HALCON Version 6.0

M ’EC

MVTec Software GmbH

Frame Grabber Integration

Programmer’s Manual

This manual describes the integration of user-specific frame grabbers into the HALCON system,
Version 6.0

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without prior written permission of the publisher.

Edition July 1997
Edition November 1997
Edition March 1998
Edition April 1999
Edition November 2000

a bk wbhe

EC
Copyright(© 1997-2000 by MVTec Software GmbH,Wichen, Germany M’

Microsoft, Windows, Windows 95, Windows NT, Windows 2000, Visual C++ , and Visual Basic
are either trademarks or registered trademarks of Microsoft Corporation.

All other nationally and internationally recognized trademarks and tradenames are hereby rec-
ognized.

More information about HALCON can be found at:

http://www.mvtec.com/halcon/

About This Manual

This manual describes the basic techniques needed to integrate third-party image acquisition
hardware frame grabber boardsnto the HALCON system.

The manual is written for the expert HALCON user who wants to integrate a new frame grabber
board. The reader should be familiar with the standard HALCON system. Furthermore, C
programming skill are required. Finally, detailed knowledge about the frame grabber API
will be necessary.

If you are first interested in the basics of the HALCON frame grabber interface (from the user’s
point of view) you can also have a look in section I8 HALCON Frame Grabber Interface
of the Getting Started with HALCON User’s Manual.

The manual is divided into the following parts:

e Introduction
This chapter explains the basics of image acquisition and introduces the HALCON frame
grabber integration interface and the underlying concepts.

e Data Structures
In this chapter, the basic data structures of the frame grabber integration interface are
described.

¢ Interface Routines
This chapter explains all the routines you have to implement inside your frame grabber
interface.

e Generating a Frame Grabber Interface Library
This chapter contains information on how to generate a dynamic object encapsulating your
frame grabber interface.

e Appendix A: Changes between versions 1 and 2 of the HALCON frame grabber
integration interface
This section describes the differences between the versions 1 and 2 of the HALCON frame
grabber integration interface.

e Appendix B: HALCON Error Codes
This section describes all error codes which you may use for programming a frame grabber
interface.

e Appendix C: Interface Template CIOFGTemplate.c
This section contains a source code template for a frame grabber interface.

INaturally, this also includes knowledge about the programming environment (how to invoke the com-
piler/linker etc.).

Release Notes

Please note the latest updates of this manual:

¢ 5 Edition, HALCON 6.0 (November 2000)
The manual has been adapted to the syntactic and semantic changes of the new HALCON
frame grabber integration interface version 2. A summary of changes can be found in
Appendix A. Besides, the list of currently supported frame grabbers (see Fig. 1.1) has
been updated. Furthermore, a small number of syntactic corrections of this manual has
taken place.

e 4 Edition, HALCON 5.2 (March 1999)
Some clarifications in the introduction have been made, especially an updated list of cur-
rently supported frame grabbers (see Fig. 1.1). The order of the allocated image regions
in FGGrabRegion is fixed (see new hint in Fig. 3.43). Furthermore, a small number of
syntactical corrections have taken place.

e 374 Edition, HALCON 5.1 (March 1998)
The manual has been revised completely regarding both the structure and the
content. The HALCON frame grabber interface was extended by the op-
erators set_framegrabber_param, get_framegrabber_param, grab_region,
and grab_region_async, which do correspond to the routineBGSetParam(),
FGGetParam(), FGGrabRegion(), and FGGrabRegionAsync() within the frame
grabber interface to be programmed.

Contents

1

Introduction 1

11
1.2
1.3
1.4
15
1.6

1.7

1.8

HALCON'’s Generic Frame Grabber Interface
Image Acquisition Basics
Synchronous vs. Asynchronous Grabbing
Buffering Strategies
A/D Conversion and Multiplexing
HALCON Frame Grabber Operators
1.6.1 openframegrabber o oo
1.6.2 closeframegrabber o oo
1.6.3 closeallframegrabbers.
1.6.4 infaframegrabber
1.6.5 grabimage 8
1.6.6 grabimageasynC. v i i 8
1.6.7 grabimagestart 8
1.6.8 grabregion 8
1.6.9 grabregionasync 9
1.6.10 seframegrabbeparam, geframegrabbeparam 9
1.6.11 sefframegrabbefut, getframegrabbeftut 9
HALCON Frame Grabber Integration Interface versus HALCON Frame Grab-
berinterface 9
Additional Sources of Information L oL 10

N~NNNOO AR

Data Structures 13

2.1

2.2

Frame Grabber Classesand Instances
2.1.1 Structure 'FGClass’ e 13
2.1.2 Structure 'FGInstance’ 15
Recommended Auxiliary Structures 17
2.2.1 Structure 'BoardInfo’ 17
2.2.2 Structure 'TFGInstance’ e 18

Interface Routines 21

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

FGINit) e e e 21
FGOpenRequest() e e 25
FGOpen() o e e e e 27
FGCIose() o e 35
FGInfo() 38
FGGrab() 41
Auxiliary Routine: Grablmg() 46
FGGrabAsync() o o e 50

3.9 FGGrabStartAsync()
3.10 FGGrabRegion()
3.11 FGGrabRegionAsync()
3.12 FGSetParam()
3.13 FGGetParam()
3.14 FGSetLut()
3.15 FGGetLut()

4 Generating a Frame Grabber Interface Library

A Changes in the HALCON Frame Grabber Integration Interface

B HALCON Error Codes

C Interface Template CIOFGTemplate.c

Index

Frame Grabber Integration/ 2000-11-16

Contents

69

71

107

Chapter 1

Introduction

This chapter provides an introduction to the HALCON frame grabber integration interface and
the underlying concepts. It is intended for users who are not familiar with topics like frame
grabber hardware, A/D-conversion, synchronous or asynchronous mode of operation, buffer-
ing strategies, and the like. Although this manual is not intended to supply you with detailed
knowledge about your frame grabber’s internals, we still want to give explanations of the basic
terms and methods. Reading the manuals supplied with your frame grabber is a necessity, of
course, and possibly gives you a much more detailed view on the things being discussed here.

Unless stated otherwise, all notations refer to Windows NT / 2000 conventions. Thus, for
example file paths and environment variables are printed like

%HALCONROOT%\examples\fg_integration\CIOFGTemplate.c

If you are using a UNIX system you have to consider the corresponding UNIX syntax.

1.1 HALCON'’s Generic Frame Grabber Interface

HALCON provides a generic frame grabber interface that allows free integration of new frame
grabbers on the fly, that is even withoastartinga HALCON application.

The two basic concepts used are

¢ Encapsulation of the interface code in dynamically loadable modules.

e A set of predefined HALCON operators for image acquisition, including operators for
setting and retrieving specific hardware parameters. The latter allow the parameterization
of even the most "exotic” boards.

If you have successfully developed a new HALCON frame grabber interface (based on the
detailed information given in this manual), then all you have to do to use your new frame
grabber is

IDLLs for Windows NT / 2000shared librariesfor UNIX systems.

2 CHAPTER 1. INTRODUCTION

e Plug in the hardware and install the vendor-specific device driver, libraries, etc. shipped
with the board.

e Copy the new HALCON interface (i.e. the loadable module with the encapsulated
hardware-dependent code) to a directory within your search path for DLLs or shared li-
braries, respectively. For the proper prefix of the flename of the new HALCON interface
see chapter 4.

e Specify thenameof the new frame grabber (i.e., the name of the corresponding interface)
in theopen_framegrabber operator.

e Enjoy the performance of all the features you have integrated in your new frame grabber
interface.

The HALCON operators used for image acquisition remain the same, so existing application
code can be used without modificatfdn most cases. HALCON automatically loads the inter-
face during the first call topen_framegrabber. Thus, you can exchange/add frame grabber
interfaces even without restarting your application. Special features of different frame grabber
boards can be accessed through the general purpose parameter setting mechanism.

Example files

As a guideline for the frame grabber integration, the HALCON distribution contains a template
for a frame grabber interface (S6E0FGTemplate.c in examples\fg-integration and also

in Appendix C). It covers most situations you might encounter while programming such an
interface (like supporting multiple boards with multiple cameras per board etc.). Although the
template is extensively commented, it might be quite tough to understand the code prior to
reading this manual. On the other hand, it can provide a powerful skeleton for a wide range of
integrations.

You will also find two specific example interfaces in the HALCON distribution: A very simple
one (lySlicVideo.c) for the SLIC-Video SBus frame grabber from Multimedia Access Cor-
poration and a fairly complex on#®¢DT3155.c) for the DT3155 board by Data Translation.
These two examples have been implemented in a straightforward way. For the sake of simplic-
ity they do not follow the general design of the templat€ I0FGTemplate.c. They might be

more suitable as starting points for a first prototypical implementation. However, if you are go-
ing to design the final HALCON interface, we strongly recommend tcCU88GTemplate . c.

For alist of all the frame grabbers that are currently already supported by HALCON, see Fig.1.1.
Please checkttp://www.mvtec.com/halcon/ or contact your local distributor to get the
latest releases of the HALCON frame grabber interfaces. You can find an up-to-date list of all
currently supported frame grabbers (and also a further list of new experimental frame grabber
interfaces) ahttp://www.mvtec.com/halcon/framegrabber/.

1.2 Image Acquisition Basics

Basically, what a frame grabber does is to taked®eo signal which can be understood as a
continuous stream of videlbames and grab one or more video frames out of the sequence,

2Except for the new name of the frame grabber and framegrabber-specific parameters used by the operator
set_framegrabber_param.

Frame Grabber Integration/ 2000-11-16

1.2. IMAGE ACQUISITION BASICS 3

Frame Grabber Operating System
BitFlow Raven and RoadRunner Windows NT / 2000
Cheops Ramses-1 Windows NT /2000
Data Translation DT3152/DT3153/DT3155 Windows NT /2000
Eltec PCEye Windows NT /2000
IDS FALCON, FALCONplus and EAGLE Windows NT /2000
Imagenation PX510/610/610A, PXC200 and PXWindows NT / 2000
Integral FlashBus Windows NT /2000
Leutron PicPort Windows NT /2000, Linux
LinX GINGA Windows NT /2000
MATRIX Vision MVdelta, MVsigma, Windows NT /2000
PCimage, MVtitan
Matrox Meteor-I Windows NT / 2000, Linux
Mikrotron Inspecta-2 Windows NT /2000
MRT VideoPort Professional Windows NT /2000
Opteon Windows NT /2000
The Imaging Source DFG/LC1, DFG/LC2, Windows NT /2000
DFG/BW1, DFG VideoPort
TWAIN interface Windows NT /2000
Unibrain FireBoard 400 Windows NT / 2000
File Virtual frame grabber interface far
accessing image files and sequences
Windows NT / 2000: also AVI files

Figure 1.1: Frame grabbers integrated into the HALCON system (November 2000).

whenever triggered to do so. In many cases, the video signal will be an analog one, although
more professional equipment often uses digital signals nowadays. The most common analog
video formats are

e NTSC: 640 x 480 pixel, 30 frames per second and

e PAL: 768 x 576 pixel, 25 frames per second.

Both formats carry color information, although many frame grabber boards only deliver
grayscale images, even from a color video signal. The following explanations assume that
you are using an analog frame grabber board. With digital boards, things may be different.

Let us take a look at the analog input signal: Actually, it is composed of many different sig-
nals: There are vertical and horizontal sync signals and, of course, the raw data signals as well.
Sometimes, the color and brightness signals are ovedardjjosite signd) sometimes they are
delivered on separated input line§C, RGB). Since the frame grabber is usually synchronized

by the video source, it has to waifor the next vertical sync signal to start grabbing a new
image, see Fig. 1.2.

3At least if you do not use a setup that supports asynchronous frame resets.

HALCON 6.0

4 CHAPTER 1. INTRODUCTION

l grab command frame being grabbed

frame n-1 frame n frame n+1

tinme
Figure 1.2: Grabbing one frame.

This will cause a delay of half a frame on average when grabbing an image of randontframes
It also implies that you have to start grabbing the next frame immedteaétigr receiving the
previous frame if you want to achieve full frame rate. Consequently, there would be no time
at all left to processmages. In this synchronous mode, the host computer is exclusively busy
triggering one grab after another. Therefore, HALCON also supports asynchronous grabbing
as explained in the next section.

1.3 Synchronous vs. Asynchronous Grabbing

To understand what asynchronous grabbing means, we first should take a look at what the frame
grabber does with a grabbed frame. It is easily understood, that a digitized frame must be stored
in some kind of memory. Basically, there are three possibilities:

e Device memory on the frame grabber board
e Device memory on the host machine
e Host memory

Device memoryn the board means dedicated memory, physically mounted to the board. This
way, the frame grabber can store the acquired image(s) directly in its own memory, with each
process on the host being able to get the data at any time. On the other hand, memory size
is fixed. If it is too small, it may not be possible to keep several images in memory. If itis
very big, the whole board can get rather expensive. Device memory dmogtanachines
non-paged system memory dynamically allocated by the frame grabber’s device driver. Thus,
the memory size can be easily adjusted. On the other hand, heavy bus traffic is likely to occur,
if the frame grabber is delivering data to the host computer’s mepemanently Therefore,

we usually do not use continuous grabbing modes provided by some frame grabbers, but grab
images only on demandHost memorys allocated by the user somewhere in the address space
of the application. Since this memory might be pagable, the images delivered from the frame
grabber in general must be explicitly copied to this memory (since DMA will fail).

“Naturally, this is not true if the camera supportsasmynchronous reset modee. the camera starts the new
grab almost immediately.

SThere is a very short sync period before the next frame starts.

5When grabbing a PAL signal with a RGB frame grabber using a 32 bit per pixel representation, more than 42
Megabytes per second have to be transferred to the host.

Frame Grabber Integration/ 2000-11-16

1.4. BUFFERING STRATEGIES 5

The host computer’s job, as mentioned above, is to trigger the frame grabber when a new image
is needed, but it does not necessarily needad while the board digitizes the frame. With
device memory being on the board, this is self-evident, but also if the target memory is host-
based, externally initiated data transfer is usually possible with techniques like’ DBtXhe

“only thing” the host process has to do is to trigger the frame grabber board an average time of
1% frames before animage is actually needed, and then it can do some other prostdsitige

new frame is captured by the board in the background. This technique is aaitadhronous
grabbing It is easily understood that this eases real-time grabbing, since the time needed for
frame completion is rather long (40 msec with PAL, 33 msec with NTSC video) compared to
the small time gap between two adjacent frames in the video stream.

Most frame grabber boards support asynchronous data transfer. Therefore, HALCON provides
both synchronougfab_image) and asynchronous grabbingréb_image_async). The reason

for supporting the somehow less powerful synchronous mode is the “clearer” semantics: The
operatorgrab_image starts a grab and waits until it is finished. Thus, the delivered image is per
definition up to date. Using asynchronous grabbing needs a little bit more insight in the timing
of the application. The grabbed images might be too old to be used otherwise. Now let us take
a look at some memory management strategies useful for efficient image acquisition in the next
section.

1.4 Buffering Strategies

Let us look back at the real-time grabbing problem: Assuming a board capable of asynchronous
transfer, a possible sequence to choose is:

Trigger a grab (control returns immediately to the calling process).
Wait for the grab to finish.
Trigger the next grab.

Process the image resulting from step 2.

a & W NP

Go back to step 2.
This sequence corresponds to the simple HALCON program

while(1)
grab_image_async (Image,-1)
< process Image >
end while

Since steps 1 and 3 (starting an asynchronous grab) do not block the process, no time is wasted
while the frame grabber is busy. The only topic left to think about is how the memory used
for grabbing should be organized: Assuming step 3 makes the frame grabber deliver data into
a dedicated memory are@athoutknowledge about what the host is doing in step 4, it is easily
seen, that the frame grabber must use a different memory area than the host. If not, the frame

"Direct Memory Access.

HALCON 6.0

6 CHAPTER 1. INTRODUCTION

grabber might write to memory the host is reading at the same time and the processed image
would be corrupt. The best way to handle this problem is to use two alternative buffers: One
to write new data into, the other to hold the previous image. These buffers might be allocated
only once before the cycle is started. They exchange their role after every iteration (the buffer
the frame grabber wrote to becomes the process’s reading buffer and vice versa). This is a
very common technique whenever asynchronous data transfer is involved and isioalidel
buffering Since older image data is overwritten, we also use the vetatile grabbing

A technique like this offers maximum grabbing performance. On the other hand, flexibility
decreases. Obviously, the older images are overwritten again and again. So all the “history” is
lost. This strict organization is a contradiction to the general HALCON philosophy that allows
to create an arbitrary number of iconic objects and to process them in parallgtaudiécide

in the application that you do not need them anymore. Therefore, a HALCON frame grabber
interface always should createwimage objects by default and offer volatile grabbing only as

an additional option, see section 3.6.

1.5 A/D Conversion and Multiplexing

Still bearing in mind that we are talking about analog video, we now take a quick look at the
interface through which analog and digital domains are connecteds/Eheonverter We are

not interested in details, except that a frame grabber’s A/D converter needs to be synchronized
to the video signal in order to keep track with subsequent lihesZontal syng and frames
(vertical syng. The sync information is either encoded in the analog video signal or is delivered
to the frame grabber through additional input lines, so the A/D circuitry is able to synchronize
itself to the video source. This is important to know, if we consider frame grabber boards having
multiple input lines: In most cases, rather expensive and complex additional A/D converters
are traded off against one analog multiplexer circuit, allowing multiple video sources to be
connected to one A/D convertselectively This means, that every time a new video source is
about to be connected to the A/D converter, the circuit has to re-synchronize itself to the new
signal, which usually means one or two frames being lost (in some cases, synchronization can
takemuchlonger, up to one second). To avoid this, one might use genlocked cameras. Please
keep in mind that in general you have to adapt parameter settings on your frame grabber board
whenever you switch between different input lines. HALCON provides a concept for dealing
with multiple cameras connected to one frame grabber board (as well as multiple frame grabber
boards inside one host computer): Each camera/board pair is representéchimg grabber
handle Inside HALCON such a handle corresponds to a frame grabhbtmnce If you would

like to support multiple cameras/boards with your frame grabber interface you have to keep
track of all instances corresponding to your frame grablzess see chapters 2 and 3.

1.6 HALCON Frame Grabber Operators

This section provides a short overview of the HALCON frame grabber operators (please refer
to the reference manuals for additional information). These operators are internally mapped to
the frame grabber interface routingsu have to provide for a new HALCON frame grabber
interface, see chapter 3.

Frame Grabber Integration/ 2000-11-16

1.6. HALCON FRAME GRABBER OPERATORS 7

1.6.1 open framegrabber

The operatobpen_framegrabber is used to create a new frame grabber handle. It loads the
specified frame grabber interface and accesses the frame grabber board itself. Moreover, the
typical parameters for standard cameras are set (like image size and part, color space, frame
grabber port, etc.). If the frame grabber (that is the driver as well as your interface) supports
multiple boards inside one host computer, you also specify the desired board (using the parame-
terDevice). Itis also possible to use more than one camera per board. In that case you create a
frame grabber handle f@achcamera by a sequence @fen_framegrabber calls (specifying

the camera via the paramet@rsrt or LineIn). Note, that you have to handle multiple frame
grabber instances inside your frame grabber interface if you would like to support multiple
cameras or boards.

In detail, this HALCON operator will call your interface routinB&penRequest () (See sec-
tion 3.2) andFGOpen () (see section 3.3). In additioRGInit () (see section 3.3) will be called
when you access a specific frame grabber for the very first time.

1.6.2 close_framegrabber

The operatorlose_framegrabber is the counterpart topen_framegrabber. It deallocates

a frame grabber handle, releases the associated memory, and unlocks the frame grabber board
depending on whatevgouprogram in the underlying interface routifr@Close () (see section

3.4).

1.6.3 close_all framegrabbers

The operator close_all framegrabbers IS a convenience operator that calls
close_framegrabber for all frame grabber handles in use. This can be very useful,
e.g., if you have forgotten to close a frame grabber (instance) before loading a new program
in HDevelop: The variables containing the old handles are cleared and thus there is no other
way left to “unlock” frame grabbers. However, note that this operator has severe side-effects. It
closesall frame grabbers, but it cannot change the handles in your program. Thus, it is in your
responsibility not to use these handles later on.

Sinceclose_all _framegrabbers is based ortlose_framegrabber you do not have to pro-
vide specific routines for this operator inside your frame grabber interface.

1.6.4 info_framegrabber

The operatotinfo_framegrabber is used to access basic information about a specific frame
grabber board (and the corresponding interface). Note, that since many parameter settings de-
pend on the specfic properties of a frame grabber, HALCON can neither provide meaningful
defaults nor check parameters automatically.

This operator will call the routinBGInfo () in your frame grabber interface (see section 3.5).

HALCON 6.0

8 CHAPTER 1. INTRODUCTION

1.6.5 grab_image

The operatograb_image is used to grab a new imaggnchronouslythat means a new grab is
started and the operateaitsuntil this grab has been finished.

This operator will call your interface routirg&Grab () (see section 3.6).

1.6.6 grab_image_async

The operatograb_image_async grabs a new imagasynchronouslylt waits until a pending
asynchronous grab has been finished (if you got the timing right this grab should be finished
already to prevent wasting time at this point). This image is then returned unless it is older
than a specified threshold. Otherwise a new (synchronous) grab is performed. Afterwards,
grab_image_async triggers a new asynchronous grab and returns without further waiting.

This operator will call the routinBGGrabAsync () (see section 3.8) in your frame grabber inter-
face. If this routine is missing, the error cOHEERR_FGASYNC (“Frame grabber: asynchronous
grab not supported”) will be returned. Thus, if you do not want to support asynchronous grab-
bing, just do not provid€GGrabAsync ().

1.6.7 grab_image_start

The operatorgrab_image_start startsthe asynchronougrabbing of a new image and re-
turns immediately. The ima§dtself is then delivered by the next call grab_image or
grab_image_async unless it is older than the specified threshold. This operator is useful if
your application involves time consuming processing. In this case, asynchronously grabbed
images might be too old if you start the grab immediately after grabbing the prior image (via
grab_image_async). grab_image_start allows you to fine-tune the moment you start the
grab. In case of a free-running camera call this operator approximately one and a half frames
before you need the next image.

This operator will call the routinBGGrabStartAsync () (see section 3.9) in your frame grab-
ber interface. If this routine is missing, the error cédERR_FGASYNC (“Frame grabber: asyn-
chronous grab not supported”) will be returned.

1.6.8 grab_region

The operatograb_region grabs a new imageynchronouslybut does not return the image
itself. Instead, a segmentation (that is, imeggiong based on this image is delivered. The kind

of segmentation used is upyou(and maybe dependent on some specific hardware features of
your frame grabber).

This operator will call your interface routir&GrabRegion () (see section 3.10). If this routine
is missing, the error code_ERR_FGFNS (“Frame grabber: function not supported”) will be
returned.

8Alternatively, a segmentation of the image will be returnegbyb_region or grab_region_async.

Frame Grabber Integration/ 2000-11-16

1.7. HALCON FRAME GRABBER INTEGRATION INTERFACE VERSUS HALCON FRAME
GRABBER INTERFACE 9

1.6.9 grab region async

The operatograb_region_async grabs a new imagasynchronouslythat means it waits for

a pending grab to finish and starts a new asynchronous grab again before returning. Similar
to grab_region it does not return the image itself, but a segmentation (that is, image regions)
based on this image. The kind of segmentation used is youdand maybe dependent on
some specific hardware features of your frame grabber).

This operator will call your interface routiri&GrabRegionAsync () (See section 3.11). If this
routine is missing, the error codieERR_FGFNS (“Frame grabber: function not supported”) will
be returned.

1.6.10 set_framegrabber param, get framegrabber param

The operatorset_framegrabber_param andget_framegrabber_param are used to set or
retrieve specific parameters of a frame grabber instance. They have been designed to allow the
fine-tuning of "exotic” hardware. For whatever you can think of as being useful to adjust on
your board, just define corresponding parameters. You can either set single parameter values or
tuples of parameter values. The latter case might be very useful if some parameters depend on
each other and therefore have to be set within one cgofframegrabber_param.

get_framegrabber_param® and set_framegrabber_param do not evaluate the parameters
themselves, but only pass themytour interface routine§GSetParam() (See section 3.12)
andFGGetParam() (see section 3.13). Note, that since the name, values, and semantics of such
parameters depend on the specific properties of a frame grabber, HALCON can neither provide
meaningful defaults nor check parameters automatically. This is all up to your frame grab-
ber interface. [FGSetParam() or FGGetParam() are missing, the error codeERR_FGPARAM
(“Frame grabber: unsupported parameter”) will be returned.

1.6.11 set_framegrabber_lut, get_framegrabber_lut

The operatorset_framegrabber_lut andget_framegrabber_lut are used to set or retrieve
color lookup tables of a frame grabber instance (thus supporting things like gamma correction
or white balancing).

These operators will call your interface routir@setLut () (see section 3.14) GGGetLut ()
(see section 3.15). If one of these routines is missing, the error k@®@ _FGFNS (“Frame
grabber: function not supported”) will be returned.

1.7 HALCON Frame Grabber Integration Interface ver-
sus HALCON Frame Grabber Interface

The term “HALCON frame grabber interface” refers to an external module encapsulating the
frame grabber specific code; this is the gmal have to provide. In contrast, the “HALCON

SActually this is not completely trugget_framegrabber_param automatically returns the current settings for
the standard parameters you specify wiffen_framegrabber.

HALCON 6.0

10 CHAPTER 1. INTRODUCTION

frame grabber integration interface” is the module inside the HALCON library which is respon-
sible for managing and accessing (external) frame grabber interface modules.

Whenever a frame grabber is accessed for the very first time ugkrg framegrabber or
info_framegrabber the corresponding (external) frame grabber interface, a dynamically load-
able modulé? is loaded. For example, a call like

open_framegrabber (’PicPort’, ...)

will cause the HALCON library to load the moduli&GPicPort.d11 in the case of Windows
NT / 2000 orHFGPicPort.so for UNIX systems, respectively. If you use Parallel HALCON
under Windows NT or Windows 2000, it will load the libraparHFGPicPort.d11l. Please
note, that in order for this mechanism to work all frame grabber libraries need the §réfix
(andparHFG under Windows NT / 2000).

After the first call, the interface routines inside this module (programmeatywill be called

by the corresponding HALCON operators, see section 1.6. Before we take a look at the data
structures involved, we should bear in mind that some parts of the frame grabber management
take place in the HALCON library and others are up to your frame grabber interface. It is
important to keep in mind who is responsible for what:

The HALCON library’s job is to:

e Maintain a list of frame grabbelasses
e Maintain a list ofinstancedor each class, and to

e Decode and preprocess an operator’s parameters.
The interface’s job is to

e “Define” a class (e.qg., filling the data structure with appropriate data),
e Manage multiple instances and their mutual dependencies,
e Interprete an operator’s parameters and map them to the underlying hardware, and to

e Grab images based on the frame grabber’s application programming intekfalje (

1.8 Additional Sources of Information

For further information, please consult one of the following manuals:

e Getting Started with HALCON
An introduction to HALCON in general, including how to install and configure HALCON.

¢ HDevelop User’'s Manual
An introduction to the graphical development environment of the HALCON system.

10A DLL for Windows NT / 2000 or ahared libraryfor UNIX systems, respectively.

Frame Grabber Integration/ 2000-11-16

1.8. ADDITIONAL SOURCES OF INFORMATION 11

e HALCON/C ++ User’s Manual
How to use the HALCON library in your C++ programs.

e HALCONY/C User's Manual
How to use the HALCON library in your C programs.

e HALCON/COM User’s Manual
How to use the HALCON library in your COM programs, e.g., in Visual Basic.

e Extension Package Programmer’s Manual
How to extend the HALCON system with your own operators.

e HALCON/HDevelop, HALCON/C++, HALCON/C, HALCON/COM
The reference manuals for all HALCON operators (versions for HDevelop, C++, C, and
COM).

All these manuals are available as PDF documents. The reference manuals are available as
HTML documents as well. For the latest version of the manuals please check

http://www.mvtec.com/halcon/
Please see also the frame grabber interface template and the example files
CIOFGTemplate.c, MyDT3155.c, andMySlicVideo.c

in %HALCONROOTY\examples\fg_integration.

HALCON 6.0

12 CHAPTER 1. INTRODUCTION

Frame Grabber Integration/ 2000-11-16

Chapter 2

Data Structures

This chapter introduces the data structures provided by the HALCON frame grabber integration
interface. Furthermore, it contains some recommendations on how to handle multiple frame
grabber instances.

2.1 Frame Grabber Classes and Instances

The HALCON frame grabber interfaces manage frame grabbers akiegesandinstances

Since HALCON is designed to access any number and combination of boards simultaheously
situations may occur, where several boards controlled by the same interface, or boards using
different interfaces, or a combination of both must be addressed. The mechanism chosen to
handle situations like these uses classes and instances of classes:

A classrepresents a specific frame grabber méaeld its interface. The corresponding data
structure contains all the function pointers needed to access the routines within the interface
and the default parameter settings épen_framegrabber. Such an entry exists only once for
each type of frame grabber.

Each newinstancecreated from this class represents either a specific board belonging to this
class or a multiplexed port on such a board. Fig. 2.1 shows a possible configuration. The first
two frame grabber boards in our example (a “model 1000” and a “model 2000”) are different
boards from the same manufacturer (*foo labs”). Assuming these (similar) boards being con-
trolled by the same frame grabber interface, they belong to the same class. Therefore, the input
lines connected to camera 1 and 2 represent two instances of this class. The third frame grabber
is a totally different onelar inc.’s mega-grabber) and therefore another interface is needed

— the second class. This frame grabber has two (probably multiplexed) ports attached, thus
camera 3 and 4 can be understood as two instances of this second class.

2.1.1 Structure FGClass

The data structureGClass encapsulates the data commomlianstances of a one frame grab-
ber model, see Fig. 2.2 to 2.4. It is initialized Pgur interface routineFGInit (), see sec-
Well, to be honest, there is a limitation: HALCON can handle B2 AX_NUM) different frame grabbers with

up to 32 £G_MAX_INST) instances eacit the same time
20r afamily of frame grabber models likeT3152, DT3153, andDT3155 by Data Translation.

13

14 CHAPTER 2. DATA STRUCTURES

cam 1
foo labs, model 1000
foo labs, model 2000 cam 2
bar inc., mega-grabber \\
N \\
cam 3
cam 4
/:}:—::5::—::;\ your computer

Figure 2.1: A possible configuration with multiple frame grabbers.

tion 3.1.
typedef struct _FGClass {
[3 sm—ommmemmeossmeeseeesmees e T N e x/
char name[MAX_STRING]; /* frame grabber name (interface module) */
void *1ib_handle; /* handle of interface library x/
INT interface_version; /* current HALCON frame grabber x/
/* interface version x/
I properties / management —--—---—--————————————————- x/
HBOOL available; /* supported for the current platform x/
INT instances_num; /* current number instances (INTERNAL!) x/
INT instances_max; /* maximum number of instances x/
FGInstance *instance[FG_MAX_INST]; /* list of instances (INTERNAL!) */

Figure 2.2: The data structure FGClass defined in include\hlib\CIOFrameGrab.h (to be con-
tinued).

You do not have to set all the members of the structure. Espedallgot touch the IN-
TERNAL entries like name or 1ib_handle. They are controlled by the HALCON library
exclusively.

We won’t discuss each member of the structure. However, it may be useful to look at the
differenttypesof fields:

¢ Internal / Management
name, 1ib_handle, available (for backward compatibility only)instances_num etc.:
These are the internal and some additional entries used for managing instances, see chap-
ter 3.

e Interface-specific functions
Open etc.: Pointers to the interface routines you provide, see chapter 3 and Fig. 2.5.

Frame Grabber Integration/ 2000-11-16

2.1. FRAME GRABBER CLASSES AND INSTANCES 15

typedef struct _FGClass {

[* ————m—m interface-specific functions ----------------————- */
FGInstance** (*xOpenRequest) (Hproc_handle proc_id,FGInstance *fginst);
Herror (*0pen) (Hproc_handle proc_id,FGInstance *fginst);
Herror (*Close) (Hproc_handle proc_id,FGInstance *fginst);
Herror (*Grab) (Hproc_handle proc_id,FGInstance *fginst,

Himage *image,INT *num_image);

Herror (*GrabStartAsync) (Hproc_handle proc_id,FGInstance *fginst,
double maxDelay) ;

Herror (*GrabAsync) (Hproc_handle proc_id,FGInstance *fginst,
double maxDelay,Himage *image,
INT *num_image) ;

Herror (*GrabRegion) (Hproc_handle proc_id,FGInstance *fginst,
Hrlregion **region,INT *num_region,
INT *rlalloc_type);

Herror (*GrabRegionAsync) (Hproc_handle proc_id,FGInstance *fginst,
double maxDelay,Hrlregion **region,
INT *num_region,INT *rlalloc_type) ;

Herror (*Info) (Hproc_handle proc_id,INT queryType,

char **info,Hcpar **values,INT *numValues);
Herror (*SetParam) (Hproc_handle proc_id, FGInstance *fginst,

char *param,Hcpar *value,INT num);
Herror (*GetParam) (Hproc_handle proc_id, FGInstance *fginst,

char *param,Hcpar *value,INT *num) ;
Herror (*SetLut) (Hproc_handle proc_id,FGInstance *fginst,

INT4_8 *red,INT4_8 *green,INT4_8 *blue,INT num);
Herror (*GetLut) (Hproc_handle proc_id,FGInstance *fginst,

INT4_8 *red,INT4_8 *green,INT4_8 *blue,INT *num) ;

Figure 2.3: The data structure FGClass defined in include\hlib\CIOFrameGrab.h (to be con-
tinued).

e Default values
image_width, image_height, etc.: The default values for the standard parameters used
in open_framegrabber. Whenever the user specifies “default” (or -1, respectively) in
this operator, the HALCON library will pass the corresponding values ir&ldgass to
the interface routin€G0pen (), see section 3.3.

Please see also Fig. 3.47 on page 58.

2.1.2 Structure FGInstance

There is a data structure callédInstance (see Fig. 2.6) you will encounter very often when
programming an interface since almost every routine you provide (see chapter 3) expects a
pointer to the frame grabber instance it should work with.

The structureFGInstance contains the actual parameters for a specific frame grabber in-
stance. The corresponding default values for the underlying frame grabber model are stored

HALCON 6.0

16

typedef struct _FGClass {

—————————————————————————— default values ——————————————————————————
INT horizontal_resolution, /* desired resolution delivered
vertical_resolution; /* by the board
INT image_width,image_height;/* desired image size
INT start_row,start_col; /* upper left corner
INT field; /* even- or odd-field, full image mode
INT bits_per_channel; /* color depth per pixel & channel
char color_space[MAX_STRING]; /* "gray", "rgb", "yuv",
float gain; /* video-preamp gain
HBOOL external_trigger; /* trigger mode
char camera_type[MAX_STRING]; /* used camera type (fg-specific!)
char device[MAX_STRING]; /* device name
INT port; /* port to use
INT line_in; /* multiplexer input line
[3 smommmomsmeesmeesmeemees miscellaneous =——--—-—-==———=—————————————————
void *reserved[FG_NUM_RESERVED];
} FGClass;

Figure 2.4: The data structure FGClass defined in include\hlib\CIOFrameGrab.h (continued).

CHAPTER 2. DATA STRUCTURES

HALCON operator corresponding function pointer
open_framegrabber FGClass.OpenRequest, FGClass.Open
close_framegrabber FGClass.Close

grab_image FGClass.Grab
grab_image_async FGClass.GrabAsync
grab_region FGClass.GrabRegion
grab_region_async FGClass.GrabRegionAsync
grab_image_start FGClass.GrabStartAsync
info_framegrabber FGClass.Info
set_framegrabber_lut FGClass.SetLut
get_framegrabber_lut FGClass.GetLut
set_framegrabber_param | FGClass.SetParam
get_framegrabber_param | FGClass.GetParam

Figure 2.5: HALCON operators and the corresponding FGClass members.

in FGClass. Moreover, additional information concerning asynchronous grabbing might be
stored in this structureagync_grab etc.). Finally, if you want to insert raw data allocated
with other than the HALCON memory management routines into HALCON imagesyyst

specifyhalcon malloc andclear_proc, SeeFGGrab() in section 3.6.

Please note, tha&GInstance also contains a generic pointgge@_pointer), which is very
useful for example to link the structure to a structure filk@Instance (section 2.2.2) holding

additional information for an instance, see a&f&@penRequest ()in section 3.2.

Frame Grabber Integration/ 2000-11-16

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

2.2. RECOMMENDED AUXILIARY STRUCTURES 17

typedef struct _FGInstance {

struct _FGClass *fgclass; /* a pointer to the corresponding class */
[z s=———m———e—esssese—ees regular parameters —-——-—--———-—-————————————————- x/
INT horizontal_resolution, /* desired resolution delivered */
vertical_resolution; /* by the board */

INT image_width,image_height;/* desired image size */
INT start_row,start_col; /* upper left corner x/
INT field; /* even- or odd-field, full image mode */
INT bits_per_channel; /* color depth per pixel & channel x/
char color_space[MAX_STRING]; /* "gray", "rgb", "yuv", ... */
float gain; /* video-preamp gain x/
HBOOL external_trigger; /* trigger mode */
char camera_type[MAX_STRING]; /* used camera type (fg-specific!) x/
char device[MAX_STRING]; /* device name */
INT port; /* port to use x/
INT line_in; /* multiplexer input line x/
[3 smommmmesmeemmeemmee= miscellaneous parameters —-—----—-—--——-————————-- x/
INT4_8 mode; /* current operating mode */
INT width_max,height_max; /* maximum image size */
INT num_channels; /* number of image channels */
HBOOL async_grab; /* TRUE <=> async grabbing engaged */
Himage *image; /* image objects to grab into (aux.) x/
void *gen_pointer; /* generic pointer (auxiliary) */
I external memory allocation -------=--————=—————-- x/
HBOOL halcon_malloc; /* TRUE <-> standard memory allocation */
/* by HNewImage */

DBFreeImageProc clear_proc; /* pointer to specific clear function */
/* (if halcon_malloc==FALSE) */

} FGInstance;

Figure 2.6: The data structure FGInstance defined in include\hlib\CIOFrameGrab.h.
2.2 Recommended Auxiliary Structures

The structure§GClass andFGInstance provide data relevant to the HALCON library (that

is outside of your interface) common to all different frame grabber types. However, to handle
a specific frame grabber you will need additional data structures. We recommend to adapt the
following two structure®oardInfo andTFGInstance for your needs.

2.2.1 Structure BoardInfo

We suggest to define a structl@rdInfo to hold all data relevant for a specific frame grabber
board (that is the physical instance of a frame grabber model you plugged into your computer).
Fig. 2.7 shows a typical example.

Deviceld is an entry in this structure you will need for every frame grabber we know (although
the corresponding datgpewill vary). Itis used to store a handle returned by the frame grabber
API to access a board. If you decide to support multiple boards you might also want to hold a

HALCON 6.0

18 CHAPTER 2. DATA STRUCTURES

typedef struct {

char DeviceName [255] ; /* assign a name to each board */
INT4_8 Deviceld; /* some sort of handle (specific */
/* to the frame grabber API) */

HBYTE *BoardFrameBuffer [MAX_BUFFERS];/* buffers assigned to the board,*/
/* that is to ALL TFGInstances */

INT currBuffer; /* index of the active buffer */
INT sizeBuffer; /* size of each buffer */
INT refBuffer; /* number of references to the */
/* buffers (from TFGInstance(s)) */
INT refInst; /* number of instances assigned */
/* to this board */

} BoardInfo;

Figure 2.7: An example for the recommended auxiliary data structure BoardInfo.

device name for each board. Moreover, it might be a good idea to’dhafer memory among

all frame grabber instances using the same board. The other entries in the example refer to the
management of these buffers and the instances using the board. Please refer to chapter 3 and
the example template fil€I0OFGTemplate . ¢ for details.

For every frame grabber board you have installed in your computer you should allocate one
structureBoardInfo. In general there might be more than one frame grabber instance operat-
ing on such a physical board. Thus, we recommend to store instance-specific data in another
structure calledFGInstance (see below).

2.2.2 Structure TFGInstance

We recommend to use a data structure callB@Instance to extend the data provided by
FGInstance for each frame grabber instance. Fig. 2.8 shows a typical example.

Obviously, it is very convenient to hold references to both the assigned physical board)(

and the corresponding instance data from the HALCON libratigfance). Moreover, to han-

dle asynchronous grabbing, entries likesy (indicating that a grab is still pending)imeout

(holding the current setting for the maximum tolerated “age” of an asynchronously grabbed
image), orgrabStarted (containing a timestamp) might be a good idea. If you would like

to support volatile grabbing, i.e. to let the frame grabber buffers (containing the image data)
insert into HALCON images, a flag likeolatileMode is useful. In this case, but also if you
encounter frame grabber instances using different image sizes, buffer memory cannot be shared
among all instances assigned to a board. Allocate buffers for each instance instead (using entries
like InstFrameBuffer andallocBuffer). Please refer to chapter 3 adfi0FGTemplate.c

for more details on how to uS#GInstance.

It is hard to provide a framework for all possible frame grabbers in this manual. If you would
like to develop with an optimal interface you will always have to adapt the example code to
the specific API of the frame grabber and to its specific hardware features. In general, this

3Since most frame grabbers have only one A/D converter you have to synchronize the grabbing by different
instances anyway.
4This prevents an additional copy of data. However, as a side-effect old images are overwritten.

Frame Grabber Integration/ 2000-11-16

2.2. RECOMMENDED AUXILIARY STRUCTURES 19

typedef struct {

BoardInfo #*board; /* the ’physical’ board this instance is x/
/* attached to */
HBOOL busy; /* useful, if you plan to support asynchronous x/
/* grabbing (is the last grab still running?) x/
INT instance; /* a useful backreference to the general Halcon */
/* instance information: The instance index x/
/* (0 to FG_MAX_INST-1) */
INT4_8 timeout; /* useful for async grabbing: timeout threshold */
/* for "images too old" */
INT currBuffer;/* you probably use more than one buffer: Index */
/* of the active buffer */

#ifdef WIN32
struct _timeb grabStarted;/* just to check the timeout: the timestamp */

/* when the last grab was started */
#else
struct timeval grabStarted;/* the same for UNIX systems ... */
struct timezone tzp;
#endif
HBYTE xInstFrameBuffer [MAX_BUFFERS]; /* buffers assigned to this */
/* instance */
HBOOL allocBuffer; /*x TRUE <=> buffers are allocated per instance, */
/* not only references to the buffers in "board"x/
HBOOL volatileMode;/* TRUE <=> pass buffer memory directly to a */
/* HALCON image (possibly "overwriting" older */
/* images) */

} TFGInstance;

Figure 2.8: An example for the recommended auxiliary data structure TFGInstance.

will also mean to include additional parametersTi&Instance andBoardInfo) to allow the
fine-tuning of the hardware.

HALCON 6.0

20 CHAPTER 2. DATA STRUCTURES

Frame Grabber Integration/ 2000-11-16

Chapter 3

Interface Routines

This chapter explains all the routines you have to implement inside your frame grab-
ber interface in order to support the corresponding HALCON frame grabber opera-
tors, see section 1.6. The example code of the next sections can also be found in
JHALCONROOOTY\examples\fg integration\CIOFGTemplate.c.

3.1 FGInit()

FGInit () as defined in Fig. 3.1 is called by the HALCON operatogsn_framegrabber or
info_framegrabber when you access a specific frame grabber for the very firse.

#include "Halcon.h"
#include "hlib/CIOFrameGrab.h"

Herror FGInit(Hproc_handle proc_id, FGClass *fg)
{

/* initialize the data structure FGClass and the frame grabber interface */
return (H_MSG_0K) ;
}

Figure 3.1: The prototype of FGInit ().

In order to do so, the routingGInit () must be accessible from outside, that is the HALCON
library must be able to find the symbol and call the routine inside the DLL or shared library. In
UNIX it is sufficient just to avoid declaring the routine ssatic. In Windows NT / 2000 you
have to export the symbol explicitly:

extern __declspec(dllexport) Herror FGInit(Hproc_handle proc_id, FGClass *fg);

By the wayFGInit () is the only restriction concerning symbol names: The names of all other
procedures, variables, and macros you use inside your interface is up to yoaybuthange
the name of this routine. Otherwise, HALCON will fail to access your frame grabber interface.

The routineFGInit () must perform three basic tasks:

10r if you access a frame grabber again after closing all instances.

21

22 CHAPTER 3. INTERFACE ROUTINES

¢ Initialize the data structurBGClass (see section 2.1.1). Especially the function pointers
to all the other routines within the interface must be inserted.

e Provide default values for the standard parameters used in the HALCON operator
open_framegrabber.

¢ Initialize the data structures inside the frame grabber interface and link them to the corre-
sponding data structures in the HALCON library, if necessary.

An example for the first two tasks is given in Fig. 3.2 and 3.3; an example for the latter is shown
in Fig. 3.5.

Herror FGInit (Hproc_handle proc_id, FGClass *fg)

{
e management —-—-—-—-———-—-—————————————————————— x/
/* For backward compatibility: */
fg->available = TRUE;

/* Do not change the next line or modify fg->instances_num anywhere else */
/* in the interface (otherwise HALCON will fail to unload the interface */

/* DLL properly!) */
fg->instances_num = 0;

/* Tell HALCON how many instances you are willing to support x/
fg->instances_max = FG_MAX_INST;

[——————————————————= interface-specific functions -——-————-—————————— x/
fg->0OpenRequest = FGOpenRequest;

fg->0pen = FGOpen;

fg->Close = FGClose;

fg->Info = FGInfo;

fg->Grab = FGGrab;

fg->GrabStartAsync = FGGrabStartAsync;

fg->GrabAsync = FGGrabAsync;

fg->GrabRegion = FGGrabRegion;

fg->GrabRegionAsync = FGGrabRegionAsync;

fg->SetParam = FGSetParam;

fg->GetParam = FGGetParam;

fg->SetLut = FGSetLut;

fg->GetLut = FGGetLut;

return(H_MSG_0K) ;

Figure 3.2: Example code for FGInit (): Initialize FGClass (to be continued).

Note, that in Fig. 3.2 the function pointers insiB@&lass are assigned to the specific routines

you provide in the frame grabber interface. Thus, you can choose arbitrary names for the
latter. However, we recommend to stick to the names used in this manual to ease understanding
different interface code. Some of these function pointers are optional, see Fig. 3.4. If you do
not assign anything (or assigaLL pointer) to these function pointers, HALCON will return

an error while executing the corresponding operators, see section 1.6.

In Fig. 3.5 we have assumed that you followed our suggestion to provide a data structure
TFGInstance to hold additional framegrabber-specific information about an instance, see also

Frame Grabber Integration/ 2000-11-16

3.1. FGINIT()

Herror FGInit (Hproc_handle proc_id, FGClass *fg)

23

{
R R default values ————————————————————————-—- */
/* The following defaults will be delivered to FGOpen(), if "default" */
/* or -1 is specified in open_framegrabber() x/
fg->horizontal_resolution = 1;
fg->vertical_resolution = 1;
fg->image_width = fg->image_height = O;
fg->start_row = fg->start_col = 0;
fg->field = FG_FULL_FRAME;
fg->bits_per_channel = 8;
strcpy(fg->color_space, "gray") ;
fg->gain = 1.0f;

fg->external_trigger FALSE;
strcpy (fg->camera_type, "auto") ;
strcpy(fg->device,"0");

fg->port =1;
fg->line_in =1;

return(H_MSG_0K) ;

Figure 3.3: Example code for FGInit (): Initialize FGClass (continued).

Interface routine Function pointer Error code
FGGrabAsync () fg->GrabAsync H_ERR_FGASYNC
FGGrabStartAsync () fg->GrabStartAsync H_ERR_FGASYNC
FGGrabRegion() fg->GrabRegion H_ERR_FGFNS
FGGrabRegionAsync() | fg->GrabRegionAsync | H_.ERR_FGFNS
FGSetParam() fg->SetParam H_ERR_FGPARAM
FGGetParam() fg->GetParam H_ERR_FGPARAM
FGSetLut) fg->SetLut H_ERR_FGFNS
FGGetLut) fg->GetLut H_ERR_FGFNS

Figure 3.4: Optional interface routines and the corresponding error codes returned by the HAL-

CON library if the routines are missing.

section 2.2.2. Note, that in this example we have also assumed that you are willing to support
multiple instances. If you would like to start with a simple frame grabber integration support-
ing only oneinstance, you can simplifgGInit (): In that case it might be enough to hold all
framegrabber-specific information in one global data structure (or a bunch of global variables)

inside the interface. Thus, you could skip the suggested array

TFGInstance FGInst[FG_MAX_INST];

and all the

code in Fig. 3.5.

HALCON 6.0

24 CHAPTER 3. INTERFACE ROUTINES

static TFGInstance FGInst[FG_MAX_INST]; /* all possible instances x/
static INT numInstance = 0; /* # current instances */
static FGClass *fgClass; /* pointer to the class struct */

Herror FGInit (Hproc_handle proc_id, FGClass *fg)

{
INT i;
/* Initialize the instance data structure inside of this interface */
for (i=0; i < FG_MAX_INST; i++)
{
memset (&(FGInst[i]), 0, sizeof (TFGInstance));
FGInst[i] .instance = i;
}
numInstance = 0;
[* ————m—m—m store the class information ---------------——————- */
fgClass = fg;

return(H_MSG_0K) ;

Figure 3.5: Example code for FGInit (): Initialize FGClass.

Frame Grabber Integration/ 2000-11-16

3.2. FGOPENREQUEST() 25
3.2 FGOpenRequest ()

The routineFGOpenRequest () as defined in Fig. 3.6 is called by the HALCON operator
open_framegrabber prior to callingFGOpen(), see section 3.3. It has to perform only one
task:

e Return the next available instance (i.e., one of the instance pointers insidettess
data structure, see section 2.1.1).

#include "Halcon.h"
#include "hlib/CIOFrameGrab.h"

static FGInstance **FGOpenRequest(Hproc_handle proc_id, FGInstance *fginst)
{

/* return an available instance prior to FGInit() */
return (&(fgClass->instance[0]));
}

Figure 3.6: The prototype for FGOpenRequest ().

If the instance you return is already assigned to a frame grabber handle, this “old instance” is
automatically closed usingzClose (). If you return aNULL pointer, HALCON will return the
error codefl_ERR_FGDV (“Frame grabber: device busy”) as resulf open_framegrabber.

If you support multiple instances you can use the example code listed in Fig. 3.7, otherwise use
the code in Fig. 3.8.

static FGInstance **FGOpenRequest(Hproc_handle proc_id, FGInstance *fginst)

{
INT i;

if (numInstance >= FG_MAX_INST)
return(NULL); /* too many instances ... */
else
{
/* search for next unused instance */
for (i=0; i < FG_MAX_INST; i++)
{
if (!'FGInst[i].board)
break;
}
fginst->gen_pointer = (voidx)&FGInst[i];
return (&(fgClass->instancel[i]));

Figure 3.7: Example code for FGOpenRequest (): Multiple instances.

2There is no instance available — thus, the device is “busy”.

HALCON 6.0

26 CHAPTER 3. INTERFACE ROUTINES

static FGInstance **FGOpenRequest(Hproc_handle proc_id, FGInstance *fginst)
{

fginst->gen_pointer = (void*)&FGInst[0];

return (&(fgClass->instance[0]));
}

Figure 3.8: Example code for FGOpenRequest (): Only one instance.

Note, that we use the global pointClass that has been set to tR&@Class structure assigned
to this interface (that is to this frame grabber modeljdéanit () as suggested in Fig. 3.5. Al-
ternatively, you could also usginst->fgclass, which is also a pointer to the same structure.

Note further, that in Fig. 3.7 the generic pointg¢n_pointer inside the data structure
FGInstance (See section 2.1.2) is used to establish a link between the exterior striigiues
provided by the HALCON library and thEFGInstance structureFGInst[i] inside the inter-
face.

The example code in Fig. 3.8 will cause HALCON to automatically close the old instance
whenever you request a new instance usipgn_framegrabber. This is very convenient for
interactive programming withiDevelop, but obviously leads to a severe side-effect. Thus, you
might also check whether there is an active instance (using a boolean flag) andivéfuin

case the frame grabber is busy.

You should not bother too much about this routine. In most cases you can use one of the two
examples provided without any changes.

Frame Grabber Integration/ 2000-11-16

3.3. FGOPEN() 27
3.3 FGOpen()

The routine FGOpen() as defined in Fig. 3.9 is called by the HALCON operator
open_framegrabber, see section 1.6. It has to perform the following tasks:

e Check all parameters specified in th&lnstance Structurefginst.

e Check the availability of the specified frame grabber board and initialize the board ac-
cording to the parameter settings.

¢ Allocate buffers if necessary.

Please refer t6I0FGTemplate.c for a detailed example of such a routine.

#include "Halcon.h"
#include "hlib/CIOFrameGrab.h"

static Herror FGOpen(Hproc_handle proc_id, FGInstance *fginst)
{

/* initialize the new frame grabber instance fginst */
return (H_MSG_0K) ;
}

Figure 3.9: The prototype for FGOpen ().

At the very beginning ofGOpen () we suggest to access the interfiB&Instance Structure
corresponding to the specified instafgenst and set some defaults as shown in Fig. 3.10. All

the examples in this section are aiming @oanpletdrame grabber integration. If you are only
interested in a basic integration, many of the things discussed here are unnecessary. Thus, the
resulting code might be much shorter and easier to understand (e.gyS3aeVideo . c), but

also much less general and flexible.

static Herror FGOpen(Hproc_handle proc_id, FGInstance *fginst)
{

TFGInstance *currInst = (TFGInstance *)fginst->gen_pointer;

fginst->async_grab = FALSE;
currInst->busy = FALSE;
currInst->allocBuffer = FALSE;
currInst->currBuffer = 0;

currInst->volatileMode = FALSE;

return(H_MSG_0K) ;

Figure 3.10: Example code for FGOpen (): Accessing the corresponding TFGInstance Structure
and setting some defaults.

Note, that all the parameters you specify in the HALCON operapet._framegrabber are
passed t&GOpen () in theFGInstance structure pointed to byginst, see also section 2.1.2.

HALCON 6.0

28 CHAPTER 3. INTERFACE ROUTINES

Whenever you specify “default” in this operator, the corresponding default yaluprovided
in FGInit () (see Fig. 3.3) will be passed figinst.

The parameter checking is rather straightforward: Test whether the specified values are reason-
able for your frame grabber board or not. Please note, that the HALCON library itself cannot
do much of such plausibility tests since the hardware capabilities of frame grabbers differ too
much. Whenever you detect an incorrect request, return one of the error codes listed in ap-
pendix B. Note that returning from an arbitrary position inside your interface code might lead
to memory leaks or “blocked” frame grabber boards. Therefore, we recommend to do as much
parameter checks as possibleforeaccessing the physical board or allocating memory. On

the other hand, some of these tests must be delayed until the board itself is initialized and an
analysis of the video signal is possible for example. In this case, be sure to deallocate all the
memory and to unlock the frame grabber board before returning an error code.

static Herror FGOpen(Hproc_handle proc_id, FGInstance *fginst)
{

if (!currInst->board)

{
HCkP (HAlloc (proc_id, (size_t)sizeof (BoardInfo) ,&currInst->board)) ;

/* init the struct currInst->board, e.g., */
memset (currInst->board, 0, sizeof (BoardInfo));
strcpy (currInst->board->DeviceName, fginst->device);

/* open the board for the 1st time ... */
currInst->board->Deviceld = ...

}

return(H_MSG_0K) ;
}

Figure 3.11: Example code for FGOpen(): Access a physical frame grabber board for the very
first time.

If you support multiple instances per physical frame grabber board (e.g., in case of more than
one camera connected to a single board) you should spend some time on the design of the
“availability checks”. A fairly simple solution is to enforce different porfg{nst->port)

(the parameterine_in to denote a multiplexed input line has historical reasons and is not rec-
ommended anymore), but identical values for the rest of the parameters (image size, color depth,
etc.). Otherwise, you have to re$ell these parameters in the frame grabber board whenever
you grab for one instance or the other. This might be both a lot of work to program and time
consuming during the application. The latter might be partly compensated by storing the current
parameter settings of the board within BeardInfo structure (see section 2.2.1) and compar-

ing them to corresponding settings in & nstance (see section 2.1.2) AFGInstance (See

section 2.2.2) structures. Obviously, you only have to reset the parameters that differ.

If you encounter the first instance to be assigned to a physical frame grabber board you have to
access the board using the frame grabber API and you might have to allocate the corresponding

3In any case you have to set the corresponding input line prior to grabbing.

Frame Grabber Integration/ 2000-11-16

3.3. FGOPEN() 29

#include "Halcon.h"

Herror HAlloc (Hproc_handle proc_id, size_t size, void **pointer)

{

/* allocate memory on the heap */
return(H_MSG_0K) ;
}

Figure 3.12: The prototype for the HALCON extension package interface routine HAlloc ().

BoardInfo structure if you follow our suggestions, see also section 2.2.1. Fig. 3.11 shows some
example code dealing with this. The routift¥d 1oc () as defined in Fig. 3.12 is provided by the
HALCON extension package interface, seefxéension Package Programmer’s Manuafor
details. It is used to allocate memory on the heap.

#ifdef WIN32

#define STR_CASE_CMP(S1,S2) stricmp(S1,S52)
#else

#define STR_CASE_CMP(S1,S52) strcasecmp(S1,S52)
#endif

static Herror FGOpen(Hproc_handle proc_id, FGInstance *fginst)
{

INT norm;

if (!STR_CASE_CMP(fginst->camera_type, "auto"))
{ /* use special routines provided by your frame grabber to analyze the */

/* video signal ... */
}
else if (!STR_CASE_CMP(fginst->camera_type, "ntsc"))
{

norm = FG_NTSC;

fginst->width_max = 640;

fginst->height_max = 480;
}
else if (!STR_CASE_CMP(fginst->camera_type, "pal"))
{

norm = FG_PAL;

fginst->width_max = 768;

fginst->height_max = 576;
}
else

/* well, whatever! */

return(H_MSG_0K) ;

Figure 3.13: Example code for FGOpen (): Determine the video norm and the maximum image
size to be delivered by the frame grabber.

HALCON 6.0

30 CHAPTER 3. INTERFACE ROUTINES

Once you have selected and initialized the frame grabber board you should analyze the video
signal. Many frame grabber APIs provide routines to do this automatically. If such a function-
ality is missing or the analysis is very time consuming, you might want to specify the video
norm inopen_framegrabber. Use the camera type parametginst->camera_type for this
purpose, see Fig. 3.13.

static Herror FGOpen(Hproc_handle proc_id, FGInstance *fginst)

{
INT widthScale = fginst->horizontal_resolution;
INT heightScale = fginst->vertical_resolution;
if (widthScale == fginst->width_max)
widthScale = 1;
if (heightScale == fginst->height_max)
heightScale = 1;
if (widthScale == fginst->width_max/2)
widthScale = 2;
if (heightScale == fginst->height_max/2)
heightScale = 2;
if (widthScale == fginst->width_max/4)
widthScale = 4;
if (heightScale == fginst->height_max/4)
heightScale = 4;
if (!(widthScale == 1 || widthScale == 2 || widthScale == 4))
return(H_ERR_FGWR) ; /* wrong resolution */
if (!(heightScale == 1 || heightScale == 2 || heightScale == 4))
return(H_ERR_FGWR) ; /* wrong resolution */
fginst->horizontal_resolution = fginst->width_max / widthScale;
fginst->vertical_resolution = fginst->height_max / heightScale;
return(H_MSG_0K) ;
}

Figure 3.14: Example code for FGOpen(): Determine the desired scaling and thus the image
size to be delivered by the frame grabber.

The next step is to determine the scaling of the image and thus the desired image size to be
delivered by the frame grabber. Note, that we only support subsampling by a factor of 2 or 4
in the example code in Fig. 3.14. After this, analyze the specified part of the frame grabber
image to be delivered as HALCON image by the grabbing routines, see Fig. 3.15. Once you
have determined both the image size and the part of the image to be grabbed you have to set the
video scaler of the frame grabber according to this values. Obviously, how to do this depends
on the frame grabber API. Thus, we cannot provide source code.

There is one very important topic left to be discussed for the implementatieaOplen ():
the allocation of buffer memory. In the following we assume that you use a ring buffer with

Frame Grabber Integration/ 2000-11-16

3.3. FGOPEN() 31

static Herror FGOpen(Hproc_handle proc_id, FGInstance *fginst)
{

if (fginst->image_width == 0)

fginst->image_width = fginst->horizontal_resolution - 2*xfginst->start_col;
if (fginst->image_height == 0)

fginst->image_height = fginst->vertical_resolution - 2*xfginst->start_row;

if ((fginst->start_col+fginst->image_width > fginst->horizontal_resolution) ||
(fginst->start_row+fginst->image_height > fginst->vertical_resolution))
/* wrong part */
return(CleanupFGOpen(proc_id,currInst,newBoardalloc,H_ERR_FGWP)) ;

return(H_MSG_0K) ;

Figure 3.15: Example code for FGOpen (): Determine the desired image part to be delivered as
HALCON image.

MAX_BUFFERS* entries. Obviously you have to allocate such buffers once per instance if you
would like to support different image sizes (or color depths) or volatile grabbing, see sections
1.4 and 2.2.2. On the other hand, if several instances are assigned to the same physical frame
grabber board and they have to share a single A/D converter, you have to synchronize the
grabbing by these instances. Thus, they could actually share the buffers as well to reduce
the demand for (typically non-paged) buffer memory. Therefore, we suggest to allocate shared
buffers perboardif possible and peinstanceonly if necessary. Variant to this suggestion, you

can adapt the condition of the firsf command in Fig. 3.17 to your needs. The allocation itself
usually is done using framegrabber-specific API calls. In the following examples we will use
the HALCON extension package interface routitd@loc () as a templatePlease note, that

in most cases you will have to replace these HAlloc calls by other routines.

Fig. 3.17 demonstrates this strategy. Note, that the data struchssiInfo and
TFGInstance as introduced in the sections 2.2.1 and 2.2.2 have been designed for that pur-
pose. They include all the informations needed to handle the bufiessd->sizeBuffer,
board->refBuffer, board->BoardFrameBuffer, andcurrInst->InstFrameBuffer). The
macroHCkP is used to return from a function in case of an error, seeetktension Package
Programmer’s Manual for details. Note, that returning frofGOpen () from a point like this

can lead to a memory leak as discussed before. In the “real” interface code you should keep this
in mind.

One more note concerning volatile grabbing: If you decide to create new HALCON im-
ages not based on the standard HALCON extension package interface HNsirTaage (),

but “insert” buffers directly, you should not forget to let the system know this! Set
fginst->halcon_malloc to FALSE and fginst->clear_proc to NULL in this case. See
Fig. 3.16 and the discussion BéGrab () in section 3.6 for details.

4Please defin®AX_BUFFERS according to your needs inside the interface. In most cases two buffers will be
sufficient.

HALCON 6.0

32 CHAPTER 3. INTERFACE ROUTINES

static Herror FGOpen(Hproc_handle proc_id, FGInstance *fginst)

{
/* increase the number of instances assigned to this board ... */
currInst->board->refInst++;
/* ... and the overall number of instances */
numInstance++;
return(H_MSG_0K) ;

}

Figure 3.16: Example code for FGOpen(): Final settings.

Finally, after successfully initializing the new instance, you should increasé twtoverall
counter for instancesumInstance and the number of instances for the corresponding physical
frame grabber boardurrInst->board->refInst. Again, this is only of importance if you
would like to support multiple instances.

SNote, that these counters have been suggested in Fig. 3.5 and section 2.2.1. Itis up to you whether you follow
this recommendation or come up with another solution.

Frame Grabber Integration/ 2000-11-16

3.3.

FGOPEN() 33

static Herror FGOpen(Hproc_handle proc_id, FGInstance *fginst)

{

INT4_8 sizeBuffer;

sizeBuffer = fginst->image_width*fginst->image_height *

((fginst->bits_per_channel+7) / 8)*fginst->num_channels;

if (1)

{

/* share the buffers with other instances x/
BoardInfo *board = currInst->board;
currInst->allocBuffer = FALSE;

if (!board->sizeBuffer)
{
/* that’s the very first time such buffers (per board) are requested! */
for (i=0; i < MAX_BUFFERS; i++)
{
err = HAlloc (proc_id, (size_t)sizeBuffer,&board->BoardFrameBuffer[i]);
if (err !'= H_MSG_OK)
return(CleanupFGOpen(proc_id,currInst,newBoardalloc,err));
}
board->sizeBuffer = sizeBuffer;
}
else if (board->sizeBuffer != sizeBuffer)
{
/* bad luck! The size of the shared buffers does not match */
/* the required size! */
currInst->allocBuffer = TRUE;
}
if (!currInst->allocBuffer)
{
/* insert references: */
for (i=0; i < MAX_BUFFERS; i++)
{
currInst->InstFrameBuffer[i] = board->BoardFrameBuffer[i];

¥

board->refBuffer++; /* one more instance that uses the board buffers*/

Figure 3.17: Example code for FGOpen(): Allocate buffers (to be continued).

HALCON 6.0

34 CHAPTER 3. INTERFACE ROUTINES

static Herror FGOpen(Hproc_handle proc_id, FGInstance *fginst)
{

else
currInst->allocBuffer = TRUE;

if (currInst->allocBuffer)

{
/* do not use shared buffers, but allocate the buffers for this new */
/* instance */
for (i=0; i < MAX_BUFFERS; i++)
{

HCkP (HAlloc (proc_id, (size_t)sizeBuffer,&currInst->InstFrameBuffer[i]);

}

}

return(H_MSG_0K) ;

Figure 3.18: Example code for FGOpen (): Allocate buffers (continued).

Frame Grabber Integration/ 2000-11-16

3.4. FGCLOSE() 35
3.4 FGClose()

The routine FGClose() as defined in Fig. 3.19 is called by the HALCON operator
close_framegrabber, see section 1.6. It has to perform the following tasks:

e Terminate pending asynchronous grabs.
e Deallocate the buffers.

e “Close” or “unlock” the physical frame grabber board if the instance to be closed is the
last one assigned to this board.

e Mark the instance as “free”.

#include "Halcon.h"
#include "hlib/CIOFrameGrab.h"

static Herror FGClose(Hproc_handle proc_id, FGInstance *fginst)
{

/* close the specified frame grabber instance fginst */
return(H_MSG_0K) ;
}

Figure 3.19: The prototype for FGClose ().
A pending asynchronous grab is indicated by
currInst->busy == TRUE,

see als@FGGrabAsync () in section 3.8. In this case you should use the appropriate frame
grabber API call to terminate the grab. Otherwise, you may encounter severe troubles if you
deallocate the buffers the frame grabber grabs into. The latter has to be done in accordance
with the strategies for buffer allocation R&0Open, see section 3.3. Fig. 3.20 may serve as a
template for this. Note, that we use the HALCON extension package interface riEtiae()

to deallocate memory delivered By11oc (). However, in most cases you will have to replace
HAlloc () and thudiFree () by specific routines of your frame grabber API.

If the frame grabber instance to be closed is the last one assigned to a specific physical board,
you have to “close” or “unlock” the board (using the appropriate API calls) and to deallocate
theBoardInfo structure (if any), see Fig. 3.21. Note, that you might have to consider the spe-
cial case that after closing the specified instance there isammynore instance left assigned

to the board. This case is special in that sense that other routine&likab () will assume

that all parameters of this single remaining instance have already been set on the board (during
FGOpen()). Thus, they might skip resetting these parameters again, which could lead to unex-
pected grabbing results. There are two obvious solutions to this problem: One is to restore the
parameters of the last remaining instanc&dglose (), the other is to check for discrepancies
between board settings and instance settings prior to each gaaly case.

Finally, you should mark the internal instanaerrInst as “free” again furrInst->board =
NULL;) and decrease the number of active instansesInstance--;).

HALCON 6.0

36 CHAPTER 3. INTERFACE ROUTINES

static Herror FGClose(Hproc_handle proc_id, FGInstance *fginst)
{

TFGInstance *currInst = (TFGInstance *)fginst->gen_pointer;

if (currInst->allocBuffer)
{
/* buffers have been allocated for this instance exclusively -- get rid */
/* of them! x/
for (i=0; i < MAX_BUFFERS; i++)
{
if (currInst->InstFrameBuffer[i])
{
HCkP (HFree(proc_id,currInst->InstFrameBuffer[i]));
currInst->InstFrameBuffer[i] = NULL;
}
}
}
else

{

BoardInfo *board = currInst->board;

/* the instance shared the board buffers with other instances x/
if (board->refBuffer == 1)
{
/* This is the last instance which uses the board frame buffer, */
/* therefore delete the buffer now. */
for (i=0; i < MAX_BUFFERS; i++)
{
if (board->BoardFrameBuffer[i])
{
HCkP (HFree(proc_id,board->BoardFrameBuffer[i]));
board->BoardFrameBuffer[i] = NULL;
}
}
board->sizeBuffer = 0;

}

/* otherwise: Do not touch the buffers -- they are still in use! */

board->refBuffer—-;

}

return(H_MSG_0K) ;
}

Figure 3.20: Example code for FGClose (): Deallocate buffers.

Frame Grabber Integration/ 2000-11-16

3.4. FGCLOSE() 37

static Herror FGClose(Hproc_handle proc_id, FGInstance *fginst)

{

if (currInst->board->refInst <= 1)

{
/* "close" the board (using the appropriate API call) ... x/
/* ... and deallocate the BoardInfo you have allocated in FGOpen() x/
HCkP (HFree (proc_id,currInst->board)) ;
}
else
{
currIlnst->board->reflInst--;
if (currInst->board->reflnst == 1)
{
/* This is sort of a special situation: See the text x/
}
}
currInst->board = NULL;
numInstance—-;

return(H_MSG_0K) ;

Figure 3.21: Example code for FGClose (): Deallocate board.

HALCON 6.0

38 CHAPTER 3. INTERFACE ROUTINES
3.5 FGInfo()

The routine FGInfo() as defined in Fig. 3.22 is called by the HALCON operator
info_framegrabber, see section 1.6. It has to perform the following task:

¢ Return framegrabber-specific informations depending on the specified query.

#include "Halcon.h"
#include "hlib/CIOFrameGrab.h"

static Herror FGInfo(Hproc_handle proc_id, INT queryType,
char **info, Hcpar **values, INT *numValues)
{

/* return some framegrabber-specific informations */
return(H_MSG_0K) ;
}

Figure 3.22: The prototype for FGInfo().

Currently, the queries listed in Fig. 3.23 should be supported. Thus, a reasonable skeleton
for this routine might look like the example in Fig. 3.24. PleaseG#¥GTemplate.c for a
detailed example.

queryType Semantics

FG_QUERY_GENERAL General information (vendor etc.)

FG_QUERY_PORT Description of the ports (signal, connectors)
FG_QUERY_CAMERA_TYPE | Description of the camera type parameter
FG_QUERY_DEFAULTS Default values fobpen_farmegrabber
FG_QUERY_PARAMETERS | Names of the supported non-standard parameters
FG_QUERY_INFO_BOARDS | Information about the installed boards

Figure 3.23: Queries that should be supported by FGInfo ().

FGInfo() has two output parameters: A string containing a textual description of the de-
sired information, and optional a list of parameter values. The latter can, for example, hold
the values'auto", "pal", and"ntsc" as possible values of the camera type parameter in
open_framegrabber, if you decide to use this parameter with this specific semantics, see
Fig. 3.25 and Fig 3.13.Hcpar is a CameraType data structure for storgamtrol parameters
(integer, strings, or floating point numbers), see the HALCBX{tension Package Program-
mer’s Manual for details.

In our examplevalues is used to return three strings. Thus, the typettgge in the Hcpar
structure is set tSTRING_PAR. The corresponding settings for integers and floating pointer num-
bers iSLONG_PAR andFLOAT_PAR, respectively. The parameter value should be writtgrata s
(strings),par.1 (integers of typelong), or par.f (floating point numbers of typ&ouble).
Note, that neither the stringhfo nor the array oficpar structures have been allocated prior
to callingFGInit (). Please use the HALCON extension package interface rotitinkoc ()

Frame Grabber Integration/ 2000-11-16

3.5. FGINFO() 39

static Herror FGInfo (Hproc_handle proc_id, INT queryType,
char **info, Hcpar **values, INT *numValues)
{
switch(queryType)
{
case FG_QUERY_GENERAL:
*info "HALCON frame grabber interface template, vendor: MVTec.";
*values NULL;
*numValues 0;
break;
case FG_QUERY_PORT:

break;
case FG_QUERY_CAMERA_TYPE:
break;
case FG_QUERY_DEFAULTS:
xinfo = "Default values (as used for open_framegraber).";
HCkP (HFgGetDefaults(proc_id,fgClass,values,numValues)) ;
break;
case FG_QUERY_PARAMETERS:
break;
case FG_QUERY_INFO_BOARDS:
*info = "Info about installed boards.";

break;
default:
*info
*values
*numValues

"Unsupported query!";
NULL;
0;

}
return(H_MSG_0K) ;
}

Figure 3.24: Example code for FGInfo (): Parsing the query.

exclusively to allocate the latter, see Fig. 3.25. Otherwise, you will encounter system crashes
wheninfo_framegrabber deallocates the array usitifree ().

Figure 3.26 shows another example. For the qURENQUERY_PARAMETERS FGInfo() has to

return a list of all names of additional framegrabber-specific parameters supported by your
frame grabber, see al$GSetParam() in section 3.12 an@GGetParam() in section 3.13. In

our example we assume that there is only one additional parameter controlling volatile grabbing,
see also Fig. 3.48 on page 59 and Fig. 3.49 on page 60.

HALCON 6.0

40 CHAPTER 3. INTERFACE ROUTINES

static Herror FGInfo(Hproc_handle proc_id, INT queryType,
char *xinfo, Hcpar **values, INT *numValues)

{
Hcpar *val;
case FG_QUERY_CAMERA_TYPE:
xinfo = "Video Signal of the camera (’ntsc’,’pal’,’auto’).";
HCkP(HAlloc (proc_id, (size_t) (3*sizeof (*xval)) , &val));
val[0] .par.s = "ntsc";
val[l] .par.s = "pal";
val[2].par.s = "auto";
val[0].type = val[l].type = val[2].type = STRING_PAR;
*values = val;
snumValues = 3;
break;
return (H_MSG_0K) ;
}

Figure 3.25: Example code for FGInfo(): The query FG_QUERY_CAMERA _TYPE.

#define FG_PARAM_VOLATILE "volatile"

static Herror FGInfo(Hproc_handle proc_id, INT queryType,
char *xinfo, Hcpar **values, INT *numValues)

{
Hcpar *val;
case FG_QUERY_PARAMETERS:
*info = "Additional parameters for this frame grabber.";
HCkP(HAlloc (proc_id, (size_t) (1*sizeof (*xval)) , &val));
val[0] .par.s = FG_PARAM_VOLATILE;
val[0] .type = STRING_PAR;
*values = val;
*numValues =1;
break;
return (H_MSG_0K) ;
}

Figure 3.26: Example code for FGInfo(): The query FG_QUERY_PARAMETERS.

Frame Grabber Integration/ 2000-11-16

3.6. FGGRAB() a1
3.6 FGGrab()

The routineFGGrab () as defined in Fig. 3.27 is called by the HALCON operatoib_image,®,
see section 1.6. It has to perform the following tasks:

e Terminate pending asynchronous grabs.
e (Re-)set the parameters on the frame grabber board.
e Grab an imagsynchronously

e Return a HALCON image containing the grabbed raw data.

#include "Halcon.h"
#include "hlib/CIOFrameGrab.h"

static Herror FGGrab (Hproc_handle proc_id, FGInstance *fginst,
Himage *image, INT *num_image)
{
/* grab an image synchronously */
return(H_MSG_0K) ;
}

Figure 3.27: The prototype for FGGrab ().

Note, that there might be an asynchronous grab pending when entering this routine (if the
application calle¢grab_image_async Or grab_imgage_start prior tograb_image). Since you

want to grab an imagsynchronousiyow you should terminate these grabs and launch a new
grab. However, if you have a closer look at the semantics of the grab routines you will notice
that it is quite easy to impleme@GGrabAsync () based orFGGrab() if you include some
additional branches in the code. Furtherm®@rabRegion() andFGGrabRegionAsync ()

also share the basic task of grabbing an image to a buffer with the other two routines. Thus, we
suggest to implement an auxiliary routiGeabImg () underlying all four of them, see Fig. 3.28.

#include "Halcon.h"
#include "hlib/CIOFrameGrab.h"

static Herror GrabImg (Hproc_handle proc_id, FGInstance *fginst,
INT *readBuffer)
{

/* grab an image to the current buffer */
return(H_MSG_0K) ;
}

Figure 3.28: The prototype for the auxiliary routine GrabImg().

Based on this auxiliary routingGGrab () might look as shown in Fig. 3.29. Note, that we only
support one channel grayscale and three channels color images of 8 bit scale depth per channel

8In the framework suggested in this manual it is also calleBdrabAsync () see section 3.8.

HALCON 6.0

42 CHAPTER 3. INTERFACE ROUTINES

static Herror FGGrab(Hproc_handle proc_id, FGInstance *fginst,
Himage *image, INT *num_image)
{
TFGInstance *currlnst = (TFGInstance *)fginst->gen_pointer;
INT readBuffer;

HCkP (GrabImg(proc_id, fginst, &readBuffer));

if (currInst->volatileMode)
{
/* Insert the 8 bit image buffer directly into a HALCON object */
HCkP (HNewImagePtr (proc_id, &image[0], BYTE_IMAGE,
fginst->image_width, fginst->image_height,
(voidx*)currInst->InstFrameBuffer[readBuffer],
FALSE));
*num_image = 1;
}
else
{
num_image = fginst->num_channels;
for (i=0; i < *num_image; i++)
HCkP (HNewImage (proc_id,&image [i] ,BYTE_IMAGE,
fginst->image_width,fginst->image_height));

if (fginst->num_channels == 1)
memcpy ((void *)image[0] .pixel.b,
currInst->InstFrameBuffer [readBuffer],
fginst->image_width * fginst->image_height);
else
HCkP ((ExtractChannelsFromRGB(fginst,
currInst->InstFrameBuffer [readBuffer],
image[0] .pixel.b,
image[1] .pixel.b,
image[2] .pixel.b));
}
fginst->async_grab=FALSE;
return(H_MSG_0K) ;
}

Figure 3.29: Example code for FGGrab(): The basic structure.

in this example. We further assufrt@at color images are delivered in an “interleaved” format
with RGB triples per pixel. Thus, this raw data must be separated into three image channels
(ExtractChannelsFromRGB). As a consequence volatile grabbing does not make sense for
color images.

Before we have a closer look @tabImg() let us finish the discussion éfiGrab(). For the
moment we just assume thatabImg() delivered the grabbed image in the buffer

’Actually most frame grabbers we know do not allow to grab three separated channels.

Frame Grabber Integration/ 2000-11-16

3.6. FGGRAB() 43

currlnst->InstFrameBuffer[readBuffer].

There are two possibilities to allocate a HALCON image of tfieage, see theExtension
Package Programmer’s Manualfor details on both the data structure and the allocation rou-
tines.

HNewImagePtr() as defined in Fig. 3.30 initializes the data structure, but does not allocate
memory for the image matrix, that is the gray values or the raw data itself. Instead, only a pointer
to the data is inserted. Note that you have toiset Img to FALSE to avoid an initialization of

the image matrix witl) which would wipe out the grabbed image.

#include "Halcon.h"

Herror HNewImagePtr (Hproc_handle proc_id, Himage *image, INT kind,
INT width, INT height, void *data, HBOOL initImg)
{

/* initialize "image" and insert the pointer "data" as image matrix */
return (H_MSG_0K) ;
}

Figure 3.30: The prototype for the extension package interface routine HNewImagePtr ().

Inserting the image buffer assigned to the frame grabber instance into the new HALCON im-
age avoids the overhead introduced byeacpy. On the other hand, this is a severe side-
effect. Older HALCON images will be overwritten. In any case, the HALCON library

that callsFGGrab () mustknow that you did not use the HALCON memory management to
allocate the image matrix. Otherwise, the system will crash when the image object encapsu-
lating the returnedimage structure is cleared from the data base. Thus, for volatile grabbing
fginst->halcon_malloc must be set t&rALSE, and fginst->clear_proc must be set to

NULL. In the examples provided in this manual this was dorgimit (), see Fig. 3.16.

The standard routine to initializelimage structure isHNewImage () as defined in Fig. 3.31.

This routine allocates a new image matrix (usiigloc). Thus, either a memcpy or a call

to ExtractChannelsFromRGB() is necessary in Fig. 3.29 to fill the matrix with the grabbed
image. This induces a small overhead. On the other hand, the resulting HALCON images are
independent, which conforms to the HALCON philosophy: Tisershould decide how long
he/she would like to use an image. It should not be overwritten as a side-effect of calling another
HALCON operator. Thus, we strongly recommend to implement this non-volatile grabbing
strategy as default.

For reasons of backward compatibility, a flag lieitImg in HNewImagePtr () iS missing in
HNewImage (). To surely avoid an (unnecessary) initialization of the new image matrix, you
might use the code fragment in Fig. 3.32. Please make sure to restore the old setting before
returning fromFGGrab (). This implies not to us#CkP directly as shown in Fig. 3.32.

In case of byte images the image matrix ifiimage Structure is accessed waxel.b. For
a discussion on other supported image types please refer Extaesion Package Program-
mer’s Manual.

Splitting “interleaved” raw color data into three separated image channels is straightforward,
see Fig. 3.33. Please refer to the APl manual of your frame grabber to learn about the specific
data representation. In our example we assumed a 24 bit per pixel representation of RGB triples.

HALCON 6.0

44 CHAPTER 3. INTERFACE ROUTINES

#include "Halcon.h"

Herror HNewImage (Hproc_handle proc_id, Himage *image, INT kind,
INT width, INT height)
{
/* initialize "image" and allocate a new image matrix */
return (H_MSG_0K) ;
}

Figure 3.31: The prototype for the extension package interface routine HNewImage ().

static Herror FGGrab(Hproc_handle proc_id, FGInstance xfginst,
Himage *image, INT *num_image)
{
Herror err;
INT save;

HReadSysComInfo(proc_id, HGInitNewImage, &save);
HWriteSysComInfo(proc_id, HGInitNewImage, FALSE);
for (i=0; i < *num_image; i++)
{
err = HNewImage (proc_id,&image[i] ,BYTE_IMAGE,
fginst->image_width,fginst->image_height);
if (err !'= H_MSG_OK)

{
HWriteSysComInfo(proc_id, HGInitNewImage, save);
return(err) ;
}
}
HWriteSysComInfo(proc_id, HGInitNewImage, save);
HCkP (err) ;

return(H_MSG_0K) ;
}

Figure 3.32: Example code for FGGrab(): Avoid initialization of the new image matrix in
HNewImage ().

Frame Grabber Integration/ 2000-11-16

3.6. FGGRAB() 45

static Herror ExtractChannelsFromRGB(FGInstance *fginst, HBYTE #*data,
HBYTE *r_img, HBYTE *g_img, HBYTE *b_img)
{
INT4_8 i,size = fginst->image_width*fginst->image_height;

for (i=0; i < size; i++)

{
*r_img++ = *data++;
*xg_ img++ = xdata++;
*b_img++ = *data++;

}

return(H_MSG_0K) ;

}

Figure 3.33: Example code for the auxiliary routine ExtractChannelsFromRGB().

HALCON 6.0

46 CHAPTER 3. INTERFACE ROUTINES
3.7 Auxiliary Routine: GrabImg()

We suggest to implement an auxiliary routiGeabImg() as defined in Fig. 3.28 on page
41 as basis for the grabbing routinB6Grab() and FGGrabRegion() and thus also for
FGGrabAsync () andFGGrabRegionAsync (). It has to perform the following tasks:

e Terminate pending grabs of other instances in case they use the same A/D converter.

If there is an asynchronous grab pending: Terminate it in case of a synchronous grab
command and wait for its end otherwise.

If synchronous grabbing is requested or an asynchronously grabbed image is too old:
Grab a new image.

If asynchronous grabbing is requested: Start the next grab (but do not wait for the end of
the grab).

Switch to the next buffer.

Fig. 3.34 shows the basic structure of such a routine. Naturally, there is a lot of pseudo-code
indicated by< .. .> since the grabbing routines etc. depend on the specific API of your frame
grabber. Most of Fig. 3.34 should be rather self-explaining. However, some specific topics
should be discussed in detail.

First of all, if multiple instances are assigned to the same physical frame grabber board with only
one A/D converter, you have to synchronize grabs by these instances. If yoGestigng ()

with asynchronous grabs of other instances pending, you have to cancel thesé jatsrar

an error codeH_ERR_FGDV — “Device busy”). Moreover, in case of multiple instances you have

to make sure that the board is correctly parameterized for grabbing by a specific instance. We
suggest to provide an auxiliary routiBet InstParam() for this purpose, see Fig. 3.35. Within

this routine you have to reset all parameters that can differ from instance to instance. If this is
a time consuming task it might be a good idea to store the current settings of the board in the
correspondin@oardInfo structure and to set only those values again which differ from the
requested values ifginst or additional parameters in tli€GInstance StructurecurrInst.

Throughout this section we assume a ring buffer to which images should be delivered by the
frame grabber. The current buffer for grabbing is indicated by

currlnst->currBuffer

This index should be returned in the parameteadBuffer. Thenextgrab should be done to
the buffercurrInst->currBuffer + 1 or0 if there is a wrap around in the ring structure of
the buffers. The corresponding frame buffers, that is pointers to the memory, are accessible via

currlnst->InstFrameBuffer[i]

see also Fig. 3.17.

8We recommend to cancel the other jobs. They will be started again when the user requests the corresponding
image.

Frame Grabber Integration/ 2000-11-16

3.7. AUXILIARY ROUTINE: GRABIMG() 47

static Herror GrabImg(Hproc_handle proc_id, FGInstance *fginst,
INT *readBuffer)

{
TFGInstance xcurrInst = (TFGInstance *)fginst->gen_pointer;
HBOOL done = FALSE;
HBOOL newGrab = FALSE;
HBOOL checkTimeAgain = FALSE;
< terminate pending grabs of other instances using the same ADC >;
if ((!currInst->busy) && (currInst->board->refInst > 1))
HCkP (SetInstParam(fginst));
if (currlnst->busy)
{
if (!fginst->async_grab)
{
< cancel the pending asynchronous grab >;
newGrab = TRUE;
}
else
{
done = < test whether the pending grab is already finished >;
if (done)
newGrab = < test whether the grabbed image is too old >;
else
checkTimeAgain = TRUE;
¥
}
else
newGrab = TRUE;
if (newGrab)
{
< grab a new image >;
done = TRUE;
}
if (!done)
< wait for the end of the current grab >;
if (checkTimeAgain)
< test if the new image is too old and grab a new one if necessary >;
*readBuffer = currInst->currBuffer;
currInst->currBuffer++;
if (currInst->currBuffer >= MAX_BUFFERS) currlInst->currBuffer = 0;
if (fginst->async_grab)
< start the next asynchronous grab >;
return (H_MSG_0K) ;
}

Figure 3.34: Example code for GrabImg(): The basic structure.

Note, that asynchronous grabbing might lead to “old” images returned by the grabbing op-
erators. Thereforegrab_image_start, grab_image_async andgrab_region_async allow

HALCON 6.0

48 CHAPTER 3. INTERFACE ROUTINES

static Herror SetInstParam(FGInstance *fginst)

{

TFGInstance *currInst = (TFGInstance *)fginst->gen_pointer;

/* Everything that you allow to be different for instances */
/* of the same board (like port and input line etc.) must be */
/* checked and set again if necessary. x/
/* Note: If this is very time consuming, you might want to */
/* store the current parameter settings of the board in x/
/* currInst->board and check whether they differ from the */
/* values in currInst / fginst */
/* example: x/
/* if (currInst->board->port != fginst->port) */
/* { */
/* < set the port fginst->port >; */
/* currInst->board->port = fginst->port; x/
/* } */

return(H_MSG_0K) ;

Figure 3.35: The prototype for SetInstParam().

to specify the maximum tolerated age of an image, see the HALCON reference manual for
details. Consequently, you should store a timestamp whenever you start grabbing an im-
age, see Fig. 3.36. Then, before returning an asynchronously grabbed image check whether
too much time has passed and grab a new image again if necessary. There is one special
configuration worth thinking about it for a minute: If you entarabImg() in asynchronous

mode fginst->grab_async is TRUE) with an asynchronous grab pendingitrInst->busy

is TRUE) which is not finished up to nowdéne is FALSE), you have to decide what to do. If the

grab already lasts for too long, you can cancel it and start a new one. However, if the duration
of the grab is still below the timeout threshold, it is impossible to say whether the image will be
too old or not after completion of the grab. Therefore, we delayed the time check in the example
in Fig. 3.34 in this specific case by setting

checkTimeAgain = TRUE;

Frame Grabber Integration/ 2000-11-16

3.7. AUXILIARY ROUTINE: GRABIMG() 49

static Herror GrabImg (Hproc_handle proc_id, FGInstance *fginst,
INT *readBuffer)
{
#ifdef WIN32
struct _timeb now;
#else
struct timeval now;
struct timezone tzp;
#endif
INT4_8 time_diff;

/* test whether the grabbed image is too old: */
#ifdef WIN32
_ftime (&now) ;
time_diff = now.millitm - currInst->grabStarted.millitm +
1000* (now.time - currInst->grabStarted.time);

#else
gettimeofday (&now,&tzp) ;
time_diff = (INT4_8)
(((double)now.tv_sec*1000.0 + (double)now.tv_usec/1000.0) -
((double) currInst->grabStarted.tv_sec*1000.0 +
(double) currInst->grabStarted.tv_usec/1000.0) + 0.5);
#endif

if (time_diff > currInst->timeout)
newGrab = TRUE;

if (fginst->async_grab)
{
< start the next asynchronous grab >;
#ifdef WIN32
_ftime (&currInst->grabStarted) ;
#else
gettimeofday (&currInst->grabStarted,&currInst->tzp);
#endif
}

return(H_MSG_0K) ;
}

Figure 3.36: Example code for GrabImg(): Check the age of images.

HALCON 6.0

50 CHAPTER 3. INTERFACE ROUTINES
3.8 FGGrabAsync()

The routineFGGrabAsync() as defined in Fig. 3.37 is called by the HALCON operator
grab_image_async, See section 1.6. It has to perform the following tasks:

(Re-)set the parameters on the frame grabber board.

Wait until a pending asynchronous grab is finished or grab a new image if there is no
pending job.

Check if the asynchronously grabbed image is too old. If this is the case, grab a new
image.

Start a new aynchronous grab (without waiting).

Return a HALCON image containing the grabbed raw data.

#include "Halcon.h"
#include "hlib/CIOFrameGrab.h"

static Herror FGGrabAsync (Hproc_handle proc_id, FGInstance *fginst,
double maxDelay, Himage *image, INT #*num_image)
{
/* grab an image asynchronously */
TFGInstance *currInst = (TFGInstance *)fginst->gen_pointer;

currInst->timeout
fginst->async_grab

(INT4_8) (maxDelay+0.5) ;
TRUE;

HCkP (FGGrab(proc_id, fginst, image, num_image)) ;

return(H_MSG_0K) ;

Figure 3.37: The prototype for FGGrabAsync () based on FGGrab().

Since we have chosen an implementatiorFéérab() in section 3.6 based ofrabImg()

in section 3.7, which is more general than necessary for a pure synchronous grabbing, we can
easily implemenFGGrabAsync () based oFGGrab (), see Fig. 3.37. All we have to do is to set

the asynchronous grabbing modginst->async_grab is TRUE) and to update the threshold

for the decision whether an asynchronously grabbed image is too old and thus has to be replaced
by a new imagedurrInst->timeout), see also Fig. 3.36.

Frame Grabber Integration/ 2000-11-16

3.9. FGGRABSTARTASYNC() 51
3.9 FGGrabStartAsync()

The routineFGGrabStartAsync () as defined in Fig. 3.38 is called by the HALCON operator
grab_image_start, see section 1.6. It has to perform the following tasks:

e Terminate pending asynchronous grabs of all instances assigned to the current board.
e (Re-)set the parameters on the frame grabber board.

e Start an asynchronous grab.

#include "Halcon.h"
#include "hlib/CIOFrameGrab.h"

static Herror FGGrabStartAsync (Hproc_handle proc_id,FGInstance *fginst,

double maxDelay)
{

/* start an aynchronous grab */
return(H_MSG_0K) ;
}

Figure 3.38: The prototype for FGGrabStartAsync().

The implementation of this routine is rather straightforward, see Fig. 3.39. Please also
take a look at the auxiliary routin@rabImg() in section 3.7 which is the counterpart to
FGGrabStartAsync () finishing the grab started here. Note, that in genglfgdending grabs of
instances assigned to the same board have to be canceled: A pending job of the current instance,
since we want to start a new grab, but also grabs started by other instances, since in most cases
they share the A/D converter with the current instance. Terminating other instances obviously is

a side-effecx Thus, you might consider to return an error code instdagRg_FGDV — “Device

busy”).

Note further, that the thresholchrrInst->timeout is used to determine whether an asyn-
chronously grabbed image is too old to be delivered, see also Fig. 3.36.

SHowever, only the performance is affected. If you terminate an asynchronous grab, a new grab will be
launched when you access the corresponding image with one of the HALCON grabbing opgaraoisage,
grab_image_async, grab_region, Or grab_region_async.

HALCON 6.0

52 CHAPTER 3. INTERFACE ROUTINES

static Herror FGGrabStartAsync(Hproc_handle proc_id,FGInstance *fginst,
double maxDelay)

{

TFGInstance *currInst = (TFGInstance *)fginst->gen_pointer;
currInst->timeout = (INT4_8) (maxDelay + 0.5);

< terminate pending grabs of other instances using the same ADC >;
if (currInst->busy)

< terminate the current grab >;
else

HCkP (SetInstParam(fginst));

< start the new asynchronous grab >;
#ifdef WIN32
_ftime (&currInst->grabStarted) ;
#else
gettimeofday (&currInst->grabStarted,&currInst->tzp);
#endif
currInst->busy = TRUE;

return(H_MSG_0K) ;

Figure 3.39: Example code for FGGrabStartAsync ().

Frame Grabber Integration/ 2000-11-16

3.10. FGGRABREGION() 53
3.10 FGGrabRegion()

The routineFGGrabRegion() as defined in Fig. 3.40 is called by the HALCON operator
grab_region?®, see section 1.6. It has to perform the following tasks:

e Terminate pending asynchronous grabs.
¢ (Re-)set the parameters on the frame grabber board.
e Grab an imagsynchronously

e Return a segmentation based on the grabbed raw data.

#include "Halcon.h"
#include "hlib/CIOFrameGrab.h"

static Herror FGGrabRegion (Hproc_handle proc_id, FGInstance *fginst,
Hrlregion **region, INT *num_region,
INT *rlalloc_type)

{

/* grab an image synchronously and segment it */
return(H_MSG_0K) ;
}

Figure 3.40: The prototype for FGGrabRegion().

A routine like this should be implemented if the frame grabber hardware offers some specific
features that support an image segmentation. It might also be more efficient to segment color
images within the frame grabber interface even without hardware support, because in this case
one can avoid the channel splitting (see Fig. 3.33) and work on the original raw data instead.
However, please note, that neitherab_region nor grab_region_async return the image

itself. Thus, the visualization of the segmentation results cannot use the underlying image.

The implemented segmentation is upytu (and maybe dependent on some specific hardware
features of your frame grabber). We cannot provide example source code for that. However, we
will indicate how to allocate image regions encoded in the data struBiinsegion. Please

see the HALCON Extension Package Programmer’s Manuafor both a discussion of this

data type and routines to manipulate it. Please note, that in most cases you will have to provide
additional parameters for the segmentation process. We suggestReSas@aram() for that
purpose, see section 3.12.

The HALCON library passes an array ®fiX_0BJ_PER_PAR!! pointers toHrlregion in
FGGrabRegion(). However, the region data itself it allocated automatically. This has
to be done within your interface. There are several methods to do so.

101n the framework suggested in this manual it is also called#d@rabRegionAsync(), see section 3.11.
Yn the current version this define is set to 100 000. That should be more than enough to hold all reasonable
segmentation results.

HALCON 6.0

54 CHAPTER 3. INTERFACE ROUTINES

#include "Halcon.h"

Herror HAllocRLNumLocal (Hproc_handle proc_id, Hrlregion **region,
size_t len)
{
/* initialize "region" and temporarily allocate memory for "len" chords */
return (H_MSG_0K) ;
}

Figure 3.41: The prototype for the extension package interface routine HA1locRLNumLocal ().

static Herror FGGrabRegion (Hproc_handle proc_id, FGInstance *fginst,
Hrlregion **region, INT *num_region,
INT *rlalloc_type)

{
TFGInstance *currInst = (TFGInstance *)fginst->gen_pointer;
INT readBuffer;
HCkP (GrabImg (proc_id, fginst, &readBuffer));
/* example: Allocate two regions (e.g. one for all image parts of a x/
/* specific color and one for the rest of the image) */
HCkP (HAllocRLNumLocal (proc_id,®ion[0],
fginst->image_width*fginst->image_height/2)) ;
HCkP (HAllocRLNumLocal (proc_id,®ion[1],
fginst->image_width*fginst->image_height/2)) ;
*rlalloc_type = FG_RLALLOC_LOCAL;
*num_region = 2;
/* Well the segmentation itself is up to you :-) x/
fginst->async_grab = FALSE;
return(H_MSG_0K) ;
}

Figure 3.42: Example code for FGGrabRegion(): The basic structure.
You can allocate region data

e temporarily on stacks inside the HALCON library
e temporarily on the heap

e permanently on the heap

The first two methods include an automatic garbage collection in case you return an error as
a result ofFGGrabRegion() and should therefore be preferred. The most flexible memory

Frame Grabber Integration/ 2000-11-16

3.10. FGGRABREGION() 55

allocation method is the second offewhich is also used in the example in Fig. 3.42. The
Extension Package Interface routiellocRLNumLocal() as defined in Fig. 3.41 is used to
temporarily allocate memory for the specified number of chords and to initialize-thegion
structure. Since we do not know the number of chords in advance we have used a rather
conservative estimate in Fig. 3.42. Note, that you can change this number dynamically using
HReallocRLNumLocal().

rlalloc_type Semantics
FG_RLALLOC_TMP Temporary data on stacks allocated vi#t11ocRLTmp ()
or HA1locRLNumTmp ()

Attention: In this case you MUST allocate the image
regions in ascending order, because in the HALCON interface
the corresponding freeing is done in descending order!

FG_RLALLOC_LOCAL Temporary data on the heap allocated v#ith1ocRLLocal ()
Oor HAllocRLNumLocal ()

FG_RLALLOC_PERMANENT | Permanent data on the heap allocated WithiocRL ()
Or HA1locRLNum()

Figure 3.43: Defines for indicating the memory allocation strategy for regions in
FGGrabRegion().

Whatever you decide to use, you have to indicate the memory allocation strategy to the HAL-
CON library using one of the defines listed in Fig. 3.43 as return value for the parameter
rlalloc_type. If you fail to do so, you will encounter program crashes.

12Please refer tdlAllocRLLocal(), HAllocRLNumLocal(), and HReallocRLLocal() in the Extension
Package Programmer’'s Manual

HALCON 6.0

56 CHAPTER 3. INTERFACE ROUTINES

3.11 FGGrabRegionAsync()

The routineFGGrabRegionAsync () as defined in Fig. 3.44 is called by the HALCON operator
grab_region_async, See section 1.6. It has to perform the following tasks:

e (Re-)set the parameters on the frame grabber board.

e Wait until a pending asynchronous grab is finished or grab a new image if there is no
pending job.

Check if the asynchronously grabbed image is too old. If this is the case grab a new
image.

Start a new aynchronous grab (without waiting).

Return a segmentation based on the grabbed raw data.

#include "Halcon.h"
#include "hlib/CIOFrameGrab.h"

static Herror FGGrabRegionAsync (Hproc_handle proc_id, FGInstance *fginst,
double maxDelay, Hrlregion **region,
INT *num_region, INT *rlalloc_type)

/* grab an image asynchronously and segment it */
TFGInstance *currInst = (TFGInstance *)fginst->gen_pointer;

currlnst->timeout
fginst->async_grab

(INT4_8) (maxDelay+0.5) ;
TRUE;

HCkP (FGGrabRegion(proc_id, fginst, region, num_region, rlalloc_type));

return(H_MSG_0K) ;

Figure 3.44: The prototype for FGGrabRegionAsync () based on FGGrabRegion().

Since we have chosen an implementationF@trabRegion() in section 3.10 based on
GrabImg() in section 3.7, which is more general than necessary for a pure synchronous
grabbing, we can easily implemeRtGrabRegionAsync() based orFGGrabRegion(), see

Fig. 3.44. Please see alB6GrabAsync () in Fig. 3.37 which is the corresponding routine to
grabimagesnstead of regions asynchronously.

Frame Grabber Integration/ 2000-11-16

3.12. FGSETPARAM()

3.12 FGSetParam()

The routineFGSetParam() as defined in Fig. 3.45 is called by the HALCON
set_framegrabber_param, See section 1.6. It has to perform the following tasks:

#include

¢ Parse the specified parameter.

e Set the parameter value(s) for the specified instance or return an error code.

"Halcon.h"

#include "hlib/CIOFrameGrab.h"

static Herror FGSetParam(Hproc_handle proc_id, FGInstance *fginst,
char *param, Hcpar *value, INT num)

{

/* set the specified parameter value for an instance */

return(H_MSG_0K) ;

57

operator

Figure 3.45: The prototype for FGSetParam().
define name type
FG_PARAM _HORIZONTAL RESOLUTION | "horizontal resolution" | LONG_PAR
FG_PARAM_VERTICAL_RESOLUTION "vertical_resolution" LONG_PAR
FG_PARAM_IMAGE_WIDTH "image_width" LONG_PAR
FG_PARAM_IMAGE_HEIGHT "image_height" LONG_PAR
FG_PARAM_START_ROW "start_row" LONG_PAR
FG_PARAM_START_COL "start_column" LONG_PAR
FG_PARAM FIELD "field" STRING_PAR
FG_PARAM BITS_PER_CHANNEL "bits_per_channel" LONG_PAR
FG_PARAM_COLOR_SPACE "color_space" STRING_PAR
FG_PARAM GAIN "gain" FLOAT_PAR
FG_PARAM_EXT_TRIGGER "external_trigger" STRING_PAR
FG_PARAM_CAMERA_TYPE "camera_type" STRING_PAR
FG_PARAM_DEVICE "device" STRING_PAR
FG_PARAM_PORT "port" LONG_PAR
FG_PARAM_LINE_IN "line_in" LONG_PAR

Figure 3.46: Defines for the standard parameters used in open_framegrabber.

A routine like this should be implemented if you would like to use additional parame-

ters to tune specific hardware features or to change the standard parameters specified in
open_framegrabber on the fly. The names of the standard parameters are fixed, see Fig. 3.46.

Please note, thatfield" (corresponding tdginst->field) is externally defined as string,

but internally as integer using the conversion indicated in Fig. 3.47.

Note, further that

HALCON 6.0

58 CHAPTER 3. INTERFACE ROUTINES

"external trigger" is externally defined as stringf{rue" or "false") but is internally
defined as boolean value of typB0OOL.

The parameter value to be set is passed in a structure ofiygea. Please refer to thEx-
tension Package Programmer’s Manualfor a detailed description of this structure. Some
comments have been made on page 38 in this manual as well.

external define external name | internal define
FG_FIRST_FIELD_TXT "first" FG_FIRST_FIELD
FG_SECOND_FIELD_TXT "second" FG_SECOND_FIELD
FG_NEXT_FIELD_TXT "next" FG_NEXT_FIELD
FG_FULL_FRAME_TXT "interlaced" FG_FULL_FRAME
FG_PROGRESSIVE_FRAME_TXT | "progressive" | FG_.PROGRESSIVE_FRAME

Figure 3.47: Internal and external representation of values for the parameter Field in
open_framegrabber.

Feel free to choose arbitrary names for additional parameters. However, we suggest to try to
preserve the look and feel of typical HALCON operators and to choose names in correspon-

dence with the API of the specific frame grabber. Please do not forget to return these parameter
names for the queryG_QUERY_PARAMETERS in FGInfo (), see Fig. 3.26 on page 40.

The HALCON frame grabber integration interface also provides the opportunity to pass multi-
parameter values. This enables you to pass a tuple of values for the parpareterwith num
denoting the number of values.

In general you will have to extend the structuBeardInfo andTFGInstance to hold these
additional parameters. Fig. 3.48 shows example Eoibe activating volatile grabbing which
only uses the entryolatileMode already included in th@FGInstance structure. Please see
also the comments on allocating buffers according to Fig. 3.17 in section 3.6.

13please refer t@I0FGTemplate. c for a detailed discussion.

Frame Grabber Integration/ 2000-11-16

3.12. FGSETPARAM() 59

#define FG_PARAM_VOLATILE "volatile"

static Herror FGSetParam(Hproc_handle proc_id, FGInstance *fginst,
char *param, Hcpar *value, INT num)
{
TFGInstance *currInst = (TFGInstance *)fginst->gen_pointer;
INT i
BoardInfo *board = currInst->board;
INT4_8 sizeBuffer;
if (!strcmp(param, FG_PARAM_VOLATILE))
{
if (value->type != STRING_PAR) return(H_ERR_FGPART) ;
if (!strcmp(value->par.s, "enable"))
{
if (fginst->num_channels != 1) return(H_ERR_FGPARV) ;
if (!currInst->volatileMode)
{
if (!currInst->allocBuffer)
{
/* This specfic instance uses buffers assigned to the board. */
if (board->refBuffer == 1)
{
/* No other instance uses the board buffer. Just transfer x*/
/* them to the instance: */
for (i=0; i < MAX_BUFFERS; i++)
{
currInst->InstFrameBuffer[il
board->BoardFrameBuffer [i]
}

board->sizeBuffer = 0;

board->BoardFrameBuffer[i];
NULL;

}
else
{
/* There are other instances using the board buffers. x/
sizeBuffer = fginst->image_width * fginst->image_height *
((fginst->bits_per_channel+7) / 8)*fginst->num_channels;
for (i=0; i < MAX_BUFFERS; i++)
HCkP (HAlloc (proc_id, (size_t)sizeBuffer,
&currInst->InstFrameBuffer[i]));
}
board->refBuffer—--;
currInst->allocBuffer = TRUE;
¥
currInst->volatileMode
fginst->halcon_malloc
fginst->clear_proc

TRUE ;
FALSE;
NULL;

}
}

return(H_MSG_0K) ;
}

Figure 3.48: Example code for FGSetParan(): Activate volatile grabbing. .~

60 CHAPTER 3. INTERFACE ROUTINES
3.13 FGGetParam()

The routineFGGetParam() as defined in Fig. 3.49 is called by the HALCON operator
get_framegrabber_param, See section 1.6. It has to perform the following tasks:

¢ Parse the specified parameter.

e Return the current parameter value(s) for the specified instance or return an error code.

#include "Halcon.h"
#include "hlib/CIOFrameGrab.h"

static Herror FGGetParam(Hproc_handle proc_id, FGInstance *fginst,
char *param, Hcpar *value, INT *num)
{
/* return the specified parameter value for an instance */
TFGInstance *currInst = (TFGInstance *)fginst->gen_pointer;
*num = 1;

if (!strcmp(param, FG_PARAM_VOLATILE))
{

value->type = STRING_PAR;

value->par.s = (currInst->volatileMode 7 "enable" : "disable");
}
else if ...
else

/* parameter not supported */
return (H_ERR_FGPARAM) ;

return(H_MSG_0K) ;

Figure 3.49: The prototype for FGGetParam() and a simple example.

This routine is the counterpart 86SetParam(), see section 3.12. The values for all standard
parameters used ibpen_framegrabber are automatically returned by the HALCON library.

So you donot need to provide code for the parameters listed in Fig. 3.46 on page 57. However,
please make sure to replace default valuegsginst by the current settings if necessary in
FGOpen().

FGGetParam() should be able to handle all additional framegrabber-specific parameters you
introduced inFGSetParam().!* The parameter value has to be returned in a structure of type
Hcpar. Please see tHextension Package Programmer’'s Manuafor a detailed description of

this structure. A short description is given on page 38. Ei®@etParam(), FGGetParam offers

the opportunity to return multi-parameter values. Therefore, assign index-wise each parameter
to value[i]. But do not forget to specify thg/pe of the value invalue[i].type and to

set the function parametenun to the number of returned values. Fig. 3.49 shows a simple
example assuming that there is only one additional parameter controlling volatile grabbing, see
also Fig. 3.48.

“Remember that the names of these parameters must be returned for th&@UWBRY_PARAMETERS by
FGInfo(), see Fig. 3.26 on page 40.

Frame Grabber Integration/ 2000-11-16

3.14. FGSETLUT() 61

3.14 FGSetLut()

The routine FGSetLut () as defined in Fig. 3.50 is called by the HALCON operator
set_framegrabber_lut, See section 1.6. It has to perform the following task:

e Set the lookup table for the specified instance.

#include "Halcon.h"
#include "hlib/CIOFrameGrab.h"

static Herror FGSetLut (Hproc_handle proc_id, FGInstance *fginst,
INT4_8 *red, INT4_8 *green, INT4_8 *blue, INT num)
{

/* set the specified lookup table for an instance */
return (H_MSG_0K) ;
}

Figure 3.50: The prototype for FGSetLut ().

A modification of a frame grabber’s lookup table might be used for a gamma correction or
white balancing. The input tBGSetLut () are three integer arrays for the red, green, and blue
components of the LUT and the number of entries in these arrays. Whether lookup tables are
supported or not and how to handle such lookup tables depends on the frame grabber (and its
API). Therefore, we cannot provide source code for this task.

Please note, that the modification of a frame grabber’s lookup table will affect other instances
assigned to the same board. Thus, you should think about a mechanism to check whether
instance-specific LUTs differ and to restore them prior to grabbing if necessary.

HALCON 6.0

62 CHAPTER 3. INTERFACE ROUTINES
3.15 FGGetLut()

The routine FGGetLut () as defined in Fig. 3.51 is called by the HALCON operator
get_framegrabber_lut, see section 1.6. It has to perform the following task:

e Return the lookup table for the specified instance.

#include "Halcon.h"
#include "hlib/CIOFrameGrab.h"

static Herror FGGetLut (Hproc_handle proc_id, FGInstance *fginst,
INT4_8 *red, INT4_8 xgreen, INT4_8 *blue, INT *num)
{

/* return the specified lookup table for an instance */
return (H_MSG_0K) ;
}

Figure 3.51: The prototype for FGGetLut ().

This routine is the counterpart &6SetLut () in section 3.14. It has to return three integer
arrays for the red, green, and blue components of the LUT and the number of entries in these
arrays. Memory foFG_MAX_LUT_LENGTH'® entries per array has already been allocated by the
HALCON library.

Whether lookup tables are supported or not and how to handle such lookup tables depends on
the frame grabber (and its API). Therefore, we cannot provide source code for this task.

5In the current versio®G_MAX_LUT_LENGTH is 4096 corresponding to a maximum resolution of 12 bits per
channel.

Frame Grabber Integration/ 2000-11-16

Chapter 4

Generating a Frame Grabber Interface
Library

Whenever a frame grabber is accessed for the very first time by vséagframegrabber or
info_framegrabber, the corresponding HALCON frame grabber interface library, a dynami-
cally loadable modulé,is loaded. This chapter contains information on how to generate such
a dynamic object. Please refer to the documentation of your programming environment for
details on compiling and linking.

Generating a Frame Grabber Interface Under Windows NT / 2000

To build a HALCON frame grabber interface you have to gener&etlafrom the file contain-
ing the source code of your interface (likEOFGTemplate.c) by linking the corresponding
object file(s) with

e the HALCON libraryhalcon.1lib and
e the frame grabber libraries provided by the frame grabber manufacturer

Make sure that the optimization is switched on for the compilation process (i.e., create a “Re-
lease”, not a “Debug” version); otherwise, grabbing, especially of color images, will be slowed
down significantly!

If you want to use the new frame grabber interface in Parallel HALCON as well, you must
create a second DLL which is linked to the Parallel HALCON librasyhalcon.1ib instead
of halcon.1ib.

In order to be automatically loadable by HALCON or Parallel HALCON, the name of the
frame grabber interface library must start with the préfbG or parHFG, respectively. The

rest of the library name automatically defines the name of the interface as used in the operator
open_framegrabber. For example, if your interface library is namggGMegaGrabber .d11
(andparHFGMegaGrabber.d11), you access the frame grabber by calling

open_framegrabber (’MegaGrabber’, ...)

1A DLL for Windows NT / 2000 or ahared libraryfor UNIX systems, respectively.

63

64 CHAPTER 4. GENERATING A FRAME GRABBER INTERFACE LIBRARY

Do not forget to export the symbsGInit with the line

extern __declspec(dllexport) Herror FGInit(Hproc_handle proc_id, FGClass *fg);

in your interface code, see also section 3.1.

Note, that the location of the generated HALCON frame grabber interface must be included in
the search path for dynamic objects, i.e., the vari®aled. The same might be true for any
frame grabber library provided by the manufacturer of the frame grabber which is used by your
HALCON interface.

Do not copy a frame grabber DLL into the Windows system directories as it would be
loaded twice in this case!

Generating a Frame Grabber Interface Under UNIX

To build a HALCON frame grabber interface you have to generatkaaed libraryfrom the
file containing the source code of your interface (KK®FGTemplate.c) by linking the corre-
sponding object file(s) usintd.

We recommend to use some level of optimization for the compilation process; otherwise, grab-
bing, especially of color images, will be slowed down significantly!

In order to be automatically loadable by HALCON, the name of the frame grabber interface
library must start with the prefikFG. The rest of the library name automatically defines the
name of the interface as used in the operat@n_framegrabber. For example, if your inter-

face library is callediFGMegaGrabber . so, you access the frame grabber by calling

open_framegrabber (’MegaGrabber’, ...)

Note, that the location of the generated HALCON frame grabber interface must be included in
the search path for dynamic objects, i.e., the variatideL.IBRARY_PATH. The same might be

true for any frame grabber library provided by the manufacturer of the frame grabber which is
used by your HALCON interface.

In contrast to Windows NT / 2000, both standard HALCON and Parallel HALCON can use one
and the same HALCON frame grabber interface library.

Frame Grabber Integration/ 2000-11-16

Appendix A

Changes between Versions 1 and 2 of
the HALCON Frame Grabber
Integration Interface

This section summarizes all syntactic and semantic differences between the HALCON frame
grabber integration interface version 1 and version 2. Please note, that because of these changes
older frame grabber interfaces won’t work together with HALCON 6.0 and vice versa.

This applies to every supported operating system since the library symbols of the integration
interface have changed.

The following variable names of the structuf&1ass andFGInstance have changed:

Version 1 Version 2

bits bits_per_channel
generic camera_type
start_line start_row

internal _width horizontal_resolution

internal_height | vertical_resolution

width image_width
height image_height
sel_input line_in

In addition, the structureFGClass does not contain the variablebw_available,

color_available,gray_available,width_max,height_max,width_max,andnmde any-
more. The structur€GInstance does not contain the variabithreshold anymore. The
variablenum_channels has been moved frofGClass to FGInstance.

Note that not only the notation has changed but also the meaning of variables:
bits_per_channel now denotes the number of (actually transferred) bits per pixel for one im-
age channel whileits denoted the number of bits per pixel over all channels. The following
table shows how typical images are encoded:

65

66 APPENDIX A. CHANGES IN THE HALCON FRAME GRABBER INTEGRATION INTERFACE

Version 1 Version 2
bits | color_space || bits_per_channel | color_space
8 bit gray value image 8 gray 8 gray
10 bit gray value image 10 gray 10 gray
12 bit gray value image 12 gray 12 gray
RGB image, 8 bit per chann¢l 24 rgb 8 rgb
RGB image, 5 bit per channél 16 rgb 5 rgb

The number of channels is implicitly encoded in the variabd@or_space: If the variable

is set to’rgb’ or ’yuv’ for example, the number of channels is 3; if the variable is set to
’gray’, the number of channels is 1. We recommend to set the vamahlehannels to the
inferred number of channels R&0pen () while evaluating the parametes$ts_per_channel
andcolor_space (see section 3.3).

To distinguish color spaces, you now sgfinst->color_space fginst->num_channels
while evaluating the parametefginst->bits_per _channel and inFGOpen() (See section
3.3).

Correspondingly, the names of the following defines have changed:

\Version 2

FG_QUERY_CAMERA_TYPE
FG_PARAM_HORIZONTAL_RESOLUTION
FG_PARAM_VERTICAL_RESOLUTION
FG_PARAM_IMAGE WIDTH
FG_PARAM_IMAGE_HEIGHT
FG_PARAM_BITS_PER_CHANNEL
FG_PARAM_CAMERA_TYPE
FG_PARAM_LINE_IN

H_ERR_FGCT

Version 1

FG_QUERY_GENERIC
FG_PARAM_FGWIDTH
FG_PARAM_FGHEIGHT
FG_PARAM_WIDTH
FG_PARAM_HEIGHT
FG_PARAM_BITS
FG_PARAM_GENERIC
FG_PARAM_LINE
H_ERR_FGGP

Furthermore, a new define calléd_QUERY_INFO_BOARDS has been added. This define is used
in a new branch in the functiofGInfo () to query all the installed frame grabber boards ac-
cessible from your interface (see section 3.5). The value of the d&fINETERFACE_VERSION
should be set from 1.x to 2.0.

The parameter lists of the functioR6SetParam() andFGGetParam() were extended to han-
dle multi-parameter values. Therefore, the declaration of these functions has changed to

static Herror FGSetParam(Hproc_handle proc_id, FGInstance *fginst,
char *param, Hcpar *value, INT num);

static Herror FGGetParam(Hproc_handle proc_id, FGInstance *fginst,
char *param, Hcpar *value, INT #*num);

Make sure that you setum to a reasonable value withFGSetParam(). See also the chap-
ters 3.12 and 3.13 for more details.

Frame Grabber Integration/ 2000-11-16

67

To fix a bug of the olcCI0FGTemplate . c delete the line

fginst->async_grab = TRUE

at the end of the functions FGGrabStartAsync(), FGGrabAsync() and
FGGrabRegionAsync ().

HALCON 6.0

68 APPENDIX A. CHANGES IN THE HALCON FRAME GRABBER INTEGRATION INTERFACE

Frame Grabber Integration/ 2000-11-16

Appendix B

HALCON Error Codes

In this chapter all HALCON error codes relevant for programming a frame grabber interface
are summarized. Please referCiDFGTemplate.c for a discussion when to use which error
code.

Error Name Code Description

H_ERR_NFS 5300 No frame grabber opened
H_ERR_FGWC 5301 Wrong color depth

H_ERR_FGWD 5302 Wrong device

H_ERR_FGVF 5303 Determination of video format not possible
H_ERR_FGNV 5304 No video signal

H_ERR_UFG 5305 Unknown frame grabber

H_ERR_FGF 5306 Failed grabbing of an image
H_ERR_FGWR 5307 Wrong resolution chosen
H_ERR_FGWP 5308 Wrong image part chosen
H_ERR_FGWPR 5309 Wrong pixel ratio chosen
H_ERR_FGWH 5310 Handle not valid

H_ERR_FGCL 5311 Instance not valid (already closed?)
H_ERR_FGNI 5312 Frame grabber cannot be initialized
H_ERR_FGET 5313 External triggering not supported
H_ERR_FGLI 5314 Wrong camera input line (multiplex)
H_ERR_FGCS 5315 Wrong color space

H_ERR_FGPT 5316 Wrong port

H_ERR_FGCT 5317 Wrong camera type

H_ERR_FGTM 5318 Maximum number of frame grabber classes exceeded
H_ERR_FGDV 5319 Device busy

H_ERR_FGASYNC 5320 Asynchronous grab not supported
H_ERR_FGPARAM 5321 Unsupported parameter
H_ERR_FGTIMEQOUT 5322 Timeout

H_ERR_FGGAIN 5323 Invalid gain

H_ERR_FGFIELD 5324 Invalid field

69

70

APPENDIX B. HALCON ERROR CODES

H_ERR_FGPART 5325 Invalid parameter type
H_ERR_FGPARV 5326 Invalid parameter value
H_ERR_FGFNS 5327 Function not supported
H_ERR_FGIVERS 5328 Incompatible interface version
H_ERR_DNA 5104 Device or operator not available
H_ERR_MEM 6001 Not enough memory available

Frame Grabber Integration/ 2000-11-16

Appendix C

Interface Template CIOFGTemplate.c

This chapter contains a listing of the interface template sourceGTiii&Template . c. Please
see also

%HALCONROOT%\examples\framegrabber\CIOFGTemplate.c

/***

* CIOFGTemplate.c
ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk sk ok e skok sk sk ko sk ks sk ok s skok sk sk ok sk sk koo ko sk ok ek sk ks sk ks ok ok ok

Project: HALCON
Author(s): Th.Bandlow, Ch.Zierl
Description: General purpose frame grabber interface version 2 template

(c) 1996-2000 by MVTec Software GmbH
WWw.mvtec.com

* K K X K X K %

3k 3k sk ok ok ok sk ke ok ok sk ke sk ok sk ok sk ok sk ok sk ok sk sk ok ok sk ok ok sk ok ok sk sk ok ok ke sk ok sk sk ok sk ke ok sk sk ok sk sk ok ok sk ok ok sk sk sk ok sk ok sk ok sk ok ok sk ok ok sk ok ok ok

*
* See also: - "Frame Grabber Integration Programmer’s Manual"

* - "Extension Package Interface Programmer’s Manual"
*

kKoK ok o K KoK oK o K KoK oK o K KoK oK oK o o K KK oK oK o o K KK oK ok ok o o K KoK ok ok o o K K Kok oK ok o K K Kok ok ok o o K K Kok ok ok
Procedures:

Herror FGInit (Hproc_handle proc_id, FGClass *fg)
static Herror FGOpen (Hproc_handle proc_id, FGInstance *fg)
static Herror FGClose (Hproc_handle proc_id, FGInstance *fg)
static Herror FGGrabStartAsync (Hproc_handle proc_id, FGInstance *fginst,
double maxDelay)

static Herror FGGrab (Hproc_handle proc_id, FGInstance *fginst,
Himage *image, INT *num_image)
static Herror FGGrabAsync (Hproc_handle proc_id, FGInstance *fginst,

double maxDelay, Himage *image,
INT *num_image)
static Herror FGGrabRegion (Hproc_handle proc_id, FGInstance *fginst,
Hrlregion **region, INT *num_region,
INT *rlalloc_type)
static Herror FGGrabRegionAsync (Hproc_handle proc_id, FGInstance *fginst,
Hrlregion **region, INT *num_region,
INT *rlalloc_type)
static Herror FGInfo (Hproc_handle proc_id, INT queryType, char **info,
Hepar **values, INT *numValues)
static Herror FGSetLut (Hproc_handle proc_id, FGInstance *fginst,
INT4_8 *red, INT4_8 *green, INT4_8 *blue,
INT num)
static Herror FGGetLut (Hproc_handle proc_id, FGInstance *fginst,
INT4_8 *red, INT4_8 *green, INT4_8 *blue,
INT *num)

* K K K X X X K X K X K K K K K X X X X X K X ¥ ¥ ¥ %

71

72 APPENDIX C. INTERFACE TEMPLATE CIOFGTEMPLATE.C

* static Herror FGSetParam (Hproc_handle proc_id, FGInstance *fginst,
* char *param, Hcpar *value, INT num)

* static Herror FGGetParam (Hproc_handle proc_id, FGInstance *fginst,
* char *param, Hcpar *value, INT *num)

* static FGInstance** FGOpenRequest (Hproc_handle proc_id,

* FGInstance *fginst)

*

**/

[Fksckokskokskoksk ok sk sk kskokskokskksk sk ok sk ok skok sk sk ok skokskokk sk ks ok skok sk sk skokskoksk ok ok skok sk sk sk skokosk ok sk sk ok sk ok ok /
[*x* TODO: adapt INTERFACE_REVISION appropriately ** %/
[Fksckokskokskoksk ok sk sk kskokskokskksk sk ok sk ok skok sk sk ok skokskokk sk ks ok skok sk sk skokskoksk ok ok skok sk sk sk skokosk ok sk sk ok sk ok ok /

#define INTERFACE_REVISION "2.x"

[R5k ko Kok o oK oK o KoK ok oK K o oK ok oK KoK o K KoK o KoK ok oK KoK o K Kok o KoK o K ok o K K o K oK o KoK ok K oK o K Kok o Kok ok Kok sk ok ok
VALY TODO: If you provide software for different architectures *kk [
[x%% you might have to encapsulate code sections like this ... %%/
[k ke ks ok ko o ok sk o ok sk ok sk o ok ok ok ok ok o ok ok ok ok ok ok ok ok ok o ok sk ok ok Kok o ok ok ok ok sk o ok ok o ok sk o ok ok o ok ok o ok ok ok ok sk ok /

#ifdef WIN32

#include <sys/timeb.h>
#else

#include <time.h>
#endif

#include "Halcon.h"
#include "hlib/CIOFrameGrab.h"

[kskskok koo sk koo sk ok ok sk koo ok skt ko skoksk ok stk ok sk ks ko sk sk ok stk sk ks ko skok sk ok stk sk ks ko sk ook ok /
/*%x TOD0: Place your vendor-specific #include’s here... *%k [
[kskskok koo sk koo sk ok ok sk koo ok skt ko skoksk ok stk ok sk ks ko sk sk ok stk sk ks ko skok sk ok stk sk ks ko sk ook ok /

/* e.g.

#include "filel.h"
#include "file2.h"
#include "file3.h"
*/

/**/

[*%% TODO: place your vendor-specific #define’s here... LELYS
[ok sok sk ok sk ok sk ok ok ok ko ok ok ok ok ok o ok o ok sk ok sk o ok ok ok sk ok o ok o ok sk ok ok o sk o ok sk ok o ok ok sk ok sk sk ok ok ok ok o ok ok sk Kok ok ok /

/* e.g.

#define MY_BUFFER_SIZE Oxffff

*/

/* These defines be a good idea, if you would like to support x/
/* subsampling. .. x/

#define FG_FULL_RESOLUTION 0
#define FG_HALF_RESOLUTION 1
#define FG_QUARTER_RESOLUTION 2
#define FG_OTHER_RESOLUTION 3

/* You might want to define additional parameters to be handled by x/
/* FGSetParam(), FGGetParam() */
#define FG_PARAM_VOLATILE "volatile"
#define FG_PARAM_REVISION "revision"

#define FG_PARAM_NUM 2

/* Typically, you will need two buffers to grab to (alternatively) x/
/* so let’s set MAX_BUFFERS to 2 for the moment... */
#define MAX_BUFFERS 2

/* Also quite convenient ... */
#define FG_PAL 0
#define FG_NTSC 1
#define FG_SPECIAL_NORM 2

/* Use this Macro to display error messages *x/

#define MY_PRINT_ERROR_MESSAGE(ERR) { \
if (HDoLowError) IOPrintErrorMessage(ERR); }

Frame Grabber Integration/ 2000-11-16

#ifdef WIN32

#define STR_CASE_CMP(S1,S2) stricmp(S1,S2)
#else

#define STR_CASE_CMP(S1,S2) strcasecmp(51,52)
#endif

/**/

. DON’T TOUCH THE NEXT LINE !!! oy
] HFAAEEFAAF A KA KA KK A KK A KK A A K KA K KA A KA K KA KK AA K KA K KA A KA A KK A KA K KA A KA A KKK [
/* Make the Procedure ’FGInit’ visible outside the DLL... x/
/* */
/* NOTE: If you’re using C++ you have to use */
/* extern "C" __declspec(dllexport) */
/* instead of */
/* extern __declspec(dllexport) x/
/* in the following declaration. x/

[F Rk ok skok sk ok ok skok ko ok skok ok ok ok o ok sk skok sk o ok ok skok sk ok o ok ok skok sk ok o ok sk skok sk ok ok ok ok skok ok ok ok ok ok kok ok /
#ifdef WIN32

extern __declspec(dllexport) Herror FGInit(Hproc_handle proc_id, FGClass *fg);

#endif

[sk ks ko sk ks ok ks ke sk ok sk sk ks ks sk sk ks ko sk ok sk ko ks sk sk ks ko sk ok sk ks sk sk ks ko ok sk ke ks ok sk ok sk ok ok /
VELES TODO: Adapt the following structs to match your frame grabber’s **x*/
VALY hardware features. *kok [
[sk sk koo sk ok ok sk stk ok skt ko skoksk ok stk ok sk ks ko skok sk ok stk ok sk ks ko sk ok ok stk sk ks ko sk ook ok /

/* The ’BoardInfo’ struct: x/
/* is used one per physical board. It contains hardware features tightly x/
/* coupled with the board, e.g., a board handle, memory mapping, ... x/
/* The ’TFGInstance’ struct: x/
/* is the internal representation of a ’frame grabber handle’, thus it */
/* contains board-related data for one instance; for example, different */
/* instances may represent different multiplexed inputs on one single x/
/* board or, on the other hand, maybe different physical boards with only */
/* one physical input each. x/

typedef struct
{

/* Note: The following struct members will only be used once per board */

/**/

VELE TODO: place your FG-specific entries here... LELYS
[HFA KK A KA AR KA KK KA KK KA K KA KKK KK KA K KA K F K A K K KA KA KK KK KA KKK KKK [

/* examples: */
char DeviceName[255] ; /* assign a name to each board */
INT4_8 Deviceld; /* some sort of handle (specific */

/* to the frame grabber API) x/
HBYTE *BoardFrameBuffer [MAX_BUFFERS];/* buffers assigned to the board,*/
/* that is to ALL TFGInstances */

INT currBuffer; /* index of the active buffer */

INT sizeBuffer; /* size of each buffer */

INT refBuffer; /* number of references to the */
/* buffers (from TFGInstance(s) */

INT refInst; /* number of instances assigned x/
/* to this board */

/* more examples: */

HBOOL doesPhysicalSubsampling;

INT maxBitsPerChannel;

} BoardInfo;

typedef struct

{
/* Note: The following struct members will be used once per instance x/
/* (that is more than one per board, e.g., if you use several cameras */
/* per frame grabber) x/

/**/

VELE TODO: Place your FG-specific data here... LELYS
[HFA A F A A KA A KA AR KA A KA A KA KK A KA KA K KA KA A K KA KA K AAK KA A K A A KKK KA KAk [

73

HALCON 6.0

74 APPENDIX C. INTERFACE TEMPLATE CIOFGTEMPLATE.C

/* examples: */

BoardInfo *board; /* the ’physical’ board this instance is */
/* attached to x/
HBOOL busy; /* useful, if you plan to support asynchr. */
/* grabbing (is the last grab still running?) x/
INT instance; /* a useful backreference to the general HALCON */
/* instance information: The instance index x/
/* (0 to FG_MAX_INST-1) */
INT4_8 timeout; /* useful for async grabbing: timeout threshold */
/* for "images too old" x/
INT currBuffer;/* you probably use more than one buffer: Index x/
/* of the active buffer x/

#ifdef WIN32
struct _timeb grabStarted;/* just to check the timeout: the timestamp */

/* when the last grab was started x/
#else
struct timeval grabStarted;/* the same for UNIX systems ... */
struct timezone tzp;
#endif
HBYTE xInstFrameBuffer [MAX_BUFFERS]; /* buffers assigned to this */
/* instance x/
HBOOL allocBuffer; /* TRUE <=> buffers are allocated per instance, */
/* not only references to the buffers in "board"x/
HBOOL volatileMode;/* TRUE <=> pass buffer memory directly to a x/
/* HALCON image (possibly "overwriting" older */
/* images) x/

} TFGInstance;

[Fksckkok ok ok ok ok ok ok ok ok ok ok ok ko kok ok ok ok ok ok skok ok sk ok ok ok ko ok ok sk kok sk ok ok sk kok ok ok kok ok /
/*%x We recommend that you leave these untouched: *kk [
[Fksckkok ok ok ok ok ok ok ok ok ok ok ok ko kok ok ok ok ok ok skok ok sk ok ok ok ko ok ok sk kok sk ok ok sk kok ok ok kok ok /

static FGClass *fgClass; /* a pointer to the frame grabber class struct */

static TFGInstance FGInst[FG_MAX_INST]; /* all possible instances */
static INT numInstance = 0; /* # current instances */
/* Some useful general-purpose buffers (e.g., for status messages): x/

static char errMsg[512];

/*

*

* HBOOL KillAllOtherJobs (...)

*

*

*

* Terminates jobs (pending asynchronous grabs) started on the same

* physical board (another board is no problem, since that usually has

* its own memory).

* Note that if the board has more than one A/D converter the other jobs
* in general won’t have to be killed.

*

* This routine might be useful for FGOpen(); please see the FGopen()

* routine prior to studying this one here

*

* */

static HBOOL KillAllOtherJobs(FGInstance *fginst)

{

TFGInstance *currInst = (TFGInstance *)fginst->gen_pointer;
INT i;
HBOOL killedSomebody=FALSE;
if (numInstance > 1)
{

for (i=0; i < FG_MAX_INST; i++)

{

if (FGInst[i].board && (currInst->instance !'= i))

Frame Grabber Integration/ 2000-11-16

~
* K K K X X X X X

*

~

/%
/%
/%
/%
/%

static Herror CleanupFGOpen(Hproc_handle proc_id, TFGInstance #*currlnst,

{

}
}
}

/* ok, FGInst[i] is in use and is NOT the current Instance.

/* Now let’s see, if it references the same board as the
/* current instance

if (FGInst[i].board == currInst->board && FGInst[i].busy)
{

/* There might be a problem: Another asynchronous grab using

/* the same frame grabber board ...

*/
*/
*/

*/
*/

/**/

/*** TODO: terminate this async job

*kk [

/**/

killedSomebody = TRUE;
FGInst[i] .busy = FALSE;
}

return(killedSomebody) ;
} /* KillAllOtherJobs */

CleanupFGOpen (...)

Auxiliary routine for FGOpen (...)

If you have to exit FGOpen() in case of an error you might have to do

some
Note

initialized the frame grabber board for the first time), you might

also

INT j;

cleaning up before returning the error code
that in case of newBoardalloc == TRUE (that is, you have

have to "close" or "unlock" the frame grabber again ...

HBOOL newBoardalloc, Herror err)

if ((!currInst->allocBuffer) && (!currInst->board->refBuffer))

{
for

{

(j=0; j < MAX_BUFFERS; j++)

if (currInst->board->BoardFrameBuffer[j])

{

}
}
}

(void)HFree(proc_id, currInst->board->BoardFrameBuffer[j]);

currInst->board->BoardFrameBuffer[j] = NULL;

if (currInst->allocBuffer)

{
INT
for

{

is
(j=0; j < MAX_BUFFERS; j++)

if (currInst->InstFrameBuffer[j])

{

}
}
}

(void)HFree (proc_id,currInst->InstFrameBuffer[j]);
currInst->InstFrameBuffer[j] = NULL;

if (newBoardalloc)
HFree(proc_id,currInst->board) ;
currInst->board = NULL;

return(err);

*/
*/
*/
*/
*/

75

HALCON 6.0

76 APPENDIX C. INTERFACE TEMPLATE CIOFGTEMPLATE.C

} /* CleanupFGOpen */

/*
*
* Herror FGOpen (...)
*
*
*
* Initialize a new frame grabber instance via open_framegrabber (...)
*
*
*/
static Herror FGOpen(Hproc_handle proc_id, FGInstance *fginst)
{
TFGInstance *currInst = (TFGInstance *)fginst->gen_pointer;
/* other local variables ... */
INT i;
INT norm;
INT widthScale;
INT heightScale;

HBOOL newBoardalloc = FALSE;
Herror err;
INT4_8 sizeBuffer;

/**/

[* %% TODO: Set defaults *okk [
[ko ook ok ok sk koo ok ok sk ok ok ok ok ok koo ok ok ok ok ok ok sk ok ok sk sk ok ok ok koo ok ok sk ko ok ok ok /

fginst->async_grab = FALSE;
currInst->busy = FALSE;
currIlnst->allocBuffer = FALSE;
currInst->currBuffer = 0;

currInst->volatileMode = FALSE;

/**/

*okk H ace 1nitilalization code here; the complexity of this *kk
/ TODO: P1 initiali i de h h plexity of thi /
VELE task depends on the features you want to support; e.g., LELYS
*kk 1 ou allow on one board with on one 1lnput line this ***
/ if y 11 1y board with only input 1i hi /
VELE is quite simple; if, however, you want to support multiple*x*/
*okk oards wit ifferent features using one with ever *okok
/ board ith diff £ ing API with y /
[*%x board having many ports and multiplexed input lines, *kk [
[*%x things could get a bit tricky... *kk [
[*%% K%k /
[*%* NOTE: The following example fragments assume that you want *kk [
/% it the hard way (multiple boards, multiple ports, *kok [
/* multiple input lines, different board types)... *kk [

/**/

if (currInst->busy) /* kill my own job */

{
/* This should not happen (but who knows ...) */
[HFA A F A A KA A KA A KK A A KA K AA KKK KA AR KA KA KK A KK A KK KA K KA K KA KK A KK H A KK KKK K [
/**+ TODO: terminate ’my own’ async job (the one belonging to this *¥x*/
/*** instance) *okk [
[HFF A KA KA KA K KA KKK A KKK KA KKK KA K A KKK KA KKK KKK KKK F K KKK KKK KK KKK [

}

/**/

[* %% TODO: Select frame grabber board *xx/
[k sk sk ok ok Kok ok ok o Kok ok ok o Kok o ok ok ok ok sk ok Kok ok ok ok ok sk ok o Kok o Kok ok ok ok sk ok sk ok o Kok ok ok ok ok ok sk ok ok sk ok ok ok [/

/* The desired frame grabber board is specified by fginst->device. */
/* If "default" is used in open_framegrabber() the string YOU provided */
/* for fg->device in FGInit() will be passed in fginst->device. If the */

/* default value depends on the CURRENT configuration of the system, */
/* specify "default" in FGInit(), get the corresponding information NOW, */
/* and overwrite the device name in fginst->device. */
/* In case of foolish inputs: return H_ERR_FGWD -- wrong device */

/* Note: In many cases there is a call in the frame grabber API to ASK fork/

Frame Grabber Integration/ 2000-11-16

/* all available frame grabbers in the system. */

if (!stremp(fginst->device,"default"))

strcpy (fginst->device, "1"); /* example: default device "1" %/
else if (strcmp(fginst->device,"1") && strcmp(fginst->device,"2"))
return(H_ERR_FGWD) ; /* example: only "1" or "2" %/

[ok skkokokokosk ok sk skl sk ok ok sk ko ok sk ks ko skoksk ks stk skok sk ks ok skoksk ks stk ok sk ks ok skoksk ks ok ko sk ks ko ok /
/* NOTE: Some of the following parameter checks might be possible without */

/* accessing the frame grabber hardware; in other cases it might be */
/* necessary to initialize the hardware and ASK the specific frame grabber*/
/* about its abilities. We suggest to make parameter tests as soon as */
/* possible and as late as necessary ... */

/**/

/**/

VELE TODO: Check the desired port / multiplexed input line LELYS
[HF A F A A A A A F A A KA K KA A KA KK A KA K KA KA A KA KA KA K KA KK A AR KA KK A K AAK KA A KK [

/* The desired physical port into which your camera is plugged is */
/* typically passed in fginst->port; if there is a multiplexer available */
/* at this port, the desired input line is passed in fginst->line_in */

/* If -1 (for "default") is used in open_framegrabber() the values YOU */
/* provided for fg->port and fg->line_in in FGInit() will be passed in */
/* fginst->port and fginst->line_in. */

/* You have to check the values of both parameters and return appropriate */

/* error codes in case of a failure. */
/* If the desired port is invalid return H_ERR_FGPT -- wrong port; */
/* If the desired input line is invalid return H_ERR_FGLI -- wrong line in*/

if ((fginst->port < 1) || (fginst->port > 3))
return(H_ERR_FGPT); /* example: available ports: [1,2,3] */

if (fginst->line_in != 1)
return(H_ERR_FGLI); /* example: no MUX */

[HF A F A A A A A KA A KA AR KA KA KK A KA KA KA A KA KA KA K KA KK A AR KA KK A KA K KA A KK [
VELE TODO: Check number of bits per channel LELYS
[HF A F A A A A A KA A KA AR KA KA KK A KA KA KA A KA KA KA K KA KK A AR KA KK A KA K KA A KK [

/* The desired number of bits per image channel is passed in */
/* fginst->bits_per_channel (eg. use 8 bits for 8-8-8 rgb-image or 8 bit */
/* grayscale); If -1 (for "default") is used in open_framegrabber() the */
/* values YOU provided for fg->bits_per_channel in FGInit() will be passed*/

/* in fginst->bits_per_channel. */
/* If the default value depends on the CURRENT configuration of the */
/* system, specify -1 in FGInit(), get the corresponding information NOW, */
/* and overwrite the default value in fginst->bits_per_channel. */
/* If you encounter unreasonable requests, return H_ERR_FGWC -- wrong */
/* color depth */

if ((fginst->bits_per_channel != 8) && (fginst->bits_per_channel != 12))
/* example: Allow only 8 and 12 bits per image channel */
return (H_ERR_FGWC);

[kskskk s ok koo sk ko ks sk ko sk sk ok sk sk ok ok sk sk ok ks ok ks sk ok ok ks ok ok sk ok ok ok ok /
/*%% TODO: Check the desired color space *%k [
[kskskk s ok koo sk ko ks sk ko sk sk ok sk sk ok ok sk sk ok ks ok ks sk ok ok ks ok ok sk ok ok ok ok /

/* The desired color space (eg. ’gray’ or ’rgb’) is passed in */
/* fginst->color_space. What we have to do is to test for each valid color*/
/* space the fginst->bits_per_channel parameter on valid value and set */
/* fginst->num_channels on the number of image channels of the resulting */
/* HALCON image. */
/* NOTE: within this concept we can’t distinguish between rgb images of */
/* 24 and 32 bits per pixel if both modes should be offered. This is */

/* because both modes result in a 8-8-8 rgb HALCON image. In this case */
/* we recommend to prefer the 24 bit mode as it implicates a lower load onx/
/* the PCI-bus. If you have to provide 32 bits per pixel, set */
/* fginst->num_channels = 4. If you want to offer both modes anyhow, we */
/* recommend to initiate a separate color space "xrgb" for the 32 bit mode*/
/* and use the "rgb" value to denote the 24 bit mode. */

77

HALCON 6.0

78 APPENDIX C. INTERFACE TEMPLATE CIOFGTEMPLATE.C

/* If "default" is used in open_framegrabber() the string YOU provided */
/* for fg->color_space in FGInit() will be passed. If the default value */
/* depends on the CURRENT configuration of the system, specify "default" */
/* in FGInit(), get the corresponding information NOW, and overwrite the */

/* default value in fginst->color_space. */
/* In case of unreasonable requests: Return H_ERR_FGCS -- invalid color */
/* space */
if (!STR_CASE_CMP(fginst->color_space,"default"))

strcpy (fginst->color_space, "rgb"); /* example: default "rgb" */
else if (STR_CASE_CMP(fginst->color_space,"gray"))
{

if ((fginst->bits_per_channel != 8) ||
(fginst->bits_per_channel != 16))
/*example: allow only 8 or 16 bit grayscale images */
return (H_ERR_FGWC);

fginst->num_channels = 1; /* grayscale means a one channel HALCON image*/
}
else if (STR_CASE_CMP(fginst->color_space,"rgb"))
{

if (fginst->bits_per_channel != 5 || fginst->bits_per_channel != 8)

/*example: allow only 5-6-5 and 8-8-8 rgb images */
return (H_ERR_FGWC);
fginst->num_channels = 3; /* rgb means a three channel HALCON image */
}
else if (STR_CASE_CMP(fginst->color_space,'"xrgb"))
{/*example: 32 bits per pixel rgb imagex*/
if (fginst->bits_per_channel != 8)
return (H_ERR_FGWC);
fginst->num_channels = 4; /* denote the 32 bit color mode by four */
/* channels; the mode results also in a three channel, 8 bit HALCON */
/* image. x/

}

else
return (H_ERR_FGCS);

[k ok ok ok ks ok ko ks ok sk ok ok ks ok ok sk sk ok ok sk ok ks sk ok ok ks ok ko ok ok sk ok /
[*%% TODO: Check the desired video gain *%k [
[oksk ks koo sk sk ok ko ks sk ok sk ok ok ks ok ok sk sk ok ks ok ks ok ok ok ks ok ko ok ok sk ok /

/* The desired video gain is passed in fginst->gain. Just ignore this */
/* parameter if your board does not support any gain setting. */
/* If -1.0 (for "default") is used in open_framegrabber() the values YOU */
/* provided for fg->gain in FGInit() will be passed in fginst->gain. */
/* If you encounter unreasonable requests, return H_ERR_FGGAIN -- invalid */
/* video gain */

if (fginst->gain < 0.0)
return(H_ERR_FGGAIN) ; /* example: gain must be positive */

/**/

[*xx TODO: Check for external triggering *%% [
sk sk ok ke k sk ok sk o ok ok Kok sk o kK Kok ok o ok ok K Kok ok o o kK K Kok ok ok o ok kK Kok ok sk o o kK ok Kok sk ok o ok K Kok ok sk o o ok K Kok sk ok ok /

/* If external triggering is desired, fginst->external_trigger is set to */

/* TRUE, otherwise to FALSE. */
/* If "default" is used in open_framegrabber() the value YOU provided */
/* for fg->external_trigger in FGInit() will be passed. */
/* If the frame grabber does not support external triggering, return */
/* H_ERR_FGET -- external triggering not supported. */

if (fginst->external_trigger)
return(H_ERR_FGET) ; /* example: Do not allow external triggering */

/**/

[*%* TODO: Check the desired field K%k [
ks sk ok ke k sk ok sk o ok ok Kok sk o ok Kok sk o ok kK K Kok ok o o kK KK ok ok ok o ok kK Kok ok sk o o kK K Kok sk ok o ok Kok ok sk o o ok K Kok sk ok ok /

/* The desired field to be grabbed is specified in fginst->field: */
/* FG_FIRST_FIELD -- grab first (even) field */
/* FG_SECOND_FIELD -- grab second (odd) field */
/* FG_NEXT_FIELD -- grab arbitrary next field */
/* FG_FULL_FRAME -- grab a full frame (interlaced) */

Frame Grabber Integration/ 2000-11-16

/* FG_PROGRESSIVE_FRAME -- grab a full frame (progressive scan) */
/* If "default" is used in open_framegrabber() the value YOU provided */
/* for fg->field in FGInit() will be passed. */
/* In case of unreasonable values, return H_ERR_FGFIELD -- invalid field */

/* Note: This parameter is tightly coupled with the specified image size */
/* So, many HALCON frame grabber interfaces IGNORE this parameter and */
/* decide what to do exclusively by the size parameters ... */

if ((fginst->field != FG_FIRST_FIELD) &&
(fginst->field != FG_FULL_FRAME))
return(H_ERR_FGFIELD) ; /* example: first field or interleaved frame */

/**/

[%%k TODO: Check availability K%k [
[ok sk ks ke sk ks ok sk ko sk ok sk sk sk ko ok ok sk ok sk ko ok ke sk sk ks ke sk ks ko ke sk sk ko ke sk ok sk ko ke sk sk ks ke sk ok ok /

for (i=0; i < FG_MAX_INST; i++)

{
if (FGInst[i].board && (currInst->instance != i))
{
/* ok, FGInst[i] is in use and is NOT the current Instance, */
/* now let’s see, if the associated board is the requested one... */
if (!strcmp(FGInst[i].board->DeviceName, fginst->device))
{
/* The selected board is already in use! Decide, whether you */
/* can allow parallel usage by this new instance (for example */
/* using a different port or line in ...) */
/* Note, that you can access the other HALCON FGInstance structs */
/* using FGInst[i].fginst if you follow our suggestions, or you */
/* provide additional information concerning port/MUX settings in */
/* the struct TFGInstance, or you ask the frame grabber (API) ... x/
/* If you detect an incompatibility: */
/* return H_ERR_FGDV -- device busy */
/* otherwise: currInst->board = FGInst[i].board; */
if (1)
return(H_ERR_FGDV) ; /* example: Only one instance per board */
else
currInst->board = FGInst[i].board;
}
}
}
[Kk ok sk ok ok sk ok ok s ok ok s Kk o oK o ok o ok ook o s K R s K o K K S koK ook sk R sk KK s ok ok sk ok sk ok sk ok ko ok
VALEES NOTE: From this time on you should reset currInst->board to LELYS
[*%kx NULL before exiting in case of an error (in order to *%k [
[*%x unlock the instance again) *kk [

/**/

/* Note: There might be asynchronous grabs pending on the same x/
/* board you would like to use. In general, most frame grabbers x/
/* have only one A/D converter - thus, you might have to cancel x/
/* all these old jobs before doing anything else. x/
/* Obviously, this operation has nasty side-effects! So you could */
/* also return the error H_ERR_FGDV -- device busy in that case */

KillAl1lO0therJobs(fginst);

[k ok sk sk kbR ks sk ok sk ok ok sk sk ok ok sk sk ok sk ok ks sk ok ok ks ok ko ok ok ok ok /
[*%% TODO: Allocate BoardInfo / initialize frame grabber hardware **k [
[k ssokokok ok sk sk otk ks sk ok sk ok ok sk sk ok ok sk ok ok sk ok ks sk ok ok ks ok ok o ok ok ok ok /

if (!currInst->board)

{
/* All right, it seems that the desired board isn’t yet open... */
/* allocate space for the BoardInfo struct member, e.g., like this: */
HCkP(HAlloc (proc_id,(size_t)sizeof(BoardInfo),&currInst->board));

/* Init the struct currInst->board, e.g., */
memset (currInst->board, 0, sizeof(BoardInfo));

79

HALCON 6.0

80 APPENDIX C. INTERFACE TEMPLATE CIOFGTEMPLATE.C

strcpy (currInst->board->DeviceName, fginst->device);

[HFF KK A AR K KA K KA KK KA K F K F KKK KKK KK KK F K F oK KoK KKK oKk KoK oK ok K Kok ok K [
/* Open this device (fginst->device) for the 1st time ... */
/* PLEASE REFER TO THE API MANUAL OF YOUR FRAME GRABBER FOR DETAILS x/
/* query frame grabber capabilities (and store them in the struct */
/* currlnst->board ...) x/
[HFF KK A A AR KA KK KA KK A K F KA KK KKK KK K K F oK KKK KKKk K ok oK ok K Kok ok K [

newBoardalloc = TRUE;
}

/* Note: In some cases parameter checks are not possible until now, */
/* that is until the specific board has been initialized and can be */
/* ASKED about its abilities (this is typically true for evaluating */
/* the image size and the camera_type parameter) */

/**/

VAL LSS NOTE: From this time on you might have to do some cleaning up ***/
VAL before exiting in case of an error (deallocate the **k [
VALY BoardInfo, unlock the frame grabber etc.); *kk /[
VELE see CleanupFGOpen() as a reference LELYS

/**/

/* 0k, at this point we know that the frame grabber board IS available */
/* and initialized. */
/* Note that some parameters like number of bits_per_channel, field to be */
/* grabbed etc. typically only influence the GRABBING, that is FGGrab(), */
/* FGGrabStartAsync(), and FGGrabAsync(). */
/* Others have to be SET right now ... */

/**/

VELE TODO: Set port / input line LELYS
[HF A F A A A A A KK A A KK A AR KA A KA KK A KA K KA F A A KA KA KA K KA KK A AR KA KA KA K KA KKK [

/* we did the checks already - now we set these values on the board ... */

[k ook ok ok ks sk ok ok ok sk ok ok ok ok ok koo ok stk sk ok ok ok koo ok sk ok ok ok ok ok koo ok ok koo ok ok ok /
[* %% TODO: Set video gain *okk [
[k ook ok ok ks sk ok ok ok sk ok ok ok ok ok koo ok stk sk ok ok ok koo ok sk ok ok ok ok ok koo ok ok koo ok ok ok /

/* We did the check already - now we set this value on the board ... */

/**/

[*%x TODO: Set external triggering *kk [
[xRk ok ok KKK o R KK ok KoK K KKK o KKK ok KK ok K K o koK oo KKK ok ok

if (fginst->external_trigger)
{
/* Well, whatever the frame grabber API requests you to do ... */

[k sk ok ke ko sk o ok ok sk ok ok o kK Kok ok o o kK K Kok ok o o kK KK ok ok ok o ok kK Kok ok sk o o kK ok Kok ok ok o ok Kok ok sk o ok ok K Kok sk ok ok /
[*xx TODO: Evaluate the camera_type parameter K%k /

/**/

/* HALCON provides one camera_type string parameter in open_framegrabber()*/

/* passed in fginst->camera_type. */
/* Use this parameter to specify some frequently used additional settings */
/* that are not available among the standard parameters. Note that you */
/* can provide arbitrary additional parameters to be set via */
/* set_framegrabber_param() AFTER open_framegrabber(), see FGSetParam(). */
/* If "default" is used in open_framegrabber() the value YOU provided */
/* for fg->camera_type in FGInit() will be passed. */

/* A typical application for the camera_type parameter is to specify the */

/* video norm ("ntsc", "pal", "auto") ... */
/* Another possibility is to specify a camera configuration file which */
/* many frame grabbers use for configuration. */
/* It’s up to YOU to decide what semantics to assign to this parameter! */
/* If you encounter an unreasonable value, return H_ERR_FGCT */

/**/

Frame Grabber Integration/ 2000-11-16

VALY TODO: Determine the video norm (pal, ntsc, ...) *kk /
[ek sk ok sk sk sk sk ko ko ok ok ok ok sk ok ok ok sk ok ok ok ok sk o ok ok sk ko ko sk ok ok sk ok ko ok ok ek ok ok /

/* This might be done by analyzing the video signal or by evaluating the */

/* camera_type parameter (see above). This might look like this: */
if (!STR_CASE_CMP(fginst->camera_type, "auto"))
{
/* use special routines provided by your frame grabber to analyze the */
/* the video signal ... */
}

else if (!STR_CASE_CMP(fginst->camera_type, "ntsc"))
norm = FG_NTSC;

else if (!STR_CASE_CMP(fginst->camera_type, "pal"))
norm = FG_PAL;

else
norm = FG_SPECIAL_NORM;

[xRk ok Rk ok KKK oo KKK o KoK K K KKK o KKK ook KK ok K K oo KoK K KKK ok ok
[*%x TODO: Set fginst->width_max / fginst->height_max *¥k [
[k ok Rk ok KKK ok KK o K K K KK K o KKK ook KK ok K K ok KoK o KKK ok ok

/* Depending on the video norm, set the maximum allowed image size in */
/* fginst: */

switch (norm)
{
case FG_PAL:
fginst->width_max 768;
fginst->height_max = 576;
break;
case FG_NTSC:

fginst->width_max = 640;
fginst->height_max = 480;
break;
case FG_SPECIAL_NORM:
default:
/* well, whatever! x/
fginst->width_max = 768;
fginst->height_max = 576;

}

[k ok sk sk ok ko ks ok sk sk ok sk sk ok ok s kol Rk sk ok ks sk ok ok ks ok ko ok ok sk ok /
[*%% TODO: Evaluate the image size / part *%k [
[k ok sk sk ok ko ks ok sk sk ok sk sk ok ok s kol Rk sk ok ks sk ok ok ks ok ko ok ok sk ok /

/* This is going to be tricky! */
/* There are six parameters to be evaluated: */
/* fginst->horizontal_resolution/vertical_resolution specifying the image */
/* size/subsampling for the frame grabber, and fginst->start_row/start_col*/
/* + fginst->image_width/image_height specifying a part of this image to */
/* be delivered in the HALCON image. In many cases, frame grabbers can be */

/* used for NTSC and PAL signals. Thus, reasonable values for these */
/* parameters depend on the camera signal (see fginst->width_max/ */
/* height_max). This is inconvenient for the user. Therefore, we */
/* recommend not only to support the "absolute" values, but also the */
/* following relative values: */
/* */
/* horizontal_resolution/vertical_resolution = 1,2,4: Full/half/quarter */
/* resolution */
/* image_width,image_height = 0: Return "full" image */
/* Note that due to this convention, you cannot grab images of size */
/* 1x1, 2x2, or 4x4 pixels (we are certain that this loss is */
/* acceptable ...) */

/* The following code segments assumes that you already know what video */

/* norm to use (that is fginst->width_max/height_max is set properly) */
/* Now, some arithmetic: Check & set the required cropping / subsampling */
/* values. The purpose of this is to deliver a unified internal */
/* representation of the requested subsampling values: Regardless whether */
/* the user selects ’320 and 240’ or ’2 and 2’ for a ’half size’ NTSC */
/* image, the internal representation should always be ’2’ and ’2’ */
/* (half height and half width) */

81

HALCON 6.0

82 APPENDIX C. INTERFACE TEMPLATE CIOFGTEMPLATE.C

widthScale = fginst->horizontal_resolution;
heightScale = fginst->vertical_resolution;
if (widthScale == fginst->width_max)

widthScale = 1;

if (heightScale == fginst->height_max)
heightScale = 1;

if (widthScale == fginst->width_max/2)
widthScale = 2;

if (heightScale == fginst->height_max/2)
heightScale = 2;

if (widthScale == fginst->width_max/4)
widthScale = 4;

if (heightScale == fginst->height_max/4)
heightScale = 4;

/* Subsampling has to be either 1, 2 or 4, but may be different for the */

/* x- and y-axes. */
/* Note: This is the standard behaviour of a HALCON frame grabber */
/* interface: Allow only full size and subsampling by a factor of 2 or */
/* 4. 0f course, if you feel like supporting some arbitrary weird image */
/* zooming/scaling also: Go ahead ... */
if (!(widthScale == || widthScale == || widthScale == 4))

/* wrong resolution */
return(CleanupFGOpen(proc_id,currInst,newBoardalloc,H_ERR_FGWR)) ;

if (!(heightScale == 1 || heightScale == 2 || heightScale == 4))
/* wrong resolution */

return(CleanupFGOpen(proc_id,currInst,newBoardalloc,H_ERR_FGWR)) ;

/* Now that we have a proper representation of the desired values, let’s */
/* compute the effective image size */

fginst->horizontal_resolution = fginst->width_max / widthScale;

fginst->vertical_resolution = fginst->height_max / heightScale;
/* It might be useful to store the current subsampling mode, e.g., in */
/* fginst->mode */
if ((widthScale == 1) && (heightScale == 1))
fginst->mode = FG_FULL_RESOLUTION;
else if ((widthScale == 2) && (heightScale == 2))
fginst->mode = FG_HALF_RESOLUTION;
else if ((widthScale == 4) && (heightScale == 4))
fginst->mode = FG_QUARTER_RESOLUTION;
else

fginst->mode = FG_OTHER_RESOLUTION;

/* the subsampling is (hopefully) handled properly now; let’s analyze the */
/* image part... */

/* "full" centred image part: */
if (fginst->image_width == 0)

fginst->image_width = fginst->horizontal_resolution - 2*fginst->start_col;
if (fginst->image_height == 0)

fginst->image_height = fginst->vertical_resolution - 2*fginst->start_row;

/* Now let’s check the part -- if not reasonable: Return H_ERR_FGWP -- */
/* wrong image part */

if ((fginst->start_col+fginst->image_width > fginst->horizontal_resolution) ||
(fginst->start_row+fginst->image_height > fginst->vertical_resolution))
/* wrong part x/
return(CleanupFGOpen(proc_id,currInst,newBoardalloc,H_ERR_FGWP));

/**/

[*%x TODO: Set the image size / part *kk [
[k ok koo ok ok ok ks sk ok sk ok ok sk sk ok ok sk sk Rk sk ok ks sk ok ok ks ok ok ko ok ok ok ok /

/* Now you have to set the frame grabber scaler etc. in order to deliver */
/* the image part specified by start_col/start_row and image_width/ */
/* image_height within the image of size horizontal_resolution x */
/* vertical_resolution. This might also mean to switch between full images*/
/* and single fields (there is no use to grab a full frame if you would */

Frame Grabber Integration/ 2000-11-16

/* like to do a subsampling of factor 2 anyway ...), see also */
/* fginst->field. */
/* Note: Some frame grabbers do not support cropping an image part in */
/* hardware. In that case, return H_ERR_FGWP if you are urged to grab */
/* only part of an image or do it in SOFTWARE (in that case: note, that */
/* you have to provide a buffer to grab to for the full image */
/* horizontal_resolution x vertical_resolution, not only image_width x */
/* image_height). */

[sk sk ok sk sk sk sk ko ko ok ok ok ok sk ok ok ok sk ko ok ok sk ok ok ok sk ko ko sk o ok ok sk ko ok ok ok ok /
[*%* TODO: Allocate buffers *kk [
[sk sk ok sk sk sk sk ko ko ok ok ok ok sk o ok ok sk ko ok ok sk o ok ok sk ko ko sk o ok ok sk ko ok ok ok ok /

/* Oh boy, this is going to be fun again, because there are a lot of */
/* things to consider: */
/* (1) The size of the buffers: */
/* - image_width x image_height x bytes per pixel in case your */
/* frame grabber supports grabbing only a part of an image */
/* - horizontal_resolution x vertical_resolution x bytes per pixel */
/* otherwise */
/% */
/* (2) Allocate buffers per board or per instance? */
/* - If you do not pass this memory directly to HALCON objects, but */
/* perform a memcopy (or other "copying" procedures, for example to */
/* split color raw data into three channels) AND you’ve got only */
/* one A/D converter per board, you can allocate the buffer(s) per */
/* board (frame grabber board), e.g, using */
/* currInst->board->BoardFrameBuffer[] */
/* - Otherwise (and also if you allow several instances per board */
/* with different image sizes) allocate them per instance. */
/* In both cases we would recommend to store at least copies of the */
/* pointers to the buffers in */
/* currInst->InstFrameBuffer[] */
/* in order to have a unified access to the data. Note, that the */
/* recommended entries sizeBuffer and refBuffer in BoardInfo and */
/* allocBuffer in TFGInstance might be quite handy to keep track of */
/* the current memory configuration. */
/* */
/* (3) How to allocate them? */
/* In most cases the frame grabber API will provide specific routines */
/* for this task (since buffer memory to grab to at least has to be */
/* non-paged etc.) */
/* */
/* (4) How many buffers? */
/* In most cases 2 (in order to support asynchronous grabbing), see */
/* also the define MAX_BUFFERS */

/* If you fail to allocate buffers return H_ERR_MEM -- not enough memory */

[/ sk sk sk sk ok sk sk ok sk sk ok sk sk ok sk ok ks s sk sk s ok sk sk ok sk sk ks sk ok sk sk ok sk sk s ks sk ok sk sk sk ok sk sk ok ko sk ok sk sk sk ok sk sk ok ok sk sk sk ok /
/* example (NOTE: YOU WILL HAVE TO CHANGE THIS SECTION IN 99 OF 100 CASES)*/
3k sk ko ok sk ko ok ko ko ok ko sk ko sk ok sk sk sk ko s ok sk sk o ko sk ok sk sk ok sk ko sk sk ok sk ok sk ok ok sk ok ok /

/* We assume that we can crop an image part of size fginst->image_width x */
/* image_height in hardware; thus the size of the buffers is something */
/* like */

sizeBuffer = fginst->image_width*fginst->image_height *
((fginst->bits_per_channel+7) / 8)*fginst->num_channels;

/* Note, that especially for color frame grabbers */
/* ((fginst->bits_per_channel+7) / 8)*fginst->num_channels might fail, */
/* e.g., if the frame grabber delivers 32 bits of data instead of 24. In */
/* this case make sure that you have set the fginst->num_channels */
/* parameter to 4 above. */

/* Now we decide whether to use the memory pool of the board (shared by */
/* maybe more than one instance) or to allocate instance-specific buffers.*/

if (1)
{

/* share the buffers with other instances */

83

HALCON 6.0

84 APPENDIX C. INTERFACE TEMPLATE CIOFGTEMPLATE.C

BoardInfo *board = currInst->board;
currInst->allocBuffer = FALSE;

if (!'board->sizeBuffer)
{
/* that’s the very first time such buffers (per board) are requested! */
for (i=0; i < MAX_BUFFERS; i++)
{
err = HAlloc (proc_id,(size_t)sizeBuffer,&board->BoardFrameBuffer([i]);
if (err !'= H_MSG_OK)
return(CleanupFGOpen(proc_id,currInst,newBoardalloc,err));
}
board->sizeBuffer = sizeBuffer;
}
else if (board->sizeBuffer != sizeBuffer)
{
/* bad luck! The size of the shared buffers does not match */
/* the required size! */
currInst->allocBuffer = TRUE;
}
if (!currlInst->allocBuffer)
{
/* insert references: */
for (i=0; i < MAX_BUFFERS; i++)

{
currInst->InstFrameBuffer[i] = board->BoardFrameBuffer[i];
}
board->refBuffer++; /* one more instance that uses the board buffersx*/
}
}
else

currInst->allocBuffer = TRUE;

if (currInst->allocBuffer)

{
/* do not use shared buffers, but allocate the buffers for this new */
/* instance */
for (i=0; i < MAX_BUFFERS; i++)
{
err = HAlloc (proc_id, (size_t)sizeBuffer,&currInst->InstFrameBuffer[i]);
if (err '= H_MSG_O0K)
return(CleanupFGOpen(proc_id, currInst,newBoardalloc,err));
}
}
currInst->currBuffer = 0; /* start whith the first buffer */

[xRk kR ok KKK o KKK o KoK K KKK K o KKK ok KK ok K K o kKoK Ko KKK ook ok
[*%x TODO: Final Settings *¥k [
[xRk kR ok KKK o KKK o KoK K KKK K o KKK ok KK ok K K o kKoK Ko KKK ook ok

/* increase the number of instances assigned to this board ... */
currInst->board->refInst++;

/* ... and the overall number of instances */
numInstance++;

/* that’s it: You finally succeeded! */
return(H_MSG_0K) ;

} /* FGOpen x/

/%

Herror SetInstParam (...)

Set the instance-specific frame grabber parameters

* K X X X X X

Frame Grabber Integration/ 2000-11-16

s

{

}

~N

s

{

*

*/

tatic Herror SetInstParam (FGInstance *fginst)

TFGInstance *currInst = (TFGInstance *)fginst->gen_pointer;

[k skkokokoksk ok skl sk ok ok sk ko ok sk ok ok skoksk ko ok sk ok ok skoksk ok sk ok ok sk ok ko sk ok ok /
/*** TODOD: Restore frame grabber settings for the instance *x*/
[k skkokokoksk ok sk sk sk ok ok sk ko ok sk ko ok skoksk ko ok sk ok ok skoksk ok skl ok sk ok ko sk ok ok /
/* everything that you allow to be different for instances */
/* of the same board (like port and input line etc.) */
/* Note: If this is very time consuming, you might want to */
/* store the current parameter settings of the board in */
/* currInst->board and check whether they differ from the */
/* values in currlnst / currInst->fginst */
/* example: */
/* if (currInst->board->port != fginst->port) */
/* { */
/x . */
/* currInst->board->port = fginst->port; */
/* } */
return(H_MSG_0K) ;

/* SetInstParam */

*

*

* Herror FGClose (...)

*

*

*

* Close a frame grabber instance via close_framegrabber (...)

*

*

x/

tatic Herror FGClose (Hproc_handle proc_id, FGInstance *fginst)

TFGInstance *currInst = (TFGInstance *)fginst->gen_pointer;
INT i;

if (currInst->busy)

[HFF A F A A KA A KA A KA KA K AA KK A KK A A KKK KA KK A KK A KKK A K KA KK A KK A KK F A KKK KKK [
/*%+ TODO: terminate the pending asynchronous job (the one LELYS
[*%x belonging to this instance *%k [

[k sk ok ko ok ok o ok Kok ok o K KoK ok ok o K K Kok ok ok o o K K Kok ok ok o K K Kok ok ok o o K K Kok ok o o K K Kok ok ok o kK Kok ok
currInst->busy=FALSE;

[HF A F A A A A A KA AR KA AR KA A KA K KA KA K KA KA A KA KA KA K KA KK A AR KA K KA KA K KA KKK [
VELE TODO: Cleanup LELYS
[HF A F A A A A A F A AR KA AR KA A KA KK A KA K KA KA A KA KA KA A K KA KK A A KKK KA KA K KA KKK [

/* Basically, you have to deallocate the buffers associated with the */
/* instance and maybe you have to deallocate the data associated with the */
/* board and unlock the frame grabber */

/% Kk ok ok ok ok ok ok ok ok ok ok ok ok ook sk ok ok ok ok kb ok ok ok sk ok /
/% TODO: Deallocate Buffers 7 *kok [
/% Kk ok ok ok ok ok ok ok ok ok ok ok ok ook sk ok ok ok ok kb ok ok ok sk ok /

if (currInst->allocBuffer)

{
/* buffers have been allocated for this instance exclusively -- get rid */
/* of them! */
for (i=0; i < MAX_BUFFERS; i++)
{

85

HALCON 6.0

86 APPENDIX C. INTERFACE TEMPLATE CIOFGTEMPLATE.C

if (currInst->InstFrameBuffer[i])
{
HCkP(HFree(proc_id,currInst->InstFrameBuffer([i]));
currInst->InstFrameBuffer[i] = NULL;
}
}
}
else
{

BoardInfo *board = currlnst->board;

/* the instance shared the board buffers with other instances */
if (board->refBuffer == 1)
{
/* This is the last instance which uses the board frame buffer, */
/* therefore delete the buffer now. */
for (i=0; i < MAX_BUFFERS; i++)
{
if (board->BoardFrameBuffer[i])
{
HCkP(HFree(proc_id,board->BoardFrameBuffer([i]));
board->BoardFrameBuffer[i] = NULL;

}
}
board->sizeBuffer = 0;
}
/* otherwise: Do not touch the buffers -- they are still in use! */

board->refBuffer--;
}

[sk sk ok sk sk sk ok ko ok ok ok ok sk ok sk sk sk ok ok ok ok ok ook sk ok /
[*%* TODO: Deallocate Board ? *kk [
[sk sk ok sk sk sk ok ko ok ok ok ok sk ok sk sk sk ok ok ok ok ok ook sk ok /

/* Check if the referenced board is still in use by another instance... */

if (currInst->board->reflnst <= 1)

{
[3 kskokskokskokskoksk ook skokskokskok sk ok sk ksk s ksk sk sk sk sk ok sk sk sk sk ko sk sk ok sk sk ks ks ko sk sk ok sk kk o ksk ok ok /
/* 0k, here comes the serious part. You must "close" the board itself, */
/* because its not in use anymore. But please do not ask how to do this,*/
/* ask the API manual of the frame grabber instead ... */
[3 kskokskokskokskoksk ook skokskokskokskok sk oksk o ksk sk sk sk sk ok sk sk sk sk ko sk sk ok sk ksl ks ks ko sk sk ok sk ksk o ksk ok ok /

/* ... and deallocate the BoardInfo you have allocated in FGOpen() */
HCkP(HFree(proc_id,currInst->board));
}
else
{
currInst->board->refInst--;
if (currInst->board->refInst == 1)
{

/* This is sort of a special situation: After you close this instance */
/* there is only one other instance left using the same frame grabber */
/* board. Thus, this other instance will rely on the fact that all */
/* the frame grabber settings have been done in FGOpen(). It won’t setx/
/* the port and input line etc. again before grabbing. Thus, you have */
/* to make sure, that these settings are correct NOW: */

for (i=0; i < FG_MAX_INST; i++)

{
if (FGInst[i].board && (currInst->instance != i))
{
/* 0k, FGInst[i] is in use and is NOT the current instance. */
/* Now let’s see, if it references the same board as the */
/* current instance ... */
if (FGInst[i].board == currInst->board)
{
[3 sk ok sk sk sk sk ko ok ok ok sk ok sk sk ok ok o sk sk ok sk ok sk sk ok ok o sk ok ok ook sk sk sk ok ok ko ok ok ok ok ok /
[*%x TODD: Restore frame grabber settings for the *¥k [
/*%% instance FGInst[i].instance/FGInst[i].fginst *okk [

/**/

Frame Grabber Integration/ 2000-11-16

87

/* everything that you allow to be different for instances */
/* of the same board (like port and input line etc.) */

HCkP(SetInstParam(fginst->fgclass->instance[i]));

break;
}
}
} /x for (i... %/
} /* currInst->board->refInst == 1 */

} /* currlnst->board->refInst > 1 */

currInst->board = NULL;
numInstance--;

return(H_MSG_0K) ;

} /* FGClose */

~
*

Herror ExtractChannelsFromRGB32 (...)

Typically, a color frame grabber delivers the data as interleaved
tuple (e.g., RGB triples per pixel). Thus, you have to split this
data into separate channels (conform to the HALCON philosophy). This
routine might be a very simple template for such a procedure.

* K O X X X X K X K X

*
~

static Herror ExtractChannelsFromRGB32 (FGInstance *fginst, HBYTE xdata,
HBYTE *r_img, HBYTE *g_img, HBYTE *b_img)
{
INT4_8 i,size;

size = fginst->image_width*fginst->image_height;

/* Assume that the frame grabber delivers 32 bits per pixel, e.g, BGRX */
for (i=0; i < size; i++)

{
*b_img++ = xdata+t+;
*g_img++ = *datat++;
*r_img++ = *data+t+;
data++;

}

return(H_MSG_0K) ;
} /* ExtractChannelsFromRGB32 */

~
*

Herror ExtractChannelsFromRGB24 (...)

Typically, a color frame grabber delivers the data as interleaved
tuple (e.g., RGB triples per pixel). Thus, you have to split this
data into separate channels (conform to the HALCON philosophy). This
routine might be a very simple template for such a procedure.

* X K X K X K X K ¥ ¥

*
~

static Herror ExtractChannelsFromRGB24(FGInstance *fginst, HBYTE *data,
HBYTE *r_img, HBYTE *g_img, HBYTE *b_img)
{

HALCON 6.0

88 APPENDIX C. INTERFACE TEMPLATE CIOFGTEMPLATE.C

INT4_8 i,size;
size = fginst->image_width*fginst->image_height;

/* Assume that the frame grabber delivers 24 bits per pixel, e.g, RGB */
for (i=0; i < size; i++)
{

*¥r_img++ = *data++;

*g_img++ = xdata+t+;

*b_img++ = xdata++;

}

return(H_MSG_0K) ;
} /* ExtractChannelsFromRGB24 */

~
*

Herror ExtractChannelsFromRGB16 (...)

Typically, a color framegrabber delivers the data as interleaved

tuple (e.g., RGB triples per pixel). Thus, you have to split this

data into separate channels (conform to the HALCON philosophy). This
routine might be a very simple template for such a procedure. It
decomposes the rgb color mode 5:6:5, 16bpp, 1-plane, rgb into 3 channels

* K X X X X K ¥ ¥ %

*
~

static Herror ExtractChannelsFromRGB16 (FGInstance *fginst, INT2 *data,
HBYTE *r_img, HBYTE *g_img, HBYTE *b_img)
{
INT4_8 i,size;

size = fginst->image_width*fginst->image_height;

/* Assume that the frame grabber delivers 5-6-5 RGB data */
for (i=0; i < size; i++)
{

//copy pixel wise

*xr_img++ = (*data & Ox1F) << 3;

xg_img++ = (xdata & Ox7E0) >> 3;

*b_img++ = (xdata & 0xF800) >> 8;

data++;

}

return(H_MSG_0K) ;
} /* ExtractChannelsFromRGB16 */

~
*

Herror FGGrabStartAsync (...)

Start an asynchronous grab via grab_image_start()

* X X X X ¥ ¥ *

*
~

static Herror FGGrabStartAsync (Hproc_handle proc_id,FGInstance *fginst,
double maxDelay)
{

TFGInstance *currInst = (TFGInstance *)fginst->gen_pointer;

[/ sk ok sk sk sk ok sk ok ok sk ok o ko ok ok ok o ok ok o ok o o ok sk o sk o o ok o ok ok o sk ok sk ok o ko o sk ok o ok sk ok sk ok o ok ok ok ok ok sk ok ok ok ok ok ok /
/* Note: If your frame grabber does not support asynchronous grabbing: */
/* Return H_ERR_FGASYNC */
[/ sk ok sk ks sk ok sk ok ok sk ok o ko ok ok ok o ok ok o ok o o ok sk o ok ok o ok o ok ok o sk ok sk ok o ko o sk ok o ok ok sk ok ok ok o ok ok ok ok ok sk ok ok ok ok ok /

/* ’currlnst->timeout’ is the maximum allowed "age" for an image, */

/* see FGGrab(); just set the new threshold ... x/
currInst->timeout = (INT4_8)(maxDelay + 0.5);

Frame Grabber Integration/ 2000-11-16

/* Note: There might be asynchronous grabs pending on the same x/
/* board you would like to use. In general, most frame grabber x/
/* have only one A/D converter - thus, you might have to cancel x/
/* all these old jobs before doing anything else. x/
/* Obviously, this operation has nasty side-effects! So you could */
/* also return the error H_ERR_FGDV -- device busy in this case */

KillA11l0therJobs(fginst);

if (currInst->busy)
{

/) ks sk ks ks sk ks ok ks ko ks ok ok ok sk ks ko ok ks sk ok ok ks ks ok ok ok sk sk ok ok sk sk ko ok ks o sk ok ok ko sk sk ok ok /
[* %% TODO: Cancel pending job *kk [
[k ook ok koo koo ok ok ok ok sk ok ok ok kb ok ok sk ok ok ok ok ok ok ok sk sk ok ok ok ok ok ok sk skok ok /

/* there is an asynchronous grab pending - check whether its finished; */

/* if not, terminate it (you have to start a new grab NOW)! */
}
else if (currInst->board->refInst > 1)
{
/* There are other instances using the same board! Thus, you have to */
/* set the frame grabber parameters again ... */

/***/

[*%x TODO: Restore frame grabber settings for currlnst *kk [
[sk sk ks ke sk ok sk ok sk ko ko sk o ok sk e ko ok sk sk o ok sk e ko ok sk sk o ko sk e ko ok sk sk ok o ok sk ek ok ok /

/* Everything that you allow to be different for instances of the same */
/* board (like port and input line etc.) has to be set again. */

HCkP (SetInstParam(fginst));
}

/***/

[* %% TODO: start an asynchronous grab *%% /[
[k ko sk ok ok sk sk ok o ko o sk ok o ok ok o sk ok o ok sk ok ko o ok ok sk ok ok ok sk o ok ok o sk ok o ok ok ok ko o ok ok sk ok ok ok sk ok Kok /

#ifdef WIN32

_ftime (&currInst->grabStarted); /* remeber the time the grab was started */

#else

gettimeofday (&currInst->grabStarted,&currInst->tzp);
#endif

currInst->busy = TRUE;

return(H_MSG_0K) ;

} /* FGGrabStartAsync */

~

*

* X K X K X K %

*

~

Herror GrabImg (...)

Grab an image (auxiliary routine).

static Herror GrabImg (Hproc_handle proc_id, FGInstance *fginst,

{

INT *readBuffer)

TFGInstance xcurrInst = (TFGInstance *)fginst->gen_pointer;
HBOOL done = FALSE;
HBOOL checkTimeAgain = FALSE;
HBOOL newGrab = FALSE;

#ifdef WIN32

struct _timeb now;

#else

89

HALCON 6.0

90 APPENDIX C. INTERFACE TEMPLATE CIOFGTEMPLATE.C

struct timeval now;
struct timezone tzp;

#endif

INT4_8 time_diff;

/* Note: There might be asynchronous grabs pending on the same x/
/* board you would like to use. In general, most frame grabber x/
/* have only one A/D converter - thus, you might have to cancel x/
/* all these old jobs before doing anything else. x/
/* Obviously, this operation has nasty side-effects! So you could */
/* also return the error H_ERR_FGDV -- device busy in this case */

KillA11l0therJobs(fginst);

if ((lcurrInst->busy) && (currInst->board->refInst > 1))

{
/* There are other instances using the same board! Thus, you have to */
/* set the frame grabber parameters again ... */

/***/

[*%x TODO: Restore frame grabber settings for currlnst *kk [
[Fokskkokokok sk ok sk sk sk ok ok sk ok sk kokok sk ksl ok sk ok sk koo sk ko ok sk ok sk koo ko skok ok ok sk sk ok ok /

/* everything that you allow to be different for instances of the same */
/* board (like port and input line etc.) has to be set again. */

HCkP (SetInstParam(fginst));

}

[sk sk ks ok ke sk ok sk sk ok ok sk ok sk ok sk ok sk o ok sk ok sk ko ok ks sk o ok sk ks ke ok sk ks ko ok sk ok sk ko ok ek ok sk ok ok ok
/* Note: If you encounter errors during grabbing, return one of the */
/* following error codes: */
/* H_ERR_FGNV -- no video signal */
/* H_ERR_FGF -- grabbing failed (general) */
/* H_ERR_FGTIMEOUT -- timeout */

/***/

if (currlnst->busy)

{

/* there is an asynchronous job pending for this instance ... */

if (!fginst->async_grab)

{
/* a SYNCHRONQUS grab was requested ... */
[ks ook ks sk ok koo ok sk ok ks ok ok sk sk ok ok ks s ok ok sk sk ok sk sk ok ok sk sk ok ok ok /
/*%x TODO: Cancel the current job *%x [
[ks ook ks sk ok koo ok sk ok ks ok ok sk sk ok ok ks s ok ok sk sk ok sk sk ok ok sk sk ok ok ok /
newGrab = TRUE;

}

else

{
/* an ASYNCHRONQUS grab was requested ... */
[ks ook ks sk ok ok ok sk ok sk ok ok sk sk ok ok ks sk ks ok ok ek sk ok sk sk ok ok ko /
/*%x TODO: Check, if the previously started grab has finished **x/
/*%x (there is a pending grab (currInst->busy is TRUE) *kk [
[Rk KKK oo KKK o KoK Ko KKK o ook KK o sk K K o ok KoK o koK ok ok koK K
/* Assume that the checking routine sets "done" to TRUE/FALSE */
if (done)
{

/* old grab finished: Check, whether this image is too old */
#ifdef WIN32
_ftime(&now);

time_diff = now.millitm - currlnst->grabStarted.millitm +
1000*(now.time - currInst->grabStarted.time);

#else
gettimeofday(&now,&tzp) ;
time_diff =
(INT4_8) (((double)now.tv_sec*1000.0 + (double)now.tv_usec/1000.0) -
((double)currInst->grabStarted.tv_secx1000.0 +
(double)currInst->grabStarted.tv_usec/1000.0) + 0.5);
#endif

if (time_diff > currInst->timeout)

Frame Grabber Integration/ 2000-11-16

91

{
/* Bad luck! The image is there, but too old ... */
/* Thus, you have to grab a new image ... */
/* You can do this synchronously or asynchronously -- you have */
/* to wait anyway. */
newGrab = TRUE;
}
}
else
{

/* There is an old job pending and the grab has not finished yet. */
/* Basically, you can just skip doing anything in this branch and */
/* wait until the grab has finished. However, the image still */
/* might be too old ... */
/* This is sort of a timing problem, because you can measure the */
/* time since the grab has started HERE and cancel the grab if the */
/* image is already too old NOW, but its hard to tell when the */
/* grab will finish. Maybe its not too old NOW, but it will be too */
/* old THEN. In this case, there is no use waiting. We could cancel*/

/* the job right now! */
checkTimeAgain = TRUE;
}
} /* async. grab */
} /* pending job ... %/
else
{
/* There is no asynchronous job pending for this instance ... */
/* Thus, you have to grab a new image ... */
/* You can do this synchronously or asynchronously -- you have to wait */
/* anyway. */
newGrab = TRUE;
}
if (newGrab)
{
[Fokskkokokok sk ok sk sk sk ok ok sk ok sk ok sk ksl o skok sk ok sk kol sk ko ok sk ok sk ok ksl ok sk ok ok sk sk ok ok /
/*%% TODO: grab a new image */

/***/

done = TRUE; /* or FALSE, if you use an API call for grabbing that */

/* does not wait for the end of the grab */
}
if (!done)
{
[xRk sk ok ok KK oo KKK o ok KK ook K K ok KoK o K KK o o KoK sk o o ok ok ok
[*%x TODO: wait until the (asynchronous) grab has finished */

/***/

}

if (checkTimeAgain)
{
/* old grab finished: Check, whether this image is too old x/
#ifdef WIN32
_ftime (&now);
time_diff = now.millitm - currInst->grabStarted.millitm +
1000*(now.time - currInst->grabStarted.time);
#else
gettimeofday (&now,&tzp) ;
time_diff =
(INT4_8) (((double)now.tv_sec*1000.0 + (double)now.tv_usec/1000.0) -
((double)currInst->grabStarted.tv_sec*1000.0 +
(double)currInst->grabStarted.tv_usec/1000.0) + 0.5);

#endif
if (time_diff > currInst->timeout)
{
/* Bad luck! The image is there, but too old ... */
[k ks ok ok ok ok sk ok ok ok ok sk ok ok ok sk ok ok ok ok sk ok o ok sk ok ok sk ok ok ok o ok sk ok ok sk ok ok ko ok ok ok ok sk ok ok sk ok Kok ok /
VALY TODD: grab a new image */

/***/

}

HALCON 6.0

92 APPENDIX C. INTERFACE TEMPLATE CIOFGTEMPLATE.C

/* You’ve got your image by now */
[HFA A F A A KA AR KA AR KA AR KA A KA K KA KA KA F A A KA A KA KA K KA K KA A K H A K KA KA K KA KK [
VELE TODO: Switch the buffer (if you use more than one buffer) */

% sk sk ok ke k sk ok sk o ok ok Kok sk o kK Kok ok o ok kK K Kok ok o o kK K Kok ok ok o ok kK Kok ok sk o o kK ok Kok sk sk o ok Kok ok sk o ok ok Kk ok sk ok /
*readBuffer = currlInst->currBuffer;

/* Select the next buffer for grabbing */
currInst->currBuffer++;
if (currInst->currBuffer >= MAX_BUFFERS)

currlnst->currBuffer = 0;

if (fginst->async_grab)
[ks sk ok ok ks ok ok ks ok ok sk sk ok ok ks sk ok ks ok ek sk ok ks sk ok ok ks sk ok ks sk ok koo /
[*%% TODO: Start the next asynchronous grab */
[ks sk ok ok ks ok ok ok ks ok ok sk sk ok ok ok s sk ok ks ok ok ek ok ok ks sk ok ok ks sk ok ks sk ok ko skok /

#ifdef WIN32

_ftime (&currInst->grabStarted) ; /* the time the grab was started */
#else

gettimeofday (&currInst->grabStarted,&currInst->tzp);
#endif

currInst->busy = TRUE;
}

return(H_MSG_0K) ;

} /* GrabImg */

/*

*

* Herror FGGrab (...)

*

*

*

* Grab an image via grab_image(), that is, synchronously.
* Note: In most cases you can use this routine also for asynchronous
* grabbing, see FGGrabAsync().

*

*

*
~

static Herror FGGrab (Hproc_handle proc_id, FGInstance *fginst,
Himage *image, INT *num_image)

{
TFGInstance xcurrInst = (TFGInstance *)fginst->gen_pointer;
INT readBuffer;
INT i;
Herror err;

HCkP(GrabImg (proc_id, fginst, &readBuffer));
[k skkokokokok ok sk sk sk ok ok skt ok sk ok ko skoksk koo ok sk ok ko skoksk skl ok ok ok ok skoksk ko ok ok ok ok /
[*%% TODO: Create a HALCON image from the grabbed data */

/***/

/* Note that this might be slightly more difficult as indicated below, */

/* if you would like to do subsampling or cropping of image parts in */
/* software. For the example we assume that this is done by the */
/* frame grabber hardware. */

if (currInst->volatileMode)
% sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ko ok ok ok ok ok /

/* Insert the buffer into a HALCON object (fast but with side effects, */
/* see above. */

Frame Grabber Integration/ 2000-11-16

/***/

/* In general, the volatile mode works only with non interleaved image
/* data. To profit by the volatile mode the buffer data has to be

/* structured in a compatible way to the HALCON image format. If you
/* allow the volatile mode on multi channel images (e.g. RGB) get sure
/* that your frame grabber delivers the data for each channel in

/* separate (and in this example consecutive) memory planes. The order
/* of the channels is R-G-B with ascending memory adress in this

/* example.

/* Note on this that the decision what type of HALCON image to create
/* is rather crude in this example: It assumes that the frame grabber
/* delivers either 8 bit unsigned, 16 bit signed, or 32 bit signed

/* data; otherwise you would have to convert the buffers. Thus, the
/* volatile mode would be obsolete

INT4_8 size;
INT num_channels;

if (fginst->num_channels == 4)
/* If you’ve allowed 32 bits per pixel while setting the volatile
/* mode you have to decide how to handle the redundant data. In this
/* example we assume an RGBX ordering of the corresponding memory
/* planes. Thus we just take the first three channels.
num_channels = 3;

else
num_channels = fginst->num_channels;

size = fginst->image_width*fginst->image_height;

if (fginst->bits_per_channel <= 8)

{
for (i=0; i<num_channels; i++)
{
HCkP (HNewImagePtr (proc_id,
&image[il,
BYTE_IMAGE,
fginst->image_width, fginst->image_height,
(void*)currInst->InstFrameBuffer[readBuffer] +
ixsize*sizeof (BYTE_IMAGE),
FALSE));
}
}
else if (fginst->bits_per_channel <= 16)
{
for (i=0; i<fginst->num_channels; i++)
{
HCkP (HNewImagePtr (proc_id,
&image[il,
INT2_IMAGE,
fginst->image_width, fginst->image_height,
(void*)currInst->InstFrameBuffer[readBuffer] +
ix*size*sizeof (INT2_IMAGE),
FALSE));
}
}
else
{
for (i=0; i<fginst->num_channels; i++)
{
HCkP (HNewImagePtr (proc_id,
&image[0],
INT4_IMAGE,
fginst->image_width, fginst->image_height,
(void*)currInst->InstFrameBuffer[readBuffer] +
ix*size*sizeof (INT4_IMAGE),
FALSE));
}
}
*num_image = num_channels;
}
else

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/

93

HALCON 6.0

94 APPENDIX C. INTERFACE TEMPLATE CIOFGTEMPLATE.C

[HFF A FA A F A A F A A KA KA KA KK A KK A A K KA KK A KK A KK A KK KA KKK F A A A KA KK A KKK A KKK [
/* Copy the buffer into a NEW HALCON object */

[Kok sk ok ok sk ok ok ok ok ok ok oKk o KoK ook o KR oK K o o K K oK o ok o KR o K o ok K ok ok o ok ok K ok K ok
INT save;

/* Do not initialize the new images with 0: */

HReadSysComInfo(proc_id, HGInitNewImage, &save);
HWriteSysComInfo(proc_id, HGInitNewImage, FALSE);

/* Note that we support in our example following different image types:*/

/* 8 bit unsigned, 16 bit signed, or 32 bit signed for one channel */
/* grayscale and 5/8bit unsigned for three channel color format. */
/* Obviously, the subsequent memcpy for gray value images can only */
/* work, if the frame grabber delivers the data in the same format; */
/* otherwise you must do some shifting ... */
/* For color images we assume that the channel image data is delivered */
/* in an interleaved format. The use of memcpy is obsolet therefore. */

/***/

/* (I) Create a NEW HALCON object */
[xRk sk ok ok KRR oo KKK o ok KKK ook K K o R KoK o K KK K o o KoK ok o o kK K ok

if (fginst->num_channels == 4)
/* 32 bit par pixel: discard the redundant data and copy the image */
/* data to a three channel HALCON image. */
*num_image = 3;

else

*num_image = fginst->num_channels;

if (fginst->bits_per_channel <= 8)
{
for (i=0; i<*num_image; i++)
{
err = HNewImage(proc_id,&image[i],BYTE_IMAGE,
fginst->image_width,fginst->image_height);
if (err != H_MSG_OK)
{
HWriteSysComInfo(proc_id, HGInitNewImage, save);
return err;
}
}
}
else if (fginst->bits_per_channel <= 16)
{
for (i=0; i<*num_image; i++)
{
err = HNewImage(proc_id,&image[0],INT2_IMAGE,
fginst->image_width, fginst->image_height);
if (err != H_MSG_OK)
{
HWriteSysComInfo(proc_id, HGInitNewImage, save);
return err;
}
}
}
else if (fginst->bits_per_channel <= 32)
{
for (i=0; i<*num_image; i++)
{
err = HNewImage(proc_id,&image[0],INT4_IMAGE,
fginst->image_width,fginst->image_height);
if (err != H_MSG_OK)
{
HWriteSysComInfo(proc_id, HGInitNewImage, save);
return err;
}
}
}

HWriteSysComInfo(proc_id, HGInitNewImage, save);
[ek sk sk sk sk sk sk ok ko ok ok ok ok sk o ok ok sk ok ko ko sk ok ok sk ok ko ko sk ok ok sk sk ko ok ok ok /

/* (II) Copy data */

Frame Grabber Integration/ 2000-11-16

/***/

if (*num_image == 1)

{

}

e

{

}
}/*

/*
/%
/*
/%
fgi

ret

if (fginst->bits_per_channel <= 8)
memcpy ((void *)image[0].pixel.b,
currInst->InstFrameBuffer [readBuffer],
fginst->image_width * fginst->image_height);
else if (fginst->bits_per_channel <= 16)
{
memcpy ((void *)image[0].pixel.s.p,
currInst->InstFrameBuffer [readBuffer],
fginst->image_width * fginst->image_height * 2);
image[0] .pixel.s.num_bits = 16;
}
else if (fginst->bits_per_channel <= 32)
memcpy ((void *)image[0].pixel.l,
currInst->InstFrameBuffer [readBuffer],
fginst->image_width * fginst->image_height * 4);

lse

/* Note again: Many color frame grabbers deliver the data in an */
/* interleaved format incompatible to HALCON. Thus, you typically */
/* will have to use something like this: */
if(fginst->num_channels == 4)

{/* 32 bit RGB format */

HCkP (ExtractChannelsFromRGB32 (fginst,
currInst->InstFrameBuffer[readBuffer],
image[0] .pixel.b,
image[1] .pixel.b,
image[2] .pixel.b));

}
else if (fginst->bits_per_channel == b)
{/* 5-6-5 RGB format */

HCkP (ExtractChannelsFromRGB16 (fginst,

(INT2 *)currInst->InstFrameBuffer[readBuffer],

image[0] .pixel.b,
image[1] .pixel.b,
image[2] .pixel.b));

}

else /*fginst->bits_per_channel == 8%/

{/* 8-8-8 RGB format */

HCkP (ExtractChannelsFromRGB24 (fginst,
currInst->InstFrameBuffer [readBuffer],
image[0] .pixel.b,
image[1] .pixel.b,
image[2] .pixel.b));

}

copy data */
Note that we will use FGGrab() for asynchronous grabbing also. */
Thus, we set the async_grab here explicitly for synchronous x/
grabbing and reset it to asynchronous grabbing in FGGrabAsync() */
if necessary. x/
nst->async_grab=FALSE;

urn(H_MSG_0K) ;

} /* FGGrab */

/%

* K X X X X X

Herror FGGrabAsync (...)

Grab an image via grab_image_async(), that is, asynchronously.

95

HALCON 6.0

96 APPENDIX C. INTERFACE TEMPLATE CIOFGTEMPLATE.C

*

*/

static Herror FGGrabAsync (Hproc_handle proc_id, FGInstance *fginst,
double maxDelay, Himage *image, INT *num_image)
{

TFGInstance *currInst = (TFGInstance *)fginst->gen_pointer;

/* Set timeout and asynchronous mode */
currInst->timeout = (INT4_8)(maxDelay+0.5);
fginst->async_grab = TRUE;

/* Get current image and start new grab */
HCkP (FGGrab(proc_id, fginst, image, num_image));

return(H_MSG_0K) ;
} /* FGGrabAsync */

~
*

Herror FGGrabRegion (...)

grab region(s) via grab_region(), that is synchronously

* K X X X X ¥ *

*
~

static Herror FGGrabRegion (Hproc_handle proc_id, FGInstance *fginst,
Hrlregion **region, INT *num_region,
INT *rlalloc_type)

TFGInstance *currInst = (TFGInstance *)fginst->gen_pointer;
INT readBuffer;

/***/

[*%x TODO: Grab an image and segment it into region(s) *kk [
[*xx region is an array of MAX_OBJ_PER_PAR pointers to *xxk [
[*%x Hrlregion; the Hrlregions themself have not been *kk [
[*%x allocated so far! *%x [

[kst sk kok ok ks ok ok ks ok ok ks ok ok sk sk ok ok sk sk ok ok sk sk sk ok ks sk ok sk sk sk ok ok sk sk sk ok ks ok /
HCkP(GrabImg (proc_id, fginst, &readBuffer));

/* Now you’ve got an image (in buffer "readBuffer") -- segment it! */
/* Note that there are three different ways to allocate region data (see */
/* the C-Interface Programmer’s Manual for details). Since the data you */
/* allocate in this routine is copied to the HALCON data base and then */

/* deallocated again, the caller of this routine must know, which one */
/* you used. This is specified by rlalloc_type: */
/* HAllocRLTmp / HAllocRLNumTmp (*rlalloc_type = FG_RLALLOC_TMP) */
/* HAllocRL / HAllocRLNum (*rlalloc_type = FG_RLALLOC_PERMANENT) */

/* HAllocRLLocal / HAllocRLNumLocal (*rlalloc_type = FG_RLALLOC_LOCAL) */

/* Attention: If you the "Tmp" version, you MUST allocate the image */
/* regions in ascending order, because they’re stored on the */
/* stack and the HALCON interface will free them in */
/* descending order! */

/* We recommend to use the "Local" version: It’s more flexible than the */

/* "Tmp" version, but still includes an automatic garbage collection. */
/* Example: Allocate two regions (e.g. one for all image parts of a */
/* specific color and one for the rest of the image) */

HCkP (HAllocRLNumLocal(proc_id, ®ion[0],
fginst->image_width*fginst->image_height/2));
HCkP (HAllocRLNumLocal(proc_id, ®ion[1],
fginst->image_width*fginst->image_height/2));
*rlalloc_type = FG_RLALLOC_LOCAL;

Frame Grabber Integration/ 2000-11-16

}

~

*

static Herror FGGrabRegionAsync (Hproc_handle proc_id, FGInstance *fginst,

}

~N

*

/* Well the segmentation itself is up to you :-)

/*

*num_region = 2;

/* Note that we will use FGGrabRegion() for asynchronous grabbing also.

/* Thus, we set the async_grab here explicetly for synchronous

/* grabbing and reset it to asynchronous grabbing in FGGrabRegionAsync()

/* if necessary.
fginst->async_grab = FALSE;
return(H_MSG_0K) ;

/* FGGrabRegion */

Herror FGGrabRegionAsync (...)

* K X X X ¥ ¥ %

grab region(s) via grab_region_async(), that is asynchronously

*
~

double maxDelay, Hrlregion **region,
INT *num_region, INT *rlalloc_type)

TFGInstance *currInst = (TFGInstance *)fginst->gen_pointer;

/* Set timeout and asynchronous mode */
currInst->timeout = (INT4_8)(maxDelay+0.5);

fginst->async_grab = TRUE;

/* Get current image, segment it, and start new grab */

HCkP (FGGrabRegion(proc_id,
return(H_MSG_0K) ;

/* FGGrabRegionAsync */

fginst, region, num_region, rlalloc_type));

Herror FGInfo (...)

Information + value list (if applicable) concerning a specific
query for this frame grabber as requested by info_framegrabber().

ATTENTION: No memory has been allocated for values!

* X X X X K X K ¥ ¥ ¥

*
~

static Herror FGInfo (Hproc_handle proc_id, INT queryType,
char **info, Hcpar **values, INT *numValues)

{

/* queryType:

/* FG_QUERY_GENERAL:

/* FG_QUERY_PORT:

/* FG_QUERY_CAMERA_TYPE:
/* FG_QUERY_DEFAULTS:

/* FG_QUERY_PARAMETERS:
/*

/* FG_QUERY_INFO_BOARDS:

General Info (full name , vendor etc.)
Descript. of the ports (signal, connectors)
Descript. of the camera_type paramater
Default values (see open_framegrabber())
Names of non-standard parameters available
for set_framegrabber_param()

Info about installed boards

*/

*/

*/

*/
*/

*/

*/
*/
*/
*/

*/

97

HALCON 6.0

98 APPENDIX C. INTERFACE TEMPLATE CIOFGTEMPLATE.C

Hcpar *val;

INT i;
switch(queryType)
{

case FG_QUERY_GENERAL:
[Fskkok sk sk kok sk skok sk kok sk sk ke skok sk skok sk ok sk sk ok sk ok ok sk kok sk ok s skok ok sk ok sk ko sk ok ok s skok s skok ok /
/*%x TODO: Return general information *kk [
[Fskkok sk ok sk kok sk skok sk skok sk sk ke skok sk skok sk ok sk sk ok sk ok ok sk kok sk ok sk ok sk ok sk ok ok sk ok ok s skok ok ok /

/* This query typically doesn’t return any "values", but only a */

/* general description of the board (-family or -model) etc. x/

*info = "HALCON frame grabber interface template, vendor: MVTec Software GmbH.";
*values = NULL;

*numValues = 0;

break;

case FG_QUERY_PORT:
[KKk ok ok koK sk ok ok ok o koK s K ok K ok oK ok o koK o K oK ok K ok ok ok ook oK ok K K ok K ok ok ok ook oK ok ok K ok K ok ok o
[*%% TODO: Return port description LELYS
[sk sdekok sk sk sk ok sk ok ok sk sk sk ks ok sk ok ek ok sk ok sk ok ks ok ok sk sk ek sk ok sk ko sk ok ok sk sk sk sk ok sk ko sk ok ok ok ok o

/* Explain what ports are available and how you select them (it is */
/* the assignment of port numbers to physical connectors like a x/
/* S-VHS plugin x/

/* example: */

*info = "Port 0 (S-Video), port 1,2 (Composite); 8 and 24 bits available for each port.";
HCkP(HAlloc (proc_id,(size_t) (3*sizeof(Hcpar)),&val));

val[0] .par.1l = 0;

val[l] .par.1l = 1;

val[2].par.1l 2;

val[0].type = val[ll.type = val[2].type = LONG_PAR;

*values = val;

*numValues 3;

/* another example: Only one port (that is: No need to specify a port) */

*info = "Unused.";
*values = NULL;
*numValues = 0;
break;

case FG_QUERY_CAMERA_TYPE:
[ko sk ok ke sk sk ok sk o ok ok sk ok ok o ok ok sk ok o ok o ok ok K ok ok ok sk o ok kK ok sk ok ok o o ok ok ok sk ok o sk o ok ok ok ok ok ok o o kK ok sk ok ok ok ok f

[*%% TODO: Return a description of the "camera_type" parameter ***/
[ks sk ok sk ko ok ok ok ok ok ok ok o ko ko o sk ok ok ok ok sk ok o ko ko o sk o ok ok ok ok ok o ko ko o sk o ok ok ok ok ok o Kok ok

/* Explain the usage of the "camera_type" parameter in x/
/* open_framegrabber() and its possible values x/

/* example: */

*info = "Video signal of the camera.";

HCkP(HAlloc (proc_id,(size_t) (3*sizeof(Hcpar)),&val));
val[0] .par.s = "ntsc";

val[l].par.s = "pal";

val[2].par.s = "auto";

val[0].type = vall[ll.type = val[2].type = STRING_PAR;
*values = val;

*numValues = 3;

break;

case FG_QUERY_DEFAULTS:
/* Just leave this one here like it is ... */
*info = "Default values (as used for open_framegraber).";
HCkP(HFgGetDefaults(proc_id,fgClass,values,numValues));
break;

case FG_QUERY_PARAMETERS:
[ko sk ok ok sk sk ok ok o ok ok sk ok ok o ok ok sk ok o ok o ok ok K sk ok ok sk o ok ok ok sk ok ok o o ok ok ok sk ok o sk o ok ok ok ok ok ok o o ok ok sk ok ok ok o ok f

[*%% TODO: Return the names of non-standard parameters LELYS
[ks sk ok sk ko ok ok ok ok ok ok ok o ko ko o sk ok ok ok ok sk ok o ko ko o sk o ok ok ok ok ok o ko ko o sk o ok ok ok ok ok o Kok ok

Frame Grabber Integration/ 2000-11-16

99

/* What additional parameters are supported for */
/* set_framegrabber_param(), see FGSetParam() */

/* example: */
*info = "Additional parameters for this frame grabber.";
HCkP(HAlloc (proc_id,(size_t) (FG_PARAM_NUM#*sizeof (Hcpar)),&val));
val[0] .par.s = FG_PARAM_VOLATILE;
val[1l].par.s = FG_PARAM_REVISION;
for (i=0; i < FG_PARAM_NUM; i++)
val[i] .type = STRING_PAR;

*values = val;
*numValues = FG_PARAM_NUM;
break;

case FG_QUERY_INFO_BOARDS:
[ko sk ok ok ok sk ok ok o ok ok ok ok ok o ok ok sk ok o ok o ok ok K ok ok ok ok o ok ok ok sk ok ok o o ok ok ok sk ok o sk o ok ok ok sk ok ok ok o o kK ok Kok ok ok o ok f

VALY TODO: Return the real device numbers of the installed *kk [
[x%% boards or something like that *kok [
[k ke k s ok ko o ok sk ok ok ok ok sk ok ok ok ok sk o ok ok ok ok sk sk ok ok ok o ok sk o ok ok o ok ok ok o ok sk o ok Kok o ok ok ok ok ok ok o ok ok ok o ok ok /
*info = "Info about installed xy boards.";
*values = NULL;
*numValues = 0;
break;
default:
*info = "Unsupported query!";
*values = NULL;
*numValues = 0;

} /* switch */
return(H_MSG_0K) ;

} /* FGInfo */

~
*

Herror FGSetLut (...)

Set the LUT of the frame grabber via set_framegrabber_lut()

* X K X K X K %

*
~

static Herror FGSetLut (Hproc_handle proc_id, FGInstance *fginst,
INT4_8 *red, INT4_8 *green, INT4_8 *blue,
INT num)

TFGInstance *currInst = (TFGInstance *)fginst->gen_pointer;
[sk sk ks ok sk ks ok s ok ok sk ok sk ok sk sk o ok sk ok sk ko ok ks sk o ko sk ks ko ok s ok sk o ok sk ok sk ko ok ek ok sk ok ko ok
VELES TODO: Set the lookup table of your frame grabber *k% /[

/***/

/* The input to this routine is a RGB lookup table with "num" entries of */

/* RGB triples. There is not much more than can be said in general ... */
/* Sorry, you will have to find out by yourself what your frame grabber */
/* supports concerning such a feature ... */

/* Note that setting the frame grabber LUT will have side effects on the */

/* other instances using the same board. Thus, in case that */
/* fginst->board->refInst > 1 */
/* you will have to store the LUT in the TFGInstance struct and set it */
/* again and again before grabbing ... */

return(H_MSG_0K) ;
} /* FGSetLut */

HALCON 6.0

100 APPENDIX C. INTERFACE TEMPLATE CIOFGTEMPLATE.C

~
*

Herror FGGetLut (...)

Get the LUT of the frame grabber via get_framegrabber_lut()

* X X X K ¥ ¥ %

*
~

static Herror FGGetLut (Hproc_handle proc_id, FGInstance *fginst,
INT4_8 *red, INT4_8 *green, INT4_8 *blue,
INT *num)

TFGInstance *currInst = (TFGInstance *)fginst->gen_pointer;
[sk sk ke ok ke sk ks ok ks ok ok sk ok sk ok sk ks ko ok sk ok sk ko ok ks sk o ko sk ks ke ok s ok sk o ko sk ok sk ke ok ek ok sk ok ok ok sk ok
VELE TODO: Get the lookup table of your frame grabber *kk /[

/***/

/* The output of this routine is a RGB lookup table with "num" entries */

/* of RGB triples. There is not much more than can be said in general... */
/* Sorry, you will have to find out by yourself what your frame grabber */
/* supports concerning such a feature ... */
num = 0;

return(H_MSG_0K) ;
} /* FGGetLut */

~
*

Herror FGSetParam (...)

Set frame grabber specific parameters via set_framegrabber_param()

* X X X X ¥ ¥ %

*
~

static Herror FGSetParam (Hproc_handle proc_id, FGInstance *fginst,
char *param, Hcpar *value, INT num)
{

TFGInstance *currInst = (TFGInstance *)fginst->gen_pointer;

[/ sk ok sk sk sk ok sk ok ok sk ok ok sk ok ok ok ok o ok ok o ok ok o ok sk o ok ok o ko o ok ok o sk ok sk o o ko o ok ok o ok sk sk ok sk ok o ok ok ok ok ok sk ok ok ok ok ok /
[* %% TODO: Parse the parameter "param" and set the corresponding *xk [
[*%* frame grabber parameter for this instance *xk [/
[skok sk sk ok ok sk ok ok ok o K oK o K oK oK oK o KK ok oK oK o K K ok o K oK o K oK ok oK K o K oK o oK ok o K oK ok o K ok o KoK ok o K ok ok o Kok K ok

/* The standard parameters specified in open_framegrabber() and evaluated*/
/* in FGOpen() cannot cover every aspect of the hardware features of all */
/* available frame grabbers. Therefore, HALCON provides an additional */
/* operator to specify settings for frame grabber specific features OR tox/
/* change the values for standard parameters without closing an opening */

/* the frame grabber again. Additional parameters are denoted by an */
/* arbitrary string of YOUR choice. However, please make the names of */
/* these parameters available via the query ’FG_QUERY_PARAMETERS’ in */
/* FGInfo() so that the user can access this information online. */

/* The STANDARD PARAMETERS can be handled using the following defines */

/* (note that you do NOT have to support all these parameters here in */
/* this routine. They are set via FGOpen() during the initialization of x/
/* a new instance. However, you might want to change the original */
/* settings dynamically without closing/opening the frame grabber again):*/
/% */
/* define curr. value of the define type */
[k m */
/* FG_PARAM_HORIZONTAL_RESOLUTION "horizontal_resolution" LONG_PAR */
/* FG_PARAM_VERTICAL_RESOLUTION "vertical _resolution" LONG_PAR */
/* FG_PARAM_IMAGE_WIDTH "image_width" LONG_PAR */

Frame Grabber Integration/ 2000-11-16

/%
/*
/*
/%
/*

FG_PARAM_IMAGE_HEIGHT "image_height" LONG_PAR
FG_PARAM_START_ROW "start_row" LONG_PAR
FG_PARAM_START_COL "start_column" LONG_PAR
FG_PARAM_FIELD "field" STRING_PAR
FG_PARAM_BITS_PER_CHANNEL "bits_per_channel" LONG_PAR
FG_PARAM_COLOR_SPACE "color_space" STRING_PAR
FG_PARAM_GAIN "gain" FLOAT_PAR
FG_PARAM_CAMERA_TYPE "camera_type" STRING_PAR
FG_PARAM_DEVICE "device" STRING_PAR
FG_PARAM_PORT "port" LONG_PAR
FG_PARAM_LINE_IN "line_in" LONG_PAR

Note that "field" (fginst->field) externally is defined as string,
but internally as "int" using the following conversion:

FG_FIRST_FIELD_TXT "first" <-> FG_FIRST_FIELD
FG_SECOND_FIELD_TXT "second" <-> FG_SECOND_FIELD
FG_NEXT_FIELD_TXT "next" <-> FG_NEXT_FIELD
FG_FULL_FRAME_TXT "interlaced" <-> FG_FULL_FRAME

FG_PROGRESSIVE_FRAME_TXT
Note further that "external_trigger" externally is defined as string
("true", "false") but internally as HBOOL.

The input to FGSetParam() is ONE parameter-value pair. You should
check the name of the parameter, the type of the corresping value,
and - of course - the consistency of the specified value. In case of
unreasonable inputs return the error codes

H_ERR_FGPARAM -- parameter not supported

H_ERR_FGPART -- invalid parameter type

H_ERR_FGPARV -- invalid parameter value

Note that some of the parameters might have side-effects on other
instances. Thus, you might have to include these parameters in the

BoardInfo and TFGInstance structs and set them prior to each grab ...

Example: In our example we will enable/disable the "volatile" mode
for an instance, see also FGOpen(). This does not change the current
configuration of the board itself. Thus, we can perform all
necessary steps right here in this routine (without side-effects on
other instances).

(!strcmp(param, FG_PARAM_VOLATILE))

/***************************/
/% Volatile *kok [
/***************************/

"progressive" <-> FG_PROGRESSIVE_FRAME

*/
*/
*/
*/
*/

/* In the ’volatile’ mode we attach the frame grabber’s buffer memory tox/

/* the HALCON image instead of allocating new memory (thus avoiding a

/* memcpy). Note that this grabbing method has a severe side-effect:
/* 0Older HALCON images are overwritten!

*/
*/
*/

/* By the way, many color frame grabbers deliver interleaved data, that*/

/* is, e.g., RGB triples instead of three separate channels. In this

/* case you have to split the data explicitly. Thus, a "volatile" mode

/* is not attractive anymore. If YOU do the memory management of the

/* image data inside a HALCON image you MUST let HALCON know (otherwise

/* there will be system crashes during deallocating images)
INT i;

BoardInfo *board = currlnst->board;

INT4_8 sizeBuffer;

if (value->type != STRING_PAR)
return(H_ERR_FGPART) ;
if (!strcmp(value->par.s, "enable"))
{
[FF AR F AR KKK KKK KA KKK KKK K [
/* Enable the volatile mode */
[FFAAEFAA KA A KKK KK AAK KK KK AAK [

if (fginst->bits_per_channel != 8 ||
fginst->bits_per_channel != 16 ||
fginst->bits_per_channel != 32)

{

*/
*/
*/
*/
*/

101

HALCON 6.0

102 APPENDIX C. INTERFACE TEMPLATE CIOFGTEMPLATE.C

/* There’s no use for the volatile mode grabbing non byte x/
/* conform channel depth because we have to split the grabbed */
/* pixel data into separate bytes ... */
return(H_ERR_FGPARV) ;
}
else if (fginst->num_channels !'= 1)
{
/* We assume for our example that the frame grabber delivers x/
/* interleaved color data, which is inoperative for ’volatile’ */
/* mode. This is because we have to split the grabbed raw data */
/* into separate RGB channels ... */
return(H_ERR_FGPARYV) ;
}
if (!currInst->volatileMode)
{
/* Otherwise we don’t have to do anything at all since the */
/* volatile mode already IS enabled. */
if (!currInst->allocBuffer)
{
/* This specific instance uses buffers assigned to the board.*/
/* These buffers might be shared with other instances. To x/
/* prevent side-effects we have to provide buffers for the x/
/* current instance exclusively. x/
if (board->refBuffer == 1)
{
/* No other instance uses the board buffer. Just transfer */
/* them to the instance: x/
for (i=0; i < MAX_BUFFERS; i++)
{
currInst->InstFrameBuffer[i] = board->BoardFrameBuffer[i];
board->BoardFrameBuffer[i] = NULL;
}
board->sizeBuffer = 0;
}
else
{
/* There are other instances using the board buffers. */

/* Thus, we have to allocate new buffers (typically you */
/* will have to use frame grabber specific routines for */
/* this task, see FGOpen() also): */
sizeBuffer = fginst->image_width*fginst->image_height *
((fginst->bits_per_channel+7) / 8) * fginst->num_channels;
for (i=0; i < MAX_BUFFERS; i++)
{
HCkP(HAlloc (proc_id,(size_t)sizeBuffer,
&currInst->InstFrameBuffer[i]));
}
}
board->refBuffer--;
currlnst->allocBuffer = TRUE;
} /* !currInst->allocBuffer */

currInst->volatileMode = TRUE;
fginst->halcon_malloc = FALSE;
fginst->clear_proc = NULL; /* Do not deallocate the */

/* grabbed image! */

} /* 'currInst->volatileMode */
} /* "enable" */

else if (!strcmp(value->par.s, "disable"))

{

[Rk ko Kok Kok ok ok ok ok ok Kok Kok ok /
/* Disable the volatile mode */
[Rk ko ko Kok Kok ok ok ok ok ok Kok Kok Kok /

if (currInst->volatileMode)

{
/* Otherwise we don’t have to do anything at all since the */
/* volatile mode already IS disabled. */

sizeBuffer = fginst->image_width*fginst->image_height *
((fginst->bits_per_channel+7) / 8) * fginst->num_channels;

Frame Grabber Integration/ 2000-11-16

}

~N

*

S

{

if (board->reflInst > 1)

{
/* There are other instances using the same board. Thus, */
/* if the size of the board buffers allows to use these */

/* for the current instance as well we can deallocate */
/* the instance-specific buffers to decrease the memory */
/* load: x/
if (board->sizeBuffer >= sizeBuffer)
{

for (i=0; i < MAX_BUFFERS; i++)

{

HCkP(HFree(proc_id,currInst->InstFrameBuffer([i]));
currInst->InstFrameBuffer[i] = board->BoardFrameBuffer[i];

}
currInst->allocBuffer = FALSE;
board->refBuffer++;

}

}

if (board->sizeBuffer == 0)

{
/* This is a special case: There are no board buffers so */
/* far. Transfer the instance buffers to the board in */
/* order to make them "shared". */
for (i=0; i < MAX_BUFFERS; i++)
{

board->BoardFrameBuffer[i] = currInst->InstFrameBuffer[i];

}

currInst->allocBuffer = FALSE;

board->refBuffer = 1;

board->sizeBuffer = sizeBuffer;
}
currInst->volatileMode
fginst->halcon_malloc

FALSE;
TRUE;

} /* currInst->volatileMode */
} /* "disable" */
else
return(H_ERR_FGPARYV) ;
} /* param: FG_PARAM_VOLATILE */

else
/* parameter not supported */
return(H_ERR_FGPARAM) ;

return(H_MSG_0K) ;
/* FGSetParam */

Herror FGGetParam (...)

Get frame grabber specific parameters via get_framegrabber_param()

* K K K K X X ¥

*
~

tatic Herror FGGetParam (Hproc_handle proc_id, FGInstance *fginst,
char *param, Hcpar *value, INT *num)

TFGInstance *currInst = (TFGInstance *)fginst->gen_pointer;

*num = 1;

/3 kskokskokoskokskoksk ok sk skokskok sk ok skok sk ki sk kskoksk ko sk skok sk sk s ks ksk sk sk sk ok sk sk ks ks ko sk sk ok sk sk ksk ok /
VELE TODO: Parse the parameter "param" and return the corresponding **x/
[*%x frame grabber parameter for this instance *%x [
/3 kskokskokskokskoksk ok sk skokskok sk ok skok sk ksk sk skskoksk ko sk sk ok sk sk ks ksk sk sk sk ok sk sk ks ksk ko sk sk ok sk sk ksk ok /

/* Please see FGSetParam() for a detailed discussion. */
/* Note: The standard parameters (encoded in fginst) are already handled */
/* by the HALCON system. You do NOT have to provide code for these */

103

HALCON 6.0

104 APPENDIX C. INTERFACE TEMPLATE CIOFGTEMPLATE.C

/* parameters here! */
/* Example: Return the "volatile status", see FGSetParam(). */

if (!strcmp(param, FG_PARAM_VOLATILE))
{
[ks sk sk sk sk ok ok ok sk ok sk ok ok ok ok ok ok Kok ok
/* VOLATILE x/
[ks ks ok sk sk ok ok ok sk ok sk ok ok ok ok ok ok Kok ok /
value->type = STRING_PAR;
value->par.s = (currlnst->volatileMode ? "enable" : "disable");
}
else if (!strcmp(param, FG_PARAM_REVISION))
{
/3 kskokskokskokoskokskokok sk skokskoksk ok sk ok ok kok ok /
/* REVISION */
/3 kskokskokskokskoksk ook sk skokskokskok sk ok ok kok ok /
value->type STRING_PAR;
value->par.s = INTERFACE_REVISION; /* adapt to Revision in header! x/
}
else
/* parameter not supported */
return(H_ERR_FGPARAM) ;

return(H_MSG_0K) ;

} /* FGGetParam */

~N

* K X X X X X X ¥

*

~

FGInstancex* FGOpenRequest(void)

provide a new instance prior to FGGrab()

static FGInstance **FGOpenRequest(Hproc_handle proc_id, FGInstance *fginst)

{

INT i;

if (numInstance >= FG_MAX_INST)

{
/* too many instances ... */
return(NULL) ;

}

else

{
/* Note: If you do not want to bother about multiple instances */
/* just return ALWAYS the same instance: */
/* */
/* fginst->gen_pointer = (void*)&FGInst[0]; */
/* return (&(fgClass->instance[0])); */
/% */
/* The instance will be closed using FGClose() and re-opened */
/* using FGopen() */

/* retrieve next unused instance */
for (i=0; i < FG_MAX_INST; i++)
{

if (!FGInst[i].board)

break;

}
if (i >= FG_MAX_INST)

return(NULL); /* this cannot happen, but you know Murphy, don’t you? */
fginst->gen_pointer = (void*)&FGInst[i];
return (&(fgClass->instance[i]));

}

} /* FGOpenRequest */

Frame Grabber Integration/ 2000-11-16

~

*

* K X X X ¥ ¥ ¥ ¥ %

Herror FGInit (...)

Initialize the frame grabber class. This routine is called by HALCON
the very first time a HALCON process wants to access a frame grabber
via open_framegrabber() or info_framegrabber()

*/

Herror FGInit(Hproc_handle proc_id, FGClass *fg)

{

INT i;

/* Initialize the instance data structure inside of this interface */
for (i=0; i < FG_MAX_INST; i++)
{
memset (&(FGInst[i]), 0, sizeof (TFGInstance));
FGInst[i].instance =i;
}

numInstance = 0;
fg->interface_version = FG_INTERFACE_VERSION;/* do not change this line! */
[k ko sk ok ok sk sk ok o ko o sk ok o ok ok o sk ok o ok sk ok ko o ok ok sk ok ok ok sk o ok ok o sk ok o ok ok ok ko o ok ok sk ok ok ok sk ok Kok /

[*%% TODO: Provide reasonable defaults etc. for open_framegrabber () */
[ks sk kok ok sk kok ok ks sk ok ok ks ok ok sk ok ok ok sk sk ok ok ks sk ok ks sk ok ks ok ok sk sk ok sk ok /

[* mmmmmm e management -—-—---—---—---—--———m—————————o */
/* For backward compatibility: */
fg->available = TRUE;

/* Do not change the next line or modify fg->instances_num anywhere else */
/* in the interface (otherwise HALCON will fail to unload the interface */

/* DLL properly!) */
fg->instances_num = 0;

/* Tell HALCON how many instances you are willing to support */
fg->instances_max = FG_MAX_INST;

[* ——m—mmmmmmm o interface-specific functions ------------—-—-———- */
fg->0OpenRequest = FGOpenRequest;

fg->0pen = FGOpen;

fg->Close = FGClose;

fg->Info = FGInfo;

fg->Grab = FGGrab;

fg->GrabStartAsync = FGGrabStartAsync;

fg->GrabAsync = FGGrabAsync;

fg->GrabRegion = FGGrabRegion;

fg->GrabRegionAsync = FGGrabRegionAsync;

fg->SetParam = FGSetParam;

fg->GetParam = FGGetParam;

fg->SetLut = FGSetLut;

fg->GetLut = FGGetLut;

[* —mmmmmmm e m e default values -—--—-—--—=————-——-————-—— */
/* The following defaults will be delivered to FGOpen(), if "default" */
/* or -1 is specified in open_framegrabber() */
fg->horizontal_resolution = 1;

fg->vertical_resolution =1;

fg->image_width = fg->image_height = 0;

fg->start_row = fg->start_col = 0;

fg->field = FG_FULL_FRAME;

fg->bits_per_channel = 8;

strcpy (fg->color_space,"gray");

fg->gain = 1.0f;

fg->external_trigger = FALSE;

strcpy (fg->camera_type, "auto");

strcpy(fg->device,"0");

fg->port =1;

fg->line_in =1;

[* —mmmmmmmmmmmm e store the class information ----------------——---- */
fgClass = fg;

105

HALCON 6.0

106 APPENDIX C. INTERFACE TEMPLATE CIOFGTEMPLATE.C

return(H_MSG_0K) ;
} /* FGInit */

/***

* end of CIOFGTemplate.c
sk ok ok ok ok ook ok ok o ok ok ok ok ok sk ok o K o ok sk sk o ok ok ok sk ok o K o ok sk ok sk o sk sk ok sk ok o ko ok sk ok sk ok sk sk ok sk ok ok ok Kok ok ok

Frame Grabber Integration/ 2000-11-16

Index

ExtractChannelsFromRGB(), 45
FGClose(), 7, 35-37
FGGetLut (), 9, 62
FGGetParam(), 9, 60
FGGrab(), 8, 41,42, 44,50
FGGrabAsync (), 8, 41, 50
FGGrabRegion(), 8, 41, 53-56
FGGrabRegionAsync(), 9, 41, 55, 56
FGGrabStartAsync(), 8, 51, 52
FGInfo(), 7, 38-40
FGInit (), 21-24
FGOpen(), 7, 27-34
FGOpenRequest (), 7, 25, 26
FGSetLut(), 9, 61
FGSetParam(), 9, 57-59
GrabImg(), 41, 46, 47, 49
HAlloc (), 29, 31, 35, 38
HAllocRL(), 55
HAllocRLLocal(), 55
HAllocRLNumLocal(), 54, 55
HA1locRLTmp (), 55
HFree(), 35
HNewImage (), 31, 44
HNewImagePtr (), 43
HReallocRLNumLocal(), 55
SecFGInit(), 7
SetInstParam(), 48
ftime(), 49
close_all_framegrabbers, 7
close_framegrabber, 7, 35
get_framegrabber_lut, 9, 62
get_framegrabber_param, 9, 60
gettimeofday(), 49
grab_image_async, 8, 50
grab_image_start, 8, 51
grab_image, 8, 41
grab_region_async, 9, 56
grab_region, 8, 53
info_framegrabber, 7, 21, 38

open_framegrabber, 7, 21, 25, 27,57, 58

set_framegrabber_lut, 9, 61

set_framegrabber_param, 9, 57

BoardInfo, 18, 28, 29, 58
DBFreeImageProc, 17
FGClass, 14-16, 22
FGInstance, 17, 26
HCkP, 31
Hcpar, 38, 58, 60
Himage, 43
Hrlregion, 53
LD_LIBRARY_PATH, 64
Path, 64
TFGInstance, 19, 23, 58

double buffering, 6

frame grabber
class, 6, 13
handle, 6
instance, 6, 13

grabbing

asynchronous, 5, 8, 9, 46, 50, 51, 56
synchronous, 5, 8, 41, 46, 53

volatile, 6, 18, 31, 42, 58
Parallel HALCON, 10, 63, 64
UNIX, 21, 64

Windows 2000, 21, 63
Windows NT, 21, 63

108 Index

Frame Grabber Integration/ 2000-11-16

	About This Manual
	Introduction
	HALCON's Generic Frame Grabber Interface
	Image Acquisition Basics
	Synchronous vs. Asynchronous Grabbing
	Buffering Strategies
	A/D Conversion and Multiplexing
	HALCON Frame Grabber Operators
	open_framegrabber
	close_framegrabber
	close_all_framegrabbers
	info_framegrabber
	grab_image
	grab_image_async
	grab_image_start
	grab_region
	grab_region_async
	set_framegrabber_param, get_framegrabber_param
	set_framegrabber_lut, get_framegrabber_lut

	HALCON Frame Grabber Integration Interface versus HALCON Frame Grabber Interface
	Additional Sources of Information

	Data Structures
	Frame Grabber Classes and Instances
	Structure 'FGClass'
	Structure 'FGInstance'

	Recommended Auxiliary Structures
	Structure 'BoardInfo'
	Structure 'TFGInstance'

	Interface Routines
	FGInit()
	FGOpenRequest()
	FGOpen()
	FGClose()
	FGInfo()
	FGGrab()
	Auxiliary Routine: GrabImg()
	FGGrabAsync()
	FGGrabStartAsync()
	FGGrabRegion()
	FGGrabRegionAsync()
	FGSetParam()
	FGGetParam()
	FGSetLut()
	FGGetLut()

	Generating a Frame Grabber Interface Library
	Changes in the HALCON Frame Grabber Integration Interface
	HALCON Error Codes
	Interface Template CIOFGTemplate.c
	Index

