord-
ingly. Also note that single-stepping through this routine will cause Dynamic C to lose
communication with the target.

LIBRARY
SYS.LIB

SEE ALSO

clockDoublerOn

Chapter 1: Function Descriptions

29

CloseInputCompressedFile

void CloseInputCompressedFile(ZFILE *ifp);

DESCRIPTION

Close an input compression file opened by OpenInputCompressionFile (). This
file may be acompressed file that is being decompressed, or an uncompressed filethat is
being compressed. In either case, this function should be called for each open import
ZFILE once it is done being used to free up the associated input buffer.

PARAMETERS

ifp File descriptor of an input compression ZFILE.

RETURN VALUE
None

LIBRARY
LZSS.LIB

CloseOutputCompressedFile

void CloseOutputCompressedFile(ZFILE *ifp)

DESCRIPTION

Close an output compression file. Thisfileisan FS2 ZFILE which was previously
opened with OpenOutputCompressionFile (). Thisfunction should always be
called when donewriting to acompression output ZFILE to free up the associated output

buffer.
PARAMETERS
ifp File descriptor of an output compression ZFILE.

RETURN VALUE
None

LIBRARY
lzss.lib

30 Dynamic C Function Reference Manual

CoBegin

void CoBegin(CoData *p);

DESCRIPTION
Initialize a costatement structure so the costatement will be executed next timeit is en-
countered.

PARAMETERS
p Address of costatement

LIBRARY

COSTATE.LIB

cof pktXreceive

int cof pktXreceive(void *buffer, int buffer size); X=A|B|C|D

DESCRIPTION
Receives an incoming packet. Thisfunction returns after acomplete packet has been read
into the buffer.

Starting with Dynamic C version 7.25, the functions cof _pktEreceive () and
cof pktFreceive () areavailable when using the Rabbit 3000 microprocessor.

PARAMETERS
buffer A buffer for the packet to be written into.

buffer size Length of the buffer.

RETURN VALUE

>0: The number of bytesin the received packet on success.
0: No new packets have been received.

- 1: The packet istoo large for the given buffer.

-2: A needed test_packet function is not defined.

LIBRARY
PACKET.LIB

Chapter 1: Function Descriptions 31

cof pktXsend

void cof pktXsend(void *send buffer int buffer length, char
delay); X=A|B|C|D

DESCRIPTION

Initiates the sending of a packet of data. The function will exit when the packet isfinished
transmitting.

Starting with Dynamic C version 7.25, the functions cof _pktEsend () and
cof pktFsend () areavailable when using the Rabbit 3000 microprocessor.

PARAMETERS
send buffer The datato be sent.

buffer length Length of the databuffer to transmit.

delay The number of byte times (0-255) to delay before sending data.
Thisis used to implement protocol-specific delays between pack-
ets.
LIBRARY

PACKET.LIB

32 Dynamic C Function Reference Manual

cof serXgetc

int cof serXgetc();

DESCRIPTION

/* where X = A|B|C|D|E|F */

Thissingle-user cofunction yieldsto other tasks until acharacter isread from port X. This

function only returns when a character is successfully written. It is non-reentrant.

Starting with Dynamic C version 7.25, the functionscof serEgetc () and
cof serFgetc () may beused with the Rabbit 3000 microprocessor.

RETURN VALUE

An integer with the character read into the low byte.

LIBRARY
RS232.LIB

EXAMPLE

// echoes characters

main() {
int c;
serXopen (19200) ;
loopinit () ;
while (1) {
loophead () ;

wfd ¢ = cof serAgetc();
wfd cof serAputc(c) ;

}

serAclose () ;

Chapter 1: Function Descriptions

33

cof serXgets

int cof serXgets(char *s, int max, unsigned long tmout);
/* where X = A|B|C|D|E|F */

DESCRIPTION

This single-user cofunction reads characters from port X until a null terminator, linefeed,
or carriage return character isread, max charactersareread, or until tmout milliseconds
transpires between charactersread. A timeout will never occur if no characters have been
received. This function is non-reentrant.

It yields to other tasks for aslong as the input buffer is locked or whenever the buffer be-
comes empty as characters areread. s will always be null terminated upon return.

Starting with Dynamic C version 7.25, the functions cof _serEgets () and
cof serFgets () may be used with the Rabbit 3000 microprocessor.

PARAMETERS
s Character array into which anull terminated string is read.
max The maximum number of charactersto read into s.
tmout Millisecond wait period between characters before timing out.

RETURN VALUE

1 if CRor max bytesreadinto s.
0 if function times out before reading CR or max bytes.

LIBRARY

RS232.LIB

EXAMPLE

main() { // echoes null terminated character strings

int getOk;
char s[16];
serPopen (19200) ;

loopinit () ;
while (1) {
loophead () ;

costate {
wfd getOk = cof serAgets (s, 15, 20);

if (getOk)
wfd cof serAputs(s) ;
else { // timed out: snull terminated, but incomplete
}
}
}
serAclose () ;

34

Dynamic C Function Reference Manual

cof serXputc

void cof_serXputc (int ¢); /* where X = A|B|C|D|E|F */

DESCRIPTION

Thissingle-user cofunction writesacharacter to serial port X, yielding to other taskswhen
the input buffer islocked. This function is non-reentrant.

Starting with Dynamic C version 7.25, the functionscof _serEputc () and
cof serFputc () may be used with the Rabbit 3000 microprocessor.

PARAMETERS

c Character to write.

LIBRARY
RS232.LIB

EXAMPLE

// echoes characters
main() {
int c;
serAopen (19200) ;
loopinit () ;
while (1) {
loophead () ;
wfd ¢ = cof serAgetc() ;
wfd cof serAputc(c) ;

}

serAclose () ;

Chapter 1: Function Descriptions 35

cof serXputs

void cof serXputs(char *str); /* where X = A|B|C|D */

DESCRIPTION

Thissingle-user cofunction writesanull terminated string to port X. It yieldsto other tasks
for aslong as the input buffer may be locked or whenever the buffer may become full as
characters are written. This function is non-reentrant.

Starting with Dynamic C version 7.25, the functions cof _serEputs () and
cof serFputs () may be used with the Rabbit 3000 microprocessor.

PARAMETERS

str Null terminated character string to write.

LIBRARY
RS232.LIB

EXAMPLE

// writesanull terminated character string, repeatedly
main() {
const char s[] = "Hello Z-World";
serAopen (19200) ;
loopinit () ;
while (1) {
loophead () ;
costate {
wfd cof serAputs(s) ;
}
}

serAclose () ;

36 Dynamic C Function Reference Manual

cof serXread

int cof serXread(void *data, int length, unsigned long tmout);
/* where X = A|B|C|D|E|F */

DESCRIPTION

This single-user cofunction reads 1 ength characters from port X or until tmout milli-
seconds transpires between charactersread. It yieldsto other tasksfor aslong asthe input
buffer islocked or whenever the buffer becomes empty as characters are read. A timeout
will never occur if no characters have been read. This function is non-reentrant.

Starting with Dynamic C version 7.25, the functionscof serEread () and
cof serFread () may be used with the Rabbit 3000 microprocessor.

PARAMETERS
data Data structure into which characters are read.
length The number of characterstoread into data.
tmout Millisecond wait period to allow between characters before timing

out.

RETURN VALUE
Number of charactersread into data.

LIBRARY
RS232.LIB

EXAMPLE

// echoes a block of characters
main () {
int n;
char s[16];
serAopen (19200) ;
loopinit () ;
while (1) {
loophead () ;
costate {
wfd n = cof serAread(s, 15, 20);
wfd cof serAwrite(s, n);
}
}

serAclose () ;

Chapter 1: Function Descriptions 37

cof serXwrite

void cof serXwrite(void *data, int length);
/* where X = A|B|C|D|E|F */

DESCRIPTION

Thissingle-user cofunction writes 1ength bytesto port X. It yields to other tasksfor as
long as the input buffer islocked or whenever the buffer becomes full as characters are
written. This function is non-reentrant.

Starting with Dynamic C version 7.25, the functions cof _serEwrite () and
cof serFwrite () may be used with the Rabbit 3000 microprocessor.

PARAMETERS
data Data structure to write.

length Number of bytesin data to write.

LIBRARY
RS232.LIB

EXAMPLE

// writes a block of characters, repeatedly
main() {
const char s[] = "Hello Z-World";
serAopen (19200) ;
loopinit () ;
while (1) {
loophead () ;
costate {
wfd cof serAwrite(s, strlen(s));
!

}

serAclose () ;

38 Dynamic C Function Reference Manual

CompressFile

void CompressFile(ZFILE *input, ZFILE *output);

DESCRIPTION

This function compresses the input file (uncompressed ZFILE, opened with
OpenInputCompressFile ()) usingthe LZ compression algorithm. Theresultis
put into a user-specified output file (an empty ZFILE, opened with
OpenOutputCompressedFile ()).

The macro OUTPUT COMPRESSION BUFFERS must be defined with a positive non-
zerovalueto use CompressFile () oracompile-timeerror will occur. Thedefault val-
ue of OUTPUT COMPRESSION BUFFERS iS zefo.

PARAMETERS
input Input bit file
output Output bit file

RETURN VALUE
None

LIBRARY
LZSS.LIB

SEE ALSO

OpenInputCompressedFile, OpenOutputCompressedFile

Chapter 1: Function Descriptions 39

CoPause

void CoPause(CoData *p);

DESCRIPTION

Pause execution of a costatement so that it will not run the next timeit is encountered un-
less and until CoResume (p) or CoBegin (p) arecaled.

PARAMETERS

P Address of costatement

LIBRARY
COSTATE.LIB

CoReset

void CoReset(CoData *p);

DESCRIPTION
Initializes a costatement structure so the costatement will not be executed next timeitis
encountered.

PARAMETERS
P Address of costatement

LIBRARY

COSTATE.LIB

40 Dynamic C Function Reference Manual

CoResume

void CoResume(CoData *p);

DESCRIPTION

Resume execution of a costatement that has been paused.

PARAMETERS

P Address of costatement

LIBRARY
COSTATE.LIB

Chapter 1: Function Descriptions

41

cos

float cos(float x);

DESCRIPTION
Computes the cosine of rea float value x.

Note: The Dynamic C functionsdeg () and rad () convert radians and degrees.

PARAMETERS

x Angleinradians.

RETURN VALUE
Cosine of the argument.

LIBRARY
MATH.LIB

SEE ALSO

acos, cosh, sin, tan

cosh

float cosh(float x):;

DESCRIPTION

Computes the hyperbolic cosine of real float value x. Thisfunctions takes a unitless num-
ber as a parameter and returns a unitless number.

PARAMETERS

x Value to compute.

RETURN VALUE

Hyperbolic cosine.
If |x| > 89.8 (approx.), the function returns INF and signals a range error.

LIBRARY
MATH.LIB

SEE ALSO

cos, acos, sin, sinh, tan, tanh

42 Dynamic C Function Reference Manual

DecompressFile

void DecompressFile(ZFILE *input, ZFILE *output);

DESCRIPTION

Thisisthe expansion routine for the LZSS algorithm. It performs the opposite operation
of CompressFile (). Theinput file (acompressed ZFILE, opened with
OpenInputCompressedFile ())isdecompressed to the output file (an empty FS2
ZFILE, opened with OpenOutputCompressedFile ()).

PARAMETERS
input Input bit file
output Output bit file

RETURN VALUE
None

LIBRARY
LZSS.LIB

Chapter 1: Function Descriptions 43

defineErrorHandler

void defineErrorHandler(void *errfcn)

DESCRIPTION

Setsthe BIOS function pointer for runtime errors to the function pointed to by errfcn.

This user-defined function must bein root memory. Specify root at the start of the func-
tion definition to ensure this. When a runtime error occurs, the following information is

passed to the error handler on the stack:

Stack Position Stack Contents
SP+0 Return address for exceptionRet
SP+2 Error code
SP+4 0x0000 (can be used for additional information)
SP+6 XPC when exception () wascalled (upper byte)
SP+8 Addresswhere exception () wascaled
PARAMETERS
errfcn Pointer to user-defined run-time error handler.
LIBRARY
SYS.LIB
44 Dynamic C Function Reference Manual

deg

float deg(float x);

DESCRIPTION
Changes f1oat radians x to degrees

PARAMETERS

x Anglein radians.

RETURN VALUE
Anglein degrees(afloat).

LIBRARY
MATH.LIB

SEE ALSO

rad

Chapter 1: Function Descriptions

45

DelayMs

int DelayMs(long delayms);

DESCRIPTION

Millisecond time mechanism for the costatement wa i t for constructs. Theinitia call to
thisfunction starts the timing. The function returns zero and continuesto return zero until
the number of milliseconds specified has passed.

PARAMETERS

delayms The number of milliseconds to wait.

RETURN VALUE

1: The specified number of milliseconds have elapsed.
0: The specified number of milliseconds have not el apsed.

LIBRARY
COSTATE.LIB

46 Dynamic C Function Reference Manual

DelaySec

int DelaySec(long delaysec):;

DESCRIPTION

Second time mechanism for the costatement wa i t £ or constructs. Theinitial call to this
function starts the timing. The function returns zero and continues to return zero until the
number of seconds specified has passed.

PARAMETERS

delaysec The number of seconds to wait.

RETURN VALUE

1: The specified number of seconds have elapsed.
0: The specified number of seconds have not elapsed.

LIBRARY
COSTATE.LIB

DelayTicks

int DelayTicks(unsigned ticks);

DESCRIPTION

Tick time mechanism for the costatement wa it for constructs. Theinitia call to this
function starts the timing. The function returns zero and continuesto return zero until the
number of ticks specified has passed.

1 tick = 1/1024 second.
PARAMETERS

ticks The number of ticks to wait.

RETURN VALUE

1: The specified tick delay has elapsed.
0: The specified tick delay has not el apsed.

LIBRARY
COSTATE.LIB

Chapter 1: Function Descriptions 47

Disable HW WDT

void Disable HW WDT() ;

DESCRIPTION

Disables the hardware watchdog timer on the Rabbit processor. Note that the watchdog
will be enabled again just by hitting it. Thewatchdog is hit by the periodic interrupt, which
ison by default. Thisfunction isuseful for special situations such aslow power “sleepy
mode.”

LIBRARY
SYS.LIB

Enable HW WDT

void Enable HW WDT () ;

DESCRIPTION

Enables the hardware watchdog timer on the Rabbit processor. Thewatchdog is hit by the
periodic interrupt, which is on by default.

LIBRARY
SYS.LIB

48 Dynamic C Function Reference Manual

errlogGetHeaderInfo

root char* errlogGetHeaderInfo();

DESCRIPTION
Reads the error log header and formats the output.

When running stand alone (not talking to Dynamic C), this function reads the header di-
rectly from the log buffer. When in debug mode, this function reads the header from the
copy in flash.

When aDynamic C cold boot takes place, the header in RAM iszeroed out to initializeit,

but first its contents are copied to an address in the BIOS code before the BIOS in RAM

is copied to flash. This means that on the second cold boot, the data structure in flash will

be zeroed out. The configuration of the log buffer may still be read, and the log buffer en-
tries are not affected.

Because the exception mechanism resets the processor by causing a watchdog time-out,
the number of watchdog time-outs reported by this functions is the number of actual WD-
TOs plus the number of exceptions.

RETURN VALUE
A null terminated string containing the header information:

Status Byte: 0
#Exceptions: 5

Index last exception: 5
#SW Resets: 2

#HW Resets: 2

#WD Timeouts: 5

The string will contain “Header checksum invalid” if achecksum error occurs. The mean-
ing of the status byte is as follows:

bit 0 - An error has occurred since deployment
bit 1 - The count of SW resets has rolled over.
bit 2 - The count of HW resets has rolled over.
bit 3 - The count of WDTOs has rolled over.

bit 4 - The count of exceptions has rolled over.
bit 5-7 - Not used

The index of the last exception is the index from the start of the error log entries. If this
index does not equal the total exception count minus one, the error log entries have
wrapped around the log buffer.

LIBRARY
ERRORS.LIB

Chapter 1: Function Descriptions 49

errlogGetNthEntry

root int errlogGetNthEntry(int N);

DESCRIPTION

Loads errLogEntry structure with Nth entry of the error buffer. This must be called
before the functions bel ow that format the output.

PARAMETERS
N Index of entry to load into errLogEntry

RETURN VALUE

0: Success, entry checksum okay.
- 1: Failure, entry checksum not okay.

LIBRARY
ERRORS.LIB

50 Dynamic C Function Reference Manual

errlogFormatEntry

root char* errlogFormatEntry();

DESCRIPTION

Returns a null terminated string containing the basic information contained in
errLogEntry:

Error type=240
Address = 00:16aa
Time: 06/11/2001 20:49:29

RETURN VALUE
The null terminated string described above.

LIBRARY
ERRORS.LIB

Chapter 1: Function Descriptions

51

errlogFormatRegDump

root char* errlogFormatRegDump () ;

DESCRIPTION

Returns a null terminated string containing aregister dump using the datain

errLogEntry:

AF=0000,AF'=0000
HL=00£f0,HL'=15e3
BC=16ce,BC'=1600
DE=0000,DE'=1731
IX=d3fl,IY =0560
SP=d3eb,XPC=0000

RETURN VALUE

The null terminated string described above.

LIBRARY

ERRORS.LIB

52

Dynamic C Function Reference Manual

errlogFormatStackDump

root char* errlogFormatStackDump () ;

DESCRIPTION

Returns a null terminated string containing a stack dump using the datain
errLogEntry

Stack Dump:
0024,04f1,
d378,cl4e,
c400,al108,
2404,0000,

RETURN VALUE
The null terminated string describe above.

LIBRARY
ERRORS.LIB

Chapter 1: Function Descriptions

53

errlogGetMessage

root char* errlogGetMessage();
DESCRIPTION
Returns a null terminated string containing the 8 byte messagein errLogEntry.

RETURN VALUE
A null terminated string.

LIBRARY
ERRORS.LIB

errlogReadHeader

root int errlogReadHeader () ;

DESCRIPTION
Reads error log header into the structure errlogInfo.

RETURN VALUE

0: Success, entry checksum OK.
-1: Failure, entry checksum not OK.

LIBRARY
ERRORS.LIB

54 Dynamic C Function Reference Manual

exception

int exception(int errCode);

DESCRIPTION

Thisfunctioniscalled by Rabbit librarieswhen aruntime error occurs. It putsinformation
relevant to the runtime error on the stack and calls the default runtime error handler
pointed to by the ERROR EXIT macro. To define your own error handler, see the
defineErrorHandler () function.

When the error handler is called, the following information will be on the stack:

Location on Stack Description
SP+0 Return address for error handler call
SP+2 Runtime error code
SP+4 (can be used for additional information)
SP+6 XPC when exception () was called (upper byte)
SP+8 Addresswhere exception () wascalled from

RETURN VALUE
Runtime error code passed to it.

LIBRARY
ERRORS.LIB

SEE ALSO
defineErrorHandler

Chapter 1: Function Descriptions

55

exit

void exit(int exitcode);

DESCRIPTION

Stops the program and returns exi t code to Dynamic C. Dynamic C uses values above
128 for run-time errors. When not debugging, exit will run an infinite loop, causing a
watchdog timeout if the watchdog is enabled.

PARAMETERS

exitcode Error code passed by Dynamic C.

LIBRARY
SYS.LIB

56 Dynamic C Function Reference Manual

exp

float exp(float x);

DESCRIPTION

Computes the exponential of real f1oat valuex.
PARAMETERS

x Value to compute
RETURN VALUE

Returns the value of e*.

If x >89.8 (approx.), the function returns INF and signals arange error. If x <—-89.8 (ap-
prox.), the function returns 0 and signals arange error.

LIBRARY
MATH.LIB

SEE ALSO
log, logl0, frexp, ldexp, pow, powlO, sgrt

Chapter 1: Function Descriptions 57

fabs

float fabs(float x);
DESCRIPTION
Computes the float absolute value of float x.

PARAMETERS

x Value to compute.

RETURN VALUE

x,1f x>=0,

ese -x.
LIBRARY

MATH.LIB
SEE ALSO

abs

58 Dynamic C Function Reference Manual

fclose

void fclose(File* f);
DESCRIPTION
Closes afile.

PARAMETERS

£ The pointer to the file to close.

LIBRARY
FILESYSTEM.LIB

Chapter 1: Function Descriptions

59

fcreate (FS1)

int fcreate(File* f, FileNumber fnum);

DESCRIPTION
Createsafile. Before calling thisfunction, avariable of type Fi1e must be defined inthe
application program.

File file;
fcreate (&file, 1);

PARAMETERS
£ The pointer to the created file.
fnum Thisisauser-defined number intherange of 1t0127 inclusive. Each

fileintheflash file system is assigned a unique number in thisrange.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
FILESYSTEM.LIB

60 Dynamic C Function Reference Manual

fcreate (FS2)

int fcreate(File* f, FileNumber name) ;

DESCRIPTION

Createanew filewith the given “file name” which is composed of two parts: thelow byte
isthe actual file number (1 to 255 inclusive), and the high byte contains an extent number
(1to _fs.num_1x)onwhich to placethe file metadata. The extent specified by
fs_set 1x() isalwaysused to determine the actual data extent. If the high byte con-
tains 0, then the default metadata extent specified by £s_set 1x () isused. Thefilede-
scriptor isfilled in if successful. The file will be opened for writing, so afurther call to
fopen wr () isnot necessary.

The number of files which may be created is limited by the lower of FS_ MAX FILES
and 255. Thislimit appliesto the entire filesystem (all logical extents).

Onceafileiscreated, its dataand metadata extent numbersarefixed for thelife of thefile,
i.e., until the fileis deleted.

When created, no space is allocated in the file system until the first write occurs for the
file. Thus, if the system power is cycled after creation but before the first byte is written,
thefilewill beeffectively deleted. Thefirst writeto afile causes one sector to be all ocated
for the metadata.

Before calling this function, avariable of type File must be defined in the application
program. (The sizeof () function will return the number of bytes used for theFile
data structure.)

File file;
fcreate (&file, 1);

PARAMETERS
£ Pointer to the file descriptor to fill in.
name File number including optional metadata extent number.

RETURN VALUE

0: Success.
10: Failure.

ERRNO VALUES

EINVAL - Zero file number requested, or invalid extent number.

EEXIST - File with given number aready exists.

ENFILE - No spaceisavailableintheexisting filetable. If thiserror occurs, increasethe
definition of FS_MAX FILES, a#define constant that should be declared before
#use "fs2.1lib".

LIBRARY
fs2.LIB

SEE ALSO
fcreate unused (FS2), fs_set 1x (FS2), fdelete (FS2)

Chapter 1: Function Descriptions 61

fcreate unused (FSl)

FileNumber fcreate unused(File* f);

DESCRIPTION
Searchesfor thefirst unused file number inthe range 1 through 127, and createsafile with
that number.

PARAMETERS
£ The pointer to the created file.

RETURN VALUE
The FileNumber (1-127) of the new fileif success.

LIBRARY
FILESYSTEM.LIB

SEE ALSO
fcreate (FS1)

62 Dynamic C Function Reference Manual

fcreate unused (FS2)

FileNumber fcreate unused(File *f);

DESCRIPTION
Create anew file and return the “file name” which is a number between 1 and 255. The

new filewill be created on the current default extent(s) as specified by £s_set 1x().

Other behavior isthesame as fcreate ().

PARAMETERS

£ Pointer to file descriptor to fill in.

RETURN VALUE

>0: Success, the FileNumber (1-255) of the new file.
0: Failure.

ERRNO VALUE
ENFILE - No unused file number available.

LIBRARY
fs2.LIB

SEE ALSO
fcreate (FS2), fs _set 1x (FS2), fdelete (FS2)

Chapter 1: Function Descriptions

63

fdelete (FS1)

int fdelete(FileNumber fnum);

DESCRIPTION
Deletes afile.

PARAMETERS

fnum A number intherange 1to 127 inclusive that identifiesthefilein the
flash file system.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
FILESYSTEM.LIB

64 Dynamic C Function Reference Manual

fdelete (FS2)

int fdelete(FileNumber name) ;

DESCRIPTION

Deletethefilewith the given number. The specified file must not be open. Thefilenumber
(i.e. name) is composed of two parts: the low byte contains the actua file number, and
the high byte (if not zero) contains the metadata extent number of thefile.

PARAMETERS

name File number (1 to 255 inclusive).

RETURN VALUE

0: Success.
10: Failure.

LIBRARY
fs2.LIB

ERRNO VALUES

ENOENT - File doesn't exist, or metadata extent number doesn’t match an existing file.
EBUSY - Fileis open.
EIO - I/O error when releasing blocks occupied by thisfile.

SEE ALSO
fcreate (FS2)

Chapter 1: Function Descriptions 65

fflush (FS2)

int fflush(File *f);

DESCRIPTION

Flush any buffers, associated with the given file, retained in RAM to the underlying hard-
ware device. Thisensuresthat the fileis completely written to the filesystem. Thefile sys-
tem doesnot currently perform any buffering, however futurerevisionsof thislibrary may
introduce buffering to improve performance.

PARAMETERS

£ Pointer to open file descriptor.

RETURN VALUE

0: Success.
10: Failure.

ERRNO VALUES

EBADFD - fileinvalid or not open.
EIO-I1/Oeror.

LIBRARY
fs2.1.IB

SEE ALSO
fs sync (FS2)

66 Dynamic C Function Reference Manual

ffteplx

void fftcplx(int *x, int N, int *blockexp);

DESCRIPTION

Computesthe complex DFT of the N-point complex sequence contained inthe array x and
returns the complex result in x. N must be a power of 2 and lie between 4 and 1024. An
invalid N causes a RANGE exception. The N-point complex sequencein array x isre-
placed with its N-point complex spectrum. Thevaue of blockexp isincreased by 1
each time array x has to be scaled, to avoid arithmetic overflow.

PARAMETERS
x Pointer to N-element array of complex fractions.
N Number of complex elementsin array x.

blockexp Pointer to integer block exponent.

LIBRARY
FFT.LIB

SEE ALSO

fftcplxinv, fftreal, fftrealinv, hanncplx, hannreal,
powerspectrum

Chapter 1: Function Descriptions 67

ffteplxinv

void fftcplxinv(int *x, int N, int *blockexp);

DESCRIPTION

Computes theinverse complex DFT of the N-point complex spectrum contained in the ar-
ray x and returns the complex result in x. N must be a power of 2 and lie between 4 and
1024. Aninvalid N causes a RANGE exception. The value of blockexp isincreased
by 1 each time array x hasto be scaled, to avoid arithmetic overflow. The value of
blockexp isalso decreased by logoN to include the /N factor in the definition of the
inverse DFT

PARAMETERS
x Pointer to N-element array of complex fractions.
N Number of complex elementsin array x.

blockexp Pointer to integer block exponent.

LIBRARY
FFT.LIB

SEE ALSO

ffteplx, fftreal, fftrealinv, hanncplx, hannreal, powerspectrum

68 Dynamic C Function Reference Manual

fftreal

void fftreal(int *x, int N, int *blockexp);

DESCRIPTION

Computes the N-point, positive-frequency complex spectrum of the 2N-point real se-
guencein array x. The 2N-point real sequencein array x isreplaced with its N-point pos-
itive-frequency complex spectrum. Thevalueof blockexp isincreased by 1 eachtime
array x hasto be scaled, to avoid arithmetic overflow.

Theimaginary part of the X[Q] term (stored in X[1]) is set to the real part of the fmax term.

The 2N-point real sequenceis stored in natural order. The zeroth element of the sequence
isstoredinx [0], thefirst lement inx [11, and the kth element in X[k].

N must be a power of 2 and lie between 4 and 1024. Aninvalid N causes a RANGE ex-
ception.

PARAMETERS
x Pointer to 2N-point sequence of real fractions.
N Number of complex elements in output spectrum

blockexp Pointer to integer block exponent.

LIBRARY
FFT.LIB

SEE ALSO

ffteplx, ffteplxinv, fftrealinv, hanncplx, hannreal,
powerspectrum

Chapter 1: Function Descriptions

69

fftrealinv

void fftrealinv(int *x, int N, int *blockexp);

DESCRIPTION

Computes the 2N-point real sequence corresponding to the N-point, positive-frequency
complex spectrumin array x. TheN-point, positive-frequency spectrum contained in array
x isreplaced with its corresponding 2N-point real sequence. Thevalueof blockexp is
increased by 1 eachtime array x hasto be scaled, to avoid arithmetic overflow. Thevalue
of blockexp isalso decreased by logoN to include the 1/N factor in the definition of the
inverse DFT.

Thefunction expectsto find thereal part of the fmax termin theimaginary part of the zero-
frequency X [0] term (stored x[1]).

The 2N-point real sequenceis stored in natural order. The zeroth element of the sequence
isstoredinx [0], thefirst elementin x [1], and the kth element in x [k] .

N must be a power of 2 and between 4 and 1024. Aninvalid N causes a RANGE excep-
tion.

PARAMETERS
x Pointer to N-element array of complex fractions.
N Number of complex elementsin array x.

blockexp Pointer to integer block exponent.

LIBRARY
FFT.LIB

SEE ALSO

ffteplx, fftcplxinv, fftreal, hanncplx, hannreal, powerspectrum

70 Dynamic C Function Reference Manual

flash erasechip

void flash erasechip(FlashDescriptor *fd);

DESCRIPTION
Erases an entire flash memory chip.

Note: £d must have already been initialized with f1ash init before calling
thisfunction. See flash init description for further restrictions.

PARAMETERS

£d Pointer to flash descriptor of the chip to erase.

LIBRARY
FLASH.LIB

SEE ALSO

flash erasesector, flash gettype, flash init, flash read,
flash readsector, flash sector2xwindow, flash writesector

Chapter 1: Function Descriptions

71

flash erasesector

int flash erasesector(FlashDescriptor *fd, word which);

DESCRIPTION
Erases a sector of aflash memory chip.

Note: £d must have already been initialized with f1ash init before calling
thisfunction. See flash init description for further restrictions.

PARAMETERS
£d Pointer to flash descriptor of the chip to erase a sector of.
which The sector to erase.

RETURN VALUE
0: Success.

LIBRARY
FLASH.LIB

SEE ALSO

flash erasechip, flash gettype, flash init, flash read,
flash readsector, flash sector2xwindow, flash writesector

72 Dynamic C Function Reference Manual

flash gettype

int flash gettype(FlashDescriptor* £fd);

DESCRIPTION
Returns the 16-bit flash memory type of the flash memory.

Note: £d must have already been initialized with f1ash init before calling
thisfunction. See flash init description for further restrictions.

PARAMETERS

£d The FlashDescriptor of the memory to query.

RETURN VALUE
The integer representing the type of the flash memory.

LIBRARY
FLASH.LIB

SEE ALSO

flash erasechip, flash erasesector, flash init, flash read,
flash readsector, flash sector2xwindow, flash writesector

Chapter 1: Function Descriptions

73

flash init

int flash init(FlashDescriptor* fd, int mb3cr);

DESCRIPTION

Initializesan internal datastructureof type FlashDescriptor withinformation about
the flash memory chip. The Memory Interface Unit bank register (MB3CR) will be as-

signed the value of mb3 cr whenever afunction accesses the flash memory referenced by
fd. See the Rabbit 2000 Users Manual for the correct chip select and wait state settings.

Note: Improper use of this function can cause your program to be overwritten or
operate incorrectly. This and the other flash memory access functions should not
be used on the same flash memory that your program resides on, nor should they
be used on the same region of a second flash memory where afile system resides.

UseWriteFlash () towriteto the primary flash memory.

PARAMETERS
£d Thisis apointer to an internal data structure that holds information
about aflash memory chip.
mb3cr Thisisthe value to set MB3CR to whenever the flash memory isac-

cessed. 0xc2 (i.e., CS2, /OEOQ, /WEOQ, 0WS) isatypical setting for the
second flash memory on the TCP/IP Dev Kit, the Intellicom, the Ad-
vanced Ethernet Core, and the RabbitLink.

RETURN VALUE

0: Success.
1: Invalid flash memory type.
- 1: Attempt made to initialize primary flash memory.

LIBRARY
FLASH.LIB

SEE ALSO

flash erasechip, flash erasesector, flash gettype, flash read,
flash readsector, flash sector2xwindow, flash writesector

74 Dynamic C Function Reference Manual

flash read

int flash read(FlashDescriptor* fd, word sector, word offset,
unsigned long buffer, word length);

DESCRIPTION
Reads data from the flash memory and storesit inbuffer.

Note: £d must have already been initialized with f1ash init before calling
thisfunction. Seethe f1ash init description for further restrictions.

PARAMETERS

£d The FlashDescriptor of the flash memory to read from.

sector The sector of the flash memory to read from.

offset The displacement, in bytes, from the beginning of the sector to start
reading at.

buffer The physical address of the destination buffer. TIP: A logical address
can be changed to a physical with the function paddr.

length The number of bytesto read.

RETURN VALUE
0: Success.

LIBRARY
FLASH.LIB

SEE ALSO

flash erasechip, flash erasesector, flash gettype, flash init,
flash readsector, flash sector2xwindow, flash writesector,
paddr

Chapter 1: Function Descriptions 75

flash readsector

int flash readsector(FlashDescriptor* fd, word sector, unsigned
long buffer);

DESCRIPTION
Reads the contents of an entire sector of flash memory into a buffer.

Note: £d must have already beeninitialized with f1ash init before calling
thisfunction. See f1ash _init description for further restrictions.

PARAMETERS
£d The FlashDescriptor of the flash memory to read from.
sector The source sector to read.
buffer The physical address of the destination buffer. TIP: A logical address

can be changed to a physical with the function paddr ().

RETURN VALUE
0: Success.

LIBRARY
FLASH.LIB

SEE ALSO

flash erasechip, flash erasesector, flash gettype, flash init,
flash read, flash sector2xwindow, flash writesector

76 Dynamic C Function Reference Manual

flash sector2xwindow

void* flash sector2xwindow(FlashDescriptor* f£d, word sector);

DESCRIPTION

Thisfunction setsthe M B3CR and X PC val ue so the requested sector fallswithin the XPC
window. The MB3CR isthe Memory Interface Unit bank register. XPC is one of four
Memory Management Unit registers. See flash init description for restrictions.

PARAMETERS
£d The FlashDescriptor of the flash memory.
sector The sector to set the X PC window to.

RETURN VALUE
The logical offset of the sector.

LIBRARY
FLASH.LIB

SEE ALSO

flash erasechip, flash erasesector, flash gettype, flash init,
flash read, flash readsector, flash writesector

Chapter 1: Function Descriptions 77

flash writesector

int flash writesector(FlashDescriptor* fd, word sector, unsigned
long buffer);

DESCRIPTION
Writes the contents of buf fer to sector on the flash memory referenced by £4.

Note: £d must have already beeninitialized with f1ash init before calling
thisfunction. See f1ash _init description for further restrictions.

PARAMETERS
£d The FlashDescriptor of the flash memory to write to.
sector The destination sector.
buffer The physical address of the source. TIP: A logical address can be

changed to a physical address with the function paddr ().

RETURN VALUE
0: Success.

LIBRARY
FLASH.LIB

SEE ALSO

flash erasechip, flash erasesector, flash gettype, flash init,
flash read, flash readsector, flash sector2xwindow

78 Dynamic C Function Reference Manual

floor

float floor(float x);

DESCRIPTION

Computes the largest integer less than or equal to the given number.

PARAMETERS

x Va ue to round down.

RETURN VALUE
Rounded down value.

LIBRARY
MATH.LIB

SEE ALSO

ceil, fmod

Chapter 1: Function Descriptions

79

fmod

float fmod(float x, float y):

DESCRIPTION
Calculates modulo math.

PARAMETERS
x Dividend
y Divisor

RETURN VALUE

Returns the remainder of x/y. The remaining part of x after all multiples of y have been
removed. For example, if x is22.7 and y is10.3, theintegral division result is2. Then the
remainder is: 22.7-2x 10.3=2.1.

LIBRARY
MATH.LIB

SEE ALSO

ceil, floor

80 Dynamic C Function Reference Manual

fopen rd (FSl)

int fopen rd(File* £, FileNumber fnum);

DESCRIPTION
Opens afilefor reading.

PARAMETERS
£ A pointer to the file to read.
fnum A number intherange 1to 127 inclusive that identifiesthefilein the

flash file system.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
FILESYSTEM.LIB

Chapter 1: Function Descriptions

81

fopen rd (FS2)

int fopen rd(File* £, FileNumber name);

DESCRIPTION
Open filefor reading only. See fopen wr () for amore detailed description.

PARAMETERS
£ Pointer to file descriptor (uninitialized).
name File number (1 to 255 inclusive).

RETURN VALUE

0: Success.
10: Failure.

ERRNO VALUES
ENOENT - File does not exist, or metadata extent number does not match an existing file.

LIBRARY
fs2.1ib

SEE ALSO
fclose, fopen wr (FS2)

82 Dynamic C Function Reference Manual

fopen wr (FS1)

int fopen wr(File* £, FileNumber fnum);

DESCRIPTION
Opens afilefor writing.

PARAMETERS
£ A pointer to the fileto write.
fnum A number intherange 1to 127 inclusive that identifiesthefilein the

flash file system.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
FILESYSTEM.LIB

Chapter 1: Function Descriptions

83

fopen wr (FS2)

int fopen wr(File* £, FileNumber name);

DESCRIPTION

Open filefor read or write. The given file number is composed of two parts: the low byte
contains the file number (1 to 255 inclusive) and the high byte, if not zero, contains the
metadata extent number. |f the extent number is zero, it defaults to the correct metadata
extent - thisisfor the purpose of validating an expected extent number. Most applications
should just pass the file number with zero high byte.

A file may be opened multiple times, with adifferent file descriptor pointer for each call,
which allowsthefileto be read or written at more than one position at atime. A reference
count for the actual fileis maintained, so that the file can only be deleted when all file de-
scriptors referring to thisfile are closed.

fopen wr () or fopen rd () must be called before any other function from this li-
brary is called that requiresaFile pointer. The "current position” is set to zeroi.e. the
start of thefile.

When afileis created, it is automatically opened for writing thus a subsequent call to
fopen wr () isredundant.

PARAMETERS
£ Pointer to file descriptor (uninitialized).
name File number (1 to 255 inclusive).

RETURN VALUE

0: Success.
10: Failure.

ERRNO VALUES
ENOENT - File does not exist, or metadata extent number does not match an existing file.

LIBRARY
fs2.lib

SEE ALSO
fclose, fopen rd (FS2)

84 Dynamic C Function Reference Manual

forceSoftReset

void forceSoftReset();
DESCRIPTION
Forces the board into a software reset by jumping to the start of the BIOS.

LIBRARY
SYS.LIB

Chapter 1: Function Descriptions

85

fread (FS1l)

int fread(File* £, char* buf, int len);

DESCRIPTION

Reads 1 en bytesfrom afilepointed to by £, starting at the current offset into the file, into
buffer. Datais read into buffer pointed to by buf.

PARAMETERS
£ A pointer to the fileto read from.
buf A pointer to the destination buffer.
len Number of bytes to copy.

RETURN VALUE
Number of bytes read.

LIBRARY
FILESYSTEM.LIB

86 Dynamic C Function Reference Manual

fread (FS2)

int fread(File* £, void* buf, int len);

DESCRIPTION

Read data from the “current position” of the given file. When the file is opened, the cur-
rent position is 0, meaning the start of the file. Subsequent reads or writes advance the po-
sition by the number of bytes read or written. fseek () can aso be used to position the
read point.

If the application permits, it is much more efficient to read multiple data bytesrather than
reading one-by-one.

PARAMETERS
£ Pointer to file descriptor (initialized by fopen rd (),
fopen wr () or fcreate()).
buf Data buffer located in root data memory or stack. This must be di-
mensioned with at least len bytes.
len Length of datato read (0 to 32767 inclusive).

RETURN VALUE
len: Success.

<len: Partia success. Returns amount successfully read. errno givesfurther details
(probably 0 meaning that end-of-file was encountered).

0: Failure, or 1en was zero.

LIBRARY
FS2.LIB

ERRNO VALUES

EBADFD - File descriptor not opened.

EINVAL - len lessthan zero.

0 - Success, but 1en was zero or EOF was reached prior to reading 1en bytes.
EIO-I1/Oeror.

SEE ALSO
fseek (FS2), fwrite (FS2)

Chapter 1: Function Descriptions 87

frexp

float frexp(float x, int *n);

DESCRIPTION

Splits x into a fraction and exponent, f * (2").

PARAMETERS
x Number to split
n Aninteger

RETURN VALUE

Thefunction returnsthe exponent intheinteger *n and the fraction between 0.5, inclusive

and 1.0.

LIBRARY
MATH.LIB

SEE ALSO
exp, ldexp

88

Dynamic C Function Reference Manual

fs format (FS1)

int fs format(long reserveblocks, int num blocks, unsigned long
wearlevel);

DESCRIPTION

Initializes the internal data structures and file system. All blocksin the file system are
erased.

PARAMETERS

reserveblocks Starting address of the flash file system. When FS_FLASH isde-
fined this value should be 0 or amultiple of the block size. When
FS_RAM isdefined this parameter isignored.

num blocks The number of blocksto allocate for the file system. With a default
block size of 4096 bytes and a 256K flash memory, this value might
be 64.

wearlevel Thisvaue should be 1 on anew flash memory, and some higher val-
ue on an unformatted used flash memory. If you are reformatting a
flash memory you can set wearlevel to Otokeep theold wear lev-
eing.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
FILESYSTEM.LIB

EXAMPLE
This program can befound in samples/filesystem/format.c.

#define FS_FLASH

#use "filesystem.lib"
#define RESERVE 0
#define BLOCKS 64
#define WEAR 1

main ()
if(fs_format(RESERVE,BLOCKS,WEAR)) {
printf ("error formatting flash\n") ;
} else {
printf ("flash successfully formatted\n") ;

Chapter 1: Function Descriptions 89

fs format (FS2)

int f£s_format(long reserveblocks, int num blocks, unsigned
wearlevel)

DESCRIPTION
Format all extents of thefile system. Thismust becalled after calling £s_init ().Only
extents that are not defined as reserved are formatted. All files are deleted.

PARAMETERS
reserveblocks Must be zero. Retained for backward compatibility.
num_blocks Ignored (backward compatibility).

wearlevel Initial wearlevel value. Thisshould be 1if you have anew flash,
and some larger number if the flash is used. If you are reformat-
ting aflash, you can use 0 to use the old flash wear levels.

RETURN VALUE

0: Success.
10: Failure.

ERRNO VALUES

EINVAL - thereserveblocks parameter was non-zero.

EBUSY - one or more files were open.

ETIO - I/O error during format. If thisoccurs, retry the format operation If it fails again,
thereis probably a hardware error.

SEE ALSO

fs _init (FS2), 1lx_ format

90 Dynamic C Function Reference Manual

fs init (FS1)

int f£s_init(long reserveblocks, int num blocks);

DESCRIPTION

Initialize the internal data structures for an existing file system. Blocks that are used by a
file are preserved and checked for data integrity.

PARAMETERS

reserveblocks Starting address of the flash file system. When FS_FLASH isde-
fined this value should be 0 or a multiple of the block size. When
FS_RAM isdefined this parameter is ignored.

num_blocks The number of blocks that the file system contains. By default the
block sizeis 4096 bytes.

RETURN VALUE

0:Success.
1: Failure.

LIBRARY
FILESYSTEM.LIB

Chapter 1: Function Descriptions 91

fs init (FS2)

int f£s_init(long reserveblocks, int num blocks);

DESCRIPTION

Initialize the filesystem. The static structure £ s contains information that defines the
number and parameters associated with each extent or “partition.” Thisfunction must be
called before any of the other functionsin this library, except for £s_setup (),
fs get * 1x() andfs get 1x size().
Pre-main initialization will create up to 3 devices:

» The second flash device (if available on the board)

* Battery-backed SRAM (if FS2 RAM RESERVE defined)

» Thefirst (program) flash (if both XMEM RESERVE_SIZE and
FS2 USE_ PROGRAM FLASH defined)

The LX numbers of the default devices can be obtained using the

fs get flash 1x(),fs get ram 1x() andfs get other 1x() calsIf
none of these devices can be set up successfully, £s_init () will return ENOSPC when
called.

This function performs complete consistency checks and, if necessary, fixups for each
LX. It may take up to several secondsto run. It should only be called once at application
initialization time.

Note: When using uC/OS-II, £s_init () must be called before0SInit ().

PARAMETERS
reserveblocks Must bezero. Retained for backward compatibility.

num_blocks Ignored (backward compatibility).

RETURN VALUE

0: Success.
10: Failure.

ERRNO VALUES

EINVAL - the reserveblocks parameter was non-zero.

EIO - I/O error. Thisindicates a hardware problem.

ENOMEM - Insufficient memory for required buffers.

ENOSPC - No valid extents obtained e.g. there is no recognized flash or RAM memory
device available.

LIBRARY
fs2.1ib

SEE ALSO
fs_setup (FS2), fs _get flash 1lx (FS2)

92 Dynamic C Function Reference Manual

fs reserve blocks (FSl)

int fs_reserve_blocks(int blocks);

DESCRIPTION

Sets up anumber of blocksthat are guaranteed to be available for privileged files. A priv-
ileged file has an identifying number in the range 128 through 143. This function is not
needed in most cases. If it isused, it should be called immediately after s init or
fs format.

PARAMETERS

blocks Number of blocks to reserve.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
FILESYSTEM.LIB

Chapter 1: Function Descriptions 93

fsck (FS1)

int fsck(int flash);

DESCRIPTION
Check the filesystem for errors

PARAMETERS
flash A bitmask indicating which checksto NOT perform. The following

checks are available:

FSCK_HEADERS - Block headers.
FSCK_CHECKSUMS - Data checksums.
FSCK_VERSION - Block versions, from afailed write.

RETURN VALUE

0: Success.
1 0: Failure, thisis abitmask indicating which checksfailed.

LIBRARY
FILESYSTEM.LIB

94 Dynamic C Function Reference Manual

fseek (FS1)

int fseek(File* £, long to, char whence);

DESCRIPTION
Places the read pointer at adesired location in thefile.

PARAMETERS
£ A pointer to the file to seek into.
to The number of bytesto move the read pointer. This can be apositive
or negative number.
whence The location in the file to offset from. Thisis one of the following
constants.
SEEK_SET - Seek from the beginning of thefile.
SEEK_CUR - Seek from the current read position in thefile.
SEEK_END - Seek from the end of thefile.
EXAMPLE

To seek to 10 bytes from the end of thefile £, use

fseek (£, -10, SEEK END) ;

To rewind thefile £ by 5 bytes, use
fseek (£, -5, SEEK CUR);

RETURN VALUE

0: Success.
1: Failure.

LIBRARY

FILESYSTEM.LIB

Chapter 1: Function Descriptions 95

fseek (FS2)

int fseek(File * £, long where, char whence);

DESCRIPTION

Set the current read/write position of the file. Bytesin afile are sequentially numbered
starting at zero. If the current position is zero, then the first byte of the file will be read or
written. If the position equals the file length, then no data can be read, but any write will
append data to thefile.

fseek () alowsthe positionto be set relativeto the start or end of thefile, or relativeto
its current position.

Inthe special caseof SEEK RAW, an unspecified number of bytes beyond the known end-
of-file may bereadable. The actual amount depends on the amount of spaceleft in the last
internal block of the file. This mode only applies to reading, and is provided for the pur-
pose of datarecovery in the case that the application knows more about the file structure
than the filesystem.

PARAMETERS
£ Pointer to file descriptor (initialized by fopen rd (),
fopen wr () or fcreate()).
where New position, or offset.
whence One of the following values:

SEEK_SET: 'where' (non-negative only) isrelative to start of file.
SEEK_CUR: 'where' (positive or negative) is relative to the current
position.

SEEK_END: 'where' (non-positive only) isrelative to the end of the
file.

SEEK_RAW: Similar to SEEK END, except the file descriptor is set
in a special mode which allows reading beyond the end of thefile.

RETURN VALUE

0: Success.

1 0: The computed position was outside of the current file contents, and has been adjusted
to the nearest valid position.

ERRNO VALUES
None.

LIBRARY
FS2.LIB

SEE ALSO
ftell (FS2), fread (FS2), fwrite (FS2)

96 Dynamic C Function Reference Manual

fs get flash 1x (FS2)

FSLXnum fs get flash 1x(void);

DESCRIPTION

Returnsthe logical extent number of the preferred flash device. Thisisthe second flash if
oneisavailable on your hardware, otherwiseit isthe reserved areain your program flash.
In order for the program flash to be available for use by the file system, you must define
two constants: the first constant isXMEM RESERVE_SIZE near the top of
BIOS\RABBITBIOS.C. Thisvalueisset to the amount of program flash to reserve (in
bytes). Thisisrequired by the BIOS. The second constantisset inyour codebefore #use
"fs2.1lib".FS2 USE PROGRAM FLASH must be defined to the number of KB
(1024 bytes) that will actually be used by thefile system. If thisisset to alarger valuethan
the actual amount of reserved space, then only the actual amount will be used.

The sample program SAMPLES\FILESYSTEM\FS2INFO. C demonstrates use of this
function.

This function may be called beforecalling £s_init ().

RETURN VALUE

0: Thereisno flash file system available.
10: Logical extent number of the preferred flash.

LIBRARY
FS2.1ib

SEE ALSO
fs _get ram 1lx (FS2), fs get other 1x (FS2)

Chapter 1: Function Descriptions 97

fs get 1x (FS2)

FSLXnum fs get 1x(int meta);

DESCRIPTION

Return the current extent (LX) number for file creation. Each file hastwo parts: the main
bulk of data, and the metadata which isarelatively small, fixed, amount of data used to
journal changesto the file. Both data and metadata can reside on the same extent, or they
may be separated.

PARAMETERS

meta 1: return logical extent number for metadata.
0: return logical extent number for data.

RETURN VALUE
Logica extent number.

LIBRARY
FS2.1ib

SEE ALSO
fcreate (FS2), fs_set 1x (FS2)

98 Dynamic C Function Reference Manual

fs get 1x size (FS2)

long fs get 1lx size(FSLXnum 1lxn, int all, word ls shift);

DESCRIPTION

Returns the size of the specified logical extent, in bytes. Thisinformation is useful when
initially partitioning an LX, or when estimating the capacity of an LX for user data. a11
is aflag which indicates whether to return the total data capacity (asif all current files
were deleted) or whether to return just the available data capacity. The return value ac-
counts for the packing efficiency which will be less than 100% because of the bookkeep-
ing overhead. It does not account for the free space required when any updates are
performed; however this free space may be shared by all fileson the LX. It also does not
account for the space required for file metadata. You can account for this by adding one
logical sector for each fileto be created onthisLX. You can also specify that the metadata
be stored on adifferent LX by useof £s_set 1x().

Thisfunction may be called either beforeor after £s_init (). If called before, then the
1s shift parameter must be settothevaluetobeusedin s setup (), sincethelLS
sizeisnot known at thispoint. 1s_shift can also be passed as zero, in which case the
default size will be assumed. a11 must be non-zero if caled beforefs _init (), since
the number of filesin useis not yet known.

PARAMETERS
lxn Logical extent number to query.
all Boolean: 0 for current free capacity only, 1 for total.
Must use 1if calling before fs_init ().
ls shift Logical sector shifti.e. log base 2 of LS size (6 to 13); may be zero

to use default.

RETURN VALUE

0: The specified LX does not exist.
10: Capacity of the LX in bytes.

LIBRARY
FS2.1ib

Chapter 1: Function Descriptions 99

fs get other 1lx (FS2)

FSLXnum fs get other 1lx(void);

DESCRIPTION

Returnsthelogical extent number of the non-preferred flash device. If it exists, thisis usu-
ally the program flash. Seethe description under £s_get flash 1x () for details
about setting up the program flash for use by the filesystem.

Thesample program Samples\FILESYSTEM\FS2INFO. C demonstrates use of this
function.

Thisfunction may be called beforecalling £s_init ().

RETURN VALUE

0: Thereis no other flash filesystem available.
10: Logical extent number of the non-preferred flash.

LIBRARY
FS2.LIB

SEE ALSO
fs get ram_Ix (FS2), fs get flash Ix (FS2)

100 Dynamic C Function Reference Manual

fs get ram 1lx (FS2)

FSLXnum fs get ram 1lx(void);

DESCRIPTION
Return the logical extent number of the RAM file system device. Thisisonly available if
you have defined FS2 RAM RESERVE to anon-zero number of bytesin the BIOS.

A RAM filesystem isonly really useful if you have battery-backed SRAM on the board.
You can still use aRAM file system on volatile RAM, but of course files will not persist
over power cycles and you should explicitly format the RAM filesystem at power-up.

Thesampleprogram Samples\FILESYSTEM\FS2INFO.C demonstratesuseof this
function.

Thisfunction may be called beforecalling £s_init ().

RETURN VALUE

0: Thereisno RAM filesystem available.
10: Logical extent number of the RAM device.

LIBRARY
FS2.LIB

SEE ALSO
fs get flash 1x (FS2), fs get other 1x (FS2)

Chapter 1: Function Descriptions 101

fs set 1x (FS2)

int f£s_set 1lx(FSLXnum meta, FSLXnum data);

DESCRIPTION

Setsthe default logical extent (LX) numbersfor file creation. Each file hastwo parts: the
main bulk of data, and the metadatawhichisarelatively small, fixed amount of data used
to journal changesto the file. Both data and metadata can reside on the same extent, or

they may be separated. The metadata, no matter where it islocated, consumes one sector.

Thefile creation functions allow the metadata extent to be explicitly specified (inthe high
byte of the file number), however itisusually easiertocall £s set 1x () to set appro-
priate defaults. Calling £s_set 1x () istheonly way to specify the data extent.

If £s_set 1x () isnever caled, both data and metadata will default to the first non-
reserved extent number.

PARAMETERS
meta Extent number for metadata.
data Extent number for data.

RETURN VALUE

0: Success.
10: Error, e.g. non-existent LX number.

ERRNO VALUES
ENODEYV - no such extent number, or extent is reserved.

LIBRARY
FS2.LIB

SEE ALSO
fcreate (FS2)

102 Dynamic C Function Reference Manual

fs setup (FS2)

FSLXnum fs setup(FSLXnum 1lxn, word ls shift, int reserve it,
void * rfu, int partition it, word part, word part 1ls shift,
int part reserve, void * part rfu);

DESCRIPTION

To modify or add to the default extents, this function must be called before calling
fs_init ().If caled after £s_init (), thefilesystem will be corrupted.

fs_setup () runsinoneof two basic modes, determined by thepartition it pa-
rameter. If partition it isnon-zero, thenthe specified extent (1xn, which must ex-
ist), is split into two extents according to the given proportions. If partition it is

zero, then the specified extent must not exist; it is created. Thisuseis beyond the scope
of thisnote, sinceit involvesfilesystem internals. The paritioning usageis described here.

partition it maybeFS MODIFY EXTENT inwhichcasethebaseextent, 1xn,is
modified to use the specified 1s_shift and reserve_ it parameters (the other pa-
rameters are ignored).

partition it maybesettoFS PARTITION FRACTION (other valuesreserved).
This causes extent number 1xn to be split. Thefirst half is till referred to asextent 1xn,
and the other half is assigned a new extent number, which is returned.

The base extent number may itself have been previously partitioned, or it should be 1 for
the 2nd flash device, or possibly 2 for the NVRAM device.

PARAMETERS
lxn Base extent number to partition or modify.
ls shift New logical sector sizeto assign to base partition, or zero to not al-
ter it. Thisis expressed as the log base 2 of the desired size, and
must be a number between 6 and 13 inclusive.
reserve it TRUE if base partition isto be marked reserved.
rfu A pointer reserved for future use. Pass as null.

partition it Mustbesetto FS PARTITION FRACTION oOf
FS MODIFY EXTENT. Thefollowing parametersareignored if
this parameter isnot FS_ PARTITION FRACTION.

Chapter 1: Function Descriptions 103

part The fraction of the existing base extent to assign to the new ex-
tent. This number is expressed as a fixed-point binary number
with the binary point to the left of the MSB e.g. 0x3000 assigns
3/16 of the base extent to the new partition, updating the base ex-
tent to 13/16 of its original size. The nearest whole number of
physical sectorsis used for each extent.

part 1ls shift Logical sector sizeto assign to the new extent, or zero to use the
same L S size as the base extent. Expressed in same units as pa-

rameter 2.
part reserve TRUE if the new extent is to be reserved.
part rfu A pointer reserved for future use. Pass as null.

RETURN VALUE

0: Failure, extent could not be partitioned.
1 0: Success, number of the new extent, or same as 1 xd for existing extent modification.

ERRNO VALUES
ENOSPC - one or other half would contain an unusably small number of logical sectors,
or the extent table isfull. In the latter case, #define FS MAX LX toalarger value.

EINVAL - partition_ it settoaninvalid value, or other parameter invalid.
ENODEV - specified base extent number not defined.

LIBRARY
FS2.LIB

SEE ALSO
fs_init (FS2)

104 Dynamic C Function Reference Manual

fs sync (FS2)

int fs sync(void);

DESCRIPTION

Flush any buffers retained in RAM to the underlying hardware device. The file system
does not currently perform any buffering, however future revisions of thislibrary may in-
troduce buffering to improve performance. Thisfunctionissimilarto ££1ush (), except
that the entire file system is synchronized instead of the data for just onefile. Use
fs_sync () inpreferenceto ££1lush () if thereisonly one extent in the filesystem.

RETURN VALUE

0: Success.
10: Failure.

ERRNO VALUES
EIO -1/O error.

LIBRARY
FS2.LIB

SEE ALSO
fflush (FS2)

Chapter 1: Function Descriptions 105

ftell (Fsl1)

long ftell(File* £);

DESCRIPTION
Getsthe offset from the beginning of afile that the read pointer is currently at.

TIP: ftell () canbeused with fseek () tofind the length of afile.

fseek (f, 0, SEEK END) ; // seek to the end of thefile
FileLength = ftell (f); // find the length of thefile
PARAMETERS
£ A pointer to the fileto query.

RETURN VALUE

The offset in bytes of the read pointer from the beginning of the file: Success.
-1: Failure.

LIBRARY
FILESYSTEM.LIB

106 Dynamic C Function Reference Manual

ftell (Fs2)

long ftell(File * £);

DESCRIPTION

Return the current read/write position of thefile. Bytesin afile are sequentially numbered
starting at zero. If the current position is zero, then thefirst byte of the filewill be read or
written. If the position equals the file length, then no data can be read, but any write will
append data to thefile.

Note that no checking is doneto seeif thefile descriptor svalid. If the Fileis not actually
open, the return value will be random.

PARAMETERS
£ Pointer to file descriptor (initialized by fopen rd (),

fopen wr () or fcreate()).

RETURN VALUE
Current read/write position (0 to length-of-fil€).

ERRNO VALUES
None.

LIBRARY
fs2.1ib

SEE ALSO
fseek (FS2)

Chapter 1: Function Descriptions 107

fshift

int fshift(File *£f, int len, void *buf);

DESCRIPTION

Delete data from the start of afile opened for writing. Optionally, the data that was re-
moved can be read into a buffer. The “current position” of the file descriptor is adjusted
to take account of the changed file offsets. If the current position is pointing into the data
that isremoved, then it is set to zero, i.e., the start of dataimmediately after the deleted
section.

The specified file must not be opened with other file descriptors, otherwise an EBUSY
error isreturned. The exceptiontothisisif FS2 SHIFT DOESNT UPDATE FPOSis
defined before #use f£s2.1ib. If defined, multiplefile descriptors can be opened, but
their current position will not be updated if £shift () isused. In this case, the applica-
tion should explicitly use fseek () onall filedescriptors open on thisfile (including the
one used to performthe £shi £t ()). If thisisnot done, then their current position is ef-
fectively advanced by the number of characters shifted out by the fshift ().

The purpose of thisfunction isto make it easy to implement files which worm their way
through the filesystem: adding at the head and removing at thetail, such that the total file
Size remains approximately constant.

Surprisingly, it is possiblefor an out-of-space error to occur, since the addition of the jour-
naling (meta-data) entry for the shift operation may cause an error before deleted blocks
(if any) are made available.

PARAMETERS
£ Pointer to file descriptor (initialized by fopen wr () or
fcreate()).
len Length of datato remove (0 to 32767 inclusive).
*buf Data buffer located in root data memory or stack. This must be di-

mensioned with at least 1 en bytes. This parameter may also be null
if the deleted datais not needed.

108 Dynamic C Function Reference Manual

RETURN VALUE
len: Success.
<len: Partia success - returns amount successfully deleted. errno gives further details

(probably ENOSPC)
0: Error or 1en was zero.

ERRNO VALUES

EBADFD - File descriptor not opened, or isread-only.

EINVAL - 1en lessthan zero.

0 - Success, but 1en was zero.

EIO - 1/O error.

ENOSPC - extent out of space.

EBUSY - file opened more than once. Thisisonly possible if

FS2 SHIFT DOESNT UPDATE FPOS isnot defined, which isthe default case.

LIBRARY
FS2.LIB

SEE ALSO
fread (FS2), fwrite (FS2)

Chapter 1: Function Descriptions 109

fwrite (FS1)

int fwrite(File* £, char* buf, int len);

DESCRIPTION
Appends 1en bytes from the source buffer to the end of thefile.

PARAMETERS
£ A pointer to the file to write to.
buf A pointer to the source buffer.
len The number of bytesto write.

RETURN VALUE

The number of bytes written: Success.
0: Failure.

LIBRARY
FILESYSTEM.LIB

110 Dynamic C Function Reference Manual

fwrite (FS2)

int fwrite(File* £, wvoid* buf, int len);

DESCRIPTION

Write datato file opened for writing. The data is written starting at the current position.
Thisiszero (start of file) whenit is opened or created, but may be changed by fread (),
fwrite (), fshift () or £seek () functions. After writing the data, the current po-
sition is advanced to the position just after the last byte written. Thus, sequential callsto
fwrite () will add or append data contiguously.

Unlike the previousfile system (FILESYSTEM. LIB), thislibrary allowsfilesto be
overwritten not just appended. Internally, overwrite and append are different operations
with differing performance, depending on the underlying hardware. Generally, appending
is more efficient especially with byte-writable flash memory. If the application allows, it
is preferable to use append/shift rather than overwrite. In order to ensure that datais ap-
pended, use fseek (£, 0, SEEK END) beforecalling fwrite ().

The same current-position pointer isused for both read and write. If interspersing read and
write, then £seek () should be used to ensure the correct position for each operation. Al-
ternatively, the same file can be opened twice, with one descriptor used for read and the
other for write. This precludesuse of fshift (), sinceit does not tolerate shared files.

PARAMETERS
£ Pointer to file descriptor (initialized by fopen _wr () or
fcreate()).
buf Data buffer located in root data memory or stack.
len Length of data (0 to 32767 inclusive).

RETURN VALUE

len: Success.
<len: Partia success. Returns amount successfully written. errno gives details.
0: Failure, or 1en was zero.

ERRNO VALUES

EBADFD - File descriptor not opened, or isread-only.
EINVAL - len lessthan zero.

0 - Success, but 1en was zero.

EIO - I1/Oerror.

ENOSPC - extent out of space.

LIBRARY
fs2.LIB

SEE ALSO
fread (FS2)

Chapter 1: Function Descriptions 111

ftoa

int ftoa(float £, char *buf);

DESCRIPTION
Converts afloat number to a character string.
The character string only displays the mantissa up to 9 digits, no decimal points, and ami-

nussignif £ isnegative. The function returns the exponent (of 10) that should be used to
compensate for the string: ftoa (1.0, buf) yidldsbuf="100000000" and returns

-8.
PARAMETERS
£ Float number to convert.
buf Converted string. The string is no longer than 10 characters long.

RETURN VALUE
The exponent of the number.

LIBRARY
STDIO.LIB

SEE ALSO

utoa, itoa

112 Dynamic C Function Reference Manual

getchar

char getchar(wvoid);

DESCRIPTION

Busy waitsfor acharacter to betyped from the stdio window in Dynamic C. The user should
make sure only one process calls this function at atime.

RETURN VALUE
A character typed in the Stdio window in Dynamic C.

LIBRARY
STDIO.LIB

SEE ALSO
gets, putchar

Chapter 1: Function Descriptions 113

getcrc

int getcrc(char *dataarray, char count, int accum);

DESCRIPTION

Computes the Cyclic Redundancy Check (CRC), or check sum, for count bytes (maxi-
mum 255) of datain buffer. Callsto get crc can be “concatenated” using accum to
compute the CRC for alarge buffer.

PARAMETERS
dataarray Data buffer
count Number of bytes. Maximum is 255.
accum Base CRC for the data array.

RETURN VALUE
CRC value.

LIBRARY
MATH.LIB

114 Dynamic C Function Reference Manual

getdivider19200

char getdivider19200();

DESCRIPTION
This function returns avalue that is used in baud rate cal culations.
The correct value is returned regardless of the compile mode. In separate 1&D space
mode, the divider value is stored as a define byte in code space, so directly accessing the
variablewill result in an incorrect load (from constant data space). This function usesthe

1dp instruction, which circumvents the separate | & D default loading scheme so that the
correct value is returned.

RETURN VALUE
The value used in baud rate calcul ation.

LIBRARY
SYS.LIB

Chapter 1: Function Descriptions 115

gets

char *gets(char *s);

DESCRIPTION

Waitsfor astring terminated by <CR> at the stdio window. The string returned is null ter-
minated without the return. The user should make sure only one processcallsthisfunction
a atime.

PARAMETERS

s Theinput string is put to the location pointed to by the argument s.
The caller isresponsible to make sure the location pointed to by s is
big enough for the string.

RETURN VALUE
Same pointer passed in, but string is changed to be null terminated.

LIBRARY
STDIO.LIB

SEE ALSO
puts, getchar

116 Dynamic C Function Reference Manual

GetVectExtern2000

unsigned GetVectExtern2000 () ;

DESCRIPTION
Reads the address of external interrupt table entry. This function really just returnswhat is
present in the table. The return value is meaningless if the address of the external interrupt
has not been written.

This function should be used for Rabbit 2000 processors that are marked 1Q2T in the 3rd
line of text across the face of the chip. It will work for other versions of the Rabbit 2000
but should be deprecated in favor of GetVectExtern3000 () which alowsthe use
of 2 external interrupts. (Please see Technical Note 301, “ Rabbit 2000 Microprocessor In-
terrupt Issue,” on the Rabbit Semiconductor website for more information.)

RETURN VALUE
Jump address in vector table.

LIBRARY
SYS.LIB

SEE ALSO
GetVectIntern, SetVectExtern2000, SetVectIntern,
GetVectExtern3000

Chapter 1: Function Descriptions 117

http://www.rabbitsemiconductor.com/docs/app_tech_notes.shtml

GetVectExtern3000

unsigned GetVectExtern3000(int interruptNum) ;

DESCRIPTION

Reads the address of an external interrupt table entry. This function may be used with all
Rabbit 3000 processors and al Rabbit 2000 processors with the exception of the ones
marked Q2T in the 3rd line of text across the face of the chip. For those, use the function
GetVectExtern2000 () instead.

GetVectExtern3000 () really just returns whatever valueis at the address:

(external vector table base) + (interruptNum*8) + 1

PARAMETER
interruptNum Interrupt number. Should be O or 1.

RETURN VALUE
Jump address in vector table.

LIBRARY
SYS.LIB

SEE ALSO

SetVectExtern3000, SetVectIntern, GetVectlIntern,
GetVectExtern2000

118 Dynamic C Function Reference Manual

GetVectIntern

unsigned GetVectIntern(int vectNum) ;

DESCRIPTION

Reads the address of the internal interrupt table entry and returns whatever valueis at the
address:

(internal vector table base) + (vectNum*16) + 1
PARAMETER

vectNum Interrupt number; should be 0-15.

RETURN VALUE
Jump address in vector table.

LIBRARY
SYS.LIB

SEE ALSO
GetVectExtern2000, SetVectExtern2000, SetVectIntern

Chapter 1: Function Descriptions 119

gps_get position

int gps get position(GPSPositon *newpos, char *sentence);

DESCRIPTION

Parses a sentence to extract position data. Thisfunction is able to parse any of the foll ow-
ing GPS sentence formats: GGA, GLL or RMC.

PARAMETERS
newpos A GPSPosition structureto fill.
sentence A string containing aline of GPS datain NMEA-0183 format.

RETURN VALUE

0: Success.
-1: Parsing error.
-2: Sentence marked invalid.

LIBRARY
gps.lib

120 Dynamic C Function Reference Manual

gps_get utc

int gps _get utc(struct tm *newtime, char *sentence);

DESCRIPTION
Parses an RMC sentence to extract time data.

PARAMETERS
newtime tm structure to fill with new UTC time.
sentence A string containing aline of GPS datain NMEA-0183 format (RMC

sentence).

RETURN VALUE

0: Success.
-1: Parsing error.
-2: Sentence marked invalid.

LIBRARY
GPS.LIB

Chapter 1: Function Descriptions 121

gps _ground distance

float gps ground distance(GPSPosition *a, GPSPosition *b);

DESCRIPTION
Calculates ground distance (in km) between two geographical points. (Uses spherical
earth model.)
PARAMETERS
a First point.
b Second point.

RETURN VALUE
Distance in kilometers.

LIBRARY
GPS.LIB

122 Dynamic C Function Reference Manual

hanncplx

void hanncplx(int *x, int N, int #*blockexp):;

DESCRIPTION

Convolves an N-point complex spectrum with the three-point Hann kernel. The filtered
spectrum replaces the original spectrum.

The function produces the same results as would be obtained by multiplying the corre-
sponding time sequence by the Hann raised-cosine window.

The zero—crossing width of the main lobe produced by the Hann window is4 DFT bins.
The adjacent sidel obes are 32 db below the main lobe. Sidelobes decay at an asymptotic
rate of 18 db per octave.

N must be a power of 2 and between 4 and 1024. Aninvalid N causes a RANGE excep-
tion.

PARAMETERS
x Pointer to N-element array of complex fractions.
N Number of complex elementsin array x.

blockexp Pointer to integer block exponent.

LIBRARY
FFT.LIB

SEE ALSO

ffteplx, ffteplxinv, fftreal, fftrealinv, hanncplx,
powerspectrum

Chapter 1: Function Descriptions 123

hannreal

void hannreal(int *x, int N, int *blockexp):;

DESCRIPTION

Convolves an N-point positive-frequency complex spectrum with the three-point Hann
kernel. The function produces the same results as would be abtained by multiplying the
corresponding time sequence by the Hann rai sed-cosine window.

The zero—crossing width of the main lobe produced by the Hann window is4 DFT bins.
The adjacent sidel obes are 32 db below the main lobe. Sidelobes decay at an asymptotic
rate of 18 db per octave.

Theimaginary part of thedcterm (storedinx [1]) isconsidered to betherea part of the
fmax term. The dc and fmax spectral components take part in the convolution aong with
the other spectral components. Therea part of fmax component affectsthereal part of the
X[N-1] component (and vice versa), and should not arbitrarily be set to zero unless these
components are unimportant.

PARAMETERS
x Pointer to N-element array of complex fractions.
N Number of complex elementsin array x.
blockexp Pointer to integer block exponent.

RETURN VALUE
None. The filtered spectrum replaces the original spectrum.

LIBRARY
FFT.LIB

SEE ALSO

ffteplx, fftcplxinv, fftreal, fftrealinv, hanncplx,
powerspectrum

124 Dynamic C Function Reference Manual

HDLCdropX

int HDLCdropX(); /* WheeXisEorF */

DESCRIPTION
Dropsthe next received packet, freeing up its buffer. This must be used if the packet has
been examined with HDL.CpeekX () andisno longer needed. A call to
HDLCreveiceX () istheonly other way to free up the buffer.

Thisfunction isintended for use with the Rabbit 3000 microprocessor.

RETURN VALUE

1: Packet dropped.
0: No received packets were available.

LIBRARY
HDLC PACKET.LIB

Chapter 1: Function Descriptions

125

HDLCerrorX

int HDLCerrorX(unsigned long *bufptr, int *lenptr);
/* WhereX iseorF */

DESCRIPTION

Thisfunction returns a set of possible error flags as an integer. A received packet with er-
rors is automatically dropped.

Masks are used to check which errors have occurred. The masks are;

* HDLC NOBUFFER - driver ran out of buffers for received packets.

* HDLC_ OVERRUN - abytewas overwritten and |lost before the ISR could retreiveit.
* HDLC OVERFLOW - areceived packet wastoo long for the buffers.

* HDLC_ABORTED - areceived packet was aborted by the sender during tranmission.
* HDLC BADCRC - apacket with an incorrect CRC was received.

Thisfunction isintended for use with the Rabbit 3000 microprocessor.

RETURN VALUE
Error flags (see above).

LIBRARY
HDLC PACKET.LIB

126 Dynamic C Function Reference Manual

HDLCopenX

int HDLCopenX(long baud, char encoding, unsigned long buffers,
int buffer count, int buffer size); /* WhereXisEorF */

DESCRIPTION

Opens seria port E or Fin HDLC mode. Sets up buffersto hold received packets. This
function is intended for use with the Rabbit 3000 microprocessor. Please see the

Rabbit 3000 Microprocessor User’s Manual for more details on HDL C and the bit encod-
ing modes to use.

PARAMETERS

baud The baud rate for the serial port. Due to imitationsin the baud gener-
ator, non-standard baud rates will be approximated within 5% of the
value requested.

encoding The bit encoding mode to use. Macro labelsfor the available options
are

* HDLC_NRZ

¢ HDLC_NRZI

* HDLC_MANCHESTER

« HDLC_BIPHASE_ SPACE
» HDLC_BIPHASE MARK

buffers A pointer to the start of the extended memory block containing the
receive buffers. Thisblock must be allocated beforehand by the user.
The size of the block should be:

(# of buffers) * ((size of buffer) + 4)
buffer count Thenumber of buffersin the block pointed to by buffer.

buffer size Thecapacity of each buffer in the block pointed to by buf fer.

RETURN VALUE

1: Actual baud rate is within 5% of the requested baud rate,
0: Otherwise.

LIBRARY
HDLC PACKET.LIB

Chapter 1: Function Descriptions 127

HDLCpeekX

int HDLCpeekX(unsigned long *bufptr, int #*lenptr);
/* WhereX iseorF */

DESCRIPTION

Reportsthelocation and size of the next available received packet if oneisavailable. This
function can be used to efficiently inspect a received packet without actually copying it
into aroot memory buffer. Once inspected, the buffer can be received normally (see
HDLCreceiveX ()), or dropped (see HDLCdropX ()).

Thisfunction isintended for use with the Rabbit 3000 microprocessor.

PARAMETERS
bufptr Pointer to location in xmem of the received packet.
lenptr Pointer to the size of the received packet.

RETURN VALUE

1: Thepointersbufptr and lenptr have been set for the received packet.
0: No received packets available.

LIBRARY
HDLC PACKET.LIB

128 Dynamic C Function Reference Manual

HDLCreceiveX

int HDLCreceiveX(char *rx buffer, int length);
/* WhereXisEorF */

DESCRIPTION

Copiesareceived packet into rx_buf fer if thereisone. Packets arereceived in the or-
der they arrive, even if multiple packets are currently stored in buffers.

Thisfunction isintended for use with the Rabbit 3000 microprocessor.

PARAMETERS
rx buffer Pointer to the buffer to copy areceived packet into.
length Size of the buffer pointedto by rx_buffer.

RETURN VALUE

>0: Size of received packet.

-1: No packets are available to receive.

-2: Thebuffer isnot large enough for the received packet. In this case, the packet remains
in the receive buffer)

LIBRARY
HDLC PACKET.LIB

Chapter 1: Function Descriptions 129

HDLCsendX

int HDLCsendX(char *tx buffer, int length); /* WhereXisEorF */

DESCRIPTION

Transmits a packet out seria port E or Fin HDLC mode. The tx_buffer isread directly
while transmitting, therefore it cannot be altered until a subsequent call to
HDLCsendingX () returnsfalse, indicating that the driver is done with it.

Thisfunction isintended for use with the Rabbit 3000 microprocessor.

PARAMETERS
tx buffer A pointer to the packet to be sent. This buffer must not change while
transmitting (see above.)
length The size of the buffer (in bytes).

RETURN VALUE

1: Sending packet.
0: Cannot send, another packet is currently being transmitted.

LIBRARY
HDLC PACKET.LIB

130 Dynamic C Function Reference Manual

HDLCsendingX

int HDLCsendingX(); /* WheeXisEorF */

DESCRIPTION

Returnstrue if a packet is currently being transmitted. This function isintended for use
with the Rabbit 3000 microprocessor.

RETURN VALUE

1: Currently sending a packet.
0: Transmitter isidle.

LIBRARY
HDLC PACKET.LIB

hitwd

void hitwd () ;

DESCRIPTION

Hitsthe watchdog timer, postponing ahardware reset for 2 seconds. Unlessthe watchdog
timer is disabled, a program must call this function periodically, or the controller will au-
tomatically reset itself. If the virtual driver is enabled (which it is by default), it will call
hitwd in the background. The virtual driver also makes additional “virtual” watchdog
timers available.

LIBRARY
VDRIVER.LIB

Chapter 1: Function Descriptions 131

htoa

char *htoa(int wvalue, char *buf);

DESCRIPTION
Convertsinteger value to hexadecima number and puts result into buf.

PARAMETERS
value 16-bit number to convert
buf Character string of converted number

RETURN VALUE
Pointer to end (null terminator) of string in buf.

LIBRARY
STDIO.LIB

SEE ALSO

itoa, utoa, ltoa

132 Dynamic C Function Reference Manual

IntervalMs

int IntervalMs(long ms);

DESCRIPTION

Similar to DelayMs but provides a periodic delay based on the time from the previous
cal. Intended for use withwaitfor.

PARAMETERS
ms The number of milliseconds to wait.

RETURN VALUE

0: Not finished.
1: Delay has expired.

LIBRARY
COSTATE.LIB

IntervalSec

int IntervalSec(long sec);

DESCRIPTION

Similar to DelayMs but provides a periodic delay based on the time from the previous
call. Intended for use with wait for.

PARAMETERS
sec The number of seconds to delay.

RETURN VALUE

0: Not finished.
1: Delay has expired.

LIBRARY
COSTATE.LIB

Chapter 1: Function Descriptions 133

IntervalTick

int IntervalTick(long tick);

DESCRIPTION

Provides a periodic delay based on the time from the previous call. Intended for use with
waitfor. A tick is 1/1024 seconds.

PARAMETERS
tick The number of ticksto delay

RETURN VALUE

0: Not finished.
1: Delay has expired.

LIBRARY
COSTATE.LIB

ipres

void ipres(wvoid);

DESCRIPTION
Dynamic C expandsthis call inline. Restore previousinterrupt priority by rotating the IP
register.

LIBRARY
UTIL.LIB

SEE ALSO

ipset

134 Dynamic C Function Reference Manual

ipset

void ipset(int priority);

DESCRIPTION

Dynamic C expandsthiscall inline. Replaces current interrupt priority with another by ro-
tating the new priority into the |P register.

PARAMETERS
priority Interrupt priority range 0-3, lowest to highest priority.

LIBRARY
UTIL.LIB

SEE ALSO

ipres

isalnum

int isalnum(int c);

DESCRIPTION

Tests for an alphabetic or numeric character, (AtoZ, atozand 0to 9).
PARAMETERS

c Character to test.

RETURN VALUE

0 if not an alphabetic or numeric character.
1 0 otherwise.

LIBRARY
STRING.LIB

SEE ALSO

isalpha, isdigit, ispunct

Chapter 1: Function Descriptions 135

isalpha

int isalpha(int ¢);

DESCRIPTION

Tests for an alphabetic character, (A to Z, or ato z).
PARAMETERS

c Character to test.

RETURN VALUE

0 if not a a phabetic character.
1 0 otherwise.

LIBRARY
STRING.LIB

SEE ALSO

isalnum, isdigit, ispunct

iscntrl

int iscntrl(int c);

DESCRIPTION

Tests for a control character: 0 <= c <=31or ¢ == 127.
PARAMETERS

c Character to test.

RETURN VALUE

0 if not a control character.
1 0 otherwise.

LIBRARY
STRING.LIB

SEE ALSO

isalpha, isalnum, isdigit, ispunct

136 Dynamic C Function Reference Manual

isCoDone

int isCoDone(CoData *p);

DESCRIPTION
Determineif costatement is initialized and not running.

PARAMETERS

P Address of costatement

RETURN VALUE

1: Costatement isinitialized and not running.
0: Otherwise.

LIBRARY
COSTATE.LIB

isCoRunning

int isCoRunning(CoData *p);

DESCRIPTION
Determineif costatement is stopped or running.

PARAMETERS

P Address of costatement.

RETURN VALUE

1 if costatement is running.
0 otherwise.

LIBRARY
COSTATE.LIB

Chapter 1: Function Descriptions 137

isdigit

int isdigit(int ¢);

DESCRIPTION

Testsfor adecimal digit: 0- 9
PARAMETERS

c Character to test.

RETURN VALUE

0 if not adecimal digit.
1 0 otherwise.

LIBRARY
STRING.LIB

SEE ALSO
isxdigit, isalpha, isalpha

138 Dynamic C Function Reference Manual

isgraph

int isgraph(int c);

DESCRIPTION

Tests for a printing character other than a space: 33 <= ¢ <= 126
PARAMETERS

c Character to test.

RETURN VALUE

0: c isnot aprinting character.
10: c isaprinting character.

LIBRARY
STRING.LIB

SEE ALSO

isprint, isalpha, isalnum, isdigit, ispunct

islower
int islower(int c);
DESCRIPTION
Tests for lower case character.
PARAMETERS
c Character to test.

RETURN VALUE

0 if not alower case character.
1 0 otherwise.

LIBRARY
STRING.LIB

SEE ALSO

tolower, toupper, isupper

Chapter 1: Function Descriptions 139

isspace

int isspace(int c);

DESCRIPTION

Testsfor awhite space, character, tab, return, newline, vertical tab, form feed, and space:
9<=c<=13and c == 32.

PARAMETERS

c Character to test.

RETURN VALUE
0 if not, ! 0 otherwise.

LIBRARY
STRING.LIB

SEE ALSO

ispunct

isprint

int isprint(int c);
DESCRIPTION
Tests for printing character, including space: 32 <= ¢ <= 126
PARAMETERS
c Character to test.

RETURN VALUE
0 if not a printing character, ! 0 otherwise.

LIBRARY
STRING.LIB

SEE ALSO

isdigit, isxdigit, isalpha, ispunct, isspace, isalnum, isgraph

140 Dynamic C Function Reference Manual

ispunct

int ispunct(int c);

DESCRIPTION
Tests for a punctuation character.

Character Decimal Code
space 32

" #3% &' ()*+,-./ B<=c<=47
<=>7@ 58 <= c <= 64
N~ 91<=c<=96
{~ 123<=c <= 126

PARAMETERS
c Character to test.

RETURN VALUE

0: Not acharacter.
1 0: Isacharacter.

LIBRARY
STRING.LIB

SEE ALSO

isspace

Chapter 1: Function Descriptions 141

isupper

int isupper(int c);

DESCRIPTION

Tests for upper case character.
PARAMETERS

c Character to test.

RETURN VALUE

0: Isnot an uppercase character.
1 0: Isan uppercase character.

LIBRARY
STRING.LIB

SEE ALSO

tolower, toupper, islower

isxdigit

int isxdigit(int c);

DESCRIPTION

Testsfor ahexadecimal digit: 0-9,A-F a-f
PARAMETERS

c Character to test.

RETURN VALUE

0: Not ahexadecimal digit.
10: Isahexadecimal digit.

LIBRARY
STRING.LIB

SEE ALSO
isdigit, isalpha, isalpha

142

Dynamic C Function Reference Manual

itoa

char *itoa(int wvalue, char *buf);

DESCRIPTION

Places up to a5-digit character string, with aminus sign in the leftmost digit when appro-
priate, at *buf. The string represents value, asigned number.

Leading zeros are suppressed in the character string, except for one zero digit when
value = 0. Thelongest possible string is “-32768.”

PARAMETERS
value 16-bit signed number to convert
buf Character string of converted number in base 10

RETURN VALUE
Pointer to the end (null terminator) of the string in buf.

LIBRARY
STDIO.LIB

SEE ALSO

atoi, utoa, ltoa

Chapter 1: Function Descriptions 143

i2c_check ack

int i2c_check ack();

DESCRIPTION
Checks if slave pulls datalow for ACK on clock pulse. Allows for clocks stretching on
SCL going high.

RETURN VALUE

0: ACK sent from Save.
1: NAK sent from dave.
-1: Timeout occurred.

LIBRARY
12C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

144 Dynamic C Function Reference Manual

i2c_init

void i2c _init();
DESCRIPTION
Sets up the SCL and SDA port pins for open-drain output.

LIBRARY
12C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

i2¢ read char

int i2c_read char(char *ch);

DESCRIPTION

Reads 8 hits from the slave. Allows for clocks stretching on all SCL going high. Thisis
not in the protocol for 12C, but alows 12C slaves to be implemented on slower devices.

PARAMETERS

ch A one character return buffer.

RETURN VALUE

0: Success.
-1: Clock stretching timeout.

LIBRARY
12C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

Chapter 1: Function Descriptions 145

i2c _send ack

int i2c_send ack();

DESCRIPTION

Sends ACK sequenceto slave. ACK isusually sent after asuccessful transfer, wheremore
bytes are going to be read.

RETURN VALUE

0: Success.
-1: Clock stretching timeout.

LIBRARY
12C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

i2c_send nak

int i2c_send nak();

DESCRIPTION
Sends NAK sequence to slave. NAK is often sent when the transfer is finished.

RETURN VALUE

0: Success.
-1: Clock stretching timeout.

LIBRARY
12C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

146 Dynamic C Function Reference Manual

i2c start tx

int i2c_start tx();

DESCRIPTION
Initiates 12C transmission by sending the start sequence, which is defined asahigh to low
transition on SDA while SCL is high. The point being that SDA is supposed to remain
stablewhile SCL ishigh. If it does not, then that indicates astart (S) or stop (P) condition.
Thisfunction first waits for possible clock stretching, which iswhen a bus peripheral

holds SCK low.

RETURN VALUE

0: Success.
-1: Clock stretching timeout.

LIBRARY
12C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

Chapter 1: Function Descriptions 147

i2c_startw tx

int i2c_startw tx();

DESCRIPTION
Initiates 12C transmission by sending the start sequence, which is defined asahigh to low
transition on SDA while SCL is high. The point being that SDA is supposed to remain
stablewhile SCL ishigh. If it does not, then that indicates astart (S) or stop (P) condition.
Thisfunction first waits for possible clock stretching, which iswhen a bus peripheral
holds SCK low.

Thisfunctionisessentialy thesameasi2c start tx () withtheaddition of aclock
stretch delay, which is 2000 “counts,” inserted after the start sequence. (A count is an it-
eration through aloop.)

RETURN VALUE
0: Success.
-1: Clock stretching timeout.

LIBRARY
12C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

148 Dynamic C Function Reference Manual

i2c_stop tx

void i2c _stop tx();

DESCRIPTION

Sends the stop sequence to the slave, which is defined as bringing SDA high while SCL
ishigh, i.e., the clock goes high, then data goes high.

LIBRARY
12C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

i2c_write char

int i2c_write char(char 4);

DESCRIPTION

Sends 8 bitsto dave. Checksif dave pulls datalow for ACK on clock pulse. Allows for
clocks stretching on SCL going high.

PARAMETERS

d Character to send

RETURN VALUE

0: Success.
-1: Clock stretching timeout.
1: NAK sent from dave.

LIBRARY
12C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

Chapter 1: Function Descriptions 149

kbhit

int kbhit () ;
DESCRIPTION
Detects keystrokes in the Dynamic C Stdio window.

RETURN VALUE
10 if akey has been pressed, 0 otherwise.

LIBRARY
UTIL.LIB

labs

long labs(long x);

DESCRIPTION
Computes the long integer absolute value of long integer x.

PARAMETERS

x Number to compute.

RETURN VALUE

x,ifx>0.
-x, otherwise.

LIBRARY
MATH.LIB

SEE ALSO
abs, fabs

150 Dynamic C Function Reference Manual

ldexp

float ldexp(float x, int n);

DESCRIPTION
Computesx* (2™).

PARAMETERS
x The value between 0.5 inclusive, and 1.0
n Aninteger

RETURN VALUE
Theresult of x* (27) .

LIBRARY
MATH.LIB

SEE ALSO

frexp, exp

log

float log(float x);

DESCRIPTION
Computes the logarithm, base e, of real £1oat valuex.

PARAMETERS

x Float value

RETURN VALUE
The function returns—INF and signals a domain error when x < 0.

LIBRARY

MATH.LIB
SEE ALSO

exp, logloO

Chapter 1: Function Descriptions 151

loglo0

float logl0(float x);

DESCRIPTION
Computes the base 10 logarithm of real f1oat value x.

PARAMETERS

x Value to compute

RETURN VALUE
Thelog base 10 of x.

The function returns—INF and signals a domain error when x < 0.

LIBRARY
MATH.LIB
SEE ALSO
log, exp

longjmp

void longjmp(jmp buf env, int wval);

DESCRIPTION

Restores the stack environment saved inarray env [1. Seethe description of
setjmp () for details of use.

PARAMETERS
env Environment previously saved with setjmp () .

val Integer result of setjmp ().

LIBRARY
SYS.LIB

SEE ALSO
setjmp

152 Dynamic C Function Reference Manual

loophead

void loophead();

DESCRIPTION
Thisfunction should be called withinthe mainloop in aprogram. It is necessary for proper
single-user cofunction abandonment handling.

When two costatements are requesting access to asingle-user cofunction, thefirst request
ishonored and the second request isheld. When 1 cophead () noticesthat thefirst caller
isnot being called each time around theloop, it cancelsthe request, callsthe abandonment
code and allows the second caller in.

See samples\Cofunc\Cofaband. ¢ for sample code showing abandonment han-
dling.

LIBRARY
COFUNC.LIB

loopinit

void loopinit();

DESCRIPTION

Thisfunction should be called in the beginning of a program that uses single-user cofunc-
tions. It initializes internal data structuresthat are used by 1ocophead () .

LIBRARY
COFUNC.LIB

Chapter 1: Function Descriptions 153

1sqgrt

unsigned int lsqgrt(unsigned long x);

DESCRIPTION

Computesthe squareroot of x. Notethat thereturn valueisan unsigned int. Thefractional
portion of the result is truncated.

PARAMETERS

x long int input for square root computation

RETURN VALUE
Squareroot of x (fractional portion truncated).

LIBRARY
MATH.LIB

ltoa

char *1ltoa(long num, char *ibuf)

DESCRIPTION
This function outputs a signed long number to the character array.

PARAMETERS
num Signed long number.
ibuf Pointer to character array.

RETURN VALUE
Pointer to the same array passed in to hold the resullt.

LIBRARY
STDIO.LIB

SEE ALSO
ltoa

154 Dynamic C Function Reference Manual

ltoan

int ltoan(long num);

DESCRIPTION
This function returns the number of characters required to display asigned long number.

PARAMETERS

num 32-bit signed number.

RETURN VALUE
The number of characters to display signed long number.

LIBRARY
STDIO.LIB

SEE ALSO
ltoa

Chapter 1: Function Descriptions 155

1lx format

int 1lx format(FSLXnum 1lxn, long wearlevel);

DESCRIPTION

Format a specified file system extent. This must not be called before calling

fs_init ().All fileswhich have either or both metadata and data on this extent are de-
leted. Formatting can be quite low (depending on hardware) so it is best performed after
power-up, if at all.

PARAMETERS
lxn Logical extent number (1.. fs.num 1x inclusive).
wearlevel Initial wearlevel value. Thisshould be 1 if you have anew flash, and

some larger number if the flash is used. If you are reformatting a
flash, you can use 0 to use the old flash wear levels.

RETURN VALUE

0: Success.
10: Failure.

ERRNO VALUES

ENODEV - no such extent number, or extent is reserved.

EBUSY - one or more files were open on this extent.

ETIO - I/O error during format. If this occurs, retry the format operation. If it fails again,
thereis probably a hardware error.

LIBRARY
FS2.1.1B

SEE ALSO

fs _init, fs format

156 Dynamic C Function Reference Manual

mbr CreatePartition

int mbr CreatePartition(mbr drive *drive, int pnum, char type

DESCRIPTION

Creates or modifies the partition specified. The partition being modified must not be
mounted, and should be released by filesystem use (that is, itsfs_part pointer must be

null).

The new partition values should be placed in the appropriate partition structure within the
drive structure. For example,

drive
drive
drive
drive
drive
drive
drive
drive

.part [partnum]
.part [partnum]
.part [partnum]
.part [partnum]
.part [partnum]
.part [partnum]
.part [partnum]
.part [partnum]

.bootflag =
.starthead =
.startseccyl
.parttype =
.endhead = 0xfe;
.endseccyl = 0;
.startsector
.partsecsize

0;

Oxfe;

0;

PARTTYPE NONFSDATA;

start;
((PART SZ)

mbr CreatePartition(&drive, partnum, O0xda) ;

For moreinformation on the partition structure (mbr part)lookinpart defs.lib.

/ 512)

+

1;

The type parameter should match the type asit currently exists on the drive, unlessthis
isunused. Some valuesfor the t ype parameter are already in use. A list of known parti-
tion typesisat:

www.win.tue.nl/~aeb/partitions/partition types-1.html

PARAMETERS
drive
pnum
type

RETURN VALUE
O for success

-E10 for Error trying to read drive/device or structures.
-EINVAL if drive structure, pnum or type isinvalid.

Pointer to aMBR drive structure

Partition number to be created or modified

Type that exists on the physical drive partition now

-EPERM if the partition has not been enumerated or is currently mounted.
-EUNFORMAT if the drive is accessible, but not formatted.
-ERUSY if the device is busy.

LIBRARY
PART.LIB

Chapter 1: Function Descriptions

157

http://www.win.tue.nl/~aeb/partitions/partition_types-1.html

mbr EnumDrive

int mbr EnumDrive(dos_ctrl *ctrl, mbr drive *drive, int
drvnum, int (*checktype) ()):

DESCRIPTION

Thisroutine is called to learn about drives present on the controller passed in. The drive
will be added to the linked list of enumerated drives. Partition information will be filled
in from the master boot record. Pointersto file system level partition information struc-

tures will be set to null.

PARAMETERS
ctrl Pointer to a DOS controller structure (set up during initialization of
storage device driver.)
drive Pointer to a drive structure to be filled in
drvnum Physical drive number of drive on the controller.
checktype Routine that takesan unsigned char partition type and returns

1if of sought type and zero if not. Pass null for this parameter to by-
pass this check.

RETURN VALUE

0 for success
-E10 for Error trying to read the drive/device or structure.
-EINVAL if drvnum invalid or does not exist.
-ENOMEM if memory for page buffer is not available.
-EUNFORMAT if the drive is accessible, but not formatted. You can useit provideditis
formatted/partitioned by either thislibrary or another system.
-EBADPART if the partition table on the driveisinvalid
-ENOPART if thedrive doesnot have any sought partitions, If checktype parameter isnull,
thistest is bypassed. This code is superceded by any other error detected.
-EPERM if the drive has already been enumerated.
-EBUSY if the deviceis busy.

LIBRARY
PART.LIB

SEE ALSO

158 Dynamic C Function Reference Manual

mbr FormatDrive

int mbr FormatDrive(mbr_drive *drive);

DESCRIPTION

Creates or rewrites the Master Boot Record (MBR) on the drive given. The routine will
only rewrite the Boot L oader codeif an MBR already existson thedrive. The existing par-
tition table will be preserved. To modify an existing partition table use

mbr CreatePartion().

Note: ThisroutineisNOT PROTECTED from power loss and can make existing
partitions inaccessible if interrupted.

PARAMETERS
drive Pointer to a drive structure

RETURN VALUE

0 for success

-EEXIST if the MBR exists, writing Boot Loader only
-E10 for Error trying to read the drive/device or structure.
-EINVAL if the Drive structureis not valid.

-ENOMEM if memory for page buffer is not available.
-EPERM if drive has mounted or FS enumerated partition(s)
-EBUSY if the deviceis busy.

LIBRARY
PART.LIB

SEE ALSO

Chapter 1: Function Descriptions 159

mbr MountPartition

int mbr MountPartition(mbr drive *drive, int pnum);

DESCRIPTION

Marksthe partition as mounted. It isthe higher level codesresponsibility to verify that the
fs_part pointer for apartition is not in use (null) as this would indicate that another
system isin the process of mounting this device.

PARAMETERS
drive Pointer to a drive structure
pnum Partition number to be mounted

RETURN VALUE

0 for success
-EINVAL if Driveor Partition structure or pnum isinvalid.
-ENOPART if Partition does not exist on the device.

LIBRARY
PART.LIB

SEE ALSO

160 Dynamic C Function Reference Manual

mbr UnmountPartition

int mbr UnmountPartition(mbr drive *drive, int pnum);

DESCRIPTION

Marks the partition as unmounted. The partition must not have any user partition data at-
tached (through mounting at a higher level). If the £s_part pointer for the partition be-
ing unmounted is not null, an EPERM error is returned.

PARAMETERS
drive Pointer to a drive structure containing the partition
pnum Partition number to be unmounted

RETURN VALUE

0 for success
-EINVAL if the Drive structure or pnum isinvalid.
-ENOPART if the partition is enumerated at a higher level.

LIBRARY
PART.LIB

SEE ALSO

Chapter 1: Function Descriptions 161

mbr ValidatePartitions

int mbr ValidatePartitions(mbr drive *drive);

DESCRIPTION

Thisroutinewill validate the partition table contained in the drive structure passed. It will
verify that al partitionsfit within the bounds of the drive and that no partitions overlap.

PARAMETERS

drive Pointer to a drive structure

RETURN VALUE

0 for success
-EINVAL if the partition table in the drive structure isinvalid.

LIBRARY
PART.LIB

SEE ALSO

162 Dynamic C Function Reference Manual

md5 append

void md5 append(md5 state t *pms, char *data, int nbytes);

DESCRIPTION

This function will take a buffer and compute the MD5 hash of its contents, combined with
all previous data passed to it. Thisfunction can be called several timesto generate the hash
of alarge amount of data.

PARAMETERS

md5 append Pointer tothemd5 _state_t structure that wasinitialized by

md5_init.
data Pointer to the data to be hashed.
nbytes Length of the data to be hashed.
LIBRARY
MD5.LIB

md5 init

void md5 init(md5 state t *pms);

DESCRIPTION

Initialize the MD5 hash process. Initial values are generated for the structure, and this struc-
ture will identify a particular transaction in al subsequent calls to the md5 library.

PARAMETER

pms Pointer tothemd5 state_t structure.

LIBRARY
MD5.LIB

Chapter 1: Function Descriptions 163

md5 finish

void md5 finish(md5 state t *pms, char digest[16]);

DESCRIPTION
Completes the hash of all the received data and generates the final hash value.

PARAMETERS
pms Pointer tothemd5 _state_t structure that wasinitialized by
md5 init.
digest The 16-byte array that the hash value will be written into.
LIBRARY
MD5.LIB

memchr

void #*memchr (void *src, int ch, unsigned int n);

DESCRIPTION
Searches up to n characters at memory pointed to by src for character ch.

PARAMETERS
src Pointer to memory source.
ch Character to search for.
n Number of bytes to search.

RETURN VALUE
Pointer to first occurrence of ch if found within n characters. Otherwise returns null.

LIBRARY
STRING.LIB

SEE ALSO

strrchr, strstr

164 Dynamic C Function Reference Manual

memcmp

int memcmp(void *sl, void *s2, size t n);

DESCRIPTION

Performs unsigned character by character comparison of two memory blocks of length n.

PARAMETERS
sl Pointer to block 1.
s2 Pointer to block 2.
n Maximum number of bytesto compare.

RETURN VALUE

<0: A character in st r1 islessthan the corresponding character in st r2.
0: strlisidentical to str2.

>0: A character in str1 is greater than the corresponding character in str2.

LIBRARY
STRING.LIB

SEE ALSO

strncmp

Chapter 1: Function Descriptions

165

memcpy

void *memcpy(void *dst, void *src, unsigned int n);

DESCRIPTION
Copies ablock of bytes from one destination to another. Overlap is handled correctly.

PARAMETERS
dst Pointer to memory destination
src Pointer to memory source
n Number of characters to copy

RETURN VALUE
Pointer to destination.

LIBRARY
STRING.LIB

SEE ALSO

memmove, memset

166 Dynamic C Function Reference Manual

Inemmove

void *memmove(void *dst, void *src, unsigned int n);

DESCRIPTION

Copies ablock of bytes from one destination to another. Overlap is handled correctly.

PARAMETERS
dst Pointer to memory destination
src Pointer to memory source
n Number of characters to copy

RETURN VALUE
Pointer to destination.

LIBRARY
STRING.LIB

SEE ALSO

memcpy, memset

memset

void *memset(void *dst, int chr, unsigned int n);

DESCRIPTION
Setsthefirst n bytes of ablock of memory pointed to by dst to the character chr.

PARAMETERS
dst Block of memory to set
chr Character that will be written to memory
n Amount of bytesto set

RETURN VALUE
dst: Pointer to block of memory.

LIBRARY
STRING.LIB

Chapter 1: Function Descriptions

167

mktime

unsigned long mktime(struct tm *timeptr);

DESCRIPTION
Converts the contents of structure pointed to by t imeptr into seconds.

struct tm {

char tm sec; // seconds 0-59
char tm min; // 0-59
char tm hour; // 0-23
char tm mday; // 1-31
char tm_mon; // 1-12
char tm_year; // 80-147 (1980-2047)
char tm wday; // 0-6 0==sunday
}i
PARAMETERS
timeptr Pointer to tm structure

RETURN VALUE
Time in seconds since January 1, 1980.

LIBRARY
RTCLOCK.LIB

SEE ALSO

mktm, tm_rd, tm_wr

168 Dynamic C Function Reference Manual

mktm

unsigned int mktm

DESCRIPTION

(struct tm *timeptr, unsigned long time) ;

Converts the seconds (t i me) to date and time and fills in the fields of the tm structure

with the result.

struct tm {
char tm_
char tm_
char tm_
char tm_
char tm_
char tm_
char tm_

PARAMETERS
timeptr
time

RETURN VALUE
0

LIBRARY
RTCLOCK.LIB

SEE ALSO

mktime, tm_rd,

sec; // seconds 0-59

min; // 0-59

hour; // 0-23

mday; // 1-31

mon ; // 1-12

year; // 80-147 (1980-2047)
wday ; // 0-6 0==sunday
Address to store date and time into structure:

Seconds since January 1, 1980.

tm_wr

Chapter 1: Function Descriptions

169

modf

float modf(float x, int *n);

DESCRIPTION
Splits x into afraction and integer, £ + n.

PARAMETERS

Floating-point integer
n Aninteger

RETURN VALUE

Theinteger part in *n and the fractional part satisfies |£| < 1.0

LIBRARY
MATH.LIB

SEE ALSO
fmod, ldexp

170

Dynamic C Function Reference Manual

nf eraseBlock

int nf eraseBlock(nf device *dev, long page);

DESCRIPTION

Erases the block that contains the specified page on the specified NAND flash device.
Check for completion of the erase operation using either nf i sBusyRBHW () or
nf isBusyStatus().

Normally, this function will not allow abad block to be erased. However, when
NFLASH CANERASEBADBLOCKS isdefined by the application, the bad block check is
not performed, and the application is allowed to erase any block, regardless of whether it

is marked good or bad.
PARAMETERS
dev Pointer to aninitiadlized nf _device structure
page Page specifies the zero-based number of a NAND flash page in the

block to be erased, relative to the first “ good” page.

RETURN VALUE

0: Success, or thefirst error result encountered
-1: NAND flash deviceis busy
-2: Block check time out error
-3: Pageisin abad block

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO

CalculateECC256, ChkCorrectECC256, xCalculateECC256,
xChkCorrectECC256

Chapter 1: Function Descriptions 171

nf getPageCount

long nf getPageCount(nf device *dev);

DESCRIPTION
Returns the number of program pages on the particular NAND flash device.

PARAMETERS

dev Pointer toannf device structure for aninitialized NAND flash
device.

RETURN VALUE
The number of program pages on the NAND flash device.

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO

CalculateECC256, ChkCorrectECC256, xCalculateECC256,
xChkCorrectECC256

172 Dynamic C Function Reference Manual

nf getPageSize

long nf getPageSize(nf device *dev);

DESCRIPTION

Returnsthe sizein bytes (excluding “ spare” bytes) of each program page on the particular
NAND flash device.

PARAMETERS

dev Pointer toannf device structure for aninitialized NAND flash
device.

RETURN VALUE

The number of databytesinthe NAND flash's program page, excluding the “ spare” bytes
used for ECC storage, etc.

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO

CalculateECC256, ChkCorrectECC256, xCalculateECC256,
xChkCorrectECC256

Chapter 1: Function Descriptions 173

nf initDevice

int nf initDevice(nf device *dev, int which);

DESCRIPTION

Initializes a particular NAND flash device. Thisfunction must be called before the partic-
ular NAND flash device can be used. Seenf devtable [] inNFLASH.LIB for the
user-updatable list of supported NAND flash devices. Note that xalloc iscaledto al-
locate buffer(s) memory for each NAND flash device; arun time error will occur if the
available xmem RAM isinsufficient.

There are two modes of operation for NAND flash devices: FAT and direct. If you are us-
ing the FAT file system inthe default configuration, i.e., the NAND flash hasone FAT par-
tition that takes up the entire device, you do not need to call nf _initDevice (). You
only needtocall nf InitDriver (), whichisthedefault device driver for the FAT
file system on aNAND flash device.

Configurations other than the default one require more work. For example, having two
partitions on the device, oneaFAT partition and the other anon-FAT partition, requireyou
to know how to fit more than one partition on adevice. A good example of how to do this
isin the remote application upload utility. The functiondlm initserialflash()
in /LIB/RCM3300/downloadmanager.lib iswheretolook for code details.The
upload utility is specificcally for the RCM3300; however, even without the RCM 3300,
the utility is still useful in detailing what is necessary to manage multiple partitions.

The second mode of operation for NAND flash devicesis direct access. An application
that directly accesses the NAND flash (using callssuch asnf readPage () and

nf writePage ())may defineNFLASH USEERASEBLOCKSIZE tobeeither O (ze-
ro) or 1 (one) beforeNFLASH . LIB is#used, in order to set the NAND flash driver'smain
data program unit size to either the devices program page size of 512 bytesor to itserase
block size of 16 KB.

If not defined by the application, NFLASH USEERASEBLOCKSIZE is set to the value
1inNFLASH . LIB; this mode should maximize the NAND flash devices life.

NFLASH USEERASEBLOCKSIZE vaue 1 setsthedriver up to program an erase block
size at atime. This mode may be best for applications with only afew files open in write
mode with larger blocks of data being written, and may be especially good at append op-
erations. The trade off is reduced flash erasures at the expense of chunkier overhead due
to the necessity of performing all 32 pages' ECC calculations for each programming unit
written.

NFLASH USEERASEBLOCKSIZE valueOsetsthedriver upto program aprogram page
sizeat atime. Thismode may be best for applications with more than afew filesopenin
write mode with smaller blocks of data being written, and may be especialy good at in-
terleaved file writes and/or random access write operations. The trade off isincreased
flash erasures with the benefit of spread out overhead due to the necessity of performing
only 1 page's ECC calculations per programming unit written.

174 Dynamic C Function Reference Manual

nf initDevice (continued)

PARAMETERS
dev Pointer toannf device structurethat will befilledin. Aninitial-
izednf device struct actsasahandle for the NAND flash device.
which Number of the NAND flash devicetoinitialize. Currently supported
device numbersare O for the soldered-on device or 1 for the socketed
NAND flash device.

RETURN VALUE

0: Success
-1: Unknown index or bad internal 1/0O port information
-2: Error communicating with flash chip
-3: Unknown flash chip type

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO

CalculateECC256, ChkCorrectECC256, xCalculateECC256,
xChkCorrectECC256

Chapter 1: Function Descriptions 175

nf InitDriver

int nf InitDriver(mbr drvr *driver, void *device list);

DESCRIPTION
Initializes the NAND flash controller.

PARAMETERS

driver Empty mbr drvr structure. It must beinitialized with thisfunction
before it can be used with the FAT file system. More information on
this structure can be found in the Dynamic C M odule document ti-
tled, “FAT File System User’'s Manual,” available on the Z-World
website.

device list If notnull,thisisapointertotheheadof alinkedlistof nf _device
structures for NAND flash devices that have each already beenini-
tialized by calingnf initDevice ().
If device listisnull,thenthisfunction attemptstoinitializeall
NAND flash devices and provide a default linked list of
nf device structuresin order from device number O on up. If the
initialization of aNAND flash device is unsuccessful, then its
nf device structureisnot entered into the linked list.

RETURN VALUE

0: Success
<0: Negative vaue of a FAT file system error code

LIBRARY
NFLASH FAT.LIB (This function was introduced in Dynamic C 9.01)

176 Dynamic C Function Reference Manual

http://www.zworld.com/products/dc/DC8/docs.shtml

nf isBusyRBHW

int nf isBusyRBHW(nf device *dev);

DESCRIPTION

Returns 1 if the specified NAND flash device is busy. Uses the hardware Ready/Busy
check method, and can be used to determine the device's busy status even at the start of a
read page command. Note that this function briefly enforces the Ready/Busy input port
bit, reads the pin status, and then restores the port bit to its previous input/output state.
There should belittle or no visible disturbance of the LED output which sharesthe NAND
flash's Ready/Busy status line.

PARAMETERS
dev Pointer to aninitialized nf _device structure for the particular

NAND flash chip.

RETURN VALUE

1: Busy
0: Ready, (not currently transferring a page to be read, or erasing or writing a page)
-1: Error (unsupported Ready/Busy input port)

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO

nf isBusyStatus

Chapter 1: Function Descriptions 177

nf isBusyStatus

int nf isBusyStatus(nf device *dev);

DESCRIPTION

Returns 1 if the specified NAND flash device is busy erasing or writing to a page. Uses
the software status check method, which can not (must not) be used to determine the de-
vice's busy status at the start of aread page command.

PARAMETERS

dev Pointer to aninitialized nf _device structure for the particular
NAND flash chip

RETURN VALUE
1: Busy
0: Ready (not currently erasing or writing a page)

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO
nf isBusyRBHW

178 Dynamic C Function Reference Manual

nf readPage

int nf readPage(nf device *dev, long buffer, long page);

DESCRIPTION

Reads data from the specified NAND flash device and page to the specified buffer in

xmem. Note that in the case of most error results at least some of the NAND flash page's
content has been read into the specified buffer. Although the buffer content must be con-
sidered unreliable, it can sometimes be useful for inspecting page content in “bad” blocks.

PARAMETERS
dev Pointer to aninitidlized nf _device structure
dev Physical address of the xmem buffer to read datainto
page Specifies the zero-based number of a NAND flash page to be read,

relative to the first “good” page’'s number.

RETURN VALUE

0: Success, or thefirst error result encountered
-1: NAND flash deviceis busy
-2: Block check time out error
-3: Pageisin abad block
- 4: Pageread time out error
-5: Uncorrectable data or ECC error

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO

CalculateECC256, ChkCorrectECC256, xCalculateECC256,
xChkCorrectECC256

Chapter 1: Function Descriptions 179

nf writePage

int nf writePage(nf device *dev, long buffer, long page):;

DESCRIPTION

Writes data to the specified NAND flash device and page from the specified buffer in
xmem. Check for completion of the write operation using nf _isBusyRBHW () or
nf isBusyStatus().

PARAMETERS
dev Pointer to aninitilized nf _device structure
dev Physical address of the xmem data to be written
page Specifiesthe zero-based number of aNAND flash pageto bewritten,

relative to the first “good” page.

RETURN VALUE

0: Success, or the first error result encountered
-1: NAND flash deviceis busy
-2: Block check time out error
-3: Pageisin abad block
-4: XMEM/root memory transfer error
- 5: Erase block or program page operation error.

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO

CalculateECC256, ChkCorrectECC256, xCalculateECC256,
xChkCorrectECC256

180 Dynamic C Function Reference Manual

OpenInputCompressedFile

int OpenInputCompressedFile(ZFILE *ifp, long fn);

DESCRIPTION

Opens afile for input. This function sets up the LZ compression algorithm window asso-
ciated with the ZFILE file. The second parameter is the file handle (FS2) or address
(#zimport) of theinput fileto be opened. If thefileisaready compressed, after calling
this function the file can be decompressed by calling ReadCompressedFile (). If
thefile handle pointsto an uncompressed FS2 file, after calling thisfunction the resulting
ZFILE file can be compressed by calling CompressFile ().

The INPUT COMPRESSION BUFFERS macro controlsthe memory allocated by this
function. It defaultsto 1.

PARAMETERS
ifp ZFILE file descriptor
fn Address or handle of input file

RETURN VALUE

0: Failure
1: Success

LIBRARY
LZSS.LIB

SEE ALSO

CloseInputCompressedFile, CompressFile, ReadCompressedFile

Chapter 1: Function Descriptions 181

OpenOutputCompressedFile

int OpenOutputCompressedFile(ZFILE *ofp, int fn);

DESCRIPTION

Open an FS2 file for compressed output. This function sets up the LZ compression ago-
rithm window and tree associated with the ZFILE file. The second parameter isthefile
handle (FS2) of the output fileto bewritten to. Notethat thisMUST bean FS2filehandle,
or the open will fail.

The OUTPUT COMPRESSION BUFFERS macro must be defined as a positive non-
zero number if compression is being used.

PARAMETERS
ofp ZFILE file descriptor
fn FS2 handle of output file

RETURN VALUE

0: Failure
1: Success

LIBRARY
LZSS.LIB

SEE ALSO
CloseOutputCompressedFile

182 Dynamic C Function Reference Manual

OS ENTER CRITICAL

void OS_ENTER CRITICAL() ;

DESCRIPTION

Enter a critical section. Interrupts will be disabled until 0OS_ EXIT CRITICAL() is
called. Task switching is disabled. This function must be used with great care, since mis-
use can greatly increase the latency of your application. Note that nesting
OS_ENTER_CRITICAL () callswill work correctly.

LIBRARY
UCOS2.LIB

OS EXIT CRITICAL

void OS_EXIT CRITICAL();

DESCRIPTION

Exit acritical section. If the corresponding previousOS _ENTER CRITICAL () call dis-
abled interrupts (that is, interrupts were not aready disabled), then interrupts will be en-
abled. Otherwise, interrupts will remain disabled. Hence, nesting callsto

OS_ENTER CRITICAL () will work correctly.

LIBRARY
UCOS2.LIB

Chapter 1: Function Descriptions 183

OSFlagAccept

0S_FLAGS OSFlagAccept(OS FLAG GRP *pgrp, OS FLAGS flags, INT8U
wait type, INT8U *err);

DESCRIPTION

This function is called to check the status of a combination of bits to be set or cleared in
an event flag group. Your application can check for ANY bit to be set/cleared or ALL bits
to be set/cleared.

This call does not block if the desired flags are not present.

PARAMETERS

pgrp Pointer to the desired event flag group.

flags Bit pattern indicating which bit(s) (i.e. flags) youwish to check. E.g.,
if your application wantsto wait for bits 0 and 1 then £1ags should
be 0x03.

wait type Specifies whether you are checking for ALL bitsto be set/cleared or
ANY of the bits to be set/cleared. You can specify the following ar-
gument:

* OS_FLAG WAIT CLR _ALL - Youwill check ALL bitsin
flags to beclear (0)

* OS_FLAG WAIT CLR_ANY - Youwill check ANY bit in
flags to beclear (0)

* OS_FLAG WAIT SET ALL - Youwill check ALL bitsin
flagstobesat (1)

* OS_FLAG WAIT SET ANY - Youwill check ANY bit in
flagstobesat (1)

Note: Add OS_FLAG CONSUME if you want the event flag to
be consumed by the call. Example, to wait for any flagin a
group AND then clear the flags that are present, set the

wait type parameter to:

OS_FLAG WAIT SET ANY + OS_FLAG CONSUME

184 Dynamic C Function Reference Manual

OSFlagAccept (continued)

err Pointer to an error code. Possible values are:

* OS_NO_ERR - No error

* OS_ERR_EVENT_ TYPE - Not pointing to an event flag group

* OS_FLAG ERR_WAIT TYPE - Proper wait_ type argu-
ment not specified.

* OS_FLAG_INVALID PGRP - null pointer passed instead of
the event flag group handle.

* OS_FLAG ERR _NOT_ RDY - Flagsnot available.

RETURN VALUE
The state of the flagsin the event flag group.

LIBRARY
OS _FLAG.C (Prior to DC 8:UCOS2.LIB)

Chapter 1: Function Descriptions 185

OSFlagCreate

OS_FLAG GRP *OSFlagCreate(OS FLAGS flags, INT8U *err);

DESCRIPTION
Thisfunction is called to create an event flag group.

PARAMETERS
flags Containsthe initial value to store in the event flag group.
err Pointer to an error code that will be returned to your application:

* OS_NO_ERR - Thecall was successful.

* OS_ERR CREATE ISR - Attempt made to create an Event
Flag from an ISR.

* OS_FLAG_GRP_DEPLETED - Thereare no more event flag
groups

RETURN VALUE
A pointer to an event flag group or a null pointer if no more groups are available.

LIBRARY
OS _FLAG.C (Prior to DC 8:UCOS2.LIB)

186 Dynamic C Function Reference Manual

OSFlagDel

0S_FLAG GRP *OSFlagDel(OS FLAG GRP *pgrp, INT8U opt, INT8U
*err) ;

DESCRIPTION

Thisfunction deletes an event flag group and readies all tasks pending on the event flag
group. Note that:

 Thisfunction must be used with care. Tasks that would normally expect the
presence of the event flag group must check thereturn code of 0SF1lagAccept ()
and OSFlagPend ().

* Thiscall can potentially disableinterruptsfor along time. Theinterrupt disabletime
isdirectly proportional to the number of tasks waiting on the event flag group.

PARAMETERS
pgrp Pointer to the desired event flag group.
opt May be one of the following delete options:
* OS_DEL_NO_PEND - Deletesthe event flag group only if no
task pending
* OS_DEL_ ALWAYS - Deletesthe event flag group evenif tasks
arewaiting. Inthiscase, all thetasks pending will be readied..
err Pointer to an error code. May be one of the following values:

* OS_NO_ERR - Success, the event flag group was deleted

* OS_ERR DEL_ISR-Ifyouattemptedto deletetheeventflag
group from an ISR

* OS_FLAG INVALID PGRP - If pgrp isanull pointer.

* OS_ERR_EVENT_TYPE - You are not pointing to an event
flag group

* OS_ERR_EVENT TYPE - If you didn't pass a pointer to an
event flag group

* OS_ERR_INVALID OPT - Invalid option was specified

* OS_ERR TASK WAITING - Oneor moretaskswerewaiting
on the event flag group.

RETURN VALUE

pevent Error.
(0OS_EVENT *)0 Semaphore was successfully deleted.
LIBRARY

OS_FLAG.C (Prior to DC 8:UCOS2.LIB)

Chapter 1: Function Descriptions 187

OSFlagPend

0S FLAGS OSFlagPend(OS FLAG GRP *pgrp, OS FLAGS flags, INT8U

wait_ type,

DESCRIPTION

Thisfunctionis called to wait for a combination of bits to be set in an event flag group.
Your application can wait for ANY hit to be set or ALL bitsto be set.

PARAMETERS

pgrp

flags

wait type

timeout

INT16U timeout, INT8U *err);

Pointer to the desired event flag group.

Bit pattern indicating which bit(s) (i.e. flags) you wish to wait for.
E.g. if your application wantsto wait for bits0 and 1 then £1ags
should be 0x03.

Specifies whether you want ALL bitsto be set or ANY of the bitsto
be set. You can specify the following argument:

* OS_FLAG WAIT CLR_ALL-Youwill waitfor ALL bitsin
mask to be clear (0)

* OS_FLAG WAIT SET ALL - Youwill waitfor ALL bitsin
mask tobeset (1)

* OS_FLAG _WAIT CLR_ANY - Youwill wait for ANY bit in
mask to be clear (0)

* OS_FLAG WAIT SET ANY - Youwill waitfor ANY bit in
mask tobeset (1)

Note: Add OS_FLAG CONSUME if you want the event flag to
be consumed by the call. E.g., to wait for any flag in agroup
AND then clear the flags that are present, set the wait type
parameter to:

OS_FLAG WAIT SET ANY + OS_FLAG_CONSUME

An optional timeout (in clock ticks) that your task will wait for the
desired bit combination. If you specify 0, however, your task will
wait forever at the specified event flag group or, until a message ar-
rives.

188

Dynamic C Function Reference Manual

OSFlagPend (continued)

err Pointer to an error code. Possible values are;

OS_NO_ERR - Thedesired bits have been set within the specified
time-out.

OS_ERR_PEND_ ISR - Ifyoutriedto PEND fromanISR.
OS_FLAG INVALID PGRP - If pgrp isanull pointer.

OS_ERR_EVENT TYPE - You are not pointing to an event flag
group

0S_TIMEOUT - The bit(s) have not been set in the specified time-
out.

OS_FLAG _ERR _WAIT TYPE - You didn't specify a proper
wait type argument.

RETURN VALUE

The new state of the flags in the event flag group when the task is resumed or, 0 if atim-
eout or an error occurred.

LIBRARY
OS_FLAG.C (Prior to DC 8:UCOS2.LIB)

Chapter 1: Function Descriptions 189

OSFlagPost

0S_FLAGS OSFlagPost(OS FLAG GRP *pgrp, OS FLAGS flags, INT8U
opt, INT8U *err);

DESCRIPTION
Thisfunctionis called to set or clear some bitsin an event flag group. The bitsto set or
clear are specified by a bitmask. Warnings:

» The execution time of this function depends on the number of tasks waiting on the
event flag group.

» The amount of time interrupts are DISABLED depends on the number of tasks
waiting on the event flag group.

PARAMETERS
pgrp Pointer to the desired event flag group.

flags If opt (seebelow)isOS FLAG SET,eachbitthatissetinflags
will set the corresponding bit in the event flag group. E.g., to set bits
0, 4 and 5 you would set f1ags to:

0x31 (note, bit 0isleast significant bit)

If opt (seebelow) isOS_FLAG CLR, each bit that is set in flags
will CLEAR the corresponding bit in the event flag group. E.g., to
clear bits 0, 4 and 5 you would specify flags as:

0x31 (note, bit 0isleast significant bit)

opt Indicates whether the flags will be:
set (OS_FLAG_SET), or cleared (OS_FLAG CLR)

err Pointer to an error code. Valid values are;

* OS_NO_ERR - Thecall was successful.

* OS_FLAG INVALID PGRP - null pointer passed.

* OS_ERR_EVENT_ TYPE - Not pointing to an event flag group
* OS_FLAG INVALID OPT - Invalid option specified.

RETURN VALUE
The new value of the event flags bits that are still set.

LIBRARY
OS_FLAG.C (Prior to DC 8:UCOS2.LIB)

190 Dynamic C Function Reference Manual

OSFlagQuery

0S FLAGS OSFlagQuery(OS FLAG GRP *pgrp, INT8U *err);

DESCRIPTION
Thisfunction is used to check the value of the event flag group.

PARAMETERS
pgrp Pointer to the desired event flag group.
err Pointer to an error code returned to the called:

* OS_NO_ERR - The call was successful
* OS_FLAG INVALID PGRP - null pointer passed.
* OS_ERR_EVENT_ TYPE - Not pointing to an event flag group

RETURN VALUE
The current value of the event flag group.

LIBRARY
OS _FLAG.C (Prior to DC 8:UCOS2.LIB)

Chapter 1: Function Descriptions 191

O0SInit

void 0SInit(void);

DESCRIPTION
Initializes uC/OS-11 data; must be called before any other uC/OS-11 functions are called.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTaskCreate, OSTaskCreateExt, OSStart

OSMboxAccept

void *OSMboxAccept(OS EVENT *pevent);

DESCRIPTION

Checks the mailbox to seeif amessage is available. Unlike 0SMboxPend (),
OSMboxAccept () does not suspend the calling task if amessageis not available.

PARAMETERS

pevent Pointer to the mailbox’s event control block.

RETURN VALUE

1= (void *)0 Thisisthe message in the mailbox if oneisavailable. The
mailbox is cleared so the next time OSMboxAccept() is
caled, the mailbox will be empty.

== (void *)0 The mailbox isempty, or pevent isanull pointer, or you
didn't pass the proper event pointer.

LIBRARY
OS MBOX.C (Prior to DC 8:UCOS2.LIB)

SEE ALSO
OSMboxCreate, OSMboxPend, OSMboxPost, OSMboxQuery

192 Dynamic C Function Reference Manual

OSMboxCreate

O0S _EVENT *OSMboxCreate(void *msg);

DESCRIPTION

Creates a message mailbox if event control blocks are available.

PARAMETERS

msg

RETURN VALUE

1= (void *)O0

== (void *) 0

LIBRARY

Pointer to a message to put in the mailbox. If thisvalueis set to the
null pointer (i.e., (void *) 0) thenthe mailbox will be considered
empty.

A pointer to the event control clock (0S_EVENT) associated
with the created mailbox.

No event control blocks were available.

OS MBOX.C (Prior to DC 8:UCOS2.LIB)

SEE ALSO

OSMboxAccept,

OSMboxPend, OSMboxPost, OSMboxQuery

Chapter 1: Function Descriptions 193

OSMboxDel

OS_EVENT *OSMboxDel(OS EVENT *pevent, INT8U opt, INT8U *err);

DESCRIPTION
Thisfunction deletes a mailbox and readies all tasks pending on the mailbox. Note that:

 Thisfunction must be used with care. Tasks that would normally expect the
presence of the mailbox MUST check the return code of 0SMboxPend () .

* OSMboxAccept () calerswill not know that the intended mailbox has been
deleted unless they check pevent to seethat it'sanull pointer.

» Thiscall can potentially disable interrupts for along time. Theinterrupt disable
timeisdirectly proportional to the number of tasks waiting on the mailbox.

» Because ALL tasks pending on the mailbox will be readied, you MUST be careful
in applications where the mailbox is used for mutual exclusion because the
resource(s) will no longer be guarded by the mailbox.

PARAMETERS
pevent Pointer to the event control block associated with the desired mail-
box.

opt May be one of the following delete options:
* OS_DEL_NO_PEND - Delete mailbox only if no task pending
* OS_DEL_ALWAYS - Deletes the mailbox even if tasks are

waiting. In this case, al the tasks pending will be readied.
err Pointer to an error code that can contain one of the following values:

* OS_NO_ERR - Call was successful; mailbox was deleted
* OS_ERR_DEL_ISR - Attempt to delete mailbox from ISR
* OS_ERR INVALID OPT - Invalid option was specified

* OS_ERR TASK WAITING - Oneor moretaskswerewaiting
on the mailbox

* OS_ERR_EVENT_ TYPE - No pointer passed to a mailbox
* OS_ERR PEVENT NULL - If pevent isanull pointer.

RETURN VALUE

1= (void *)0 Isapointer to the event control clock (OS_EVENT) associat-
ed with the created mailbox
== (void *)O0 If no event control blocks were available
LIBRARY
0S_MBOX.C

194 Dynamic C Function Reference Manual

OSMboxPend

void *OSMboxPend(OS_EVENT *pevent, INT16U timeout, INT8U *err);

DESCRIPTION
Waits for amessage to be sent to a mailbox.

PARAMETERS
pevent Pointer to mailbox’s event control block.
timeout Allowstask to resume execution if amessage was not received by the
number of clock ticks specified. Specifying O means the task iswill-
ing to wait forever.
err Pointer to avariablefor holding an error code. Possible error messag-
esare

* OS_NO_ERR: Thecall wassuccessful and thetask received a
message.

* OS_TIMEOUT: A message was not received within the spec-
ified timeout

* OS_ERR_EVENT TYPE: Invalid event type

* OS_ERR_PEND ISR If thisfunction was called from an
ISR and the result would lead to a suspension.

* OS_ERR_PEVENT NULL: If pevent isanull pointer

RETURN VALUE
1= (void *)0 A pointer to the message received

== (void *)0 No message wasreceived, or pevent isanull pointer, or the
proper pointer to the event control block was not passed.

LIBRARY
OS MBOX.C (Prior to DC 8:UCOS2.LIB)

SEE ALSO
OSMboxAccept, OSMboxCreate, OSMboxPost, OSMboxQuery

Chapter 1: Function Descriptions 195

OSMboxPost

INT8U OSMboxPost(OS EVENT *pevent, void *msg);

DESCRIPTION
Sends a message to the specified mailbox.

PARAMETERS
pevent Pointer to mailbox’s event control block.
msg Pointer to message to be posted. A null pointer must not be sent.

RETURN VALUE
0S_NO ERR The call was successful and the message was sent.

0S MBOX FULL Themailbox already containsamessage. Only onemessage
a atime can be sent and thus, the message MUST be con-
sumed before another can be sent.

0S_ERR_EVENT TYPE Attempting to post to a non-mailbox.
0S_ERR_PEVENT NULL If pevent isanull pointer
0S_ERR_POST NULL PTR If you areattempting to post anull pointer

LIBRARY
OS _MBOX.C (Prior to DC 8:UCOS2.LIB)

SEE ALSO

OSMboxAccept, OSMboxCreate, OSMboxPend, OSMboxQuery

196 Dynamic C Function Reference Manual

OSMboxPostOpt

INT8U OSMboxPostOpt(OS EVENT *pevent, void *msg, INT8U opt);

DESCRIPTION
This function sends a message to a mailbox.

Note: Interrupts can be disabled for along timeif you do a“broadcast.” The
interrupt disable timeis proportional to the number of tasks waiting on the mail-

box.
PARAMETERS
pevent Pointer to mailbox’s event control block.
msg Pointer to the message to send. A null pointer must not be sent.
opt Determines the type of POST performed:

* OS_POST OPT NONE - POST to asinglewaiting task (Iden-
tical to 0S_MboxPost ())

* OS_POST OPT BROADCAST - POST to ALL tasksthat are
waiting on the mailbox

RETURN VALUE

0S_NO ERR The call was successful and the message was sent.

0S_MBOX_ FULL Themailbox already containsamessage. Only onemessage
a atime can be sent and thus, the message MUST be con-
sumed before another can be sent.

0S_ERR_EVENT TYPE Attempting to post to a non-mailbox.
0S_ERR_PEVENT NULL If pevent isanull pointer
0S_ERR_POST NULL PTR If you areattempting to post anull pointer

LIBRARY
OS MBOX.C (Prior to DC 8:UCOS2.LIB)

Chapter 1: Function Descriptions 197

OSMboxQuery

INT8U OSMboxQuery(OS EVENT *pevent, OS MBOX DATA *pdata);

DESCRIPTION
Obtains information about a message mailbox.

PARAMETERS
pevent Pointer to message mailbox’s event control block.
pdata Pointer to adata structure for information about the message mailbox

RETURN VALUE
0S_NO ERR The call was successful and the message was sent.
OS_ERR_EVENT TYPE Attempting to obtain data from a non mailbox.

LIBRARY
UCOS2.LIB

SEE ALSO
OSMboxAccept, OSMboxCreate, OSMboxPend, OSMboxPost

198 Dynamic C Function Reference Manual

OSMemCreate

OS_MEM *OSMemCreate(void *addr, INT32U nblks, INT32U blksize,
INT8U *err);

DESCRIPTION
Creates afixed-sized memory partition that will be managed by uC/OS-I1I.

PARAMETERS
addr Pointer to starting address of the partition.
nblks Number of memory blocks to create in the partition.
blksize The size (in bytes) of the memory blocks.
err Pointer to variable containing an error message.

RETURN VALUE

Pointer to the created memory partition control block if oneis available, null pointer oth-
erwise.

LIBRARY
UCOs2.LIB

SEE ALSO
OSMemGet, OSMemPut, OSMemQuery

Chapter 1: Function Descriptions 199

OSMemGet

void *OSMemGet(OS _MEM *pmem, INT8U *err);

DESCRIPTION
Gets amemory block from the specified partition.

PARAMETERS
pmem Pointer to partition’s memory control block
err Pointer to variable containing an error message

RETURN VALUE
Pointer to amemory block or anull pointer if an error condition is detected.

LIBRARY
UCOSs2.LIB

SEE ALSO
OSMemCreate, OSMemPut, OSMemQuery

200 Dynamic C Function Reference Manual

OSMemPut

INT8U OSMemPut(OS MEM *pmem, void *pblk);

DESCRIPTION
Returns a memory block to a partition.

PARAMETERS
pmem Pointer to the partition’s memory control block.
pblk Pointer to the memory block being released.

RETURN VALUE
0S_NO ERR The memory block was inserted into the partition.
0S MEM FULL If returning amemory block to an already FULL memory partition.
(More blocks were freed than allocated!)

LIBRARY
UCOS2.LIB

SEE ALSO
OSMemCreate, OSMemGet, OSMemQuery

Chapter 1: Function Descriptions 201

OSMemQuery

INT8U OSMemQuery(OS MEM *pmem, OS MEM DATA *pdata);

DESCRIPTION
Determines the number of both free and used memory blocks in a memory partition.

PARAMETERS
pmem Pointer to partition’s memory control block.
pdata Pointer to structure for holding information about the partition.

RETURN VALUE

0S_NO ERR This function always returns no error.

LIBRARY
UCOS2.LIB

SEE ALSO
OSMemCreate, OSMemGet, OSMemPut

202 Dynamic C Function Reference Manual

OSMutexAccept

INT8U OSMutexAccept(OS EVENT *pevent, INT8U *err);

DESCRIPTION

Thisfunction checksthe mutual exclusion semaphoreto seeif aresourceisavailable. Un-
like OSMutexPend (), 0OSMutexAccept () doesnot suspend the calling task if the
resource is not available or the event did not occur. This function cannot be called from
an ISR because mutual exclusion semaphores are intended to be used by tasks only.

PARAMETERS
pevent Pointer to the event control block.
err Pointer to an error code that will be returned to your application:

* OS_NO_ERR - if the call was successful.

* OS_ERR _EVENT TYPE - if pevent isnot apointer to a
mutex

* OS _ERR PEVENT NULL - pevent isanull pointer

* OS_ERR_PEND_ ISR -ifyou caled thisfunction from an
ISR

RETURN VALUE
1: Success, the resource is available and the mutual exclusion semaphore is acquired.

0: Error, either the resource is not available, or you didn't pass a pointer to a mutual ex-
clusion semaphore, or you called this function from an ISR.

LIBRARY
0OS_MUTEX.C

Chapter 1: Function Descriptions 203

OSMutexCreate

OS_EVENT *OSMutexCreate(INT8U prio, INT8U *err);

DESCRIPTION

This function creates amutual exclusion semaphore. Note that:

» The LEAST significant 8 bits of the OSEventCnt field of the mutex’ s event control
block are used to hold the priority number of the task owning the mutex or OxFF if
no task owns the mutex.

» The MOST significant 8 bits of the OSEventCnt field of the mutex’s event control
block are used to hold the priority number to use to reduce priority inversion.

PARAMETERS

prio

err

RETURN VALUE

1= (void *)O0

(void *)O0

LIBRARY
0OS_MUTEX.C

The priority to use when accessing the mutual exclusion semaphore.
In other words, when the semaphoreisacquired and ahigher priority
task attempts to obtain the semaphore then the priority of the task
owning the semaphoreisraised to thispriority. It isassumed that you
will specify apriority that iSLOWER invaluethan ANY of thetasks
competing for the mutex.

Pointer to error code that will be returned to your application:

* OS_NO_ERR - if the call was successful.

* OS_ERR_CREATE_ ISR - Yyou attempted to create a mutex
from an ISR

* OS_PRIO _EXIST - atask at the priority inheritance priority
already exist.

* OS_ERR_ PEVENT NULL - no more event control blocks
available.

* OS_PRIO INVALID - if the priority you specify is higher
that the maximum allowed (i.e. > 0S_LOWEST_ PRIO)

Pointer to the event control clock (0OS_EVENT) associated
with the created mutex.

Error detected.

204

Dynamic C Function Reference Manual

OSMutexDel

OS EVENT *OSMutexDel(OS_ EVENT *pevent, INT8U opt, INT8U *err);

DESCRIPTION

This function deletes amutua exclusion semaphore and readies all tasks pending onit.
Note that:

 Thisfunction must be used with care. Tasks that would normally expect the
presence of the mutex MUST check the return code of 0OSMutexPend ().

* Thiscall can potentially disableinterruptsfor along time. Theinterrupt disabletime
is directly proportional to the number of tasks waiting on the mutex.

» Because ALL tasks pending on the mutex will be readied, you MUST be careful
because the resource(s) will no longer be guarded by the mutex.

PARAMETERS
pevent Pointer to mutex’s event control block.

opt May be one of the following delete options:

* OS_DEL_NO_PEND - Delete mutex only if no task pending

* OS_DEL_ALWAYS - Deletes the mutex even if tasks are wait-
ing. Inthis case, al pending tasks will be readied.

err Pointer to an error code that can contain one of the following values:
* OS_NO_ERR - Thecall was successful and the mutex was de-
leted

* OS_ERR DEL ISR - Attempted to delete the mutex from an
ISR

* OS_ERR INVALID OPT - Aninvalid option was specified
* OS_ERR TASK WAITING - Oneor moretaskswerewaiting

on the mutex
* OS_ERR EVENT TYPE - If youdidn't passapointer to amu-
tex pointer.
RETURN VALUE
pevent On error.
(0OS_EVENT *)0 Mutex was deleted.

LIBRARY
0S_MUTEX.C

Chapter 1: Function Descriptions 205

OSMutexPend

void OSMutexPend(OS_EVENT *pevent, INT16U timeout, INT8U *err);

DESCRIPTION
This function waits for amutual exclusion semaphore. Note that:

» Thetask that owns the Mutex MUST NOT pend on any other event while it owns
the mutex.

* You MUST NOT change the priority of the task that owns the mutex.

PARAMETERS
pevent Pointer to mutex’s event control block.

timeout Optional timeout period (in clock ticks). If non-zero, your task will
wait for the resource up to the amount of time specified by this argu-
ment. If you specify 0, however, your task will wait forever at the
specified mutex or, until the resource becomes available.

err Pointer to where an error message will be deposited. Possible error
messages are:
OS_NO_ERR - The call was successful and your task owns the mu-
tex

OS_TIMEOUT - The mutex was not available within the specified
time.

OS_ERR_EVENT TYPE - If you didn't pass a pointer to a mutex
O0S_ERR_PEVENT NULL - pevent isanull pointer

OS_ERR_PEND ISR - If you called thisfunction from an ISR and
the result would lead to a suspension.

LIBRARY
0OS_MUTEX.C

206 Dynamic C Function Reference Manual

OSMutexPost

INT8U OSMutexPost(OS_EVENT *pevent);
DESCRIPTION
This function signals a mutual exclusion semaphore.

PARAMETERS

pevent Pointer to mutex’s event control block.

RETURN VALUE

0S _NO ERR The call was successful and the mutex was signaled.
0S_ERR_EVENT TYPE If you didn't pass a pointer to a mutex
OS_ERR_PEVENT NULL pevent isanull pointer

O0S _ERR _POST ISR Attempted to post from an ISR (invalid for mutexes)

0S_ERR_NOT MUTEX OWNER Thetask that did the postisNOT the owner of the MU-
TEX.

LIBRARY
0S_MUTEX.C

Chapter 1: Function Descriptions 207

OSMutexQuery

INT8U OSMutexQuery(OS EVENT *pevent, OS MUTEX DATA *pdata);

DESCRIPTION
This function obtains information about a mutex.

PARAMETERS
pevent Pointer to the event control block associated with the desired mutex.
pdata Pointer to a structure that will contain information about the mutex.

RETURN VALUE
0S_NO ERR The call was successful and the message was sent
O0S _ERR_QUERY ISR Function was called from an ISR
0S ERR _PEVENT NULL pevent isanull pointer
0S_ERR_EVENT TYPE Attempting to obtain data from anon mutex.

LIBRARY
0S_MUTEX.C

208 Dynamic C Function Reference Manual

OSQAccept

void *OSQAccept(OS EVENT *pevent);

DESCRIPTION

Checks the queue to see if amessage is available. Unlike 0sQPend () , with
0SQAccept () thecaling task is not suspended if amessage is unavailable.

PARAMETERS
pevent Pointer to the message queue’s event control block.

RETURN VALUE
Pointer to message in the queue if oneis available, null pointer otherwise.

LIBRARY
OS_Q.C (Prior to DC 8:UC0S2.LIB)

SEE ALSO
OSQCreate, OSQFlush, OSQPend, OSQPost, OSQPostFront, 0OSQQuery

Chapter 1: Function Descriptions 209

OSQCreate

OS_EVENT *0OSQCreate(void **gstart, INT16U gsize);

DESCRIPTION
Creates a message queue if event control blocks are available.

PARAMETERS
start Pointer to the base address of the message queue storage area. The
storage area MUST be declared an array of pointersto void: void
*MessageStorage [gsize] .
gsize Number of elements in the storage area.

RETURN VALUE

Pointer to message queue’s event control block or null pointer if no event control blocks
were available.

LIBRARY
OS_Q.C (Prior to DC 8:UC0OS2.LIB)

SEE ALSO
OSQAccept, OSQFlush, OSQPend, OSQPost, OSQPostFront, 0OSQQuery

210 Dynamic C Function Reference Manual

O0SQDel

OS_EVENT *0SQDel(OS EVENT *pevent, INT8U opt, INT8U *err);

DESCRIPTION
Deletes amessage queue and readies all tasks pending on the queue. Note that:

 Thisfunction must be used with care. Tasks that would normally expect the
presence of the queue MUST check the return code of 0SQPend () .

* 0SQAccept () callerswill not know that the intended queue has been del eted
unless they check pevent to seethat it'sanull pointer.

* Thiscall can potentially disableinterruptsfor along time. Theinterrupt disabletime
isdirectly proportional to the number of tasks waiting on the queue.

» Because all tasks pending on the queue will be readied, you must be careful in
applications where the queue is used for mutual exclusion because the resource(s)
will no longer be guarded by the queue.

« |If the storage for the message queue was alocated dynamically (i.e., using a
malloc () type call) then your application must release the memory storage by
call the counterpart call of the dynamic allocation schemeused. If the queue storage
was created statically then, the storage can be reused.

PARAMETERS
pevent Pointer to the queue’s event control block.
opt May be one of the following delete options:
* OS_DEL_NO_PEND - Delete queue only if no task pending
* OS_DEL_ALWAYS - Deletesthe queue even if tasks are wait-
ing. Inthis case, al the tasks pending will be readied.
err Pointer to an error code that can contain one of the following:

* OS_NO_ERR - Call was successful and queue was deleted
* OS_ERR_DEL_ISR - Attempt to delete queue from an ISR
* OS_ERR_INVALID OPT - Invalid option was specified

* OS_ERR_TASK WAITING - Oneor moretaskswere wait-
ing on the queue

* OS_ERR EVENT TYPE - Youdidn't passapointer to aqueue
* OS_ERR_PEVENT NULL - If pevent isanull pointer.

RETURN VALUE

pevent Error
(0OS_EVENT *)0 The queue was successfully deleted.
LIBRARY

OS_Q.C (Prior to DC 8:UC0S2.LIB)

Chapter 1: Function Descriptions 211

OSQFlush

INT8U OSQFlush(OS EVENT *pevent);

DESCRIPTION
Flushes the contents of the message queue.
PARAMETERS

pevent Pointer to message queue’s event control block.

RETURN VALUE
0S_NO_ERR Success.
0S_ERR_EVENT TYPE A pointer to a queue was not passed.
0S_ERR_PEVENT NULL If pevent isanull pointer.

LIBRARY
OS_Q.C (Prior to DC 8:UC0S2.LIB)

SEE ALSO
OSQAccept, OSQCreate, 0OSQPend, OSQPost, OSQPostFront, OSQQuery

212 Dynamic C Function Reference Manual

OSQPend

void *0OSQPend(OS_EVENT *pevent, INT1l6U timeout, INT8U *err);

DESCRIPTION
Waits for amessage to be sent to a queue.

PARAMETERS
pevent Pointer to message queue’s event control block.
timeout Allow task to resume execution if amessage was not received by the
number of clock ticks specified. Specifying O means the task iswill-
ing to wait forever.
err Pointer to a variable for holding an error code.

RETURN VALUE
Pointer to a message or, if atimeout occurs, anull pointer.

LIBRARY
OS_Q.C (Prior to DC 8:UC0S2.LIB)

SEE ALSO
OSQAccept, 0OSQCreate, OSQFlush, 0OSQPost, OSQPostFront, OSQQuery

Chapter 1: Function Descriptions 213

OSQPost

INT8U OSQPost(OS EVENT *pevent, void *msg);

DESCRIPTION
Sends a message to the specified queue.

PARAMETERS
pevent Pointer to message queue’s event control block.
msg Pointer to the message to send. A null pointer must not be sent.

RETURN VALUE

0S_NO ERR The call was successful and the message was sent.
0S Q FULL The queue cannot accept any more messages becauseit
isfull.

OS_ERR_EVENT TYPE [f apointer to aqueue not passed.

O0S_ERR_PEVENT NULL If pevent isanull pointer.
0S_ERR_POST NULL PTR If attempting to post to anull pointer.
LIBRARY

OS_Q.C (Prior to DC 8:UC0S2.LIB)

SEE ALSO
OSQAccept, 0OSQCreate, OSQFlush, OSQPend, OSQPostFront, OSQQuery

214 Dynamic C Function Reference Manual

OSQPostFront

INT8U OSQPostFront(OS_ EVENT *pevent, void *msg);

DESCRIPTION

Sends a message to the specified queue, but unlike 0SQPost (), the message is posted
at the front instead of the end of the queue. Using 0SQPostFront () alows 'priority'

messages to be sent.
PARAMETERS
pevent Pointer to message queue’s event control block.
msg Pointer to the message to send. A null pointer must not be sent.

RETURN VALUE

0S_NO ERR The call was successful and the message was sent.

0S Q FULL The queue cannot accept any more messages becauseit is
full.

OS_ERR_EVENT TYPE A pointer to a queue was not passed.

0S_ERR_PEVENT NULL If pevent isanull pointer.

0S_ERR_POST NULL PTR Attempting to post to a non mailbox.

LIBRARY
OS_Q.C (Prior to DC 8:UC0S2.LIB)

SEE ALSO
OSQAccept, 0OSQCreate, OSQFlush, 0OSQPend, 0OSQPost, 0OSQQuery

Chapter 1: Function Descriptions 215

OSQPostOpt

INT8U OSQPostOpt(OS EVENT *pevent, void *msg, INT8U opt);

DESCRIPTION

This function sends a message to a queue. This call has been added to reduce code size
sinceit canreplaceboth0SQPost () and0SQPostFront (). Also, thisfunction adds
the capability to broadcast a message to all tasks waiting on the message queue.

Note: Interrupts can be disabled for along time if you do a*“broadcast.” In fact,
the interrupt disable time is proportional to the number of tasks waiting on the

queue.

PARAMETERS
pevent Pointer to message queue’s event control block.
msg Pointer to the message to send. A null pointer must not be sent.
opt Determines the type of POST performed:

* OS_POST OPT NONE - POST to asinglewaiting task (Iden-
tical to 0OSQPost ())

* OS_POST_OPT BROADCAST - POST to ALL tasksthat are
waiting on the queue

* OS_POST OPT_ FRONT - POST as LIFO (Simulates
OSQPostFront ())

The last 2 flags may be combined:
* OS_POST OPT FRONT+O0S_ POST OPT BROADCAST -

isidentical to 0OSQPostFront () except that it will broad-
cast msg to all waiting tasks.

RETURN VALUE

0S_NO ERR The call was successful and the message was sent.
0S_Q FULL The queueis full, cannot accept any more messages.
OS_ERR_EVENT TYPE A pointer to a queue was not passed.
O0S_ERR_PEVENT NULL If pevent isanull pointer.

0S_ERR_POST NULL PTR Attempting to post anull pointer.

LIBRARY
OS_Q.C (Prior to DC 8:UC0S2.LIB)

216 Dynamic C Function Reference Manual

O0SQQuery

INT8U OSQQuery(OS_EVENT *pevent, OS_Q DATA *pdata);

DESCRIPTION
Obtains information about a message queue.

PARAMETERS
pevent Pointer to message queue’s event control block.
pdata Pointer to a data structure for message queue information.

RETURN VALUE
0S_NO ERR The call was successful and the message was sent
OS_ERR_EVENT TYPE Attempting to obtain data from anon queue.
0S_ERR _PEVENT NULL If pevent isanull pointer.

LIBRARY
OS_Q.C (Prior to DC 8:UC0S2.LIB)

SEE ALSO
OSQAccept, 0OSQCreate, OSQFlush, 0OSQPend, OSQPost, OSQPostFront

Chapter 1: Function Descriptions 217

OSSchedLock

void 0SSchedLock(wvoid);

DESCRIPTION

Preventstask rescheduling. This allows an application to prevent context switchesuntil it
isready for them. There must be amatched call to 0SSchedUnlock () for every call
to 0SSchedLock ().

LIBRARY
UCOS2.LIB

SEE ALSO
O0SSchedUnlock

0SSchedUnlock

void 0SSchedUnlock(void);

DESCRIPTION

Allow task rescheduling. There must be amatched call to 0SSchedUnlock () for ev-
ery cal to 0SSchedLock () .

LIBRARY
UCOS2.LIB

SEE ALSO
0OSSchedLock

218 Dynamic C Function Reference Manual

OSSemAccept

INT16U OSSemAccept(OS EVENT *pevent);

DESCRIPTION

Thisfunction checksthe semaphoreto seeif aresourceisavailableor if an event occurred.
Unlike 0SSemPend (), 0SSemAccept () doesnot suspend the calling task if the re-
source is not available or the event did not occur.

PARAMETERS

pevent Pointer to the desired semaphore’s event control block

RETURN VALUE

Semaphore value;

If >0, semaphore value is decremented; valueis returned before the decrement.

If 0, then either resourceisunavailable, event did not occur, or null or invalid pointer was
passed to the function.

LIBRARY
UCOs2.LIB

SEE ALSO
OSSemCreate, OSSemPend, OSSemPost, OSSemQuery

Chapter 1: Function Descriptions 219

OSSemCreate

OS_EVENT *OSSemCreate(INT16U cnt);

DESCRIPTION
Creates a semaphore.
PARAMETERS
cnt The initial value of the semaphore.

RETURN VALUE

Pointer to the event control block (0S_EVENT) associated with the created semaphore,
or null if no event control block is available.

LIBRARY
UCOS2.LIB

SEE ALSO
OSSemAccept, OSSemPend, OSSemPost, OSSemQuery

220 Dynamic C Function Reference Manual

OSSemPend

void OSSemPend(OS_EVENT *pevent, INT16U timeout, INT8U *err);

DESCRIPTION
Waits on a semaphore.

PARAMETERS
pevent Pointer to the desired semaphore’s event control block
timeout Timein clock ticks to wait for the resource. If 0, the task will wait
until the resource becomes available or the event occurs.
err Pointer to error message.
LIBRARY
UCOS2.LIB
SEE ALSO

OSSemAccept, OSSemCreate, OSSemPost, OSSemQuery

Chapter 1: Function Descriptions 221

OSSemPost

INT8U OSSemPost(OS EVENT *pevent);

DESCRIPTION
This function signals a semaphore.

PARAMETERS
pevent Pointer to the desired semaphore’s event control block

RETURN VALUE
O0S _NO ERR The call was successful and the semaphore was signaled.

0S_SEM OVF If the semaphore count exceeded itslimit. In other words, you
have signalled the semaphore more often than you waited on
it with either 0SSemAccept () or 0SSemPend ().

OS_ERR_EVENT TYPE If apointer to a semaphore not passed.
0S_ERR_PEVENT NULL If pevent isanull pointer.

LIBRARY
UCOs2.LIB

SEE ALSO
OSSemAccept, OSSemCreate, OSSemPend, OSSemQuery

222 Dynamic C Function Reference Manual

OSSemQuery

INT8U OSSemQuery(OS_EVENT *pevent, OS_SEM DATA *pdata);

DESCRIPTION
Obtains information about a semaphore.

PARAMETERS
pevent Pointer to the desired semaphore’s event control block
pdata Pointer to a data structure that will hold information about the sema-
phore.
RETURN VALUE
0S_NO_ERR The call was successful and the message was sent.

0S_ERR_EVENT TYPE Attempting to obtain data from a non semaphore.

0S_ERR_PEVENT NULL If thepevent parameter isanull pointer.

LIBRARY
UCOS2.LIB

SEE ALSO
OSSemAccept, OSSemCreate, 0OSSemPend, OSSemPost

Chapter 1: Function Descriptions 223

OSSetTickPerSec

INT16U OSSetTickPerSec(INT16U TicksPerSec):;

DESCRIPTION

Sets the amount of ticks per second (from 1 - 2048). Ticks per second defaultsto 64. If
thisfunctionisused, the#define OS_TICKS_ PER_SEC needsto be changed so that
the time delay functions work correctly. Since this function uses integer division, the ac-
tual ticks per second may be slightly different that the desired ticks per second.

PARAMETERS

TicksPerSec Unsigned 16-bit integer.

RETURN VALUE
The actual ticks per second set, as an unsigned 16-bit integer.

LIBRARY
UCOS2.LIB

SEE ALSO
OSStart

OSStart

void OSStart (void) ;

DESCRIPTION

Startsthe multitasking process, allowing pC/OS-11 to manage the tasks that have been cre-
ated. Beforeosstart () iscaled, 0SInit () MUST havebeen called and at |east one
task MUST have been created. Thisfunction callsOSStartHighRdy which calls
0STaskSwHook and sets OSRunning to TRUE.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTaskCreate, OSTaskCreateExt

224 Dynamic C Function Reference Manual

OSSstatInit

void OSStatInit(void);
DESCRIPTION
Determines CPU usage.

LIBRARY
UCOS2.LIB

OSTaskChangePrio

INT8U OSTaskChangePrio(INT8U oldprio, INT8U newprio);

DESCRIPTION
Allows atask's priority to be changed dynamically. Note that the new priority MUST be
available.
PARAMETERS
oldprio The priority level to change from.
newprio The priority level to changeto.

RETURN VALUE

0S_NO ERR The call was successful.

0S PRIO INVALID The priority specified is higher that the maximum allowed
(i.e.>0S_LOWEST PRIO).

OS_PRIO_EXIST The new priority aready exist

0S PRIO ERR Thereisno task with the specified OLD priority (i.e. theOLD
task does not exist).

LIBRARY
UCOS2.LIB

Chapter 1: Function Descriptions 225

OSTaskCreate

INT8U OSTaskCreate(void (*task) (), void *pdata, INT16U stk_size,

INT8U prio);

DESCRIPTION

Creates atask to be managed by uC/OS-11. Tasks can either be created prior to the start of
multitasking or by arunning task. A task cannot be created by an ISR.

PARAMETERS
task Pointer to the task’s starting address.
pdata Pointer to atask’s initial parameters.
stk size Number of bytes of the stack.
prior The task’s unique priority number.

RETURN VALUE
0S_NO_ERR

OS PRIO EXIT

OS PRIO INVALID

LIBRARY
UCOs2.LIB

SEE ALSO
OSTaskCreateExt

The call was successful.

Task priority aready exists (each task MUST have a unique
priority).

The priority specified is higher than the maximum allowed
(i.e. 20S_LOWEST_ PRIO).

226

Dynamic C Function Reference Manual

OSTaskCreateExt

INT8U OSTaskCreateExt(void (*task) (), void *pdata, INT8U prio,
INT16U id, INT16U stk size, void *pext, INT1l6U opt);

DESCRIPTION

Creates atask to be managed by uC/OS-11. Tasks can either be created prior to the start of
multitasking or by arunning task. A task cannot be created by an ISR. Thisfunction is
smilar to OSTaskCreate () except that it allows additional information about a task

to be specified.
PARAMETERS

task Pointer to task’s code.

pdata Pointer to optional data area; used to pass parameters to the task at
start of execution.

prio The task’s unique priority number; the lower the number the higher
the priority.

id The task’s identification number (0...65535).

stk size Size of the stack in number of elements. If 0S_STK iSsetto INT8U,
stk_size corresponds to the number of bytes available. If
OS_STKissetto INT16U, stk_size containsthe number of 16-
bit entries available. Finally, if 0S_STK isset to INT32U,
stk_size containsthe number of 32-bit entries available on the
stack.

pext Pointer to a user-supplied Task Control Block (TCB) extension.

opt The lower 8 bits are reserved by pC/OS-I1. The upper 8 bits control

application-specific options. Select an option by setting the corre-
sponding bit(s).

RETURN VALUE

O0S_NO ERR The call was successful.

0S PRIO EXIT Task priority aready exists (each task MUST have a unique
priority).

0S PRIO INVALID The priority specified is higher than the maximum allowed

(i.e.>0S_LOWEST_ PRIO).

LIBRARY
UCOS2.LIB

SEE ALSO
OSTaskCreate

Chapter 1: Function Descriptions 227

OSTaskCreateHook

void OSTaskCreateHook(OS TCB *ptcb);

DESCRIPTION

Cdled by uC/OS-11 whenever atask is created. This call-back function residesin
UCos2.LIB and extends functionality during task creation by allowing additional in-
formation to be passed to the kernel, anything associated with atask. This function can
also be used to trigger other hardware, such as an oscilloscope. Interrupts are disabled dur-
ing this call, therefore, it is recommended that code be kept to a minimum.

PARAMETERS
ptcb Pointer to the TCB of the task being created.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTaskDelHook

228 Dynamic C Function Reference Manual

OSTaskDel

INT8U OSTaskDel(INT8U prio);

DESCRIPTION

Deletesatask. The calling task can deleteitself by passing either its own priority number
or 0S_PRIO_SELF if it doesn’'t know its priority number. The deleted task is returned
to the dormant state and can be re-activated by creating the deleted task again.

PARAMETERS
prio Task’s priority number.
RETURN VALUE

0S_NO ERR The call was successful.

OS_TASK_DEL_IDLE Attempting to delete uC/OS-II's idle task.

0S PRIO INVALID The priority specified is higher than the maximum allowed
(i.e.>0S_LOWEST PRIO)Or,0S PRIO_ SELF not Spec-
ified.
OS_TASK DEL_ ERR The task to delete does not exist.
OS_TASK_DEL_ ISR Attempting to delete atask from an ISR.
LIBRARY
UCOS2.LIB
SEE ALSO
OSTaskDelReq

Chapter 1: Function Descriptions 229

OSTaskDelHook

void OSTaskDelHook(OS_TCB *ptcb);

DESCRIPTION

Cdlled by uC/OS-11 whenever atask isdeleted. This call-back function residesin
UC0S2.LIB. Interruptsaredisabled during thiscall, therefore, it isrecommended that
code be kept to a minimum.

PARAMETERS

ptcb Pointer to TCB of task being deleted.

LIBRARY
UCOs2.LIB

SEE ALSO
OSTaskCreateHook

230 Dynamic C Function Reference Manual

OSTaskDelReq

INT8U OSTaskDelReqg(INT8U prio);

DESCRIPTION

Notifies atask to deleteitself. A well-behaved task is deleted when it regains control of
the CPU by calling 0STaskDelReq (0OSTaskDelReq) and monitoringthe return

value.
PARAMETERS
prio The priority of the task that is being asked to delete itself.
OS_PRIO_SELF isused when asking whether another task wants
the current task to be deleted.
RETURN VALUE
0S_NO ERR Thetask exists and the request has been registered.

OS TASK NOT EXIST Thetask has been deleted. This alowsthe caller to know
whether the request has been executed.

OS_TASK_DEL_IDLE If requesting to delete uC/OS-II's idletask.
0S_PRIO INVALID The priority specified is higher than the maximum allowed
(i.e.>0S_LOWEST PRIO)oOr,OS_PRIO SELF isnot
specified.
OS TASK DEL REQ A task (possibly another task) requested that the running task
be deleted.
LIBRARY
UCOS2.LIB
SEE ALSO
OSTaskDel

Chapter 1: Function Descriptions 231

OSTaskIdleHook

void OSTaskIdleHook(void);

DESCRIPTION

Thisfunction iscalled by theidle task. This hook has been added to allow you to do such
things as STOP the CPU to conserve power. Interrupts are enabled during this call.

LIBRARY
UCOs2.LIB

OSTaskQuery

INT8U OSTaskQuery(INT8U prio, OS TCB *pdata);

DESCRIPTION
Obtains a copy of the requested task's task control block (TCB).

PARAMETERS
prio Priority number of the task.
pdata Pointer to task's TCB.

RETURN VALUE

0S_NO ERR The requested task is suspended.

OS_PRIO_INVALID The priority you specify is higher than the maximum allowed
(i.e.>0S_LOWEST PRIO)Or,0S_PRIO_SELF isnot
specified.

0S_PRIO_ERR The desired task has not been created.

LIBRARY

UCOS2.LIB

232 Dynamic C Function Reference Manual

OSTaskResume

INT8U OSTaskResume(INT8U prio);

DESCRIPTION
Resumes a suspended task. Thisisthe only call that will remove an explicit task suspen-
sion.

PARAMETERS
prio The priority of the task to resume.

RETURN VALUE
0S_NO ERR The requested task is resumed.

0S PRIO INVALID The priority specified is higher than the maximum allowed
(i.e.>0S_LOWEST PRIO).

OS_TASK_NOT SUSPENDED Thetask to resume has not been suspended.

LIBRARY
UCOs2.LIB

SEE ALSO
OSTaskSuspend

OSTaskStatHook

void OSTaskStatHook(void);

DESCRIPTION

Called every second by pC/OS-11's statistics task. This function residesin UC0S2 . LIB
and allows an application to add functionality to the statistics task.

LIBRARY
UCOS2.LIB

Chapter 1: Function Descriptions 233

OSTaskStkChk

INT8U OSTaskStkChk(INT8U prio, OS STK DATA *pdata);

DESCRIPTION
Check the amount of free memory on the stack of the specified task.

PARAMETERS
prio The task’s priority.
pdata Pointer to a data structure of type OS_STK _DATA.

RETURN VALUE

0S_NO ERR The call was successful.

OS_PRIO_INVALID The priority you specify is higher than the maximum allowed
(i.e.>0S_LOWEST PRIO)Or,0S_ PRIO_ SELF not spec-
ified.

OS_TASK_NOT EXIST The desired task has not been created.

0S_TASK OPT_ERR IfOS_TASK OPT STK_ CHKwasNOT specifiedwhenthe
task was created.
LIBRARY
UCOS2.LIB
SEE ALSO
OSTaskCreateExt

234 Dynamic C Function Reference Manual

OSTaskSuspend

INT8U OSTaskSuspend(INT8U prio);

DESCRIPTION

Suspends atask. The task can be the calling task if the priority passed to
OSTaskSuspend () isthepriority of the calling task or 0S_PRIO_SELF. Thisfunc-
tion should be used with great care. If atask is suspended that iswaiting for an event (i.e.,
amessage, a semaphore, aqueue...) the task will be prevented from running when the

event arrives,

PARAMETERS

prio The priority of the task to suspend.

RETURN VALUE
0S_NO_ERR
0S_TASK_SUS_ IDLE

0S_PRIO_ INVALID

0S_TASK_SUS_PRIO

LIBRARY
UCOs2.LIB

SEE ALSO

OSTaskResume

The requested task is suspended.
Attempting to suspend the idle task (not allowed).

The priority specified is higher than the maximum allowed
(i.e.>0S_LOWEST PRIO)oOr,0S_PRIO_ SELF isnot

specified.
The task to suspend does not exist.

Chapter 1: Function Descriptions

235

OSTaskSwHook

void OSTaskSwHook (void);

DESCRIPTION

Cadlled whenever a context switch happens. Thetask control block (TCB) for the task that
isready to run is accessed viathe global variable 0STCBHighRdy, and the TCB for the
task that is being switched out is accessed viathe global variable 0STCBCur.

LIBRARY
UCOS2.LIB

OSTCBInitHook

void OSTCBInitHook(OS_TCB *ptcb);

DESCRIPTION

Thisfunctioniscaled by 0STCBInit () after setting up most of the task control block
(TCB). Interrupts may or may not be enabled during this call.

PARAMETER

ptcb Pointer to the TCB of the task being created.

LIBRARY
UCOs2.LIB

236 Dynamic C Function Reference Manual

OSTimeDly

void OSTimeDly(INT16U ticks);

DESCRIPTION

Delays execution of the task for the specified number of clock ticks. No delay will result
if ticksisO.If ticks is>0, then acontext switch will result.

PARAMETERS
ticks Number of clock ticks to delay the task.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTimeDlyHMSM, OSTimeDlyResume, OSTimeDlySec

Chapter 1: Function Descriptions 237

OSTimeDl1lyHMSM

INT8U OSTimeDlyHMSM(INT8U hours, INT8U minutes, INT8U seconds,
INT16U milli);

DESCRIPTION

Delays execution of the task until specified amount of time expires. This call allowsthe
delay to be specified in hours, minutes, seconds and millisecondsinstead of ticks. Theres-
olution on the milliseconds depends on the tick rate. For example, a 10 ms delay is not
possibleif theticker interrupts every 100 ms. Inthis case, the delay would be setto 0. The
actual delay isrounded to the nearest tick.

PARAMETERS
hours Number of hours that the task will be delayed (max. is 255)
minutes Number of minutes (max. 59)
seconds Number of seconds (max. 59)
milli Number of milliseconds (max. 999)

RETURN VALUE
0S_NO ERR Execution delay of task was successful
OS_TIME INVALID MINUTES Minutesparameter out of range
0S TIME INVALID SECONDS Seconds parameter out of range
0S_TIME INVALID MS Milliseconds parameter out of range
0S_TIME ZERO DLY

LIBRARY
OS TIME.C (Prior to DC 8:ucos2.1lib)

SEE ALSO
OSTimeDly, OSTimeDlyResume, OSTimeDlySec

238 Dynamic C Function Reference Manual

OSTimeDlyResume

INT8U OSTimeDlyResume(INT8U prio);

DESCRIPTION

Resumes atask that has been delayed through acall to either 0STimeD1y () or
0STimeD1yHMSM () . Notethat thisfunction MUST NOT be called to resume atask that
iswaiting for an event with timeout. This situation would make the task look like a time-
out occurred (unlessthisis the desired effect). Also, atask cannot be resumed that has
called 0STimeD1yHMSM () with acombined time that exceeds 65535 clock ticks. In
other words, if the clock tick runs at 100 Hz then, a delayed task will not be able to be
resumed that called 0STimeD1yHMSM (0, 10, 55, 350) or higher.

PARAMETERS

prio Priority of the task to resume.

RETURN VALUE
0S_NO ERR Task has been resumed.

0S_PRIO INVALID The priority you specify ishigher than the maximum allowed
(i.e.>0S_LOWEST PRIO).

0S_TIME NOT DLY Task is not waiting for time to expire.
OS_TASK_NOT EXIST The desired task has not been created.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTimeDly, OSTimeDlyHMSM, OSTimeDlySec

Chapter 1: Function Descriptions 239

OSTimeDlySec

INT8U OSTimeDlySec(INT16U seconds);

DESCRIPTION

Delays execution of the task until seconds expires. Thisis alow-overhead version of
0STimeD1yHMSM for seconds only.

PARAMETERS

seconds The number of seconds to delay.

RETURN VALUE

0S_NO ERR The call was successful.

OS TIME ZERO DLY A delay of zero seconds was requested.
LIBRARY

UCOS2.LIB
SEE ALSO

OSTimeDly, OSTimeDlyHMSM, OSTimeDlyResume

240 Dynamic C Function Reference Manual

OSTimeGet

INT32U OSTimeGet(void);

DESCRIPTION

Obtain the current value of the 32-bit counter that keepstrack of the number of clock ticks.

RETURN VALUE
The current value of 0STime.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTimeSet

OSTimeSet

void OSTimeSet (INT32U ticks):;

DESCRIPTION

Sets the 32-bit counter that keeps track of the number of clock ticks.

PARAMETERS

ticks The valueto set 0STime to.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTimeGet

Chapter 1: Function Descriptions

241

OSTimeTick

void OSTimeTick(void);

DESCRIPTION

Thisfunction takes care of the processing necessary at the occurrence of each system tick.
Thisfunction is called from the BIOS timer interrupt ISR, but can also be called from a
high priority task. The user definable0STimeTickHook () iscalledfromthisfunction
and alows for extra application specific processing to be performed at each tick. Since
0STimeTickHook () iscalled during aninterrupt, it should perform minimal process-
ing asit will directly affect interrupt latency.

LIBRARY

UCOS2.LIB

SEE ALSO

OSTimeTickHook

OSTimeTickHook

void OSTimeTickHook(wvoid);

DESCRIPTION

Thisfunction, asincluded with Dynamic C, isastub that does nothing except return. It is
called every clock tick. Code in this function should be kept to a minimum as it will di-
rectly affect interrupt latency. Thisfunction must preserve any registersit uses other than
the ones that are preserved at the beginning of the periodic interrupt (periodic isr
in VDRIVER . LIB), and therefore should be written in assembly. At the time of thiswrit-
ing, theregisters saved by periodic isr are: AFIPHL,DE and IX.

LIBRARY

UCOS2.LIB

SEE ALSO

OSTimeTick

242

Dynamic C Function Reference Manual

OSVersion

INT16U OSVersion(void);

DESCRIPTION

Returns the version number of uC/OS-I1. The returned value corresponds to uC/OS-I1's

version number multiplied by 100; i.e., version 2.00 would be returned as 200.

RETURN VALUE
Version number multiplied by 100.

LIBRARY
UCOs2.LIB

outchrs

char outchrs(char ¢, int n, int (*putc) ());

DESCRIPTION
Use putc to output n times the character c.

PARAMETERS
c Character to output
n Number of times to output
putc Routine to output one character. The function pointed to by putc

should take a character argument.

RETURN VALUE
The character in parameter c.

LIBRARY
STDIO.LIB

SEE ALSO

outstr

Chapter 1: Function Descriptions

243

outstr

char *outstr(char *string, int (*putc) ()):

DESCRIPTION

Output the string pointed to by st ring viacalstoputc. putc should take aone-char-
acter parameter.

PARAMETERS
string String to output
putc Routine to output one character. The function pointed to by putc

should take a character argument.

RETURN VALUE
Pointer to null at end of string.

LIBRARY
STDIO.LIB

SEE ALSO

outchrs

244 Dynamic C Function Reference Manual

paddr

unsigned long paddr(void* pointer);

DESCRIPTION

Convertsalogical pointer into its physical address. Use caution when converting address
in the EO0O-FFFF range. Returns the address based on the XPC on entry.

PARAMETERS
pointer The pointer to convert.

RETURN VALUE
The physical address of the pointer.

LIBRARY
XMEM.LIB

SEE ALSO
paddrDS, paddrSS

Chapter 1: Function Descriptions 245

paddrDS

unsigned long paddrDS(void* pointer);

DESCRIPTION

Converts a"Data Segment" logical pointer into its physical address. Thisfunction
assumes the pointer points to static (excluding bbram) data, which eliminates some
runtime testing as compared with the more general function, paddr () .

paddrDs () will generate incorrect results if used for:

* addressesin theroot code (that is, program code or constants)
* bbram (only available in fast RAM compile mode)

stack (that is, auto variables)

* Xmem segments

PARAMETERS

pointer Logical static (non-bbram) data pointer to convert.

RETURN VALUE
The physical address of the pointer.

LIBRARY
XMEM.LIB

SEE ALSO
paddr, paddrSS

246 Dynamic C Function Reference Manual

paddrsSs

unsigned long paddrSS(void* pointer);

DESCRIPTION

Convert alogical pointer into its physical address. This function assumes the pointer
pointsto datain the stack segment, which eliminates some runtime testing compared with
the more general function, paddr () . The stack segment is used to store auto data
items. This function will generate incorrect resultsif used for addressesin the root code
(i.e. program code or constants), data (i.e. statically allocated variables), or xmem seg-
ments.

PARAMETERS

pointer The pointer to convert, pointing to stack (auto) data.

RETURN VALUE
The physical address of the pointer.

LIBRARY
XMEM.LIB

SEE ALSO
paddr, paddrDS

Chapter 1: Function Descriptions 247

palloc

void * palloc(Pool t * p);

DESCRIPTION

Return next available free element from the given pool. Eventually, your application
should return this element to the pool using pfree () to avoid memory leaks.

Assembler code cancall palloc fast () instead.

PARAMETERS

P Pool handle structure, as previously passed to pool init ().

RETURN VALUE

Null: No free e ements available
Otherwise, pointer to an element

LIBRARY
POOL.LIB

SEE ALSO

pool init, pcalloc, pfree, phwm, pavail, palloc fast, pxalloc,
pool link

248 Dynamic C Function Reference Manual

palloc fast

xmem void * palloc_fast(Pool t * p);

DESCRIPTION
Return next available free element from the given pool, which must be aroot pool.

Thisis an assembler-only version of palloc ().
*** Do _not_ cal thisfunction from C. ***

palloc_fast doesnot performany IPSET protection, parameter validation, or update
the high-water mark. palloc_fast isaroot function. The parameter must be passed
in 1X, and the returned element addressisin HL.

REGISTERS

Parameter in I1X
TrashesF, BC, DE
Return valuein HL, carry flag.

EXAMPLE

1d ix,my pool

lcall palloc fast

jr c,.no_free

; HL points to element

PARAMETERS

o) Pool handle structure, as previously passedtopool init ().Pass
thisin IX.

RETURN VALUE
C flag set: no free elements were available.
C flag clear (NC): HL pointsto an element.

If the pool is not linked, your application can use this element provided it does not write
morethanp->elsize bytestoit (thiswasthe el size parameter passed to
pool init ()).If thepool islinked, you canwritep->elsize-4 bytestoit.

LIBRARY
POOL.LIB

SEE ALSO

pool init, pfree fast, pavail fast, palloc

Chapter 1: Function Descriptions 249

pavail

word pavail(Pool t * p);

DESCRIPTION
Return the number of elementsthat are currently available for allocation.

PARAMETERS

p Pool handle structure, as previously passed to pool init ()or
pool xinit ().

RETURN VALUE
Number of elements available for allocation.

LIBRARY
POOL.LIB

SEE ALSO

pool init, pool xinit, phwm, pnel

250 Dynamic C Function Reference Manual

pavail fast

xmem word pavail fast(Pool t * p);

DESCRIPTION
Return the number of elements that are currently available for allocation.

Thisis an assembler-only version of pavail ().

*** Do _not_ cal thisfunction from C. ***

REGISTERS

Parameter in IX
Trashes F, DE
Returnvaluein HL, Z flag

EXAMPLE

1d ix,my pool
lcall pavail fast
; HL contains number of available elements

PARAMETERS

p Pool handle structure, as previously passed to pool init ()or
pool xinit (). Thismust be provided inthelX register.

RETURN VALUE

Number of elementsavailablefor allocation. Thereturnvalueisplacedin HL. In addition,
the'Z' flag is set if there are no free elements.

LIBRARY
POOL.LIB

SEE ALSO

pool init, pool xinit, phwm, pnel

Chapter 1: Function Descriptions 251

pcalloc

void * pcalloc(Pool t * p);

DESCRIPTION
Return next available free element from the given pool. Eventually, your application
should return this element to the pool using pfree () to avoid memory leaks.

The element is set to all zero bytes before returning.

PARAMETERS

P Pool handle structure, as previously passed to pool init ().

RETURN VALUE

Null: No free elements were available

Otherwise, pointer to an element. If the pool is not linked, your application must not write
morethan p->elsize bytesto the element (thiswasthe el size parameter passed to
pool init ()). Theapplicationcanwriteupto(p->elsize-4) bytestotheelement
if the pool islinked. (An element in root memory has 4 bytes of overhead when the pool
islinked.)

LIBRARY
POOL.LIB

SEE ALSO

pool init, palloc, pfree, phwm, pavail

252 Dynamic C Function Reference Manual

pfirst

void * pfirst(Pool t * p);

DESCRIPTION

Get thefirst allocated element in aroot pool. The pool MUST be set to being alinked pool
using:

pool link(p, <non-zeros)
Otherwise, the result is undefined.

PARAMETERS

p Pool handle structure, as previously passed to pool init ().

RETURN VALUE

Null: There are no allocated elements
Otherwise, pointer to first (i.e., oldest) allocated element

LIBRARY
POOL.LIB

SEE ALSO
pool init, pool 1link, palloc, pfree, plast, pnext, pprev

Chapter 1: Function Descriptions 253

pfirst fast

xmem void * pfirst fast(Pool t * p);

DESCRIPTION
Get thefirst allocated element in aroot pool. The pool MUST be set to being alinked pool
by using:

pool link(p, <non-zero>) ;

Otherwise the results are undefined.
Thisisan assembler-only version of pfirst ().

*** Do _not_ cal thisfunction from C. ***

REGISTERS

Parameter in 1X
Trashes F, DE
Return valuein HL, carry flag

EXAMPLE

1d ix,my pool

lcall pfirst fast

jr ¢, .no _elems

; HL points to first element

PARAMETERS

p Pool handle structure, aspreviously passedtopool init ().Pass
thisin the I X register.

RETURN VALUE

C flag set, HL=0: There are no allocated elements.
C flag clear (NC): HL pointsto first element.

LIBRARY
POOL.LIB

SEE ALSO
pool init, pool 1link, pfirst, pnext fast

254 Dynamic C Function Reference Manual

pfree

void pfree(Pool t * p, void * e);

DESCRIPTION

Free an element that was obtained viapalloc () . Note: if you free an element that was
not allocated from this pool, or was aready free, or was outside the pool, then your appli-
cation will crash! You can detect most of these programming errors by defining the fol-
lowing symbols before #use pool.lib:

POOL_DEBUG
POOL_VERBOSE

PARAMETERS
P Pool handle structure, as previoudy passedto palloc ().
e Element to free, which was returned frompalloc ().

RETURN VALUE
None

LIBRARY
POOL.LIB

SEE ALSO

pool init, palloc, pcalloc, phwm, pavail

Chapter 1: Function Descriptions 255

pfree fast

xmem void pfree fast(Pool t * p, void * e);

DESCRIPTION
Free an element that was previously obtained viapalloc ().
Thisis an assembler-only version of pfree ().
*** Do _not_ cal thisfunction from C. ***
pfree fast doesnot perform any IPSET protection or parameter validation.
pfree_ fast isaxmem function. The parameters must be passed in machine registers.

REGISTERS

Parametersin IX, DE respectively
Trashes BC, DE, HL

EXAMPLE
1d ix,my pool
1d de, (element addr)
lcall pfree fast
PARAMETERS
p Pool handle structure, as previously passed to pool alloc () or
palloc_ fast. Thismust beinthelX register.
e Element to free, whichwasreturned frompalloc () . Thismust be

in the DE register.

RETURN VALUE
None

LIBRARY
POOL.LIB

SEE ALSO

pool init, palloc_ fast, pavail fast, pxfree fast

256 Dynamic C Function Reference Manual

word phwm(Pool t * p);

DESCRIPTION

Return the largest number of elements ever simultaneously allocated from the given pool,
i.e., the pool high water mark.

You can use thisfunction to help size apool, since it may be difficult to determine the op-
timum number of elements without running atrial program.

PARAMETERS
p Pool handle structure, as previously passed to pool init () or

pool xinit ().

RETURN VALUE
Maximum number of elements ever allocated.

LIBRARY
POOL.LIB

SEE ALSO

pool init, pool xinit, pavail

Chapter 1: Function Descriptions 257

pktXclose

void pktXclose(void);

DESCRIPTION

Disables serial port X, where X is A|B|C|D. Starting with Dynamic C version 7.25, the
functionspktEclose () and pktFclose () may be used with the Rabbit 3000
Mi Croprocessor.

LIBRARY
PACKET.LIB

pktXgetErrors

char pktXgetErrors(void);

DESCRIPTION

Getsabit field with flags set for any errors that occurred on port X, where X is A[B|C|D.
These flags are then cleared, so that a particular error will only cause the flag to be set
once.

Starting with Dynamic C version 7.25, the functions pkt EgetErrors () and
pktFgetErrors () may be used with the Rabbit 3000 microprocessor.

RETURN VALUE

A bit field with flags for various errors. The errors along with their bit masks are as fol-
lows:

PKT BUFFEROVERFLOW 0x01

PKT RXOVERRUN 0x02
PKT PARITYERROR 0x04
PKT NOBUFFER 0x08

LIBRARY
PACKET.LIB

258 Dynamic C Function Reference Manual

pktXinitBuffers

int pktXinitBuffers(int buf count, int buf size); X = A|B|C|D

DESCRIPTION

Allocates extended memory for channel X receive buffers. This function should not be
called more than once in aprogram. The total memory allocated is
buf count*(buf size +2) bytes.

Starting with Dynamic C version 7.25, the functionspktEinitBuffers () and
pktFinitBuffers () may be used with the Rabbit 3000 microprocessor.

PARAMETERS
buf count The number of buffersto allocate. Each buffer can store onereceived
packet. Increasing this number allows for more pending packets and
alarger latency time before packets must be processed by the user's
program.
buf size The number of bytes each buffer can accommodate. This should be

set to the size of the largest possible packet that can be expected.

RETURN VALUE

1: Success, extended memory was alocated.
0: Failure, no memory allocated, the packet channel cannot be used.

LIBRARY
PACKET.LIB

Chapter 1: Function Descriptions 259

pktXopen

int pktXopen(long baud, int mode, char options,
int (*test packet) ());

DESCRIPTION

Opens seria port X, where X is A|B|C|D. Starting with Dynamic C version 7.25, the
functionspktEopen () and pktFopen () may be used with the Rabbit 3000
Mi Croprocessor.

The packet driver is meant to be used with avariety of transceiver hardware, so some
functions must be defined by the user. Each of these functions, listed below, take no argu-
ments and return nothing.

e pktXinit () - Initializes the communication hardware. Called inside
pktXopen (). Thisfunction may be written in C. It will only be called once each
time the packet driver is opened, so speed is not amajor concern. Thisiswhere 1/O
pins should be configured and any other setup should be performed.

* pktXrx () - Setsthe hardware to receive data. This function must be writtenin
assembly. Any registers besidesthe 8-bit accumulator A must be preserved first, and
restored before returning. This function is called when the driver switches from
transmit to receive mode once there are no packetsto send. Thisfunctionis
necessary for half-duplex connections and other types of shared bus schemes so that
the transmitter can be disabled, allowing other nodes to use the lines.

» pktXtx () - Setsthe hardware to transmit data. This function must be written in
assembly. The samerulesfor register usage asfor pktXrx () apply. Thisfunction
is called whenever the driver switches from receiveto transmit mode in responseto
an additional packet or packets being available for sending. A typica use of this
function is to enable any necessary transmitter hardware.

See the sample program Samples/PKTDEMO . C for an example of how to write these
user-supplied functions. Seetechnical note TN213 “ Rabbit Serial Port Software”’ for more
information on the packet driver.

260 Dynamic C Function Reference Manual

pktXopen (continued)

PARAMETERS

baud

mode

options

test packet

RETURN VALUE

Bits per second of datatransfer: minimum is 2400.

Type of packet scheme used, the options are:

e PKT GAPMODE
e PKT 9BITMODE
e PKT CHARMODE

Further specification for the packet scheme. The value of this de-
pends on the mode used:
* gap mode - minimum gap size (in byte times)
* 9-bit mode - type of 9-bit protocol
e PKT RABBITSTARTBYTE
e PKT LOWSTARTBYTE
e PKT HIGHSTARTBYTE
* char mode - character marking start of packet

Pointer to afunction that tests for completeness of a packet. The

function should return 1 if the packet is complete, or 0 if more data

should be read in. For gap mode the test function is not used and
should be set to null.

1: The baud set on the rabbit is the same as the input baud.
0: The baud set on the rabbit does not match the input baud.

LIBRARY
PACKET.LIB

Chapter 1: Function Descriptions

261

pktXreceive

int pktXreceive(void *buffer, int buffer size);

DESCRIPTION

Gets areceived packet, if thereis one, from serial port X, where X is A|B|C|D. Starting
with Dynamic C version 7.25, thefunctionspktEreceive () and pktFreceive ()
may be used with the Rabbit 3000 microprocessor.

PARAMETERS

buffer A buffer for the packet to be written into.

buffer size Length of the data buffer.

RETURN VALUE

>0: Number of bytesin the successfully received packet.
0: No new packet has been received.

- 1: The packet istoo large for the given buffer.

-2: A needed test packet function isnot defined.

LIBRARY
PACKET.LIB

262 Dynamic C Function Reference Manual

pktXsend

int pktXsend(void *send buffer, int buffer length, char delay);

DESCRIPTION
Initiates the sending of apacket of datausing serial port X, where X isA|[B|C|D. Thisfunc-
tionwill alwaysreturnimmediately. If thereisalready apacket being transmitted, thiscall
will return 0 and the packet will not be transmitted, otherwise it will return 1.

pktXsending () checksif the packet is done transmitting. The system will be using
the buffer until then.

Starting with Dynamic C version 7.25, the functionspkt Esend () and pktFsend ()
may be used with the Rabbit 3000 microprocessor.
PARAMETERS
send buffer Thedatato besent
buffer length Length of the databuffer to transmit
delay The number of byte timesto delay before sending the data (0-255)
Thisis used to implement protocol-specific delays between packets

RETURN VALUE

1: The packet is going to be transmitted.
0: Thereis already a packet transmitting, and the new packet was refused.

LIBRARY
PACKET.LIB

Chapter 1: Function Descriptions 263

pktXsending

int pktXsending() ;

DESCRIPTION

Testsif a packet is currently being sent on serial port X, where X=A|B|C|D. If
pktXsending () returnstrue, thetransmitter isbusy and cannot accept another packet.

Starting with Dynamic C version 7.25, the functionspkt Esending () and
pktFsending () may be used with the Rabbit 3000 microprocessor.

RETURN VALUE

1: A packet is being transmitted.
0: Port X isidle, ready for a new packet.

LIBRARY

PACKET.LIB

pktXsetParity

void pktXsetParity(char mode);

DESCRIPTION

Configures parity generation and checking. Can aso configure for 2 stop bits.

Starting with Dynamic C version 7.25, the functions pkt EsetParity () and
pktFsetParity () may beused with the Rabbit 3000 microprocessor.

PARAMETERS
mode Code for mode of parity bit:
* PKT NOPARITY - no parity bit (8N1 format, default)
* PKT OPARITY - odd parity (801 format)
* PKT EPARITY - even parity (8E1 format)
* PKT TWOSTOP - an extrastop bit (8N2 format)
LIBRARY

PACKET.LIB

264

Dynamic C Function Reference Manual

plast

void * plast(Pool t * p);

DESCRIPTION

Get thelast allocated element in aroot pool. The pool MUST be set to being alinked pool
usingpool link(p, <non-zeros);otherwise, theresults are undefined.

PARAMETERS

P Pool handle structure, as previously passed to pool init ().

RETURN VALUE

null: There are no alocated elements
'null: Pointer to last, i.e., youngest, allocated element

LIBRARY
POOL.LIB

SEE ALSO
pool init, pool link, palloc, pfree, pfirst

Chapter 1: Function Descriptions 265

plast fast

xmem void * plast fast(Pool t * p);

DESCRIPTION

Get thelast allocated element in aroot pool. The pool MUST be set to being alinked pool
usingpool link (p, <non-zeros) ; otherwise, the resultsare undefined.

Thisis an assembler-only version of plast ().

*** Do _not_ call thisfunction from C. ***

REGISTERS

Parameter in I1X
Trashes F, DE
Return valuein HL, carry flag

EXAMPLE

1d ix,my pool

lcall plast fast

jr c,.no_elems

; HL points to last element

PARAMETERS

p Pool handle structure, aspreviously passedtopool init ().Pass
thisin I X register.

RETURN VALUE

C flag set, HL=0: there are no allocated elements
C flag clear (NC): HL pointsto last element.

LIBRARY
POOL.LIB

SEE ALSO
pool init, pool link, plast, pprev_fast

266 Dynamic C Function Reference Manual

pmovebetween

void * pmovebetween(Pool t * p, void * e, void * d, void * f);

DESCRIPTION

Atomically remove allocated element “€” and re-insert it between allocated elements“ d”
and “f.” “Atomically” means that the POOL._IPSET level isused to lock out other CPU
contexts from altering the pool whilethisoperationisin progress. In addition, “d” and “f”
are checked to ensure that the following conditions still hold:

pprev(p, f) == d

and

pnext (p, d) == £

in other words, “f” follows“ d.” Thisisuseful since your application may have determined
“d” and “f” sometime ago, but in the meantime some other task may have re-ordered the
gueue or deleted these elements. In this case, the return value will be null. Your applica
tion should then re-eva uate the appropriate queue elements and retry this function.

The pool MUST be set to being alinked pool by using:

pool link(p, <non-zero>)
Otherwise the results are undefined.

PARAMETERS
o) Pool handle structure, as previously passed to pool init ().

e Address of element to move, obtained by, e.g.,plast (). Thismust
be an allocated element in the given pool; otherwise, the results are
undefined. If null, then the last element isimplied (i.e., whatever
plast () would return). If there are no elements at all, or this pa-
rameter does not point to avalid alocated element, then the results
are undefined (and probably catastrophic).

Ife == dore == f,thenthereisno action except to check wheth-
er “f” follows“d.” This parameter may refer to an unlinked (but al-
located) element.

d First reference element. The element “€” will beinserted after thisel-
ement. On entry, it must betruethat pnext (p, d) == f.Other-
wise, null isreturned. If this parameter isnull, then “f” must point to
the first eement in thelist, and “€’ isinserted at the start of thelist.

Chapter 1: Function Descriptions 267

pmovebetween (continued)

£ Second reference e ement. The element “€” will be inserted before
this element. On entry, it must be truethat pprev (p, f) ==
Otherwise, null isreturned. If this parameter is null, then “d” must
point to the last element in the list, and “€” isinserted at the end of
thelist.

Note: If both “d” and “f” are null, then it must be true that there are no all ocated

elementsin the linked list, and the element “€” is added asthe only element in the
list. This proviso only obtains when the element “¢€” isinitially alocated from an
empty pool with:

pool link(p, POOL_LINKED BY APP)
the allocated element is not in the linked list of allocated elements.

RETURN VALUE

Returns the parameter value “e,” unless“€” was null; in which case the value of
plast (), if called at function entry, would be returned. If the initial conditions for “d”
and “f” do not hold, then null is returned with no further action.

EXAMPLES

void * d, * e, * f;

e plast (p) ; // €lement to move
£ pnext (p, d = pfirst(p)); // dfarefirs2€l's
pmovebetween (p, e, d, f);

LIBRARY
POOL.LIB

SEE ALSO

pool init, pool link, plast, pfirst, pnext, pprev, preorder

268 Dynamic C Function Reference Manual

pmovebetween fast

void * pmovebetween fast(Pool t *p, void *e, void *d, void *f);

DESCRIPTION

See description under pmovebetween () . Thisisan assembler- callable version (do not
call from C). It does not issue TPSET protection or check parameters.

REGISTERS: Parametersin X, DE, BC, HL respectively
Trashes AF, BC, DE, BC', DE', HL'
Return valuein HL, carry flag.

PARAMETERS
o) Pool handle structure, as previously passedtopool init ().Pass
inIX register
e Address of element to move. Pass in DE register.
d The first reference element. Passin BC register.
£ The second reference element. Passin HL register.

RETURN VALUE
InHL. Either setto“€” parameter, or 0. The carry flagisset if HL==0; otherwiseitis
Clear.

LIBRARY
POOL.LIB

SEE ALSO

pmovebetween

Chapter 1: Function Descriptions 269

pnel

word pnel(Pool t * p);

DESCRIPTION
Return the number of dementsthat are in the pool, both free and used. Thisincludes ele-
ments appended using pool append () etc.

PARAMETERS

P Pool handle structure, as previously passed to pool init () or
pool xinit ().

RETURN VALUE
Number of e ements total

LIBRARY
POOL.LIB

SEE ALSO

pool init, pool xinit, pavail

270 Dynamic C Function Reference Manual

pnext

void * pnext(Pool t * p, void * e);

DESCRIPTION
Get the next alocated element in aroot pool. The pool MUST be set to being alinked pool
usingpool link(p, <non-zeros);otherwise, theresults are undefined.

You can easily iterate through all of the allocated elements of aroot pool using the follow-
ing construct:

void * e;
Pool t * p;

for (e = pfirst(p); e; e = pnext(p, e)) {
}
PARAMETERS
p Pool handle structure, as previously passed to pool init ().
e Previous element address, obtained by, e.g., pfirst (). Thismust

be an allocated element in the given pool; otherwise, the results are
undefined. Be careful when iterating through alist and deleting ele-
ments using pfree () : once the element is deleted, it isno longer
valid to passits address to this function.

If this parameter is null, then theresultisthe sameaspfirst ().
Thisensurestheinvariant pnext (p, pprev(p, e)) == e.

RETURN VALUE

null: There are no more e ements
'null: Pointer to next allocated element

LIBRARY
POOL.LIB

SEE ALSO
pool init, pool link, palloc, pfree, pfirst, pprev

Chapter 1: Function Descriptions 271

pnext fast

xmem void * pnext fast(Pool t * p, void * e);

DESCRIPTION

Get the next alocated element in aroot pool. The pool MUST be set to being alinked pool
usingpool link(p, <non-zeros);otherwise, theresults are undefined.

Thisis an assembler-only version of pnext ().

*** Do _not_ call thisfunction from C. ***

REGISTERS

Parametersin IX, DE respectively
Trashes F, DE
Return valuein HL, carry flag

EXAMPLE
1d ix,my pool
1d de, (current element)
lcall pnext fast
jr c,.no _more elems
; HL points to the next allocated element
PARAMETERS
P Pool handle structure, as previously passedtopool init ().Pass
thisin I X register.
e Current element, addressin DE register. Seepnext () for afull de-

scription.

RETURN VALUE

C flag set, HL=0: There are no more elements
C flag clear (NC): HL pointsto next element

LIBRARY
POOL.LIB

SEE ALSO
pool init, pool link, palloc, pfree, pfirst, pprev

272 Dynamic C Function Reference Manual

float poly(float x,

DESCRIPTION

float c[]

Computes polynomial value by Horner's method. For example, for the fourth-order poly-

nomia 10x*

cl4]
c[3]
cl2]
cl1]
c[0]

PARAMETERS
X
n

c

RETURN VALUE

The polynomial value.

LIBRARY

MATH.LIB

10.
0.
-3.
4.
6.

- 3x% + 4x + 6, n would be 4 and the coefficients would be

0

O O O O

Variable of the polynomial.
The order of the polynomial

Array containing the coefficients of each power of x.

Chapter 1: Function Descriptions

273

pool append

int pool append(Pool t * p, void * base, word nel);

DESCRIPTION
Add another root memory areato an existing pool. It is assumed that the eement sizeis
the same as the element size of the existing pool.

The data area does not have to be contiguous with the existing data area, but it must be
nel*elsize byteslong (where elsize isthe element size of the existing pool, and
nel isthe parameter to thisfunction).

The total pool size must obey the constraints documented with pool init ().

PARAMETERS
o) Pool handle structure, as previously passed to pool init ().
base Base address of the root data memory area to append to this pool.
Thismust benel*elsize byteslong. Typically, thiswould be a
static (global) array.
nel Number of elementsin the memory area.The sum of ne1 and the

current number of e ements must not exceed 32767.

RETURN VALUE

Currently always zero. If you define the macro POOL DEBUG, then parameters are
checked. If the parameters ook bad, then an exception is raised. You can define
POOL_VERBOSE toget printf () messages.

LIBRARY
POOL.LIB

SEE ALSO

pool init

274 Dynamic C Function Reference Manual

pool init

int pool init(Pool t * p, void * base, word nel, word elsize);

DESCRIPTION

Initialize aroot memory pool. A pool isalinked list of fixed-size blockstaken from acon-
tiguous area. You can use poolsinstead of malloc() when fixed-size blocks are all that is
needed. You can have severa pools, with different size blocks. Using memory poolsis
very efficient compared with more general functionslike malloc(). (Thereis currently no
malloc() implementation with Dynamic C.)

Thisfunction should only be called once, at program startup time, for each pool to be used.

Note: the product of nel and el size must be less than 65535 (however, thiswill usu-
ally be limited further by the actual amount of root memory available).

After calling this function, your application must not change any of the fields in the
Pool t structure.

PARAMETERS

P Pool handlestructure. Thisisallocated by thecaller, but thisfunction
will initialize it. Normally, this would be allocated in static memory
by declaring aglobal variable of type Pool t.

base Base address of the root data memory area to be managed in this
pool. Thismust benel*elsize byteslong. Typicaly, thiswould
be a static (global) array.

nel Number of elementsin the memory area. 1..32767

elsize Size of each element in the memory area. 2..32767

RETURN VALUE

Currently always zero. If you define the macro POOL _DEBUG, then parameters are
checked. If the parameters look bad, then an exception is raised. You can define
POOL VERBOSE togetprintf () messages.

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, palloc, pcalloc, pfree, phwm, pavail

Chapter 1: Function Descriptions 275

pool link

int pool link(Pool t * p, int link);

DESCRIPTION
Tell the specified pool to maintain a doubly-linked list of alocated elements.

This function should only be called when the pool is completely free; i.e.,
pavail () == pnel ()

PARAMETERS

o) Pool handle structure, as previously passed to pool init () or
pool xinit ().

link Must be one of the following:

* POOL_NOT_LINKED (0): the pool is not to be linked.

* POOL LINKED AUTO (1): thepool islinked, and newly al-
located elements are always added at the end of the list.

* POOL LINKED BY APP (2): thepool islinked, but newly
allocated elements are not added to the list. The application
must call preorder () or pmovebetween () to insertthe
element. Thisoption isonly availablefor root pools.

WARNING: if you set the POOL._LINKED BY APP option, then
the allocated element must NOT be passed to any other pool API
function except for pfree (), preorder () (asthe“€’ parame-
ter) or pmovebetween () (asthe“€’ parameter). After calling
preorder () ofr pmovebetween (), thenitissafeto passthise-
ement to all appropriate functions.

RETURN VALUE

Currently always zero. If you define the macro POOL _DEBUG, then parameters are
checked. If the parameters ook bad, then an exception is raised. You can define
POOL VERBOSE togetprintf () messages.

LIBRARY
POOL.LIB

SEE ALSO

pool init, pool xinit, pavail

276 Dynamic C Function Reference Manual

pool xappend

int pool xappend(Pool t * p, long base, word nel);

DESCRIPTION

Add another xmem memory areato an existing pool. It is assumed that the element size
is the same as the element size of the existing pool.

The data area does not have to be contiguous with the existing data area, but it must be
nel*elsize byteslong (where elsize isthe element size of the existing pool, and
nel isthe parameter to this function).

The total pool size must obey the constraints documented with pool xinit ().

PARAMETERS
o) Pool handle structure, as previously passed to pool xinit ().
base Base address of the xmem data memory area to append to this pool.
Thismust benel *elsize byteslong. Typically, thiswould be an
areadlocated using xalloc ().
nel Number of elements in the memory area. 1..65534. The sum of this

and the current number of e ements must not exceed 65535.

RETURN VALUE

Currently always zero. If you define the macro POOL DEBUG, then parameters are
checked. If the parameters ook bad, then an exception israised. You can define
POOL_VERBOSE toget printf () messages.

LIBRARY
POOL.LIB

SEE ALSO

pool xinit

Chapter 1: Function Descriptions 277

pool xinit

int pool xinit(Pool t * p, long base, word nel, word elsize);

DESCRIPTION
Initialize an xmem memory pool. A pool isalinked list of fixed-size blocks taken from a
contiguous area. You can use poolsinstead of malloc() when fixed-size blocks are all that
isneeded. You can have several pools, with different size blocks. Using memory poolsis
very efficient compared with more general functionslike malloc(). (Thereis currently no
malloc() implementation with Dynamic C.)

Thisfunction should only be called once, at program startup time, for each pool to be used.

After caling this function, your application must not change any of the fields in the
Pool t structure.

PARAMETERS

o) Pool handle structure. Thisisallocated by the caller, but thisfunction
will initialize it. Normally, this would be allocated in static memory
by declaring aglobal variable of type Pool t.

base Base address of the xmem data memory areato be managed in this
pool. Thismust benel*elsize byteslong. Typicaly, thiswould
be an area allocated by xalloc () when your program starts.

nel Number of elementsin the memory area. 1..65535

elsize Size of each element in the memory area. 4..65535

RETURN VALUE
Currently always zero. If you define the macro POOL_DEBUG, then parameters are
checked. If the parameters ook bad, then an exception is raised. You can define
POOL_VERBOSE toget printf () messages.

LIBRARY
POOL.LIB

SEE ALSO

pool init, pxalloc, pxcalloc, pxfree, phwm, pavail

278 Dynamic C Function Reference Manual

pow

float pow(float x, float y):

DESCRIPTION
Raises x to the yth power.

PARAMETERS
x Vaueto beraised
y Exponent

RETURN VALUE
x to the yth power

LIBRARY
MATH.LIB

SEE ALSO
exp, powlO, sqgrt

powlO0

float powl0(float x);

DESCRIPTION
10 to the power of x.

PARAMETERS

x Exponent

RETURN VALUE
10 raised to power x

LIBRARY
MATH.LIB

SEE ALSO

pow, exp, sdgrt

Chapter 1: Function Descriptions

279

powerspectrum

void powerspectrum(int *x, int N, *int blockexp);

DESCRIPTION
Computes the power spectrum from a complex spectrum according to

Power [k] = (Re X[k])? + (Im X[k])?

The N-point power spectrum replaces the N-point complex spectrum. The power of each
complex spectral component is computed as a 32-hit fraction. Its more significant 16-bits
replace the imaginary part of the component; its less significant 16-bits replace the red
part.

If the complex input spectrum is a positive-frequency spectrum computed by

fftreal (), theimaginary part of the X[0] term (stored x [1]) will contain the real
part of the fmax term and will affect the calculation of the dc power. If the dc power or the
fmax power isimportant, the fmax term should be retrieved from x [1] and x [1] setto
zero before calling powerspectrum () .

The power of the kth term can be retrieved via

P[k]=* (long*) &x [2k] *2"blockexp.

The value of blockexp isfirst doubled to reflect the squaring operation applied to al
elementsin array x. Thenitisfurther increased by 1 to reflect an inherent division by two
that occurs during the squaring operation.

PARAMETERS
x Pointer to N-element array of complex fractions.
N Number of complex elementsin array x.

blockexp Pointer to integer block exponent.

LIBRARY
FFT.LIB

SEE ALSO

ffteplx, fftcplxinv, fftreal, fftrealinv, hanncplx, hannreal

280 Dynamic C Function Reference Manual

pprev

void * pprev(Pool t * p, void * e);

DESCRIPTION

Get the previously allocated element in aroot pool. The pool MUST be set to being a
linked pool using pool link (p, <non-zeros);otherwise, theresultsare unde-
fined.

You can easily iterate through all of the allocated elements of aroot pool using the follow-
ing construct:

void * e;
Pool t * p;

for (e = plast(p); e; e = pprev(p, e)) {

}

PARAMETERS
o) Pool handle structure, as previously passed to pool init ().
e Previouselement address, obtained by, e.g., plast (). Thismust be

an allocated element in the given pooal; otherwise, the results are un-
defined. Be careful when iterating through alist and deleting ele-
ments using pfree () : oncethe element is deleted, it isno longer
validto passitsaddressto thisfunction. If this parameter isnull, then
theresult isthesameasplast (). Thisensurestheinvariant

pprev (p, pnext(p, e)) == e

RETURN VALUE

null: There are no more elements
!null: Pointer to previous allocated element

LIBRARY

POOL.LIB

SEE ALSO
pool init, pool link, palloc, pfree, plast, pnext

Chapter 1: Function Descriptions 281

pprev_ fast

xmem void * pprev_fast(Pool t * p, void * e);

DESCRIPTION

Get the previous allocated element in aroot pool. The pool MUST be set to being alinked
pool by using pool link (p, <non-zeros); otherwise, the results are undefined.

Thisis an assembler-only version of pprev () .

*** Do _not_ call thisfunction from C. ***

REGISTERS

Parametersin IX, DE respectively
Trashes F, DE
Return valuein HL, carry flag

EXAMPLE
1d ix,my pool
1d de, (current element)
lcall pprev_fast
jr c,.no _more elems
; HL points to previously allocated element
PARAMETERS
P Pool handle structure, as previously passedtopool init ().Pass
thisin I X register.
e Current element, addressin DE register. Seepprev () for fuller de-

scription.

RETURN VALUE

C flag set, HL=0: There are no more elements
C flag clear (NC): HL pointsto previous element

LIBRARY
POOL.LIB

SEE ALSO

pool init, pool link, palloc, pprev

282 Dynamic C Function Reference Manual

premain

void premain () ;

DESCRIPTION

Dynamic C callspremain to start initialization functions such asvarinit. Thefina
thing premain doesiscall ma in. Thisfunction should never be called by an application
program. It isincluded here for informational purposes only.

LIBRARY
PROGRAM.LIB

Chapter 1: Function Descriptions 283

preorder

void * preorder(Pool t *p, void *e, void *where, word options);

DESCRIPTION

Atomically removeallocated element “€” and re-insert it before or after element “where.”
“Atomically” meansthat the POOL._IPSET level isused to lock out other CPU contexts
from altering the pool while this operation isin progress.

The pool MUST be set to being alinked pool by using:
pool link(p, <non-zero>)

Otherwise the results are undefined.

PARAMETERS
o) Pool handle structure, as previously passed to pool init ().

e Address of element to move, obtained by e.g., plast (). Thismust
be an allocated element in the given pool; otherwise, the results are
undefined. If null, then the last element isimplied (i.e., whatever
plast () would return). If there are no elements at all, or this pa-
rameter does not point to avalid alocated element, then the results
are undefined (and probably catastrophic).

where The reference element. The element “e” will be inserted before or &f -
ter this element, depending on the options parameter. If e==where,
then thereisno action. If this parameter is null, then the reference el -
ement is assumed to be thefirst element (i.e., whatever pfirst ()
would return). If there are no elements at all, or this parameter does
not point to avalid allocated element, then the results are undefined
(and probably catastrophic).

options Option flags. Currently, the only options are:

POOL_INSERT_ BEFORE
POOL_INSERT AFTER

which specifieswhether “€” isto beinserted before or after “where.”

284 Dynamic C Function Reference Manual

preorder (continued)

RETURN VALUE

Returns the parameter value “€” unless “¢e” was null, in which case the value of
plast (), when caled at function entry, would be returned.

IMPORTANT: If null isreturned, that means that some other task (context,
or ISR) modified the linked list while this operation wasin progress. In this
case, the application should call this function again with the same parame-
ters, since this operation will NOT have completed. Thiswould be arare
occurrence; however, multitasking applications should handle this case cor-
rectly.

EXAMPLES

void * r;
void * s;

s = pnext(p, pfirst(p); // sissecond element
r = plast(p); // rislast element
preorder (p, s, r, POOL_ INSERT AFTER) ;

// 1fs!=r, then swill become the new last element. Y ou can use null
// parameters to perform the common case of moving the last element
// tothehead of thelist;

preorder (p, NULL, NULL, POOL_INSERT BEFORE) ;

// whichisidentical to:.
preorder (p, plast(p), pfirst(p), POOL INSERT BEFORE) ;

LIBRARY
POOL.LIB

SEE ALSO

pool init, pool 1link, plast, pfirst, pnext, pprev, pmovebetween

Chapter 1: Function Descriptions 285

printf

int printf(char *fmt, ...);

DESCRIPTION

Thisfunctionissimilarto sprintf (), but outputsthe formatted string to the Stdio win-
dow. Prior to Dynamic C 7.25, printf () would work only with the controller in pro-
gram mode connected to a PC running Dynamic C. As of Dynamic C 7.25, it is possible
toredirect print £ () output to aserial port during run mode by defining a macro to
specify the serial port. See the sample program SAMPLES/STDIO SERIAL.C for
more information.

See below for the complete list of Dynamic C Conversion Specifiers.
The user should make sure that:

* there are enough arguments after fmt tofill in the format parametersin the format
string

* thetypes of arguments after fmt match the conversion specifiersin fmt

Themacro STDIO DISABLE FLOATS can bedefined if it is not necessary to format
floating point numbers. If this macro is defined, %oe, %f and %g will not be recogni zed.
This can save thousands of bytes of code space.

Themacro STDIO ENABLE LONG STRINGS canbedefinedif it isnecessary to print
stringsto the Stdio window that are longer than the default of 127 bytes. Without defining
this macro, such strings are truncated. The drawback of defining thismacroisthat if itis
defined in a multi-tasking application where more than one task is utilizing printf and at
least one of the tasksis printing strings longer than 127 bytes, the user must ensure that
callsto printf are serialized via a semaphore or similar means. If callsto printf are not se-
rialized under these conditions, printf output from the different tasks may beinterleaved
in the Stdio window.

Note: this function istask reentrant and it has a 128 byte buffer.
PARAMETERS
fmt String to be formatted.

Format arguments.

RETURN VALUE
Number of characters written

LIBRARY
STDIO.LIB

SEE ALSO

sprintf

286 Dynamic C Function Reference Manual

DYNAMIC C CONVERSION SPECIFIERS
%s - string
%I s - null terminated string in xmem
%d - signed decimal
%u - unsigned decimal
%f - float
%e - exponential
%og - floating point, same as %f or %e depending upon value and precision
%p - pointer
%lIp - pointer
%x - hexadecimal, result in lowercase
%X - hexadecimal, same as %x but result in uppercase
%c - single character

%s - string
The precision specifier (the number between “%” and “S’) determines the maximum
number of charactersto display.

maini) o

Brintf (">ss<in”, "am);
printf ("% .3s<h\n", "at;
printf |:">%35<"\ n", "a";

printf (">%-3=<\n", "a");

printf Erran—xw-ﬂ-wrn—wrxwrﬁwrﬂ‘n"] = iabcd(

printf (">xs<hn", Tabhod™) ;

printf (">%.33<\n", Tabod™)
printf (">33s<h\ 0", Takhoed™)
printf (">%—-33<\ 0", Tabod™) ;

3 TR

Asshown in the screenshot above, avaluetotheright of “ . ” causesthe string to be dis-
played with that number of characters, ignoring extra characters. A value by itself or to
theleft of “ .” causes padding. Negative values cause the string to be left justified, with
spaces added to the right if necessary. Positive values cause the string to be right justi-
fied, with spaces added to the left if necessary.

Chapter 1: Function Descriptions 287

%l s - null terminated string in xmem

This conversion specifier isidentical to“%s’ but the strings come from extended mem-

ory instead of root memory.

xdata mystring {“Now is the time.”};

printf (“%1ls”,

%d - signed decimal

mystring) ;

/

/ Now is the time.

Width specifier |: short values must not include I; without I, long values are treated as

short

Precision specifier n: includes'-' and if necessary treats argument as signed

short n;

30000;
printf ("$d", n);
printf ("%5d", n)
printf ("%e6d", n);
printf ("%44d", n)

n =

unsigned short n;

n = 40000;

printf ("%d", n);

printf ("%$ed", n);
printf ("$74", n);
printf ("$5d4d", n);
long n;

n = 300000;

printf ("%$1d", n);
printf ("$71d", n);

%u - unsigned decimal

//
//
//
//

//
//
//
//

//
/7

30000
30000
30000

* k% k%

-25536
-25536
-25536

*kk k%

300000
300000

Width specifier |: long values must include |, short values must not:

Precision specifier n: includes'-' if necessary treats argument as if it were unsigned

short n;
-25536;
printf ("su",

n =
n) ;

unsigned short n;
n = 40000;

printf ("$d", n);

//

//

40000

40000

288

Dynamic C Function Reference Manual

%f - float
Width specifier | isignored for Dynamic C float and double (both 4 bytes)

Precision specifiern . d: nisthetota widthincluding'-'and".' ; if niszero orisomitted,
itisignored and only d is used.

float f;

f = -88.8888;

printf ("$f", £); // -88.888801
printf ("s$10f", f); // -88.888801
printf ("%of", f); [/ Kkkkkkkkk
printf("%.0f", f); // -89
printf("%.3f", f); // -88.889
printf("%.0f", f); // -88.889
printf ("%0.3f", f); // -88.889
printf ("s7.3f", f); // -88.889
printf("s8.3f", f); // -88.889
printf ("%$6.3f", £f); /] Kkxk Ak

%e - exponential
Width specifier | isignored for Dynamic C float and double (both 4 bytes)

Precision specifier n.d: nisthe total width excluding exponent sign; if niszeroor is
omitted, itisignored and only d isused; if nlarger than width, the result is not padded.
d is decimal places of n.nnn..E[+/-]nn format

float f£f;
f = -88.8888;

printf ("%e\n", £f); // -8.888880E+01

printf ("%$13e\n", f); // -8.888880E+01
printf ("%$12e\n", f); // -8.888880E+01
printf ("%.0e\n", f); // -9E+01
printf("%.1e\n", f); // -8.9E+01
printf ("%.3e\n", f); // -8.889E+01
printf ("%0.3e\n", f); // -8.889E+01
printf ("$9.3e\n", f); // -8.889E+01
printf ("%$15.3e\n", f); // -8.889E+01
printf ("%8.3e\n", f); [kxKkkEkkx
printf ("%8.3e\n", -f); // 8.889E+01

Chapter 1: Function Descriptions 289

%q - floating point
(Same as %f or %e depending upon value and precision.)

float £, g, h;

f = -888.8888;
g = 888888.0
g = 8888880.0

printf ("$g\n", g);
printf ("$g\n", h);

(
printf ("%g\n", f)
printf ("%$13g\n",
printf ("%$12g\n",
printf ("%.0g\n",
printf ("%.1g\n",
printf ("%.2g\n",
printf ("%.3g\n",
printf ("%7.3g\n",
printf ("%0.3g\n",
printf ("%9.3g\n",
printf ("%$15.3g\n",
printf ("%8.3g\n",
printf ("%8.3g\n",

%p - pointer
Specifies a 16-hit logical pointer.

int i, *iptr;
i=0;
ptr = &i;

Hh +h +h Hh Hh Hh s

)
)
)
)
)
) ;
b
i
i

f

printf ("$p\n",ptr) ;

%lp - pointer
Specifies a 32-bit physical pointer.

long i, *iptr;
i=0;
ptr = &i;

i
i
i
l

l

)
)
)
£
)
-f

printf ("$1lp\n",ptr) ;

h

h

)i

)i

//
//

//-

/7
//
//
//
//
//
//
//
//
//
//
//

888888.0
8.888880E+06
888.888790
-888.888790
-888.888790
~8.9E+02
~8.9E+02
-8.89E+02
-888.889

* k kkkkk
-888.889
-888.889
-888.889
-888.889
888.889

// printsvalue of ptrin hex.
// logica memory location of i

// printsvalue of ptrin hex.
// physica memory location of i

290

Dynamic C Function Reference Manual

%x - hexadecimal
Result in lowercase

Width specifier |: short values must not include I; without I, long values are treated as

short
Precision specifier n: must be at least aslarge astota width; treats argument asif it were
unsigned
short n;
n = 30000;
printf ("%x", n); //7530
printf ("%5x", n); // 7530
printf ("%$6x", n); // 7530
printf ("$3x", n); /] ***
unsigned short n;
n = 40000;
printf ("%x", n); // 9c40
long m, n;
m = -25536;
n = 0x10000 + Oxabc;
printf ("$x\n", m); // 9c40
printf ("$x\n", z); // abc

%X - hexadecimal
Same as %ox except the result is in uppercase.

%c - single character
Precision specifier n isignored for % c; treats argument asiif it were char
long n;
n = 0x10000 + 0x100 + 'A';
printf ("%0c", n); // A

short n;
n = 0x100 + 'A';

printf ("%0c", n); // A

char n;
n = lA!;

printf ("$0c", n); // A

Not supported:

%0 - octa
%E - same as %e, result uppercase (the result is always in uppercase in Dynamic C)
%G - same as %g, result uppercase (the result is alwaysin uppercase in Dynamic C)

Chapter 1: Function Descriptions 291

putchar

void putchar(int ch);

DESCRIPTION

Puts a single character to Stdout. The user should make sure only one process calls this
function at atime.

PARAMETERS
ch Character to be displayed.

LIBRARY
STDIO.LIB

SEE ALSO
puts, getchar

292 Dynamic C Function Reference Manual

puts

int puts(char *s);

DESCRIPTION

Thisfunction displaysthe string on the stdio window in Dynamic C. The Stdiowindow is
responsible for interpreting any escape code sequences contained in the string. Only one
process at atime should call this function.

PARAMETERS

s Pointer to string argument to be displayed.

RETURN VALUE
1: Success.

LIBRARY
STDIO.LIB

SEE ALSO
putchar, gets

pwm init

unsigned long pwm init(unsigned long frequency);

DESCRIPTION

Sets the base frequency for the pulse width modulation (PWM) and enables the PWM
driver on all four channels. The base frequency is the frequency without pul se spreading.
Pulse spreading (see pwm_set ()) will increase the frequency by afactor of 4.

Thisfunction isintended for use with the Rabbit 3000 microprocessor.

PARAMETER

frequency Requested frequency (in Hz)

RETURN VALUE
The actual frequency that was set. Thiswill be the closest possible match to the requested
frequency.

LIBRARY
R3000.LIB

Chapter 1: Function Descriptions 293

pwm_ set

int pwm set(int channel, int duty cycle, int options);

DESCRIPTION
Sets aduty cyclefor one of the pulse width modulation (PWM) channels. The duty cycle
can be avaluefrom 0to 1024, where O islogic low the wholetime, and 1024 islogic high
the whole time. Option flags are used to enable features on an individual PWM channel.

Bit masks for these are;

* PWM_SPREAD - sets pulse spreading. The duty cycleis spread over four seperate
pulses to increase the pulse frequency.

* PWM_OPENDRAIN - setsthe PWM output pin to be open-drain instead of anormal
push-pull logic output.

Thisfunction isintended for use with the Rabbit 3000 microprocessor.

PARAMETERS
channel channel(0 to 3)

duty cycle value from 0 to 1024

options combination of optional flags (see above)

RETURN VALUE

0: Success.
-1: Error, an invalid channel number is used.

-2: Error, requested duty cycleisinvalid.

LIBRARY
R3000.LIB

294 Dynamic C Function Reference Manual

pxalloc

long pxalloc(Pool t * p);

DESCRIPTION
Return next available free element from the given pool. Eventually, your application
should return this element to the pool using pfree () to avoid memory leaks.

PARAMETERS

P Pool handle structure, as previously passed to pool xinit ().

RETURN VALUE
0: No free elements are available.
1 0: Physical (xmem address) of an element. If the pool isnot linked, your application can
use this element provided it does not write morethan p- >elsize bytestoit (this

wasthe elsize parameter passed to pool xinit ()). If thepool islinked, you
canwriteupto (p->elsize-8) bytestoit. (Each element has 8 bytes of overhead

when the pool islinked.)

LIBRARY
POOL.LIB

SEE ALSO
pool xinit, pxcalloc, pxfree, phwm, pavail

Chapter 1: Function Descriptions

295

pxalloc fast

xmem long pxalloc fast(Pool t * p);

DESCRIPTION
Return next available free element from the given pool. Eventually, your application
should return this element to the pool using pxfree () to avoid memory leaks.
Thisis an assembler-only version of pxalloc ().

*** Do _not_ call thisfunction from C. ***

pxalloc fast doesnot perform any IPSET protection, parameter validation, or up-
date the high-water mark. pxalloc fast isaroot function. The parameter must be
passed in X, and the returned element addressisin BCDE.

REGISTERS

Parameter in I1X
Trashes AF, HL
Return value in BCDE, carry flag.

EXAMPLE

1d ix,my pool

lcall pxalloc fast

jr c,.no_free

; BCDE points to element

PARAMETERS

p Pool handle structure, aspreviously passedtopool init () Pass
thisinthe IX register.

RETURN VALUE
C flag set: No free elements are available. (BCDE is undefined in this case.)
NC flag: BCDE points to an element If the pool is not linked, your application must not
write more than p- >elsize bytestoit (thiswasthe elsize parameter passed to
pool xinit ()).If thepool islinked, you canwrite (p- >elsize-8) bytestoit. (An
element has 8 bytes of overhead when the poal is linked.)

LIBRARY
POOL.LIB

SEE ALSO

pool init, pfree fast, pavail fast, pxalloc

296 Dynamic C Function Reference Manual

pxcalloc

long pxcalloc(Pool t * p);

DESCRIPTION
Return next available free element from the given pool. Eventually, your application
should return this element to the pool using pxfree () to avoid memory leaks.

The element is set to all zero bytes before returning.

PARAMETERS

P Pool handle structure, as previously passed to pool xinit ().

RETURN VALUE
0: No free elements are available.

10: Physical (xmem address) of an element. If the pool is not linked, your application
must not write morethan p->elsize bytesto it (thiswasthe el size parameter
passed to pool xinit ()). Theapplication can writeupto (p->elsize-8)
bytes to the element if the pool islinked. (An e ement has 8 bytes of overhead when

the pool islinked.)
LIBRARY

POOL.LIB

SEE ALSO
pool xinit, pxalloc, pxfree, phwm, pavail

Chapter 1: Function Descriptions

297

pxfirst

long pxfirst(Pool t * p);

DESCRIPTION
Get thefirst allocated element in an xmem pool. The pool MUST be set to being alinked
pool using pool link (p, <non-zeros);otherwise, the results are undefined.

PARAMETERS

P Pool handle structure, as previously passed to pool xinit ().

RETURN VALUE

0: There are no allocated elements
1 0: Pointer to first, i.e., oldest, allocated el ement.

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pool link, pxalloc, pxfree, pxlast, pxnext, pxprev

298 Dynamic C Function Reference Manual

pxfirst fast

xmem long pxfirst fast(Pool t * p);

DESCRIPTION

Get thefirst allocated element in an xmem pool. The pool MUST be set to being alinked
pool using pool link (p, <non-zeros);otherwise, the results are undefined.

Thisis an assembler-only version of pxfirst ().

*** Do _not_ call thisfunction from C. ***

REGISTERS

Parameter in I1X
Trashes F, HL
Return value in BCDE, carry flag

EXAMPLE

1d ix,my pool

lcall pxfirst fast

jr c,.no_elems

; BCDE points to first element

PARAMETERS

p Pool handle structure, aspreviously passedtopool init ().Pass
thisin I X register.

RETURN VALUE

C flag set: There are no allocated elements
C flag clear (NC): BCDE pointsto first element

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pool link, pxfirst, pxnext fast

Chapter 1: Function Descriptions 299

pxfree

void pxfree(Pool t * p, long e);

DESCRIPTION
Free an element that was previousdly obtained viapxalloc ().
Note: if you free an element that was not allocated from this pool, or was already free, or

was outside the pool, then your application will crash! You can detect most of these pro-
gramming errors by defining the following symbols before #use pool.lib:

POOL_DEBUG
POOL_VERBOSE

PARAMETERS
P Pool handle structure, as previousdly passed to pxalloc ().
e Element to free, which was returned from pxalloc ().

RETURN VALUE

null: There are no more elements
Inull: Pointer to previous allocated element

LIBRARY

POOL.LIB

SEE ALSO

pool xinit, pxalloc, pxcalloc, phwm, pavail

300 Dynamic C Function Reference Manual

pxfree fast

xmem void pxfree fast(Pool t * p, long e);

DESCRIPTION
Free an element that was previously obtained viapxalloc () . Thisisan assembler-only
version of pxfree ().

*** Do _not_ cal thisfunction from C. ***

pxfree fast doesnot perform any IPSET protection or parameter validation.
pxfree fast isanxmem function. The parameters must be passed in machine regis-
ters.

REGISTERS

Parametersin IX, BCDE respectively
Trashes AF, BC, DE, HL

EXAMPLE
1d ix,my pool
1d de, (element addr)
1d bc, (element addr+2)
lcall pxfree fast
PARAMETERS
P Pool handle structure, as previousdly passed to palloc () or
palloc_fast. Thismust beintheIX register.
e Element to free, whichwasreturned frompalloc (). Thismust be

in the BCDE register (physical address)

RETURN VALUE

null: There are no more elements
!null: Pointer to previous allocated element

LIBRARY

POOL.LIB

SEE ALSO

pool init, pxalloc fast, pavail fast, pfree fast

Chapter 1: Function Descriptions 301

pxlast

long pxlast(Pool t * p);

DESCRIPTION
Get the last allocated element in an xmem pool. The pool MUST be set to being alinked
pool using pool link (p, <non-zeros);otherwise, the results are undefined.

PARAMETERS

P Pool handle structure, as previously passed to pool xinit ().

RETURN VALUE

0: There are no alocated elements
10: Pointer tolast, i.e., youngest, allocated element

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pool link, pxalloc, pxfree, pxfirst

302 Dynamic C Function Reference Manual

pxlast fast

xmem long pxlast fast(Pool t * p);

DESCRIPTION

Get the last allocated element in an xmem pool. The pool MUST be set to being alinked
pool using pool link (p, <non-zeros);otherwise, the results are undefined.

Thisis an assembler-only version of pxlast ().

*** Do _not_ call thisfunction from C. ***

REGISTERS

Parameter in I1X
Trashes F, HL
Return value in BCDE, carry flag

EXAMPLE

1d ix,my pool

lcall pxlast fast

jr c,.no_elems

; BCDE points to last element

PARAMETERS

p Pool handle structure, as previously passed to pool xinit ().
Passthisin IX register.

RETURN VALUE

C flag set: There are no more elements
C flag clear (NC): BCDE pointsto last el ement

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pool link, pxlast, pxprev fast

Chapter 1: Function Descriptions 303

pxnext

long pxnext(Pool t * p, long e);

DESCRIPTION
Get the next alocated element in an xmem pool. The pool MUST be set to being alinked
pool using pool link(p, <non-zeros); otherwise, the results are undefined.

You can easily iterate through all of the allocated elements of aroot pool using the follow-
ing construct:

long e;
Pool t * p;

for (e = pxfirst(p); e; e = pxnext(p, e)) {
}
PARAMETERS
p Pool handle structure, as previously passed to pool xinit ().
e Previous el ement address, obtained by e.g. pxfirst (). Thismust

be an allocated element in the given pool, otherwise the results are
undefined. Be careful when iterating through alist and deleting ele-
mentsusing pxfree () : oncethe element isdeleted, isisno longer
validto passitsaddressto thisfunction. If thisparameter iszero, then
theresultisthe sameaspxfirst (). Thisensurestheinvariant

pxnext (p, pxprev(p, e)) == e.

RETURN VALUE

0: There are no more el ements
1 0: Pointer to the next allocated e ement

LIBRARY

POOL.LIB

SEE ALSO

pool xinit, pool link, pxalloc, pxfree, pxfirst, pxprev

304 Dynamic C Function Reference Manual

pxnext fast

xmem long pxnext fast(Pool t * p, long e);

DESCRIPTION

Get the next alocated element in an xmem pool. The pool MUST be set to being alinked
pool using pool link (p, <non-zeros);otherwise, the results are undefined.

Thisis an assembler-only version of pxnext ().

*** Do _not_ call thisfunction from C. ***

REGISTERS

Parametersin IX, DE respectively
Trashes AF, HL
Return value in BCDE, carry flag

EXAMPLE

1d ix,my pool

1d de, (current element)

1d bc, (current element+2)

lcall pxnext fast

jr c,.no _more elems

; BCDE points to next allocated element

PARAMETERS
P Pool handle structure, as previously passed to pool xinit ().
Passthisin the IX register.
e Current element, addressin BCDE register. Seepxnext () for full-

er description.

RETURN VALUE

C flag set: There are no more elements
C flag clear (NC): BCDE pointsto next element

LIBRARY

POOL.LIB

SEE ALSO

pool xinit, pool link, pxalloc, pxfree, pxfirst, pxprev

Chapter 1: Function Descriptions 305

pxprev

long pxprev(Pool t * p, long e);

DESCRIPTION

Get the previous allocated element in an xmem pool. The pool MUST be set to being a
linked pool using pool link (p, <non-zeros); otherwisethe resultsare unde-
fined.

You can easily iterate through all of the allocated elements of an xmem pool using the fol-
lowing construct:

long e;
Pool t * p;
for (e = pxlast(p); e; e = pxprev(p, e)) {
}
PARAMETERS
o) Pool handle structure, as previously passed to pool xinit ().
e Previous element address, obtained by e.g., pxlast (). Thismust

be an alocated element in the given pool; otherwise, the results are
undefined. Be careful when iterating through alist and deleting ele-
mentsusing pxfree () : oncethe element isdeleted, it isno longer
validto passitsaddressto thisfunction. If thisparameter iszero, then
theresultisthe sameaspxlast (). Thisensuresthe invariant

pxlast (p, pxnext(p, e)) == e

RETURN VALUE

0: There are no more el ements
1 0: Points to previously allocated element

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pool link, pxalloc, pxfree, pxlast, pxnext

306 Dynamic C Function Reference Manual

pxprev_fast

xmem long pxprev_fast(Pool t * p, long e);

DESCRIPTION

Get the previous allocated element in an xmem pool. The pool MUST be set to being a
linked pool using pool link (p, <non-zeros);otherwise, theresultsare unde-
fined.

Thisis an assembler-only version of pxprev ().

*** Do _not_ call thisfunction from C. ***

REGISTERS

Parametersin IX, DE respectively
Trashes AF, HL
Return valuein BCDE, carry flag

EXAMPLE
1d ix,my pool
1d de, (current element)
1d bc, (current element+2)
lcall pxprev_fast
jr ¢, .no more elems
; BCDE points to previously allocated element
PARAMETERS
p Pool handle structure, as previously passed to pool xinit ().
Passthisin IX register.
e Current element, addressin BCDE register. Seepxprev () for full-

er description.

RETURN VALUE

C flag set: there are no more elements
C flag clear (NC): BCDE pointsto previous element

LIBRARY

POOL.LIB

SEE ALSO

pool xinit, pool link, pxalloc, pxprev

Chapter 1: Function Descriptions 307

gqd error

char qd_error(int channel);

DESCRIPTION

Getsthe current error bits for that gqd channel. This function isintended to be used with
the Rabbit 3000 microprocessor. prominent

PARAMETERS

channel The channel to read errors from (currently 1 or 2).
RETURN VALUE

Set of error flags, that can be decoded with the following masks:

* QD _OVERFLOW 0x01
* QD UNDERFLOW 0x02

LIBRARY
R3000.LIB

308 Dynamic C Function Reference Manual

qd init

void gd init(int iplevel);

DESCRIPTION

Initializesthe quadrature decoders and setsup the ISR. Thismust be called before any oth-
er QD functions are used. Sets up the lower nibble of port F to be the QD input pins.

Thisfunction isintended for use with the Rabbit 3000 microprocessor.

PARAMETERS
iplevel The interrupt priority for the ISR that handles the count overflow.
This should usually be 1.
LIBRARY
R3000.LIB

gqd read

long gd read(int channel);

DESCRIPTION

Reads the current quadrature decoder count. Since this function waits for a clear reading,
it can potentially block if thereis enough flutter in the decoder count.

Thisfunction isintended to be used with the Rabbit 3000 microprocessor.

PARAMETERS

channel The channel to read (currently 1 or 2).

RETURN VALUE
Returns a signed long for the current count.

LIBRARY
R3000.LIB

Chapter 1: Function Descriptions 309

gd zero

void gqd zero(int channel);

DESCRIPTION

Setsthe count for achannel to 0. Thisfunction isintended to be used with the Rabbit 3000
Mi Croprocessor.

PARAMETERS

channel The channel to reset (currently 1 or 2)

LIBRARY
R3000.LIB

310 Dynamic C Function Reference Manual

gsort

int gsort(char *base, unsigned n, unsigned s, int (*cmp) ()):

DESCRIPTION
Quick sort with center pivot, stack control, and easy-to-change comparison method. This
version sortsfixed-length dataitems. Itisideal for integers, longs, floatsand packed string
datawithout delimiters. Raw integers, longs, floats or strings may be sorted, however, the
string sort is not efficient.

PARAMETERS
base Base address of the raw string data.
n Number of blocks to sort.
s Number of bytesin each block.
cmp User-supplied compare routine for two block pointers, p and g, that

returns an int with the same rules used by Unix strcmp (p, q) :
=0: Blocks p and q are equal

<0:pislessthan g

> 0: p isgreater than g

Beware of using ordinary st rcmp () —it requiresanull at the end
of each string.

RETURN VALUE
0 if the operation is successful.

LIBRARY
SYS.LIB

EXAMPLE - Sorts an array of integers.

int mycmp (int *p, int *q){ return (*p - *q);}
const int gl10] = {12,1,3,-2,16,7,9,34,-90,10};
const int pl[10] {12,1,3,-2,16,7,9,34,-90,10};
main () {
int i;
gsort (p, 10,2, mycmp) ;
for(i=0;1i<10;++1i) printf("%d. %4, %d\n",i,plil,qli]);

}
Output from the above sample program:
0. -90, 12
1. -2, 1
2. 1, 3
3. 3, -2
4. 7, 16
5. 9, 7
6. 10, 9
7. 12, 34
8. 16, -90
9. 34, 10

Chapter 1: Function Descriptions 311

rad

float rad(float x);

DESCRIPTION
Convert degrees (360 for one rotation) to radians (2 for arotation).

PARAMETERS

x Degree value to convert.

RETURN VALUE
The radians equivalent of degree.

LIBRARY
SYS.LIB

SEE ALSO
deg

312 Dynamic C Function Reference Manual

rand

float rand(void);

DESCRIPTION
Returnsauniformly distributed random number intherange 0.0 <v < 1.0. Usesalgorithm:

rand = (5 * rand) modulo 2°3°

A default seed value is set on startup, but can be changed with the srand () function.
rand () isnot reentrant.

RETURN VALUE
A uniformly distributed random number: 0.0 <v < 1.0.

LIBRARY
MATH.LIB

SEE ALSO

randb, randg, srand

randb
float randb(void);
DESCRIPTION
Uses algorithm:
rand = (5 * rand) modulo 232

A default seed value is set on startup, but can be changed with the srand () function.
randb () isnot reentrant.

RETURN VALUE
Returns a uniformly distributed random number: -1.0 < v < 1.0.

LIBRARY
MATH.LIB

SEE ALSO

rand, randg, srand

Chapter 1: Function Descriptions 313

randg

float randg(void);

DESCRIPTION

Returns a gaussian-distributed random number in the range -16.0 < v < 16.0 with a stan-
dard deviation of approximately 2.6. The distribution is made by adding 16 random num-
bers (see rand ()). Thisfunction is not task reentrant.

RETURN VALUE
A gaussian distributed random number: -16.0 < v <16.0.

LIBRARY
MATH.LIB

SEE ALSO

rand, randb, srand

RAPortE

int RdPortE(unsigned int port):;

DESCRIPTION
Reads an external /O register specified by the argument.

PARAMETERS
port Address of external parallel port data register.

RETURN VALUE

Returnsan integer, thelower 8 bits of which contain the result of reading the port specified
by the argument. Upper byte contains zero.

LIBRARY
SYSTIO.LIB

SEE ALSO

RdPortI, BitRdPortI, WrPortI, BitWrPortI, BitRdPortE, WrPortE,
BitWrPortE

314 Dynamic C Function Reference Manual

RdPortI

int RdPortI(int port);

DESCRIPTION
Reads an internal 1/0 port specified by the argument.

PARAMETERS

port Address of internal parallel port data register.

RETURN VALUE

Returnsaninteger, thelower 8 bits of which contain the result of reading the port specified
by the argument. Upper byte contains zero.

LIBRARY
SYSTIO.LIB

SEE ALSO

RdPortE, BitRdPortI, WrPortI, BitWrPortI, BitRdPortE, WrPortE,
BitWrPortE

Chapter 1: Function Descriptions 315

ReadCompressedFile

int ReadCompressedFile(ZFILE *input, UBYTE *buf, int lenx);

DESCRIPTION

This function decompresses a compressed file (input ZFILE, opened with
OpenInputCompressedFile ()) using the LZ compression agorithm on-the-fly,
placing a number of bytes (1enx) into a user-specified buffer (buf).

PARAMETERS
input Input bit file.
buf Output buffer.
lenx Number of bytesto read. This can be increased to get more through-

put or decreased to free up variable space.

RETURN VALUE
Number of bytes read

LIBRARY
LZSS.LIB

316 Dynamic C Function Reference Manual

read rtc

unsigned long read rtc(void);

DESCRIPTION

Reads seconds (32 bits) directly from the Real-time Clock (RTC). Use with caution! In
most cases use long variable SEC_ TIMER, which contains the same result, unless the
RTC has been changed since the start of the program.

If you are running the processor off the 32 kHz crystal and using a Dynamic C version
prior to 7.30, useread rtc_ 32kHz () instead of read rtc (). Starting with
DC7.30, read_rtc_32kHz () isdeprecated becauseit is no longer necessary. Pro-
grammers should only use read_rtc ().

RETURN VALUE
Time in seconds since January 1, 1980 (if RTC set correctly).

LIBRARY
RTCLOCK.LIB

SEE ALSO

write rtc

read rtc_ 32kHz

unsigned long read rtc 32kHz (void);

DESCRIPTION

Reads the real-time clock directly when the Rabbit processor is running off the 32 kHz
oscillator. See read_rtc for more details.

RETURN VALUE
Time in seconds since January 1, 1980 (if RTC set correctly).

LIBRARY
RTCLOCK.LIB

Chapter 1: Function Descriptions 317

readUserBlock

int readUserBlock(void *dest, unsigned addr, unsigned
numbytes);

DESCRIPTION

Reads a number of bytes from the User block on the primary flash to a buffer in root
memory. Please note that portions of the User block may be used by the BIOS for your
board to store values. For example, any board with an A to D converter will require the
BIOS to write calibration constants to the User block. For some versions of the BL2000
and the BL 2100 this memory areais 0x1C00 to Ox1FFF. See the user’s manual for your
particular board for moreinformation before overwriting any part of the User block. Also,
see the Rabbit Microprocessor Designer’s Handbook for more information on the User

block.

PARAMETERS
dest Pointer to destination to copy datato.
addr Address offset in User block to read from.
numbytes Number of bytes to copy.

RETURN VALUE

0: Success
-1: Invalid address or range

LIBRARY
IDBLOCK.LIB

SEE ALSO

writeUserBlock, readUserBlockArray

318 Dynamic C Function Reference Manual

readUserBlockArray

int readUserBlockArray(void *dests[], unsigned numbytesI[],
int numdests, unsigned addr);

DESCRIPTION

Reads a number of bytes from the User block on the primary flash to a set of buffersin

root memory. This function is usually used as the inverse function of
writeUserBlockArray ().

This function was introduced in Dynamic C version 7.30.

Note: Portions of the User block may be used by the BIOS to store values such as
calibration constants. See the manual for your particular board for more informa-
tion before overwriting any part of the User block.

PARAMETERS
dests Pointer to array of destinations to copy datato.
numbytes Array of numbers of bytes to be written to each destination.
numdests Number of destinations.
addr Address offset in User block to read from.

RETURN VALUE

0: Success
-1: Invalid address or range
-2: Novalid System ID block found (block version 3 or later)

LIBRARY
IDBLOCK.LIB

SEE ALSO

writeUserBlockArray, readUserBlock

Chapter 1: Function Descriptions

319

res

void res(void *address, unsigned int bit);

DESCRIPTION
Dynamic C may expand this cal inline

Clears specified bit at memory address to 0. Bit may be from 0 to 31. Thisis equivalent
to the following expression, but more efficient:

* (long *)address &= ~ (1L << bit)
PARAMETERS
address Address of byte containing bits 7-0.

bit Bit location where 0 represents the least significant bit.

LIBRARY
UTIL.LIB

SEE ALSO
RES

320 Dynamic C Function Reference Manual

RES

void RES(void *address, unsigned int bit);

DESCRIPTION
Dynamic C may expand thiscall inline.

Clears specified bit at memory addressto 0. bit may befrom 0to 31. Thisis equivalent
to the following expression, but more efficient:

* (long *)address &= ~ (1L << bit)
PARAMETERS
address Address of byte containing bits 7-0.

bit Bit location where O represents the least significant bit.

LIBRARY
UTIL.LIB

SEE ALSO

res

Chapter 1: Function Descriptions 321

ResetErrorLog

void ResetErrorLog() ;

DESCRIPTION

This function resets the exception and restart type countsin the error log buffer header.
Thisfunction is not called by default from anywhere. It should be used to initialized the
error log when aboard is programmed by means other than Dynamic C, cloning, the Rab-
bit Field Utility (RFU), or a service processor. For example, if boards are mass produced
with pre-programmed flash chips, then thetest program that runs on the boards should call
this function.

LIBRARY
ERRORS.LIB

root2xmem

int root2xmem(unsigned long dest, void *src, unsigned len) ;

DESCRIPTION
Stores 1en characters from logical address src to physical address dest.

PARAMETERS
dest Physical address.
src Logical address.
len Numbers of bytes.

RETURN VALUE

0: Success.
- 1: Attempt to write flash memory area, nothing written.
-2: Source not al in root.

LIBRARY
XMEM.LIB

SEE ALSO

xalloc, xmem2root

322 Dynamic C Function Reference Manual

rtc_timezone

int rtc_timezone(long * seconds, char * tzname);

DESCRIPTION
This function returns the timezone offset as known by the library. The timezoneis ob-
tained from the following sources, in order of preference:

1. The DHCP server. This can only be used if the TCP/IP stack isin use, and USE_DHCP is
defined.

2. The TIMEZONE macro. This should be defined by the program to an _hour_ offset - may
be floating point.

PARAMETERS
seconds Pointer to result longword. Thiswill be set to the number of seconds
offset from Coordinated Universal Time (UTC). The value will be
negative for west; positive for east of Greenwich.
tzname If null, no timezone nameis returned. Otherwise, this must point to a

buffer of at least 7 bytes. The buffer is set to a null-terminated string
of between 0 and 6 charactersin length, according to the value of the
TZNAME macro. If TZNAME is not defined, then the returned string
is zero length ("").

RETURN VALUE

0: timezone obtained from DHCP.
- 1: timezone obtained from TIME ZONE macro. The value of this macro (which may be
int, float or avariable name) is multiplied by 3600 to form the return value.
-2: timezone is zero since the TIMEZONE macro was not defined.

LIBRARY
RTCLOCK.LIB

Chapter 1: Function Descriptions 323

runwatch

void runwatch();

DESCRIPTION
Runs and updates watch expressions if Dynamic C has requested it with a Ctrl-U. Should
be called periodically in user program.

LIBRARY
SYS.LIB

serCheckParity

int serCheckParity(char rx byte, char parity);

DESCRIPTION

Thisfunction is different from the other serial routinesin that it does not specify a partic-
ular serial port. Thisfunction takesany 8-bit character and testsit for correct parity. It will
return trueif the parity of rx_byte matchesthe parity specified. Thisfunction isuseful
for checking individual characters when using a 7-bit data protocol.

PARAMETERS
rx byte The 8 bit character being tested for parity.
parity The character ‘O’ for odd parity, or the character ‘E’ for even parity.

RETURN VALUE

1: Parity of the byte being tested matches the parity supplied as an argument.
0: Parity of the byte does not match.

LIBRARY
RS232.LIB

324 Dynamic C Function Reference Manual

serXclose

void serXclose(); /* where X = A|B|C|D|E|F */

DESCRIPTION
Disables serial port X. Thisfunction is non-reentrant.

Starting with Dynamic C version 7.25, the functions serEclose () and
serFclose () may be used with the Rabbit 3000 microprocessor.

LIBRARY
RS232.LIB

serXdatabits

void serXdatabits (state); /* where X = A|B|C|D|E|F */

DESCRIPTION

Setsthe number of databitsin the serial format for this channel. Currently seven or eight
bit modes are supported. A call to serXopen () must be made before calling this func-
tion. Thisfunction is non-reentrant.

Starting with Dynamic C version 7.25, the functions serEdatabits () and
serFdatabits () may be used with the Rabbit 3000 microprocessor.

PARAMETERS

state An integer indicating what bit modeto use. It isbest to use one of the
macros provided for this:

PARAM 7BIT Configures serial port to use seven bit data.

PARAM 8BIT Configures serial port to use eight bit data (default).

LIBRARY
RS232.LIB

Chapter 1: Function Descriptions 325

serXflowcontrolOff

void serXflowcontrolOff(); /* where X = A|B|C|D|E|F */

DESCRIPTION

Turns off hardware flow control for serial port X. A call to serXopen () must be made
before calling this function. This function is non-reentrant.

Starting with Dynamic C version 7.25, the functions serEf lowcontrolOff () and
serFflowcontrolOff () may be used with the Rabbit 3000 microprocessor.

LIBRARY
RS232.LIB

326 Dynamic C Function Reference Manual

serXflowcontrolOn

void serXflowcontrolOn(); /* where X = A|B|C|D|E|F */

DESCRIPTION

Turns on hardware flow control for channel X. This enablestwo digital linesthat handle
flow control, CTS (clear to send) and RTS (ready to send). CTSisan input that will be
pulled active low by the other system when it is ready to receive data. The RTS signal is
an output that the system usesto indicate that it is ready to receive data; it is driven low
when data can be received. A call to serXopen () must be made before calling this
function.

This function is non-reentrant.

Starting with Dynamic C version 7.25, the functions serEf1lowcontrolOn () and
serFflowcontrolOn () may be used with the Rabbit 3000 microprocessor.

If pinsfor the flow control lines are not explicitly defined, defaults will be used and com-
piler warningswill be issued. The locations of the flow control lines are specified using a
set of 5 macros.

SERX RTS PORT Dataregister for the parallel port that the RTSlineison. e.g.
PCDR

SERA RTS SHADOW Shadow register for the RTSline's parallel port. e.g.
PCDRShadow

SERA RTS BIT Thebit number for the RTSline
SERA CTS PORT Dataregister for the parallel port that the CTS lineison

SERA CTS BIT Thebit number for the CTSline

LIBRARY
RS232.LIB

Chapter 1: Function Descriptions 327

serXgetc

int serXgetc (); /* where X = A|B|C|D|E|F */

DESCRIPTION
Get next available character from serial port X read buffer. Thisfunction is non-reentrant.

Starting with Dynamic C version 7.25, thefunctions serEgetc () and serFgetc ()
may be used with the Rabbit 3000 microprocessor.

RETURN VALUE
Success: the next character in the low byte, 0 in the high byte.

Failure: -1
LIBRARY

RS232.LIB
EXAMPLE

// echoes characters
main() {
int c;
serRPopen (19200) ;
while (1) {
if ((c = serAgetc()) != -1) {
serAputc(c) ;
}
}

serAclose ()

328 Dynamic C Function Reference Manual

serXgetError

int serXgetError (); /* where X = A|B|C|D|E|F */

DESCRIPTION

Returns a byte of error flags, with bits set for any errors that occurred since the last time
this function was called. Any bits set will be automatically cleared when thisfunctionis
called, so aparticular error will only be reported once. This function is non-reentrant.

The flags are checked with bitmasks to determine which errors occurred. Error bitmasks:
e SER PARITY ERROR
e SER OVERRUN ERROR

Starting with Dynamic C version 7.25, the functions serEgetError () and
serFgetError () may be used with the Rabbit 3000 microprocessor.

RETURN VALUE
The error flags byte.

LIBRARY
RS232.LIB

Chapter 1: Function Descriptions 329

serXopen

int serXopen (long baud); /* where X = A|B|C|D|E|F */

DESCRIPTION
Opens seria port X. Thisfunction is non-reentrant.

The user must define the buffer sizesfor each port being used with the buffer size macros
XINBUFSIZE and XOUTBUFSIZE. The values must be a power of 2 minus1, e.g.

#define XINBUFSIZE 63
#define XOUTBUFSIZE 127

Defining the buffer sizesto 2™ - 1 makesthe circular buffer operations very efficient. If a
value not equal to 2"~ 1isdefined, adefault of 31 isused and acompiler warningisgiven.

Starting with Dynamic C version 7.25, the functions serEopen () and serFopen ()
may be used with the Rabbit 3000 microprocessor.

Note: The alternate pins on parallel port D can be used for serial port B by defining
SERB_USEPORTD at the beginning of aprogram. See the section on parallel port D in
the Rabbit documentation for more detail on the alternate serial port pins.

PARAMETERS

baud Bits per second of datatransfer. Note that the baud rate must be great-
er than or equal to the peripheral clock frequency divided by 8192.

RETURN VALUE
1: The baud rate achieved on the Rabbit is the same as the input baud rate. The software
was able to calculate avaid divisor for the requested baud rate within 5%.

0: The baud rate achieved on the Rabbit does not match the input baud rate.

LIBRARY
RS232.LIB

SEE ALSO

serXgetc, serXpeek, serXputs, serXwrite, cof_sengetc,
cof serXgets, cof serXread, cof serXputc, cof serXputs,
cof serXwrite, serXclose

330 Dynamic C Function Reference Manual

serXparity

void serXparity (int parity mode); /* where X = A|B|C|D|E|F */

DESCRIPTION

Sets parity modefor channel X. A call to serXopen () must be made before calling this
function.

Parity generation for 8 bit data can be unusually slow due to the current method for gen-
erating high 9th bits. Whenever, a 9th high bit isneeded, the UART isdisabled for approx-
imately 10 baud timesto create along stop bit that should be recognized by the receiver

as a high 9th bit.

Thelong delay isimposed because we are using the serial port itself to handle timing for
the delay. Creating a shorter delay would the require use of some other timer resource.

Thisfunction is non-reentrant.

Starting with Dynamic C version 7.25, the functions serEparity () and
serFparity () may be used with the Rabbit 3000 microprocessor.

PARAMETERS

parity mode Aninteger indicating what parity modeto use. It isbest to use one of
the macros provided:
* PARAM NOPARITY - Disables parity handling (default).
* PARAM OPARITY - Configuresserial port to check/generate
for odd parity.
* PARAM EPARITY - Configuresserial port to check/generate
for even parity.
* PARAM 2STOP - Configures serial port to generate 2 stop
bits.

LIBRARY
RS232.LIB

Chapter 1: Function Descriptions 331

serXpeek

int serXpeek(); /* where X = A|B|C|D|E|F */

DESCRIPTION
Returns 1st character ininput buffer X, without removing it from the buffer. Thisfunction
is non-reentrant.

Starting with Dynamic C version 7.25, the functions serEpeek () and serFpeek ()
may be used with the Rabbit 3000 microprocessor.

RETURN VALUE

An integer with 1st character in buffer in the low byte.
-1 if the buffer is empty.

LIBRARY
RS232.LIB

332 Dynamic C Function Reference Manual

serXputc

int serXputc(char ¢); /* where X = A|B|C|D|E|F */

DESCRIPTION
Writes a character to serial port X write buffer. This function is non-reentrant.

Starting with Dynamic C version 7.25, the functions serEputc () and serFputc ()
may be used with the Rabbit 3000 microprocessor.

PARAMETERS

c Character to write to serial port X write buffer.

RETURN VALUE
0 if buffer locked or full, 1 if character sent.

LIBRARY
RS232.LIB

EXAMPLE

main() { // echoes characters
int c;
serRAopen (19200) ;
while (1) {
if ((c = serBAgetc()) != -1) {
serAputc (c) ;
}
}

serAclose () ;

Chapter 1: Function Descriptions 333

serXputs

int serXputs(char* s); /* where X = A|B|C|D|E|F */

DESCRIPTION
CalsserXwrite (s, strlen(s)). Thisfunctionisnon-reentrant.

Starting with Dynamic C version 7.25, the functions serEputs () and serFputs ()
may be used with the Rabbit 3000 microprocessor.

PARAMETERS

s Null terminated character string to write

RETURN VALUE
The number of characters actually sent from serial port X.

LIBRARY
RS232.LIB

EXAMPLE

// writes a null-terminated string of characters, repeatedly
main () {
const char s[] = "Hello Z-World";
serRPopen (19200) ;
while (1) {
serAputs (s) ;
}

serAclose () ;

334 Dynamic C Function Reference Manual

serXrdFlush

void serXrdFlush(); /* where X = A|B|C|D|E|F */

DESCRIPTION
Flushes seria port X input buffer. This function is non-reentrant.

Starting with Dynamic C version 7.25, the functions serErdFlush () and
serFrdFlush () may be used with the Rabbit 3000 microprocessor.

LIBRARY
RS232.LIB

serXrdFree

int serXrdFree(); /* where X = A|B|C|D|E|F */

DESCRIPTION
Cdlculates the number of characters of unused data space. This function is non-reentrant.

Starting with Dynamic C version 7.25, the functions serErdFree () and
serFrdFree () may be used with the Rabbit 3000 microprocessor.

RETURN VALUE
The number of charsit would take to fill input buffer X.

LIBRARY
RS232.LIB

Chapter 1: Function Descriptions 335

serXrdUsed

int serXrdUsed(); /* where X = A|B|C|D|E|F */

DESCRIPTION

Cdl culates the number of characters ready to read from the serial port receive buffer. This
function is non-reentrant.

Starting with Dynamic C version 7.25, the functions serErdUsed () and
serFrdUsed () may be used with the Rabbit 3000 microprocessor.

RETURN VALUE
The number of characters currently in serial port X receive buffer.

LIBRARY
RS232.LIB

336 Dynamic C Function Reference Manual

serXread

int serXread(void *data, int length, unsigned long tmout) ;
/* where X = A|B|C|D|E|F */

DESCRIPTION

Reads 1ength bytesfrom serial port X or until tmout milliseconds transpires between
bytes. The countdown of tmout doesnot begin until abyte has been received. A timeout
occursimmediately if there are no charactersto read. This function is non-reentrant.

Starting with Dynamic C version 7.25, the functions serEread () and serFread ()
may be used with the Rabbit 3000 microprocessor.

PARAMETERS
data Data structure to read from serial port X
length Number of bytesto read
tmout Maximum wait in milliseconds for any byte from previous one

RETURN VALUE
The number of bytes read from serial port X.

LIBRARY
RS232.LIB

EXAMPLE

// echoes a blocks of characters
main() {
int n;
char s[16];
serAopen(19200) ;
while (1) {
if ((n = serAread(s, 15, 20)) > 0) {
serAwrite (s, n);
}

}

serAclose () ;

Chapter 1: Function Descriptions 337

serXwrFlush

void serXwrFlush(); /* where X = A|B|C|D|E|F */

DESCRIPTION
Flushes seria port X transmit buffer, meaning that the buffer contents will not be sent.
This function is non-reentrant.

Starting with Dynamic C version 7.25, the functions serEwrFlush () and
serFwrFlush () may be used with the Rabbit 3000 microprocessor.

LIBRARY
RS232.LIB

serXwrFree

int serXwrfree(); /* where X = A|B|C|D|E|F */

DESCRIPTION
Calculates the free space in the serial port transmit buffer. This function is non-reentrant.

Starting with Dynamic C version 7.25, the functions serEwrFree () and
serFwrFree () may be used with the Rabbit 3000 microprocessor.

RETURN VALUE
The number of charactersthe serial port transmit buffer can accept before becoming full.

LIBRARY
RS232.LIB

338 Dynamic C Function Reference Manual

serXwrite

int serXwrite(void *data, int length); /* X = A|B|C|D|E|F */

DESCRIPTION
Transmits 1ength bytesto serial port X. This function is non-reentrant.

Starting with Dynamic C version 7.25, the functions serEwrite () and
serFwrite () may be used with the Rabbit 3000 microprocessor.

PARAMETERS
data Data structure to write to serial port X
length Number of bytesto write

RETURN VALUE
The number of bytes successfully written to the serial port.

LIBRARY
RS232.LIB

EXAMPLE

// writes a block of characters, repeatedly
main() {
const char s[] = "Hello Z-World";
serRAopen (19200) ;
while (1) {
serAwrite (s, strlen(s)) ;
}

serAclose () ;

}

Chapter 1: Function Descriptions 339

set

void set(void *address, unsigned int bit);

DESCRIPTION
Dynamic C may expand thiscall inline.

Sets specified bit at memory addressto 1. bit may be from 0 to 31. Thisis equivalent to
the following expression, but more efficient:

* (long *)address |= 1L << bit
PARAMETERS
address Address of byte containing bits 7-0

bit Bit location where 0 represents the |least significant bit

LIBRARY
UTIL.LIB

SEE ALSO
SET

340 Dynamic C Function Reference Manual

SET

void SET(void *address, unsigned int bit);

DESCRIPTION
Dynamic C may expand thiscall inline.

Sets specified bit at memory addressto 1. bit may be from 0 to 31. Thisis equivalent to
the following expression, but more efficient:

* (long *)address |= 1L << bit
PARAMETERS
address Address of byte containing bits 7-0.

bit Bit location where O represents the least significant bit.

LIBRARY
UTIL.LIB

SEE ALSO

set

Chapter 1: Function Descriptions 341

set32kHzDivider

void set32kHzDivider(int setting);

DESCRIPTION

Sets the expanded 32kHz oscillator divider for the Rabbit 3000 processor. This function
does not enable running the 32kHz oscillator instead of the main clock. Thisfunction will
affect the actual rate used by the processor when the 32kHz oscillator has been enabled to
run by acall touse32kHzOsc ().

This function is not task reentrant.

PARAMETER
setting 32kHz divider setting. The following are valid:
* OSC32DIV_1 - don't divide 32kHz oscillator
* OSC32DIV_2 - divide 32kHz oscillator by two
* OSC32DIV_4 - divide 32kHz oscillator by four
* 0SC32DIV_8 - divide 32kHz oscillator by eight
* OSC32DIV_16 - divide 32kHz oscillator by sixteen
LIBRARY
SYS.LIB
SEE ALSO

useClockDivider, useClockDivider3000, useMainOsc, use32kHzOsc

342 Dynamic C Function Reference Manual

setClockModulation

void setClockModulation(int setting);

DESCRIPTION
Changes the setting of the Rabbit 3000 CPU clock modulation. Calling this function will
force a 500 clock delay before the setting is changed to ensure that the previous modula-
tion setting has cleared before the next oneis set. See the Rabbit 3000 Microprocessor Us-
er's Manual for more details about clock modulation for EMI reduction.

PARAMETER
setting Clock modulation setting. Allowed values are:
* 0=no modulation
» 1 =weak modulation
» 2 =strong modulation
LIBRARY
SYS.LIB

Chapter 1: Function Descriptions 343

setjmp

int setjmp(jmp buf env);

DESCRIPTION

Storethe PC (program counter), SP (stack pointer) and other information about the current
state into env. The saved information can be restored by executing 1ongjmp () .

Typical usage:
switch (setjmp(e))
case O0: // firsttime
£(); // try to execute f(), may cal longjmp()
break; // if weget here, f() was successful
case 1: // toget here, f() called longimp()

/* do exception handling */

break;
case 2: // like above, but different exception code
}
£0) |
gl()
}
g() {
longjmp (e, 2) ; // exception code 2, jump to setjmp() statement,
// setimp() returns 2, so execute
// case2in the switch statement
}
PARAMETERS
env Information about the current state

RETURN VALUE

Returns zero if it isexecuted. After 1longjmp () isexecuted, the program counter, stack
pointer and etc. are restored to the state when set jmp () was executed the first time.
However, thistime setjmp () returns whatever value is specified by the 1ongjmp ()
statement.

LIBRARY
SYS.LIB

SEE ALSO
longjmp

344 Dynamic C Function Reference Manual

SetVectExtern2000

unsigned SetVectExtern2000 (int priority, void *isr);

DESCRIPTION

Sets up the external interrupt table vectors for external interrupts 0 and 1. Thisfunction
should be used for Rabbit 2000 processorsrevision 1Q2 dueto abug in the chip'sinterrupt
handling. (See Technical Note 301, “Rabbit 2000 Microprocessor Interrupt Issue,” on the
Rabbit Semiconductor website for more information.)

Once thisfunction is called, both external interrupts 0 and 1 should be enabled with pri-
ority levels set higher than any currently running interrupts. (All system interruptsin the
BIOSrun at interrupt priority 1.) Theinterrupt priority is set viathe control register IOCR
for external interrupt O and 11CR for external interrupt 1.

The actual priority used by the interrupt service routine (1SR) is passed to this function.

PARAMETERS
priority Priority the ISR should run at. Valid valuesare 1, 2 or 3.
isr ISR handler address. Must be aroot address.

RETURN VALUE
Address of vector table entry, or zero if priority isnot valid.

LIBRARY
SYS.LIB

SEE ALSO
GetVectExtern2000, SetVectIntern, GetVectIntern

Chapter 1: Function Descriptions 345

http://www.rabbitsemiconductor.com/docs/app_tech_notes.shtml

SetVectExtern3000

unsigned SetVectExtern3000(int interruptNum, void *isr);

DESCRIPTION

Function to set one of the external interrupt jump table entries for the Rabbit 3000 and
some versions of the Rabbit 2000. All Rabbit interrupts use jump vectors. See
SetVectIntern () for moreinformation.

PARAMETERS
interruptNum Externa interrupt number. 0 and 1 are the only valid values.

isr ISR handler address. Must be a root address.

RETURN VALUE
Jump address in vector table.

LIBRARY
SYS.LIB

SEE ALSO
GetVectExtern3000, SetVectIntern, GetVectIntern

346 Dynamic C Function Reference Manual

SetVectIntern

unsigned SetVectIntern(int vectNum, void #*isr);

DESCRIPTION

Setsaninternal interrupt table entry. All Rabbit interrupts usejump vectors. Thisfunction
writes a jp instruction (0xC3) followed by the 16 bit ISR addressto the appropriate loca-
tion in the vector table. Thelocation in RAM of the vector table is determined and set by
the BIOS automatically at startup. The start of the table is always on a 0x100 boundary.

Itis perfectly permissible to have ISRsin xmem and do long jumps to them from the vec-
tor table. It is even possible to place the entire body of the ISR in the vector tableif it is
16 bytes long or less, but this function only sets up jumpsto 16 bit addresses.

The following table shows the vect Num argument that should be used for each periph-
era or RST. The offset into the vector table is a so shown. The following vectors are for

the Rabbit 2000 and 3000.

Peripheral or RST vectNum Vector Table Offset
S();;:?c;il\cﬂ ?:tﬁﬁ'gf;t 0X00 0X00
RST 10 instruction 0x02 0x20
RST 38 instruction 0x07 0x70
Slave Port 0x08 0x80
Timer A 0x0A 0xAOQ
Timer B 0x0B 0xBO
Serial Port A 0x0C 0xCO
Serial Port B 0x0D 0xDO0
Serial Port C O0x0E OxEO
Serial Port D Ox0F OxFO

Chapter 1: Function Descriptions 347

SetVectIntern (continued)

The following vectors are for the Rabbit 3000 processor only.

Peripheral or RST vectNum Vector Table Offset
Input Capture Ox1A 0x01A0
Quadrature Encoder 0x19 0x0190
Serial port E 0x1C 0x01CO
Serial port F 0x1D 0x01DO0O

Thefollowing three RSTsareincluded for completeness, but should not be set by the user

as they are used by Dynamic C.
Peripheral or RST vectNum Vector Table Offset
RST 18 ingtruction 0x03 0x30
RST 20 instruction 0x04 0x40
RST 28 ingtruction 0x05 0x50
PARAMETERS
vectNum Interrupt number. See the above table for valid values.
isr ISR handler address. Must be aroot address.

RETURN VALUE
Address of vector table entry, or zero if vectNum is not valid.

LIBRARY
SYS.LIB

SEE ALSO
GetVectExtern2000, SetVectExtern2000, GetVectIntern

348 Dynamic C Function Reference Manual

sf getPageCount

long sf getPageCount(sf device *dev);

DESCRIPTION
Return number of pagesin aflash device.

PARAMETER

dev Pointer to sf _device struct for initialized flash device.

RETURN VALUE
Number of pages.

LIBRARY
SFLASH.LIB

sf getPageSize

unsigned int sf getPageSize(sf device *dev);

DESCRIPTION
Return size (in bytes) of a page on the current flash device.

PARAMETER

dev Pointer to sf device struct for initialized flash device.

RETURN VALUE
Bytesin a page.

LIBRARY
SFLASH.LIB

Chapter 1: Function Descriptions

349

sf init

int sf init();

DESCRIPTION
Initializes serial flash chip. This function must be called before the serial flash can be
used. Currently supported devices are:
* AT45DB041
» AT45DB081
» AT45DB642
* AR45DB1282

Note: Thisfunction blocks and only works on boards with one serial flash device.

RETURN VALUE

0 for success

-1if no flash chip detected

-2 if error communicating with flash chip
-3 if unknown flash chip type

LIBRARY
SFLASH.LIB

350 Dynamic C Function Reference Manual

sf initDevice

int sf initDevice(sf device *dev, int cs_port,
char *cs shadow, int cs pin);

DESCRIPTION
Replacessf init ().
Thefunctionsfspi init () mustbecalled beforeany callstothisfunction. Initializes

seria flash chip. Thisfunction must be called beforethe serial flash can be used. Currently
supported devices are:

» AT45DB041
* AT45DB081
* AT45DB642
* AR45DB1282

PARAMETERS
dev Pointer to an empty s _device struct that will befilled in on re-
turn. The struct will then act as a handle for the device.
cs_port I/0 port for the active low chip select pin for the device.
cs_shadow Pointer to the shadow variable for cs_port.
cs _pin 1/O port pin number for the chip select signal.

RETURN VALUE

0 for success

-1if no flash chip detected

-2 if error communicating with flash chip
-3 if unknown flash chip type

LIBRARY
SFLASH.LIB

Chapter 1: Function Descriptions 351

sf isWriting

int sf isWriting(sf_device *dev);
DESCRIPTION
Returns 1 if the flash device is busy writing to a page.
PARAMETER
dev Pointer to sf _device struct for initialized flash device

RETURN VALUE

1 busy
0 ready, not currently writing

LIBRARY
SFLASH.LIB

sf pageToRAM

int sf pageToRAM(long page);

DESCRIPTION

Command the serial flash to copy the contents of one of its flash pagesinto its RAM buff-
er.

Note: Thisfunction blocks and only works on boards with one serial flash device.
PARAMETER

page The page to copy.

RETURN VALUE

0 for success
-1 for error

LIBRARY
SFLASH.LIB

352 Dynamic C Function Reference Manual

sf RAMToPage

int sf RAMToPage(long page);

DESCRIPTION

Command the serial flash to write its RAM buffer contents to one of the flash memory
pages.

Note: Thisfunction blocks and only works on boards with one serial flash device.
PARAMETER

page The page to which the RAM buffer contents will be written t

RETURN VALUE

0 for success
-1 for error

LIBRARY
SFLASH.LIB

Chapter 1: Function Descriptions 353

sf readDeviceRAM

int sf readDeviceRAM(sf device *dev, long buffer, int offset,
int len, int flags):;

DESCRIPTION
Read data from the RAM buffer on the serial flash chip into an xmem buffer.

PARAMETERS

dev
buffer
offset
len

flags

RETURN VALUE

0: Success
-1: Error

LIBRARY

SFLASH.LIB

Pointer to sf _device struct for initialized flash device.
Address of an xmem buffer.

The addressin the serial flash RAM to start reading from.
The number of bytesto read.

Can be one of the following:

SF_BITSREVERSED - Readsthedatain bit reversed order fromthe
flash chip. Thisimproves speed, but the data must have been aso
writtenin reversed order (see st XWriteRAM)

SF_RAMBANKI1 (default) - Reads from the first RAM bank on the
flash device

SF_RAMBANK?2 - Reads from the alternate RAM bank on the flash
device

354

Dynamic C Function Reference Manual

sf readPage

int sf readPage(sf device *dev, int bank, long page);

DESCRIPTION

Replaces sf pageToRAM ().

Command the seria flash to copy from one of its flash pages to one of its RAM buffers.

PARAMETERS
dev

bank

page

RETURN VALUE

0: Success
-1: Error

LIBRARY
SFLASH.LIB

Pointer to sf _device struct for initialized flash device.

Which RAM bank to write the datato. For Atmel 45DBxxx devices,
thiscanbe 1 or 2.

The page to read from.

Chapter 1: Function Descriptions 355

sf readRAM

int sf readRAM(char *buffer, int offset, int len);

DESCRIPTION
Read data from the RAM buffer on the serial flash chip.

Note: Thisfunction blocks and only works on boards with one serial flash device.

PARAMETER
buffer Pointer to character buffer to copy datainto.
offset Addressin the serial flash RAM to start reading from
len Number of bytesto read

RETURN VALUE

0: Success
-1: Error

LIBRARY
SFLASH.LIB

356 Dynamic C Function Reference Manual

sf writeDeviceRAM

int sf writeDeviceRAM(sf device *dev, long buffer, int offset,
int len, int flags):;

DESCRIPTION
Write datato the RAM buffer on the serial flash chip from a buffer in xmem.

PARAMETER
dev Pointer to sf _device struct for initialized flash device.
buffer Pointer to xmem data to write into the flash chip RAM.
offset The addressin the serial flash RAM to start writing at.
len The number of bytesto write.
flags Can be one of the following:

* SF_BITSREVERSED - Allowsthe data to be written to the
flashin reverse bit order. Thisimproves speed, and worksfine
aslong asthe datais read back out with this same flag (see

sf_XReadRAM)

* SF_RAMBANK1 (default) - Writesto the first RAM bank on
the flash device

* SF_RAMBANK?2 - Writesto the alternate RAM bank on the
flash device

RETURN VALUE

0: Success
-1: Error

LIBRARY
SFLASH.LIB

Chapter 1: Function Descriptions 357

sf writePage

int sf writePage(sf device *dev, int bank, long page):;

DESCRIPTION

Replaces sf RAMToPage ().

Command the seria flash towriteitsRAM buffer contentsto one of itsflash memory pag-
es. Check for completion of the write operation using sf isWriting().

PARAMETERS
dev

bank

page

RETURN VALUE

0: Success
-1: Error

LIBRARY
SFLASH.LIB

Pointer to sf _device struct for initialized flash device.

Which RAM bank to writethe datafrom. For Atmel 45DBxxx devic-
es, thiscanbelor 2

The page to write the RAM buffer to

358

Dynamic C Function Reference Manual

sf writeRAM

int sf writeRAM(char *buffer, int offset, int len);

DESCRIPTION
Write datato the RAM buffer on the serial flash chip.

Note: Thisfunction blocks and only works on boards with one seria flash device.

PARAMETER
buffer Pointer to data that will be written the flash chip RAM.
offset Addressin the serial flash RAM to start writing at.
len Number of bytes to write.

RETURN VALUE

0 for success
-1 for error

LIBRARY
SFLASH.LIB

Chapter 1: Function Descriptions 359

sfspi init

int sfspi init()

DESCRIPTION

Initialize SPI driver for use with serial flash. This must be called before any callsto
sf initDevice().

RETURN VALUE

0 for success
-1 for error

LIBRARY
SFLASH.LIB

sin

float sin (float x);

DESCRIPTION
Computes the sine of x.

Note: The Dynamic C functionsdeg () and rad () convert radians and degrees.
PARAMETERS

x Angleinradians.

RETURN VALUE
Sine of x.

LIBRARY
MATH.LIB

SEE ALSO

sinh, asin, cos, tan

360 Dynamic C Function Reference Manual

sinh

float sinh(float x):;

DESCRIPTION

Computes the hyperbolic sine of x. Thisfunctionstakes a unitless number as a parameter
and returns a unitless number.

PARAMETERS

x Value to compute.
RETURN VALUE

The hyperbalic sine of x.

If x > 89.8 (approx.), the function returns INF and signalsarange error. If x <—89.8 (ap-
prox.), the function returns -INF and signals arange error.

LIBRARY
MATH.LIB

SEE ALSO

sin, asin, cosh, tanh

Chapter 1: Function Descriptions 361

snprintf

int snprintf(char *buffer, int len, char *format, ...);

DESCRIPTION

Thisfunctiontakesastring (pointed to by f ormat), argumentsof theformat, and outputs
the formatted string to the buffer pointedtoby buf fer. snprintf () will only output
up to Len characters. The user should make sure that:

* there are enough arguments after format tofill in the format parametersin the
format string
* thetypes of arguments after format match the format fieldsin format
For example,

ne

snprintf (buffer, "$s=%x", "variable x",256)

putsthe string “variable x=100" into buf fer.

A completelist of valid conversion specifiers (%d, %os, etc.) can be found in the descrip-
tionfor printf () under Dynamic C Conversion Specifiers.

Themacro STDIO DISABLE FLOATS can bedefined if it is not necessary to format
floating point numbers. If this macro is defined, %oe, %f and %g will not be recogni zed.
This can save thousands of bytes of code space.

Thisfunction can be called by processes of different priorities.

PARAMETERS
buffer Location of formatted string.
len The maximum length of the formatted string.
format String to be formatted.

Format arguments.

RETURN VALUE

The number of characterswritten. If the output istruncated dueto the 1 en parameter, then
thisfunction returnsthe number of charactersthat would have been written had there been
enough space.

LIBRARY
STDIO.LIB

SEE ALSO
printf, sprintf

362 Dynamic C Function Reference Manual

SPIinit

void SPIinit ();

DESCRIPTION

Initializethe SPI port parametersfor aserial interface only. Thisfunction does nothing for
aparald interface. A description of the valuesthat the user may define beforethe #use
SPI.LIB statementisfound at thetop of thelibrary Lib\Spi\Spi.1lib.

LIBRARY
SPI.LIB

SEE ALSO
SPIRead, SPIWrite, SPIWrRd

Chapter 1: Function Descriptions 363

SPIRead

void SPIRead (void *DestAddr, int ByteCount);

DESCRIPTION
Reads a block of bytes from the SPI port. The variable SPTIxor needsto be set to either

0x00 or OxFF depending on whether or not the received signal needsto be inverted. M ost
applications will not need inversion. SPIinit () setsthevalue of SPIxor to 0x00.

If SPT_SLAVE RDY PORT isdefined for aslave device the driver will turn on the bit
immediately upon activating the receiver. It will then wait for a byte to become available
then turn off the bit. The byte will not be available until the master supplies the 8 clock
pulses.

If SPI_SLAVE RDY PORT isdefined for amaster devicethedriver will wait for the bit
to become true before activating the receiver and then wait for it to become false after re-
ceiving the byte.

Note for Master: the receiving device Chip Select must aready be active

PARAMETERS
DestAddr Addressto store the data
ByteCount Number of bytesto read

RETURN VALUE

Master: none.
Slave: 0 = no CSsignal, no received bytes.
1=CS, bytesreceived.

LIBRARY
SPI.LIB

SEE ALSO
SPIinit, SPIWrite, SPIWrRd

364 Dynamic C Function Reference Manual

SPIWrite

int SPIWrite (void *SrcAddr, int ByteCount);

DESCRIPTION
Write a block of bytes to the SPI port.

If SPT_SLAVE RDY PORT isdefined for aslave device the driver will turn on the bit
immediately after |oading the transmit register. It will then wait for the buffer to become
available then turn off the bit. The buffer will not become available until the master sup-
pliesthe first clock.

If SPI_SLAVE RDY PORT isdefined for amaster devicethedriver will wait for the bit
to become true before transmitting the byte and then wait for it to become false after trans-
mitting the byte.

Note for Master: the receiving device Chip Select must already be active.

PARAMETERS
SrcAddr Address of datato write.
ByteCount Number of bytes to write.

RETURN VALUE

Master: none.
Slave: 0 = no CSsignal, no transmitted bytes.
1=CS, bytes transmitted.

LIBRARY
SPI.LIB

SEE ALSO

SPIinit, SPIRead, SPIWrRd

Chapter 1: Function Descriptions 365

SPIWrRd

void SPIWrRd (void *SrcAddr, void *DstAddr, int ByteCount) ;

DESCRIPTION
Read and Write a block of bytes from/to the SPI port.

Note for Master: the receiving device Chip Select must already be active.

PARAMETERS
SrcAddr Address of datato write.
DstAddr Address to put received data.
ByteCount Number of bytes to read/write. The maximum value is 255 bytes.

Thislimit is not checked! Thereceive buffer MUST be at least as
large as the number of bytes!
RETURN VALUE

Master: none.
Slave: 0 = no CSsignal, no received/transmitted bytes.
1 =CS, bytes received/transmitted.

LIBRARY
SPI.LIB

SEE ALSO

SPIinit, SPIRead, SPIWrite

366 Dynamic C Function Reference Manual

sprintf

int sprintf(char *buffer, char *format, ...);

DESCRIPTION

Thisfunctiontakesastring (pointed to by f ormat), argumentsof theformat, and outputs
the formatted stringto buf fer (pointed to by bu f fer). The user should make sure that:
* there are enough arguments after format tofill in the format parametersin the
format string

* thetypes of arguments after format match the format fieldsin format
« the buffer islarge enough to hold the longest possible formatted string

Thefollowingisashort list of valid conversion specifiersin the format string. For a com-
pletelist of conversion specifiers, refer to the function description for printf ().

%d decima integer (expectstype int)

%u decima unsigned integer (expectstype unsigned int)

%X hexadecimal integer (expectstype signed int or unsigned int)
%s astring (not interpreted, expectstype (char *))

%f afloat (expectstype float)

For example,
sprintf (buffer,"%s = %x","variable x",256) ;
puts the string “variable x = 100" into buf fer.

Themacro STDIO DISABLE FLOATS can bedefined if it is not necessary to format
floating point numbers. If this macro is defined, %oe, %f and %g will not be recogni zed.
This can save thousands of bytes of code space.

This function can be called by processes of different priorities.

PARAMETERS
buffer Result string of the formatted string.
format String to be formatted.

Format arguments.

RETURN VALUE
Number of characters written.

LIBRARY
STDIO.LIB

SEE ALSO
printf

Chapter 1: Function Descriptions 367

sqgrt

float sqgrt(float x);

DESCRIPTION
Cdlculate the square root of x.

PARAMETERS

x Value to compute.

RETURN VALUE
The square root of x.

LIBRARY
MATH.LIB

SEE ALSO

exp, pow, powlO

srand

void srand(unsigned long seed)

DESCRIPTION
Sets the seed value for the rand () function.

PARAMETER

seed This must be an odd number.

LIBRARY
MATH.LIB

SEE ALSO

rand, randb, randg

368 Dynamic C Function Reference Manual

strcat

char *strcat(char *dst, char *src);

DESCRIPTION
Appends one string to another.

PARAMETERS
dst Pointer to location to destination string.
src Pointer to location to source string.

RETURN VALUE
Pointer to destination string.

LIBRARY
STRING.LIB

SEE ALSO

strncat

Chapter 1: Function Descriptions

369

strchr

char *strchr(char *src, char ch);

DESCRIPTION
Scans a string for the first occurrence of a given character.

PARAMETERS
src String to be scanned.
ch Character to search

RETURN VALUE

Pointer to the first occurrence of ch in src.
Null if ch is not found.

LIBRARY
STRING.LIB

SEE ALSO

strrchr, strtok

370 Dynamic C Function Reference Manual

strcmp

int strcmp(char *strl, char *str2)

DESCRIPTION

Performs unsigned character by character comparison of two null terminated strings.

PARAMETERS
strl Pointer to string 1.
str2 Pointer to string 2.

RETURN VALUE

<0: strl islessthan str2 because
character in st r1 islessthan corresponding character in str2, or
strl isshorter than but otherwise identical to str2.

=0: strlisidentical to str2

>0: strl isgreater than st r2 because
character in st r1 is greater than corresponding character in str2, or
str2 isshorter than but otherwise identical to strl.

LIBRARY
STRING.LIB

SEE ALSO

strncmp, strcmpi, strncmpi

Chapter 1: Function Descriptions

371

strcmpi

int *strcmpi(char *strl, char *str2);

DESCRIPTION
Performs case-insensitive unsigned character by character comparison of two null
terminated strings.

PARAMETERS
strl Pointer to string 1.
str2 Pointer to string 2.

RETURN VALUE

<0: stril islessthan str2 because
character in st r1 islessthan corresponding character in str2, or
stril isshorter than but otherwise identical to str2.

=0:strlisidentical tostr2

>0: strl isgreater than st r2 because
character in st r1 is greater than corresponding character in str2, or
str2 isshorter than but otherwise identical to str1.

LIBRARY
STRING.LIB

SEE ALSO

strncmpi, strncmp, strcmp

372 Dynamic C Function Reference Manual

strcpy

char *strcpy(char *dst, char *src);

DESCRIPTION
Copies one string into another string including the null terminator.

PARAMETERS
dst Pointer to location to receive string.
src Pointer to location to supply string.

RETURN VALUE
Pointer to destination string.

LIBRARY
STRING.LIB

SEE ALSO
strncpy

strcspn

unsigned int strcspn(char *sl, char *s2);

DESCRIPTION
Scans a string for the occurrence of any of the charactersin another string.

PARAMETERS
sl String to be scanned.
s2 Character occurrence string.

RETURN VALUE

Returns the position (less one) of the first occurrence of a character in s1 that matches
any character in s2.

LIBRARY
STRING.LIB

SEE ALSO

strchr, strrchr, strtok

Chapter 1: Function Descriptions 373

strlen

int strlen(char *s);
DESCRIPTION
Cadlculate the length of a string.

PARAMETERS

s Character string.

RETURN VALUE
Number of bytesin a string.

LIBRARY
STRING.LIB

strncat

char *strncat(char *dst, char #*src, unsigned int n);

DESCRIPTION

Appends one string to another up to and including the null terminator or until n characters
are transferred, followed by a null terminator.

PARAMETERS
dst Pointer to location to receive string.
src Pointer to location to supply string.
n Maximum number of bytesto copy. If equal to zero, thisfunction has

no effect.

RETURN VALUE
Pointer to destination string.

LIBRARY
STRING.LIB

SEE ALSO

strcat

374 Dynamic C Function Reference Manual

strncmp

int strncmp(char *strl, char #*str2, n)

DESCRIPTION

Performs unsigned character by character comparison of two strings of length n.

PARAMETERS
strl Pointer to string 1.
str2 Pointer to string 2.
n Maximum number of bytesto compare. If zero, both strings are con-

sidered equal.

RETURN VALUE

<0: strlislessthan str2 because
char in strl islessthan corresponding char in str2.

=0: strlisidentical to str2

>0: strl isgreater than str2 because

char in str1 isgreater than corresponding char in str2.

LIBRARY
STRING.LIB

SEE ALSO

strcmp, strcmpi, strncmpi

Chapter 1: Function Descriptions

375

strncmpi

int strncmpi(char *strl, char *str2, unsigned n)

DESCRIPTION
Performs case-insensitive unsigned character by character comparison of two strings of
length n.

PARAMETERS
strl Pointer to string 1.
str2 Pointer to string 2.
n Maximum number of bytesto compare, if zero then strings are con-

sidered equal

RETURN VALUE

<0: stril islessthan str2 because
char in str1 islessthan corresponding char in str2.

=0: strlisidentica to str2
>0: strl isgreater than st r2 because
char in str1 isgreater than corresponding char in str2.

LIBRARY
STRING.LIB

SEE ALSO

strcmpi, strcmp, strncmp

376 Dynamic C Function Reference Manual

strncpy

char *strncpy(char *dst, char #*src, unsigned int n);

DESCRIPTION

Copies agiven number of characters from one string to another and padding with null
characters or truncating as necessary.

PARAMETERS
dst Pointer to location to receive string.
src Pointer to location to supply string.
n M aximum number of bytesto copy. If equal to zero, thisfunction has

no effect.

RETURN VALUE
Pointer to destination string.

LIBRARY
STRING.LIB

SEE ALSO
strcpy

Chapter 1: Function Descriptions 377

strpbrk

char *strpbrk(char #*sl, char *s2);

DESCRIPTION
Scans a string for the first occurrence of any character from another string.

PARAMETERS
sl String to be scanned.
s2 Character occurrence string.

RETURN VALUE

Pointer pointing to the first occurrence of acharacter contained in s2 in s1. Returns null
if not found.

LIBRARY
STRING.LIB

SEE ALSO

strchr, strrchr, strtok

378 Dynamic C Function Reference Manual

strrchr

char *strrchr(char *s, int c);

DESCRIPTION
Similar to st rchr, except this function searches backward from the end of s to the be-
ginning.
PARAMETERS
s String to be searched
c Search character

RETURN VALUE
Pointer to last occurrence of c in s. If cisnot found in s, return null.

LIBRARY
STRING.LIB

SEE ALSO

strchr, strcspn, strtok

strspn

size t strspn(char *src, char *brk);

DESCRIPTION
Scans a string for the first segment in src containing only characters specified in brk.

PARAMETERS
src String to be scanned
brk Set of characters

RETURN VALUE
Returns the length of the segment.

LIBRARY
STRING.LIB

Chapter 1: Function Descriptions 379

strstr

char *strstr(char *sl, char *s2);

DESCRIPTION
Finds a substring specified by s2 in string s1.

PARAMETERS
sl String to be scanned.
s2 Substring to search for.

RETURN VALUE

Pointer to thefirst occurrence of substring s2 in s1. Returnsnull if s2 isnotfoundins1.

LIBRARY
STRING.LIB

SEE ALSO

strcspn, strrchr, strtok

380

Dynamic C Function Reference Manual

strtod

float strtod(char *s, char **tailptr);

DESCRIPTION
ANSI string to float conversion.

PARAMETERS
s String to convert.
tailptr Pointer to apointer of character. The next conversion may resume at

the location specified by *tailptr.

RETURN VALUE
The float number.

LIBRARY
STRING.LIB

SEE ALSO
atof

Chapter 1: Function Descriptions 381

strtok

char *strtok(char *src, char *brk);

DESCRIPTION
Scans src for tokens separated by delimiter characters specified in brk.
First call with non-null for src. Subsequent calls with null for src continue to search

tokensin the string. If atoken isfound (i.e., delineators found), replace the first delimiter
in src with anull terminator so that src pointsto a proper null terminated token.

PARAMETERS
src String to be scanned, must bein SRAM, cannot be a constant. In con-
trast, stringsinitialized when they are declared are stored in flash
memory, and are treated as constants.
brk Character delimiter.

RETURN VALUE
Pointer to atoken. If no delimiter (therefore no token) isfound, returns null.

LIBRARY
STRING.LIB

SEE ALSO

strchr, strrchr, strstr, strcspn

382 Dynamic C Function Reference Manual

strtol

long strtol(char *sptr, char **tailptr, int base);

DESCRIPTION

ANSI string to long conversion.

PARAMETERS
sptr

tailptr

base

RETURN VALUE

The long integer.

LIBRARY
STRING.LIB

SEE ALSO

atoi, atol

String to convert.

Assigned the last position of the conversion. The next conversion
may resume at the location specifiedby *tailptr.

Indicates the radix of conversion.

Chapter 1: Function Descriptions

383

_sysIsSoftReset

void sysIsSoftReset();

DESCRIPTION

This function should be called at the start of a program if you are using protected vari-
ables. It determines whether this restart of the board is due to a software reset from Dy-

namic Cor acall to forceSoftReset (). If it was asoft reset, thisfunction then does
the following:

* Cdls_prot_init () toinitiaize the protected variable mechanisms. It isup to
the user to initialize protected variables.

» CdlssysResetChain (). Theuser my attach functionsto this chain to perform
additional startup actions (for example, initializing protected variables). If a soft
reset did not take place, thisfunction calls_prot recover () to recover any
protected variables.

LIBRARY

SYS.LIB

SEE ALSO

chkHardReset, chkSoftReset, chkWDTO

sysResetChain

void sysResetChain (void);

DESCRIPTION

Thisisafunction chain that should be used to initialize protected variables. By default,
it's empty.

LIBRARY
SYS.LIB

384 Dynamic C Function Reference Manual

tan

float tan (float x);

DESCRIPTION
Compute the tangent of the argument.

Note: The Dynamic C functionsdeg () and rad () convert radians and degrees.

PARAMETERS

x Angleinradians.

RETURN VALUE

Returnsthe tangent of x, where—8 x Pl < x <+8 x PI. If x isout of bounds, the function
returns0 and signalsadomain error. If the value of x istoo closeto amultipleof 90° (PI/2)
the function returns INF and signals arange error.

LIBRARY
MATH.LIB

SEE ALSO

atan, cos, sin, tanh

Chapter 1: Function Descriptions 385

tanh

float tanh (float x);

DESCRIPTION

Computes the hyperbolic tangent of argument. This functions takes a unitless number as
aparameter and returns a unitless number.

PARAMETERS

x Float to use in computation.

RETURN VALUE

Returns the hyperbolic tangent of x. If x > 49.9 (approx.), the function returns INF and
signalsarangeerror. If x <—49.9 (approx.), the function returns—INF and signalsarange
error.

LIBRARY
MATH.LIB

SEE ALSO

atan, cosh, sinh, tan

386 Dynamic C Function Reference Manual

tm rd

int tm rd(struct tm *t);

DESCRIPTION
Reads the current system time from SEC_ TIMER into the structure t.

WARNING: Thevariable SEC_TIMER isinitialized when a program is started. If you

change the Real Time Clock (RTC), this variable will not be updated until you restart a
program, and the tm_rd () functionwill not return the time that the RTC has been reset

to. Theread rtc () function will read the actual RTC and can be used if necessary.

PARAMETERS
t Pointer to structure to store time and date.
struct tm {
char tm_sec; // seconds 0-59
char tm min; // 0-59
char tm_hour; // 0-23
char tm mday; // 1-31
char tm mon; // 1-12
char tm_year; // 80-147 (1980-2047)
char tm _wday; // 0-6 0==Sunday

RETURN VALUE

0: Successful.
-1: Clock read failed.

LIBRARY
RTCLOCK.LIB

SEE ALSO

mktm, mktime, tm_ wr

Chapter 1: Function Descriptions

387

tm wr

int tm wr(struct tm *t);

DESCRIPTION

Sets the system time from a tm struct. It isimportant to note that although tm_rd ()
readsthe SEC_TIMER variable, notthe RTC, tm_wr () writesto the RTC directly, and
SEC_TIMER isnot changed until the program is restarted. The reason for thisis so that
theDelaySec () function continuesto work correctly after setting the system time. To
make tm_rd () match the new time written to the RTC without restarting the program,
the following should be done:

tm wr (tm) ;

SEC_TIMER = mktime (tm);

But this could cause problemsif awaitfor (DelaySec (n)) ispending completion
in acooperative multitasking program or if the SEC_ TIMER variableisbeing used in an-
other way the user, so user beware.

PARAMETERS

t Pointer to structure to read date and time from.

struct tm

char tm_sec; // seconds 0-59

char tm min; // 0-59

char tm hour; // 0-23

char tm mday; // 1-31

char tm mon; // 1-12

char tm year; // 80-147 (1980-2047)
char tm wday; // 0-6 0==Sunday

RETURN VALUE

0: Success .
-1: Failure.

LIBRARY

RTCLOCK.LIB

SEE ALSO

mktm, mktime, tm_ rd

Dynamic C Function Reference Manual

tolower

int tolower(int c);

DESCRIPTION
Convert alphabetic character to lower case.

PARAMETERS

c Character to convert

RETURN VALUE
Lower case alphabetic character.

LIBRARY
STRING.LIB

SEE ALSO

toupper, isupper, islower

toupper

int toupper(int c);

DESCRIPTION
Convert alphabetic character to uppercase.

PARAMETERS

c Character to convert.

RETURN VALUE
Upper case a phabetic character.

LIBRARY
STRING.LIB

SEE ALSO

tolower, isupper, islower

Chapter 1: Function Descriptions

389

updateTimers

void updateTimers () ;

DESCRIPTION

Updates the valuesof TICK_TIMER,MS TIMER, and SEC_TIMER whilerunning off
the 32 kHz oscillator. Since the periodic interrupt is disabled when running at 32 kHz,
these values will not updated unless this function is called.

LIBRARY
SYS.LIB

SEE ALSO

useMainOsc, use32kHzOsc

390 Dynamic C Function Reference Manual

use32kHzOsc

void use32kHzOsc () ;

DESCRIPTION

Setsthe Rabbit processor to use the 32kHz real -time clock oscill ator for both the CPU and
peripheral clock, and shuts off the main oscillator. If thisis already set, thereis no effect.
This mode should provide greatly reduced power consumption. Serial communications
will be lost since typical baud rates cannot be made from a 32kHz clock. Also note that
thisfunction disablesthe periodic interrupt, so wa it for and related statementswill not
work properly (although costatementsin general will still work). In addition, the values
iNTICK TIMER,MS TIMER,and SEC_ TIMER will not beupdated unlessyou call the
functionupdateTimers () frequently in your code. In addition, you will need to call
hitwd () periodically to hit the hardware watchdog timer since the periodic interrupt
normally handles that, or disable the watchdog timer before calling this function. The
watchdog can be disabled withDisable HW WDT ().

usel32kHzOsc () isnot task reentrant.

LIBRARY
SYS.LIB

SEE ALSO

useMainOsc, useClockDivider, updateTimers

Chapter 1: Function Descriptions 391

useClockDivider

void useClockDivider () ;

DESCRIPTION

Sets the Rabbit processor to use the main oscillator divided by 8 for the CPU (but not the
peripheral clock). If thisis already set, there is no effect. Because the peripheral clock is
not affected, serial communications should still work. This function also enables the pe-
riodic interrupt in case it was disabled by acal to use32kHzOsc ().

This function is not task reentrant.

LIBRARY
SYS.LIB

SEE ALSO

useMainOsc, use32kHzOsc

392 Dynamic C Function Reference Manual

useClockDivider3000

void useClockDivider3000(int setting);

DESCRIPTION

Sets the expanded clock divider options for the Rabbit 3000 processor. Target communi-
cations will be lost after changing this setting because of the baud rate change. Thisfunc-
tion aso enables the periodic interrupt in case it was disabled by acall to
user32kHzOsc ().

The peripheral clock is also affected by thisfunction. If you want to divide the main pro-
cessor clock and not the peripheral clock, you may use the function
useClockDivider () to dividethe main processor clock by 8. To divide the main
processor clock by any of the other allowable values (2, 4, or 6) means using
useClockDivider3000 () and thusdividing the peripheral clock aswell.

This function is not task reentrant.

PARAMETER

setting Divider setting. The following are valid:

* CLKDIV_2 -divide main processor clock by two
* CLKDIV_4 - divide main processor clock by four
* CLKDIV_ 6 -dividemain processor clock by six
* CLKDIV_8 - divide main processor clock by eight

RETURN VALUE
None.

LIBRARY
SYS.LIB

SEE ALSO

useClockDivider, useMainOsc, use32kHzOsc, set32kHzDivider

Chapter 1: Function Descriptions 393

useMainOsc

void useMainOsc() ;

DESCRIPTION

Setsthe Rabbit processor to use the main oscillator for both the CPU and peripheral clock.
If thisisalready set, thereis no effect. Thisfunction also enablesthe periodic interrupt in
case it was disabled by acall to use32kHzOsc (), and updatesthe TICK TIMER,
MS TIMER, and SEC_TIMER variablesfrom the rea-time clock. Thisfunction is not
task reentrant.

LIBRARY
SYS.LIB

SEE ALSO

use32kHzOsc, useClockDivider

utoa

char *utoa(unsigned value, char *buf);

DESCRIPTION

Placesup to 5 digit character string at *buf representing value of unsigned number. Sup-
presses leading zeros, but leaves one zero digit for value = 0. Max = 65535. 73 program

bytes.
PARAMETERS
value 16-bit number to convert.
buf Character string of converted number.

RETURN VALUE
Pointer to null at end of string.

LIBRARY
STDIO.LIB

SEE ALSO

itoa, htoa, ltoa

394 Dynamic C Function Reference Manual

VdGetFreeWd

int VdGetFreeWd(char count);

DESCRIPTION

Returns afree virtual watchdog and initializes that watchdog so that the virtual driver be-
gins counting it down from count. The number of available virtual watchdogsis deter-
mined by themacroN WATCHDOG, which is 10 by default. The default can be overridden
by theuser, e.g., #define N WATCHDOG 11.

Thevirtual driver is called every 0.00048828125 second. On every 128th call to it (i.e.,
every 62.5 ms), the virtual watchdogs are counted down and then tested. If any virtual

watchdog reaches zero, thisis afatal error. Once avirtual watchdog is active, it should
reset periodically with acall to vdHitwWd () to prevent the count from readching zero.

PARAMETERS

count 1< count <=255

RETURN VALUE
Integer id number of an unused virtual watchdog timer.

LIBRARY
VDRIVER.LIB

Chapter 1: Function Descriptions 395

VdHitWd

int VAHitWd(int ndog):;

DESCRIPTION

Resets virtual watchdog counter to N counts where N is the argument to the call to
VdGetFreeWd () that obtained the virtual watchdog ndog.

Thevirtual driver counts down watchdogs every 62.5 ms. If avirtual watchdog reaches0,

thisisafatal error. Once avirtual watchdog is active it should reset periodicaly with a
call tovdHitwd () to prevent this.

If N=2,vdHitwd () will needtobecalled againfor virtual watchdog ndog within 62.5
ms.

If N =255, vdHitwd () will need to be called again for virtual watchdog ndog within
15.9375 seconds.

PARAMETERS

ndog Id of virtual watchdog returned by VvdGetFreeWd ()

LIBRARY
VDRIVER.LIB

VdInit

void vdInit(void);

DESCRIPTION
Initializes the Virtual Driver for al Rabbit boards. SupportsDelayMs () ,DelaySec (),
DelayTick (). VvdInit () iscaled by the BIOS unlessit has been disabled.

LIBRARY
VDRIVER.LIB

396 Dynamic C Function Reference Manual

VdReleaseWd

int VdReleaseWd(int ndog);

DESCRIPTION
Deactivates a virtual watchdog and makesit available for vdGet FreewWd ().

PARAMETERS

ndog Handlereturned by vdGetFreeWd ()

RETURN VALUE

0: ndog out of range.
1: Success.

LIBRARY
VDRIVER.LIB

EXAMPLE

// VdReeaseWd virtual watchdog example
main() {
int wd; // handle for avirtual watchdog
unsigned long tm;
tm = SEC_TIMER;
wd = VdGetFreeWd (255) ; // wd activated, 9 virtual watchdogs
// now available. wd must be hit
// @ least every 15.875 seconds
while (SEC_TIMER - tm < 60) { // letitrunforaminute
VAHitWd (wd) ; // reset counter back to 255
}

VdReleaseWd (wd) // now 10 virtual watchdogs available

Chapter 1: Function Descriptions

397

WriteFlash?2

int WriteFlash2(unsigned long flashDst, void* rootSrc, unsigned
len);

DESCRIPTION

Write 1en bytesfrom root Src to physical address flashDst on the 2nd flash de-
vice. Thesourcemust beinroot. The £ 1ashDst address plusthe sum of numbytes []
area must be within memory quadrant(s) aready mapped to the second flash.

This function is not reentrant.

Note: Thisfunction should NOT be used if you are using the second flash device
for aflash file system, e.g. if you are writing a TCP/I P-based application!

Note: Thisfunction is extremdy dangerous when used with large sector flash.

Don't do it.
PARAMETERS
flashDst Physical address of the flash destination
rootSrc Pointer to the root source
len Number of bytes to write

RETURN VALUE

0: Success.
-1: Attempt to write non-2nd flash area, nothing written.
-2: rootsrc notin root.
-3: Time out while writing flash.
-4: Attempt to writeto ID block
- 5: Sector erase needed; write aborted

LIBRARY
XMEM.LIB

398 Dynamic C Function Reference Manual

WriteFlash2Array

int WriteFlash2Array(unsigned long flashDst, void#* rootSrcl],
unsigned numbytes[], int numsources);

DESCRIPTION

Write aset of scattered information to the 2nd flash in acontiguous block. The sourcesare
giveninthe root Src array, and the corresponding number of bytesin each sourceisgiv-
eninthenumbytes [] array. All sources must bein root. numsources specifiesthe
number of entriesintheroot Src andnumbytes arrays. Thef 1lashDst address plus
thesum of numbytes [] areamust bewithin memory quadrant(s) already mapped to the
second flash.

Thisfunction is not reentrant. It was introduced in Dynamic C version 7.30.

Note: Thisfunction should NOT be used if you are using the second flash device
for aflash file system, e.g. if you are writing a TCP/IP-based application!

Note: Thisfunction is extremey dangerous when used with large sector flash.
Don't do it.

Note: The sum of thelengthsin numbytes [1 must not exceed 65535 bytes, else
not all datawill be written.

PARAMETERS
flashDst Physical address of the flash destination.
rootSrc Array of pointers to the root sources.
numbytes Array of numbers of bytes to write for each source.

numsources Number of sources specifiedin rootSrc [] and numbytes [].

RETURN VALUE

0: Success.
- 1: Attempt to write non-2nd flash area, nothing written.
-2: rootsrc [] entry notin root.
- 3: Time-out while writing flash.

LIBRARY
XMEM.LIB

Chapter 1: Function Descriptions 399

write rtc

void write rtc(unsigned long int time);

DESCRIPTION

Writes a 32 bit seconds value to the RTC, zeros other bits. This function does not stop or
delay periodic interrupt. It does not affect the SEC_TIMER or MS_TIMER variables.

PARAMETERS

time 32-bit value representing the number of seconds since January 1,
1980.

LIBRARY
RTCLOCK.C

SEE ALSO

read_rtc

400 Dynamic C Function Reference Manual

writeUserBlock

int writeUserBlock(unsigned addr, void *source, unsigned
numbytes);

DESCRIPTION

Z-World boards have a System ID block located on the primary flash. (See the Rabbit Mi-
croprocessor Designer's Handbook for more information on the System ID block.) Ver-
sion 2 and later of this ID block has a pointer to a User ID block: a place intended for
storing calibration constants, passwords, and other non-volatile data.

The User block is recommended for storing all non-file data. Thisiswhere calibration
constants are stored for boards with analog 1/0. Space hereislimited to as small as
(8K - sizeof (SysIDBlock)) bytes, or less, if there are calibration constants.

writeUserBlock () writesanumber of bytesfrom root memory to the User block.
Thisblock is protected from normal writes to the flash device and can only be accessed
through this function or the function writeUserBlockArray ().

Using thisfunction can cause all interruptsto be disabled for aslong as 20 mswhileaflash
sector erases, depending on the flash type. A single call can produce as many as four of
these erase delays. Thiswill cause periodic interrupts to be missed, and can cause other
interrupts to be missed aswell. Therefore, it is best to buffer up datato be written rather
than to do many writes.

Whiledebugging, several consecutive callsto thisfunction can causealoss of target serial
communications. This effect can be reduced by introducing delays between the calls, low-
ering the baud rate, or increasing the serial time-out value in the project file.

Note: Seethe manual for your particular board for more information before over-
writing any part of the User block.

Backwards Compatibility:

If the version of the System ID block doesn't support the User ID block, or no System ID
block is present, then 8K bytes starting 16K bytes from the top of the primary flash are
designated the User ID block area. However, to prevent errors arising from incompatible
large sector configurations, thiswill only work if the flash type is small sector. Z-World
manufactured boards with large sector flash will have valid System and User ID blocks,
s0 this should not be problem on Z-World boards.

If users create boards with large sector flash, they must install System 1D blocks version
2 or greater to use or modify this function.

Chapter 1: Function Descriptions 401

writeUserBlock (continued)

PARAMETERS
addr Address offset in User block to write to.
source Pointer to source to copy data from.
numbytes Number of bytes to copy.

RETURN VALUE
0: Successful.
-1: Invalid address or range.
LIBRARY
IDBLOCK.LIB

SEE ALSO

readUserBlock, writeUserBlockArray

402 Dynamic C Function Reference Manual

writeUserBlockArray

int writeUserBlockArray (unsigned addr, void* sources[], unsigned
numbytes[], int numsources);

DESCRIPTION

Z-World boards are rel eased with System I D blockslocated on the primary flash. Version
2 and later of this ID block has a pointer to a User block that can be used for storing cali-
bration constants, passwords, and other non-volatile data. The User block is protected
from normal write to the flash device and can only be accessed through this function or
writeUserBlock ().

Thisfunction writesaset of scattered datafrom root memory to the User block. If the data
to be written isin contiguous bytes, using the function writeUserBlock () is suffi-
cient. Useof writeUserBlockArray () isrecommended whenthedatato bewritten
isin noncontiguous bytes, as may be the case for something like network configuration
data. Seethe Rabbit Microprocessor Designer's Handbook for moreinformation about the
System ID and User blocks.

Note: Portions of the User block may be used by the BIOS for your board to store
values, e.g., calibration constants. See the manual for your particular board for
more information before overwriting any part of the User block.

Backwards Compatibility:

If the System ID block on the board doesn't support the User block, or no System ID block
is present, then the 8K bytes starting 16K bytes from the top of the primary flash are des-
ignated User block area. Thisonly worksif the flash type is small sector. Z-World manu-
factured boards with large sector flash will have valid System ID and User blocks, sois

not aproblem on Z-World boards. If users create boards with |arge sector flash, they must
install System ID blocks version 3 or greater to use this function, or modify this function.

PARAMETERS
addr Address offset in User block to write to.
sources Array of pointer to sources to copy data from.
numbytes Array of number of bytesto copy for each source. The sum of the
lengthsin thisarray must not exceed 32767 bytes, or an error will be
returned.

numsources Number of data sources.

RETURN VALUE

0: Successful.
-1: Invalid address or range.
-2: Novalid User block found (block version 3 or later).
-3: Flash writing error.

LIBRARY
IDBLOCK.LIB

Chapter 1: Function Descriptions 403

WrPortE

void WrPortE(unsigned int port, char *portshadow, int
data value) ;

DESCRIPTION

Writes an external /O register with 8 bits and updates shadow for that register. The vari-
ablenames must be of theformport and port shadow for the most efficient operation.
A null pointer may be substituted if shadow support is not desired or needed.

PARAMETERS
port Address of external dataregister.

portshadow Reference pointer to a variable shadowing the register data. Substi-
tute with null pointer (or 0) if shadowing is not required.

data value Value to be written to the data register

LIBRARY
SYSIO.LIB

SEE ALSO

RdPortI, BitRdPortI, WrPortI, BitWrPortI, RdPortE, BitRdPortkE,
BitWrPortE

404 Dynamic C Function Reference Manual

WrPortI

void WrPortI(int port, char *portshadow, int data value);

DESCRIPTION
Writes an interna 1/O register with 8 bits and updates shadow for that register.

PARAMETERS
port Address of data register.

portshadow Reference pointer to a variable shadowing the register data. Substi-
tute with null pointer (or 0) if shadowing is not required.

data value Value to be written to the data register

LIBRARY
SYSIO.LIB

SEE ALSO

RdPortI, BitRdPortI, BitRdPortE, BitWrPortI, RdAPortE, WrPortE,
BitWrPortE

Chapter 1: Function Descriptions 405

xalloc

long xalloc(long sz);

DESCRIPTION

Allocates the specified number of bytesin extended memory. Starting with Dynamic C
version 7.04P3, the returned address is always even (word) aligned.

Starting with Dynamic C 8, if xalloc () fails, arun-time error will occur. Thisisa
wrapper function for _xalloc (), for backwards compatibility. It is the same as
_xalloc(&sz, 1, XALLOC_MAYBBB) except that the actual allocated amount is
not returned since the parameter is not a pointer.

PARAMETERS

sz Number of bytesto allocate. Thisis rounded up to the next higher
even number.
RETURN VALUE
The 20-bit physical address of the allocated data: Success.
0: Failure.

Note: Starting with Dynamic C 8, a run-time exception will occur if the function
fails.

LIBRARY
STACK.LIB

SEE ALSO

root2xmem, xmem2root, xavail

406 Dynamic C Function Reference Manual

_xalloc

long =xalloc(long * sz, word align, word type);

DESCRIPTION
Allocates memory in extended memory. If _xalloc () fails, arun-timeerror will occur.

PARAMETERS

sz On entry, pointer to the number of bytesto allocate. On return, the
pointed-to value will be updated with the actual number of bytes al-
located. Thismay belarger than requested if an odd number of bytes
was requested, or if some space was wasted at the end because of
alignment restrictions.

align Storage alignment asthelog (base 2) of the desired returned memory
starting address. For example, if this parameter is“8,” then the re-
turned address will align on a 256-byte boundary. Values between 0
and 16 inclusive are allowed. Any other valueistreated as zero, i.e.,
no required alignment.

type One of the following values:

* XALLOC_ANY (0) - any type of RAM storage alowed

* XALLOC BB (1) - must be battery-backed RAM. Thisiscur-
rently supported only on RCM 3200 and derivations.

* XALLOC NOTBB (2) - return non-BB RAM only.

* XALLOC_MAYBBB (3) - return non-BB RAM in preferenceto
BB.

Any other value has undefined results.

RETURN VALUE

The 20-bit physical address of the allocated data on success. On error, arun-time error oc-
curs.

Note: This return value cannot be used with pointer arithmetic.

LIBRARY
STACK.LIB

EXCEPTIONS
ERR_BADXALLOC - if could not allocate requested storage, or negative size passed.

Chapter 1: Function Descriptions 407

xalloc stats

void xalloc_stats(word parm);

DESCRIPTION
Prints atable of available xalloc () regionsto the Stdio window.

Thisfunction wasintroduced in Dynamic C version 8. It isfor debugging and educational
purposes. It should not be called in a production program.

PARAMETERS

parm Reserved for future use. Set to 0.

LIBRARY
XMEM.LIB

SEE ALSO

xalloc, xalloc, xavail, xavail, xrelease

408 Dynamic C Function Reference Manual

xavail

long xavail(long * addr ptr);

DESCRIPTION

Returns the maximum length of memory that may be successfully obtained by an imme-
diatecall toxalloc (), and optionaly allocates that amount.

This function was introduced in Dynamic C version 7.04P3.

PARAMETERS

addr ptr Pointer to along word in root data memory to store the address of the
block. If this pointer is null, then the block is not allocated. Other-
wise, the block isallocated asif by acal toxalloc ().

RETURN VALUE

The size of the largest free block available. If thisis zero, then *addr ptr will not be
changed.

LIBRARY
XMEM.LIB (was in STACK.LIB prior to DC 8)

SEE ALSO

xalloc, _xalloc, xavail, xrelease, xalloc_stats

Chapter 1: Function Descriptions 409

_xavail

long =xavail(long * addr ptr, word align, word type);

DESCRIPTION

Returns the maximum length of memory that may be successfully obtained by an imme-
diatecall to _xalloc (), and optionaly alocatesthat amount. Thealign and type
parameters are the same as would be presentedto xalloc ().

PARAMETERS
addr ptr Address of alongword, in root data memory, to store the address of
the block. If this pointer is null, then the block is not allocated. Oth-
erwise, the block is allocated asif by acall to _xalloc ().
align Alignment of returned block, asper xalloc ().
type Type of memory, asper xalloc ().

RETURN VALUE

The size of the largest free block available. If thisis zero, then *addr ptr will not be
changed.

LIBRARY
XMEM.LIB

SEE ALSO

xalloc, _xalloc, xavail, xrelease, xalloc_ stats

410 Dynamic C Function Reference Manual

xCalculateECC256

long xCalculateECC256 (unsigned long data);

DESCRIPTION

Cadlculates a 3 byte Error Correcting Checksum (ECC, 1 hit correction and 2 bit detection
capability) value for a 256 byte (2048 bit) data buffer located in extended memory.

PARAMETERS
data Physical address of the 256 byte data buffer.

RETURN VALUE

The calculated ECCinthe 3 LSBsof thelong (i.e., BCDE) result. Notethat the M SB (i.e.,
B) of thelong result is aways zero.

LIBRARY
ECC.LIB (This function was introduced in Dynamic C 9.01)

Chapter 1: Function Descriptions 411

xChkCorrectECC256

int xChkCorrectECC256 (unsigned long data, void *old ecc, void
*new ecc);

DESCRIPTION
Checksthe old versus new ECC values for a 256 byte (2048 bit) data buffer, and if neces-
sary and possible (1 bit correction, 2 bit detection), corrects the datain the specified ex-
tended memory buffer.

PARAMETERS
data Physical address of the 256 byte data buffer
old ecc Pointer to the old (original) 3 byte ECC's buffer
new_ecc Pointer to the new (current) 3 byte ECC's buffer

RETURN VALUE

0: Dataand ECC are good (no correction is necessary)
1: Datais corrected and ECC is good

2: Datais good and ECC is corrected

3: Dataand/or ECC are bad and uncorrectable

LIBRARY
ECC.LIB (This function was introduced in Dynamic C 9.01)

412 Dynamic C Function Reference Manual

xgetfloat

float xgetfloat(long src);

DESCRIPTION

Returnsthe f1oat pointed to by src. Thisisthe most efficient function for obtaining 4
bytes from xmem.

PARAMETERS

src xmem (linear) address of the float value to retrieve.

RETURN VALUE
float value (4 bytes) at src.

LIBRARY
XMEM.LIB

xgetint

int xgetint(long src);

DESCRIPTION

Returns the integer pointed to by src. Thisisthe most efficient function for obtaining 2
bytes from xmem.

PARAMETERS

src xmem (linear) address of the integer value to retrieve.

RETURN VALUE
Integer value (2-bytes) at src.

LIBRARY
XMEM.LIB

Chapter 1: Function Descriptions 413

xgetlong

long xgetlong(long src);

DESCRIPTION

Return the long word pointed to by src. Thisisthe most efficient function for obtaining
4 bytes from xmem.

PARAMETERS

src xmem (linear) address of the long value to retrieve.

RETURN VALUE
Long integer value (4 bytes) at src.

LIBRARY
XMEM.LIB

414 Dynamic C Function Reference Manual

xmem2root

int xmem2root(void *dest, unsigned long int src, unsigned int
len);

DESCRIPTION
Stores 1en characters from physical address src tological addressdest.

PARAMETERS
dest Logical address
src Physical address
len Numbers of bytes

RETURN VALUE

0: Success.
- 1: Attempt to write flash memory area, nothing written.
-2: Destination not all in root.

LIBRARY
XMEM.LIB

SEE ALSO

root2xmem, xalloc

Chapter 1: Function Descriptions 415

Xxmem2xmem

int xmem2xmem(unsigned long dest, unsigned long src, unsigned
len);

DESCRIPTION
Stores 1 en characters from physical address src to physica address dest.

PARAMETERS
dest Physical address of destination
src Physical address of source data
len Length of source datain bytes

RETURN VALUE

0: Success.
- 1: Attempt to write flash memory area, nothing written.

LIBRARY
XMEM.LIB

416 Dynamic C Function Reference Manual

xmemchr

long xmemchr (long src, char ch, unsigned short n);

DESCRIPTION

Search for the first occurrence of character ch in the xmem area pointedto by src.

PARAMETERS
src xmem (linear) address of the first character to search.
ch Character to search for.
n Maximum number of charactersto search.

RETURN VALUE

0: Character was not found within n bytes from the start.
>0: Physical address of the first character that matched ch.

LIBRARY
XMEM.LIB

Chapter 1: Function Descriptions

417

Xmemcmp

int xmemcmp(long xstr, char * str, unsigned short n);

DESCRIPTION
Test whether xmem string at xst r matches the root memory string at str. n bytesare
compared.
PARAMETERS
xstr xmem (linear) address of thefirst character of thefirst string to com-
pare.
str root address of the first character of the second string to compare.
n Length of each string. If n is zero, returns zero. n must be less than
or equal 4097.

RETURN VALUE

0: Exact match.
>0. xstr > str
<0. xstr < str

LIBRARY

XMEM.LIB

418 Dynamic C Function Reference Manual

xXrelease

void xrelease(long addr, long sz);

DESCRIPTION

Release ablock of memory previously obtained by xalloc () orby xavail () witha
non-null parameter. xrelease () may only be called to free the most recent block ob-
tained. It isNOT agenera -purpose malloc/freetype of dynamic memory allocation. Calls
toxalloc () /xrelease () must be nested in first-allocated/| ast-released order, simi-
lar to the execution stack. The addr parameter must be the return value from

xalloc (). If not, then arun-time exception will occur. The sz parameter must also be
equal to the actual allocated size, however thisis not checked. The actual allocated size
may be larger than the requested size (because of alignment overhead). The actual size
may be obtained by calling xalloc () rather thanxalloc (). For thisreason, it is
recommended that your application consistently uses _xalloc () rather than

xalloc () if youintend to use thisfunction.

PARAMETERS
addr Address of storage previously obtained by xalloc ().

sz Size of storage previously returned by xalloc ().

LIBRARY
XMEM.LIB

SEE ALSO

xalloc, xalloc, xavail, xavail, xalloc_ stats

Chapter 1: Function Descriptions 419

xsetint

void xsetint(long dst, int wval);

DESCRIPTION
Set theinteger pointed to by dst. Thisisthe most efficient function for writing two bytes
to xmem.
PARAMETERS
dst xmem (linear) address of the int value to set.
val value to store into the above location.

RETURN VALUE
None

LIBRARY
XMEM.LIB

420 Dynamic C Function Reference Manual

xsetfloat

void xsetfloat(long dst, float wval);

DESCRIPTION
Set the float pointed to by dst. Thisisthe most efficient function for writing 4 bytesto
xmem.
PARAMETERS
dst xmem (linear) address of the float value to set.
val value to store into the above location.

RETURN VALUE
None

LIBRARY
XMEM.LIB

xsetlong

void xsetlong(long dst, long val);

DESCRIPTION
Set the long integer pointed to by dst. Thisisthe most efficient function for writing 4
bytes to xmem.
PARAMETERS
dst xmem (linear) address of the long integer valueto set.
val value to store into the above location.

RETURN VALUE
None

LIBRARY
XMEM.LIB

Chapter 1: Function Descriptions 421

xstrlen

unsigned int xstrlen(long src);

DESCRIPTION

Return the length of the string in xmem pointed to by src. If thereis no null terminator
within the first 65536 bytes of the string, then the return value will be meaningless.

PARAMETERS

src xmem (linear) address of thefirst character of the string. Note: to per-
form anormal null-terminated search, ensurethat src isintherange
0..22971 1f the MSB of src isnot zero (i.e., bits 24-31) then that
character will be used to terminate the search rather than the standard
null terminator. E.g., to determinethelength of astring terminated by

|@|:
xstrlen (paddr (my str) | (long)'@' << 24);

RETURN VALUE
Length of string, not counting the terminator.

LIBRARY
XMEM.LIB

422 Dynamic C Function Reference Manual

Dynamic C Function Reference Manual

Part Number 019-0113-F « Printed in U.S.A.
©2004 Z-World Inc. = All rightsreserved.

Z-World reserves the right to make changes and
improvements to its products without providing notice.

Notice to Users

Z-WORLD PRODUCTS ARE NOT AUTHORIZED FOR USE AS
CRITICAL COMPONENTS IN LIFE-SUPPORT DEVICES OR SYS
TEMS UNLESS A SPECIFIC WRITTEN AGREEMENT REGARD-
ING SUCH INTENDED USE IS ENTERED INTO BETWEEN THE
CUSTOMER AND Z-WORLD PRIOR TO USE. Life-support devices or
systems are devices or systems intended for surgical implantation into the
body or to sustain life, and whose failure to perform, when properly used
in accordance with instructions for use provided in the labeling and user’s
manual, can be reasonably expected to result in significant injury.

No complex software or hardware system is perfect. Bugs are always
present in a system of any size. In order to prevent danger to life or prop-
erty, it is the responsibility of the system designer to incorporate redun-
dant protective mechanisms appropriate to the risk involved.

Trademarks
Dynamic C® is aregistered trademark of Z-World Inc.

Windows® isa registered trademark of Microsoft Corporation

Z-World, Inc.

2900 Spafford Street
Davis, California 95616-6800
USA

Telephone: (530) 757-3737
Fax: (530) 757-3792
www.zworld.com

http://www.zworld.com

424

Z-World Software End User License Agreement

IMPORTANT-READ CAREFULLY: BY INSTALLING, COPYING OR OTHERWISE USING
THE ENCLOSED Z-WORLD,INC. ("Z-WORLD") DYNAMIC C SOFTWARE, WHICH
INCLUDES COMPUTER SOFTWARE ("SOFTWARE") AND MAY INCLUDE ASSOCIATED
MEDIA, PRINTED MATERIALS, AND "ONLINE" OR ELECTRONIC DOCUMENTATION
("DOCUMENTATION"), YOU (ON BEHALF OF YOURSELF OR AS AN AUTHORIZED
REPRESENTATIVE ON BEHALF OF AN ENTITY) AGREE TOALL THE TERMS OF THIS
END USER LICENSE AGREEMENT ("LICENSE") REGARDING YOUR USE OF THE
SOFTWARE. IF YOU DO NOT AGREE WITH ALL OF THE TERMS OF THIS LICENSE,
DO NOT INSTALL, COPY OR OTHERWISE USE THE SOFTWARE AND IMMEDIATELY
CONTACT Z-WORLD FOR RETURN OF THE SOFTWARE AND A REFUND OF THE PUR-
CHASE PRICE FOR THE SOFTWARE.

We are sorry about the formality of the language below, which our lawyerstell us we need to
include to protect our legal rights. If You have any questions, write or call Z-World at (530) 757-
4616, 2900 Spafford Street, Davis, California 95616.

1. Definitions. In addition to the definitions stated in the first paragraph of this document, capital-
ized words used in this License shall have the following meanings:

1.1 "Qualified Applications' means an application program developed using the Software and
that links with the development libraries of the Software.

1.1.1"Qualified Applications’ is amended to include application programs devel oped using
the Softools WinlIDE program for Rabbit processors available from Softools, Inc.

1.1.2 The MicroC/OS-11 (uC/OS-1) library and sample code and the Point-to-Point Protocol
(PPP) library are not included in this amendment.

1.1.3 Excluding the exceptionsin 1.1.2, library and sample code provided with the Software
may be modified for use with the Softools WinlIDE program in Qualified Systems as
defined in 1.2. All other Restrictions specified by this license agreement remain in force.

1.2 "Qualified Systems" means a microprocessor-based computer system which is either (i)
manufactured by, for or under license from Z-WORLD, or (ii) based on the Rabbit 2000
microprocessor or the Rabbit 3000 microprocessor. Qualified Systems may not be (a)
designed or intended to be re-programmable by your customer using the Software, or (b)
competitive with Z-WORLD products, except as otherwise stated in awritten agreement
between Z-World and the system manufacturer. Such written agreement may require an
end user to pay run time royaltiesto Z-World.

Dynamic C Function Reference Manual 425

2. License. Z-WORLD grantsto You a nonexclusive, nontransferable licenseto (i) use and repro-
duce the Software, solely for interna purposes and only for the number of users for which You
have purchased licenses for (the "Users') and not for redistribution or resale; (ii) use and repro-
duce the Software solely to develop the Qualified Applications; and (iii) use, reproduce and
distribute, the Qualified Applications, in object code only, to end users solely for use on Quali-
fied Systems; provided, however, any agreement entered into between You and such end users
with respect to a Qualified Application is no less protective of Z-Worldsintellectual property
rights than the terms and conditions of this License. (iv) use and distribute with Qualified
Applications and Qualified Systems the program files distributed with Dynamic C named
RFU.EXE, PILOT.BIN, and COLDLOAD.BIN intheir unatered forms.

3. Restrictions. Except as otherwise stated, You may not, nor permit anyone else to, decompile,
reverse engineer, disassemble or otherwise attempt to reconstruct or discover the source code
of the Software, alter, merge, modify, trandlate, adapt in any way, prepare any derivative work
based upon the Software, rent, lease network, loan, distribute or otherwise transfer the Software
or any copy thereof. You shall not make copies of the copyrighted Software and/or documenta-
tion without the prior written permission of Z-WORLD; provided that, You may make one (1)
hard copy of such documentation for each User and a reasonable number of back-up copies for
Your own archival purposes. You may not use copies of the Software as part of a benchmark or
comparison test against other similar productsin order to produce results strictly for purposes
of comparison. The Software contains copyrighted material, trade secrets and other proprietary
material of Z-WORLD and/or its licensors and You must reproduce, on each copy of the Soft-
ware, all copyright notices and any other proprietary legends that appear on or in the origina
copy of the Software. Except for the limited license granted above, Z-WORLD retains al
right, title and interest in and to all intellectual property rights embodied in the Software,
including but not limited to, patents, copyrights and trade secrets.

4. Export Law Assurances. You agree and certify that neither the Software nor any other techni-
cal datareceived from Z-WORLD, nor the direct product thereof, will be exported outside the
United States or re-exported except as authorized and as permitted by the laws and regulations
of the United States and/or the laws and regulations of the jurisdiction, (if other than the United
States) in which You rightfully obtained the Software. The Software may not be exported to
any of the following countries. Cuba, Iran, Irag, Libya, North Korea, Sudan, or Syria.

5. Government End Users. If You are acquiring the Software on behalf of any unit or agency of
the United States Government, the following provisions apply. The Government agrees: (i)if
the Software is supplied to the Department of Defense ("DOD"), the Software is classified as
"Commercial Computer Software" and the Government is acquiring only "restricted rights" in
the Software and its documentation as that term is defined in Clause 252.227-7013(c)(1) of the
DFARS; and (ii) if the Softwareis supplied to any unit or agency of the United States Govern-
ment other than DOD, the Government's rightsin the Software and its documentation will be as
defined in Clause 52.227-19(¢)(2) of the FAR or, in the case of NASA, in Clause 18-52.227-
86(d) of the NASA Supplement to the FAR.

426 Dynamic C Function Reference Manual

6. Disclaimer of Warranty. You expressly acknowledge and agree that the use of the Software
and its documentation is at Your solerisk. THE SOFTWARE, DOCUMENTATION, AND
TECHNICAL SUPPORT ARE PROVIDED ON AN "ASIS' BASISAND WITHOUT WAR-
RANTY OF ANY KIND. Information regarding any third party servicesincluded in this pack-
ageis provided as a convenience only, without any warranty by Z-WORLD, and will be
governed solely by the terms agreed upon between You and the third party providing such ser-
vices. Z-WORLD AND ITSLICENSORS EXPRESSLY DISCLAIM ALL WARRANTIES,
EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING BUT NOT LIMITED
TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICU-
LAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS. Z-WORLD
DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE
WILL MEET YOUR REQUIREMENTS, OR THAT THE OPERATION OF THE SOFT-
WARE WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT DEFECTSIN THE
SOFTWARE WILL BE CORRECTED. FURTHERMORE, Z-WORLD DOES NOT WAR-
RANT OR MAKE ANY REPRESENTATIONS REGARDING THE USE OR THE RESULTS
OF THE SOFTWARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY
OR OTHERWISE. NO ORAL OR WRITTEN INFORMATION OR ADVICE GIVEN BY Z-
WORLD OR ITSAUTHORIZED REPRESENTATIVES SHALL CREATE A WARRANTY
ORIN ANY WAY INCREASE THE SCOPE OF THISWARRANTY. SOME JURISDIC-
TIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE
ABOVE EXCLUSION MAY NOT APPLY TO YOU.

7. Limitation of Liability. YOU AGREE THAT UNDER NO CIRCUMSTANCES, INCLUD-
ING NEGLIGENCE, SHALL Z-WORLD BE LIABLE FOR ANY INCIDENTAL, SPECIAL
OR CONSEQUENTIAL DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS
PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION AND THE
LIKE) ARISING OUT OF THE USE AND/OR INABILITY TO USE THE SOFTWARE,
EVEN IF Z-WORLD OR ITSAUTHORIZED REPRESENTATIVE HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. SOME JURISDICTIONS DO NOT ALLOW
THE LIMITATION OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSE-
QUENTIAL DAMAGES SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT
APPLY TOYOU. IN NO EVENT SHALL Z-WORLDS TOTAL LIABILITY TO YOU FOR
ALL DAMAGES, LOSSES, AND CAUSES OF ACTION (WHETHER IN CONTRACT,
TORT, INCLUDING NEGLIGENCE, OR OTHERWISE) EXCEED THE AMOUNT PAID
BY YOU FOR THE SOFTWARE.

8. Termination. This Licenseis effective for the duration of the copyright in the Software unless
terminated. You may terminate this License at any time by destroying all copies of the Soft-
ware and its documentation. This License will terminate immediately without notice from Z-
WORLD if You fail to comply with any provision of this License. Upon termination, You must
destroy all copies of the Software and its documentation. Except for Section 2 ("License"), al
Sections of this Agreement shall survive any expiration or termination of this License.

Dynamic C Function Reference Manual 427

9. General Provisions. No delay or failure to take action under this License will constitute a
waiver unless expressly waived in writing, signed by a duly authorized representative of Z-
WORLD, and no single waiver will constitute a continuing or subsequent waiver. ThisLicense
may not be assigned, sublicensed or otherwise transferred by You, by operation of law or other-
wise, without Z-WORLD's prior written consent. This License shall be governed by and con-
strued in accordance with the laws of the United States and the State of California, exclusive of
the conflicts of laws principles. The United Nations Convention on Contracts for the Interna-
tional Sale of Goods shall not apply to this License. If for any reason a court of competent
jurisdiction finds any provision of this License, or portion thereof, to be unenforceable, that
provision of the License shall be enforced to the maximum extent permissible so asto affect the
intent of the parties, and the remainder of this License shall continue in full force and effect.
This License constitutes the entire agreement between the parties with respect to the use of the
Software and its documentation, and supersedes all prior or contemporaneous understandings
or agreements, written or oral, regarding such subject matter. There shall be no contract for
purchase or sale of the Software except upon the terms and conditions specified herein. Any
additiona or different terms or conditions proposed by You or contained in any purchase order
are hereby rejected and shall be of no force and effect unless expressly agreed to in writing by
Z-WORLD. No amendment to or modification of this License will be binding unlessin writing
and signed by a duly authorized representative of Z-WORLD.

Copyright 2004 Z-World, Inc. All rights reserved.

428 Dynamic C Function Reference Manual

	Table of Contents
	Alphabetical Listing of Dynamic C Functions
	Group Listing of Dynamic C Functions
	Arithmetic
	Bit Manipulation
	Character
	Data Encryption
	Dynamic Memory Allocation
	ECC
	Error Handling
	Extended Memory
	Fast Fourier Transforms
	File Compression
	File System
	Floating-Point Math
	Global Positioning System
	HDLC Protocol (Rabbit 3000)
	I/O
	I2C Protocol
	Interrupts
	Low-Level Flash Access
	MD5
	MicroC/OS-II
	Miscellaneous
	Multitasking
	NAND Flash
	Number-to-String Conversion
	Partitions
	Pulse Width Modulation (Rabbit 3000)
	Quadrature Decoder (Rabbit 3000)
	Rabbit 3000
	Real-Time Clock
	Serial Communication
	Serial Flash
	Serial Packet Driver
	SPI
	Stdio
	String Manipulation
	String-to-Number Conversion
	System
	User Block
	Watchdogs

	�1. Function Descriptions
	abs
	acos
	acot
	acsc
	AESdecrypt
	AESdecryptStream
	AESencrypt
	AESencryptStream
	AESexpandKey
	AESinitStream
	asec
	asin
	atan
	atan2
	atof
	atoi
	atol
	bit
	BIT
	BitRdPortE
	BitRdPortI
	BitWrPortE
	BitWrPortI
	CalculateECC256
	ChkCorrectECC256
	ceil
	chkHardReset
	chkSoftReset
	chkWDTO
	clockDoublerOn
	clockDoublerOff
	CloseInputCompressedFile
	CloseOutputCompressedFile
	CoBegin
	cof_pktXreceive
	cof_pktXsend
	cof_serXgetc
	cof_serXgets
	cof_serXputc
	cof_serXputs
	cof_serXread
	cof_serXwrite
	CompressFile
	CoPause
	CoReset
	CoResume
	cos
	cosh
	DecompressFile
	defineErrorHandler
	deg
	DelayMs
	DelaySec
	DelayTicks
	Disable_HW_WDT
	Enable_HW_WDT
	errlogGetHeaderInfo
	errlogGetNthEntry
	errlogFormatEntry
	errlogFormatRegDump
	errlogFormatStackDump
	errlogGetMessage
	errlogReadHeader
	exception
	exit
	exp
	fabs
	fclose
	fcreate (FS1)
	fcreate (FS2)
	fcreate_unused (FS1)
	fcreate_unused (FS2)
	fdelete (FS1)
	fdelete (FS2)
	fflush (FS2)
	fftcplx
	fftcplxinv
	fftreal
	fftrealinv
	flash_erasechip
	flash_erasesector
	flash_gettype
	flash_init
	flash_read
	flash_readsector
	flash_sector2xwindow
	flash_writesector
	floor
	fmod
	fopen_rd (FS1)
	fopen_rd (FS2)
	fopen_wr (FS1)
	fopen_wr (FS2)
	forceSoftReset
	fread (FS1)
	fread (FS2)
	frexp
	fs_format (FS1)
	fs_format (FS2)
	fs_init (FS1)
	fs_init (FS2)
	fs_reserve_blocks (FS1)
	fsck (FS1)
	fseek (FS1)
	fseek (FS2)
	fs_get_flash_lx (FS2)
	fs_get_lx (FS2)
	fs_get_lx_size (FS2)
	fs_get_other_lx (FS2)
	fs_get_ram_lx (FS2)
	fs_set_lx (FS2)
	fs_setup (FS2)
	fs_sync (FS2)
	ftell (FS1)
	ftell (FS2)
	fshift
	fwrite (FS1)
	fwrite (FS2)
	ftoa
	getchar
	getcrc
	getdivider19200
	gets
	GetVectExtern2000
	GetVectExtern3000
	GetVectIntern
	gps_get_position
	gps_get_utc
	gps_ground_distance
	hanncplx
	hannreal
	HDLCdropX
	HDLCerrorX
	HDLCopenX
	HDLCpeekX
	HDLCreceiveX
	HDLCsendX
	HDLCsendingX
	hitwd
	htoa
	IntervalMs
	IntervalSec
	IntervalTick
	ipres
	ipset
	isalnum
	isalpha
	iscntrl
	isCoDone
	isCoRunning
	isdigit
	isgraph
	islower
	isspace
	isprint
	ispunct
	isupper
	isxdigit
	itoa
	i2c_check_ack
	i2c_init
	i2c_read_char
	i2c_send_ack
	i2c_send_nak
	i2c_start_tx
	i2c_startw_tx
	i2c_stop_tx
	i2c_write_char
	kbhit
	labs
	ldexp
	log
	log10
	longjmp
	loophead
	loopinit
	lsqrt
	ltoa
	ltoan
	lx_format
	mbr_CreatePartition
	mbr_EnumDrive
	mbr_FormatDrive
	mbr_MountPartition
	mbr_UnmountPartition
	mbr_ValidatePartitions
	md5_append
	md5_init
	md5_finish
	memchr
	memcmp
	memcpy
	memmove
	memset
	mktime
	mktm
	modf
	nf_eraseBlock
	nf_getPageCount
	nf_getPageSize
	nf_initDevice
	nf_InitDriver
	nf_isBusyRBHW
	nf_isBusyStatus
	nf_readPage
	nf_writePage
	OpenInputCompressedFile
	OpenOutputCompressedFile
	OS_ENTER_CRITICAL
	OS_EXIT_CRITICAL
	OSFlagAccept
	OSFlagCreate
	OSFlagDel
	OSFlagPend
	OSFlagPost
	OSFlagQuery
	OSInit
	OSMboxAccept
	OSMboxCreate
	OSMboxDel
	OSMboxPend
	OSMboxPost
	OSMboxPostOpt
	OSMboxQuery
	OSMemCreate
	OSMemGet
	OSMemPut
	OSMemQuery
	OSMutexAccept
	OSMutexCreate
	OSMutexDel
	OSMutexPend
	OSMutexPost
	OSMutexQuery
	OSQAccept
	OSQCreate
	OSQDel
	OSQFlush
	OSQPend
	OSQPost
	OSQPostFront
	OSQPostOpt
	OSQQuery
	OSSchedLock
	OSSchedUnlock
	OSSemAccept
	OSSemCreate
	OSSemPend
	OSSemPost
	OSSemQuery
	OSSetTickPerSec
	OSStart
	OSStatInit
	OSTaskChangePrio
	OSTaskCreate
	OSTaskCreateExt
	OSTaskCreateHook
	OSTaskDel
	OSTaskDelHook
	OSTaskDelReq
	OSTaskIdleHook
	OSTaskQuery
	OSTaskResume
	OSTaskStatHook
	OSTaskStkChk
	OSTaskSuspend
	OSTaskSwHook
	OSTCBInitHook
	OSTimeDly
	OSTimeDlyHMSM
	OSTimeDlyResume
	OSTimeDlySec
	OSTimeGet
	OSTimeSet
	OSTimeTick
	OSTimeTickHook
	OSVersion
	outchrs
	outstr
	paddrDS
	paddrSS
	palloc
	palloc_fast
	pavail
	pavail_fast
	pcalloc
	pfirst
	pfirst_fast
	pfree
	pfree_fast
	phwm
	pktXclose
	pktXgetErrors
	pktXinitBuffers
	pktXopen
	pktXreceive
	pktXsend
	pktXsending
	pktXsetParity
	plast
	plast_fast
	pmovebetween
	pmovebetween_fast
	pnel
	pnext
	pnext_fast
	poly
	pool_append
	pool_init
	pool_link
	pool_xappend
	pool_xinit
	pow
	pow10
	powerspectrum
	pprev
	pprev_fast
	premain
	preorder
	printf
	putchar
	puts
	pwm_init
	pwm_set
	pxalloc
	pxalloc_fast
	pxcalloc
	pxfirst
	pxfirst_fast
	pxfree
	pxfree_fast
	pxlast
	pxlast_fast
	pxnext
	pxnext_fast
	pxprev
	pxprev_fast
	qd_error
	qd_init
	qd_read
	qd_zero
	qsort
	rad
	rand
	randb
	randg
	RdPortE
	RdPortI
	ReadCompressedFile
	read_rtc
	read_rtc_32kHz
	readUserBlock
	readUserBlockArray
	res
	RES
	ResetErrorLog
	root2xmem
	rtc_timezone
	runwatch
	serCheckParity
	serXclose
	serXdatabits
	serXflowcontrolOff
	serXflowcontrolOn
	serXgetc
	serXgetError
	serXopen
	serXparity
	serXpeek
	serXputc
	serXputs
	serXrdFlush
	serXrdFree
	serXrdUsed
	serXread
	serXwrFlush
	serXwrFree
	serXwrite
	set
	SET
	set32kHzDivider
	setClockModulation
	setjmp
	SetVectExtern2000
	SetVectExtern3000
	SetVectIntern
	sf_getPageCount
	sf_getPageSize
	sf_init
	sf_initDevice
	sf_isWriting
	sf_pageToRAM
	sf_RAMToPage
	sf_readDeviceRAM
	sf_readPage
	sf_readRAM
	sf_writeDeviceRAM
	sf_writePage
	sf_writeRAM
	sfspi_init
	sin
	sinh
	snprintf
	SPIinit
	SPIRead
	SPIWrite
	SPIWrRd
	sprintf
	sqrt
	srand
	strcat
	strchr
	strcmp
	strcmpi
	strcpy
	strcspn
	strlen
	strncat
	strncmp
	strncmpi
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtod
	strtok
	strtol
	_sysIsSoftReset
	sysResetChain
	tan
	tanh
	tm_rd
	tm_wr
	tolower
	toupper
	updateTimers
	use32kHzOsc
	useClockDivider
	useClockDivider3000
	useMainOsc
	utoa
	VdGetFreeWd
	VdHitWd
	VdInit
	VdReleaseWd
	WriteFlash2
	WriteFlash2Array
	write_rtc
	writeUserBlock
	writeUserBlockArray
	WrPortE
	WrPortI
	xalloc
	_xalloc
	xalloc_stats
	xavail
	_xavail
	xCalculateECC256
	xChkCorrectECC256
	xgetfloat
	xgetint
	xgetlong
	xmem2root
	xmem2xmem
	xmemchr
	xmemcmp
	xrelease
	xsetint
	xsetfloat
	xsetlong
	xstrlen

	Notice to Users
	Z-World Software End User License Agreement

