
AR-B6002 User Manual

AR-B6002 Board
Fan-less with Intel ATOM Pineview + ICH8M

User Manual

Manual Rev.: 1.13

1

AR-B6002 User Manual

Revision 1.13

2

AR-B6002 User Manual

Copyright 2011

All Rights Reserved.

Manual’s first edition:

For the purpose of improving reliability, design and function, the information in this document is

subject to change without prior notice and does not represent a commitment on the part of the

manufacturer.

In no event will the manufacturer be liable for direct, indirect, special, incidental, or

consequential damages arising out of the use or inability to use the product or documentation, even

if advised of the possibility of such damages.

This document contains proprietary information protected by copyright. All rights are reserved.

No part of this Manual may be reproduced by any mechanical, electronic, or other means in any

form without prior written permission of the manufacturer.

Trademarks

AR-B6002 is a registered trademarks of Acrosser; IBM PC is a registered trademark of the

International Business Machines Corporation; Pentium is a registered trademark of Intel

Technologies Inc; Award is a registered trademark of Award Software International Inc; other

product names mentioned herein are used for identification purposes only and may be trademarks

and/or registered trademarks of their respective companies.

3

AR-B6002 User Manual

Table of Contents

1. Introduction.. 6

1.1 ..7 Specifications

1.2 ...8 Package Contents

1.3 Block Diagram ...9

2. H/W Information ... 10

2.1 Locations of Connector and Jumper Setting..10

2.2 Connector and Jumper Setting Table ..13

3. BIos setting .. 23

3.1 Main Setup ...24

3.2 Advanced Chipset Setup ..26

3.3 Power Setup...28

3.4 PnP/PCI Setup..29

3.5 Peripherals Setup ..31

3.6 PC Health Setup...32

3.7 Boot Setup ...33

3.8 Exit Setup ...34

4. WATCHDOG, GPIO, AND BYPASS PROGRAMMING....................... 36

4.1 Watchdog Programming ...36

4.2 GPIO Programming ...40

5. SOFTWARE INSTALLATION and PROGRAMMING GUIDE.......... 45

5.1 Introduction..45

5.2 File Descriptions..50

4

AR-B6002 User Manual

5.3 API List and Descriptions ...53

5.4 Appendix ..75

5.5 GPIO and CAN bus cable color ..76

5

AR-B6002 User Manual

1 INTRODUCTION

AR-V6002FL series with Intel Atom D425/D525 processor is a multi-function In-Vehicle

computer which is suitable for using in all kind of applications. Besides basic I/O ports like VGA,

USB, COM, LAN, and GPIO, AR-V6002FL has complete wireless solutions for selection, embedded

CAN BUS function to allow microcontrollers and devices to communicate with each other in vehicle.

In addition, AR-V6002FL has intelligent power management function with software utility to monitor

power status and control power sequence, and also compliant with most industry standards for

in-vehicle usage including CE, FCC, and E-Mark 13.

6

AR-B6002 User Manual

1.1 Specifications

 IntelR Atom D525/D425 1.66GHz

 1 x SO-DIMM supports DDRIII up to 4GB(Memory DDR3 data transfer rates of 800 MT/s)

 1 x VGA

 6 x USB2.0

 2 x SATA

 1 x CF II

 5 x RS-232

 1 x GbE (Realtek RTL8111D)

 1 x Line-out , 1 x MIC

 1 x Canbus (Implementation ISO 11898)

 8-bit GPIO with 4in / 4out

 Optional WiFi/ Bluetooth/ GPS/ 3.5G solution for selection

 Intelligent power management support standard 12V/24V car battery

7

AR-B6002 User Manual

1.2 Package Contents

Check if the following items are included in the package.

 Quick Manual

 AR-B6002

 1 x Software Utility CD

8

AR-B6002 User Manual

1.3 Block Diagram

9

AR-B6002 User Manual

2 H/W INFORMATION

This chapter describes the installation of AR-B6050. At first, it shows the Function diagram and

the layout of AR-B6050. It then describes the unpacking information which you should read carefully,

as well as the jumper/switch settings for the AR-B6050 configuration

2.1 Locations of Connector and Jumper Setting

2.1.1 Locations (Top side)

10

AR-B6002 User Manual

 CN6 CN18 CN23,CN24

 CN8 GPIO1 JP8,JP11

 SATA_PWR1 CN5 CN25 (Reserve)

 SATA_PWR2 CN7 COM5 (Reserve)

 CN2 CN28 JP5,JP6 (Reserve)

 CN13 CN20 JP7,JP10

 BH1 VGA1 JP9,JP12

 Minipcie1 SW1 U8

 CN9 (Reserve) COM1 CN21

 CN10 (Reserve) COM3 DIMM1

 Minipcie2 AUDIO1 SATA1

 CN17 PWR1 SATA2

 LED1 FUSE1

11

AR-B6002 User Manual

2.1.2 Locations (Bottom Side)

 CF1

12

AR-B6002 User Manual

2.2 Connector and Jumper Setting Table

1. CN6: BLUETOOTH connector. 2. CN8: GPS connector.

PIN DEFINE

1 GND

2 USB_D+

3 USB_D-

4 +3.3V

5 LED

6 BT_ON

7 GND

8 +3.3V

PIN DEFINE

1 GND

2 USB_D+

3 USB_D-

4 +3.3V

5 LED

6 GPS_ON

7 GND

8 +3.3V

3. SATA_PWR1: SATA Power connector 4. SATA_PWR2: SATA Power connector

PIN DEFINE

1 +12V

2 GND

3 +3.3V

4 +5V

PIN DEFINE

1 +12V

2 GND

3 +3.3V

4 +5V

5. CN2: Pin Header for clear CMOS 6. CN13: SIM Card Slot

STATUS SETTING

1-2 Clear CMOS

SIM Card Slot for 3G Module.

7. BH1: CMOS battery holder 8. MINIPCIE1: Mini PCI-E connector. (for 3.5G

module)

CMOS battery holder

MINI PCI-E connector

13

AR-B6002 User Manual

9. CN9: Internal USB2.0 connector (Reserve) 10. CN10: Internal USB2.0 connector

(Reserve)

PIN DEFINE

1 +5V

2 USB5-

3 USB5+

4 GND

5 GND

PIN DEFINE

1 +5V

2 USB6-

3 USB6+

4 GND

5 GND

11. MINIPCIE2: Mini PCI-E connector. 12. CN17: FPGA Programmable HEADER.

MINI PCI-E connector.

FPGA programmable header.

13. LED1: Power State 14. CN18: CANBUS connector

LED SIGNAL

G PIC LED

G HDD LED

Y Power LED

PIN DEFINE

1 CAN_H

2 CAN_L

15. GPIO1: GPIO connector 16. CN5: RJ45 + USB X 2 connector

PIN DEFINE PIN DEFINE

1 GPO0 2 GPO1

3 GPO2 4 GPO3

5 GND 6 GND

7 GND 8 GND

9 GND 10 GND

11 GPI4 12 GPI5

13 GPI6 14 GPI7

15 N.C

RJ45 connector for Gigabit Ethernet port

#1.

Upper: Port #2.

Lower: Port #1.

14

AR-B6002 User Manual

17. CN7: USB connector 18. CN28: PIC Programming connector.

Upper: Port #4.

Lower: Port #3.

PIC programming connector.

19. CN20: Setting Voltage level of Battery 20. VGA1: D-SUB-15 female connector for

VGA output

STATUS SETTING

1-2 +24V

2-3 +12V (Default).

D-SUB-15 female connector for

VGA output

21. SW1: DIP switch for power mode select

(Note 1)

22. COM1: D-SUB-9P Male connector × 2

 (Note 2)

Mode 1 2 3 4

0 ON ON ON ON

1 ON ON ON OFF

2 ON ON OFF ON

3 ON ON OFF OFF

4 ON OFF ON ON

5 ON OFF ON OFF

6 ON OFF OFF ON

7 ON OFF OFF OFF

PIN DEFINE PIN DEFINE

1
DCD

/DT-
2

SIN

/DT+

3
SOUT

/422R+
4

DTR

/422R-

5 GND 6 DSR

7 RTS 8 CTS

9 RI_12V

23. COM3: D-SUB-9P Male connector X 2 24. AUDIO1: AUDIO connector

PIN DEFINE PIN DEFINE

1 DCD 2 SIN

3 SOUT 4 DTR

5 GND 6 DSR

7 RTS 8 CTS

9 RI_12V

Color SIGNAL

Blue Remote Switch

Green Line Out

Pink MIC IN

15

AR-B6002 User Manual

25. PWR1: Power Input Terminal Block

Connector

26. FUSE1: Fuse connector

PIN DEFINE

1 12V / 24V

2 IGN

3 GND

PIN DEFINE

1,2 Fuse Out

3,4 Fuse In

27. CN23: RI SELECT for COM1/2

 CN24: RI SELECT for COM3/4

28. JP8,JP11: RS-232 / RS-422 / RS-485

Selection for COM1/2 (Note 2)

STATUS SETTING

RI#

(Default)
1-2(COM1/COM3)

+12V 3-4(COM1/COM3)

RI#

(Default)
5-6(COM2/COM4)

+12V 7-8(COM2/COM4)

STATUS SETTING

RS-232

(Default)

1-3

2-4

RS-422
3-5

4-6

RS-485
3-5

4-6

29. CN25: RI SELECT for COM5/6 (Reserve) 30. COM5: RS232 signal connector for port #5

(Reserve)

STATUS SETTING

RI#

(Default)
1-2(COM5)

+12V 3-4(COM5)

RI#

(Default)
5-6(COM6)

+12V 7-8(COM6)

PIN DEFINE PIN DEFINE

1 DCD #5 2 DSR #5

3 RX #5 4 RTS #5

5 TX #5 6 CTS #5

7 DTR #5 8 RI #5

9 GND 10 N.C

31. JP5,JP6: RS-485 Termination 120 ohm

(Reserve)

32. JP7,JP10: RS-232 / RS-422 / RS-485

Selection for COM1/2 (Note 2)

STATUS SETTING

Enable short

Disable
open

(Default)

STATUS SETTING

RS-232

(Default)
1-2

RS-422 3-4

RS-485 5-6

16

AR-B6002 User Manual

33. JP9,JP12: RS-232 / RS-422 / RS-485

Selection for COM1/2 (Note 2)

34. U8: SPI BIOS Socket

STATUS SETTING

RS-232

(Default)

1-3

2-4

RS-422
3-5

4-6

RS-485 N / A

SPI BIOS Socket

36. DIMM1: DDR-II SODIMM Socket. 35. CN21: BIOS Programmable HEADER.

PIN DEFINE PIN DEFINE

1 CS0 2 +3.3V

3 MISO 4 HOLD

5 WP 6 CLK

7 GND 8 MOSI

9 N.C 10 N.C

DDR-3 SODIMM Socket

37. SATA1: SATA device connector #1. 38. SATA2: SATA device connector #2.

SATA device connector #1

SATA device connector #2

 39. CF1: Type-II compact flash card socket

+3.3V CF card only and UDMA

mode supported

17

AR-B6002 User Manual

 Note1: Power smart function

 Mode0: ATX function.

 Mode1: Auto PWRBTN function.

 Mode2, Mode3, Mode4: Smart ATX.

 Mode5, Mode6, Mode7: Smart ATX (poweron by trigger Remote SW).

 Others modes are reserved for test only.

Definition

1. Soft off cycle:

A period when received power off signal to generate a off signal (A 500mS pulse, High-

Low –High or Low-High-Low depends on SIO configuration, to mother board’s Power

Button Pin)

2. Hard Off cycle:

A period when system off (S5) to stand by removed (G3). In another word, the A period of

5VSB on to off (when system already off)

 Notes: S5 and G3 is follow by ACPI

Mode description

The main power-in is controlled by the switch on chassis.

Maximum 16 Modes adjusted by 4 switches. (Mode 8 to mode 15 are reserved for future use).

Mode 0: ATX mode.

A. 5V Standby is always on.

B. Input voltage is not monitored.

C. Power on/off is controlled by remote switch

Mode 1: Auto PWRBTN mode

A. Power output immediately after input is present.

B. Power output is off immediately when input power to off

Smart Mode (Mode 2 to Mode 7)

Mode 2: See Figure 1

A. Power on is controlled by ignition (remote switch does not make any action to power on).

B. Power on retry: If the motherboard cannot be turned on normally (/PSON does not go to low),

the Power smart function will turn off 5VSB, and then turn on 5VSB and retry. Send “on”

18

AR-B6002 User Manual

pulse to motherboard again. The power board will re-try this procedure until successfully turn

on motherboard.

C. Power smart function sends “ON” pulse to motherboard when ignition is on for more than 2

seconds.

D. Power smart function will ignore the status change of ignition after ON pulse is send to

motherboard for 3 minutes. After this period, the Power smart function will start to check its

status. This can avoid an improper “OFF” process before the OS is complete booted.

E. Power off is controlled by remote switch or ignition. Remote switch has higher priority

than ignition. (Remote switch is optional).

F. Power smart function sends “off” pulse to motherboard 5 seconds after ignition is turned off

or remote switch is pressed. (Soft delay)

G. Power smart function will ignore the status change of ignition and remote switch during the

“OFF” pulse is sent out and the /PSON return to high. This will avoid an improper ON

process before the motherboard is completely shot off.

H. The digital output (optional) will go from high to low at the moment that “OFF” pulse is sent

to motherboard. The low state will be kept until /PSON back to high. If the /PSON does not

back to high within 3 minutes, the Power smart function will enter a retry cycle (described in

next section).

I. Power off retry: If the motherboard cannot be shouted down normally (/PSON does not go to

high) within 3 minutes after “OFF” pulse is sent, the Power smart function will send off pulse

to motherboard again. If the motherboard still cannot be shouted down normally, the power

output will be turned off directly. (Figure 3)

J. Hard off delay: 1 minutes, During this period system can be turned on again if the off

procedure already finished and power button is pushed again(or ignition on again)

Mode 3:

A. Same as mode 2 except for soft/hard off delay time

B. Soft off delay: 1 minute

C. Hard off delay: 5 minutes

Mode 4:

A. Same as mode 2 except for soft/hard off delay time

B. Soft off delay: 30 minute

C. Hard off delay: 2 Hours

19

AR-B6002 User Manual

Mode 5: See Figure 2

Same as mode 2 except that the power on is controlled by remote switch.

A. Power on is controlled by remote switch (ignition must be turned on 2 seconds before

remote switch is pressed).

B. The Smart Mode sends off pulse to motherboard 5 seconds after ignition is turned off or

remote switch is pressed. (Soft delay)

C. Hard off delay: 1 minutes

Mode 6:

A. Same as mode 5 except for soft/hard off and delay

B. Soft off delay: 1 minute

C. Hard off delay: 5 minutes

Mode 7:

A. Same as mode 5 except for soft/hard off and delay

B. Soft off delay: 30 minute

C. Hard off delay: 2 Hours

Mode15(Software control mode):

A. Setting by AP

B. Software mode default as Hardware mode 2

C. Soft off delay time can be set

D. Hard off delay time can be set

E. In-Vehicle system power on by ignition or Remote button can be set

F. Show Ignition status / Voltage(for AP only)

G. Create a button "Set default"

Plan AP screen Engine status Car Battery

System on by Ignition Remote Switch

Soft off delay time seconds

Hard off delay time seconds Set Default

OK Cancel

20

AR-B6002 User Manual

Table 1. Control Mode

Mode Soft OFF

Delay

Hard OFF

delay

Power ON

Control

Power OFF Control

No No Remote Switch Remote Switch 0 (ATX)

No No DC ON DC OFF 1(Auto PWRBTN)

5 seconds 1 minute Ignition Ignition / Remote Switch 2

1 minute 5 minutes Ignition Ignition / Remote Switch 3

30 minutes 2 hours Ignition Ignition / Remote Switch 4

5 seconds 1 minute Remote Switch

/ Ignition

Ignition / Remote Switch 5

1 minute 5 minutes Remote Switch

/ Ignition

Ignition / Remote Switch 6

30 minutes 2 hours Remote Switch

/ Ignition

Ignition / Remote Switch 7

By user

setting

By user setting By user setting Ignition / Remote Switch 15 (Software

control)

Another function of Smart Mode

1. If ignition turns back “ON” during “Off” Delay, Power smart function will stay in operation. “Off”

signal will not be send to motherboard. The “Off” Delay will re-start after next ignition off.

2. Power input monitoring(before system boot on, during runtime, during soft off delay): The

Power smart function will constantly monitor the input voltage. If the input voltage is below X

Voltage (the standard might have 5% tolerance), the Smart Mode will not start the power on

procedure. When Power smart function has ran in operation and the battery drops below Y

Voltage (with 5% tolerance) more than 10 seconds the Power smart function will shut down

the motherboard following the standard shut down procedure. If the input voltage recovers in

10 seconds over Y Voltage (with 5% tolerance) again, the Power smart function will continue

to run. (Figure 4)if this happens, ignition shall be off and on again (Mode 2, 3, 4) or press the

remote switch(Mode 5,6,7) if you want to turn on system again.

21

AR-B6002 User Manual

Important: Please make sure the CN20 jumper is set to the right setting which
meet your vehicle power system. The power subsystem uses this setting to
identify the voltage of your vehicle power system.

STATUS SETTING

+24V system 1-2

2-3 +12V system (Default).

 For 12V car battery For 24V car battery

X value

(Minimum Start up

voltage)

11.2 23

Y value

(Auto shut down voltage)

10.8 22.5

Note2: COM1 / 2 to choose RS-232 / RS-485 / RS-422 by Jump setting

 JP7,JP8,JP9 setting to COM1

 JP10,JP11,JP12 setting to COM2

Note3:

It can not use USB Hub with power adaptor that connects to USB port.

22

AR-B6002 User Manual

3 BIOS SETTING

This chapter describes the BIOS menu displays and explains how to perform common tasks

needed to get the system up and running. It also gives detailed explanation of the elements found in

each of the BIOS menus. The following topics are covered:

 Main Setup

 Advanced Chipset Setup

 PnP/PCI Setup

 Peripherals Setup

 PC Health Setup

 Boot Setup

 Exit Setup

Once you enter the Award BIOS™ CMOS Setup Utility, the Main Menu will appear on the

screen. Use the arrow keys to highlight the item and then use the <Pg Up> <Pg Dn> keys to select

the value you want in each item.

23

AR-B6002 User Manual

3.1 Main Setup

The BIOS setup main menu includes some options. Use the [Up/Down] arrow key to highlight

the option, and then press the [Enter] key to select the item and configure the functions.

Note: The control keys are listed at the bottom of the menu. If you need any help with the item fields, you can

press the <F1> key, and the relevant information will be displayed.

Option Description Item

Format : MM/DD/YYYY

(month/day/year)

Set the system date. Note that the ‘Day’

automatically changes when you set the

date.

System Date

Format: HH:MM:SS

(hour:minute:second)
Set the system time. System Time

IDE Channel 0

Master/Slave
N/A

The onboard SATA Ports support user

connecting up to 2 SATA HDD.

The first SATA Port is the “IDE Channel 0

Master” and the second is “IDE Channel 1

Master”. BIOS will auto-detect the HDD

type.

24

AR-B6002 User Manual

All Errors,

No Errors,

All but keyboard.

Select the situation in which you want the

BIOS to stop the POST process and notify

you.

Halt On

25

AR-B6002 User Manual

3.2 Advanced Chipset Setup

This section consists of configuration entries that allow you to improve your

system performance, or modify some system features according to your preference. Some entries

are required and reserved by the board’s design.

Note: The control keys are listed at the bottom of the menu. If you need any help with the item fields, you can

press the <F1> key, and the relevant information will be displayed.

Choice Description Option

Enabled

Disabled

Enable for Windows XP and Linux

Disable for other OS.

Hyper-Threading

Technology

Enabled

Disabled

This category speeds up the Power On

Self Test (POST) after you have powered

on the computer. If it is set to Enabled, the

BIOS will shorten or skip some check

items during POST.

Quick Power On Self

Test

Enabled

Disabled

Select Enabled to show the full screen

logo if you have an add-in BIOS.
Full Screen Logo Show

On-Chip Frame

Buffer Size

1Mb

8Mb

This Item is for setting the Frame Buffer

(Share system memory as display

26

AR-B6002 User Manual

memory).

Enabled

Disabled

This item sets the mode for dynamic video

memory thechology
DVMT mode

Total GFX

Memory

128MB

256MB

MAX

This item sets the mode for GFX video

memory

27

AR-B6002 User Manual

3.3 Power Setup

Note: The control keys are listed at the bottom of the menu. If you need any help with the item fields, you can

press the <F1> key, and the relevant information will be displayed.

Option Description Item

Enabled ACPI System Support ACPI Function

S3

S1
ACPI S1/S3 Sleep State.

ACPI Suspend

Type

28

AR-B6002 User Manual

3.4 PnP/PCI Setup

The option configures the PCI bus system. All PCI bus system on the system use INT#, thus

all installed PCI cards must be set to this value.

Note: The control keys are listed at the bottom of the menu. If you need any help with the item fields, you can

press the <F1> key, and the relevant information will be displayed.

Option Description Item

Reset Configuration

Data

Enabled

Disabled

Normally, you leave this field Disabled.

Select Enabled to reset Extended System

Configuration Data (ESCD) when you

exit Setup. If you have installed a new

add-on and the system reconfiguration has

caused such a serious conflict, then the

operating system cannot boot.

Resources

Controlled By

Auto(ESCD)

Manual

The Award Plug and Play BIOS has the

capacity to automatically configure all of the

boot and Plug and Play compatible devices.

However, this capability means absolutely

nothing unless you are using a Plug and Play

29

AR-B6002 User Manual

operating system such as Windows 95. If

you set this field to “manual,” then you may

choose specific resources by going into each

of the submenus.

N/A

When resources are controlled manually,

assign a type to each system interrupt,

depending on the type of the device that

uses the interrupt

IRQ Resources

30

AR-B6002 User Manual

3.5 Peripherals Setup

This option controls the configuration of the board’s chipset. Control keys for this screen are

the same as for the previous screen.

Note: The control keys are listed at the bottom of the menu. If you need any help with the item fields, you can

press the <F1> key, and the relevant information will be displayed.

Choice Description Option

Onboard Serial Port 1

Onboard Serial Port 2

Onboard Serial Port 3

Onboard Serial Port 4

Onboard Serial Port 5

Serial Port 1: 3F8 / IRQ4

Serial Port 2: 2F8 / IRQ3

Serial Port 3: 3E8 / IRQ11

Serial Port 4: 2E8 / IRQ10

Serial Port 5: 4F8 / IRQ11

Select an address and the

corresponding interrupt for each

serial port.

Select your system contains a

Universal Serial Bus (USB)

controller and you have USB

peripherals.

USB Device Setting

On chip IDE DEVICE

The integrated peripheral controller

contains an IDE interface with

support for two IDE channels.

31

AR-B6002 User Manual

3.6 PC Health Setup
This section shows the parameters in determining the PC Health Status. These parameters

include temperatures, fan speeds, and voltages.

32

AR-B6002 User Manual

3.7 Boot Setup
This option allows user to select sequence/priority of boot device(s) and Boot from LAN.

Note: The control keys are listed at the bottom of the menu. If you need any help with the item fields, you can

press the <F1> key, and the relevant information will be displayed.

Choice Description Option

Hard Disk

CDROM

USB-FDD

USB-CDROM

LAN

Disabled

The BIOS attempts to load

the operating system from

the devices in the selected

sequence.

First / Second / Third

Boot Device/Other Boot

Device

Enabled

Disabled

These fields allow the

system to search for an

OS from LAN.

LAN Boot Select

N/A
These fields set the Boot

Priority for each Hard Disk.
Hard Disk Boot Priority

33

AR-B6002 User Manual

3.8 Exit Setup

This option is used to exit the BIOS main menu and change password.

Note: The control keys are listed at the bottom of the menu. If you need any help with the item fields, you can

press the <F1> key, and the relevant information will be displayed.

Choice Description Option

Save & Exit Setup

Press <Enter> on this item

to confirm:

Save to CMOS and EXIT

(Y/N)? Y

Press “Y” to store the

selections made in the menus

in CMOS – a special section of

the memory that stays on after

you turn your system off. The

next time you boot your

computer, the BIOS configures

your system according to the

setup selections stored in

CMOS. After saving the values,

the system will restart.

34

AR-B6002 User Manual

When you press <Enter>

on this item, you will see a

confirmation dialog box

with a message like this:

Load Optimized Defaults

(Y/N)? N

Press ‘Y’ to load the default

values that are factory-set for

optimal-performance system

operations.

Load Optimized

Defaults

Press <Enter> on this item

to confirm:

Quit without saving

(Y/N)? Y

This allows you to exit Setup

without storing any changes in

CMOS. The previous selections

remain in effect. This will exit

the Setup utility and restart your

computer.

Exit Without Saving

Set Password

Press <Enter> on this item

to confirm:

ENTER PASSWORD:

When a password has been

enabled, you will be prompted

to enter your password every

time you try to enter Setup. This

prevents unauthorized persons

from changing any part of your

system configuration.

Type the password, up to eight

characters in length, and press

<Enter>. The password typed now

will clear any previous password

from the CMOS memory. You will

be asked to confirm the password.

Type the password again and

press <Enter>. You may also

press <Esc> to abort the selection

and not enter a password.

To disable a password, just press

<Enter> when you are prompted

to enter the password. A message

will confirm that the password will

be disabled. Once the password is

disabled, the system will boot and

you can enter Setup freely.

35

AR-B6002 User Manual

WATCHDOG, GPIO, AND BYPASS

PROGRAMMING 4

4.1 Watchdog Programming

This section describes the usage of WATCHDOG. AR-B6050 integrated the WATCHDOG that

enable user to reset the system after a time-out event. User can use a program to enable the

WATCHDOG and program the timer in range of 1~255 second(s)/minute(s). Once user enables the

WATCHDOG, the timer will start to count down to zero except trigger the timer by user’s program

continuously. After zeroize the timer (stop triggering), the WATCHDOG will generate a signal to

reset the system. It can be used to prevent system crash or hang up. The WATCHDOG is disabled

after reset and should be enabled by user’s program.

Intel also provides a Linux watchdog driver to access the feature on AR-B6050. It can be accessed

via /dev/watchdog. About the related operations of Linux watchdog please refer Linux website.

Please refer to the following table to program WATCHDOG properly, and user could test

WATCHDOG under ‘Debug’ program.

Address port: 2E and Data port: 2F

To enter debug mode. C:>debug

-o 2E 87

-o 2E 01

-o 2E 55

-o 2E 55

To enter configuration.

To point to Logical Device Number Reg. -o 2E 07

To select logical device 7 (WATCHDOG). -o 2F 07

-o 2E 72

-o 2F 40
To select “keyboard reset” as WATCHDOG output to reset system.

Preparing to select the unit of timer equals minute or second. -o 2E 72

To read the value of index “2F”. -i 2F

-o 2F xx The value “xx” equals [(value of index “2F”) OR (80)].

OR (80): unit is second.

OR (00): unit is minute.

36

AR-B6002 User Manual

Preparing to set the WATCHDOG timer value. -o 2E 73

The value “##” ranges between 01 ~ FF (1 ~ 255 seconds).

00: To disable WATCHDOG.

-o 2F ##

To quit debug mode -q

Notice: The “actual” timer value may not match with the “theoretical”. That is because of the

tolerance of internal oscillating clock and cannot be adjusted or optimized.

//===

// Rev Date Name Description

//===

// 1.0 11/22/10 Willy W83627HG WatchDog timer test

//===

//===

// Turbo C++ Version 3.0 Copyright(c) 1990, 1992 by Borland International,Inc.

//===

//===

// Language include files

//===

#include <conio.h>

#include <stdlib.h>

#include <stdio.h>

//===

// Assember Types Define

//===

typedef unsigned char BYTE;

typedef unsigned short int WORD;

typedef unsigned long int DWORD;

//===

// Extern Function

//===

37

AR-B6002 User Manual

//===

// Normal procedure

//===

void Show_Title()

{

 clrscr();

 printf("WatchDog Test for W83627HG\n");

 printf("1. WDT.EXE 10 s ==--> 10 seconds to reset.\n");

 printf("2. WDT.EXE 20 m ==--> 20 minutes to reset.\n");

}

//===

// Main procedure

//===

int main(int argc, char *argv[])

{

 char Time_Format;

 BYTE IO_Port_Address=0x2E;

 BYTE Time=10; // Default is 10

 BYTE Format=0x00; // Default is 0x00 = Seconds

 if (argc != 3)

 { Show_Title(); return 1; }

 clrscr();

 textcolor(YELLOW+BLINK);

 Time=atoi(argv[1]);

 Time_Format=argv[2][0];

 if(Time_Format=='m' || Time_Format=='M')

 Format=0x08; // Minutes

 if(Time_Format=='s' || Time_Format=='S')

 Format=0x00; // Seconds

 // Set Watchdog

38

AR-B6002 User Manual

 outportb(IO_Port_Address,0x87); // (EFER) Extended Functions Enable Register

 outportb(IO_Port_Address,0x87);

 outportb(IO_Port_Address,0x2D); // Point to Global Reg.

 // Select Multi-Function pin, (Bit0=0 Watchdog Function)

 outportb(IO_Port_Address+1,(inportb(IO_Port_Address+1)&0xFE));

 outportb(IO_Port_Address,0x07); // Point to Logical Device Number Reg.

 outportb(IO_Port_Address+1,0x08); // Select logical device 8, (Watchdog Function)

 outportb(IO_Port_Address,0x30); // Device Active register

 outportb(IO_Port_Address+1,0x01);

 outportb(IO_Port_Address,0xF5); // Select Watchdog count mode seconds or minutes

 outportb(IO_Port_Address+1,Format); // Default is second

 outportb(IO_Port_Address,0xF6); // Set Watchdog Timer Value

 outportb(IO_Port_Address+1,Time); // 0x00 to disable, max 0xFF

 while(1)

 {

 outportb(IO_Port_Address,0xF6); // Read Watchdog Timer Value

 Time=inportb(IO_Port_Address+1);

 gotoxy(20,10);

 if(Time_Format=='m' || Time_Format=='M')

 cprintf(">>> After %d Minutes will reset the system. <<<",Time);

 if(Time_Format=='s' || Time_Format=='S')

 cprintf(">>> After %d Second will reset the system. <<<",Time);

 }

 return 0;

}

39

AR-B6002 User Manual

4.2 GPIO Programming

This section describes the usage of GPIOs.

The electrical characteristics of GPIOs and GPIO cable color as following table:

PIN DEFINE Color PIN DEFINE Color

1 GPO0 Brown 2 GPO1 Orange

3 GPO2 Green 4 GPO3 Blue

5 GND Black 6 GND Black

7 GND Red / White 8 GND White

9 GND Black 10 GND Purple

11 GPI4 Light Green 12 GPI5 Light Blue

13 GPI6 Pink 14 GPI7 Brown / White

15 N.C Yellow

To quickly understand the GPIO programming under Linux, we also provide a sample

application source code in product CD, naming gpio.c. It can be used to control GPIO pin described

above and also LED.

//===

// Rev Date Name Description

//===

// 1.1 06/30/10 Willy GPIO Test utility for W83627DHG.

//===

//===

// Turbo C++ Version 3.0 Copyright(c) 1990, 1992 by Borland International,Inc.

//===

//===

// Language include files

//===

#include <conio.h>

#include <stdio.h>

40

AR-B6002 User Manual

#include <dos.h>

//===

// Normal procedure

//===

void Show_Help();

void Show_Fail();

void Show_Pass();

//===

// Main procedure

//===

int main(int argc)

{

 char *Model_Name="AR-B6002";

 char *Version="v1.0";

 unsigned char IO_PORT_BASE=0x2E; // DATA_PORT = IO_PORT_BASE + 1;

 unsigned char data;

 int result=0;

 if (argc > 1)

 { Show_Help(); return 1; }

 clrscr();

 textcolor(WHITE);

 gotoxy(1, 1);

cprintf("<>==<>");

 gotoxy(1, 2); cprintf("|| W83627HF GPIO Test Utility %s Acrosser Technology Co., Ltd. ||",Version);

 gotoxy(1, 3);

cprintf("<>==<>");

 gotoxy(1, 4);

cprintf("<>==<>");

 gotoxy(1, 5); cprintf("|| Model Name : ||");

 gotoxy(1, 6); cprintf("|| SIO IO Base : ||");

 gotoxy(1, 7);

cprintf("<>==<>");

 // Show Got Parameter Informat

41

AR-B6002 User Manual

 textcolor(LIGHTGRAY);

 gotoxy(18,5); cprintf("%s",Model_Name);

 gotoxy(18,6); cprintf("%X",IO_PORT_BASE);

 // Enter W83627HF Config

 outportb(IO_PORT_BASE,0x87);

 outportb(IO_PORT_BASE,0x87);

 // Set Multi-function Pins to GPIO

 outportb(IO_PORT_BASE,0x2C);

 outportb(IO_PORT_BASE+1,(inportb(IO_PORT_BASE+1) & 0x1F));

 // Select GPIO Port device

 outportb(IO_PORT_BASE,0x07);

 outportb(IO_PORT_BASE+1,0x09);

 // Set GPIO Port Active GPIO3

 outportb(IO_PORT_BASE,0x30);

 outportb(IO_PORT_BASE+1,0x02);

 // Set W83627HF GPIO30~33 to Output, GPIO34~GPIO37 to Input

 outportb(IO_PORT_BASE,0xF0);

 outportb(IO_PORT_BASE+1,0xF0);

 // inversion data to correct, because the protect circuit

 outportb(IO_PORT_BASE,0xF2);

 outportb(IO_PORT_BASE+1,0xF0);

 // Set W83627HF GPIO30~33 to 0x05

 outportb(IO_PORT_BASE,0xF1);

 outportb(IO_PORT_BASE+1,0x05);

 // Read W83627HF GPIO34~37 Status, if not 0x50 error.

 delay(100);

 data=inportb(IO_PORT_BASE+1)&0xF0;

 if(data!=0x50)

 result=1;

 // Set W83627HF GPIO30~33 to 0x0A

42

AR-B6002 User Manual

 outportb(IO_PORT_BASE,0xF1);

 outportb(IO_PORT_BASE+1,0x0A);

 // Read W83627HF GPIO34~37 Status, if not 0xA0 error.

 delay(100);

 data=inportb(IO_PORT_BASE+1)&0xF0;

 if(data!=0xA0)

 result=1;

 // Exit W83627HF Config

 outportb(IO_PORT_BASE,0xAA);

 if(result)

 Show_Fail();

 else

 Show_Pass();

 return result;

}

//===

// Function : Show_Help()

// Input : -

// Change : -

// Return : -

// Description : Show Title string.

//===

void Show_Help()

{

 clrscr();

 printf("GPIO Test utility for W83627HF\n\n");

� � printf("GPIO0 迋芼 奼迋� � GPIO1\n");

� � printf("GPIO2 迋芮芼 奼睿迋� � GPIO3\n");

� � printf("GPIO4 迋芞 ??　迋� � GPIO5\n");

� � printf("GPIO6 迋迋芞 　迋迋� � GPIO7\n");

� � printf("GND VCC\n");

}

//===

43

AR-B6002 User Manual

// Function : Show_Fail()

// Input : -

// Change : -

// Return : -

// Description : Show Fail Message.

//===

void Show_Fail()

{

 textcolor(LIGHTRED);

 gotoxy(20,10); cprintf(" 詗詗詗詗 詗詗詗 詗詗 詗 ");

 gotoxy(20,11); cprintf(" 詗 詗 詗 詗 詗 ");

 gotoxy(20,12); cprintf(" 詗詗詗 詗詗詗詗 詗 詗 ");

 gotoxy(20,13); cprintf(" 詗 詗 詗 詗 詗 ");

 gotoxy(20,14); cprintf(" 詗 詗 詗 詗詗 詗詗詗詗");

}

//===

// Function : Show_Pass()

// Input : -

// Change : -

// Return : -

// Description : Show Pass Message.

//===

void Show_Pass()

{

 textcolor(LIGHTGREEN);

 gotoxy(20,10); cprintf(" 詗詗詗詗 詗詗詗 詗詗詗詗 詗詗詗詗");

 gotoxy(20,11); cprintf(" 詗 詗 詗 詗 詗 詗 ");

 gotoxy(20,12); cprintf(" 詗詗詗詗 詗詗詗詗 詗詗詗詗 詗詗詗詗");

 gotoxy(20,13); cprintf(" 詗 詗 詗 詗 詗");

 gotoxy(20,14); cprintf(" 詗 詗 詗 詗詗詗詗 詗詗詗詗");

}

44

AR-B6002 User Manual

SOFTWARE INSTALLATION AND

PROGRAMMING GUIDE 5

5.1 Introduction

5.1.1 CAN bus

Overview

The CAN bus APIs provide interfaces to CAN bus subsystem. By invoking these APIs, programmers can

implement applications which have the functions listed below:

1. Set the BAUD rate.

2. Send the CAN packages over the CAN bus.

3. Receive the CAN packages via the CAN bus hardware interface.

4. Set receive mode to normal, STD only, EXTD only, or any.

5. Set mask

6. Get mask

7. Set filter

8. Get filter

In this CAN bus API package, we provides:

1. On Linux platform:

Linux driver module of CAN bus subsystem and the driver load / unload scripts.

On Windows platform:

Device driver and install program of CAN bus subsystem.

2. API header file.

API libraries in static library format and shared library format.

3. CAN bus test utility and its source code.

Installation Procedure of CAN Bus Driver

On Linux platform:

1. Change to the ‘root’ user account.

2. In the ‘driver’ directory, execute the script ‘install’.

3. Make sure ‘arb6002’ is in the module list.

45

AR-B6002 User Manual

4. If the driver is no longer needed, execute the script ‘uninstall’ to unload the driver.

On Windows platform:

1. In the driver directory, execute the ‘setup.exe’ program.

The CAN bus APIs

Before executing the applications which invoke the CAN bus APIs, users should make sure that the

Linux device driver or the Windows device driver of CAN bus has been installed.

On Linux platform, after successfully installing the device driver, a character device node named

“/dev/can0” will be created automatically. The APIs open the device node “/dev/can0” implicitly so

acquiring a file descriptor of “/dev/can0” by users is not necessary. In order not to degrade the performance

of the CAN bus subsystem, the device node “/dev/can0” is limited to be opened at most once at any moment,

i.e., if application A accesses CAN bus via the APIs, the application B which either tries to open ‘/dev/can0’

or uses CAN bus API will result in failure.

On Windows platform, after successfully installing the device driver, there is a device which shows

‘CAN Bus Driver’ in the ‘Device Manager’. The APIs on Windows platform open this device implicitly.

User can call the APIs directly without opening the CAN Bus subsystem device.

CAN Message Format

// TPE DEFINE

typedef char i8;

typedef unsigned char u8;

typedef short i16;

typedef unsigned short u16;

typedef unsigned long u32;

typedef int i32;

 typedef struct {

i32 flags;

i32 cob;

u32 id;

struct timeval timestamp;

i16 length;

u8 data[8];

 } canmsg_t;

46

AR-B6002 User Manual

To transmit a CAN package, the programmer has to fill in the fields in the variable of type

canmsg_t and pass this canmsg_t variable as an argument to invoke the APIs. The fields in CAN

message are described below:

flags:

This field holds the information of message type. Programmers can set the message type as:

1. Standard Data Frame:

canmsg_t msg; // Declare a variable ‘msg’ of type ‘canmsg_t’

msg.flags = 0; // Setting the flags field to 0 defines the ‘msg’ as an

// ordinary standard data frame.

2. Extended Data Frame:

canmsg_t msg;

msg.flags = 1 // flags field to 1 defines the ‘msg’ as an

//extend data frame.

cob:

 This field is reserved for holding a message communication object number.

id:

 CAN message ID.

timestamp:

 When a CAN package is received, the CAN device driver will annotate a timestamp to the timestamp

field in the canmsg_t variable and return this canmsg_t variable to the caller.

length:

 The number of the data bytes which are sent or received in the ‘data’ field of CAN message. This field

is necessary while transmitting a Standard or Extended Data Frame. Programmers have to explicitly set up

this field. The length of data is 0~8.

For example:

 canmsg_t msg;

 msg.data[0] = 0xa1;

 msg.data[1] = 0xb2;

msg.data[2] = 0xc3;

msg.length = 3;

47

AR-B6002 User Manual

data:

 The byte array which holds the message data.

5.1.2 GPIO and Watchdog

Overview

AR-B6002 provides both a GPIO interface and a Watchdog timer. Users can use the GPIO and

Watchdog APIs to configure and to access the GPIO interface and the Watchdog timer. The GPIO

has four input pins and four output pins. The Watchdog timer can be set to 1~255 seconds. Setting

the timer to zero disables the timer. The remaining seconds of the timer to reboot can be read from

the timer.

In this GPIO and Watchdog package, on Linux and Windows platform, we provide:

1. API source code.

2. GPIO and Watchdog test utility and the utility source code.

5.1.3 Power Subsystem

Overview

When the AR-B6002 is at Power Mode 15, the Power Subsystem APIs can be used to get and

set the configuration of power subsystem. By invoking the Power Subsystem APIs, the users

can:

1. Get the current status of ignition (ON or OFF).

2. Set the Power-On mode. This setting will be kept in the power subsystem and will take effect

at next system boot.

3. From the power subsystem, get the stored setting of Power-On mode.

4. Get or set the time of Hard Off delay in seconds or in minutes.

5. Get or set the time of Soft Off delay in seconds or in minutes

6. Get the battery voltage.

7. Get the version number of the firmware of the Power Subsystem.

8. Set the Hard Off delay and Soft Off delay to the default value.

48

AR-B6002 User Manual

The power subsystem connects to the main system via the COM6. The Linux’s default

supported COM interfaces are COM1~COM4. The Power Subsystem APIs implicitly communicate

with power subsystem through COM6. Users must take extra steps to configure Linux kernel in

order to support COM6. Please refer to Appendix A for more information. Users don’t need

extraordinary setup on Windows platform to support COM6.

In this Power Subsystem package, we provide:

1. The APIs to access power subsystem and the source code of the APIs.

2. The utility and source code to monitor and set up power modes, ignition status, and power-off

time.

3. On Linux platform, the Makefile to create API libraries and utility.

49

AR-B6002 User Manual

5.2 File Descriptions

5.2.1 CAN Bus

On Linux platform:

1. can.h

The header file of the API and macro definitions.

2. libcan.a

The API library in static library format.

3. libcan.so

The API library in shared library format.

4. can_utility.c

The source code of the utility.

5. Makefile

On Windows platform:

1. AR-B6002.h

The header file of the APIs and macro definition. This header file is an aggregate header which includes

APIs declarations and macros for CAN Bus, GPIO, Watchdog, and Power Subsystem.

2. AR-B6002.lib

The API library in static library format. This library is an aggregate library. It includes APIs for CAN

Bus, GPIO, Watchdog, and Power Subsystem.

3. AR-B6002.dll

The API library in dynamically linked library format. This library is an aggregate library. It includes

APIs for CAN Bus, GPIO, Watchdog, and Power Subsystem.

4. subdirectory AR_B6002_LIB

The sample project by Microsoft Visual Studio 2010.

5.2.2 GPIO and Watchdog

On Linux platform:

50

AR-B6002 User Manual

1. sio_acce.c

The source code of the Watchdog and GPIO APIs for accessing the SuperIO.

2. sio_acce.h

This file includes the declarations of the APIs and macro definitions.

3. main.c

The source code of the utility.

4. Makefile

On Windows platform:

1. AR-B6002.h

The header file of the APIs and macro definition. This header file is an aggregate header which

includes APIs declarations and macros for CAN Bus, GPIO, Watchdog, and Power Subsystem.

2. AR-B6002.lib

The API library in static library format. This library is an aggregate library. It includes APIs for

CAN Bus, GPIO, Watchdog, and Power Subsystem.

3. AR-B6002.dll

The API library in dynamically linked library format. This library is an aggregate library. It

includes APIs for CAN Bus, GPIO, Watchdog, and Power Subsystem.

4. subdirectory AR_B6002_LIB

 The sample project by Microsoft Visual Studio 2010.

5.2.3 Power Subsystem

On Linux platform:

1. pwr_acce.c

The source code of the APIs for accessing the power subsystem.

2. pwr_acce.h

This file includes the declarations of the APIs and macro definitions.

3. main.c

The source code of the utility.

4. Makefile

On Windows platform:

51

AR-B6002 User Manual

1. AR-B6002.h

The header file of the APIs and macro definition. This header file is an aggregate header which includes

APIs declarations and macros for CAN Bus, GPIO, Watchdog, and Power Subsystem.

2. AR-B6002.lib

The API library in static library format. This library is an aggregate library. It includes APIs for CAN

Bus, GPIO, Watchdog, and Power Subsystem.

3. AR-B6002.dll

The API library in dynamically linked library format. This library is an aggregate library. It includes

APIs for CAN Bus, GPIO, Watchdog, and Power Subsystem.

4. subdirectory AR_B6002_LIB

The sample project by Microsoft Visual Studio 2010.

52

AR-B6002 User Manual

5.3 API List and Descriptions

5.3.1 CAN Bus

Under linux platform:

1. Syntax:

void sendCanMessages(canmsg_t *buffer, u8 count)

Description: This function sends out CAN packages over the CAN bus.

Parameters: If there is more than one CAN package to send, these CAN packages are stored in a

‘canmsg_t’ array. This function sends out packages in a sequential fashion. The memory address of the

first CAN package to send is pointed at by the parameter ‘buffer’. The number of CAN packages to send

is indicated by the parameter ‘count’. If the resource of sending out the CAN packages is temporarily

unavailable, the process which invokes this function will be blocked (Block I/O) until the resource is

available again.

Return Value: None.

2. Syntax:

int getCanMessages(canmsg_t *buffer, u8 count)

Description: This function receives CAN packages from the CAN bus subsystem.

Parameters: This function stores received CAN packages sequentially at an array of type ‘canmsg_t’.

The number of packages to receive is indicated by the parameter ‘count’. Before finishing receiving

‘count’ packages, the process which invokes this function will be temporarily blocked (Block I/O) if

there is no incoming CAN package.

Return Value: If this function receives the packages successfully, it returns 0. If this function fails not 0.

3. Syntax:

int CanSetBaudRate(unsigned long Baud)

53

AR-B6002 User Manual

Description: This function sets up the speed (Baud rate) of sending and receiving CAN packages.

Parameters: The parameter ‘Baud’ could be: (the unit is Kbps)

 10 , 20 , 50 , 100 , 125 , 250 , 500 , 800 , 1000

The default speed is 0 Kbps.

Return Value: This function returns 0 if it set the Baud rate successfully. If this function fails not 0.

4. Syntax:

int CanGetBaudRate(unsigned long *Baud)

Description: This function get the speed (Baud rate) of sending and receiving CAN packages.

Parameters: The parameter pointer ‘Baud’ record: (the unit is Kbps)

 10 , 20 , 50 , 100 , 125 , 250 , 500 , 800 , 1000

`

Return Value: This function returns 0 if it set the Baud rate successfully. If this function fails not 0.

5. Syntax:

int get_canFd(void)

Description: This function get the File Description number.

Parameters: None.

Return Value: File Description number.

6. Syntax:

int lib_init (void)

Description: This function is used the library call first.

Parameters: None.

Return Value: This function returns 0, library init

successfully. If this function fails not 0.

7. Syntax:

54

AR-B6002 User Manual

int CanStop(void)

Description: This function will stop send and recive can message and into configure mode.

Parameters: None.

Return Value: This function returns 0 if it successfully. If this function fails not 0.

8. Syntax:

int CanStart(void)

Description: This function will resume from configure mode to normal mode.

Parameters: None.

Return Value: This function returns 0 if it set the Baud rate successfully. If this function fails not 0.

9. Syntax:

int setMask(unsigned long mask, int num, int extd_flag)

Description: This function setMask to canbus chip.

Parameters: num 0 is set Mask0, 1 is set Mask1.

extd_flag 1 is 29bit, 0 is 11bit

mask is mask value, if set 11bit the maxmum mask value is 0x7ff,

else the maxmum mask value is 0x1FFFFFFF

Return Value: This function returns 0 if it set the Mask successfully. If this function fails not 0.

10. Syntax:

void getMask(unsigned long *mask, int num, int extd_flag)

Description: This function getMask from canbus chip.

Parameters: num 0 is get Mask0, 1 is get Mask1.

 extd_flag 1 is 29bit, 0 is 11bit

55

AR-B6002 User Manual

 pointer mask is recored get mask value.

Return Value: None.

11. Syntax:

int setFilter(unsigned long filter, int num, int extd_flag)

Description: This function set Filter to canbus chip.

Parameters: num 0~5 is set filter 0~5.

extd_flag 1 is 29bit, 0 is 11bit

filter is filter value, if set 11bit the maxmum filter value is 0x7ff,

else the maxmum filter value is 0x1FFFFFFF

Return Value: This function returns 0 if it set the Filter successfully. If this function fails not 0.

.

12. Syntax:

void getFilter(unsigned long *filter, int num, int extd_flag)

Description: This function get Filter from canbus chip.

Parameters: num 0~5 is get filter 0~5.

extd_flag 1 is 29bit, 0 is 11bit

pointer filter is recored get filter value

Return Value: None.

.

13. Syntax:

int CanChipReSet(void)

Description: This function to restet canbus chip.

Parameters: None.

Return Value: This function returns 0 if it reset the chipset successfully. If this function fails not 0.

14. Syntax:

int setReciveMode(unsigned long Mode)

56

AR-B6002 User Manual

Description: This function set Recive Mode.

Parameters: Mode 0 is Normal Recive.

Mode 1 is Recive only STD

Mode 2 is Recive only EXTD

 Mode 3 is Recive any Message

Return Value: This function returns 0 if it set the Recive Mode successfully. If this function fails not 0.

15. Syntax:

int getReciveMode(unsigned long *Mode)

Description: This function get Recive Mode from can chipset.

Parameters: pointer Mode to recored the Mode from can chipset.

Mode 0 is Normal Recive.

Mode 1 is Recive only STD

Mode 2 is Recive only EXTD

 Mode 3 is Recive any Message

Return Value: This function returns 0 if it get the Recive Mode successfully. If this function fails not 0.

16. Syntax:

void lib_close(void)

Description: This function call, when you doesn’t use this library.

Parameters: None.

Return Value: None.

Under windows platform:

1. Syntax:

void sendCanMessages(canmsg_t* buffer, u8 count)

Description: This function sends out CAN packages over the CAN bus.

57

AR-B6002 User Manual

Parameters: If there is more than one CAN package to send, these CAN packages are stored in a

‘canmsg_t’ array. This function sends out packages in a sequential fashion. The memory address of the

first CAN package to send is pointed at by the parameter ‘buffer’. The number of CAN packages to send

is indicated by the parameter ‘count’. If the resource of sending out the CAN packages is temporarily

unavailable, the process which invokes this function will be blocked (Block I/O) until the resource is

available again.

Return Value: None.

2. Syntax:

int getCanMessages(canmsg_t* buffer, u8 count)

Description: This function receives CAN packages from the CAN bus subsystem.

Parameters: This function stores received CAN packages sequentially at an array of type ‘canmsg_t’.

The number of packages to receive is indicated by the parameter ‘count’. Before finishing receiving

‘count’ packages, the process which invokes this function will be temporarily blocked (Block I/O) if

there is no incoming CAN package.

Return Value: If this function receives the packages successfully, it returns 0. If this function fails not 0.

3. Syntax:

int CanSetBaudRate(unsigned long Baud)

Description: This function sets up the speed (Baud rate) of sending and receiving CAN packages.

Parameters: The parameter ‘Baud’ could be: (the unit is Kbps)

 10 , 20 , 50 , 100 , 125 , 250 , 500 , 800 , 1000

The default speed is 0 Kbps.

Return Value: This function returns 0 if it set the Baud rate successfully. If this function fails not 0.

4. Syntax:

int CanGetBauRate(unsigned long *Baud)

Description: This function get the speed (Baud rate) of sending and receiving CAN packages.

58

AR-B6002 User Manual

Parameters: The parameter pointer ‘Baud’ record: (the unit is Kbps)

 10 , 20 , 50 , 100 , 125 , 250 , 500 , 800 , 1000

`

Return Value: This function returns 0 if it set the Baud rate successfully. If this function fails not 0.

5. Syntax:

int lib_init(void)

Description: This function is used the library call first.

Parameters: None.

Return Value: This function returns 0, library init

successfully. If this function fails not 0.

6. Syntax:

int CanStop(void)

Description: This function will stop send and recive can message and into configure mode.

Parameters: None.

Return Value: This function returns 0 if it successfully. If this function fails not 0.

7. Syntax:

int CanStart(void)

Description: This function will resume from configure mode to normal mode.

Parameters: None.

Return Value: This function returns 0 if it set the Baud rate successfully. If this function fails not 0.

8. Syntax:

int setMask(unsigned long mask, int num, int extd_flag)

Description: This function setMask to canbus chip.

59

AR-B6002 User Manual

Parameters: num 0 is set Mask0, 1 is set Mask1.

extd_flag 1 is 29bit, 0 is 11bit

mask is mask value, if set 11bit the maxmum mask value is 0x7ff,

else the maxmum mask value is 0x1FFFFFFF

Return Value: This function returns 0 if it set the Mask successfully. If this function fails not 0.

9. Syntax:

void getMask(unsigned long *mask, int num, int extd_flag)

Description: This function getMask from canbus chip.

Parameters: num 0 is get Mask0, 1 is get Mask1.

 extd_flag 1 is 29bit, 0 is 11bit

 pointer mask is recored get mask value.

Return Value: None.

10. Syntax:

int setFilter(unsigned long filter, int num, int extd_flag)

Description: This function set Filter to canbus chip.

Parameters: num 0~5 is set filter 0~5.

extd_flag 1 is 29bit, 0 is 11bit

filter is filter value, if set 11bit the maxmum filter value is 0x7ff,

else the maxmum filter value is 0x1FFFFFFF

Return Value: This function returns 0 if it set the Filter successfully. If this function fails not 0.

.

11. Syntax:

void getFilter(unsigned long *filter, int num, int extd_flag)

Description: This function get Filter from canbus chip.

Parameters: num 0~5 is get filter 0~5.

60

AR-B6002 User Manual

extd_flag 1 is 29bit, 0 is 11bit

pointer filter is recored get filter value

Return Value: None.

.

12. Syntax:

int CanChipReSet(void)

Description: This function to restet canbus chip.

Parameters: None.

Return Value: This function returns 0 if it reset the chipset successfully. If this function fails not 0.

13. Syntax:

int setReciveMode(unsigned long Mode)

Description: This function set Recive Mode.

Parameters: Mode 0 is Normal Recive.

Mode 1 is Recive only STD

Mode 2 is Recive only EXTD

 Mode 3 is Recive any Message

Return Value: This function returns 0 if it set the Recive Mode successfully. If this function fails not 0.

14. Syntax:

int getReciveMode(unsigned long *Mode)

Description: This function get Recive Mode from can chipset.

Parameters: pointer Mode to recored the Mode from can chipset.

Mode 0 is Normal Recive.

Mode 1 is Recive only STD

Mode 2 is Recive only EXTD

 Mode 3 is Recive any Message

Return Value: This function returns 0 if it get the Recive Mode successfully. If this function fails not 0.

61

AR-B6002 User Manual

15. Syntax:

void lib_close(void)

Description: This function call, when you doesn’t use this library.

Parameters: None.

Return Value: None.

5.3.2 GPIO and Watchdog

GPIO

Under linux platform:

1. Syntax:

 i32 getInChLevel(i32 channel, u8 *val)

Description: Get the value of GPIO Input and put the value at *val.

Parameters:

I. The parameter ‘channel’ indicates the GPIO Input pins to show. Users can use the macros GPI0,

GPI1, GPI2, GPI3 to indicate the GPIO Input channel. For example:

 getInChLevel(GPI2, &val); // Indicate the GPIO Input channel 2

 getInChLevel(GPI0 | GPI3, &val); // Indicate the GPIO Input

// channel 0 and channel 3

II. The parameter ‘val’ is an unsigned character pointer. The function puts the values of the indicated

GPIO channels at the memory pointed by ‘val’. The bit 0 of *val shows the value of GPIO Input

channel 0. The bit 1 of *val shows the value of GPIO Input channel 1. Other bits show the

corresponding GPIO Input channels. Because there are only four channels, bit 4 ~ bit 7 of *val are

always zero.

Here is an example:

If GPIO Input channel 1 and channel 3 are both 1.

62

AR-B6002 User Manual

unsigned char ch;

getInChLevel(GPI1|GPI3, &ch);

The returned value of variable ‘ch’ is 0xa.

Return Value: If the function gets the values successfully, it returns 0. If any error, it returns –1.

2. Syntax:

 i32 setOutChLevel(i32 channel, u8 val)

Description: Set the value of GPIO Output according to the variable ‘val’.

Parameters:

I. The parameter ‘channel’ indicates the GPIO Output pins to set. Users can use the macros GPO0,

GPO1, GPO2, GPO3 to indicate the GPIO Output channels.

II. The parameter ‘val’ indicate the value to be set to GPIO Output channel. The acceptable values is

limited to 0 and 1.

 For example:

 /* Setting the GPIO Output channel 2 to 1 */

 setOutChLevel(GPO2, 1);

 /* Setting the GPIO Output channel 0 and channel 3 to 0 */

 getInChLevel(GPO0 | GPO3, 0);

Return Value: If the function sets the values successfully, it returns 0. If any error, it returns –1.

3. Syntax:

i32 getOutchLevel(i32 channel, u8 *val)

Description: Get the value of GPIO Output and put the value at *val.

Parameters:

I. The parameter ‘channel’ indicates the GPIO Output pins to show. Users can use the macros GPO0,

GPO1, GPO2, GPO3 to indicate the GPIO Output channel. For example:

 getOutChLevel(GPO2, &val); // Indicate the GPIO Output channel 2

63

AR-B6002 User Manual

 /* Indicate the GPIO Output channel 0 and channel 3. */

 getOutChLevel(GPO0 | GPO3, &val);

II. The parameter ‘val’ is an unsigned character pointer. The function puts the values of the indicated

GPIO channels at the memory pointed by ‘val’. The bit 0 of *val shows the value of GPIO Output

channel 0. The bit 1 of *val shows the value of GPIO Output channel 1. Other bits show the

corresponding GPIO Output channels. Because there are only four channels, bit 4 ~ bit 7 of *val

are always zero.

Here is an example:

If GPIO Output channel 0 and channel 2 are both 1.

unsigned char ch;

getOutChLevel(GPO0|GPO2, &ch);

The returned value of variable ‘ch’ is 0x5.

Return Value: If the function gets the values successfully, it returns 0. If any error, it returns –1.

Under windows platform:

1. Syntax:

 int getGPIOBitValue(int iBitNumber, bool * bValue)

Description: Get the value of GPIO and put the value at * bValue.

Parameters:

I. The parameter ‘iBitNumber indicates the GPIO Input pins to show. Users can use the macros

GPO_BIT_0, GPO_BIT_1, GPO_BIT_2, GPO_BIT_3, GPI_BIT_4, GPI_BIT_5, GPI_BIT_6, or

GPI_BIT_7 to indicate the GPIO channel. For example:

 getGPIOBitValue (GPO_BIT_0, &val);

// Indicate the GPIO Output channel 0

 getGPIOBitValue (GPI_BIT_6, &val);

// Indicate the GPIO Input channel 6

II. The parameter ‘bValue’ is an bool pointer. The function puts the values of the indicated GPIO

channels at the memory pointed by ‘bValue’. True indicates HI, and false indicates LOW.

64

AR-B6002 User Manual

Return Value: If the function gets the values successfully, it returns 0. If any error, it returns not zero.

2. Syntax:

 int setGPIOBitValue(int iBitNumber, bool bValue)

Description: Set the value of GPIO Output according to the variable ‘bValue’.

Parameters:

I. The parameter ‘channel’ indicates the GPIO Output pins to set. Users can use the macros

GPO_BIT_0, GPO_BIT_1, GPO_BIT_2, or GPO_BIT_3 to indicate the GPIO Output channels.

II. The parameter ‘bValue’ indicate the value to be set to GPIO Output channel. True indicates HI, and

false indicates LOW.

 For example:

 /* Setting the GPIO Output channel 2 to HI */

 setGPIOBitValue (GPO_BIT_2, true);

 /* Setting the GPIO Output channel 3 to LOW */

 setGPIOBitValue (GPO_BIT_3, false);

Return Value: If the function sets the values successfully, it returns 0. If any error, it returns not zero.

Watchdog

Under linux platform:

1. Syntax:

u8 getWtdTimer(void)

Description: This function read the value of the watchdog time counter and return it to the caller.

Parameters: None.

Return Value: This function return the value of the time counter and return it to the caller as an

unsigned integer.

65

AR-B6002 User Manual

2. Syntax:

void setWtdTimer(u8 val)

Description: This function sets the watchdog timer register to the value ‘val’ and starts to count down.

The value could be 0 ~ 255. The unit is second. Setting the timer register to 0 disables the watchdog

function and stops the countdown.

Parameters: The parameter ‘val’ is the value to set to watchdog timer register. The range is 0 ~ 255.

Return Value: None.

Under windows platform:

1. Syntax:

int readWatchdog(unsigned char * pucValue)

Description: This function read the value of the watchdog time counter and return it to the caller.

Parameters: The parameter ‘pucValue’ is an unsigned character pointer. The function puts the values

read from watchdog at the memory pointed by ‘pucValue’.

Return Value: If the function gets the values successfully, it returns 0. If any error, it returns not zero.

2. Syntax:

int startWatchdog(unsigned char ucUnit, unsigned char ucValue)

Description: This function sets the watchdog timer register to the value ‘ucValue’ and starts to count

down. The value could be 0 ~ 255. The unit is second. Setting the timer register to 0 disables the

watchdog function and stops the countdown.

Parameters: The parameter ‘ucUnit’ is the unit to set to watchdog timer register. ‘0’ indicates second.

And ‘1’ indicates minute. The parameter ‘ucValue’ is the value to set to watchdog timer register. The

range is 0 ~ 255.

Return Value: If the function gets the values successfully, it returns 0. If any error, it returns not zero.

5.3.3 Power Subsystem

Under linux platform:

1. Syntax:

i32 getIgnStatus(u8 *ignStatus)

66

AR-B6002 User Manual

Description: Get the current ignition status. The ignition has two statuses: ON or OFF.

Parameters: This function puts the ignition status at the memory pointed by the unsigned character

pointer ‘ignStatus’. If the returned status is 0xa5, the ignition is ON. If the returned status is 0x5a, the

ignition is OFF. There are macros of Ignition ON and Ignition OFF in pwr_acce.h.

Return Value: If the function gets the ignition status and put it at the memory pointed by the argument

successfully, this function will return 0. If any error, the function returns –1.

2. Syntax:

 i32 setSoftOffDelayS(u32 setTime)

Description: The Soft Off Delay is the interval between that the system receives a power off signal and

that the system generates a power off signal. This function sets up the interval in seconds.

Parameters: The parameter is of the type of unsigned long. The value of the parameter ranges from

0~255. The unit of the value of the parameter is seconds.

Return Value: If the function sets the delay time successfully, it will return 0. If any error, the function

returns –1.

3. Syntax:

 i32 setSoftOffDelayM(u32 setTime)

Description: The Soft Off Delay is the interval between that the system receives a power off signal and

that the system generates a power off signal. This function sets up the interval in minutes.

Parameters: The parameter is of the type of unsigned long. The value of the parameter ranges from

0~255. The unit of the value of the parameter is minutes.

Return Value: If the function sets the delay time successfully, it will return 0. If any error, the function

returns –1.

4. Syntax:

i32 setHardOffDelayS(u32 setTime)

Description: The Hard Off Delay is the interval between that the system is off and that the power 5VSB

is off. This functions set up the interval in seconds.

Parameters: The parameter is of the type of unsigned long. The value of the parameter ranges from

0~255. The unit of the value of the parameter is seconds.

.

Return Value: If the function sets the delay time successfully, it will return 0. If any error, the function

67

AR-B6002 User Manual

returns –1.

5. Syntax:

i32 setHardOffDelayM(u32 setTime)

Description: The Hard Off Delay is the interval between that the system is off and that the power 5VSB

is off. This functions set up the interval in minutes.

Parameters: The parameter is of the type of unsigned long. The value of the parameter ranges from

0~255. The unit of the value of the parameter is minutes.

.

Return Value: If the function sets the delay time successfully, it will return 0. If any error, the function

returns –1.

6. Syntax:

i32 setPowerOnMode(u8 powerOnMode)

Description: The function sets up the source of the boot-up signal of the system. There are two choices:

boot from the Ignition or boot from the Remote Switch.

 Parameters:

PowerOnMode = 0xa5, boot up by the Ignition.

PowerOnMode = 0x5a, boot up by the Remote Switch.

 There are macros of Ignition mode and Remote Switch mode in pwr_acce.h (Linux) and

AR-B6002.h(Windows).

Return Value: If the function sets power-on mode successfully, it will return 0. If any error, the function

returns –1.

7. Syntax:

i32 getSoftOffDelay(u32 *Time)

Description: The Soft Off Delay is the interval between that the system receives a power off signal and

that the system generates a power off signal. This function gets the interval.

Parameters: The parameter is a pointer which points to an unsigned long variable. The returned value is

stored at this variable. The unit of the returned value is in seconds.

Return Value: If the delay time is returned successfully, the function returns 0. If any error, it returns –1.

68

AR-B6002 User Manual

8. Syntax:

i32 getHardOffDelay(u32 *Time)

Description: The Hard Off Delay is the interval between that the system is off and that the power 5VSB

is off. This function gets the interval.

Parameters: The parameter is a pointer which points to an unsigned long variable. The returned value is

stored at this variable. The unit of the returned value is in seconds.

Return Value: If the delay time is returned successfully, the function returns 0. If any error, it returns –1.

9. Syntax:

i32 getPowerOnMode(u8 *powerOnMode)

Description: The function gets the setting of power-on mode. There are two modes: boot from the

Ignition or boot from the Remote Switch.

Parameters: The parameter is a pointer which points to an unsigned character. The returned code is

stored at this memory. There are two power-on modes:

PowerOnMode = 0xa5, boot up by the Ignition.

PowerOnMode = 0x5a, boot up by the Remote Switch.

Return Value: If the power-on mode is returned successfully, the function returns 0. If any error, it

returns –1

10. Syntax:

i32 getBattVolt(float *volt)

Description: The function gets the voltage reading of the battery.

Parameters: The parameter ‘volt’ is a pointer which points to an variable of type ‘float’. The unit of the

returned value is voltage.

Return Value: If the reading of voltage is returned successfully, the function returns 0. If any error, it

returns –1

11. Syntax:

i32 getPicFwVer(struct PicInfo *ver)

Description: The function gets version information of Power Subsystem firmware.

69

AR-B6002 User Manual

Parameters: The parameter is a pointer which points to a ‘PicInfo’ structure, which consists of 9

unsigned characters. Here is the definition of structure ‘PicInfo’:

 type struct {

 u8 type[3]; // The type of the power subsystem

u8 mode[4]; // The mode at which the power subsystem is

operating.

 u8 majorVersion; // Major version number of the firmware

 u8 minorVersion; // Minor version number of the firmware

 } PicInfo;

PicInfo picInfo;

getPicFwVer(&picInfo);

printf(“%c.%c\n”, picInfo.majorVersion, picInfo.minorVersion);

Return Value: If the version information is returned successfully, the function returns 0. If any error, it

returns –1.

12. Syntax:

i32 getPicMode(u8 *mode)

Description: The function gets the mode number at which the Power Subsystem is operating..

Parameters: The parameter is a pointer which points to a variable of type ‘unsigned char’. The returned

mode number is put at the memory which is pointed by parameter ‘mode’.

Return Value: If the mode information is returned successfully, the function returns 0. If any error, it

returns –1

13. Syntax:

i32 setPicDefault(void)

Description: The function restores the SoftOffDelay and HardOffDelay to the default value.

Parameters: None.

Return Value: If this function works successfully, the function will return 0. If any error, it will

return –1.

70

AR-B6002 User Manual

Under windows platform:

1. Syntax:

BOOL PowerPic_GetIgnitionStatus(BYTE* pStatus)

Description: Get the current ignition status. The ignition has two statuses: ON or OFF.

Parameters: This function puts the ignition status at the memory pointed by the BYTE pointer ‘pStatus’.

If the returned status is 0xa5, the ignition is ON. If the returned status is 0x5a, the ignition is OFF. There

are macros of Ignition ON and Ignition OFF.

Return Value: If the function gets the ignition status and put it at the memory pointed by the argument

successfully, this function will return TRUE. If any error, the function returns FALSE.

2. Syntax:

 BOOL PowerPic_SetSoftOffDelayTime(int nTime, int nTimeUnit)

Description: The Soft Off Delay is the interval between that the system receives a power off signal and

that the system generates a power off signal.

Parameters: The parameter ‘nTime‘ is the value to set as delay interval. The value of the parameter

‘nTime‘ ranges from 0~255. The parameter ‘nTimeUnit‘ is the unit of nTime. Users can use macros

TIME_UNIT_SECOND or TIME_UNIT_MINUTE to indicate unit.

Return Value: If the function sets the soft off delay successfully, this function will return TRUE. If any

error, the function returns FALSE.

3. Syntax:

BOOL PowerPic_SetHardOffDelayTime(int nTime, int nTimeUnit)

Description: The Hard Off Delay is the interval between that the system is off and that the power 5VSB

is off.

Parameters: The parameter ‘nTime‘ is the value to set as delay interval. The value of the parameter

‘nTime‘ ranges from 0~255. The parameter ‘nTimeUnit‘ is the unit of nTime. Users can use macros

TIME_UNIT_SECOND or TIME_UNIT_MINUTE to indicate unit.

.

Return Value: If the function sets the hard off delay successfully, this function will return TRUE. If any

error, the function returns FALSE.

4. Syntax:

71

AR-B6002 User Manual

BOOL PowerPic_SetPowerOnMode(BYTE bMode)

Description: The function sets up the source of the boot-up signal of the system. There are two choices:

boot from the Ignition or boot from the Remote Switch.

 Parameters:

bMode = 0xa5, boot up by the Ignition.

bMode = 0x5a, boot up by the Remote Switch.

 There are macros of Ignition mode and Remote Switch mode in pwr_acce.h (Linux) and

AR_B6002_LIB.h(Windows).

Return Value: If the function sets the power on mode successfully, this function will return TRUE. If

any error, the function returns FALSE.

5. Syntax:

BOOL PowerPic_GetSoftOffDelayTime(int* pSeconds)

Description: The Soft Off Delay is the interval between that the system receives a power off signal and

that the system generates a power off signal. This function gets the interval.

Parameters: The parameter ‘pSeconds‘ is a pointer which points to an int variable. The returned value is

stored at this variable. The unit of the returned value is in seconds.

Return Value: If the function gets the soft off delay successfully, this function will return TRUE. If any

error, the function returns FALSE.

6. Syntax:

BOOL PowerPic_GetHardOffDelayTime(int* pSeconds)

Description: The Hard Off Delay is the interval between that the system is off and that the power 5VSB

is off. This function gets the interval.

Parameters: The parameter ‘pSeconds’ is a pointer which points to an int variable. The returned value is

stored at this variable. The unit of the returned value is in seconds.

Return Value: If the function gets the hard off delay successfully, this function will return TRUE. If any

error, the function returns FALSE.

7. Syntax:

72

AR-B6002 User Manual

BOOL PowerPic_GetPowerOnMode(BYTE* pMode)

Description: The function gets the setting of power-on mode. There are two modes: boot from the

Ignition or boot from the Remote Switch.

Parameters: The parameter ‘pMode’ is a pointer which points to an BYTE. The returned code is stored

at this memory. There are two power-on modes:

* pMode = 0xa5, boot up by the Ignition.

* pMode = 0x5a, boot up by the Remote Switch.

Return Value: If the function gets the power in mode successfully, this function will return TRUE. If

any error, the function returns FALSE.

8. Syntax:

BOOL PowerPic_GetBatteryVoltage(float *pVoltage)

Description: The function gets the voltage reading of the battery.

Parameters: The parameter ‘pVoltage’ is a pointer which points to an variable of type ‘float’. The unit of

the returned value is voltage.

Return Value: If the function gets the battery voltage successfully, this function will return TRUE. If

any error, the function returns FALSE.

9. Syntax:

BOOL PowerPic_GetFirmwareVersion(T_PIC_INFO *pPicInfo)

Description: The function gets version information of Power Subsystem firmware.

Parameters: The parameter is a pointer which points to a ‘T_PIC_INFO’ structure, which consists of 9

BYTE. Here is the definition of structure ‘T_PIC_INFO’:

 type struct {

 typedef struct _T_PIC_INFO {

 BYTE PicType[3];

 BYTE PicModel[4];

 BYTE PicMajorVersion;

 BYTE PicMinorVersion;

} T_PIC_INFO;

73

AR-B6002 User Manual

Return Value: If the function gets the firmware version successfully, this function will return TRUE. If

any error, the function returns FALSE.

10. Syntax:

BOOL PowerPic_GetPicMode(BYTE* pMode)

Description: The function gets the mode number at which the Power Subsystem is operating..

Parameters: The parameter is a pointer which points to a variable of type ‘BYTE’. The returned mode

number is put at the memory which is pointed by parameter ‘pMode’.

Return Value: If the function gets the PIC mode successfully, this function will return TRUE. If any

error, the function returns FALSE.

11. Syntax:

BOOL PowerPic_SetDefaultValue()

Description: The function restores the SoftOffDelay and HardOffDelay to the default value.

Parameters: None.

Return Value: If the function sets the default value successfully, this function will return TRUE. If any

error, the function returns FALSE.

74

AR-B6002 User Manual

5.4 Appendix

Users have to modify the boot loader configuration to support COM6. Take the grub

configuration file as an example. Add ‘8250.nr_uarts=XX noirqdebug’ at the setting of kernel. Here,

XX represents the number of COM ports the system will support. Because the power subsystem

connects to main system via COM6, the XX must be greater or equal to 6.

1. Modify the grub.conf.

[root@linux ~]# vi /boot/grub/grub.conf

default=0

timeout=5

splashimage=(hd0,0)/grub/splash.xpm.gz

hiddenmenu

title Fedora Core (2.6.27.5.117.FC10)

root (hd0,0)

kernel /vmlinuz-2.6.27.5.117.FC10 ro root=/dev/hda2 rhgb quiet

8250.nr_uarts=6 noirqdebug

initrd /initrd-2.6.27.5.117.FC10.img

2. List the status of the COM ports in the system.

setserial -g /dev/ttyS*

/dev/ttyS0, UART: 16550A, Port: 0x03f8, IRQ: 4

/dev/ttyS1, UART: 16550A, Port: 0x02f8, IRQ: 3

/dev/ttyS2, UART: 16550A, Port: 0x03e8, IRQ: 11

/dev/ttyS3, UART: 16550A, Port: 0x02e8, IRQ: 10

/dev/ttyS4, UART: 16550A, Port: 0x04f8, IRQ: 11

/dev/ttyS5, UART: 16550A, Port: 0x04e8, IRQ: 10

The node ‘/dev/ttyS5’ corresponds to COM6. The IO port is 0x4e8, IRQ 10.

75

AR-B6002 User Manual

76

5.5 GPIO and CAN bus cable color
PIN Color PIN Color

Brown 2 Orange 1

3 Green 4 Blue

5/6/9 Black 8 White

7 Red/White 10 Purple

11 Light Green 12 Light Blue

13 Pink 14 Brown/White

Yellow 15

PIN Color

1 white

2 purple

	AR-B6002 Board
	1.1 Specifications
	1.2 Package Contents
	1.3 Block Diagram
	2.1 Locations of Connector and Jumper Setting
	3.1 Main Setup
	System Date
	System Time
	IDE Channel 0
	Master/Slave
	Halt On
	3.2 Advanced Chipset Setup

	Hyper-Threading Technology
	Quick Power On Self Test
	Full Screen Logo Show
	On-Chip Frame
	Buffer Size
	DVMT mode
	3.3 Power Setup

	ACPI Function
	ACPI Suspend Type
	3.4 PnP/PCI Setup

	Reset Configuration
	Data
	Resources
	Controlled By
	IRQ Resources
	3.5 Peripherals Setup

	Onboard Serial Port 1
	Onboard Serial Port 2
	Onboard Serial Port 3
	Onboard Serial Port 4
	Onboard Serial Port 5
	USB Device Setting
	3.6 PC Health Setup
	3.7 Boot Setup

	First / Second / Third Boot Device/Other Boot Device
	LAN Boot Select
	Hard Disk Boot Priority
	3.8 Exit Setup

	Save & Exit Setup
	Load Optimized Defaults
	Exit Without Saving
	Set Password
	5.1 Introduction
	5.1.1 CAN bus
	Overview
	Installation Procedure of CAN Bus Driver
	The CAN bus APIs
	CAN Message Format
	5.1.2 GPIO and Watchdog
	Overview
	5.1.3 Power Subsystem
	Overview

	5.2 File Descriptions
	5.2.1 CAN Bus
	5.2.2 GPIO and Watchdog
	5.2.3 Power Subsystem

	5.3 API List and Descriptions
	5.3.1 CAN Bus
	5.3.2 GPIO and Watchdog
	GPIO
	Watchdog
	5.3.3 Power Subsystem

	5.4 Appendix
	5.5 GPIO and CAN bus cable color

