User's Manual

NEC

Usage of Three-Terminal Regulators

Document No. G12702EJ8V0UM00 (8th edition) Date Published May 2000 N CP(K)

© NEC Corporation 2000 Printed in Japan

The application circuits and the circuit constants in this document are only examples, and not intended for use in the actual design of application systems for mass-production.

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

CONTENTS

1.	INTF	RODUCTION	5		
2.	BAS 2.1 2.2	SIC STRUCTURE OF A POWER SUPPLY IC Structure of a Bipolar IC About Power Supply IC Equivalent Circuits			
3.	BAS	C CIRCUITS OF A POWER SUPPLY IC			
	3.1	Basic Circuits	7		
	3.2	Operating Principles of Adjustable Output Types			
	3.3	Operating Principles of Low Saturation Types	12		
4.	POWER SUPPLY IC APPLICATION CIRCUITS				
	4.1	Typical Circuit Connection	13		
	4.2	Application Circuit Set	17		
5.	PRE	CAUTIONS ON APPLICATION	22		
	5.1	Shorting Input Pins and Ground Pins	22		
	5.2	Floating Ground Pins	22		
	5.3	Applying Transient Voltage to Input Pins	23		
	5.4	Reverse Bias Between Output Pin and GND Pin	23		
	5.5	Precautions Related to Low Saturation Types	24		
	5.6	Thinking on Various Protection Circuits	24		
6.	POWER SUPPLY IC DATA SHEET APPEARANCE AND DESIGN METHODS				
	6.1	Absolute Maximum Ratings	24		
	6.2	Recommended Operating Conditions			
	6.3	Electrical Specifications.			
	6.4	Design Methods			

1. INTRODUCTION

NEC produces a variety of ICs for power supplies that differ in their on-chip functions and usage. Within these, large quantities of three-terminal regulators have come to be used to configure stabilized power supplies easily using few external components.

However, the occurrence of unexpected irregularities when designing power supply circuits also has increased. Therefore, this manual starts with the basic structure of the main bipolar process that is used in ICs for power supplies and gives precautions pertaining to actual applications.

2. BASIC STRUCTURE OF A POWER SUPPLY IC

As mentioned in chapter 1, a power supply IC mainly uses a bipolar process. Understanding the structure of an IC that uses a bipolar process also is useful for applications.

2.1 Structure of a Bipolar IC

The following elements can be made into an IC in a general bipolar process.

NPN transistor

PNP transistor

Resistor

Capacitor

Figures 2-1 through 2-3 show the structure of each.

Figure 2-2. Structure of Resistor

Figure 2-3. Structure of Capacitor

There is a point to heed in applying power supply ICs. It is that a method known as "junction separation" is used as the method of electrically separating each of the elements above. By connecting a separation region so that it is formed by a P-type semiconductor and is the same lowest potential as the substrate, the element region and the separation region are electrically separated and insulated by being in (PN junction) reverse bias states. If for some reason the potential of this separation region becomes a higher potential than the element region (for example the NPN transistor collector region in Figure 2-1), normal operation cannot be expected since the PN junction enters a forward bias state and the separation state between the elements cannot be maintained. For example, when using a positive output three-terminal regulator, the GND pin always must be made a lower potential than the potential of other pins.

2.2 About Power Supply IC Equivalent Circuits

Equivalent circuits that are shown in data sheets are so designated assuming the premise of the preceding section (that separation regions and substrate are made the lowest potential). Be careful not to reference these when this premise is violated.

3. BASIC CIRCUITS OF A POWER SUPPLY IC

3.1 Basic Circuits

Although the basic circuits that make up a power supply IC differ according to the product type, the following elements are necessary.

- <1> Reference voltage circuit
- <2> Error amplifier
- <3> Active load (constant current circuit)
- <4> Output stage power transistor
- <5> Startup circuit

The following protection circuits also are on-chip.

- <6> Overcurrent protection circuit
- <7> Limiting circuit for securing safe operating area (SOA)
- <8> Overheat protection circuit

Figure 3-1 shows a block diagram of a power supply IC.

The operation of each block is explained in simple terms below.

<1> Reference voltage circuit

The reference voltage circuit, which determines the output voltage of the power supply IC, is an extremely important part within the circuit. The method for configuring this circuit is as follows.

• Band gap reference method: Use the forward characteristic between the base and emitter of the transistor. The possibility of making the reference voltage 2 V or less is a feature of this method.

Figure 3-2 shows the principles of the band gap reference method. Figure 3-3 is a simple circuit diagram of the band gap reference reference voltage used in the μ PC7800A Series.

The reference voltage is as follows.

VREF = VBE3 + (IC2 + IB3) • R2

$$= V_{BE3} + \frac{R_2}{R_3} \left(\Delta V_{BE} \right) + I_{B3} \bullet R_2$$

$$\coloneqq V_{BE3} + \frac{R_2}{R_3} \left[\frac{KT}{q} \ln \frac{R_2}{R_1} \right] \qquad (3 - 3)$$

The temperature coefficient is as follows.

$$\frac{\partial V_{\text{REF}}}{\partial T} = \frac{\partial V_{\text{BE3}}}{\partial T} + \frac{K}{q} \bullet \frac{R_2}{R_3} \ln \frac{R_2}{R_1} \qquad (3-4)$$

By optimally choosing the ratio of $\frac{R_2}{R_3} \cdot \frac{R_2}{R_1}$, a temperature compensated reference voltage is known to be obtained.

Figure 3-3. (Simplified) Band Gap Reference Circuit of µPC7800A Series

<2> Error amplifier

This circuit controls the output voltage by detecting and comparing the reference voltage created by the reference voltage circuit and the resistor split output voltage. If Vour is the output voltage and VREF is the reference voltage (refer to Figure 3-1), the following relationship holds.

$$V_{OUT} = \frac{A}{\beta (1 + A)} V_{REF} \qquad (3 - 1)$$

Here, A is the open loop gain of the error amplifier and $\beta = R_A / (R_A + R_B)$.

<3> Active load (constant current circuit)

Expression (3 - 1) becomes the following if the open loop gain A of the error amplifier is sufficiently large compared to 1.

Vout = Vref/ β

A small bias current and high resistance are realized by using a constant current circuit in the error amplifier load to make A 60 to 80 dB.

<4> Output stage power transistor

The output stage power transistor supplies current to the load. Although normally a Darlington form NPN, the low saturation type of power supply IC uses a PNP single transistor.

<5> Startup circuit

A power supply IC has an on-chip constant current circuit for use as an error amplifier load or for biasing the reference voltage circuit. A constant current circuit, which consists of paired transistors, does not begin to operate as long as the diode connected transistors are not in a steady bias state. A startup circuit therefore is set up and it biases the active load at power-on to cause normal operation to begin whether the temperature of the transistors is low or high.

<6> Overcurrent protection circuit

This is a protection circuit for preventing the load current from exceeding the current capacity of the output stage power transistor. It restricts the base current of the output stage power transistor by biasing the current restriction transistor more deeply in accordance with the voltage drop in the current detection resistor inserted in the load current route.

<7> Limiting circuit for securing safe operating area (SOA)

The limiting circuit for securing SOA operates to cut down the output current if the voltage between input and output (voltage between the collector and emitter of the output stage power transistor) becomes large so that the safe operating area of the output stage power transistor is not exceeded.

If the voltage difference between input and output exceeds the breakdown voltage (7 to 8 V) of a Zener diode connected between input and output, it limits the base current of the output stage power transistor by biasing the current limiting transistor more deeply using the breakdown current. Since the larger the voltage difference between input and output the more the base current of the output stage power transistor is limited, the load characteristic is a "foldback" type drooping characteristic as a result.

Figure 3-4 shows the parts of a general overcurrent protection circuit and limiting circuit for securing SOA.

Figure 3-4. Example of Overcurrent Protection Circuit and Limiting Circuit for Securing SOA (μPC7800A Series)

<8> Overheat protection circuit

The overheat protection circuit prevents destruction of the IC by cutting off output if the temperature of the chip itself increases too much.

Figure 3-5 shows the parts of an overheat protection circuit. Q_{12} , which is biased to the extent that it is not ON in a normal operating state, is completely ON at 150°C to 200°C accompanying a decrease in V_{BE} when the temperature of the chip increases. When Q_{12} is ON, it cuts off the output voltage by absorbing the base current of the output stage power transistor.

Figure 3-5. Example of Overheat Protection Circuit (µPC7800A Series)

The overheat protection circuit is designed to operate at temperatures exceeding the absolute maximum rating (generally 150°C). Therefore, if the overheat protection circuit has operated, the IC should be considered to have been exposed to an abnormal state and positive use of the overheat protection circuit should be avoided (so a separate circuit is needed to perform power supply overheat protection).

3.2 Operating Principles of Adjustable Output Types

An adjustable output type (μ PC317, μ PC337) differs from a fixed output voltage type in that it uses a method for configuring an output voltage setting voltage circuit externally so that an arbitrary output voltage can be set externally.

Figure 3-6 is the block diagram of a variable output voltage type. The output voltage is controlled by comparing the voltage between external resistors R_A and R_B and the reference voltage V_{REF} in the error amplifier.

Moreover, each block is connected between INPUT and OUTPUT and the current needed in each block (circuit operating current) is output from the OUTPUT pin. Therefore, the outflow current from the ADJ pin becomes negligible and its affect on the output voltage value can be ignored.

Figure 3-6. Adjustable Output Type Block Diagram

3.3 Operating Principles of Low Saturation Types

(a) General power supply IC

All of the power supply ICs discussed so far use Darlington connected NPN type transistors in the output stage. Therefore, the voltage difference between input and output that is needed to operate these power supply ICs cannot be lower than the voltage between the base and emitter of the Darlington connected output stage transistor (0.7 V \times 2 = 1.4 V). A low saturation type power supply IC makes it possible to operate with a small voltage difference between input and output stage transistor (refer to Figure 3-7).

Configurations other than this are nearly identical to a general power supply IC. Figure 3-8 shows a block diagram.

Figure 3-8. Low Saturation Type Block Diagram

4. POWER SUPPLY IC APPLICATION CIRCUITS

4.1 Typical Circuit Connection

<1> Fixed output voltage type

Figure 4-1 shows an example of a typical circuit connection. Check the data sheet for each product type for the values of input and output capacitors.

Figure 4-1. Example of Typical Circuit Connection (Single Power Supply Output)

- $\label{eq:Cincle} C_{\text{IN}}: \mbox{If the wiring from a smoothing circuit to the three-terminal regulator is long, there may be oscillation. Therefore, add a 0.1 to 0.47 μF capacitor with superior voltage and temperature characteristics near the input pin.}$
- Co : This always must be added for oscillation prevention in the case of a negative voltage threeterminal regulator. For an application in which the load current changes suddenly, also add 10 to 100 μ F of electrical capacitors for output voltage transient response improvement.
- D1 : Although not needed for standard applications, this is necessary when the time constant on the load side is long and there is a residual voltage in Co for some time after the power supply is cut and backward voltage is applied to the regulator IC.
- D2 : Needed when there is a possibility of OUTPUT being lower potential than GND.

Figure 4-2 is an example of a typical connection for obtaining a positive and negative power supply. The diodes between output and GND are for preventing latchdown at startup and are absolutely necessary in the case of loads shown by solid lines. Without the diodes, current flows in the separation regions between elements as described in chapter 2 and the output voltage does not rise (refer to Figure 4-3).

Figure 4-2. Example of Typical Circuit Connection (Dual Power Supply Output)

CIN, Co, CIN', Co': As in the sample circuit for a single power supply load, these sometimes are needed depending on circuit conditions.

Di1, Di1' : Absolutely necessary for loads shown by solid lines, in which a load current flows from +Vout toward -Vout.

This is to prevent regulator output on either side from being latched down by differences occurring in the rise of regulator output voltage due to smoothing circuit capacitor capacity differences or the like.

Note that these are not specifically needed in the case of only those loads shown by dashed lines.

Di2, Di2' : As in the sample circuit for a single power supply load, these sometimes are needed depending on the application circuit.

If the output pin becomes a lower potential than GND, the P type separation region and n type output pin (NPN transistor) enter a forward bias state and the "parasitic transistor" shown with dashed lines is formed. When this occurs, it is connected to the adjacent transistors and does not operate normally.

Figure 4-3. Example of Power Supply IC Cross Section Diagram (Latchdown)

<2> Adjustable output voltage type

When a voltage not included in a fixed output voltage type is needed or the output voltage is to be adjusted and used, even a fixed output voltage type can be used by floating the GND as described later, but voltage precision and drift become a problem. An adjustable output voltage type is useful in such cases.

Figure 4-4 shows an example of the typical connection. Since a bias current for the operation of each block inside the IC flows from INPUT to OUTPUT as described in section 3.2, be careful of the load current. By selecting 240 Ω as R1 as in the sample typical connection even when there is no load, no problems arise since a current of

 $1.25 \text{ V} / 240 \Omega = 5.2 \text{ mA}$

flows to OUTPUT.

Figure 4-4. Example of Typical Connection Circuit (Adjustable Output Power Supply)

Note This example is for a positive voltage. For a negative voltage (μ PC337), D₁ and capacitor polarity are reversed.

- C_{IN} : Since there may be oscillation if the wire leading from a smoothing circuit to a three-terminal regulator is long (15 cm or more), add a capacitor near the input pin.
- Co : For an application in which the load current changes suddenly, add a 10 μ F or more capacitor for output voltage transient response improvement (and add 10 μ F to C_{ADJ} at the same time).
- C_{ADJ} : Connecting a 10 μ F capacitor parallel to R₂ can improve the ripple rejection rate (approximately 20 dB) and increase oscillation stability.

In this case, diode D1 is needed for to prevent application of backward voltage on an output short circuit.

 $\mathsf{R}_1,\,\mathsf{R}_2\,$: These are resistors for setting the output voltage. The output voltage Vo is determined as follows.

$$V_{0} = \left[1 + \frac{R_{2}}{R_{1}}\right] \bullet V_{REF} + I_{ADJ} \bullet R_{2}$$
$$\coloneqq \left[1 + \frac{R_{2}}{R_{1}}\right] \bullet V_{REF}$$

Table 4-1 shows the relationship between typical output voltages and R2.

Output Voltage Vo (V)	R_2 Setting ^{Note} (Ω)
2.5	240
5.0	720
12	2064
24	4368
30	5520

Table 4-1. Settings of Output Voltage Setting Resistor R2

Note TYP. values

<3> Low saturation type

The standard method of use is the same as for a general fixed output voltage type (see Figure 4-1). However, the capacitor connected to the output must have a greater capacity than in a general power supply IC. In addition, note that the output voltage cannot be adjusted by inserting a resistor or the like in the GND pin as described later.

4.2 Application Circuit Set

This circuit set mainly is filled in for positive output voltage three-terminal regulators. However, the circuits also can be applied to negative voltage three-terminal regulators by changing the polarity of parts employed.

Caution Absolutely do not connect output pins in parallel to increase the current capacity of a threeterminal regulator. If the output voltage becomes unbalanced, certain ICs operate in a restricted current vicinity and current hardly flows in certain ICs, and furthermore the current may flow in reverse. Also refer to 15 Wired OR.

5. PRECAUTIONS ON APPLICATION

Do not use a three-terminal regulator under temperature conditions or voltage conditions that exceed the ratings. Other precautions that are specific to three-terminal regulators are shown below.

5.1 Shorting Input Pins and Ground Pins

When a capacitor with a large capacity is connected to the load of a three-terminal regulator, if the input pin is shorted to GND or the power supply is turned OFF, the voltage of the capacitor connected to the output pin is applied between the output and input pins of the three-terminal regulator.

The withstand voltage between the output and input pins of a three-terminal regulator is approximately 0.7 V for a low current with the output transistor base-emitter voltage.

Therefore, a diode like the one in Figure 5-1 (b) is effective against the reverse bias of the input and output pins. Figure 5-1 (b) is for a positive voltage regulator. The diode direction is reversed for negative voltage.

5.2 Floating Ground Pins

Do not make the GND pin of a three-terminal regulator floating in the operating state. If it is made floating, an input voltage that has not been stabilized is output unchanged. This is because the output stage power transistor is biased by an overvoltage protection Zener or current mirror transistor leakage current. Since IC internal overheat protection and the like do not operate normally in this case, there is a possibility of destruction if the load is short-circuited or on an overload.

Be particularly careful when using a socket.

5.3 Applying Transient Voltage to Input Pins

A three-terminal regulator is destroyed if a higher voltage than the rating or a voltage more than 0.5 V lower than the GND pin is applied to the input line. In cases in which such voltages are superimposed on the line, add a surge suppressor using a Zener diode or the like.

5.4 Reverse Bias Between Output Pin and GND Pin

Figure 5-3

In the sample application shown in Figure 5-3 (a), the voltage of the Zener diode is applied between the output and GND pins of the three-terminal regulator when the load is short-circuited.

Inside the three-terminal regulator, a diode like that shown in Figure 5-3 (b) apparently is formed, but if a current flows in this part, the three-terminal regulator is sometimes destroyed. Therefore, when using a GND like that shown in Figure 5-3 (a) in a floating state, it is necessary to add a low forward voltage diode from the GND pin of the three-terminal regulator toward the output pin.

5.5 Precautions Related to Low Saturation Types

Since a low saturation type of power supply IC uses a PNP transistor in the output stage, particular care is needed. In a low input state before the output voltage enters regulation state (such as at startup), a large circuit current flows because the output stage transistor is saturated. Depending on the product, the circuit current is decreased at startup by an on-chip rushing current prevention circuit, but even in this case a relatively large circuit current flows compared to normal operation (For details, refer to the "Circuit operating current at startup IBIAS(S)" rating of each product). Thus, care is needed in the following matters.

- On startup, be careful of the output capacity of the power supply on the input side and the output impedance, since a circuit operating current flows in the input superimposed on the load current.
- It is not possible to adjust the output voltage by inserting a resistor or the like in the GND. This is because the circuit operating current increases at startup.

Be sure to connect a low impedance type capacitor to the output to increase stability against abnormal oscillation.

5.6 Thinking on Various Protection Circuits

NEC power supply ICs, which have on-chip overcurrent protection circuits, limiting circuits for securing SOA, and overheat protection circuits, are very difficult to destroy in their normal operating state.

Nonetheless, you should not design circuits that put too much confidence in these protection circuits. These protection circuits are for protection against sudden accidents. To the best of your ability, avoid operating protection circuits for long stretches of time. In particular, be careful using the overheat protection circuit since this is like operating at a temperature exceeding the absolute maximum rating.

6. POWER SUPPLY IC DATA SHEET APPEARANCE AND DESIGN METHODS

6.1 Absolute Maximum Ratings

This item shows values that must not be exceeded even momentarily under any usage conditions or test conditions. Moreover, it is a mistake to think that use at the absolute maximum ratings is possible. Design should be performed so that even in an abnormal state the equipment being considered leaves room for the absolute maximum ratings.

In addition, it is assumed that GND is the lowest potential in the case of a positive output power supply and that INPUT is the lowest potential in the case of a negative output power supply (see chapter 2).

6.2 Recommended Operating Conditions

If used under these conditions, it is possible to obtain output voltage precision as expected. Think of this as a criterion for selecting a power supply IC.

6.3 Electrical Specifications

NEC guarantees the minimum values and maximum values of electrical characteristics at the time of shipment. Therefore, whether or not it is possible to satisfy the specifications of the power supply to be designed must be determined by adequately investigating each rating and condition in each item of the electrical characteristics. Each item of the electrical characteristics is described below (Since the explanations below are mainly for positive output power supply ICs, reread them while reversing polarities for negative power supply ICs).

<1> Output voltage Vo

This item is the most important rating in using a power supply IC. Pay attention to measurement conditions. If power supply specifications are within this range of conditions, the expected precision (for example $\pm 5\%$) is obtained (see Figure 6-1).

<2> Line regulation REGIN

When the input voltage increases, the output voltage also increases. This item shows how much the output voltage changes when the input voltage V_{IN} is varied within the measured conditions. As shown in Figure 6-2, output voltage changes nearly linearly with respect to input voltage. Therefore, it is possible to infer how much the output voltage will change from the initial period when the initial input voltage is changed to a given input voltage.

Figure 6-2. Line Regulation REG_{IN} Conceptualization (For μ PC7805AHF, V_{IN} = 10 V Standard)

<3> Load regulation REGL

Whereas REGIN is the change in output voltage with respect to input voltage, load regulation REGL shows the change in output voltage with respect to load current (output current). When load current increases, output voltage decreases nearly linearly. The output voltage for an arbitrary load current can be inferred in the same way as REGIN (see Figure 6-3).

<4> Quiescent current IBIAS

This is the bias current needed for each internal block of a power supply IC to operate. It flows from input toward GND. Applications that adjust output voltage by inserting a resistor in GND take this item into account.

<5> Quiescent current change Albias

This shows the change in IBIAS when the input voltage or load current changes.

<6> Ripple rejection rate R • R

The ripple voltage that appears in the output when a 120 Hz sine wave (minimum value and maximum value of sine wave are noted in measured conditions) is input in the input is represented by the following expression.

 $R \bullet R = 20 \log (V_{IN}/V_{Oripple}) [dB]$

If the frequency increases, R • R decreases mainly due to the frequency characteristics of the internal error amplifier of the IC.

<7> Output noise voltage Vn

This shows the noise that occurs inside a power supply IC (mainly thought to be thermal noise).

<8> Peak output current lopeak

This is the current at which the overcurrent protection circuit operates. It is defined as the output current when the output voltage is lowered by 2% from its initial value.

As described in chapter 3, the overcurrent protection circuit operates together with the stable operation area. Moreover, note that I_{Opeak} decreases as temperature increases (negative temperature characteristic). Figure 6-4 shows the I_{Opeak} -VIN-Vo characteristics of the μ PC7800A Series. For a nonlinear load such as a motor or lamp, select a power supply IC that has sufficient leeway (50% or less of normal characteristic graph).

<9> Output short circuit current loshort

This is the current that flows when output is short-circuited. Since most NEC power supply ICs have an onchip limiting circuit for securing SOA, the following relation holds.

Oshort < Opeak

Like lopeak, loshort displays a negative temperature characteristic. Refer to Figure 6-4 for temperature characteristics of the output short circuit current and changes with respect to input voltage.

6.4 Design Methods

(A) Input circuit design

Determine the capacity of a smoothing capacitor of an input circuit using an O.H. Shade graph or simulator so that the minimum value of the input voltage is not lower than the measurement conditions of output voltage.

At this time, connect a film capacitor between input and GND of the power supply IC separate from the smoothing capacitor to prevent abnormal oscillation (refer to the data sheet of each product type for capacitor values).

(B) Output circuit design

Check whether the load current used is a current no greater than the peak output current. Connect a capacitor for abnormal oscillation prevention between output and GND of the power supply IC. If transient load stability becomes a problem, make sure the capacitor is connected in parallel.

(C) Radiation design

The junction temperature can be calculated using the following expression.

 $T_{J} = (R_{th}(J-C) + \theta_{C-HS} + \theta_{HS}) \bullet P_{D} + T_{A}$ (6.1)

Rth(J-C): Thermal resistance (junction to case)

- *θ*c-нs: Contact thermal resistance (includes thermal resistance of insulation sheet when using insulation sheet)
- θ_{HS} : Thermal resistance of heatsink
- PD: Internal power dissipation of IC (PD = (VIN VO) IO + VIN IBIAS)
- TA: Operating ambient temperature

Expression (6.1) is the calculation expression when using a heatsink. When not using a heatsink, such as in the μ PC78L00 Series, use the following expression.

 $T_{J} = R_{th(J-A)} \bullet P_{D} + T_{A} \qquad (6.2)$

Rth(J-A): Thermal resistance (junction to ambient air)

Use the values in the data sheets for Rth(J-C) and Rth(J-A) in expressions (6.1) and (6.2).

Since T_J, R_{th(J-C)}, P_D, and T_A are given, find the thermal resistance of the heatsink θ_{HS} from them using expression (6.1). Figure 6-5 shows the thermal resistance of an aluminum board. Since the heatsink manufacturer produce heatsinks suited to power supply ICs, also consult the heatsink manufacturer.

Figure 6-5. Thermal Resistance of Aluminum Board

If T_J is not within the design values, return to (A) or (B) and recalculate. An example of heatsink design is shown next.

<1> Design objectives

Positive power supply using μ PC7805AHF	
Maximum output current	Io max. = 0.6 (A)
Maximum voltage difference between input and output	VDIF max. = 6 (V)
Maximum operating ambient temperature	TA max. = 60 (°C)
Maximum junction temperature	TJ max. = 100 (°C)

<2> Heatsink thermal resistance calculation

In a used state, the junction temperature T_J is the following.

 $T_{J} = (R_{th(J-C)} + \theta_{C-HS} + \theta_{HS}) \bullet P_{D} + T_{A} \dots (6.3)$

Rth(J-C): Thermal resistance (junction to case)

 θ C-HS: Thermal resistance (case to heatsink)

 θ_{HS} : Thermal resistance of heatsink

PD: Power dissipation

Here, $T_{J \text{ max.}} = 100 (^{\circ}\text{C})$, $T_{A \text{ max.}} = 60 (^{\circ}\text{C})$, $\theta_{C-HS} << 1 (^{\circ}\text{C/W})$, and $R_{th(J-C)} = 5.0 (^{\circ}\text{C/W})$ By substituting $P_{D \text{ max.}} = V_{DIF \text{ max.}} \times I_{O \text{ max.}} = 3.6 (W)$ in expression (6.3), find the thermal resistance θ_{HS} needed in the heatsink.

<3> Determination of size of heatsink

From expression (6.4), the design objectives can be satisfied using a heatsink of 6.1 (°C/W).

Figure 6-5 shows the relationship between the thickness, surface area, and thermal resistance of an aluminum board.

By using a 3 mm thick 60 cm² aluminum board here, it can be seen that the heatsink will have the necessary thermal resistance.

(Use example without heatsink)

The junction temperature T_J in the used state when not installing a heatsink is the following.

 $T_{J} = R_{th(J-A)} \bullet P_{D} + T_{A} \qquad (6.5)$

Rth(J-A): Thermal resistance (junction to ambient air) (free air)

PD: Power dissipation

TA: Operating ambient temperature

Setting T_J to 100°C or less in the used state is recommended.

Precautions when installing in a heatsink

- Make the convexity or concavity of the part installation surface of the heatsink 0.05 mm or less.
- Spread silicon grease to a uniform thickness between the heatsink and part. Determine the kind of grease on consulting the maker of the heatsink.
- Painting the heatsink black increases its effectiveness in radiating heat. However, if it is close to a heat source, it has the reverse effect of absorbing heat.
- Use one of the insulating board bushings shown in Table 6-2.
- Cut a screw in a heatsink and absolutely do not use self-tapping screws to install one.

When installing a heatsink, if the tightening torque of a screw is too great, the fins can be distorted and the IC damaged. Drive screws using a torque driver that can manage the tightening torque.

Markings	Tightening torque (N•m)	
TO-126	$2.0\times10^{^{-3}}$ to $4.1\times10^{^{-3}}$	
TO-220	$3.1\times10^{^{-3}}$ to $5.1\times10^{^{-3}}$	
MP-45G	$3.1\times10^{^{-3}}$ to $5.1\times10^{^{-3}}$	

Table 6-2. Recommended Insulating Bushings and Insulating Board

	Code No.	Product Name	Quality of Materials		Incombustibility
			Material	Color	Grade
Insulating bushing	B-24	25K bushing U	Gelanex 3310	Light brown	UL 94V-0
Insulating board	S-7	MP-25 insulating board A	Polyester	Colorless, transparent	-

Facsimile Message

FAX

Although NEC has taken all possible steps to ensure that the documentation supplied to our customers is complete, bug free and up-to-date, we readily accept that errors may occur. Despite all the care and precautions we've taken, you may encounter problems in the documentation. Please complete this form whenever you'd like to report errors or suggest improvements to us.

Address

Tel.

From:

Name

Company

Thank you for your kind support.

North America NEC Electronics Inc. Corporate Communications Dept. Fax: 1-800-729-9288 1-408-588-6130	Hong Kong, Philippines, Oceania NEC Electronics Hong Kong Ltd. Fax: +852-2886-9022/9044	Asian Nations except Philippines NEC Electronics Singapore Pte. Ltd. Fax: +65-250-3583
Europe NEC Electronics (Europe) GmbH Technical Documentation Dept. Fax: +49-211-6503-274	Korea NEC Electronics Hong Kong Ltd. Seoul Branch Fax: 02-528-4411	Japan NEC Semiconductor Technical Hotline Fax: 044-548-7900
South America NEC do Brasil S.A. Fax: +55-11-6465-6829	Taiwan NEC Electronics Taiwan Ltd. Fax: 02-2719-5951	

I would like to report the following error/make the following suggestion:

Document title: _____

Document	number:
----------	---------

____ Page number: ___

If possible, please fax the referenced page or drawing.

Document Rating	Excellent	Good	Acceptable	Poor
Clarity				
Technical Accuracy				
Organization				