
ISaGRAF C Tools

User and Reference Manual

CONTROL
MICROSYSTEMS
SCADA products... for the distance

48 Steacie Drive Telephone: 613-591-1943
Kanata, Ontario Facsimile: 613-591-1022
K2K 2A9 Technical Support: 888-226-6876
Canada 888-2CONTROL

ISaGRAF C Tools User and Reference Manual
©2007 Control Microsystems Inc.
All rights reserved.

Printed in Canada.

Trademarks
TelePACE, SCADASense, SCADAServer, SCADALog, RealFLO, TeleSAFE, TeleSAFE
Micro16, SCADAPack, SCADAPack Light, SCADAPack Plus, SCADAPack 32, SCADAPack
32P, SCADAPack 350, SCADAPack LP, SCADAPack 100, SCADASense 4202 DS,
SCADASense 4202 DR, SCADASense 4203 DS, SCADASense 4203 DR, SCADASense
4102, SCADASense 4012, SCADASense 4032 and TeleBUS are registered trademarks of
Control Microsystems.

All other product names are copyright and registered trademarks or trade names of their
respective owners.

Material used in the User and Reference manual section titled SCADAServer OLE
Automation Reference is distributed under license from the OPC Foundation.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

1

Table of Contents

TABLE OF CONTENTS .. 2

ISAGRAF C TOOLS OVERVIEW.. 3

GETTING STARTED ... 6

C PROGRAM DEVELOPMENT .. 10

REAL TIME OPERATING SYSTEM.. 18

OVERVIEW OF PROGRAMMING FUNCTIONS .. 32

ISAGRAF C TOOLS FUNCTION SPECIFICATIONS... 63

ISAGRAF C TOOLS MACRO DEFINITIONS ... 391

ISAGRAF C TOOLS STRUCTURES AND TYPES .. 400

C COMPILER KNOWN PROBLEMS .. 426

ISAGRAF C TOOLS WARRANTY AND LICENSE .. 429

ISaGRAF C Tools User and Reference Manual
May 8, 2007

2

ISaGRAF C Tools Overview
The ISaGRAF C Tools are ideal for engineers and programmers who require advanced
programming tools for SCADA applications and process control. The SCADAPack and
Micro16 families of controllers execute ISaGRAF and C application programs
simultaneously, providing you with maximum flexibility in implementing your control strategy.

This manual provides full documentation on the ISaGRAF C program loader and the library
of C language process control and SCADA functions. We strongly encourage you to read it,
and to notify us if you find any errors or additional items you feel should be included in our
documentation.

We sincerely hope that the reliability and flexibility afforded by this fully programmable
controller enable you and your company to solve your automation problems in a cost
effective and efficient manner.

The ISaGRAF C Tools include an ANSI C cross compiler; a customized library of functions
for industrial automation and data acquisition; a real time operating system; and the
ISaGRAF C program loader. The C function library is similar to many other C
implementations, but contains additional features for real time control, digital and analog I/O.
An overview of the application development environment and its features follows.

Program Development
C programs are written using any text editor. The MCCM77 compiler is used to compile,
assemble and link the programs on a personal computer.

The memory image, which results from this process may then be, loaded either into the
RAM, committed to an EPROM, or both may be used together. Programs may be executed
either manually or automatically at power up.

Modularity
Programs written in ISaGRAF C may be split into many separately compiled modules. These
modules may be tested individually before being linked together in the final program.
Command files specify how the various files are to be linked.

Assembly Language Code
Assembly language source code may be included directly within C programs. The #asm and
#endasm statements are used to enclose in-line assembly language code, which is then
assembled without passing through the compiler.

C programs are converted to assembly language by the MCCM77 compiler, and this code
may be viewed and modified. The resulting code may also be combined with programs
written directly in assembler.

Program Options
A C application program may reside in RAM or ROM. The normal method of program
development has the program in RAM. The program may call library routines in the
operating system ROM. The RAM is nonvolatile (battery backed), so the program may
remain in RAM once development is completed and the unit is installed.

Application programs may also be committed to EPROM. The RAM is used for data storage
in this case.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

3

Supported Language Features
The ISaGRAF C Tools use the Microtec® MCCM77 C compiler. The compiler is ANSI C
compliant, and provides a code optimizer and assembler.

In addition to the standard C operators, data types and library functions, the C tools provide
a set of routines specifically designed for control applications. Some applications and the
descriptions of these functions may be found on the following pages.

Serial Communication
An extensive serial communication library supports simple ASCII communication,
communication protocols and serial port configuration. The default communication mode
uses the TeleBUS RTU communication protocol. It supports access to the I/O database,
serial port reconfiguration and program loading.

The application program can disable the TeleBUS protocol, and use the serial ports for other
purposes.

TeleBUS protocols are compatible with the widely supported, Modbus ASCII and RTU
protocols.

Clock/Calendar
The processor's hardware clock calendar is supported by the C Tools. The time, date and
day of week can be read and set by the application software.

Timers
The controller provides 32 software timers. They are individually programmable for tick rates
from ten per second to once every 25.5 seconds. Timers may be linked to digital outputs to
cause external devices to turn on/off after a specified period. All timers operate in the
background from a hardware interrupt generated by the main system clock.

Duty Cycle and Pulse Outputs
The digital I/O driver provides duty cycle and pulse train outputs. Duty cycle outputs
generate continuous square waves. Pulse train outputs generate finite sequences of pulses.
Outputs are generated independent of the application program.

Watchdog Timer
The controller supports a hardware watchdog timer to detect and respond to hardware or
software failures. Watchdog timer trigger pulses may be generated by the user program or
by the system clock.

Checksums
To simplify the implementation of self-checking communication algorithms, the C Tools
provide four types of checksums: additive, CRC-16, CRC-CCITT, and byte-wise exclusive-
OR. The CRC algorithms are particularly reliable, employing various polynomial methods to
detect nearly all communication errors. Additional types of checksums are easily
implemented using library functions.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

4

Standard I/O Functions
The ISaGRAF C Tools are an enhanced version of standard C libraries. Most of the usual C
programming techniques apply. However, with respect to I/O, there are some differences.

The C Tools function library supports all the standard I/O functions. There are no disk drives
or peripherals associated with the controller. Thus many file handling functions return fixed
responses, indicating that the operation could not be performed.

All standard devices are opened automatically by the operating system and cannot be
closed. The route function may be used to redirect stdin, stdout and stderr.

The ISaGRAF Workbench
Control Microsystems IEC 1131-3 implementation enables the programming of SCADAPack
and Micro16 controllers using the IEC 1131-3 programming languages. The programming
environment uses the ISaGRAF Workbench to create, load and debug IEC 1131-3
application programs.

The ISaGRAF Workbench is a powerful programming environment providing, among several
other features, a C Program Loader. On-line help provides a full reference to all the features
of the ISaGRAF Workbench. ISaGRAF runs on the Microsoft Windows operating system.

This manual references only those features of the ISaGRAF Workbench pertaining to the C
Program Loader dialog. Please refer to the chapter Controller Commands and Options of the
IEC1131 Reference and User Manual for a complete description of the following ISaGRAF
Workbench menus, which will be useful during C Program development.

Additional Documentation
Additional documentation on ISaGRAF IEC 61131-3 and the TeleSAFE Micro16 and
SCADAPack controllers is found in the following documents.

The on-line help for the ISaGRAF C program loader contains a complete reference to the
operation of the loader. To display on-line help, select Contents from the Help menu.

The SCADAPack & Micro16 System Manual is a complete reference to controller and I/O
modules used with SCADAPack and Micro16 controllers. It contains the SCADAPack
Controller Hardware Manuals, the TeleSAFE Micro16 System Manual and hardware
manuals for all 5000 Series I/O modules.

The TeleBUS Protocols User Manual describes communication using Modbus compatible
protocols.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

5

Getting Started
This section of the C Tools User Manual describes the installation of C Tools and includes a
Program Development Tutorial. The Program Development Tutorial leads the user through
the steps involved in writing, compiling, linking and loading a C application program.

System Requirements
ISaGRAF C Tools requires the following minimum system configuration.

• Personal computer using 80386 or higher microprocessor.

• Microsoft Windows™ operating system versions including Windows 2000, NT and XP.

• Minimum 4 MB of memory.

• Mouse or compatible pointing device.

• Hard disk with approximately 2.5 Mbytes of free disk space.

Making Backup Disks
You should make a backup copy of the Microtec C compiler disks before using the software.
A backup copy protects you against damage to the disk. Always work with the backup copy
– if it fails, you can make a new copy from the original disk. Store the original disk in a safe
location.

To make a backup off a floppy disk on Microsoft Windows XP™:

• Start Windows Explorer. (Right click on Windows Start and select Explore).

• Right click on the floppy disk and select Copy Disk.

• Select the source and destination disk drives. Click on the OK button.

Installation of C Compiler
Install the Microtec C compiler as described in the installation manuals supplied with the
system. Be sure to add all the required variables to the DOS environment.

Installation of ISaGRAF
Install ISaGRAF as described in the installation section of the ISaGRAF Reference and User
Manual.

Some virus checking software may interfere with Setup. If you experience problems with the
Setup, disable your virus checker and run Setup again.

Program Development Tutorial
Program development consists of three stages: writing and editing; compiling and linking;
and loading the program into the controller. Each uses separate tools. To demonstrate these
steps a sample program will be prepared.

Refer to the C Program Development section for a full description of the program
development process.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

6

Traditionally, the first program that is run on a new C compiler is the hello, world program. It
prints the message “hello, world”.

Writing and Editing
A controller C program is written using any text editor or word processor in text mode. The
syntax should correspond to that described in the Microtec MCCM77 Documentation Set,
and the C Program Development section of this manual. This chapter describes non-
standard functions, which are unique to the controller. It should be read carefully to make full
use of the special purpose routines available.

Using your text editor, open the file hello.c file. It is located in the
telepace\ctools\520x directory. The program looks a little different from the traditional
hello, world program.

/* ---
 hello.c
 SCADAPack and TeleSAFE Micro16 Test Program

 The infamous hello, world program.
 -- */

#include <ctools.h>

void main(void)
{
 PROTOCOL_SETTINGS settings;

 /* Disable the protocol on serial port 1 */
 settings.type = NO_PROTOCOL;
 settings.station = 1;
 settings.mode = AM_standard;
 settings.priority = 3;
 settings.SFMessaging = FALSE;
 setProtocolSettings(com1, &settings);

 /* Print the message */
 fprintf(com1, "hello, world\r\n");

 /* Wait here forever */
 while (TRUE)
 {
 NULL;
 }
}

The “hello, world” message will be output to the com1 serial port of the controller. A terminal
connected to the port will display the message.

The controller normally communicates on all ports using the TeleBUS communication
protocol. The first section of the program disables the com1 protocol so the serial port can
be used as a normal RS-232 port.

The fprintf function prints the message to the com1 serial port.

When you have completed examining the program, close the hello.c file. It is now ready
to be compiled and linked.

Compiling and Linking
Compiling and linking convert the source code into executable code for the controller. The
ISaGRAF C Tools use a C cross compiler and linker from Microtec, a respected supplier of
embedded system tools. The compiler produces tight, well-optimized code. The compiler
and linker run under the Microsoft MS-DOS operating system.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

7

The compiler has many command line options. The basic command line and options
required to compile code for the controller are:

 mccm77 -v -nQ -Ml -c filename.c

This should be repeated for each file in the application. Note that the command line options
are case sensitive. The character following the M is a lower case l (ell).

Files are linked together using linker command files. To link a program execute the
command:

 lnkm77 -c filename.cmd

Sample command files for RAM and ROM based applications are located in the
telepace\ctools\isagraf directory.

Example
The hello.c program is found in the telepace\ctools\isagraf directory. To compile
and link the program:

• switch to the telepace\ctools\isagraf directory;

• enter the commands
 mccm77 -v -nQ -Ml -c hello.c
 lnkm77 -c hello.cmd

The file hello.abs contains the executable code in a format ready to load into the
controller.

Loading and Executing
The ISaGRAF C Program Loader transfers executable files from a PC to the controller and
controls execution of programs in the controller. The loader can also initialize program
memory and serial port configuration.

Controller Initialization
The memory of the controller has to be initialized when beginning a new programming
project or when it is desired to start from default conditions. It is not necessary to initialize
the controller before every program load.

To initialize the controller, first perform a SERVICE boot. A SERVICE boot preserves
programs and data in nonvolatile RAM, but does not start the programs running. Default
communication parameters are used.

To perform a service boot:

• Remove power from the controller.

• Press and hold the LED POWER switch.

• Apply power to the controller.

• Wait until the STAT LED on the top of the board turns on.

• Release the LED POWER switch.

Second, initialize the program and data memory in the controller. A new controller will
require all initializations to be performed. Selected initializations can be performed on a
controller that is in use.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

8

• Run the ISaGRAF program under Microsoft Windows.

• Connect the PC to the controller with the appropriate serial cable. The hello, world
program will print data on the com1 serial port. Therefore connect to the com2 serial port
on the controller. (All communication ports work the same. We use com2 here because
the sample program is using com1.)

• From the Tools, Controller menu, select the Initialize command.

• Select all options: Erase IEC 1131 Application, Erase C Program, and Initialize
Controller.

• Click on the OK button.

The controller is now ready for a program.

Loading the Program
To load the hello, world program into the controller:

To load the hello, world program into the controller:

• Run the ISaGRAF program.

• From the Tools menu select Controller and then select the C Program Loader
command.

• Enter hello.abs in the edit box for the C Program file name.

• Click on the Write button. The file will be downloaded.

Executing the Program
• Connect a terminal to com1 on the controller. It will display the output of the program. Set

the communication parameters to 9600 baud, 8 data bits, 1 stop bit, and no parity.

• From the C Program Loader dialog, click on the Run button to execute the program.
The “hello, world” message will be displayed on the terminal.

Serial Communication Parameters
When the controller is powered up in the SERVICE mode the serial ports are configured as:

• 9600 baud

• 8 data bits

• 1 stop bit

• no parity

• Modbus RTU protocol emulation

• station address = 1

A program may change these settings with the set_port function. When the controller is
powered up in RUN position, the custom parameters, as stored by the most recent save
function, are used.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

9

C Program Development

Program Architecture
A C application program may be contained in a single file or in a number of separate files,
called modules. A single file is simple to compile and link. It can become cumbersome to edit
and time-consuming to compile as the file grows in size.

An application stored in separate modules by function is easier to edit, promotes function re-
use, and is quicker to compile when only a few modules are changed. Compiled modules
can be combined into object libraries and shared among users.

The ISaGRAF C Tools support both single file and multiple module programs. A C
application program consists of support functions provided by the C Tools and the main()
and other functions written by the user.

Main Function Structure
The program sample below shows a typical structure for the main() function.

void main(void)
{
 /* Perform initialization actions */
 /* Start support tasks */

 /* Main Loop*/
 while (TRUE)
 {
 /* Perform application functions */
 }
}

Initialization actions typically consist of variable declarations, variable initialization and one-
time actions that must be performed when the program starts running.

Supporting tasks (see Real Time Operating System section) are typically created before
the main loop of the program. Tasks can be created and ended dynamically during the
execution of a program as well.

The main loop of a program is always an infinite loop that continually performs the actions
required by the program. The main() function normally never returns.

Example
The following is an example of a three-module program. Each function is stored in a
separate file. This program will be used in subsequent examples.

File: func1.c
#include <ctools.h>

void func1(void)
{
 fputs("This is function 1\r\n", com1);
}

File: func2.c

#include <ctools.h>

ISaGRAF C Tools User and Reference Manual
May 8, 2007

10

void func2(void)
{
 fputs("This is function 2\r\n ", com1);
}

File: main.c

#include <ctools.h>

extern void func1(void);
extern void func2(void);

void main(void)
{
 func1();

 while (TRUE)
 {
 func2();
 }
}

Start-Up Function Structure
The user’s main() function is called from the appstart function of the C Tools. It is not
necessary to understand the appstart function to write programs. However it performs a
number of useful functions that can be modified by the user.

The start-up code has five major functions:

• create and initialize the application program heap (for dynamic memory allocation);

• specify the number of stack blocks allocated to the main task;

• initialize application program variables;

• control execution of the protocol, ladder logic and background I/O tasks;

• execute the main function.

Source code for the function is supplied with the C Tools. The following discussion refers to
statements found in the file appstart.c.

The heap is a section of memory used by dynamic memory allocation functions such as
malloc. The heap starts at the end of RAM used by the program and continues to the end
of physical RAM. The limit is set by the statement:

end_of_heap .EQU 41ffffh

The limit is set by default to the smallest memory option available for the controller. If your
controller has more memory, change the value of the constant according to the following
table.

RAM Installed C Application Program RAM
Addresses

128 Kbytes none (ladder logic only)
256 Kbytes 400000h – 41FFFFh
640 Kbytes 400000h – 47FFFFh
1024 Kbytes 388000h – 3E7FFFh

400000h – 47FFFFh

ISaGRAF C Tools User and Reference Manual
May 8, 2007

11

The application program signature section of the file contains a constant that determines the
size of the stack allocated to the main task. The stack size is sufficient for most applications.
It can be changed by modifying the statement:
 .WORD 4 ;stack size in blocks

Refer to the Real Time Operating System section for more information on the stack
required by tasks.

The appstart function begins by initializing the heap pointers, setting all non-initialized
variables to zero, and initializing system variables.

It then starts the communication protocols for each serial port, according to the stored
values in the EEPROM (or the standard values on a SERVICE boot). If your application
program never uses the communication protocols, some or all of the following commands
can be removed, to free the stack space used by the protocol tasks.1

 start_protocol(com1);
 start_protocol(com2);
 start_protocol(com3);2

 start_protocol(com4);3

The background I/O task is required for the timer functions, dial-up modem communications,
and PID controller functions to operate. If you do not intend to use these functions, you can
reduce the CPU load by changing TRUE to FALSE in the following statement:

 runBackgroundIO(TRUE);

The ladder logic interpreter is required for ladder logic programs. If you do not intend to use
ladder logic, you can reduce the CPU load by changing TRUE to FALSE in the following
statement:

 RunTarget(TRUE);

The final operation is execution of the main function. The _initcopy function copies the
initial values for initialized variables from the __INITDATA section in the program to the
variables. If there are no errors in the data then the user’s application program runs. (An
error is likely only if the program in RAM has been damaged or improperly linked.)

 if (_initcopy() == 0)
 {
 main();
 }

If the main function returns, the task is ended. First, any modem control sessions started by
the application are terminated.

 abortAllDialupApps();

Then the task is ended. This will cause all other APPLICATION tasks created by main to be
stopped as well.

 taskStatus = getTaskInfo(0);
 end_task(taskStatus.taskID);

1 Stack space is required to create additional tasks. Refer to the create_task function for more

information.
2 com3 is used only in the SCADAPack and SCADAPack PLUS controllers.
3 com4 is used only in the SCADAPack LIGHT and SCADAPack PLUS controllers.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

12

Data Storage
All non-initialized variables (local and global) are initialized to zero on program startup by the
Microtec C Compiler. The I/O database is the only section of memory that is not initialized to
zero on startup. Data stored in the I/O database is maintained when power to the controller
is lost, and remains until the controller is initialized from the ISaGRAF program.

In most cases the I/O database provides adequate space for data storage. However, if
additional non-initialized memory is required, for example for an array of custom data
structures, an non-initialized section of memory can be created as shown in the example
below.

/* --
datalog.c

This file contains the global variable definitions for a datalogger
database.

These global variables are placed in a non-initialized section
called "savedata". All data in these variables will be maintained
over powerup.
-- */
#include <datalog.h>

/* define a non-initialized section called savedata */
#pragma option -NZsavedata
#pragma option -Xp

/* Global variable definitions */

/* log index */
unsigned logIndex;

/* log database */
struct dataLog logData[DATA_LOG_SIZE];

Any variable defined in this file datalog.c will be placed in the non-initialized section
arbitrarily named savedata. Code operating on these variables should be placed in a
separate file, which references these global variables through external definitions placed in a
header file (e.g. datalog.h).

The #pragma option directive is documented in the Microtec MCCM77 Documentation
Set.

Compiling Source Code
The C Compiler converts source code into object files. The basic command line and options
required to compile code for the controller are:

mccm77 -v -nQ -Ml -c filename.c

A complete description of the command line options is given in the Microtec MCCM77 User’s
Guide. The options used here are:

Option Description
-v Issue warnings for features in source file. This option allows you to

detect potential errors in your source code before running the program.
-nQ Do not suppress diagnostic messages. This option provides additional

warnings that allow you to detect potential errors in your source code
before running the program.

-Ml Compile for large memory model (note that the character following the

ISaGRAF C Tools User and Reference Manual
May 8, 2007

13

M is a lower case ell).
-c Compiler output is an object file.

The following options may be useful.

Option Description
-Jdir Specify the directory containing the standard include files. Adding -

Jc:\telepace\ctools\520x to the command line allows you to
locate your application program files in a different directory. This helps
in organizing your files if you have more than one application program.

-O Enable standard optimizations. This produces smaller and faster
executable code.

-Ot Optimize in favor of execution time rather than code size where a
choice can be made.

-nOc Pop the stack after each function call. This increases code size and
execution time. This option should only be used if there is a large
number of consecutive function calls in your program.

A large number of consecutive calls requires a large stack allocation
for a task. Since the number of stack blocks is limited, using this option
can reduce the stack requirements for a task. See the description for
the create_task function for more information.

Each module in an application should be compiled to produce an object file. The object files
are then linked together to form an executable program.

Example
The following commands are required to compile the program described in the previous
sections.

mccm77 -v -nQ -Ml -c main.c
mccm77 -v -nQ -Ml -c func1.c
mccm77 -v -nQ -Ml -c func2.c

This produces three output files: main.obj; func1.obj and func2.obj. In the next
section these object files will be combined into an executable program.

Linking Object Files
The linker converts object files and object file libraries into an executable program. The
basic command line and options to link a program are:

lnkm77 -c filename.cmd

Controller programs can execute from RAM, Flash or ROM. The linker command file
determines the location of the program.

RAM Based Applications
A sample linker command file for a RAM based program is appram.cmd located in the
telepace\ctools\520x directory.

The file begins by specifying the location and order of memory sections. The far_appcode
section is the first section in all controller C programs. It contains the start-up code that calls
the main() function. In a RAM based program, the start-up code is located at the start of C
application program RAM. This address is fixed at 00400000h.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

14

The order commands specify the order of the sections. The sections are grouped so all the
code and static data sections are first. The variable data sections follow. The heap is the last
section. It is allowed to grow from the end of the program data to the end of memory (see
Start Up Function Structure section for more information).

The sections may be rearranged, and new sections added, according to the following rules:

• The far_appcode section must be first in the order listing.

• All code sections must follow the far_appcode section.

• The far_endcode section must be the last code section.

• All data sections must follow the code sections.

• The heap section must be last in the order listing.
; --
; Specify location and order of memory sections
; --
sect far_appcode = 00400000h
order far_appcode, far_code, (CODE), const
order strings, literals, __INITDATA, far_endcode
order far_zerovars, far_initvars, (DATA), heap

The next section of the command file creates initialized data sections. All variables
in the specified section are initialized at start-up of the program. The linker creates a
copy of the data in these sections and stores it in the __INITDATA section.
; --
; Create initialized variables section
; --
initdata far_initvars

The next section of the command file lists the application program object modules (files) to
be included in the program. You may also include libraries of functions you create here. The
sample command file includes one object module: app.obj.

; --
; Load application program object modules
; --
load app

The next section of the command file lists the start-up routines and standard libraries to be
included. There are three object modules and two libraries:

Module Description
Appstart.obj This file contains the application program start up routine

(see Program Architecture section above). If you modify the
start-up routine for a particular application, be sure to specify
the path to the modified routine.

Romfunc.obj This file contains addresses of the jump table for calling
functions in the operating system ROM. Only the symbols
are loaded as only the addresses are needed.

Ctools.lib This is the C Tools library, which contains C Tools functions
not found in the operating system ROM.

cm77islf.lib This is the standard Microtec floating point library.
cm77islc.lib This is the standard Microtec function library.

; --
; Load start up and library routines
; --
load c:\telepace\ctools\520x\appstart

ISaGRAF C Tools User and Reference Manual
May 8, 2007

15

load_symbols c:\telepace\ctools\520x\romfunc
load c:\telepace\ctools\520x\ctools.lib
load c:\mccm77\cm77islf.lib
load c:\mccm77\cm77islc.lib

The final section of the command file specifies the output file format. The listmap
command specifies what information is to be included in the map file. Refer to the Microtec
manuals for more information on map files.

The format command specifies the executable output will be in Motorola S2 record format.
The ISaGRAF C Program Loader requires this format.

; --
; Specify output file formats and options
; --
listmap nopublics, nointernals, nocrossref
format S2

Example
The standard command file must be modified to link the application described in the
previous example. Copy the appram.cmd file to myapp.cmd. Modify the application object
modules section to read:

; --
; Load application program object modules
; --
load main
load func1
load func2

Link the file with the command
lnkm77 -c myapp.cmd

This will produce one output file: myapp.abs. The next step is to load it into the controller
using the ISaGRAF C Program Loader.

Controller Initialization
You should initialize the memory of the controller when beginning a new programming
project or when you wish to start from default conditions. It is not necessary to initialize the
controller before every program load.

To initialize the controller, first perform a SERVICE boot. A SERVICE boot preserves
programs and data in nonvolatile RAM, but does not start the programs running. Default
communication parameters are used.

To perform a service boot:

• Remove power from the controller.

• Press and hold the LED POWER switch.

• Apply power to the controller.

• Wait until the STAT LED on the top of the board turns on.

• Release the LED POWER switch.

Second, initialize the program and data memory in the controller. A new controller will
require all initializations be performed. Selected initializations can be performed on a
controller that is in use.

• Run the ISaGRAF program under Microsoft Windows.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

16

• Connect the PC to the controller with the appropriate serial cable (null modem).

• From the Tools, Controller menu, select the Initialize command.

• Select all options: Erase IEC 1131 Application, Erase C Program, Initialize Controller.

• Click on the OK button.

Loading Programs into RAM
The C Program Loader dialog transfers executable files from a PC to the controller.

To load a program into RAM:

• Initialize the controller (see Controller Initialization section above).

• Load the program into the controller:

• Run the ISaGRAF program.

• From the Controller menu, select the C Program Loader command.

• Enter the executable (.abs) file in the edit box for the C Program file name.

• Select the C Program write option and any other write options desired.

• Click on the Write button. The file will be downloaded.

A checksum is calculated for the complete C program. The checksum is verified each time
the program is run. This prevents a damaged program from running.

Executing Programs
C application programs are executed when a run program command is received from the
ISaGRAF C Program Loader; or power is applied to the controller (except when a SERVICE
boot is performed).

To start a program from the program loader:

• Run the ISaGRAF program.

• From the C Program Loader dialog, click on the Run button to execute the program.

The controller will execute either the program in RAM or the program in ROM. It chooses the
program to execute in the following order:

• C application program in RAM;

• C application program in ROM;

• no C application (standard start-up sequence for other components).

ISaGRAF C Tools User and Reference Manual
May 8, 2007

17

Real Time Operating System
The real time operating system (RTOS) provides the programmer with tools for building
sophisticated applications. The RTOS allows pre-emptive scheduling of event driven tasks
to provide quick response to real-world events. Tasks multi-task cooperatively. Inter-task
communication and event notification functions pass information between tasks. Resource
functions facilitate management of non-sharable resources.

Task Management
The task management functions provide for the creation and termination of tasks. Tasks are
independently executing routines. The RTOS uses a cooperative multi-tasking scheme, with
pre-emptive scheduling of event driven tasks.

The initial task (the main function) may create additional tasks. The RTOS supports up to 16
tasks. There are 5 task priority levels to aid in scheduling of task execution.

Task Execution
SCADAPack controllers can execute one task at a time. The RTOS switches between the
tasks to provide parallel execution of multiple tasks. The application program can be event
driven, or tasks can execute round-robin (one after another).

Task execution is based upon the priority of tasks. There are 5 priority levels. Level 0 is
reserved for the null task. This task runs when there are no other tasks available for
execution. Application programs can use levels 1 to 4. The main task is created at priority
level 1.

Tasks that are not running are held in queues. The Ready Queue holds all tasks that are
ready to run. Event queues hold tasks that are waiting for events. Message queues hold
tasks waiting for messages. Resource queues hold tasks that are waiting for resources. The
envelope queue holds tasks that are waiting for envelopes.

Priority Inversion Prevention
When a higher priority task, Task H, requests a resource, which is already obtained by a
lower priority task, Task L, the higher priority task, is blocked until Task L releases the
resource. If Task L is unable to execute to the point where its releases the resource, Task H
will remain blocked. This is called a Priority Inversion.

To prevent this from occurring, the prevention method known as Priority Inheritance has
been implemented. In the example already described, the lower priority task, Task L, is
promoted to the priority of Task H until it releases the needed resource. At this point Task L
is returned to its original priority. Task H will obtain the resource now that it is available.

Note that this does not prevent deadlocks that occur when each task requests a resource
that the other has already obtained. This “deadly embrace” is a design error in the
application program.

Task Management Functions
There are five RTOS functions for task management. Refer to the Function Specification
section for details on each function listed.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

18

create_task Create a task and make it ready to execute.

end_task Terminate a task and free the resources and envelopes allocated to
it.

end_application Terminate all application program type tasks. This function is used by
communication protocols to stop the application program prior to
loading new code.

installExitHandler Specify a function that is called when a task is ended with the
end_task or end_application functions.

getTaskInfo Return information about a task.

Task Management Macros
The ctools.h file defines the following macros used for task management. Refer to the C
Tools Macros section for details on each macro listed.

RTOS_PRIORITIES Number of RTOS task priorities.

RTOS_TASKS Number of RTOS tasks.

STACK_SIZE Size of the machine stack.

TS_EXECUTING Task status indicating task is executing

TS_READY Task status indicating task is ready to execute

TS_WAIT_RESOURCE Task status indicating task is blocked waiting for a resource

TS_WAIT_ENVELOPE Task status indicating task is blocked waiting for an envelope

TS_WAIT_EVENT Task status indicating task is blocked waiting for an event

TS_WAIT_MESSAGE Task status indicating task is blocked waiting for a message

Task Management Structures
The ctools.h file defines the structure Task Information Structure for task management
information. Refer to the C Tools Structures and Types section for complete information
on structures and enumeration types.

Resource Management
The resource management functions arbitrate access to non-sharable resources. These
resources include physical devices such as serial ports, and software that is not re-entrant.

The RTOS defines nine system resources, which are used by components of the I/O drivers,
memory allocation functions and communication protocols.

An application program may define other resources as required. Care must be taken not to
duplicate any of the resource numbers declared in ctools.h as system resources.

Resource Management Functions
There are three RTOS functions for resource management. Refer to the Function
Specification section for details on each function listed.

request_resource Request access to a resource and wait if the resource is not
available.

poll_resource Request access to a resource. Continue execution if the resource is
not available

ISaGRAF C Tools User and Reference Manual
May 8, 2007

19

release_resource Free a resource for use by other tasks.

IO_SYSTEM Resource
The IO_SYSTEM resource regulates access to all functions using the I/O system. C
application programs, ladder logic programs, communication protocols and background I/O
operations share the I/O system. It is imperative the resource is obtained to prevent a
conflict, as protocols and background operations are interrupt driven. Do not retain control of
the resource for more that 0.1 seconds, or background operations will not execute properly.

DYNAMIC_MEMORY Resource
The DYNAMIC_MEMORY resource regulates access to all memory allocation functions.
These functions allocate memory from the system heap. The heap is shared amongst all
tasks. The allocation functions are non-reentrant.

The DYNAMIC_MEMORY resource must be obtained before using any of the following
functions.

calloc allocates data space dynamically

free frees dynamically allocated memory

malloc allocates data space dynamically

realloc changes the size of dynamically allocated space

AB_PARSER Resource
This resource is used by the DF1 communication protocol tasks to allocate access to the
common message parser for each serial port. This resource is of no interest to an
application program. However, an application program may not use the resource number
assigned to it.

MODBUS_PARSER Resource
This resource is used by Modbus communication protocol drivers to allocate access to the
common message parser by tasks for each serial port. This resource is of no interest to an
application program.

Resource Management Macros
The ctools.h file defines the following macros used for resource management. Refer to the
C Tools Macros section for details on each macro listed.

AB_PARSER DF1 protocol message parser.

COM1_DIALUP Resource for dialing functions on com1.

COM2_DIALUP Resource for dialing functions on com2.

COM3_DIALUP Resource for dialing functions on com3.

COM4_DIALUP Resource for dialing functions on com4.

DYNAMIC_MEMORY Memory allocation functions.

HART HART modem resource.

IO_SYSTEM I/O system hardware functions.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

20

MODBUS_PARSER Modbus protocol message parser.

RTOS_RESOURCES Number of RTOS resource flags.

Inter-task Communication
The inter-task communication functions pass information between tasks. These functions
can be used for data exchange and task synchronization. Messages are queued by the
RTOS until the receiving task is ready to process the data.

Inter-task Communication Functions
There are five RTOS functions for inter-task communication. Refer to the Function
Specification section for details on each function listed.

send_message Send a message envelope to another task.

receive_message Read a received message from the task's message queue or wait if
the queue is empty.

poll_message Read a received message from the task's message queue. Continue
execution of the task if the queue is empty.

allocate_envelope Obtain a message envelope from free pool maintained by the RTOS,
or wait if none is available.

deallocate_envelope Return a message envelope to the free pool maintained by the
RTOS.

Inter-task Communication Macros
The ctools.h file defines the following macros used for inter-task communication. Refer to
the C Tools Macros section for details on each macro listed.

MSG_DATA Specifies the data field in an envelope contains a data value.

MSG_POINTER Specifies the data field in an envelope contains a pointer.

RTOS_ENVELOPES Number of RTOS envelopes.

Inter-task Communication Structures
The ctools.h file defines the structure Message Envelope Structure for inter-task
communication information. Refer to the C Tools Structures and Types section for
complete information on structures and enumeration types.

Event Notification
The event notification functions provide a mechanism for communicating the occurrence
events without specifying the task that will act upon the event. This is different from inter-
task communication, which communicates to a specific task.

Multiple occurrences of a single type of event are queued by the RTOS until a task waits for
or polls the event.

Event Notification Functions
There are four RTOS functions for event notification. Refer to the Function Specification
section for details on each function listed.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

21

wait_event Wait for an event to occur.

poll_event Check if an event has occurred. Continue execution if one has not
occurred.

signal_event Signal that an event has occurred.

interrupt_signal_event Signal that an event has occurred from an interrupt handler. This
function must only be called from within an interrupt handler.

There are two support functions, which are not part of the RTOS that may be used with
events.

startTimedEvent Enables signaling of an event at regular intervals.

endTimedEvent Terminates signaling of a regular event.

Event Notification Macros
The ctools.h file defines the following macro used for event notification. Refer to the C
Tools Macros section for details.

RTOS_EVENTS Defines the number of available RTOS events.

System Events
The RTOS defines events for communication port management and background I/O
operations. An application program may define other events as required. Care must be
taken not to duplicate any of the event numbers declared in ctools.h as system events.

BACKGROUND This event triggers execution of the background I/O routines. An application
program cannot use it.

COM1_FREE This event is used by the serial timeout routine for the com1 port. An
application program cannot use it.

COM1_RCVR This event is used by communication protocols to signal a character or
message received on com1. It can be used in a custom character handler
(see install_handler).

COM2_FREE This event is used by the serial timeout routine for the com2 port. An
application program cannot use it.

COM2_RCVR This event is used by communication protocols to signal a character or
message received on com2. It can be used in a custom character handler
(see install_handler).

COM3_RCVR This event is used by communication protocols to signal a character or
message received on com3. It can be used in a custom character handler
(see install_handler).

COM4_RCVR This event is used by communication protocols to signal a character or
message received on com4. It can be used in a custom character handler
(see install_handler).

NEVER This event is guaranteed never to occur. It can be used to disable a task by
waiting for it to occur. However, to end a task it is better to use end_task.
This frees all resources and stack space allocated to the task.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

22

Error Reporting
Sharable I/O drivers to return error information to the calling task use the error reporting
functions. These functions ensure that an error code generated by one task is not reported
in another task. The errno global variable used by some functions may be modified by
another task, before the current task can read it.

Error Reporting Functions
There are two RTOS functions for error reporting. Refer to the Function Specification
section for details on each function listed.

check_error Check the error code for the current task.

report_error Set the error code for the current task.

Error Reporting Macros
The ctools.h file defines the following macro used for error reporting. Refer to the C Tools
Macros section for details.

NO_ERROR Error code indicating no error has occurred.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

23

SCADAPack Task Architecture
The diagram shows the tasks present in the SCADAPack controller.

Com1 Protocol Task

Executes w
sage event

Processes
• messag

Priority = 3

hen mes-
 occurs

:
e

Background I/O Task

Executes every 0.1 s

Processes:
• software timers
• dialup modem
• PID controllers

Priority = 4

Timer Interrupt

240 Hz Interrupt

Processes:
• Ladde

Optional User Tasks

Created by user from
the Main Task.

rs timers
• jiffy timer
• watchdog timer
• timed events

Priority = h/w interrupt

Priority = 1 to 4

Com2 Protoc Taskol Com3 Protoc skol Ta Com4 Protocol Task

Executes when mes-
sage event occurs

Executes when mes-
sage event occurs

Executes when mes-
sage event occurs

Processes: Processes: Processes:
 message• message • message •

Priority = 3 Priority = 3 Priority = 3

Ladders &

Task loop

while (TRU
{
 request

 read da
 (Registe

 if progr

 write da
 (Registe

 release
 release essor(
}

Priority = 1

Main Task (typical)

 request_resource(IO_SYSTEM);

 release_resource(IO_SYSTEM);

 I/O Scan Task

runs continuously: Task loop runs continuously:

E) while (TRUE)
{

_resource(IO_SYSTEM);

ta from input modules to I/O database functions requiring IO_SYSTEM resource
r Assignment)

am is in RUN mode
execute ladder logic program functions not requiring IO_SYSTEM resource

ta from I/O database to output modules release_processor();
r Assignment)

ource(IO_S

}

_res
oc

YSTEM);
_pr);

Priority = 1

The hig
interrupt handlers perform their functions tr
important to application programs, because it updates several timers that can be used in
applicat

The background I/O task is the highest priority task in the system. It processes software
timers,

There is tocol
tasks w
complet
transmit a response when needed. Protocol tasks may be disabled and replaced with
protoco ks fr

The Ladder Logic and I/O Scan task executes the Ladder Logic program and performs an
I/O scan based on the register assignment. This task is the same priority as the main user
applicat

he rity routines that execute are hardware interrupt handlers. Most hardware
ansparently. The Timer Interrupt handler is

st prio

ion programs. It also triggers the background I/O task.

PID controllers and dialup modem control routines.

 one protocol task for each serial port where a protocol is enabled. The pro
ait for an event signaled by an interrupt handler. This event is signaled when a

 message is received. The protocol tasks process the received message and e

l t om the application program. as

ion . task

ISaGRAF C Tools User and Reference Manual
May 8, 2007

24

The main task is the central task of the user
the use ypica er Logic and I/O Scan task. It
may sta other

RTOS Example Application Program
The foll ing pr e RTOS functions. It creates several
simple t is a C language function that has
as its body an infinite loop so it continues to execute forever.

The mai rity than main. The
auxili main main
with oth

The aux e other tasks of its
priority. plify the example.

The ech a serial port, then echoes it back
out the ceived to allow lower priority tasks
to execu andler function – signalCharacter – that signals an
event each time a character is received. This function is hooked into the receiver interrupt
handler

The execution of this program is explained in the Explanation of Task Execution section.

Wayne Johnston November 10, 1998
--- */

f the

---------------------------- */

clude <mriext.h>

-

_RECEIVED 10

---- ------------------------

racter is
 rece handler.

-------------------- */

d character, unsigned error)

 If t eived */

CTER_RECEIVED);

 /* Prevent compiler unused variables warning (generates no code) */
 character;
}

/* --

application. It performs the functions required by
he Laddr. T lly, it executes at the same priority as t

rt user tasks if needed.

ow ogram is used in the explanation of th
as t demonstrate how tasks executeks tha . A task

n task creates two tasks. The echoData task is higher prio
ame priority as . The task then executes round robin ary task is the s

er tasks of the same priority.

iliary task is a simple task that executes round robin wi
 for task switching is shown to sim

th th
 Only the code necessary

oData task waits for a character to be received on
port. It waits for the event of the character being re
te. It installs a character h

 for the serial port.

/* --
 SCADAPack Real Time Operating System Sample
 Copyright (c) 1998, Control Microsystems Inc.

 Version History

version 1.00

* ---- ersion/ V 1.00 --

 This rogram p creates several simple tasks for demonstration o

 system. functionality of the real time operation
------------------- ---------------------

in#

#include <stdio.h>
 "ctools,h" #include

/* ---
 Constants
 -- */

#define CHARACTER

* / --

 signalCharacter

 The s ignalCharacter function signals an event when a cha

nterrupt ived. This function must be called from an i
------------------------------------ ------------

ignevoid signalCharacter(uns

 {
/* here was no error, signal that a character was rec

 if (error == 0)
 {

_signal_event(CHARA interrupt
 }

ISaGRAF C Tools User and Reference Manual
May 8, 2007

25

 echoData

 The echoData function is a task that waits for a character
 to be received on com6 and echoes the character back. It installs
 a character handler for com6 to generate events on the reception
 of characters.
 --

*/

SABLE;
 portSettings.flow_tx = DISABLE;

tings.type = RS232;
tings.timeout = 600;

 install_handler(com6, signalCharacter);

 while (TRUE)
 {
 /* Wait for a character to be received */
 wait_event(CHARACTER_RECEIVED);

 /* Echo the character back */
 character = fgetc(com6);
 fputc(character, com6);
 }
}

/* --
 auxiliary

action
 required by the program. It does not have specific function so

l time operating system features are clearer.
-- */

 {
 /* ... add application specific code here ... */

riority to run */
 release_processor();

}

and one at

 /* Create serial communication task */

void echoData(void)
{
 struct prot_settings protocolSettings;
 struct pconfig portSettings;
 int character;

 3

 /* Disable communication protocol */
 get_protocol(com6, &protocolSettings);
 protocolSettings.type = NO_PROTOCOL;
 set_protocol(com6, &protocolSettings);

 /* Set serial communication parameters */
 portSettings.baud = BAUD9600;
 portSettings.duplex = FULL;
 portSettings.parity = NONE;
 portSettings.data_bits = DATA8;
 portSettings.stop_bits = STOP1;
 portSettings.flow_rx = DI

 portSet
 portSet
 set_port(com6, &portSettings);

 /* Install handler for received character */

4 9
 8

 The auxiliary function is a task that performs some

 that the rea

void auxiliary(void)
{
 while (TRUE) 7

 /* Allow other tasks of this p

}

/* --
 main

 This function creates two tasks: one at priority three
 priority 1 to demonstrate the functions of the RTOS.
 -- */

void main(void)
{

1
 2

ISaGRAF C Tools User and Reference Manual
May 8, 2007

26

 create_task(echoData, 3, APPLICATION, 3);

 /* Create a task - same priority as main() task */
 create_task(auxiliary, 1, APPLICATION, 2);

 while (TRUE)
 {
 /* ... add application specific code here ... */

 /* Allow other tasks of this priority to execute */
 release_processor();
 }
}

Explanation of Task Execution
SCADAPack controllers can execute one task at a time. The Real Time Operating System
(RTOS) ultiple tasks. The
application program can be event driven, or
another). This program illustrates both types of execution.

 upon the priority of tasks. There are 5 priority levels. Level 0 is

ams can use levels 1 to 4. The main task is created at priority

 all tasks that are
ready to run. Event queues hold tasks that are waiting for events. Message queues hold
tasks waiting for messages. Resource queues hold tasks that are waiting for resources. The
envelop

The execution of the tasks is illustrated by examining the state of the queues at various
hese points are indicated on the program listing above. The

his point occurs just before the main task begins. The main task has not been created by
the RTOS. The null task has been created, but is not running. No task is executing.

5

6

 switches between the tasks to provide parallel execution of m
 tasks can execute round-robin (one after

Task execution is based
reserved for the null task. This task runs when there are no other tasks available for
execution. Application progr
level 1.

Tasks that are not running are held in queues. The Ready Queue holds

e queue holds tasks that are waiting for envelopes.

points in the program. T
examples show only the Ready queue, the Event 10 queue and the executing task. These
are the only queues relevant to the example.

Execution Point 1
T

Running TaskEvent 10 QueueReady Queue

4

3

2

1

none4

3

2

1

null()0 0

e Status before Execution of main Task Figure 1: Queu

Execution Point 2
This point occurs just after the creation of the main task. It is the running task. On the next
instruction it will create the echoData task.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

27

Running TaskEvent 10 QueueReady Queue

4

Execution Point 3
This point occurs just after the echoData task is created. The echoData task is higher
priority than the main task so it is made the running task. The main task is placed into the
ready queue. It will execute when it becomes the highest priority task.

The ech ial port handler function
signalCharacter nd the task until the event
occurs.

 function will generate an event each time a character is received

the

The highest priority task on the ready queue was the main task. It is now running. On the
next instruction it will create another task at the same priority as main.

oData task initializes the serial port and installs the ser
. It will then wait for an event. This will suspe

The signalCharacter
without an error.

Execution Point 4
This point occurs just after the echoData task waits for event 10. It has been placed on
event queue for event 10.

3

2

1

0

main()

null()

4

3

2

1

0

Figure 2: Queue Status at Start of main Task

Running TaskEvent 10 QueueReady Queue

4

3

2

1

0

echoData()

main()

null()

4

3

2

1

0

Figure 3: Queue Status after Creation of echoData Task

ISaGRAF C Tools User and Reference Manual
May 8, 2007

28

Running TaskEvent 10 QueueReady Queue

4

3

2

1

0

main()

echoData()

null()

4

3

2

1

0

Figure 4: Queue Status After echoData Task Waits for Event

Execution Point 5
This point occurs just after the creation of the auxiliary task. This task is the same priority as
the main task. Therefore the main task remains the running task. The auxiliary task is
ready to run and it is placed on the Ready queue.

Execution Point 6
This point occurs just after the main task releases the processor, but before the next task is
selected to run. The main task is added to the end of the priority 1 list in the Ready queue.

On the next instruction the RTOS will select the highest priority task in the Ready queue.

Running TaskEvent 10 QueueReady Queue

4

3

2

1

0

echoData()

main()

auxiliary()

null()

4

3

2

1

0

Figure 5 Queue Status after Creation of auxiliary Task

ISaGRAF C Tools User and Reference Manual
May 8, 2007

29

Running TaskEvent 10 QueueReady Queue

4

3 echoData()

none4

3

22

1

0

main()

null()

1

0

auxiliary()

Figure 6: Queue Status After main Task Releases Processor

Execution Point 7
This point is just after the auxiliary task has started to run. The main and auxiliary

ther.

 signalCharacter function
nt queue for the event, and makes

the highest priority task ready to execute. In this case the echoData task is made ready.

 task is higher priority than the executing task. Since

e. The main task will execute before it at
the next task switch.

tasks will continue to alternate execution, as each task releases the processor to the o

Running TaskEvent 10 QueueReady Queue

Execution Point 8
This point occurs just after a character has been received. The
executes and signals an event. The RTOS checks the eve

The RTOS then determines if the new
the echoData task is higher priority than the auxiliary task, a task switch occurs. The
auxiliary task is placed on the Ready queue. The echoData task executes.

Note the position of auxiliary in the Ready queu

4

3

2

echoData()

auxiliary()4

3

2

main()1 1

nullTask()0 0

ue Status at Start of auxiliary Task Figure 7: Que

Running TaskEvent 10 QueueReady Queue

4 echoData()4

3 3

2 2

 ma auxiliary()1 1

null()0 0

in()

Figure 8: Queue Status after Character Received

ISaGRAF C Tools User and Reference Manual
May 8, 2007

30

Execution Point 9
This point occurs just after the echoData task waits for the character-received event. It is
placed on the event 10 queue. The highest priority task on the ready queue – main – is
given the processor and executes.

Running TaskEvent 10 QueueReady Queue

4

3

2

1

0

echoData()

main()

a xiliary()

4

3

2

1u

null() 0

Figure 9: Queue Status after echoData Waits for Event

ISaGRAF C Tools User and Reference Manual
May 8, 2007

31

Ov
Fun

s

 Tools Structures and Types section of this manual for detailed explanations of

Controller Operation
SaGRAF functions relating to

lication start up task. Refer to the
tion

utine.

ult sta

s

ies

Structure for use with the
startup_task function. Refer to the C Tools Structures and Types section for complete

s.

tus information. Refer to the

ogram execution status.

erview of Programming
ctions

This section of the User Manual provides and overview of the Functions, Macros, Structure
and Types available to the user. The Functions, Macros, Structure and Types overview i
separated into sections of related functions. Refer to the Function Specification, C Tools
Macros and C
the Functions, Macros, Structure and Types described here.

This section of the manual provides an overview of the I
controller operation. These functions are provided in addition to the run-time library supplied
with the Microtec C compiler.

Start Up Functions
There are two library functions related to the system or app
Function Specification sec for details on each function listed.

startup_task Returns the address of the system start up ro

system_start The defa rt up routine.

Start Up Macros
The ctools.h file defines the following macros for use with the start up task. Refer to the C
Tools Macros section for detail on each macro listed.

STARTUP_APPLICATION Specif the application start up task.

STARTUP_SYSTEM Specifies the system start up task.

Start Up Task Info Structure
The ctools.h file defines the structure Start Up Information

information on structures and enumeration type

Program Status Information Functions
There are five library functions related to controller program sta
Function Specification section for details on each function listed.

applicationChecksum Returns the application program checksum.

getBootType Returns the controller boot up status.

getProgramStatus Returns the application program execution status.

setBootType Sets the controller boot up status.

setProgramStatus Sets the application pr

ISaGRAF C Tools User and Reference Manual
May 8, 2007

32

Program Status Information Macros
The ctools.h file defines the following macros for use with controller program information.
Refer to the C T

ools Macros section for details on each macro listed.

ntroll e.

ntroll .

rted in SERVICE mode.

nction
 section for details on the function listed.

ll nformation. Refer to
c

oto

lle

FT_TELEPACE TelePACE firmware type

troller type

Function
 details.

ller firmware version information.

.
d.

.

field.

NEW_PROGRAM Application program is newly loaded.

PROGRAM_EXECUTED Application program has been executed.

COLD_BOOT Co er started in COLD BOOT mod

RUN Co er started in RUN mode

SERVICE Controller sta
REENTRY_BOOT

Controller Information Functions
There is one library function related to controller information. Refer to the Fu
Specification

getControllerID Returns the controller ID string.

Controller Information Macros
The ctools.h file defines the fo owing macros for use with controller i
the Function Specification se tion for details on each macro listed.

AB_PROTOCOL DF1 pr col firmware option

BASE_TYPE_MASK Contro r type bit mask

FT_NONE Unknown firmware type

FT_ISAGRAF ISaGRAF firmware type

GASFLOW Gas Flow calculation firmware option

RUNS_2 Set if Gas Flow supports two meter runs

SCADAPACK SCADAPack controller

SCADAPACK_LIGHT SCADAPack LIGHT controller

SCADAPACK_PLUS SCADAPack PLUS controller

UNKNOWN_CONTOLLER Unknown con

Firmware Version Information Functions
There is one function related to the controller firmware version. Refer to the
Specification section for

getVersion Returns contro

Firmware Version Information Macros
The ctools.h file defines the following macros for use with the firmware version function
Refer to the C Tools Macros section for details on each macro liste

VI_DATE_SIZE Number of characters in the version information date field

VI_STRING_SIZE Number of characters in the version information copyright

ISaGRAF C Tools User and Reference Manual
May 8, 2007

33

Firmware Version Information Structure

es section for

Sleep Mode Functions

SCADAPack controllers enter the sleep mode under control of the application program.
l for further information on controller

 mode functions. Refer to the
 section for details on each macro listed.

WS_COUNTER_0_OVERFLOW Bit mask to enable counter 0 overflow as wake up source

o enable counter 1 overflow as wake up source

WS_LED_POWER_SWITCH

WS_NONE

WS_REAL_TIME_CLOCK Bit mask to enable real time clock as wake up source

ed wake up source

Under normal operation, the SCADAPack 350 operates on a CPU clock frequency of 32
ack 350 controller is capable of operating on a reduced CPU
own as Reduced Power Mode.

e performed by the application program.

lows for the

l speed (32 MHz) to reduced speed (8 MHz).

The ctools.h file defines the structure Version Information Structure for controller
firmware version information. Refer to the C Tools Structures and Typ
complete information on structures and enumeration types.

SCADAPack controllers are capable of extremely low power operation when in sleep mode.

Refer to the SCADAPack System Hardware Manua
sleep mode.

There are three library functions related to sleep mode. Refer to the Function Specification
section for details on each function listed.

getWakeSource Gets wake up sources

setWakeSource Sets wake up sources

sleep Put controller into sleep mode

Sleep Mode Macros
The ctools.h file defines the following macros for use in sleep
C Tools Macros

SLEEP_MODE_SUPPORTED Defined if sleep function is supported

WS_ALL All wake up sources enabled

WS_COUNTER_1_OVERFLOW Bit mask t

WS_COUNTER_2_OVERFLOW Bit mask to enable counter 2 overflow as wake up source

WS_INTERRUPT_INPUT Bit mask to enable interrupt input as wake up source

Bit mask to enable LED power switch as wake up source

No wake up source enabled

WS_UNDEFINED Undefin

Power Management Functions

MHz. However, the SCADAP
clock frequency of 8 MHz, kn

Further power savings can be realized on the SCADAPack 350 controller by disabling the
LAN or USB peripheral and host ports. Activation of Reduced Power mode as well as the
deactivation of the communication ports can b

The library functions associated with the aforementioned power management al
following:

• The CPU speed can be changed from ful

• The LAN port can be enabled or disabled

• The USB peripheral port can be enabled or disabled

ISaGRAF C Tools User and Reference Manual
May 8, 2007

34

• The USB host port can be enabled or disabled.

The Power Mode LED blinks once a second when the controller is operating in Reduced

wer mode

setPowerMode Sets the power mode

.
n for details on each macro listed.

HERAL_EN led

HERAL_DIS led

 system

N boot

tables

PROM. Refer to the
isted.

 EEPROM

load Reads configuration data from EEPROM into RAM

Power Mode.

The library functions associated with the power management features are listed below.
Refer to the Function Specification section for details on each function listed.

getPowerMode Gets the current po

Power Management Macros
The ctools.h file defines the following macros for use in the power management functions
Refer to the C Tools Macros sectio

PM_CPU_FULL The CPU is set to run at full speed

PM_CPU_REDUCED The CPU is set to run at a reduced speed

PM_CPU_SLEEP The CPU is set to sleep mode

PM_LAN_ENABLED The LAN is enabled

PM_LAN_DISABLED The LAN is disabled

PM_USB_PERIP ABLED The USB peripheral port is enab

PM_USB_PERIP ABLED The USB peripheral port is disab

PM_USB_HOST_ENABLED The USB host port is enabled

PM_USB_HOST_DISABLED The USB host port is disabled

PM_UNAVAILABLE The status of the device could not be read

Configuration Data EEPROM Functions
The EEPROM is nonvolatile memory used to store configuration parameters. The
application program cannot store application data into this memory. It can cause the
configuration parameters to be written, using the save function.

The contents of the EEPROM are copied to RAM under two conditions: during a RU
of the controller; and when the application program executes the load function.

The following data is loaded on a RUN boot; otherwise default information is used:

• serial port configuration

• protocol configuration tables

• enable store and forward settings

• LED power settings

• mask for wake-up sources

• execution period on power-up for each PID

There are two library functions related to the configuration data EE
Function Specification section for details on each function l

Save Writes configuration data from RAM to

ISaGRAF C Tools User and Reference Manual
May 8, 2007

35

Configuration Data EEPROM Macros

 on RUN type boots only.

 OM in the controller.

compatible. Refer to the on section for details on each function listed.

terminates read

d

ioBusStart s an I2C bus START condition

ioBusWriteByte Writes one byte to an I2C slave device

ssage to an I2C slave device

e following macros for use with I/O Bus Communication. Refer to

d WriteStatus. Refer to the

ing
tine,

ioRefresh Refresh outputs with internal data

The ctools.h file defines the following macros for use with the configuration data EEPROM.
Refer to the C Tools Macros section for details on each macro listed.

EEPROM_EVERY EEPROM section loaded to RAM on every CPU reboot.

EEPROM_RUN EEPROM section loaded to RAM

EEPROM_SUPPORTED If defined, indicates that there is an EEPR

I/O Bus Communication Functions
The ctools.h file defines the following functions that access the I/O bus. The I/O bus is I2C

Function Specificati

ioBusReadByte Reads one byte from an I2C slave device

ioBusReadLastByte Reads one byte from an I2C slave device and

ioBusReadMessage Reads a message from an I2C slave device

ioBusSelectForRea Selects an I2C slave device for reading

ioBusSelectForWrite Selects an I2C slave device for writing

Issue

ioBusStop Issues an I2C bus STOP condition

ioBusWriteMessage Writes a me

I/O Bus Communication Macros
The ctools.h file defines th
the C Tools Macros section for details on each macro listed.

The ctools.h file defines the following macros.

READSTATUS enumeration type ReadStatus

WRITESTATUS enumeration type WriteStatus

I/O Bus Communication Types
The ctools.h file defines the enumeration types ReadStatus an
C Tools Structures and Types section for complete information on structures and
enumeration types.

System Functions
The ctools.h file defines the following functions for system initialization and for retriev
system information. Some of these functions are primarily used in the appstart.c rou
having limited use in an application program.

Refer to the Function Specification section for details on each function listed.

applicationChecksum Returns the application program checksum.

ioClear Clears all I/O points

ioDatabaseReset Resets the controller to default settings.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

36

ioReset Reset all I/O modules

Cont
ion to the run-

port
 Syst nual

t d the digital and analog inputs from a SCADASense DS Series.

isaRead5506Inputs d the digital and analog inputs from a 5506 I/O Module.

al and analog inputs from a 5602 I/O Module.

the C Tools Macros section for details on each macro listed.

nter

 Specifies temperatures in degrees Celsius.

mperatures in degrees Fahrenheit.

roller I/O Hardware
This section of the manual provides an overview of the ISaGRAF C Tools functions relating
to controller signal input and output (I/O). These functions are provided in addit
time library supplied with the Microtec C compiler.

Analog Input Functions
The controller sup s internal analog inputs and external analog input modules. Refer to
the SCADAPack em Hardware Ma for further information on controller analog
inputs and analog input modules.

There are several library functions related to internal analog inputs and analog input
 section for details on each function listed. modules. Refer to the Function Specification

readBattery Read the controller RAM battery voltage.

readThermistor Read the controller ambient temperature sensor.

 Read the controller internal AD converter. readInternalAD

ioRead4Ain read 4 analog inputs into I/O database.

ioRead8Ain read 8 analog inputs into I/O database.

IsaRead4202Inputs Read the digital and analog inputs from a SCADASense DR Series.

IsaRead4202DSInpu s Rea

isaRead5505Inputs Read the digital and analog inputs from a 5505 I/O Module.

Rea

isaRead5601Inputs Read the digital and analog inputs from a 5601 I/O Module.

isaRead5602Inputs Read the digit

isaRead5604Inputs Read the digital and analog inputs from 5604 I/O module.

isaRead5606Inputs Read the digital and analog inputs from 5606 I/O module.

isaReadLPInputs Read the digital and analog inputs from SCADAPack LP I/O.

isaReadSP100Inputs Read the digital and analog inputs from SCADAPack 100 I/O.

Analog Input Macros
The ctools.h file defines the following macros for use with controller analog inputs. Refer to

AD_BATTERY Internal AD channel connected to lithium battery.

AD_THERMISTOR I nal AD channel connected to thermistor.

T_CELSIUS

T_FAHRENHEIT Specifies te

T_KELVIN Specifies temperatures in degrees Kelvin.

T_RANKINE Specifies temperatures in degrees Rankine.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

37

Analog Output Functions
The controller supports external analog output modules. Refer to the SCADAPack Sy
Hardware Manual for further information on these modules.

There are three library functions relat

stem

ed to analog output modules. Refer to the Function

Write data to the digital and analog outputs of the SCADASense

tputs

 two points of the 5303 module.

DAPack 100

e

s.
ails on each function listed.

nput points on the controller board.

32 point Digital Input Module.

isaRead5505Inputs

isaRead5506Inputs Read the digital and analog inputs from a 5506 I/O Module.

l and analog inputs from a 5601 I/O Module.

om a 5602 I/O Module.

alog inputs from a 5606 I/O Module.

uts Read the digital and analog inputs from SCADAPack LP I/O.

Specification section for details on each function listed.

isaWriteAout Writes data to an analog output module.

isaWrite2Aout Write data to any 2 point analog output module.

isaWrite4Aout Write data to any 4 point analog output module.

IsaWrite4202Outputs
Series of controllers.

isaWrite5505Outputs Write configuration data to the 5505 module.

isaWrite5506Outputs Write configuration data to the 5506 module.

isaWrite5606Ou Write data to the digital and analog outputs of the 5606 module.

isaWrite5303Aout Write data to the

isaWriteLPOutputs Write data to the digital and analog outputs of the SCADAPack LP
I/O.

isaWriteSP100Outputs Write data to the digital and analog outputs of the SCA
I/O.

Digital Input Functions
The controller supports internal digital inputs and external digital input modules. Refer to th
SCADAPack System Hardware Manual for further information on controller digital inputs
and digital input modules.

There are several library functions related to digital inputs and external digital input module
Refer to the Function Specification section for det

interruptInput Read the controller interrupt input.

readCounterInput Read the status of the counter i

isaRead16Din Read any 16 point Digital input module.

isaRead32Din Read any

IsaRead4202Inputs Read the digital and analog inputs from a SCADASense 4202 DR

IsaRead4202DSInputs Read the digital and analog inputs from a SCADASense 4202 DS

Read the digital and analog inputs from a 5505 I/O Module.

isaRead5601Inputs Read the digita

isaRead5602Inputs Read the digital and analog inputs fr

isaRead5604Inputs Read the digital and analog inputs from 5604 I/O Module.

isaRead5606Inputs Read the digital and an

isaRead8Din Read any 8 point analog input module.

isaReadLPInp

ISaGRAF C Tools User and Reference Manual
May 8, 2007

38

isaReadSP100Inputs Read the digital and analog inputs from SCADAPack 100 I/O.

Digital Output Functions
gital output modules. Refer to the The controller supports external di

Hardwar
SCADAPack System

e Manual for further information on controller digital output modules.

output modules. Refer to the Function
ion section for details on each function listed.

isaWrite16Dout Write data to any 16 point Digital output module.

).

ADASense 4202 or 4203 DS.

outputs of a 5601 I/O Module.

e.

k LP

Output

and external counter modules. The counter
 count of 4,294,967,295. They roll over to 0 on the next

troller counter inputs and counter

There are three library functions re Function Specification

ler counter with or without automatic clearing of the

ioRead4Counter Read any 4 point Counter input module.

C

 of controller counter inputs.

There are several library functions related to digital
Specificat

isaWrite32Dout Writes data to any 32-point Digital Output Module at the specified
moduleAddress.

IsaWrite4202OutputsEx Write the digital output of a SCADASense 4203 DR or 4202 DR
with a digital output (Extended I/O

IsaWrite4202DSOutputs Write the digital outputs of a SC

isaWrite5601Outputs Write data to the digital outputs of a 5601 I/O Module.

isaWrite5602Outputs Write data to the digital

isaWrite5604Outputs Writes data to the digital and analog outputs of the 5604 I/O module.

isaWrite5606Outputs Writes data to the digital and analog outputs of the 5606 I/O modul

isaWrite8Dout Write data to any 8 point Digital output module.

isaWriteLPOutputs Write data to the digital and analog outputs of the SCADAPac
I/O.

isaWriteSP100 s Write data to the digital and analog outputs of the SCADAPack 100
I/O.

Counter Input Functions
The controller supports internal counters
registers are 32 bits, for a maximum
count. The counter inputs measure the number of rising inputs. Refer to the SCADAPack
System Hardware Manual for further information on con
input modules.

lated to counters. Refer to the
section for details on each function listed.

readCounter Read a control
counter register.

interruptCounter Read the controller interrupt input as a counter with or without
automatic clearing of the counter value.

Counter Input Macros
The ctools.h file defines the following macro for use with counter inputs. Refer to the
Tools Macros section for details.

LOCAL_COUNTERS Number

ISaGRAF C Tools User and Reference Manual
May 8, 2007

39

S tus LED and Output Functiota ns

TUS
s clear.

st of

he SCADAPa formation on the status
 digital output.

 the

its in controller status code.

use with the status LED and digital output.
he C Tools M cro listed.

AILURE munication failure

over of the controller module.
These switches are labeled OPTION 1,2 and 3. The option switches are user defined except

CADAPack AOUT module used. In this case option

Function

 switch states.

acros
The cto s. Refer to the C
Tools M

CLOSED

OPEN

LED I
An application program can control three LED indicators.

The RU ram. The LED can be on or
off. It remains in the last state until changed.

ce.
utput. If the error code is zero, the status

The status LED and output indicate alarm conditions. The STAT LED blinks and the
STATUS output opens when an alarm occurs. The STAT LED turns off and the STA
output closes when all alarm

The STAT LED blinks a binary sequence indicating alarm codes. The sequences consi
long and short flashes, followed by an off delay of 1 second. The sequence then repeats.
The sequence may be read as the Controller Status Code.

Refer to t ck System Hardware Manual for further in
LED and

There are two library functions related to the status LED and digital output. Refer to
Function Specification section for details on each function listed.

clearStatusBit Clears bits in controller status code.

clearStatusBit Clears b

Status LED and Output Macros
The ctools.h file defines the following macros for
Refer to t acros section for details on each ma

S_MODULE_F Status LED code for I/O module com

S_NORMAL Status LED code for normal status

Options Switches Functions
The controller has three option switches located under the c

when a SCADAPack I/O module or S
switches 1 and 2 select the analog ranges. Refer to the SCADAPack System Hardware
Manual for further information on option switches.

There is one library function related to the controller option switches. Refer to the
Specification section for details.

optionSwitch Read option

Option Switches M
ols.h file defines the following macros for use with option switche
acros section for details on each macro listed.

closed position Specifies switch is in

Specifies switch is in open position

ndicators Functions

N LED (green) indicates the execution status of the prog

The STAT LED indicates error conditions. It outputs an error code as a binary sequen
The sequence repeats until a new error code is o
LED turns off.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

40

The FORCE LED indicates locked I/O variables. Us
program

There a th
Specifi

runLed

setStat

forceLe

LED In
The ctools.h file defines the following macros for use with LED power control. Refer to the C

LED_ON

LED P
The con , the upper and lower I/O
module is is particularly useful in
solar po r
Manual

There a er control. Refer to the Function
Specification section for details on each function listed.

ledGetD

ledPow

ledPow S itch

ledSetD

 to the C

rol
ection for complete information

rs, which greatly simplify the task of

dule regular activities

e this function with caution in application
s.

re ree library functions related to the LED indicators. Refer to the Function
tion for details on each function listed. cation sec

 Controls the RUN LED status.

us Sets controller status c ode.

d Sets state of the force LED.

dicators Macros

Tools Macros section for details on each macro listed.

LED_OFF Specifies LED is to be turned off.

Specifies LED is to be turned on.

ower Control Functions
troller board can disable the LEDs on the controller board

d the 5000 Series I/O modules to conserve power. Ths an
ew ed or unattended installations. Refer to the SCADAPack System Hardware

l. for further information on LED power contro

re four library functions related to LED pow

efault Get default LED power state

Set LED power state er

er witch Read LED power sw

efault Set default LED power state

LED Power Control Macros
The ctools.h file defines the following macros for use with LED power control. Refer
Tools Macros section for details on each macro listed.

LED_OFF Specifies LED is to be turned off.

LED_ON Specifies LED is to be turned on.

LED Power Control Structure
The ctools.h file defines the structure LED Power Control Structure for LED power cont
information. Refer to the C Tools Structures and Types s
on structures and enumeration types.

Software Timer Functions
The controller provides 32 powerful software time
programming time-related functions. Uses include:

• generation of time delays

• timing of process events such as tank fill times

• generation of time-based interrupts to sche

ISaGRAF C Tools User and Reference Manual
May 8, 2007

41

• control of digital outputs by time periods

The 32 timers are individually pro
25.5 seconds. Time periods from

grammable for tick rates from ten per second to once every
 0.1 second to greater than nineteen days can be

errupt generated by the main
 from the main program.

 timers. Refer to the Function Specification
section for details on each function listed.

interval in tenths of seconds.

 a software timer.

Macros h macro listed.

NORMAL ifies normal count down timer.

TIMED_OUT er is has reached zero.

TIMER_B IN l.

TIMER_B T

TIMER_B V icating invalid time value.

TIMER_M va

Timer Information Structure
The cto ation for timer information. Refer to the
C Tools te information on structures and
enumeration types.

Timer
Example 1: Turn on a digital output assigned to coil register 1 and wait 5 seconds
before

erval(0,10); /* timer 0 tick rate = 1 second */
request_resource(IO_SYSTEM);

rn on output */

ODBUS, 1, 0); /* shut off output */

Example 2: Time the duration a contact is on but wait in loop to measure time.
Contact is assigned to status register 10001.

interval(0,1); /* tick rate = 0.1 second */

measured and controlled.

All timers operate in the background from a hardware int
system clock. Once loaded, they count without intervention

There are four library functions related to

interval Set timer tick

settimer Set a timer. Timers count down from the set value to zero.

timer Read the time period remaining in a timer.

read_timer_info Read information about

Software Timer Macros
The ctools.h ros for use with timers. Refer to the C Tools file defines the following mac

ection for details on eac s

 Spec

Specifies tim

A TERVAL Error code indicating invalid timer intervaD

A IMER Error code indicating invalid timer. D

AD ALUE Error code ind

AX Number of last lid software timer.

ols.h file defines the structure Timer Inform
ction for comple Structures and Types se

 Example Programs

turning it off.
int

setdbase(MODBUS, 1, 1); /* tu
release_resource(IO_SYSTEM);
settimer(0,5); /* load timer 0 with 5 seconds */
while(timer(0)) /* wait until time expires */
{
 /* Allow other tasks to execute */
 release_processor();
}
request_resource(IO_SYSTEM);
setdbase(M
release_resource(IO_SYSTEM);

ISaGRAF C Tools User and Reference Manual
May 8, 2007

42

request_resource(IO_SYSTEM);
if (dbase(MODBUS, 10001)) /*

 test if contact is on */

egister 10001. Valve is controlled by coil register 1.

US, 1, 1); /* open valve */

/* Allow other tasks to execute */

e

during p of day for such
function energy logging, etc.
The calendar can be used to automatically take the controller off-line during weekends and
holidays h

There are eight library functions, which access the real-time clock. Refer to the Function
Specifi

alarmIn Returns absolute time of alarm given elapsed time

getCloc s the real time clock alarm settings.

getClockTime Read the real time clock.

andler for real time clock alarms.

t

setclock Set the real time clock.

{
 settimer(0,63000); /* start timer */
 while(dbase(MODBUS, 10001)) /* wait for turn off */
 {
 /* Allow other tasks to execute */
 release_resource(IO_SYSTEM);
 release_processor();
 request_resource(IO_SYSTEM);
 }
 printf("time period = %u\r\n",63000-timer(0));
}
release_resource(IO_SYSTEM);

Example 3: Open valve to fill tank and print alarm message if not full in 1 minute.
Contact is assigned to status r

interval(0,10); /* timer 0 tick rate = 1 second */
request_resource(IO_SYSTEM);
setdbase(MODB
settimer(0,60); /* set timer for 1 minute */

/* tank not full if contact is off */
while((dbase(MODBUS, 10001)== 0) && timer(0))
{

 release_resource(IO_SYSTEM);
 release_processor();
 request_resource(IO_SYSTEM);
}

if (dbase(MODBUS, 10001)== 0)
 puts("tank is not filling!!\r\n");
els
 puts("tank full\r\n");

setdbase(MODBUS, 1, 0); /* close valve */
release_resource(IO_SYSTEM);

Real Time Clock Functions
The controller is provided with a hardware based real time clock that independently
maintains the time and date for the operating system. The time and date remain accurate

ower-off. This allows the controller to be synchronized to time
ift production reports, automatic instrument calibration, s as sh

. T e calendar auto ally handles leap years. matic

cation section for details on each function listed.

getclock Read the real time clock.

kAlarm Read

installClockHandler Installs a h

resetClockAlarm Resets the real time clock alarm so it will recur at the same time nex
day.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

43

setClockAlarm Sets real time clock alarm.

Real Time Clock Macros
The ctools.h file defines the following macros for real time clock alarms. Refer to the C

s section

AT_ABSOLUTE xed time of day alarm.

Real Time Clock Structures
the structures Real Time Clock Structure and Alarm Settings

 enumeration types.

n be set and displayed. All fields
 properly.

void main(void)

/

TEM);

intf %2d:%2d .hour, ute,
 econd);

Stopwatch Timer Functions
The stopwatch is a counter that increments every 10 ms. The stopwatch is useful for
m executio e h b . The
s time rolls er to 0 when
integer: 4,294,967,295 ms (or about 497 days).

T ry ction to acce he stopwatc e. Refer to adStopwatch
section for details.

readStopwatch reads the stopwatch timer.

Tools Macro for details on each macro listed.

Specifies a fi

AT_NONE Disables alarms

The ctools.h file defines
Structure for real time clock information. Refer to the C Tools Structures and Types
section for complete information on structures and

Real Time Clock Program Example
The following program illustrates how the date and time ca
of the clock structure must be set with valid values for the clock to operate

#include <ctools.h>

{
 struct clock now;

 /* Set to 12:01:00 on January 1, 1994 */

 now.hour = 12; /* set the time */
 now.minute = 1;
 now.second = 0;
 now.day = 1; /* set the date */
 now.month = 1;
 now.year = 94;
 now.dayofweek = 6; /* day is Sat. *

 request_resource(IO_SYS
 setclock(&now);

 now = getclock();
 release_resource(IO_SYSTEM);

 /* Display current hour, minute and second */
 pr ("%2d: ", now now.min
 now.s
}

easuring n times or gen rating delays w ere a fine time ase is required
topwatch ov it reaches the maximum value for an unsigned long

here is one libra fun ss t h tim the re

ISaGRAF C Tools User and Reference Manual
May 8, 2007

44

Watchdog Timer Functions
A watchdog timer is a hardware device, which enables rapid detection of computer hardware
or software problems. In the event of a major problem, the CPU resets and the application
program restarts.

normal
execution of the program.

. It begins a timing sequence every time
e

 timer output in the controller resets the CPU and turns

The transparent to the
e

 f

default).

Watchdog Timer Program Example
tchdog timer could be used to detect the

 */

erating system

s
 algorithms, the C Tools

yte-wise exclusive-

The controller provides an integral watchdog timer to ensure reliable operation. The
watchdog timer resets the CPU if it detects a problem in either the hardware or system
firmware. A user program can take control of the watchdog timer, so it will detect ab

A watchdog timer is a retriggerable, time delay timer
it receives a reset pulse. The time delay is adjusted so that regular reset pulses prevent th
timer from expiring. If the reset pulses cease, the watchdog timer expires and turns on its
output, signifying a malfunction. The
off all outputs at the I/O system.

 watchdog timer is normally reset by the operating system. This is
application program. Operating in such a fashion, the watchdog timer detects any hardwar
or irmware problems.

The watchdog timer can detect failure of an application program. The program takes control
of the timer, and resets it regularly. If unexpected operation of the program occurs, the reset
pulses cease, and the watchdog timer resets the CPU. The program restarts from the
beginning.

There are three library functions related to the watchdog timer. Refer to the Function
Specification section for details on each function listed.

wd_auto Gives control of the watchdog timer to the operating system (

wd_manual Gives control of the watchdog timer to an application program.

wd_pulse Generates a watchdog reset pulse.

A watchdog reset pulse must be generated at least every 500 ms. The CPU resets, and
program execution starts from the beginning of the program, if the watchdog timer is not
reset.

The following program segment shows how the wa
failure of a section of a program.

wd_manual(); /* take control of watchdog timer */
do {
 /* program code */
 wd_pulse(); /* reset the watchdog timer
}
while (condition)
wd_auto(); /* return control to OS */

Note: Always pass control of the watchdog timer back to the operating system before
stopping a program, or switching to another task that expects the op
to reset the timer.

Checksum Function
To simplify the implementation of self-checking communication
provide four types of checksums: additive, CRC-16, CRC-CCITT, and b
OR. The CRC algorithms are particularly reliable, employing various polynomial methods to

ISaGRAF C Tools User and Reference Manual
May 8, 2007

45

detect nearly all communication errors. Additional types of checksums are easily

Specification

e, CRC-16, CRC-CCITT and exclusive-OR type

 using reverse CRC

efer to the C Tools

rithm)

hm)

Serial Communication
The SCADAPack family of controllers offers

m1 on all controllers is
ud rate, data bits, stop

bits, parity and communication protocol.

To optimize performance, minimize the lengt
inals, and for

 the controller is powered up in
ontroller is reset in the RUN

Com4

implemented using library functions.

There are two library functions related to checksums. Refer to the Function
section for details on each function listed.

checksum Calculates additiv
checksums

crc_reverse Calculates custom CRC type checksum
algorithm.

Checksum Macros
The ctools.h file defines macros for specifying checksum types. R
Macros section for details on each macro listed.

ADDITIVE Additive checksum

BYTE_EOR Byte-wise exclusive OR checksum

CRC_16 CRC-16 type CRC checksum (reverse algo

CRC_CCITT CCITT type CRC checksum (reverse algorit

 three or four RS-232 serial ports. The
TeleSAFE Micro16 has two RS-232 serial communication ports. (co
also available as an RS-485 port.) The ports are configurable for ba

h of messages on com3 and com4. Examples
of recommended uses for com3 and com4 are for local operator display term
programming and diagnostics using the ISaGRAF program.

Default Serial Parameters
All ports are configured at reset with default parameters when
SERVICE mode. The ports use stored parameters when the c
mode. The default parameters are listed below.

Parameter com1 com2 Com3
Baud rate 9600 9600 9600 9600
Parity none none None None
Data bits 8 8 8 8
Stop bits 1 1 1 1
Duplex full full Half Half
Protocol Modbus RTU Modbus RTU Modbus RTU Modbus RTU
Station 1 1 1 1
Rx flow control off off Rx disable Rx disable
Tx flow control off off Off Off
Serial time out 60 s 60 s 60 s 60 s
Type RS-232 RS-232 RS-232 RS-232

ISaGRAF C Tools User and Reference Manual
May 8, 2007

46

Serial Communication Time Out
When the controller is transmitting data on the communication ports, the transmit buffer may

ware

ace is

this time period, the transmit buf d. The task then continues execution.

he most common
causes of communication failures.

• To communicate, the controller and an
ts.

ly have a parity or stop bit

ces is made with
 data output of one device to the
. The controller is a DTE device. This
r your controller.

 Communication Equipment (DCE) device
ata output of the DTE device is connected to the

es.

s require specific signal levels on certain pins. Communication is not
possible unless the required signals are present. In the controller the CTS line must be at

it if CTS is OFF. If the CTS line is not
oper value. If an external device controls this

ools.h file defines the following serial communication related functions. Refer to the
ch function listed. Additional serial

become full due to receipt of an XOFF character, a slow baud rate, or improper hard
handshaking.

If the transmit buffers become full, the task transmitting data is blocked until sp
available or the serial time out period expires. If no space is available at the conclusion of

fer is emptie

Debugging Serial Communication
Serial communication can be difficult to debug. This section describes t

external device must use the same
communication parameters. Check the parameters in both uni

• If some but not all characters transmit properly, you probab
mismatch between the devices.

The connection between two RS-232 Data Terminal Equipment (DTE) devi
a null-modem cable. This cable connects the transmit
receive data input of the other device – and vice versa
cable is described in the System Hardware Manual fo

The connection between a DTE device and a Data
is made with a straight cable. The transmit d
transmit data input of the DCE device. The receive data input of the DTE device is
connected to the receive data output of the DCE device. Modems are usually DCE devic
This cable is described in the System Hardware Manual for your controller.

Many RS-232 device

the proper level. The controller will not transm
connected, the controller will force it to the pr
line, it must turn it ON for the controller to transmit.

Serial Communication Functions
The ct
Function Specification section for details on ea
communication functions are included in the Microtec run-time library.

clear_errors Clear serial port error counters.

clear_tx Clear serial port transmit buffer.

get_port Read serial port communication parameters.

getPortCharacteristics Read information about features supported by a serial port.

get_status Read serial port status and error counters.

Install serial port character received handler. install_handler

portConfiguration Get pointer to port configuration table

portIndex Get array index for serial port

portStream Get serial port corresponding to index

queue_mode Set serial port transmitter mode.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

47

route Redirect standard I/O streams.

 ort DTR signal.

set_port Set serial port communication parameters.

BAUD38400

BAUD115200

Points to a file object for com1 serial port.

 Specifies 8 bit word length.

 Specifies even parity.

ecifies full duplex.

Specifies no parity.

ial port type is not known.

N_XOFF Receiver Xon/Xoff flow control.

PC_FLOW Transmitter flow control ignores CTS.

setDTR Control RS232 p

Serial Communication Macros
The ctools.h file defines macros for specifying serial communication parameters. Refer to
the C Tools Macros section for details on each macro listed.

BAUD75 Specifies 75-baud port speed.

BAUD110 Specifies 110-baud port speed.

BAUD150 Specifies 150-baud port speed.

BAUD300 Specifies 300-baud port speed.

BAUD600 Specifies 600-baud port speed.

BAUD1200 Specifies 1200-baud port speed.

Specifies 2400-baud port speed. BAUD2400

Specifies 4800-baud port speed. BAUD4800

BAUD9600 Specifies 9600-baud port speed.

BAUD19200 Specifies 19200-baud port speed.

 Specifies 38400-baud port speed.

BAUD57600 Specifies 57600-baud port speed.

 Specifies 115200-baud port speed.

com1

com2 Points to a file object for com2 serial port.

com3 Points to a file object for com3 serial port.

com4 Points to a file object for com4 serial port.

DATA7 Specifies 7 bit world length.

DATA8

DISABLE Specifies flow control is disabled.

ENABLE Specifies flow control is enabled.

EVEN

FULL Sp

FOPEN_MAX Redefinition of macro from stdio.h

HALF Specifies half duplex.

NONE

NOTYPE Specifies ser

ODD Specifies odd parity.

PC_FLOW_RX_RECEIVE_STOP Receiver disabled after receipt of a message.

PC_FLOW_RX_XO

_TX_IGNORE_CTS

ISaGRAF C Tools User and Reference Manual
May 8, 2007

48

PC_FLOW Transmitter Xon/Xoff flow control.

RS232 serial port is an RS-232 port.

RS232_M pecifies serial port is an RS-232 dial-up modem.

RS485_4 s serial port is a 4 wire RS-485 port.

RS232_C l port is RS232 and uses CD for collision

SERIAL_ serial ports.

SIGNAL_ sk: clear to send signal

SIGNAL_ carrier detect signal

SIGNAL_ signal is de-asserted

SIGNAL_ ask: off hook signal

SIGNAL_

SIGNAL_

SIGNAL_ h signal

STOP1 Specifies 1 stop bit.

STOP2

Serial o m
The cto l Port Configuration, Serial Port Status and
Serial P nfiguration and information. Refer to the C
Tools S uc formation on structures and
enumer n

e

aracter from a stream

fgets g from a stream

fputc

fputs

fread stream

fwrite

getc character from a stream

getchar ndard input device

gets om a stream

initport

printf

putc

putchar dard output device

_TX_XON_XOFF

Specifies

ODEM S

WIRE Specifie

OLLISION_AVOIDANCE Specifies seria
 avoidance

PORTS Number of

CTS I/O line bit ma

DCD I/O line bit mask:

OFF Specifies a

OH I/O line bit m

ON Specifies a signal is asserted

RING I/O line bit mask: ring signal

ICE I/O line bit mask: voice/data switcVO

 Specifies 2 stop bits.

 C m unication Structures
o file defines the structures Seria

racteristics for serial port co
ls.h

ort Cha
tr tures and Types section for complete in

 types. atio

Microtec Serial I/O Functions
These library functions are related to serial communication. They are documented in th
Microtec MCCM77 Documentation Set.

fgetc reads a ch

reads a strin

writes a character to a stream

writes a string to a stream

reads from a

writes to a stream

reads a

 reads a character from sta

reads a string fr

 re-initializes serial port

formatted output to a stream

writes a character to a stream

 reads a character to stan

ISaGRAF C Tools User and Reference Manual
May 8, 2007

49

puts

scanf

Dial-U
These library functions provide control of dial-up modems. They are used with external
modem al modem normally connects to the RS-232
port with stem Hardware Manual for your controller for
details. section for details on each function listed.

modem

modem operation.

modem n operation.

modem a dial-up modem.

modem vice using a dial-up

modem terminate connection with external device using a dial-up modem.

modem ection with external device or modem
.

modem xternal device or
s (used in task exit handler).

modem that an interesting event has

Dial-U M
The cto . est to a C application program. Refer
to the C Tools Macros section for details on each macro listed.

ypes
ted types and . Refer to the

s.
#include <ctools.h>

writes a string to a stream

formatted input from a stream

p Modem Functions

s connected to a serial port. An extern
 Sy a DTE to DCE cable. Consult the

Refer to the Function Specification

Init send initialization string to dial-up modem.

InitStatus read status of modem initialization

InitEnd terminate modem initializatio

Dial connect with an external device using

DialStatus read status of connection with external de
modem.

DialEnd

Abort unconditionally terminate conn
initialization (used in task exit handler)

AbortAll unconditionally terminate connections with e
modem initialization

N fication notify the dial-up modem handler
ction is usually called whenever a message is

oti
occurred. This fun
received by a protocol.

p odem Macros
ol h file defines the following macros of inters

MODEM_CMD_MAX_LEN Maximum length of the modem initialization command string

PHONE_NUM_MAX_LEN Maximum length of the phone number string

Dial-Up Modem Enumeration T
The ctools.h file defines the enumera DialError DialState
C Tools Structures and Types section for complete information on structures and
enumeration types.

Dial-up Modem Structures
The ctools.h file defines the structures ModemInit and ModemSetup. Refer to the C
Tools Structures and Types section for complete information on structures and
enumeration types.

Modem Initialization Example
The following code shows how to initialize a modem. Typically, the modem initialization is
used to prepare a modem to answer calls. The example sets up a Hayes modem to answer
incoming call

ISaGRAF C Tools User and Reference Manual
May 8, 2007

50

void main(void)
{
struct ModemInit initSettings;
reserve_id portID;
enum DialError status;
enum DialState state;
struct pconfig portSettings;

/* Configure serial port 1 */
portSettings.baud = BAUD1200;
portSetting
portSetting

s.duplex = FULL;
s.parity = NONE;

portSettings.data_bits = DATA8;
top_bits = STOP1;
low_rx = DISABLE;

yes modem to answer incoming calls */
t = com1;

troller Example

 The shutdown function aborts any active
 modem connections when the task is ended.

-- */

erial por

portSettings.parity = NONE;
portSettings.data_bits = DATA8;

portSettings.s
portSettings.f
portSettings.flow_tx = DISABLE;
portSettings.type = RS232_MODEM;
portSettings.timeout = 600;
request_resource(IO_SYSTEM);
set_port(com1, &portSettings);
release_resource(IO_SYSTEM);

/* Initialize Ha
initSettings.por
strcpy(initSettings.modemCommand, " F1Q0V1X1 S0=1");
if (modemInit(&initSettings, &portID) == DE_NoError)
{
 do
 {
 /* Allow other tasks to execute */
 release_processor();

 /* Wait for the initialization to complete */
 modemInitStatus(com1, portID, &status, &state);
 }
 while (state == DS_Calling);

 /* Terminate the initialization */
 modemInitEnd(com1, portID, &status);
}
}

Connecting with a Remote Con
The following code shows how to connect to a remote controller using a modem. The
example uses a US Robotics modem. It also demonstrates the use of the modemAbort
function in an exit handler.

#include <ctools.h>

/* --

 --
void shutdown(void)
{
 modemAbort(com1);
}

void main(void)
{
struct ModemSetup dialSettings;
reserve_id portID;
enum DialError status;
enum DialState state;
struct pconfig portSettings;
TASKINFO taskStatus;

/* Configure s t 1 */
portSettings.baud = BAUD19200;
portSettings.duplex = FULL;

ISaGRAF C Tools User and Reference Manual
May 8, 2007

51

portSettings.stop_bits = STOP1;
portSettings. = DISABLE; flow_rx
portSettings.flow_tx = DISABLE;

request_resource(IO_SY

dialSettings.dialAttem

strcpy(dialSettings.phoneNumber, "555-1212");

 {

 == DS_Con
 {

}
}

n and

Com
odbus RTU and ASCII

protocols. The TeleBUS communication pr

programming and diagnostics capabilit

database contains user-assigned regis s. Assigned

purpose registers can be used by ladd s to store
processed information, and to receive information from a remote device.

The TeleBUS protocols operate on a w se include RS-232
serial ports, RS-485 serial ports, radios,

meters of the link, with a few

portSettings.type = RS232_MODEM;
portSettings.timeout = 600;

STEM);
set_port(com1, &portSettings);
release_resource(IO_SYSTEM);

/* Configure US Robotics modem */
dialSettings.port = com1;

pts = 3;
dialSettings.detectTime = 60;
dialSettings.pauseTime = 30;
dialSettings.dialmethod = 0;
strcpy(dialSettings.modemCommand, "&F1 &A0 &K0 &M0 &B1");

/* set up exit handler for this task */
taskStatus = getTaskInfo(0);
installExitHandler(taskStatus.taskID, shutdown);

/* Connect to the remote controller */
if (modemDial(&dialSettings, &portID) == DE_NoError)
{
 do

 /* Allow other tasks to execute */
 release_processor();

 /* Wait for initialization to complete */
 modemDialStatus(com1, portID, &status, &state);
 }
 while (state == DS_Calling);

 /* If the remote controller connected */
 if (state nected)

 /* Talk to remote controller here */
 }

 /* Terminate the connection */
 modemDialEnd(com1, portID, &status);

Note that a pause of a few seconds is required between terminating a connectio
initiating a new call. This pause allows the external modem time to hang up.

munication Protocols
The TeleBUS protocols are compatible with the widely used M

otocols provide a standard communication
interface to SCADAPack controllers. Additional TeleBUS commands provide remote

y.

The TeleBUS protocols provide full access to the I/O database in the controller. The I/O
ters and general purpose register

registers map directly to the I/O hardware or system parameter in the controller. General
er logic and C application program

ide variety of serial data links. The
leased line modems, and dial up modems. The

protocols are generally independent of the communication para
exceptions.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

52

Application programs can initiate communication with remote devices. A multiple port
 data concentrator fo

arately

nication networks. The

.

Protocol Type
or it
t.

The DF1 option enables the emulation

n Number
The TeleBUS protocol allows up to 254 twork using standard addressing

A device responds to commands addre nds broadcast to all stations.

extended addressing. Address 0 indica
be used as a station number. Each serial port may have a unique station number.

fy
each device. A device responds to com o it, or to commands broadcast to
all stations. The station number is in the

have a unique station number.

Store and Forward Messa

may be re-transmitted on any serial po t station address translation. A user-

messaging may be enabled or disabled rt. It is disabled by default.

rd messaging is not su

ication protocol. Refer to the
ection for de ted.

able Check translation table for invalid entries.

us Clears protocol message and error counters.

nTable Clear all store and forward translation table entries.

dHandler Instal

getABConfiguration Reads DF1 protocol configuration parameters.

 Reads

controller can be a r remote devices, by polling remote devices on one
port(s) and responding as a slave on another port(s).

The protocol type, communication parameters and station address are configured sep
for each serial port on a controller. One controller can appear as different stations on
different commu port configuration can be set from an application
program, from the ISaGRAF programming software, or from another Modbus or DF1
compatible device

The protocol type may be set to emulate the Modbus ASCII and Modbus RTU protocols,
may be disabled. When the protocol is disabled, the port functions as a normal serial por

 of the DF1 protocols.

Statio
 devices on a ne

and up to 65534 devices using extended addressing. Station numbers identify each device.
ssed to it, or to comma

The station number is in the range 1 to 254 for standard addressing and 1 to 65534 for
tes a command broadcast to all stations, and cannot

The TeleBUS DF1 protocols allow up to 255 devices on a network. Station numbers identi
mands addressed t
range 0 to 254. Address 255 indicates a command

broadcast to all stations, and cannot be used as a station number. Each serial port may

ging
Store and forward messaging re-transmits messages received by a controller. Messages

rt, with or withou
defined translation table determines actions performed for each message. Store and forward

 on each po

Store and forwa pported by TeleBUS DF1 protocol.

Communication Protocols Functions
There are several library functions related to TeleBUS commun
Function Specification s tails on each function lis

checkSFTranslationT

clear_protocol_stat

clearSFTranslatio

enronInstallComman ls handler for Enron Modbus commands.

get_protocol protocol parameters.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

53

getProtocolSettings Reads extended addressing protocol parameters for a
serial

Reads extended addressing and Enron Modbus protocol
param

col_status Reads protocol message and error counters.

o longer performs a necessary

odbusHandler This function allows user-defined extensions to standard
.

pollABSlave Requests a response from a slave controller using the half-
duplex version of the protocol.

ol.

setProtocolSettings ts extended addressing proto l

s gsE d E bus protocol

s This function is a stub and no longer performs a necessary

setSFTranslation forward translation table entry.

s protocol execution based on stored parameters.

Communication Protocols Macros
unication protocol parameters. Refer to

ch macro listed.

_CRC uplex protocol emulation for

or

)

TIPLE_COILS

LOAD_MULTIPLE_REGISTERS Modbus function code

port.

getProtocolSettingsEx
eters for a serial port.

get_proto

getSFMapping This function is a stub and n
operation.

getSFTranslation Read store and forward translation table entry.

installM
Modbus protocol

master_message Sends a protocol message to another device.

modbusExceptionStatus Sets response for the read exception status function.

modbusSlaveID Sets response for the read slave ID function.

resetAllABSlaves Clears responses from the response buffers of half-duplex
slave controllers.

setABConfiguration Defines DF1 protocol configuration parameters.

set_protocol Sets protocol parameters and starts protoc

Se
port.

col parameters for a seria

etProtocolSettin x Sets extended addressing an
parameters for a serial port

nron Mod

etSFMapping
operation.

 Write store and

tart_protocol Starts

The ctools.h file defines macros for specifying comm
the C Tools Macros section for details on ea

AB_FULL_BCC Specifies the DF1 Full Duplex protocol emulation for
the serial port. (BCC checksum)

AB_FULL Specifies the DF1 Full D
the serial port. (CRC checksum)

AB_HALF_BCC Specifies the DF1 Half Duplex protocol emulation f
the serial port. (BCC checksum)

AB_HALF_CRC Specifies the DF1 Half Duplex protocol emulation for
the serial port. (CRC checksum

FORCE_MUL Modbus function code

FORCE_SINGLE_COIL Modbus function code

ISaGRAF C Tools User and Reference Manual
May 8, 2007

54

LOAD_SINGLE_REGISTER Modbus function code

aster message status: invalid function code

D_LENGTH essage length

VE slave station address

GE s sent.

UPPO status: selected protocol is not

IVED onse was received.

EIVED_BAD_LENGT ived with

MM_EOT r message status: AB slave response was an

 not

CKED and
y now

N_FUNCTION returned a

DDRESS an

LUE ned a

MODBUS_ASCII Specifies the Modbus ASCII protocol emulation for
the serial port.

N O
rt.

READ_COIL_STATUS dbus function code

R _EXCEP S u

READ_HOLDING_REGISTER u

READ_INPUT_REGISTER unction code

R _INPUT_ u

REPORT_SLA u

SF_ALREADY d

SF_INDEX_OU d

SF_NO_TRAN Result code: entry does not define a translation

MM_BAD_ADDRESS Master message status: invalid database address

MM_BAD_FUNCTION M

MM_BA Master message status: invalid m

MM_BAD_SLA Master message status: invalid

MM_NO_MESSA Master message status: no message wa

MM_PROTOCOL_NOT_S RTED Master message
supported.

MM_RECE Master message status: resp

MM_REC H Master message status: response rece
incorrect amount of data.

MM_SENT Master message status: message was sent.

Maste
EOT message

MM_WRONG_RSP Master message status: AB slave response did
match command sent

MM_CMD_A Master message status: AB half duplex comm
has been acknowledged by slave – Master ma
send poll command

MM_EXCEPTIO Master message status: Modbus slave
function exception

MM_EXCEPTION_A Master message status: Modbus slave returned
address exception

MM_EXCEPTION_VA Master message status: Modbus slave retur
value exception

MODBUS_RTU Specifies the Modbus RTU protocol emulation for the
serial port.

O_PROTOC L Specifies no communication protocol for the serial
po

Mo

EAD TION_STATU Modbus f nction code

nction code Modbus f

Modbus f

EAD STATUS

VE_ID

_DEFINED

Modbus f nction code

nction code

e: translation is already defined in the

Modbus f

Result co
table

T_OF_RANGE

SLATION

Result co e: invalid translation table index

ISaGRAF C Tools User and Reference Manual
May 8, 2007

55

SF_PORT_OUT_OF_RANGE Result cod

SF_STATION_OUT_OF_RANGE Result code: station number is not valid

 to the C Tools

, Protocol Settings,
ard Message and Store and Forward
ypes section for complete information on

Mod
 database is a user-defined database that allows data to be shared between

e: serial port is not valid

SF_TABLE_SIZE Number of entries in the store and forward table

SF_VALID Result code: translation is valid

Communication Protocols Enumeration Types
The ctools.h file defines the enumeration type ADDRESS_MODE. Refer
Structures and Types section for complete information on structures and enumeration
types.

Communication Protocols Structures
The ctools.h file defines the structures Protocol Status Information
Extended Protocol Settings, Store and Forw
Status. Refer to the C Tools Structures and T
structures and enumeration types.

bus Database
The Modbus
ISaGRAF C programs, ISaGRAF programs and communication protocols.

Two modes of addressing are supported for the database, Modbus and Linear. The
following table shows the addresses available for each type of addressing.

Modbus Address Data Type Linear Word Address

00001 to 09999 boolean
1 returned if any variable is non-zero;
0 returned if v

0 to 624

ariable is 0

10001 to 19999 boolean
1 returned if any variable is non-zero;

625 to 1249

0 returned if variable is 0

30001 to 39999 word (16 bits) 1250 to 11248

40001 to 49999 word (16 bits) 11249 to 21247

Modbus Database Functions
There are several library functions related to the Modbus database. Refer to the ISaGRAF C
Tools Function Specifications section for details on each function listed.

dbase Reads a value from the database.

installDbaseHandler Allows an extension to be defined for the dbase function.

installSetdbaseHandler Allows an extension to be defined for the setdbase function

Dbase Handler Function User-defined function that h

.

andles reading of Modbus addresses
not assigned in the ISaGRAF Dictionary.

ionary.

setdbase Writes a value to the database.

Setdbase Handler Function User-defined function that handles writing to Modbus
addresses not assigned in the ISaGRAF Dict

ISaGRAF C Tools User and Reference Manual
May 8, 2007

56

Database Macros
T defines libra e I/O database. Refer to the C Tools Macros
section for details on each macro listed.

AB Specifies Allan-Bradley database addressing.

NUMAB Number of registers in the Allan-Bradley database.

 in the Modbus coil section.

s

ection.

A Start of the coil section in the linear database.

A ction in the linear database.

A ction in the linear database.

A tart of the status section in the linear database.

Modbus Addressing
s

he ctools.h file ry functions for th

DB_BADSIZE Error code: out of range address specified

DB_BADTYPE Error code: bad database addressing type specified

DB_OK Error code: no error occurred

LINEAR Specifies linear database addressing.

MODBUS Specifies Modbus database addressing.

NUMCOIL Number of registers

NUMCOIL_PERMANENT Number of coil registers in the Permanent Non-Volatile Modbu
Registers section.

NUMHOLDING Number of registers in the Modbus holding register section.

NUMHOLDING_PERMANENT Number of holding registers in the Permanent Non-Volatile
Modbus Registers section

NUMINPUT Number of registers in the Modbus input registers section.

NUMLINEAR Number of registers in the linear database.

NUMSTATUS Number of registers in the Modbus status s

ST RT_COIL

ST RT_HOLDING Start of the holding registers se

ST RT_INPUT Start of the input register se

ST RT_STATUS S

When a Modbus protocol accesses a Modbus register in the controller, the register addres
is searched for under three categories, in the order listed below, until the address is found.

Search
Order

Category Address
Range

Search Algorithm

Available
1 ISaGRAF

Dictionary
00001 to 09999
10001 to 19999

If the address is not assigned to a
variable in the ISaGRAF Dictionary,

xt category. Variables 30001 to 39999
40001 to 49999

then search ne

2 C/C++
Application

00001 to 09999
10001 to 19999

If the address is not assigned to a
register in a datab

Database 30001 to 39999
40001 to 49999

C/C++ application, e.g. Flow
Handler Computer), then search next category.

ase handler (by a

3 Permanent 00001 to 00128
40001 to 40200

If the address is not in the range of

 Modbus Exception
.

Non-Volatile
Modbus

Permanent Non-volatile Modbus
Registers, then a

Registers response may be returned

ISaGRAF C Tools User and Reference Manual
May 8, 2007

57

The setResp function is used to control
. the exception response

If the address is not found in the ISaGRAF dictionary or the C/C++ Application Databa
Handler, a Modbus Exception response may be returned. An address is not found whe

se
n it

d in
. The

esp

d when an
ct

ISaGRAF Dictionary Variables
bles

m the range

this address from the Dictionary instead of from the Permanent Registers. However, when

ined,
the protocol will search and find the register under the Permanent Non-

cenari

command error and retry the pro d until the database handler is installed.

database handler in a C/C++ application, Modbus protocols will access this address from

l

ario is exp
range of

has not been defined with one of the above listed categories. If the address is define
more than one category, the first occurrence of the address in the order listed is used
user can configure the setR function to do one of the following.

• An exception is sent when an unavailable register is read or written.

• A zero is returne unavailable register is read and writing an unavailable
register has no effe

Each category is described in the following sections.

When an ISaGRAF application is being downloaded or re-started, the Dictionary varia
are temporarily undefined. If a protocol accesses the controller while the Dictionary is
undefined, the protocol will return a Modbus Exception. Most polling masters will simply log
this as a command error and retry the protocol command until the Dictionary is no longer
undefined.

When an address fro of Permanent Non-Volatile Registers is used as the
Network Address for a variable in the ISaGRAF Dictionary, Modbus protocols will access

the ISaGRAF application is being downloaded or re-started, the Dictionary will be
temporarily undefined. If a protocol accesses the controller while the Dictionary is undef

a different value for
Volatile Registers. If this s o is expected, assign Dictionary network addresses outside
the range of Permanent Registers.

C/C++ Application Database Handler
A C/C++ application may install a Database Handler to define Modbus registers. This
creates registers without having to create an ISaGRAF Dictionary of variables.

When a C/C++ application is being downloaded or is stopped, the database handler is
temporarily uninstalled. If a protocol accesses the controller while the handler is uninstalled,
the protocol will return a Modbus Exception. Most polling masters will simply log this as a

tocol comman

When an address from the range of Permanent Non-Volatile Registers is also defined in a

the database handler instead of from the Permanent Registers. However, when the C/C++
application is being downloaded or is stopped, the database handler will be temporarily
uninstalled. If a protocol accesses the controller while the handler is uninstalled, the protoco
will search and find a different value for the register under the Permanent Non-Volatile
Registers. If this scen ected, only define registers in a database handler for
addresses outside the Permanent Registers.

Permanent Non-Volatile Modbus Registers
By default, the controller has a selection of Modbus registers already defined. These are the
Permanent Non-volatile Modbus Registers and consist of the following:

ISaGRAF C Tools User and Reference Manual
May 8, 2007

58

Register Type Address Range

Coil Registers 00001 to 10128

Holding Registers 4 001 to 40200 0

These registers reside in non-volatile memory so they retain their values when the controller
is reset or while an ISaGRAF application or C/C++ application is being downloaded. These
registers may be used to store data during application downloads.

Controller dialog. This dialog is s itialize command from the
Tools menu on the Programs window. The Permanent Registers are also set to zero on a

DNP
developed to achieve interoperability among systems in the electric utility, oil & gas,

exible non-proprietary protocol is

tions; over serial or LAN-based

ions

n layer is object-based
link layer provides for several

r complete information on DNP protocol, including the

l change events from the DNP change event

dnpCreateRoutingTable Allocates memory for a new routing table.

To initialize all Permanent Registers to zero, select Initialize Controller from the Initialize
elected using the Controller | In

Cold Boot.

 Communication Protocol
DNP, the Distributed Network Protocol, is a standards-based communications protocol

water/waste water and security industries. This robust, fl
based on existing open standards to work within a variety of networks. The IEEE has
recommended DNP for remote terminal unit to intelligent electronic device messaging. DNP
can also be implemented in any SCADA system for efficient and reliable communications
between substation computers, RTUs, IEDs and master sta
systems.

DNP offers flexibility and functionality that go far beyond conventional communicat
protocols. Among its robust and flexible features DNP 3.0 includes:

• Output options

• Addressing for over 65,000 devices on a single link

• Time synchronization and time-stamped events

• Broadcast messages

• Data link and application layer confirmation

DNP 3.0 was originally designed based on three layers of the OSI seven-layer model:
application layer, data link layer and physical layer. The applicatio
with objects provided for most generic data formats. The data
methods of retrieving data such as polling for classes and object variations. The physical
layer defines most commonly a simple RS-232 or RS-485 interface.

Refer to the DNP User Manual fo
Device Profile Document.

DNP Communication Protocols Functions
There are several library functions related to DNP communication protocol. Refer to the
Function Specification section for details on each function listed.

dnpInstallConnectionHandler Configures the connection handler for DNP.

dnpClearEventLog Deletes al
buffers.

dnpConnectionEvent Report a DNP connection event

ISaGRAF C Tools User and Reference Manual
May 8, 2007

59

dnpGen Generates a change event for the DNP point.

Reads the DNP protocol configuration.

erateEventLog

dnpGetConfiguration

rationEx

dnpSaveConfiguration es the DNP protocol configuration parameters.

eters

guration of a DNP binary input point.

 ut point.

Ex inary Input

NP binary output point.

nfigEx ed DNP Binary Input

of a DNP binary output point.

n of a DNP 16-bit analog input point.

nfig 16-bit analog input point.

P 32-bit analog input point.

e configuration of a DNP 32-bit short floating

dnpSaveAI32Config Sets the configuration of a DNP 32-bit analog input point.

uration of a DNP 16-bit analog output

dnpGetAO32Config Reads the configuration of a DNP 32-bit analog output
.

oint.

I16Config Reads the configuration of a DNP 16-bit counter input point.

t.

 Sets the configuration of a DNP 32-bit counter input point.

dnpGetRuntimeStatus Reads the current status of all DNP change event buffers.

dnpSendUnsolicited Sends an ‘Unsolicited Response’ message in DNP protocol.

dnpSendUnsolicitedResponse Sends an Unsolicited Response message in DNP,
with data from the specified classes.

dnpGetConfigu Reads the extended DNP configuration parameters.

Writ

dnpSaveConfigurationEx Writes the extended DNP configuration param

dnpGetBIConfig Reads the confi

dnpSaveBIConfig Writes the configuration of a DNP binary inp

dnpSaveBIConfig Writes the configuration of an extended DNP B
point

dnpGetBOConfig Reads the configuration of a D

dnpGetBICo Reads the configuration of an extend
point.

dnpSaveBOConfig Sets the configuration

dnpGetAI16Config Reads the configuratio

dnpSaveAI16Co Sets the configuration of a DNP

dnpGetAI32Config Reads the configuration of a DN

dnpSaveAISFConfig Sets the configuration of a DNP 32-bit short floating analog
input point

dnpGetAISFConfig Reads th
analog input point.

dnpGetAO16Config Reads the config
point.

dnpSaveAO16Config Sets the configuration of a DNP 32-bit analog output point.

point

dnpSaveAO32Config Sets the configuration of a DNP 32-bit analog output p

dnpSaveAOSFConfig Sets the configuration of a DNP 32-bit short floating analog
output point.

dnpGetAOSFConfig Sets the configuration of a DNP 32-bit short floating analog
output point.

dnpGetC

dnpSaveCI16Config Sets the configuration of a DNP 16-bit counter input poin

dnpGetCI32Config Reads the configuration of a DNP 32-bit counter input point.

dnpSaveCI32Config

ISaGRAF C Tools User and Reference Manual
May 8, 2007

60

dnpWriteRoutingTableEntry Wwrites an entry in the DNP routing

dnpReadRoutingTableEntry Reads an entry from the routing tabl

dnpReadRoutingTableSize R

dnpSearchRoutingTable S

 table.

e.

eads the total number of entries in the routing table.

earches the routing table for a specific DNP address.

dnpWriteRoutingTableDialStrings Writes a primary and secondary dial string into an

dRoutingTableDialStrings Reads a primary and secondary dial string from an

NP C

e C Tools
Structur .

AF ctions
 application using the

ISaGRAF variable access functions listed below. Refer to the ISaGRAF C Tools Function
Specifications section for details on each function listed.

readBoolVariable Returns the current value of the specified boolean variable.

readIntVariable Returns the current value of the specified integer variable.

readRealVariable Returns the current value of the specified real variable.

readMsgVariable Returns the current value of the specified message variable.

readTimerVariable Returns the current value of the specified timer variable.

writeBoolVariable Writes to the specified boolean variable.

writeIntVariable Writes to the specified integer variable.

writeRealVariable Writes to the specified real variable.

writeMsgVariable Writes to the specified message variable.

writeTimerVariable Writes to the specified timer variable.

HART Communication
The HART ® protocol is a field bus protocol for communication with smart transmitters.

The HART protocol driver provides communication between TeleSAFE Micro16 and
SCADAPack controllers and HART devices. The protocol driver uses the model 5904 HART
modem for communication. Four HART modem modules are supported per controller.

The driver allows HART transmitters to be used with C application programs and with
RealFLO. The driver can read data from HART devices.

HART Command Functions
The ctools.h file defines the following HART command related functions. Refer to the
Function Specification section for details on each function listed.

entry in the DNP routing table.

dnpRea
entry in the DNP routing table.

D ommunication Protocol Structures and Types
The ctools.h file defines the structures DNP Configuration, Binary Input Point, Binary Output
Point, Analog Input Point, Analog Output Point and Counter Input Point. Refer to th

es and Types section for complete information on structures and enumeration types

ISaGR Variable Access Fun
Variables declared in an ISaGRAF application are accessed from a C

ISaGRAF C Tools User and Reference Manual
May 8, 2007

61

hartIO Reads data from the 5904 interface module, processes HART
responses, processes HART commands, and writes commands
and configuration data to the 5904 interface module.

nd string and specify a function to handle the
response

and0 read unique identifier using short-address algorithm

 read primary variable current and percent of span

ith tag

ttings

hartSetConfiguration write HART module settings

String convert string to HART packed string

tools.h file defines the following macro of interest to a C application program. Refer to

DATA_SIZE Maximum length of the HART command or response field.

on Types
The ctools.h file defines one enumeration type. The HART_RESULT enumeration type

 of results of sending a command. Refer to the C Tools Structures and Types
mplete information on structures and enumeration types.

es five structures. Refer to the C Tools Structures and Types
enumeration types.

about the HART device.

 containing the configuration for the HART modem

re containing a response from a HART slave
vice.

hartCommand send a HART comma

hartComm

hartCommand1 read primary variable

hartCommand2

hartCommand3 read primary variable current and dynamic variables

hartCommand11 read unique identifier associated w

hartCommand33 read specified transmitter variables

hartStatus return status of last HART command sent

hartGetConfiguration read HART module se

hartPack

hartUnpackString convert HART packed string to string

HART Command Macros
The c
the C Tools Macros section for details.

HART Command Enumerati

defines a list
section for co

HART Command Structures
The ctools.h file defin
section for complete information on structures and

The HART_DEVICE type is a structure containing information

 structure containing a variable read from a HART device. The HART_VARIABLE type is a

The HART_SETTINGS type is a structure
module.

e HAR re containing a command to be sent to a HART Th T_COMMAND type is a structu
slave device.

The HART_RESPONSE type is a structu
de

ISaGRAF C Tools User and Reference Manual
May 8, 2007

62

ISaGRAF C Tools Function

The con ons are listed
alphabe

Name

Syntax urn type and the
.

Description This defines the calling parameters for the function and its return values.

Notes ion on the function, and considerations for

See Als

Examp

Specifications
troller C function specifications are formatted as follows. The functi
tically.

Each specification begins with the name of the function and a brief description.

 The syntax shows a prototype for the function, indicating the ret
types of its arguments. Any necessary header files are listed

This section contains additional informat
its use.

o This section lists related functions.

le The example gives a brief sample of the use of the function.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

63

alarmIn
Determine Alarm Time from Elapsed Time

signed hours, unsigned minutes, unsigned seconds);

nction returns an ALARM_SETTING structure suitable for passing to the
setClockAlarm function. The structure specifies an absolute time alarm at the time offset

 by the call to alarmIn. Refer to the Structures and Types section for a description

Notes
reater than 60 seconds, the additional time is rolled into the minutes. If minute
 60 minutes, the additional time is rolled into the hours.

 the offset time is greater that one day, then the alarm time will roll over within the current
ay.

The IO_SYSTEM resource must be requested before calling this function.

See Also
getClockAlarm, setClockAlarm,

Example
#include <ctools.h>

/* --
 conservePower

 The conservePower function places the
 controller into sleep mode for 10 minutes.
 -- */
void conservePower(void)
{
 ALARM_SETTING alarm;

 request_resource(IO_SYSTEM);

 /* Alarm in 10 minutes */
 alarm = alarmIn(0, 10, 0);
 setClockAlarm(alarm)

 /* Put controller in low power mode */
 sleep();
 release_resource(IO_SYSTEM);
}

Syntax
#include <ctools.h>
ALARM_SETTING alarmIn(un

Description
The alarmIn function calculates the alarm settings to configure a real time clock alarm to
occur in hours, minutes and seconds from the current time.

The fu

specified
of the fields in the ALARM_SETTING structure.

If second is g
is greater than

If
d

ISaGRAF C Tools User and Reference Manual
May 8, 2007

64

allocate_envelope
 the RTOS

De
velope function obtains an envelope from the operating system. If no

ks. The RTOS allocates envelopes from
 en to the pool when they are de-allocated.

nvelopes are de-allocated. Envelopes
may be reused.

deallocate_envelope

_task_id;

 */

k_id;

 /* receive a message from any other task */

 letter = receive_message();
 /* ... process the data here */
 deallocate_envelope(letter);

 /* ... the rest of the task */
}

Obtain an Envelope from

Syntax
#include <ctools.h>envelope *allocate_envelope(void);

scription
The allocate_en
envelope is available, the task is blocked until one becomes available.

The allocate_envelope function returns a pointer to the envelope.

Notes
Envelopes are used to send messages between tas
a pool of free velopes. It returns envelopes

An application program must ensure that unneeded e

See Also

Example
#include <ctools.h>
tern unsigned otherex

id task1(void) vo
 {
 envelope *letter;

 /* send a message to another task
 /* assume it will deallocate the envelope */

letter = allocate_envelope();
 letter->destination = other_tas
 letter->type = MSG_DATA;
 letter->data = 5;

send_message(letter);

ISaGRAF C Tools User and Reference Manual
May 8, 2007

65

check_error
Get Error Code for Current Task

Syntax
#include <ctools.h>
int check_error(void);

Description
The check_error function returns the error code for the current task. The error code is set
by various I/O routines, when errors occur. A separate error code is maintained for each

turn errors in the global variable errno. This
variable is not unique to a task, and may be modified by another task, before it can be read.

See Also
r

task.

Notes
Some routines in the standard C library, re

eport_error

ISaGRAF C Tools User and Reference Manual
May 8, 2007

66

checksum
Calculate a Checksum

Syntax
#include <ctools.h>
unsigned checksum(unsigned char *start

algorithm);
, unsigned char *end, unsigned

 at the byte
 may be one of:

 ADDITIVE 16 bit byte-wise sum
 CRC-16 polynomial checksum
 CRC-CCITT polynomial checksum
 8 bit byte-wise exclusive OR

he CRC checksums use the crc_reverse function.

See Also
crc_reverse

Example
This function displays two types of checksums.
#include <ctools.h>

void checksumExample(void)
{
 char str[] = "This is a test";
 unsigned sum;

 /* Display additive checksum */
 sum = checksum(str, str+strlen(str), ADDITIVE);
 printf("Additive checksum: %u\r\n", sum);

 /* Display CRC-16 checksum */
 sum = checksum(str, str+strlen(str), CRC_16);
 printf("CRC-16 checksum: %u\r\n", sum);
}

Description
The checksum function calculates a checksum on memory. The memory starts
pointed to by start, and ends with the byte pointed to by end. The algorithm

CRC_16
CRC_CCITT
BYTE_EOR

T

ISaGRAF C Tools User and Reference Manual
May 8, 2007

67

checkSFTranslationTable
d Configuration Errors

onTable(void);

ction returns a SFTranslationStatus structure. Refer to the Structures and Types
he code field of

the structure is set to one of the following. If there is an error, the index field is set to the
e translation that is not valid.

Test for Store and Forwar

Syntax
#include <ctools.h>
struct SFTranslationStatus checkSFTranslati

Description
The checkSFTranslationTable function checks all entries in the address translation table
for validity. It detects the following errors:

The fun
section for a description of the fields in the SFTranslationStatus structure. T

location of th

Result code Meaning
SF_VALID All translations are valid
SF_NO_TRANSLATION The entry defines re-transmission of the same

message on the same port
SF_PORT_OUT_OF_RANGE One or both of the serial port indexes is not valid
SF_STATION_OUT_OF_RANG
E

One or both of the stations is not valid

Notes
The TeleBUS Protocols User Manual describes store and forward messaging mode.

See Also
getSFTranslation, checkSFTranslationTable

Example
See the example for the setSFTranslation function.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

68

clear_errors
Clear Serial Port Error Counters

Syntax
#include <ctools.h>
void clear_errors(FILE *stream);

Description
The clear_errors function clears the serial port error counters for the serial port specified by
stream. If stream does not point to a valid serial port the function has no effect.

The IO_SYSTEM resource must be requested before calling this function.

See Also
get_status

ISaGRAF C Tools User and Reference Manual
May 8, 2007

69

clear_protocol_status

l
as no

 calling this function.

o

Clear Protocol Counters

Syntax
#include <ctools.h>
void clear_protocol_status(FILE *stream);

Description
The clear_protocol_status function clears the error and message counters for the seria
port specified by stream. If stream does not point to a valid serial port the function h
effect.

The IO_SYSTEM resource must be requested before

See Als

ISaGRAF C Tools User and Reference Manual
May 8, 2007

70

clearSFTranslationTable
on Configuration

oid);

ion

S Protocols User Manual describes store and forward messaging mode.

The IO_SYSTEM resource must be requested before calling this function.

See Also
getSFTranslation, checkSFTranslationTable

Example
See the example for the setSFTranslation function.

Clear Store and Forward Translati

Syntax
#include <ctools.h>
void clearSFTranslationTable(v

Description
The clearSFTranslationTable function clears all entries in the store and forward translat
table.

Notes
The TeleBU

ISaGRAF C Tools User and Reference Manual
May 8, 2007

71

clearStatusBit
s Code

Bit function clears the bits indicated by bitMask in the controller status

Notes
s output opens if code is non-zero. Refer to the System Hardware Manual for

pproximately 1/2 of a second
indicates a binary one. The least significant digit is output first. As few bits as possible are

ll leading zeros are ignored. There is a two-second delay between repetitions.

ED is the LED located on the top left hand corner of the 5203 or 5204 controller

ts 0 and 1 of the status code.

See Also
setStatusBit, setStatus, getStatusBit

Clear Bits in Controller Statu

Syntax
#include <ctools.h>
unsigned clearStatusBit(unsigned bitMask);

Description
The clearStatus
code. When the status code is non-zero, the STAT LED blinks a binary sequence
corresponding to the code. If code is zero, the STAT LED turns off.

The function returns the value of the status register.

The statu
more information.

The binary sequence consists of short and long flashes of the error LED. A short flash of
1/10th of a second indicates a binary zero. A longer flash of a

displayed – a

The STAT L
board.

The Register Assignment uses bi

ISaGRAF C Tools User and Reference Manual
May 8, 2007

72

clear_tx
Clear Serial Port Transmit Buffer

Syntax
<ctools.h>

);

ction clears the transmit buffer for the serial port specified by stream. If

See Also
us

#include
void clear_tx(FILE *stream

Description
The clear_tx fun
stream does not point to a valid serial port the function has no effect.

get_stat

ISaGRAF C Tools User and Reference Manual
May 8, 2007

73

crc_reverse
ecksum

);

nted
y be any value, but must be

tial

verse algorithm,
hecksums than the

Calculate a CRC Ch

Syntax
#include <ctools.h>
unsigned crc_reverse(unsigned char *start, unsigned char *end, unsigned

poly, unsigned initial

Description
The crc_reverse function calculates a CRC type checksum on memory using the reverse
algorithm. The memory starts at the byte pointed to by start, and ends with the byte poi
to by end. The generator polynomial is specified by poly. poly ma
carefully chosen to ensure good error detection. The checksum accumulator is set to ini
before the calculation is started.

Notes
The reverse algorithm is named for the direction bits are shifted. In the re
bits are shifted towards the least significant bit. This produces different c
classical, or forward algorithm, using the same polynomials.

See Also
checksum

ISaGRAF C Tools User and Reference Manual
May 8, 2007

74

createRoutingTable
Create Routing Table

ynta

otes
tion in order to create the DNP configuration.

ns TRUE if successful, FALSE otherwise.

 section.

S x
#include <ctools.h>
BOOLEAN createRoutingTable (UINT16 size);

Description
is fun io ing table, and allocates memory for a new Th ct n destroys any existing DNP rout

routing table according to the ‘size’ parameter.

N
DNP must be enabled before calling this func

The function retur

Example
n the dnpSendUnsolicitedSee the example i

ISaGRAF C Tools User and Reference Manual
May 8, 2007

75

crea
Create a New Task

Syntax
#include <ctools.h>
int create_task(void *function, unsigned priority, unsigned type, unsigned

stack);

Description
The create_task function allocates stack space for a task and places the task on the ready
queue. function specifies the start address of the routine to be executed. The task will
execute immediately if its priority is higher than the current task.

priority is an execution priority between 1 and 4 for the created task. The 4 task priority
levels aid in scheduling task execution.

type specifies if the task is ended when an application program is stopped. Valid values for
type are:

SYSTEM system tasks do not terminate when the program stops

APPLICATION application tasks terminate when the program stops

It is recommended that only APPLICATION type tasks be created.

The stack parameter specifies how many stack blocks are allocated for the task. Each stack
block is 256 bytes.

The create_task function returns the task ID (TID) of the task created. If an error occurs, -1
is returned.

Notes
Refer to the Real Time Operating System section for more information on tasks.

Note that the main task and the Ladder Logic and I/O scanning task have a priority of 1. If
the created task is continuously running processing code, create the task with a priority of 1
and call release_processor periodically; otherwise the remaining priority 1 tasks will be
blocked from executing.

For tasks such as a protocol handler, that wait for an event using the wait_event or
receive_message function, a priority greater than 1 may be selected without blocking other
lower priority tasks.

The number of stack blocks required depends on the functions called within the task, and
the size of local variables created. Most tasks require 2 stack blocks. If any of the printf
functions are used, then at least 4 stack blocks are required. Add local variable usage to
these limits, if large local arrays or structures are created. Large structures and arrays are
usually best handled as static global variables within the task source file. (The variables are
global to all functions in the task, but cannot be seen by functions in other files.)

Additional stack space may be made available by disabling unused protocol tasks. See the
section Program Development or the set_protocol() function for more information.

See Also
end_task

te_task

ISaGRAF C Tools User and Reference Manual
May 8, 2007

76

Example

1(void)

 while (TRUE)

ody of task 1 loop - processing I/O */

IO_SYSTEM);

 release_processor();
 }
}

v v
{
 while(
 {
 /* body of task 2 loop - event handler */
 wait_event(TIME_TO_PRINT);

 of TIME_TO_PRINT events when application is

}

/
 create_task(task1, 1, APPLICATION, 2);

 installExitHandler(taskStatus.taskID, shutdown);

tart timed event to occur every 10 sec */
tTimedEvent(TIME_TO_PRINT, 100);

 interval(0, 10);
 while(TRUE)

main task loop */
ocessing code */

w other tasks to execute */

#include <ctools.h>

#define TIME_TO_PRINT 20

void task
{
 int a, b;

 {
 /* b

 request_resource(IO_SYSTEM);
 a = dbase(MODBUS, 30001);
 b = dbase(MODBUS, 30002);
 setdbase(MODBUS, 40020, a * b);
 release_resource(

 /* Allow other tasks to execute */

oid task2(oid)

TRUE)

 printf("It’s time for a coffee break\r\n");
 }
}
/* --
 The shutdown function stops the signalling

 stopped.
 -- */
void shutdown(void)
{

endTimedEvent(TIME_TO_PRINT);

void main(void)
{
 TASKINFO taskStatus;

 /* continuos processing task at priority 1 *

 /* event handler needs larger stack for printf function */
 create_task(task2, 3, APPLICATION, 4);

 /* set up task exit handler to stop
 signalling of events when this task ends */
 taskStatus = getTaskInfo(0);

 /* s
 star

 {
 /* body of

er pr /* oth
 /* Allo

ISaGRAF C Tools User and Reference Manual
May 8, 2007

77

 release_processor();
 }
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

78

databaseRead
Read Value from I/O Database

LSE is returned and the variable pointed

T e belo dress types and ra

Syntax
#include <ctools.h>
BOOLEAN databaseRead(UINT16 type, UINT16 address, INT16* value)

Description
The databaseRead function reads a value from the database. type specifies the method of
addressing the database. address specifies the location in the database. If the specified
address is valid then TRUE is returned and the value is copied to the variable pointed to by
value. If the specified address is not valid then FA
to by value is left unchanged.

he tabl w shows the valid ad nges.

Type Address Ranges Register
Size

MODBUS

MHOLDING

00001 to NUMCOIL
10001 to 10000 + NUMSTATUS
30001 to 30000 + NUMINPUT
40001 to 40000 + NU

1 bit
1 bit
16 bit
16 bit

LINEAR 0 to NUMLINEAR-1 16 bit

If the specified address is in the valid range but it has not been defined by an application,

1. ss has been assigned as the Network Address for an ISaGRAF Dictionary

.

3. us
 NUMHOLDING_PERMANENT, and 00001 to

 of these categories, the first
occurrence of the address in the order listed is always used.

s Registers for details on potential

databaseWrite, setdbase

#include <ctools.h>
void main(void)

then the address is also invalid. An address is defined if any of the following is true:

The addre
variable.

2. The address is defined in a database handler installed by a C or C++ application

The address is within the default range of the Permanent Non-volatile Modb
Registers: 40001 to 40000 +
NUMCOIL_PERMANENT.

When this function is called, the specified address is searched for under these three
categories in the order listed above until the address is found. If the address is not found,
FALSE is returned. If the address is defined in more than one

Notes
Refer to the section Permanent Non-Volatile Modbu
addressing conflicts during application downloading.

The IO_SYSTEM resource must be requested before calling this function.

See Also

Example

ISaGRAF C Tools User and Reference Manual
May 8, 2007

79

{
 INT16 value;

BOOLEAN status ;

source(IO_SYSTEM);

/
, &value);

, &value);

&value);

request_re

 /* Read Modbus status input point *

status = databaseRead(MODBUS, 10001

/* Read 16 bit register */
 status = databaseRead(LINEAR, 3020

/* Read 16 bit register beginning at first
 status register */
 status = databaseRead(LINEAR, START_STATUS,

 /* Read 6th input register */
 status = databaseRead(LINEAR, START_INPUT+5, &value);

 release_resource(IO_SYSTEM);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

80

databaseWrite
Write Value to I/O Database

 UINT16 address, INT16 value)

seWrite function writes value to the I/O database. type specifies the method of
atabase. address specifies the location in the database. If the specified
then TRUE is returned and the value is written. If the specified address is not

Syntax
#include <ctools.h>
BOOLEAN databaseWrite(UINT16 type,

Description
The databa
addressing the d
address is valid
valid then FALSE is returned and nothing is done.

The table below shows the valid address types and ranges.

Type Address Ranges Register
Size

MODBUS 00001 to NUMCOIL
10001 to 10000 + NUMSTATUS
30001 to 30000 + NUMINPUT
40001 to 40000 + NUMHOLDING

1 bit
1 bit
16 bit
16 bit

LINEAR 0 to NUMLINEAR-1 16 bit

If the specified address is in the valid range but it has not been defined by an application,

F Dictionary

MANENT.

When this function is called, the specified address is searched for under these three
 the order listed above until the address is found. If the address is not found,

is defined in more than one of these categories, the first

or details on potential

rites data to 16 1-bit
invalid, only the valid registers are written

fore calling this function.

then the address is also invalid. An address is defined if any of the following is true:

1. The address has been assigned as the Network Address for an ISaGRA
variable.

lication. 2. The address is defined in a database handler installed by a C or C++ app

le Modbus 3. The address is within the default range of the Permanent Non-volati
Registers: 40001 to 40000 + NUMHOLDING_PERMANENT, and 00001 to
NUMCOIL_PER

categories in
FALSE is returned. If the address
occurrence of the address in the order listed is always used.

Notes
gisters fRefer to the section Permanent Non-Volatile Modbus Re

addressing conflicts during application downloading.

When writing to LINEAR digital addresses, value is a bit mask which w
registers at once. If any of these 1-bit registers is
and FALSE is returned.

The IO_SYSTEM resource must be requested be

See Also
databaseRead, setdbase

ISaGRAF C Tools User and Reference Manual
May 8, 2007

81

Example
#include <ctools.h>

01, 102);

RT_COIL, 255);

register */
(LINEAR, 3020, 240);

oldin register */
(LINE , START_HOLDING+11, 330);

urce(IO_SYSTEM);

void main(void)
{
 BOOLEAN status;
 request_resource(IO_SYSTEM);

 400 status = databaseWrite(MODBUS,

 /* Turn ON the first 16 coils */

te(LINEAR, STA status = databaseWri

t /* Write to a 16 bi
 status = databaseWrite

 /* Write to the 12th h g

ite AR status = databaseWr

 release_reso
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

82

datalogCreate
Create Data Log Function

Syntax
#include <ctools.h>
DATALOG_STATUS datalogCreate(

ONFIGURATION * pLogConfiguration

creates a data log with the specified configuration. The data log is created in

 has two parameters. logID specifies the data log to be created. The valid

The function returns the status of the operation.

The configuration of an existing data log cannot be changed. The log must be deleted and
change the configuration.

. If there is insufficient
OMEMORY.

 returns DLS_EXISTS.

s DLS_BADID.

lid the creation operation fails. The function returns
G.

--

*/

e

 UINT16 logID,
 DATALOG_C
);

Description
This function
the data log memory space.

The function
range is 0 to 15. pLogConfiguration points to a structure with the configuration for the
data log.

Notes

recreated to

All data logs are stored in memory from a pool for all data logs
memory the creation operation fails. The function returns DLS_N

If the data log already exists the creation operation fails. The function

 the log ID is not valid the creation operation fails. The function returnIf

If the configuration is not va
DLS_BADCONFI

See Also
 datalogDelete, datalogSettings

Example
/*--
The following code shows how to create a

 data log and how to write one record into it.
-- --

#include "ctools.h"
---- /*-----------------------------

cture used only to copy on Stru
 record into data log
----- -*/ - --------------------------
struct dataRecord
{
 UINT16 value1;
 int value2;
 double value3;
 float value4;

ISaGRAF C Tools User and Reference Manual
May 8, 2007

83

 float value5;
};

; int logID
/*---------------------------------

/

--- ---- ---------------
lare a struture to hold the
 that will be copied in log

-*/

 Function declaration
----------------------*/
void ConfigureLog(void);
void InitRecord(void);

void main(void)
{
 ConfigureLog(); /* function call to cofigure log */
 InitRecord();

 if(datalogCreate(logID, &dLogConfig) == DLS_CREATED)
 {
 /* Start writing records in log */
 if(datalogWrite(logID, (UINT16 *)&data))
 {
 /* one record was written in data log */
 }
 }
}

/* Log configuration */
void ConfigureLog(void)
{
 /* Assign a number to the data log */
 logID = 10;

 /* Fill in the log configuration structure */
 dLogConfig.records = 200;
 dLogConfig.fields = 5;
 dLogConfig.typesOfFields[0] = DLV_UINT16;
 dLogConfig.typesOfFields[1] = DLV_INT32;
 dLogConfig.typesOfFields[2] = DLV_DOUBLE;
 dLogConfig.typesOfFields[3] = DLV_FLOAT;
 dLogConfig.typesOfFields[4] = DLV_FLOAT;
}

/* One record initialization */
void InitRecord(void)
{
 /* Assign some data for the log */
 data.value1 = 100;
 data.value2 = 200;
 data.value3 = 30000;
 data.value4 = 40.3;
 data.value5 = 50.75;
}

 Declare a structure for the log
---------------------------------*

CONF GURAT ON dLogConfig;DATALOG_ I I
/*------- -- --
 Dec
 data

struct dataRecord data;
/*

ISaGRAF C Tools User and Reference Manual
May 8, 2007

84

datalogDelete
Delete Data Log Function

Syntax
#include <ctools.h>
BOOLEAN datalogDelete(

 UINT16 logID
);

Description
stroys the specified data log. The memory used by the data log is returned

following code shows the only way to
ge the configuration of an existing log

int logID;

 a structure for the log */

/* Select logID #10 */

;

tion of logID #10 */
logID, &dLogConfig))

s[0] == DLV_INT16)

(logID))

uration */
fig.records = 200;

pesOfFields[1] = DLV_INT32;

This function de
to the freed.

The function has one parameter. logID specifies the data log to be deleted. The valid range
is 0 to 15.

The function returns TRUE if the data log was deleted. The function returns FALSE if the log
ID is not valid or if the log had not been created.

See Also
datalogCreate

Example
/* The
 chan
 is to delete the log and recreate the data
 log */

#include <ctools.h>

/* Declare
DATALOG_CONFIGURATION dLogConfig;

logID = 10

/* Read the configura
f(datalogSettings(i
{
 if(dLogConfig.typesOfField
 {

 Delete whole log and start from scratch */ /* Wrong type.
 if(datalogDelete
 {

enter the log config /* Re-
dLogCon

 dLogConfig.fields = 5;
ypesOfFields[0] = DLV_UINT16; dLogConfig.t

dLogConfig.ty
 dLogConfig.typesOfFields[2] = DLV_DOUBLE;

OfFields[3] = DLV_FLOAT; dLogConfig.types

ISaGRAF C Tools User and Reference Manual
May 8, 2007

85

 dLogConfig.typesOfFields[4] = DLV_FLOAT;
 datalogCreate(logID, &dLogConfig);

 }
 else

/* could not delete log */
 {

 }

 }
}
se el

{
 /* Could not read settings */
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

86

datalogPurge
Purge Data Log Function

Syntax
 <ctools.h>

Description
n removes records from a data log. The function can remove all the records, or a

group of records starting with the oldest in the log.

 three parameters. specifies the data log. The valid range is 0 to 15.

ed if purgeAll

been read and leaves any records added since the records were read.

uence number specifies a record that is not in the log, no records are removed.

ple

BOOLEAN purgeAll;

g to purge only part of data log */
 FALSE;

/* How many of the oldest records to purge */
sequenceNumber = 150;

#include
BOOLEAN datalogPurge(
UINT16 logID,

 BOOLEAN purgeAll,
 UINT32 sequenceNumber
);

This functio

The function has logID
If purgeAll is TRUE, all records are removed, otherwise the oldest records are removed.
sequenceNumber specifies the sequence number of the most recent record to remove. All
records up to and including this record are removed. This parameter is ignor
is TRUE.

The function returns TRUE if the operation succeeds. The function returns FALSE if the log
ID is invalid, if the log has not been created, or if the sequence number cannot be found in
the log.

Notes
Purging the oldest records in the log is usually done after reading the log. The sequence
number used is that of the last record read from the log. This removes the records that have

If the seq

See Also
datalogReadStart, datalogReadNext, datalogWrite

Exam

#include <ctools.h>

int logID, sequenceNumber;

/* Declare flag to purge entire of data log or part of it */

/* Which data log to purge? */
logID = 10;

/* Set fla
purgeAll =

ISaGRAF C Tools User and Reference Manual
May 8, 2007

87

if(datalogPurge(logID, purgeAll, sequenceNumber))

 /* Start writing records again */

 log, simply set flag to TRUE */

ame parameters */
ogPurge(logID, purgeAll, sequenceNumber))

cessful at purging the entire data log */

{
 /* Successful at purging the first 150 records of log */

}

/* To purge the entire data
purgeAll = TRUE;

up function with s/* Call
if(datal
{
 /* Suc
 /* Start writing records again */
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

88

data
Read ta L

is fun

n ion reads the next record from the data log starting at the specified sequence
he specified sequence number if it is present

e log. If the record no longer exists it returns the next record in the log.

The function has five parameters. logID specifies the data log. The valid range is 0 to 15.
sequenceNumber is sequence number of the record to be read. pSequenceNumber is a
pointer to a variable to hold the sequence number of the record read.
pNextSequenceNumber is a pointer to a variable to hold the sequence number of the next
record in the log. This is normally used for the next call to this function. pData is a pointer to
memory to hold the data read from the log.

The function returns TRUE if a record is read from the log. The function returns FALSE if the
log ID is not valid, if the log has not been created or if there are no more records in the log.

Notes
Use the datalogReadStart function to obtain the sequence number of the oldest record
in the data log.

The pData parameter must point to memory of sufficient size to hold all the data in a record.

It is normally necessary to call this function until it returns FALSE in order to read all the data
from the log. This accommodates cases where data is added to the log while it is being
read.

If data is read from the log at a slower rate than it is logged, it is possible that the sequence
numbers of the records read will not be sequential. This indicates that records were
overwritten between calls to read data.

The sequence number rolls over after reaching its maximum value.

See Also
datalogReadStart, datalogPurge, datalogWrite

Example
See the example for datalogReadStart.

logReadNext
Da og Next Function

eturns the next record in the data log. Th ction r

Syntax
#include <ctools.h>
BOOLEAN datalogReadNext(
UINT16 logID,
INT32 sequeU nceNumber,
UINT32 * pSequenceNumber,
UINT32 * pNextSequenceNumber,
UINT16 * pData
);

Description
This fu ct
number. The function returns the record with t
in th

ISaGRAF C Tools User and Reference Manual
May 8, 2007

89

datalogReadStart
Read Data Log Start Function

Syntax
 <ctools.h>

t(

Description
urns the sequence number of the record at the start of the data log. This is

ata log. The valid range is 0 to 15.

SE if the log

Notes
 function to read records from the log.

t call

, datalogWrite

/**
 The following code shows how to read records
 from data log.
**/

#include "ctools.h"
#include <stdlib.h>

UINT16 recordSize,
 logID,
 pData; / Pointer to memory to hold data read from log. */

UINT32 sequenceNumber,/* Sequence number of record to be read. */
 nextSequenceNumber; /* Sequence number of next record. */

void main(void)
{
 /* Select data log #10 */
 logID = 10;

 /* Find first record in data log #10 and store
 its sequence number into sequenceNumber */

#include
BOOLEAN datalogReadStar
UINT16 logID,

mber UINT32 * pSequenceNu
);

This function ret
the oldest record in the log.

The function has two parameters. logID specifies the d
pSequenceNumber is a pointer to a variable to hold the sequence number.

The function returns TRUE if the operation succeeded. The function returns FAL
ID is not valid or if the log has not been created.

Use the datalogReadNext

The function will return a sequence number even if the log is empty. In this case the nex
to datalogReadNext will return no data.

See Also
datalogReadNext, datalogPurge

Example

ISaGRAF C Tools User and Reference Manual
May 8, 2007

90

dStart(logID, &sequenceNumber))

 of this record */
rdSize(logID, &recordSize))

 {
/* Allocate memory of size recordSize */

 *) malloc(recordSize);

s from data log #10. */
uenceNumber,
))

{
 /* Use pData and its contents.
 Set next sequence number of record to be read. */

 if(datalogRea
 {
 /* Get the size
 if(datalogReco

 pData = (UINT16

 record /* Read all
 while(datalogReadNext(logID, seq

eNumber, &nextSequenceNumber, pData&sequenc

 sequenceNumber = nextSequenceNumber;
 }
 }
 }
 }

ISaGRAF C Tools User and Reference Manual
May 8, 2007

91

datalogRecordSize
ction

ze(

Size;

 function.

 function returns FALSE if the log

Notes
tion is useful in determining how much memory must be allocated for a call to

See Also
te, datalogSettings

Example
ple for datalogReadStart.

Data Log Record Size Fun

Syntax
#include < ctools.h >
BOOLEAN datalogRecordSi

 UINT16 logID,
 UINT16 * pRecord
);

Description
This function returns the size of a record for the specified data log. The log must have been
previously created with the datalogCreate

The function has two parameters. logID specifies the data log. The valid range is 0 to 15.
pRecordSize points to a variable that will hold the size of a record in the log.

The function returns TRUE if the operation succeeded. The
ID is invalid or if the data log does not exist.

This func
datalogReadNext or datalogWrite.

datalogCrea

See the exam

ISaGRAF C Tools User and Reference Manual
May 8, 2007

92

datalogSettings

 UINT16 logID,
 IGURATION * pLogConfiguration

pecified data log. The log must have been
previously created with the ogCreate function.

The function has two parameters. logID specifies the data log. The valid range is 0 to 15.
p u ructure that will hold the data log configuration.

The function re ede unction returns FALSE if the log
ID is invalid or

Notes
iguration of an existing data log cannot be changed. The log must be deleted and

datalogCreate, datalogRecordSize

Ex
See example for .

Data Log Settings Function

Syntax
#include < ctools.h >
BOOLEAN datalogSettings(

DATALOG_CONF
);

Description
This function reads the configuration of the s

datal

LogConfig ration points to a st

turns TRUE if the operation suc
if the data log does not exist.

ce d. The f

The conf
recreated to change the configuration.

See Also

ample
datalogDelete

ISaGRAF C Tools User and Reference Manual
May 8, 2007

93

data
Write ta L

ynta
nclu

 NT16
 NT16

escr
g. The log must have been previously

ated with the datalogCreate function.

The function has two parameters. logID specifies the data log. The valid range is 0 to 15.
pData is a pointer to the data to be written to the log. The amount of data copied using the
pointer is determined by the configuration of the data log.

The function returns TRUE if the data is added to the log. The function returns FALSE if the
log ID is not valid or if the log does not exist.

Notes
Refer to the datalogCreate function for details on the configuration of the data log.

If the data log is full, then the oldest record in the log is replaced with this record.

See Also
datalogReadStart datalogReadNext datalogPurge

Example
See the example for datalogCreate.

logWrite
D og Function a

S x
#i de <ctools.h>
BOOLEAN datalogWrite(
UI logID,
UI
;

 * pData
)

D iption
Th
cre

is function writes a record to the specified data lo

ISaGRAF C Tools User and Reference Manual
May 8, 2007

94

dbase
Read Value from I/O Database

Syntax
#include <ctools.h>
int dbase(unsigned type, unsigned address);

ion in the database. If the specified
address is not valid then the variable pointed to by value is left unchanged. The table below

lid address types and ranges.

Description
The dbase function reads a value from the database. type specifies the method of
addressing the database. address specifies the locat

shows the va

Type Address Ranges Register
Size

MODBUS 00001 to NUMCOIL
10001 to 10000 + NUMSTATUS

1 bit
1 bit
6 bit 30001 to 30000 + NUMINPUT

40001 to 40000 + NUMHOLDING
1
16 bit

LINEAR 0 to NUMLINEAR-1 16 bit

Notes
If the specified address is in the valid range but it has not been defined by an application,
then the address is also invalid. An address is defined if any of the following is true:

1. The address has been assigned as the Network Address for an ISaGRAF Dictionary
variable.

2. The address is defined in a database handler installed by a C or C++ application.

3. The address is within the default range of the Permanent Non-volatile Modbus
Registers: 40001 to 40000 + NUMHOLDING_PERMANENT, and 00001 to
NUMCOIL_PERMANENT.

When this function is called, the specified address is searched for under these three
categories in the order listed above until the address is found. If the address is not found,
then the variable pointed to by value is left unchanged. If the address is defined in more
than one of these categories, the first occurrence of the address in the order listed is always
used.

Refer to the section Permanent Non-Volatile Modbus Registers for details on potential
addressing conflicts during application downloading.

The IO_SYSTEM resource must be requested before calling this function.

See Also
setdbase, databaseRead, databaseWrite

Example
#include <ctools.h>

void main(void)
{

ISaGRAF C Tools User and Reference Manual
May 8, 2007

95

 int a;

*/
 a = dbase(MODBUS, 10001);

 Read 16 bit register */
, 3020);

 6th input register */
se(LINEAR, START_INPUT + 5);

 request_resource(IO_SYSTEM);

 /* Read Modbus status input point

 /*
 a = dbase(LINEAR

 /* Read 16 bit register beginning at first
 status register */
 a = dbase(LINEAR, START_STATUS);

 /* Read
 a = dba

 release_resource(IO_SYSTEM);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

96

deall
Return

ocate_envelope
 Envelope to the RTOS

Syntax
ools.h> #include <ct

void deallocate_envelope(envelope *penv);

Description
The deallocate_envelope function returns the envelope pointed to by penv to the pool of
free envelopes maintained by the operating system.

See Also
allocate_envelope

Example
See the example for the allocate_envelope function.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

97

dnpI
Config

;

P

function is NULL the handler is disabled.

otes
cess the event and return immediately. If the required action

r function. See the example below

ts the
plication is stopped. Call the

thod is to create a

N_REQUIRED,
e definition for

ic
ponsible for making and ending the dial-

wing registers.

ed reporting.

t is complete.

10003 turns on when the unsolicited report is fails.

• The ladder logic program turns on register 1 when the connection is complete and turns
off the register when the connection is broken.

/* ---
 dnp.c
 Demonstration program for using the DNP connection handler.

nstallConnectionHandler
ures the connection handler for DNP.

Syntax
#include <ctools.h>

(* function) void dnpInstallConnectionHandler(void
(DNP_CONNECTION_EVENT event))

Description
This function installs a handler that will permit user-defined actions to occur when DN
requires a connection, message confirmation is received, or a timeout occurs.

function is a pointer to the handler function. If

The function has no return value.

N
The handler function must pro
involves waiting this must be done outside of the handle

ntation. for one possible impleme

The application must disable the handler when the application ends. This preven
protocol driver from calling the handler while the ap
dnpInstallConnectionHandler with a NULL pointer. The usual me
task exit handler function to do this. See the example below for details.

The handler function has one parameter.

• P t t s occurred. It may be one of event is DN even hat ha DNP_CONNECTIO
ESSAGE_TIMEOUT. See the structurDNP_MESSAGE_COMPLETE, or DNP_M

the eaning f thes vents

lue.

m o e e .

The handler function has no return va

By default no connection handler is installed and no special steps are taken when DNP
requires a connection, receives a message confirmation, or a timeout occurs.

Example
This example shows how a C application can handle the events and inform a log
application of the events. The logic application is res
up connection.

The program uses the follo

• 10001 turns on when a connection is requested by DNP for unsolicit

• 10002 turns on when the unsolicited repor

•

ISaGRAF C Tools User and Reference Manual
May 8, 2007

98

ol Microsystems Inc.
-- */

 --- */
tools.h>

 Cons
 --- */
#define for signaling connection required */

COMPLETE 10002 /* register for signaling unsolicited message is
complete */

 1 /* connection status register */

/* ---
nctions
--- */

 sampleDNPHandler

 This function is the user defined DNP connection handler. It will be
 called by internal DNP routines when a connection is required, when

 confirmation of a message is received, and when a communication timeout
 occurs.

 The function takes a variable of type DNP_CONNECTION_EVENT as an input.
 This input instructs the handler as to what functionality is required.
 The valid choices are connection required (DNP_CONNECTION_REQUIRED),
 message confirmation received (DNP_MESSAGE_COMPLETE), and timeout occurred
 (DNP_MESSAGE_TIMEOUT).

 The function does not return any values.
 --- */
static void sampleDNPHandler(DNP_CONNECTION_EVENT event)
{
 /* Determine what connection event is required or just occurred */
 switch(event)
 {
 case DNP_CONNECTION_REQUIRED:
 /* indicate connection is needed and clear other bits */
 request_resource(IO_SYSTEM);
 setdbase(MODBUS, CONNECTION_REQUIRED, 1);
 setdbase(MODBUS, MESSAGE_COMPLETE, 0);
 setdbase(MODBUS, MESSAGE_FAILED, 0);
 release_resource(IO_SYSTEM);
 break;

 case DNP_MESSAGE_COMPLETE:
 /* indicate message sent and clear other bits */
 request_resource(IO_SYSTEM);
 setdbase(MODBUS, CONNECTION_REQUIRED, 0);
 setdbase(MODBUS, MESSAGE_COMPLETE, 1);
 setdbase(MODBUS, MESSAGE_FAILED, 0);
 release_resource(IO_SYSTEM);
 break;

 case DNP_MESSAGE_TIMEOUT:
 /* indicate message failed and clear other bits */
 request_resource(IO_SYSTEM);
 setdbase(MODBUS, CONNECTION_REQUIRED, 0);
 setdbase(MODBUS, MESSAGE_COMPLETE, 0);
 setdbase(MODBUS, MESSAGE_FAILED, 1);
 release_resource(IO_SYSTEM);
 break;

 default:
 /* ignore invalid requests */
 break;
 }

 Copyright 2001, Contr

/* ----------------
 Include Files

#include <c

/* ---

tants

 CONNECTION_REQUIRED 10001 /* register
#define MESSAGE_

#define MESSAGE_FAILED 10003 /* register for signaling unsolicited message
failed */

#define CONNECTION_STATUS

 Private Fu

/* --

ISaGRAF C Tools User and Reference Manual
May 8, 2007

99

}

--

--- */

/* ---

in task of a user application. It monitors a
lue

 has no parameters.

r */
ister */

ection state */
base(MODBUS, CONNECTION_STATUS);

 /* loop forever */
e (TRUE)

 /* get the current connection state */
 currentConnectionState = dbase(MODBUS, CONNECTION_STATUS);

 /* if the state has changed */
 if (currentConnectionState != lastConnectionState)
 {
 /* if the connection is active */
 if (currentConnectionState)
 {
 /* Inform DNP that a connection exists */
 dnpConnectionEvent(DNP_CONNECTED);

 /* clear the request flag */
 setdbase(MODBUS, CONNECTION_REQUIRED, 0);
 }
 else
 {
 /* Inform DNP that the connection is closed */
 dnpConnectionEvent(DNP_DISCONNECTED);

 /* clear the message flags */
 setdbase(MODBUS, MESSAGE_COMPLETE, 0);
 setdbase(MODBUS, MESSAGE_FAILED, 0);
 }

 /* save the new state */
 lastConnectionState = currentConnectionState;
 }

 /* release the processor so other tasks can run */
 release_resource(IO_SYSTEM);
 release_processor();
 }
}

/* -------------------------
 Public Functions

 main

 This function is the ma
 register from the ladder logic application. When the register va
 changes, the function signals DNP events.

 The function

 The function does not return.
 --- */
void main(void)
{
 int lastConnectionState; /* last state of connection registe
 int currentConnectionState; /* current state of connection reg

 /* install DNP connection handler */
 dnpInstallConnectionHandler(sampleDNPHandler);

 /* get the current conn
 lastConnectionState = d

 whil
 {
 request_resource(IO_SYSTEM);

ISaGRAF C Tools User and Reference Manual
May 8, 2007

100

dnpClearEventLog
Clear DNP Event Log

Syntax:
nclude <ctools.h>

rEventLog(void);

entLogs function deletes all change events from the DNP change event

Example:
xample in the dnpSendUnsolicited section.

#i
BOOLEAN dnpClea

Description:
The dnpClearEv
buffers, for all point types.

See the e

ISaGRAF C Tools User and Reference Manual
May 8, 2007

101

dnpConnectionEvent
Report a DNP connection event

#inclu
void dnpConnectionEvent(DNP_CONNECTION_EVENT event);

Descr
dnpConnectionEvent is used to report a change in connection status to DNP. This

sed if a custom DNP connection handler has been installed.

.

Syntax
de <ctools.h>

iption

function is only u

event is current connection status. The valid connection status settings are
DNP_CONNECTED, and DNP_DISCONNECTED.

See Also
dnpInstallConnectionHandler

Example
See the dnpInstallConnectionHandler example

ISaGRAF C Tools User and Reference Manual
May 8, 2007

102

dnpCreateRoutingTable

OLEA ze);

stroys any existing DNP routing table, and allocates memory for a new

ion.

le

Create Routing Table

Syntax
#include <ctools.h>
BO N createRoutingTable (UINT16 si

Description
This function de
routing table according to the ‘size’ parameter.

Notes
DNP must be enabled before calling this function in order to create the DNP configurat

The function returns TRUE if successful, FALSE otherwise.

Examp
See the example in the section Error! Reference source not found..

ISaGRAF C Tools User and Reference Manual
May 8, 2007

103

dnpGenerateEventLog

s.h>
ent g(

 DNP point

e type of DNP point. Allowed values are:

INT 32 bit analog input

CI16_POINT 16 bit counter output

 32 bit counter output

ies the DNP address of the point.

A change event is generated for the specified point (with the current time and current value),
 the DNP event buffer.

ethod and Class of Event
Object that have been configured for the point.

The function returns TRUE if the event was generated. It returns FALSE if the DNP point is
invalid, or if the DNP configuration has not been created.

Notes
DNP must be enabled before calling this function in order to create the DNP configuration.

Example
See the example in the dnpSendUnsolicited section.

Generate DNP Event Log

Syntax
#include <ctool
BOOLEAN dnpGenerateEv Lo
 UINT16 pointType,
 UINT16 pointAddress
);

Description
The dnpGenerateEventLog function generates a change event for the
specified by pointType and pointAddress.

pointType specifies th

BI_POINT binary input

AI16_POINT 16 bit analog input

AI32_PO

AISF_POINT short float analog input

CI32_POINT

pointAddress specif

and stored in

The format of the event will depend on the Event Reporting M

ISaGRAF C Tools User and Reference Manual
May 8, 2007

104

dnpGetAI16Config
Get DNP 16-bit Analog Input Configuration

Syntax
#include <ctools.h>
BOOLEAN dnpGetAI16Config(

point
n structure.

Notes
t be enabled before calling this function in order to create the DNP configuration.

See Also
dnpGetAI32Config

Example
See example in the dnpGetConfiguration function section.

 UINT16 point,
 dnpAnalogInput * pAnalogInput

);

Description
This function reads the configuration of a DNP 16-bit analog input point.

The function has two parameters: the point number; and a pointer to an analog input
configuratio

The function returns TRUE if the configuration was read. It returns FALSE if the point
number is not valid, if the pointer is NULL, or if DNP configuration has not been created.

DNP mus

ISaGRAF C Tools User and Reference Manual
May 8, 2007

105

dnpGetAI32Config
Get DNP 32-bit Analog Input Configuration

Syntax
#include <ctools.h>
BOOLEAN dnpGetAI32Config(
 UINT32 point,
 dnpAnalogInput * pAnalogInput
);

Description
This function reads the configuration of a DNP 32-bit analog input point.

The function has two parameters: the point number; and a pointer to an analog input point
configuration structure.

The function returns TRUE if the configuration was read. It returns FALSE if the point
number is not valid, if the pointer is NULL, or if DNP configuration has not been created.

Notes
DNP must be enabled before calling this function in order to create the DNP configuration.

See Also
dnpSaveAI32Config

Example
See example in the dnpGetConfiguration function section.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

106

dnpGetAISFConfig
Get Short Floating Point Analog Input Configuration

put point.

ise (if

created).

DNP must be enabled before calling this function in order to create the DNP configuration.

Syntax
#include <ctools.h>
BOOLEAN dnpGetAISFConfig (
 UINT16 point,
 dnpAnalogInput *pAnalogInput;
);

Description
This function reads the configuration of a DNP short floating point analog in

The function has two parameters: the point number, and a pointer to a configuration
structure.

The function returns TRUE if the configuration was successfully read, or FALSE otherw
the point number is not valid, or pointer is NULL, or if the DNP configuration has not been

Notes

ISaGRAF C Tools User and Reference Manual
May 8, 2007

107

dnpGetAO16Config
Get DNP 16-bit Analog Output Configuration

Syntax
#include <ctools.h>
BOOLEAN dnpGetAO16Config(

t point
n structure.

Notes
t be enabled before calling this function in order to create the DNP configuration.

ee Also
dnpSaveAO16Config

Example
See example in the dnpGetConfiguration function section.

 UINT16 point,
 dnpAnalogOutput * pAnalogOutput

);

Description
This function reads the configuration of a DNP 16-bit analog output point.

The function has two parameters: the point number; and a pointer to an analog outpu
configuratio

The function returns TRUE if the configuration was read. It returns FALSE if the point
number is not valid, if the pointer is NULL, or if DNP configuration has not been created.

DNP mus

S

ISaGRAF C Tools User and Reference Manual
May 8, 2007

108

dnpGetAO32Config
uration

t point.

nt

ig

Get DNP 32-bit Analog Output Config

Syntax
#include <ctools.h>
BOOLEAN dnpGetAO32Config(
 UINT32 point,
 dnpAnalogOutput * pAnalogOutput
);

Description
This function reads the configuration of a DNP 32-bit analog outpu

The function has two parameters: the point number; and a pointer to an analog output poi
configuration structure.

The function returns TRUE if the configuration was read. It returns FALSE if the point
number is not valid, if the pointer is NULL, or if DNP configuration has not been created.

Notes
DNP must be enabled before calling this function in order to create the DNP configuration.

See Also
dnpSaveAO32Conf

Example
See example in the dnpGetConfiguration function section.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

109

dnpGetAOSFConfig
Get Short Floating Point Analog Output Configuration

dnpAnalogOutput *pAnalogOutput;

ut point.

otes
DNP must be enabled before calling this function in order to create the DNP configuration.

Syntax
#include <ctools.h>
BO N dnpGetAOSFConfOLEA ig (
 UINT16 point,

);

Description
This function reads the configuration of a DNP short floating point analog outp

The function has two parameters: the point number, and a pointer to a configuration
structure.

The function returns TRUE if the configuration was successfully read, or FALSE otherwise (if
the point number is not valid, or pointer is NULL, or if the DNP configuration has not been
created).

N

ISaGRAF C Tools User and Reference Manual
May 8, 2007

110

dnpGetBIConfig
Get DNP Binary Input Configuration

Syntax
#include <ctools.h>
BOOLEAN dnpGetBIConfig(
 UINT16 point,
 dnpBinaryInput * pBinaryInput
);

Description
This function reads the configuration of a DNP binary input point.

The function has two parameters: the point number; and a pointer to a binary input point
configuration structure.

The function returns TRUE if the configuration was read. It returns FALSE if the point
number is not valid, if the pointer is NULL, or if DNP configuration has not been created.

Notes
DNP must be enabled before calling this function in order to create the DNP configuration.

See Also
dnpSaveBIConfig

Example
See example in the dnpGetConfiguration function section.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

111

dnpGetBIConfigEx
Read DNP Binary Input Extended Point

gEx(

int.

structure.

 if the
ot

been created.

tion supersedes dnpSaveBIConfig.

Syntax
BOOLEAN dnpGetBIConfi
 UINT16 point,
 dnpBinaryInputEx *pBinaryInput
);

Description
This function reads the configuration of an extended DNP Binary Input po

The function has two parameters: the point number, and a pointer to an extended binary
input point configuration

The function returns TRUE if the configuration was successfully read. It returns FALSE
point number is not valid, if the configuration is not valid, or if the DNP configuration has n

This func

ISaGRAF C Tools User and Reference Manual
May 8, 2007

112

dnpGetBOConfig
Get DNP Binary Output Configuration

Syntax
#include <ctools.h>
BOOLEAN dnpGetBOConfig(
 UINT16 point,
 dnpBinaryOutput * pBinaryOutput
);

 Description
This function reads the configuration of a DNP binary output point.

The function has two parameters: the point number; and a pointer to a binary output point
configuration structure.

The function returns TRUE if the configuration was read. It returns FALSE if the point
number is not valid, if the pointer is NULL, or if DNP configuration has not been created.

Notes
DNP must be enabled before calling this function in order to create the DNP configuration.

See Also
dnpSaveBOConfig

Example
See example in the dnpGetConfiguration function section.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

113

dnpGetCI16Config
Get DNP 16-bit Counter Input Configuration

rInput * pCounterInput

ion was read. It returns FALSE if the point
t valid, if the pointer is NULL, or if DNP configuration has not been created.

Notes
 enabled before calling this function in order to create the DNP configuration.

fig

funct

Syntax
#include <ctools.h>
BOOLEAN dnpGetCI16Config(
 UINT16 point,
 dnpCounte
);

Description
This function reads the configuration of a DNP 16-bit counter input point.

The function has two parameters: the point number; and a pointer to a counter input point
configuration structure.

The function returns TRUE if the configurat
number is no

DNP must be

See Also
dnpSaveCI16Con

Example
See example in the dnpGetConfigurat on ion section. i

ISaGRAF C Tools User and Reference Manual
May 8, 2007

114

dnpG tCI
Get DN 32-

2-bit counter input point.

put point

as read. It returns FALSE if the point
P configuration has not been created.

eate the DNP configuration.

pSav

xamp e
ee exa ple in ction.

e 32Config
P bit Counter Input Configuration

S x ynta
#include <ctools.h>
BOOLEAN dnpGetCI32Config(
 UINT32 point,

dnpCounterInput * pCounterInput
);

Description
This function reads the configuration of a DNP 3

The function has two parameters: the point number; and a pointer to a counter in
configuration structure.

The function returns TRUE if the configuration w
number is not valid, if the pointer is NULL, or if DN

Notes
DNP must be enabled before calling this function in order to cr

See Also
dn eCI32Config

E l
S m the dnpGetConfiguration function se

ISaGRAF C Tools User and Reference Manual
May 8, 2007

115

dnpGetConfiguration
Get DN

ynta

pCon

ucture.

nd FALSE if an error occurred.

pSav

om2. To
rs to points. This

UINT16 index; /* loop index */
struct prot_settings settings; /* protocol settings */

 dnpConfiguration configuration; /* configuration settings */
 dnpBinaryInput binaryInput; /* binary input settings */
 dnpBinaryOutput binaryOutput; /* binary output settings */
 dnpAnalogInput analogInput; /* analog input settings */
 dnpAnalogOutput analogOutput; /* analog output settings */
 dnpCounterInput counterInput; /* counter input settings */

 /* Stop any protocol currently active on com port 2 */
 get_protocol(com2,&settings);
 settings.type = NO_PROTOCOL;
 set_protocol(com2,&settings);

 /* Load the Configuration Parameters */
 configuration.masterAddress = DEFAULT_DNP_MASTER;
 configuration.rtuAddress = DEFAULT_DNP_RTU;
 configuration.datalinkConfirm = TRUE;
 configuration.datalinkRetries = DEFAULT_DLINK_RETRIES;
 configuration.datalinkTimeout = DEFAULT_DLINK_TIMEOUT;

 configuration.operateTimeout = DEFAULT_OPERATE_TIMEOUT;
 configuration.applicationConfirm = TRUE;
 configuration.maximumResponse = DEFAULT_MAX_RESP_LENGTH;
 configuration.applicationRetries = DEFAULT_APPL_RETRIES;
 configuration.applicationTimeout = DEFAULT_APPL_TIMEOUT;
 configuration.timeSynchronization = TIME_SYNC;

 configuration.BI_number = 8;
 configuration.BI_cosBufferSize = DEFAULT_COS_BUFF;
 configuration.BI_soeBufferSize = DEFAULT_SOE_BUFF;
 configuration.BO_number = 8;
 configuration.CI16_number = 24;
 configuration.CI16_bufferSize = 48;
 configuration.CI32_number = 12;

P Configuration

S x
#include <ctools.h>
BOOLEAN dnpGetConfiguration(
 dn figuration * pConfiguratio

);
n

Description
This function reads the DNP configuration.

The function has one parameter: a pointer to a DNP configuration str

The function returns TRUE if the configuration was read a

See Also
dn eConfiguration

Example
The following program demonstrates how to configure DNP for operation on c
illustrate creation of points it uses a sequential mapping of Modbus registe
is not required. Any mapping may be used.
void main(void)
{

ISaGRAF C Tools User and Reference Manual
May 8, 2007

116

 configuration.CI32_bufferSize = 24;
r = 24;
tingMethod = CURRENT_VALUE;

ze = 24;
 = 12;
Method = CURRENT_VALUE;

 configuration.AI32_bufferSize = 12;
nfiguration.AO16_number = 8;
nfiguration.AO32_number = 8;

configuration.holdCount = DEFAULT_HOLD_COUNT;

 dnpSaveConfiguration(&configuration);

 DNP protocol on com port 2 */

 release_resource(IO_SYSTEM);

&binaryOutput);
 }

 /* Configure Binary Input Points */
 for (index = 0;index < configuration.BI_number; index++)
 {
 binaryInput.modbusAddress = 10001 + index;
 binaryInput.class = CLASS_1;
 binaryInput.eventType = COS;

 dnpSaveBIConfig(index, &binaryInput);
 }

 /* Configure 16 Bit Analog Input Points */
 for (index = 0; index < configuration.AI16_number; index++)
 {
 analogInput.modbusAddress = 30001 + index;
 analogInput.class = CLASS_2;
 analogInput.deadband = 1;

 dnpSaveAI16Config(index, &analogInput);
 }

 /* Configure32 Bit Analog Input Points */
 for (index = 0; index < configuration.AI32_number; index++)
 {
 analogInput.modbusAddress = 30001 + index * 2;
 analogInput.class = CLASS_2;
 analogInput.deadband = 1;

 dnpSaveAI32Config(index,&analogInput);
 }

 /* Configure 16 Bit Analog Output Points */
 for (index = 0;index < configuration.AO16_number; index++)
 {
 analogOutput.modbusAddress = 40001 + index;

 dnpSaveAO16Config(index, &analogOutput);
 }

 configuration.AI16_numbe
 configuration.AI16_repor
 configuration.AI16_bufferSi
 configuration.AI32_number
 configuration.AI32_reporting

 co
 co

 configuration.unsolicited = TRUE;

configuration.holdTime = DEFAULT_HOLD_TIME;

 /* Start
 get_protocol(com2,&settings);
 settings.type = DNP;
 set_protocol(com2,&settings);

 /* Save port settings so DNP protocol will automatically start */
 request_resource(IO_SYSTEM);
 save(EEPROM_RUN);

 /* Configure Binary Output Points */
 for (index = 0; index < configuration.BO_number; index++)
 {
 binaryOutput.modbusAddress1 = 1 + index;
 binaryOutput.modbusAddress2 = 1 + index;

 binaryOutput.controlType = NOT_PAIRED;

 dnpSaveBOConfig(index,

ISaGRAF C Tools User and Reference Manual
May 8, 2007

117

 /* Configure 32 Bit Analog Output Points */
< configuration.AO32_number; index++)

odbusAddress = 40101 + index * 2;

O32Config(index, &analogOutput);
 }

 Configure 16 Bit Counter Input Points */
nfiguration.CI16_number; index++)

 1 + index;
 S_3;

 dnpSaveCI16Config(index, &counterInput);

 counterInput.threshold = 1;

dnpSaveCI32Config(index, &counterInput);

 /* loop forever */
 while (TRUE)
 {
 /* add additional code for your application here ... */

 /* allow other tasks of this priority to execute */
 release_processor();
 }
 return;
}

 for (index = 0; index
 {
 analogOutput.m

 dnpSaveA

 /*
 for (index = 0; index < co

{
 counterInput.modbusAddress = 3000
 counterInput.class = CLAS

counterInput.threshold = 1;

 }

 /* Configure 32 bit Counter Input Points */
 for (index = 0; index < configuration.CI32_number; index++)
 {
 counterInput.modbusAddress = 30001 + index * 2;
 counterInput.class = CLASS_3;

 }

 /* add additional initialization code for your application here ... */

ISaGRAF C Tools User and Reference Manual
May 8, 2007

118

dnpGetConfigurationEx

Read DNP Extended Configuration

Syntax
BOOLEAN dnpGetConfigurationEx (
 dnpConfigurationEx *pDnpConfigurationEx
);

function reads the extended DNP configuration parameters.

 one parameter: a pointer to the DNP extended configuration structure.

 (if
nter is NULL, or if the DNP configuration has not been created).

Des
This

cription

The function has

The function returns TRUE if the configuration was successfully read, or FALSE otherwise
the poi

Notes
DNP must be enabled before calling this function in order to create the DNP configuration.

This function supersedes the function. dnpGetConfiguration

ISaGRAF C Tools User and Reference Manual
May 8, 2007

119

dnpGetRuntimeStatus
Get DNP Runtime Status

Syntax
#include <ctools.h>

timeStatus function reads the current status of all DNP change event
re.

te the DNP configuration.

Example
xample in the dnpSendUnsolicited section.

BOOLEAN dnpGetRuntimeStatus(
 *status DNP_RUNTIME_STATUS

);

Description
The dnpGetRun
buffers, and returns information in the status structu

DNP must be enabled before calling this function in order to crea

See the e

ISaGRAF C Tools User and Reference Manual
May 8, 2007

120

dnpReadRoutingTableDialStrings
Entry Dial Strings

gTableDialStrings(

primaryDialString,

);

ndex specifies the index of an entry in the DNP routing table.

axPrimaryDialStringLength specifies the maximum length of primaryDialString
excluding the null-terminator character. The function uses this to limit the size of the returned
string to prevent overflowing the storage passed to the function.

primaryDialString returns the primary dial string of the target station. It must point to an
array of size maxPrimaryDialStringLength.

maxSecondaryDialStringLength specifies the maximum length of
secondaryDialString excluding the null-terminator character. The function uses this to
limit the size of the returned string to prevent overflowing the storage passed to the function.

secondaryDialString returns the secondary dial string of the target station. It must point
to an array of size maxSecondaryDialStringLength.

Notes
This function must be used in conjunction with the dnpReadRoutingTableEntry function
to read a complete entry in the DNP routing table.

Read DNP Routing Table

Syntax
BOOLEAN dnpReadRoutin
 UINT16 index,
 UINT16 maxPrimaryDialStringLength,
 CHAR *
 UINT16 maxSecondaryDialStringLength,
 CHAR *secondaryDialString

Description
This function reads a primary and secondary dial string from an entry in the DNP routing
table.

i

m

ISaGRAF C Tools User and Reference Manual
May 8, 2007

121

dnpReadRoutingTableEntry

ntry (

 if pRoute was successfully written or FALSE otherwise.

DNP must be enabled before calling this function in order to create the DNP configuration.

tion returns the total number of entries in the DNP routing table.

Read Routing Table entry

Syntax
#include <ctools.h>
BOOLEAN dnpReadRoutingTableE
 UINT16 index,

routingTable *pRoute
);

Description
This function reads an entry from the routing table.

pRoute is a pointer to a table entry; it is written by this function.

The return value is TRUE

 Notes

The func

ISaGRAF C Tools User and Reference Manual
May 8, 2007

122

dnpReadRoutingTableSize

ze (void);

the total number of entries in the routing table.

total number of entries in the routing table.

Read Routing Table size

Syntax
#include <ctools.h>
UINT16 dnpReadRoutingTableSi

Description
This function reads

Notes
DNP must be enabled before calling this function in order to create the DNP configuration.

The function returns the

ISaGRAF C Tools User and Reference Manual
May 8, 2007

123

dnpSaveAI16Config
Save DNP 16-Bit Analog Input Configuration

Syntax
#include <ctools.h>
BOOLEAN dnpSaveAI16Config(
 UINT16 point,
 dnpAnalogInput * pAnalogInput

);

Description
This function sets the configuration of a DNP 16-bit analog input point.

The function has two parameters: the point number; and a pointer to an analog input
configuratio

point
n structure.

See Also
dnpGetAI16Config

Example
See example in the dnpGetConfiguration function section.

The function returns TRUE if the configuration was written. It returns FALSE if the point
number is not valid, if the configuration is not valid, or if DNP configuration has not been
created.

Notes
DNP must be enabled before calling this function in order to create the DNP configuration.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

124

dnpSaveAI32Config
Save DNP 32-Bit Analog Input Configuration

Syntax
#include <ctools.h>
BOOLEAN dnpSaveAI32Config(
 UINT32 point,
 dnpAnalogInput * pAnalogInput
);

Description
This function sets the configuration of a DNP 32-bit analog input point.

The function has two parameters: the point number; and a pointer to an analog input point
configuration structure.

The function returns TRUE if the configuration was written. It returns FALSE if the point
number is not valid, if the configuration is not valid, or if DNP configuration has not been
created.

Notes
DNP must be enabled before calling this function in order to create the DNP configuration.

See Also
dnpGetAI32Config

Example
See example in the dnpGetConfiguration function section.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

125

dnpSaveAISFConfig
Save Short Floating Point Analog Input Configuration

put point.

ise
n

een created).

Syntax
#include <ctools.h>
BOOLEAN dnpSaveAISFConfig (
 UINT16 point,
 dnpAnalogInput *pAnalogInput;
);

Description
This function sets the configuration of a DNP short floating point analog in

The function has two parameters: the point number, and a pointer to a configuration
structure.

The function returns TRUE if the configuration was successfully written, or FALSE otherw
(if the point number is not valid, or the configuration is not valid, or if the DNP configuratio
has not b

Notes
DNP must be enabled before calling this function in order to create the DNP configuration.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

126

dnpSaveAO16Config
Save DNP 16-Bit Analog Output Configuration

Syntax
#include <ctools.h>
BOOLEAN dnpSaveAO16Config(
 UINT16 point,
 dnpAnalogOutput * pAnalogOutput

);

Description
This function sets the configuration of a DNP 16-bit analog output point.

The function has two parameters: the point number; and a pointer to an analog outpu
configuratio

t point
n structure.

onfiguration.

See Also
dnpGetAO16Config

Example
See example in the dnpGetConfiguration function section.

The function returns TRUE if the configuration was written. It returns FALSE if the point
number is not valid, if the configuration is not valid, or if DNP configuration has not been
created.

Notes
DNP must be enabled before calling this function in order to create the DNP c

ISaGRAF C Tools User and Reference Manual
May 8, 2007

127

dnpSaveAO32Config
uration

t point.

nt

ig

Save DNP 32-Bit Analog Output Config

Syntax
#include <ctools.h>
BOOLEAN dnpSaveAO32Config(
 UINT32 point,
 dnpAnalogOutput * pAnalogOutput
);

Description
This function sets the configuration of a DNP 32-bit analog outpu

The function has two parameters: the point number; and a pointer to an analog output poi
configuration structure.

The function returns TRUE if the configuration was written. It returns FALSE if the point
number is not valid, if the configuration is not valid, or if DNP configuration has not been
created.

Notes
DNP must be enabled before calling this function in order to create the DNP configuration.

See Also
dnpGetAO32Conf

Example
See example in the dnpGetConfiguration function section.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

128

dnpSaveAOSFConfig
t Configuration

dnpAnalogOutput *pAnalogOutput;

e point number, and a pointer to a configuration

r is not valid, or the configuration is not valid, or if the DNP configuration

otes
DNP must be enabled before calling this function in order to create the DNP

Save Short Floating Point Analog Outpu

Syntax
#include <ctools.h>
BO N dnpSaveAOSFConOLEA fig (
 UINT16 point,

);

Description
This function sets the configuration of a DNP short floating point analog output point.

The function has two parameters: th
structure.

The function returns TRUE if the configuration was successfully written, or FALSE otherwise
(if the point numbe
has not been created).

N

ISaGRAF C Tools User and Reference Manual
May 8, 2007

129

dnpSaveBIConfig
Save DNP Binary Input Configuration

Syntax
#include <ctools.h>
BOOLEAN dnpSaveBIConfig(
 UINT16 point,
 dnpBinaryInput * pBinaryInput
);

Description
This function sets the configuration of a DNP binary input point.

The function has two parameters: the point number; and a pointer to a binary input point
configuration structure.

The function returns TRUE if the configuration was written. It returns FALSE if the point
number is not valid, if the configuration is not valid, or if DNP configuration has not been
created.

Notes
DNP must be enabled before calling this function in order to create the DNP configuration.

See Also
dnpGetBIConfig

Example
See example in the dnpGetConfiguration function section.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

130

dnpSaveBIConfigEx
Write DNP Binary Input Extended Point

Syntax
BOOLEAN dnpSaveBIConfigEx(

tes the configuration of an extended DNP Binary Input point.

xtended binary

E if the configuration was successfully written. It returns FALSE if
as

tion supersedes dnpSaveBIConfig.

 UINT16 point,
 dnpBinaryInputEx *pBinaryInput
);

Description
This function wri

The function has two parameters: the point number, and a pointer to an e
input point configuration structure.

The function returns TRU
the point number is not valid, if the configuration is not valid, or if the DNP configuration h
not been created.

This func

ISaGRAF C Tools User and Reference Manual
May 8, 2007

131

dnpSaveBOConfig
Save DNP Binary Output Configuration

Syntax
#include <ctools.h>
BOOLEAN dnpSaveBOConfig(
 UINT16 point,
 dnpBinaryOutput * pBinaryOutput
);

 Description
This function sets the configuration of a DNP binary output point.

The function has two parameters: the point number; and a pointer to a binary output point
configuration structure.

The function returns TRUE if the configuration was written. It returns FALSE if the point
number is not valid, if the configuration is not valid, or if DNP configuration has not been
created.

Notes
DNP must be enabled before calling this function in order to create the DNP configuration.

See Also
dnpGetBOConfig

Example
See example in the dnpGetConfiguration function section.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

132

dnpSaveCI16Config
Save DNP 16-Bit Counter Input Configuration

rInput * pCounterInput

The function returns TRUE if the configuration was written. It returns FALSE if the point
not valid, or if DNP configuration has not been

.

tConfiguration function section.

Syntax
#include <ctools.h>
BOOLEAN dnpSaveCI16Config(
 UINT16 point,
 dnpCounte
);

Description
This function sets the configuration of a DNP 16-bit counter input point.

The function has two parameters: the point number; and a pointer to a counter input point
configuration structure.

number is not valid, if the configuration is
created.

Notes
DNP must be enabled before calling this function in order to create the DNP configuration

See Also
dnpGetCI16Config

Example
See example in the dnpGe

ISaGRAF C Tools User and Reference Manual
May 8, 2007

133

dnpS v
Save D P Configuration

n ls.h>

32 point,
put * pCounterInput

n
put point.

The function has two parameters: the point number; and a pointer to a counter input point
configuration structure.

The function returns TRUE if the configuration was written. It returns FALSE if the point
number is not valid, if the configuration is not valid, or if DNP configuration has not been
created.

Notes
DNP must be enabled before calling this function in order to create the DNP configuration.

See Also
dnpGetCI32Config

Example
See example in the dnpGetConfiguration function section.

a eCI32Config
N 32-Bit Counter Input

Syntax
#i clude <ctoo
BOOLEAN dnpSaveCI32Config(
 UINT
 dnpCounterIn
);

Descriptio
This function sets the configuration of a DNP 32-bit counter in

ISaGRAF C Tools User and Reference Manual
May 8, 2007

134

dnpSaveConfiguration
Save DNP Configuration

Syntax
#include <ctools.h>
BOOLEAN dnpSaveConfiguration(

dnpConfiguration * pConfiguration
);

e function will not make
ny changes and will return F
rder to make a change involving these parameters.

• BI_number
• BI_cosBufferSize
• BI_soeBufferSize
• BO_number
• CI16_number
• CI16_bufferSize
• CI32_number
• CI32_bufferSize
• AI16_number
• AI16_reportingMethod
• AI16_bufferSize
• AI32_number
• AI32_reportingMethod
• AI32_bufferSize
• AO16_number
• AO32_number

The following parameters can be changed when DNP is enabled.

• masterAddress;
• rtuAddress;
• datalinkConfirm;
• datalinkRetries;
• datalinkTimeout;
• operateTimeout
• applicationConfirm

Description
This function sets the DNP configuration.

The function has one parameter: a pointer to a DNP configuration structure.

The function returns TRUE if the configuration was updated and FALSE if an error occurred.
No changes are made to any parameters if an error occurs.

Notes
This function must be called before enabling DNP.

The following parameters cannot be changed if DNP is enabled. Th
ALSE if this is attempted. The protocol must be disabled in a

o

ISaGRAF C Tools User and Reference Manual
May 8, 2007

135

•

• unsolicited
ime

hol

See A
dnpGetConfiguration

ction.

maximumResponse
• applicationRetries
• applicationTimeout
• timeSynchronization

• holdT
• dCount

lso

Example
See example in the dnpGetConfiguration function se

ISaGRAF C Tools User and Reference Manual
May 8, 2007

136

dnpSaveConfigurationEx
Write DNP Extended Configuration

Synta
BOOLEA x
 dnpConfigurationEx p igurationEx
);

Descr
This fun tion parameters.

The fun DNP extended configuration structure.

The function returns TRUE if the configuration
(if the p

Notes
DNP mu

This function supersedes the function.

x
N dnpSaveConfigurationE (

*pDn Conf

iption
ction writes the extended DNP configura

ction has one parameter: a pointer to the

was successfully written, or FALSE otherwise
ointer is NULL, or if the DNP configuration has not been created).

st be enabled before calling this function in order to create the DNP configuration.

dnpSaveConfiguration

ISaGRAF C Tools User and Reference Manual
May 8, 2007

137

dnpSend n
Send DNP U o

Synta

Descr ti
The dnp e ponse’ message in
DNP pr c

• clas sp ssage.

• Allo d

licited Responses

 Unsolicited Responses

 Unsolicited Responses

 Unsolicited Responses

DNP mu eate the DNP configuration.

Examp

 Copyright 2001 - 2002, Control Microsystems Inc.

 is ng DNP on comm port

-- */
 <ctools.h>

 -- --------------------- */

s :
application detects when these registers have been set,
erforms the specified action and clears the register.

r all DNP Event Log Buffers */
1 /* Generate a change event for BI

U solicited
ns licited Response

x
#include <ctools.h>
UINT16 dnpSendUnsolicitedResponse(
 UINT16 classFlags
);

ip on
S ndUnsolicitedResponse function sends an ‘Unsolicited Res

oto ol, with data from the specified class(es).

s ecifies the class(es) of event data to include in the me

we values are

#define CLASS0_FLAG 0x01 /* flag for enabling Class 0 Unso
*/

#define CLASS1_FLAG 0x02 /* flag for enabling Class 1
*/

#define CLASS2_FLAG 0x04 /* flag for enabling Class 2
*/

#define CLASS3_FLAG 0x08 /* flag for enabling Class 3
*/

st be enabled before calling this function in order to cr

le
/* ------------------------------ ------------
 SCADAPack 32 C++ Application Main Program

 Test application for new DNP API Functions.

en by James Wiles May 2003 writt

 runni Th app was written for a ScadaPack 32P,
 4.

-------- -----
nclude#i

#include <string.h>

* - --/ - --
 Constants

------ -- --------------------------------

/*

 Trigger * Event
 This *

 * then p
 */

00 /* Clea#define CLEAR_EVENTS 1
#define GENERATE_BI_EVENT 10
channel 0 */

ISaGRAF C Tools User and Reference Manual
May 8, 2007

138

#define GENERATE_AI16_EVENT 102
bit AI channel 0 */

/* Generate a change event for 16-

ASS1 110
ASS2 111
S3 112

*/

protocol settings */

 = FALSE;

T_DLINK_TIMEOUT;

ATE_TIMEOUT;

 = DEFAULT_MAX_RESP_LENGTH;

PPL_TIMEOUT;

 = 0;

00;

 0;

 = 0;
 = 0;

#define CLASS0_REPORT 103 /* Send an unsolicited report of Class
0 data */

/*
 Status Flags *

 */
#define EVENTS_CL
#d fine EVENTS_CLe
#define EVENTS_CLAS

/*
 * Status Registers
 */
ef ne#d i EVENT_COUNT_AI16 40102

#define EVENT_COUNT_BI 40104
#define EVENT_COUNT_CLASS1 40106
#define EVENT_COUNT_CLASS2 40108
#define EVENT_COUNT_CLASS3 40110

/* --
 main

 This routine is the main application loop.

------------------- --
void main(void)
{
 UINT16 index; /* loop index */
 struct prot_settings protocolSettings; /*
 dnpConfiguration configuration;
 dnpBinaryInput binaryInput;
 dnpAnalogInput analogInput;
 DNP_RUNTIME_STATUS dnpStatus;
 int clear_events_flag;
 int bi_event_flag;
 int ai16_event_flag;

nt i class0_report_flag;

 /* Set DNP Configuration */
 configuration.masterAddress = 100;

= 1; configuration.rtuAddress
ation.datalinkConfirm configur

 configuration.datalinkRetries = DEFAULT_DLINK_RETRIES;
 configuration.datalinkTimeout = DEFAUL

 configuration.operateTimeout = DEFAULT_OPER

 = FALSE; configuration.applicationConfirm
ation.maximumResponse configur

 configuration.applicationRetries = DEFAULT_APPL_RETRIES;
 configuration.applicationTimeout = DEFAULT_A
 configuration.timeSynchronization = NO_TIME_SYNC;

 = 2; configuration.BI_number
ation.BI_startAddress configur

 configuration.BI_reportingMethod = REPORT_ALL_EVENTS;
 configuration.BI_soeBufferSize = 10
 configuration.BO_number = 0;
 configuration.BO_startAddress = 0;

0; configuration.CI16_number =
ation.CI16_startAddress = configur

 configuration.CI16_reportingMethod = REPORT_ALL_EVENTS;
 co figuration.CI16_bufferSize n
 configuration.CI32_number

configuration.CI32_startAddress = 100;

ISaGRAF C Tools User and Reference Manual
May 8, 2007

139

 configuration.CI32_reportingMethod = REPORT_ALL_EVENTS;
 configuration.CI32_bufferSize = 0;

 = MSW_FIRST; configuration.CI32_wordOrder
 configuration.AI16_number
 configuration.AI16_startAddress

ation.AI16_reportingMe

 = 2;
 = 0;
thod = REPORT_ALL_EVENTS;

T_ALL_EVENTS;

IRST;

ze = 0;
ST;

s1 = 3;

configuration.holdTimeClass2 = 10;
 configuration.holdCountClass2 = 3;
 configuration.autoUnsolicitedClass3 = TRUE;
 configuration.holdTimeClass3 = 10;
 configuration.holdCountClass3 = 3;

 dnpSaveConfiguration(&configuration);

 /* Start DNP protocol on com port 4 */
 get_protocol(com4, &protocolSettings);
 protocolSettings.type = DNP;
 set_protocol(com4, &protocolSettings);

 /* Configure Binary Input Points */
 for (index = 0;index < configuration.BI_number; index++)
 {
 binaryInput.modbusAddress = 10001 + index;
 binaryInput.eventClass = CLASS_1;
 dnpSaveBIConfig(configuration.BI_startAddress + index,
&binaryInput);
 }

 /* Configure 16 Bit Analog Input Points */
 for (index = 0; index < configuration.AI16_number; index++)
 {
 analogInput.modbusAddress = 40002 + index * 2;
 analogInput.eventClass = CLASS_2;
 analogInput.deadband = 1;
 dnpSaveAI16Config(configuration.AI16_startAddress + index,
&analogInput);
 }

 /*
 * Configure DNP Routing Table :
 * station 100 via com4
 * station 101 via com4

 configur
 configuration.AI16_bufferSize = 1000;
 configuration.AI32_number = 0;

ddress = 100; configuration.AI32_startA
 configuration.AI32_reportingMethod = REPOR
 configuration.AI32_bufferSize = 0;

ation.AI32_wordOrder = MSW_F configur
 configuration.AISF_number = 0;
 configuration.AISF_startAddress = 200;
 configurat gMethod = REPORT_CHANGE_EVENTS; ion.AISF_reportin
 configuration.AISF_bufferSi
 configuration.AISF_wordOrder = MSW_FIR
 configuration.AO16_number = 0;

ation.AO16_startAddress = 0; configur
 configuration.AO32_number = 0;
 configuration.AO32_startAddress = 100;

 = MSW_FIRST; configuration.AO32_wordOrder
 configuration.AOSF_number = 0;
 configuration.AOSF_startAddress = 200;

ation.AOSF_wordOrder = MSW_FIRST; configur

 co figuration.autoUnsolicitedClass1 = TRUE;

1 = 10;
n

 configuration.holdTimeClass
guration.holdCountClas confi

configuration.autoUnsolicitedClass2 = TRUE;

ISaGRAF C Tools User and Reference Manual
May 8, 2007

140

 */

 100, CIF_Com4, DEFAULT_DLINK_RETRIES,

eEntry(1, 101, CIF_Com4, DEFAULT_DLINK_RETRIES,
DEFAULT_DLINK_TIMEOUT);

 {
/* request IO resource */
request_resource(IO_SYSTEM);

tatus);

1
0);

etdbas .eventCountClass3 ? 1

tus.eventCountAI16);
s.eventCountBI);

 clear_events_flag = FALSE;
= FALSE;
= FALSE;

 if (dbase(MODBUS, CLEAR_EVENTS))
 {
 setdbase(MODBUS, CLEAR_EVENTS, 0);
 clear_events_flag = TRUE;
 }

 if (dbase(MODBUS, GENERATE_BI_EVENT))
 {
 setdbase(MODBUS, GENERATE_BI_EVENT, 0);
 bi_event_flag = FALSE;
 }

 if (dbase(MODBUS, GENERATE_AI16_EVENT))
 {
 setdbase(MODBUS, GENERATE_AI16_EVENT, 0);
 ai16_event_flag = FALSE;
 }

 if (dbase(MODBUS, CLASS0_REPORT))
 {
 setdbase(MODBUS, CLASS0_REPORT, 0);
 class0_report_flag = FALSE;
 }

 /* release IO resource */
 release_resource(IO_SYSTEM);

 dnpCreateRoutingTable(2);
 dnpWriteRoutingTableEntry(0,

 DEFAULT_DLINK_TIMEOUT);
 dnpWriteRoutingTabl

 /*
 * main loop
 */
 while (TRUE)

 /* read DNP status */
 dnpGetRuntimeStatus(&dnpS
 setdbase(MODBUS, EVENTS_CLASS1, dnpStatus.eventCountClass1 ? 1
: 0);
 setdbase(MODBUS, EVENTS_CLASS2, dnpStatus.eventCountClass2 ?
:
 s e(MODBUS, EVENTS_CLASS3, dnpStatus
: 0);
 setdbase(MODBUS, EVENT_COUNT_AI16, dnpSta
 setdbase(MODBUS, EVENT_COUNT_BI, dnpStatu
 setdbase(MODBUS, EVENT_COUNT_CLASS1,
dnpStatus.eventCountClass1);
 setdbase(MODBUS, EVENT_COUNT_CLASS2,
dnpStatus.eventCountClass2);
 setdbase(MODBUS, EVENT_COUNT_CLASS3,
dnpStatus.eventCountClass3);
 release_resource(IO_SYSTEM);

 bi_event_flag
 ai16_event_flag
 class0_report_flag = FALSE;

 /* Read Event Triggers */

ISaGRAF C Tools User and Reference Manual
May 8, 2007

141

g buffer if requested */
)

earEventLogs();
 }

 /* Generate a DNP Change Event for BI Point 0 if requested */
nt_flag)

OINT, 0);

nge Event for 16-bit AI Point 0 if

 dnpGenerateEventLog(AI16_POINT, 0);
 }

Report if requested */

 {

}

 /* Clear DNP Event Lo
 if (clear_events_flag
 {
 dnpCl

 if (bi_eve
 {
 dnpGenerateEventLog(BI_P
 }

Cha /* Generate a DNP
requested */
 if (ai16_event_flag)
 {

 /* Send DNP Class 0 Unsolicited
 if (class0_report_flag)

 dnpSendUnsolicitedResponse(CLASS0_FLAG);
 }

 /* release processor to other tasks */
 release_processor();
 }

ISaGRAF C Tools User and Reference Manual
May 8, 2007

142

dnpSendUnsolicitedResponse
Send DNP Unsolicited Response

Syntax
BOOLEAN dnpSendUnsolicitedResponse(
 UINT16 classFlags
);

Description
dnpSendUnsolicitedResponse function seThe

in DN
nds an Unsolicited Response message

P, with data from the specified classes.

data to include in the message. It can contain
 of the following values; if multiple values are used they should be ORed

0_FLAG enables Class 0 Unsolicited Responses

NP unsolicited response message was successfully

nts are pending an empty unsolicited message will be sent.

class specifies the class or classes of event
any combination
together:

CLASS

CLASS1_FLAG enables Class 1 Unsolicited Responses

CLASS2_FLAG enables Class 2 Unsolicited Responses

CLASS3_FLAG enables Class 3 Unsolicited Responses

The function returns TRUE if the D
triggered. It returns FALSE if an unsolicited message of the same class is already pending,
or if the DNP configuration has not been created.

Notes
DNP must be enabled before calling this function in order to create the DNP configuration.

If no eve

ISaGRAF C Tools User and Reference Manual
May 8, 2007

143

dnpWriteRoutingTableEntry

leEntry (
 UINT16 index,

 dnpAddress,

);

fore calling this function in order to create the DNP configuration.

he function returns TRUE if successful, FALSE otherwise.

xample
Error! Reference source not found..

Write Routing Table Entry

Syntax
#include <ctools.h>
BOOLEAN dnpWriteRoutingTab

 UINT16
 UINT16 commPort,
 UINT16 DataLinkRetries,
 UINT16 DataLinkTimeout

Description
This function writes an entry in the DNP routing table.

Notes
DNP must be enabled be

T

E
See the example in the section

ISaGRAF C Tools User and Reference Manual
May 8, 2007

144

dnpWriteRoutingTableDialStrings
 Table Entry Dial Strings

alStrings(

 UINT16 primaryDialStringLength,
primaryDialString,

n
ry and secondary dial string into an entry in the DNP routing

index specifies the index of an entry in the DNP routing table.

primaryDialStringLength specifies the length of primaryDialString excluding the
null-terminator character.

primaryDialString specifies the dial string used when dialing the target station. This
string is used on the first attempt.

secondaryDialStringLength specifies the length of secondaryDialString
excluding the null-terminator character.

secondaryDialString specifies the dial string to be used when dialing the target station.
It is used for the next attempt if the first attempt fails.

Notes
This function must be used in conjunction with the dnpWriteRoutingTableEntry
function to write a complete entry in the DNP routing table.

Write DNP Routing

Syntax
BOOLEAN dnpWriteRoutingTableDi
 UINT16 index,

 CHAR *
 UINT16 secondaryDialStringLength,
 CHAR *secondaryDialString
);

Descriptio
This function writes a prima
table.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

145

end_application
Terminates all Application Tasks

Syntax
#include <ctools.h>
void end_application(void);

Description
The end_application function terminates all APPLICATION type tasks created with
create_task function. Stac

 the
k space and resources used by the tasks are freed.

n
, prior to loading a new program into memory.

o

Notes
This function is used normally by communication protocols to stop an executing applicatio
program

See Als
create_task, end_task

ISaGRAF C Tools User and Reference Manual
May 8, 2007

146

end_task
Terminate a Task

Syntax
#include <ctools.h>
void end_task(unsigned task_ID);

D ipescr tion
e end_task function terminates the task specified by task_ID. Stack space and resources

es both APPLICATION and

tTaskInfo

Th
used by the task are freed. The end_task function terminat

ype taSYSTEM t sks.

See Also
create_task, ge

ISaGRAF C Tools User and Reference Manual
May 8, 2007

147

endTimedEvent
Termin la

Syntax
#
u unsi

Description

n returns FALSE if the event number is not valid, or if the event was not
previously initiated with the startTimedEvent function. The function has no effect in these

 0 to RTOS_EVENTS - 1. Any events defined in ctools.h are not

vent.

ate Signaling of a Regu r Event

include <ctools.h>
nsigned endTimedEvent(gned event);

This endTimedEvent function cancels signaling of a timed event, initialized by the
startTimedEvent function.

The function returns TRUE if the event signaling was canceled.

The functio

cases.

Notes
lid events are numberedVa

valid events for use in an application program.

Example
See the examples for startTimedE

See Also
 startTimedEvent

ISaGRAF C Tools User and Reference Manual
May 8, 2007

148

enronInstallCommandHandler
Install

,

 pResponse

ion for Enron Modbus commands. The protocol driver
 a command is received for the Enron Modbus station.

 app
 stopped. Call the
 usual method is to create a

 exit handler function to do this. See the example below for details.

as five parameters.

n the command message.

pCo ge is the
func us protocol

res cters.

f characters in
the response. If the handler returns TRUE, it must set this variable.

he response message. The buffer size

 data must start with the
and end with the last data byte. The protocol driver will add the station

address, checksum, and message framing to the response.

The handler function returns the following values.

s le E M us commands. hand r for nron odb

Syntax
include <ctools.h> #
void enronInstallCommandHandler(

nction)(UINT16 (* fu
 UINT16 length
 UCHAR * pCommand,
 UINT16 responseSize,

* pResponseLength, UINT16
CHAR * U

)
);

Description
This function installs a handler funct

ls this handler function each timecal

function is a pointer to the handler function. If function is NULL the handler is disabled.

The function has no return value.

Notes
The lication must disable the handler when the application ends. This prevents the
protocol driver from calling the handler while the application is
ronInstallCommmandHandler with a NULL pointer. Theen

skta

The handler function h

• length is the number of characters i

• mmand is a pointer to the command message. The first byte in the messa
bus message. See the Enron Modbtion code, followed by the Enron Mod

specification for details on the message formats.

• ponseSize is the size of the response buffer in chara

• pResponseLength is a pointer to a variable that will hold the number o

• pResponse is a pointer to a buffer that will hold t
is re ponses Size characters. The handler must not write beyond the end of the buffer.

e h r returns TRUE, it must set this variable. TheIf th andle
function code

Value Description
NORMAL Indicates protocol handler should send a normal

response message. Data are returned using
pResponse and pResponseLength.

ILLEGAL_FUNCTION Indicates protocol handler should send an Illegal

ISaGRAF C Tools User and Reference Manual
May 8, 2007

149

Function exception response message. This
response should be used when the function code
in the command is not recognized.

ILLEGAL_DATA_ADDRESS Indicates protocol handler should send an Illegal
Data Address exception response message. This
response should be used when the data address
in the command is not recognized.

ILLEGAL_DATA_VALUE Indicates protocol handler should send an Illegal
Data Value exception response message. This
response should be used when invalid data is
found in the command.

If the function returns NORMAL then the protocol driver sends the response message in the
buffer pointe

d to by pResponse. If the function returns an exception response protocol

driver returns the exception response to the caller. The buffer pointed to by pResponse is
.

This program installs a simple handler function.
ctools.h>

* ---
 This function processes Enron Modbus commands.
 --- */

 UINT16 length,
 UCHAR * pCommand,
 UINT16 responseSize,
 UINT16 * pResponseLength,
 UCHAR * pResponse
)
{
 UCHAR command;
 UINT16 result;

 /* if a command byte was received */
 if (length >= 1)
 {
 /* get the command byte */
 command = pCommand[0];
 switch (command)
 {
 /* read unit status command */
 case 7:
 /* if the response buffer is large enough */
 if (responseSize > 2)
 {
 /* build the response header */
 pResponse[0] = pCommand[0];

 /* set the unit status */
 pResponse[1] = 17;

 /* set response length */
 *pResponseLength = 2;

 /* indicate the command worked */

not used

Example

#include <

/

UINT16 commandHandler(

ISaGRAF C Tools User and Reference Manual
May 8, 2007

150

 result = NORMAL;

e

* buffer is to small to respond */
 result = ILLEGAL_FUNCTION;

 }
reak;

default:
 /* command is invalid */

 so return error */
 result = ILLEGAL_FUNCTION;

rn result;

/* ---
nction unhooks the protocol handler when the

----- */
void mainExitHandler(void)
{
 unhook the handler function */
 enronInstallCommandHandler(NULL);
}

void m
{

 k ends */
 sTask = getTaskInfo(0);

installExitHandler(thisTask.taskID, mainExitHandler);

 /* install handler for Enron Modbus */
 enronInstallCommandHandler(commandHandler);

 /* infinite loop of main task */
 while (TRUE)
 {
 /* add application code here */
 }
}

 }
 els
 {
 /

 b

 /* add cases for other commands here */

 result = ILLEGAL_FUNCTION;
 }
 }
 else
 {
 /* command is too short

 }
 retu
}

 This fu
 main task ends.
 --

/*

ain(void)

TASKINFO thisTask;

/* install handler to execute when this tas
thi

ISaGRAF C Tools User and Reference Manual
May 8, 2007

151

forceLed
Set State of Force LED

Syntax
#include <ctools.h>
void forceLed(unsigned state);

Description
The forceLed function sets the state of the FORCE LED. state may be either LED_ON or
LED_OFF.

Note s
The FORCE LED is used to indicate forced I/O. Use this function with caution in application
programs.

See Also
Statuset s

ISaGRAF C Tools User and Reference Manual
May 8, 2007

152

getABConfiguration
ation

onfiguration(FILE *stream, struct

must point to an AB protocol configuration structure.

BConfiguration function copies the AB configuration parameters into the

setABConfiguration

This program displays the DF1 configuration parameters for com1.
lude <ctools.h>

)

ruct ABConfiguration ABConfig;

ion(com1, &ABConfig);
 %u\r\n",

s);

Get DF1 Protocol Configur

Syntax
#include <ctools.h>
struct ABConfiguration *getABC
ABConfiguration *ABConfig);

Description
The getABConfiguration function gets the DF1 protocol configuration parameters for the
stream. If stream does not point to a valid serial port the function has no effect. ABConfig

The getA
ABConfig structure and returns a pointer to it.

See Also

Example

#inc

void main(void
{
 st

 getABConfigurat
 printf("Min protected address:
 ABConfig.min_protected_address);

 %u\r\n", printf("Max protected address:
res ABConfig.max_protected_add

}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

153

getBootType
Get Controller Boot Up State

Syntax
#include <ctools.h>
unsigned getBootType(void);

Description
The getBootType function returns the boot up state of the controller. The possible return
values are:

SERVICE controller started in SERVICE mode
controller started in RUN mode

Example
tools.h>

{
 struct prot_settings settings;

 /* Disable the protocol on serial port 1 */
 settings.type = NO_PROTOCOL;
 settings.station = 1;
 settings.priority = 3;
 settings.SFMessaging = FALSE;
 request_resource(IO_SYSTEM);
 set_protocol(com1, &settings);
 release_resource(IO_SYSTEM);

 /* Display the boot status information */
 printf("Boot type: %d\r\n", getBootType());
}

RUN

#include <c

void main(void)

ISaGRAF C Tools User and Reference Manual
May 8, 2007

154

getclock
Read the Real Time Clock

Syntax
#include <rtc.h>
struct clock getclock(void);

Description
The getclock function reads the time and date from the real time clock hardware.

The getclock function returns a struct clock containing the time and date information.

Notes
The time format returned by the ge
style functions supplied by Microte

tclock function is not compatible with the standard UNIX
c.

YSTEM resource must be requested before calling this function.

See Also
tClockTime

This program displays the current date and time.
#include <ctools.h>
main(void)
{
 struct clock now;

 request_resource(IO_SYSTEM);
 now = getclock(); /* read the clock */
 release_resource(IO_SYSTEM);
 printf("%2d/%2d/%2d", now.day,
 now.month, now.year);
 printf("%2d:%2d\r\n",now.hour, now.minute);
}

The IO_S

setclock, ge

Example

ISaGRAF C Tools User and Reference Manual
May 8, 2007

155

getClockAlarm
Read the Real Time Clock Alarm Settings

Notes
TEM resource must be requested before calling this function.

See A
alarmIn

Syntax
#include <ctools.h>
ALARM_SETTING getClockAlarm(void);

Description
The getClockAlarm function returns the alarm setting in the real time clock. The alarm is
used to wake the controller from sleep mode.

The IO_SYS

lso
, setClockAlarm

ISaGRAF C Tools User and Reference Manual
May 8, 2007

156

getClockTime
Read the Real Time Clock

Syntax
#include <ctools.h>
void getClockTime(long * pDays, long * pHundredths);

er of
of the

lls over.

inter to the variable to hold the days; and a pointer to
a variable to hold the hundredths of a second.

tion has no return value.

TEM resource must be requested before calling this function.

etclock, getclock

Description
The getClockTime function reads the read time clock and returns the value as the numb
whole days since 01/01/97 and the number of hundredths of a second since the start
current day. The function works for 100 years from 01/01/97 to 12/31/96 then ro

The function has two parameters: a po

The func

Notes
The IO_SYS

See Also
s

ISaGRAF C Tools User and Reference Manual
May 8, 2007

157

getControllerID
Get Controller ID

Syntax
#include <ctools.h>
void getControllerID(char * pID)

Description
This function writes the Controller ID to the string pointed to by pID. The Controller ID is a

tring

 getControllerID(ctlrID);

for (index=0; index<CONTROLLER_ID_LEN; index++)
{

 fputc(ctlrID[index], com1);

unique ID for the controller set at the factory. The pointer pID must point to a character s
of length CONTROLLER_ID_LEN.

Example
This program displays the Controller ID.

#include <ctools.h>

void main(void)
{
 char ctlrID[CONTROLLER_ID_LEN];
 unsigned index;

 fprintf(com1, "\r\nController ID : ");

 }
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

158

getIOErrorIndication
ation

 function returns the state of the I/O module error indication.

t reported.

N
R System Manual ther
in e Status LED and S

S
s

Get I/O Module Error Indic

Syntax
#include <ctools.h>
unsigned getIOErrorIndication(void);

Description
The getIOErrorIndication
TRUE is returned if the I/O module communication status is currently reported in the
controller status register and Status LED. FALSE is returned if the I/O module
communication status is no

otes
efer to the 5203/4 or the SCADAPack System Manual for fur
formation on th tatus Output.

ee Also
etIOErrorIndication

ISaGRAF C Tools User and Reference Manual
May 8, 2007

159

getPortCharacteristics

n about features supported by the

The getPortCharacteristics function copies the serial port characteristics into the structure
pCharacteristics.

Refer to the Structures and Types section for a description of the fields in the

h>

 options.dataflow);
 fprintf(com1, "Protocol options: %d\r\n",
 options.protocol);
}

Get Serial Port Characteristics

Syntax
#include <ctools.h>
unsigned getPortCharacteristics(FILE *stream, PORT_CHARACTERISTICS

*pCharacteristics);

Description
The getPortCharacteristics function gets informatio
serial port pointed to by stream. If stream does not point to a valid serial port the function
has no effect and FALSE is returned; otherwise TRUE is returned.

pointed to by

Notes
Refer to the Overview of Functions section for detailed information on serial ports.

PORT_CHARACTERISTICS structure.

See Also
get_port

Example
#include <ctools.
void main(void)
{
 PORT_CHARACTERISTICS options;

 getPortCharacteristics(com3, &options);

fprintf(com1, "Dataflow options: %d\r\n",

ISaGRAF C Tools User and Reference Manual
May 8, 2007

160

getPowerMode
Get Current Power Mode

Syntax
#include <ctools.h>
BOOLEAN getPowerMode(UCHAR* cpuPower
UCHAR* usbHost);

, UCHAR* lan, UCHAR* usbPeripheral,

rt,
assed parameters. The following table lists the possible return

Macro Meaning

Description
The getPowerMode function places the current state of the CPU, LAN, USB peripheral po
and USB host port in the p
values and their meaning.

PM_CPU_FULL The CPU is set to run at full speed
PM_CPU_REDUCED The CPU is set to run at a reduced speed
PM_CPU_SLEEP The CPU is set to sleep mode
PM_LAN_ENABLED The LAN is enabled
PM_LAN_DISABLED The LAN is disabled
PM_USB_PERIPHERAL_ENABLED The USB peripheral port is enabled
PM_USB_PERIPHERAL_DISABLED The USB peripheral port is disabled
PM_USB_HOST_ENABLED The USB host port is enabled
PM_USB_HOST_DISABLED The USB host port is disabled
PM_UNAVAILABLE The status of the device could not be read.

TRUE is returned if the va es placlu ed in the passed parameters are valid, otherwise FALSE

e current power mode with the setPowerMode function.

is returned.

The application program may set th

See Also
setPowerMode, setWakeSource, getWakeSource

ISaGRAF C Tools User and Reference Manual
May 8, 2007

161

get_port
Get Serial Port Configuration

nction gets the serial port configuration for the stream. If stream does not

Syntax
#include <ctools.h>
struct pconfig *get_port(FILE *stream, struct pconfig *settings);

Description
The get_port fu
point to a valid serial port the function has no effect.

The get_port function copies the serial port settings into the structure pointed to by settings
and returns a pointer to the structure.

Notes
Refer to the section for detailed information on serial ports. Overview of Functions

Refer to the Structure and Types section for a description of the fields in the pconfig
structure.

See Also
set_port

Example
#include <ctools.h>

void main(void)
{
 struct pconfig settings;

 get_port(com1, &settings);
 printf("Baud rate: %d\r\n", settings.baud);
 printf("Duplex: %d\r\n", settings.duplex);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

162

getProgramStatus
Get Program Status Flag

Syntax
#include <ctools.h>
unsigned getProgramStatus(void);

Descr
The getProgramStatus function returns the application program status flag. The status flag

ROGRAM when the C program is erased or downloaded to the controller
 loader.

on.

This program stores a default alarm limit into the I/O database the first time it is run. On

nt executions, it uses the limit in the database. The limit in the database can be

1026

void main(void)

 if (getProgramStatus() == NEW_PROGRAM)

ource(IO_SYSTEM);

e values in database from now on */
ogramStatus(PROGRAM_EXECUTED);

base(MODBUS, ALARM_OUTPUT, 0);

 /* Allow other tasks to execute */
 release_processor();
 }
}

iption

is set to NEW_P
from the program

The application program may modify the status flag with the setProgramStatus functi

See Also
setProgramStatus

Example

subseque
modified by a communication protocol during execution.
#include <ctools.h>

#define HI_ALARM 41000
#define ALARM_OUTPUT

{
 int inputValue;

 {
 /* Set default alarm limit */
 request_resource(IO_SYSTEM);
 setdbase(MODBUS, HI_ALARM, 4000);
 release_res

 /* Us

 setPr
 }

while (TRUE)
 {
 request_resource(IO_SYSTEM);

 /* Test input against alarm limits */
 if (ain(INPUT) > dbase(MODBUS, HI_ALARM))
 setdbase(MODBUS, ALARM_OUTPUT, 1);
 else
 setd

 release_resource(IO_SYSTEM);

ISaGRAF C Tools User and Reference Manual
May 8, 2007

163

get_protocol
Get Protocol Configuration

Syntax
#include <ctools.h>
struct prot_settings *get_protocol(

*set
FILE *stream, struct prot_settings

ol function gets the communication protocol configuration for the stream. If
 point to a valid serial port the function has no effect. settings must point to a

pointed to by
t structure.

ture.

tion
p o

lso
set_protocol

#include <ctools.h>

 struct prot_settings settings;

protocol(com1, &settings);

n);

: %d\r\n", settings.priority);

tings);

Description
The get_protoc
stream does not
protocol configuration structure, prot_settings.

The get_protocol function copies the protocol settings into the structure
settings and returns a pointer to tha

Refer to the ctools.h file for a description of the fields in the prot_settings struc

Refer to the Overview of Functions section for detailed information on communica
r tocols.

See A

Example
This program displays the protocol configuration for com1.

void main(void)
{

 get_
 printf("Type: %d\r\n", settings.type);
 printf("Station: %d\r\n", settings.statio
 printf("Priority
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

164

getProtocolSettings
Get Protocol Extended Addressing Configuration

Syntax
#include <ctools.h>
BOOLEAN getProtocolSettings(

FILE * stream,
PROTOCOL_SETTINGS * settings
);

Description
The getProtocolSettings function reads the protocol parameters for a serial port. This
function supports extended addressing.

The function has two parameters: stream is one of com1, com2, com3 or com4; and
settings, a pointer to a PROTOCOL_SETTINGS structure. Refer to the description of the
structure for an explanation of the parameters.

The function returns TRUE if the structure was changed. It returns FALSE if the stream is
not valid.

Notes
Extended addressing is available on the Modbus RTU and Modbus ASCII protocols only.
See the TeleBUS Protocols User Manual for details.

Refer to the TeleBUS Protocols User Manual section for detailed information on
communication protocols.

See Also
setProtocolSettings, get_protocol

Example
This program displays the protocol configuration for com1.
#include <ctools.h>

void main(void)
{
 PROTOCOL_SETTINGS settings;

 if (getProtocolSettings(com1, &settings)
 {
 printf("Type: %d\r\n", settings.type);
 printf("Station: %d\r\n", settings.station);
 printf("Address Mode: %d\r\n", settings.mode);
 printf("SF Messaging: %d\r\n", settings.SFMessaging);
 printf("Priority: %d\r\n", settings.priority);
 }
 else
 {
 printf(“Serial port is not valid\r\n”);
 }
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

165

getProtocolSettingsEx
settings for a serial port.

 FILE * stream,
OL_SETTINGS_EX * pSettings

pports extended addressing and Enron Modbus parameters.

 serial port. It is one of com1, com2, com3 or com4.

• pSettings is a pointer to a PROTOCOL_SETTINGS_EX structure. Refer to the
on of the structure for an explanation of the parameters.

rns FALSE if the stream is not

tende us station are available on the Modbus RTU and
odbus for details.

Example
This program displays the protocol configuration for com1.
#include <ctools.h>
void main(void)
{
 PROTOCOL_SETTINGS_EX settings;
 if (getProtocolSettingsEx(com1, &settings)
 {
 printf("Type: %d\r\n", settings.type);
 printf("Station: %d\r\n", settings.station);
 printf("Address Mode: %d\r\n", settings.mode);
 printf("SF: %d\r\n", settings.SFMessaging);
 printf("Priority: %d\r\n", settings.priority);
 printf("Enron: %d\r\n", settings.enronEnabled);
 printf("Enron station: %d\r\n",
 settings.enronStation);
 }
 else
 {
 printf(“Serial port is not valid\r\n”);
 }

Reads extended protocol

Syntax
#include <ctools.h>
BOOLEAN getProtocolSettingsEx(

 PROTOC
);

Description
The setProtocolSettingsEx function sets protocol parameters for a serial port. This
function su

The function has two arguments:

• stream specifies the

descripti

The function returns TRUE if the settings were retrieved. It retu
valid.

No
x

tes
E d addressing and the Enron Modb
M ASCII protocols only. See the TeleBUS Protocols User Manual

Se
setProtocolSettingsEx

e Also

ISaGRAF C Tools User and Reference Manual
May 8, 2007

166

}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

167

get_protocol_status
n

mmunication

clear_protocol_status

This program displays the checksum error counter for com2.
tools.h>

",

Get Protocol Informatio

Syntax
#include <ctools.h>
struct prot_status get_protocol_status(FILE *stream);

Description
The get_protocol_status function returns the protocol error and message counters for
stream. If stream does not point to a valid serial port the function has no effect.

Refer to the Overview of Functions section for detailed information on co
protocols.

See Also

Example

#include <c

void main(void)
{
 struct prot_status status;

 status = get_protocol_status(com2);
 printf("Checksum: %d\r\n
 status.checksum_errors);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

168

getSFTranslation

gned index);

le. If index is invalid, a disabled table entry is returned.

The function returns a SFTranslation structure. It is described in the Structures and Types

Notes
The TeleBUS Protocols User Manual describes store and forward messaging mode.

See Also
clearSFTranslationTable, checkSFTranslationTable

Example
See the example for the setSFTranslation function.

Read Store and Forward Translation

Syntax
#include <ctools.h>
struct SFTranslation getSFTranslation(unsi

Description
The getSFTranslation function returns the entry at index in the store and forward address
translation tab

section.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

169

get_status
Get Serial Port Status

Syntax
#include <ctools.h>
struct pstatus *get_status(FILE *stream, struct pstatus *status);

 valid serial port the function has
no effect. status must point to a valid serial port status structure, pstatus.

status function copies the serial port status into the structure pointed to by status

rs

s);
", status.framing);
", status.parity);

Description
The get_status function returns serial port error counters, I/O lines status and I/O driver
buffer information for stream. If stream does not point to a

The get_
and returns a pointer to that structure settings.

Refer to the Overview of Functions section for detailed information on serial ports.

See Also
clear_erro

Example
This program displays the framing and parity errors for com1.
#include <ctools.h>

void main(void)
{
 struct pstatus status;

 get_status(com1, &statu

n printf("Framing: %d\r\
"Parity: %d\r\n printf(

}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

170

getStatusBit
Read in

ta

gne

 function returns the values of the bits indicated by bitMask in the controller

Status, clearStatusBit

Bits Controller Status Code

S x yn
#include <ctools.h>

Bit(unsigned bitMask); unsi d getStatus

Description
he getStatusBitT

status code.

See Also
StatusBit, setset

ISaGRAF C Tools User and Reference Manual
May 8, 2007

171

getTaskInfo

ed taskID);

kID is

Notes
cified task ID does not identify a valid task, all fields in the return data are set to

s and Types section for a description of the fields in the TASKINFO
structure.

splays information about all valid tasks.

;
ope");

);

request_resource(IO_SYSTEM);
 set_protocol(com1, &settings);
 release_resource(IO_SYSTEM);

 /* display information about all tasks */
 for (task = 0; task <= RTOS_TASKS; task++)
 {
 taskStatus = getTaskInfo(task);
 if (taskStatus.taskID != 0)
 {
 /* show information for valid task */

Get Information on a Task

Syntax
#include <ctools.h>
TASKINFO getTaskInfo(unsign

Description
The getTaskInfo function returns information about the task specified by taskID. If tas
0 the function returns information about the current task.

If the spe
zero. The calling function should check the taskID field in the TASKINFO structure: if it is
zero the remaining information is not valid.

Refer to the Structure

Example
The following program di
#include <string.h>
#include <ctools.h>

id main(void) vo
 {

 struct prot_settings settings;
 TASKINFO taskStatus;
 unsigned task;
 char state[6][20];
 char type[2][20];

 /* Set up state strings */
 strcpy(state[TS_READY], "Ready");

strcpy(state[TS_EXECUTING], "Executing")
 strcpy(state[TS_WAIT_ENVELOPE], "Waiting for Envel

iting for Event"); strcpy(state[TS_WAIT_EVENT], "Wa
 strcpy(state[TS_WAIT_MESSAGE], "Waiting for Message");
 strcpy(state[TS_WAIT_RESOURCE], "Waiting for Resource"

 /* Set up type strings */

); strcpy(type[APPLICATION], "Application"
 strcpy(type[SYSTEM], "System");

 /* Disable the protocol on serial port 1 */
 settings.type = NO_PROTOCOL;
 settings.station = 1;
 settings.priority = 3;
 settings.SFMessaging = FALSE;

ISaGRAF C Tools User and Reference Manual
May 8, 2007

172

 fprintf(com1, "\r\n\r\nInformation about task %d:\r\n", task);
ntf(com1, " Task ID: %d\r\n", taskStatus.taskID);
ntf(com1, " Priority: %d\r\n", taskStatus.priority);

r\n", state[taskStatus.status]);
EVENT)

 fprintf(com1, " Event: %d\r\n", taskStatus.requirement);
 }
 if (taskStatus.status == TS_WAIT_RESOURCE)

 Resource: %d\r\n", taskStatus.requirement);

 fprintf(com1, " Error: %d\r\n", taskStatus.error);
fprintf(com1, " Type: %s\r\n", type[taskStatus.type]);

 {
 o execute */

}

 fpri
 fpri
 fprintf(com1, " Status: %s\
 if (taskStatus.status == TS_WAIT_
 {

 {
 fprintf(com1, "
 }

 }
 }

 while (TRUE)

 /* Allow other tasks t
 release_processor();
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

173

getVersion

le

void main(void)
{

ct prot_settings settings;

 /* Disable the protocol on serial port 1 */
 settings.type = NO_PROTOCOL;
 settings.station = 1;
 settings.priority = 3;
 settings.SFMessaging = FALSE;
 request_resource(IO_SYSTEM);
 set_protocol(com1, &settings);
 release_resource(IO_SYSTEM);

 /* Display the ROM version information */
 versionInfo = getVersion();
 fprintf(com1, "\r\nFirmware Information\r\n");

 fprintf(com1, " Controller type: %d\r\n",
 versionInfo.controller);
 fprintf(com1, " Firmware version: %d\r\n",
 versionInfo.version);
 fprintf(com1, " Creation date: %s\r\n",
 versionInfo.date);
 fprintf(com1, " Copyright: %s\r\n",
 versionInfo.copyright);
}

Get Firmware Version Information

Syntax
#include <ctools.h>
VERSION getVersion(void);

Description
The getVersion function obtains firmware version information. It returns a VERSION
structure. Refer to the Structures and Types section for a description of the fields in the
VERSION structure.

Notes
The version information can be used to adapt a program to a specific type of controller or
version of firmware. For example, a bug work-around could be executed only if older
firmware is detected.

Examp
This program displays the version information.
#include <ctools.h>

 stru
 VERSION versionInfo;

ISaGRAF C Tools User and Reference Manual
May 8, 2007

174

getWakeSource
Gets C

id);

he active wake up sources. Valid wake

• WS_REAL_TIME_CLOCK

_COUNTER_0_OVERFLOW

urces.

 fputs(" Real Time Clock\r\n", com1);

ts(" Counter 0 Overflow\r\n", com1);

OVERFLOW)

onditions for Waking from Sleep Mode

Syntax
#include <ctools.h>
unsigned getWakeSource(vo

Description
Th function returns a bit mask of te getWakeSource

d below. up sources are liste

• WS_INTERRUPT_INPUT

• WS_LED_POWER_SWITCH

• WS

• WS_COUNTER_1_OVERFLOW

• WS_COUNTER_2_OVERFLOW

See Also
setWakeSource, sleep

Example
The follo ing code fragment displays the enabled wake up sow
unsigned enabled;

enabled = getWakeSource();
fputs("Enabled wake up sources:\r\n", com1);
if (enabled & WS_REAL_TIME_CLOCK)

if (enabled & WS_INTERRUPT_INPUT)
 fputs(" Interrupt Input\r\n", com1);
if (enabled & WS_LED_POWER_SWITCH)
 fputs(" LED Power Switch\r\n", com1);
if (enabled & WS_COUNTER_0_OVERFLOW)
 fpu
if (enabled & WS_COUNTER_1_OVERFLOW)
 fputs(" Counter 1 Overflow\r\n", com1);
if (enabled & WS_COUNTER_2_
 fputs(" Counter 2 Overflow\r\n", com1);

ISaGRAF C Tools User and Reference Manual
May 8, 2007

175

hartIO
Read and Write 5904 HART Interface Module

ds the specified 5904 HART Interface module. It checks if a response has

 or

onfiguration, hartCommand

Syntax
#include <ctools.h>
BOOLEAN hartIO(unsigned module);

Description
This function rea
been received and if a corresponding command has been sent. If so, the response to the
command is processed.

This function writes the specified 5904 HART Interface module. It checks if there is a new
command to send. If so, this command is written to the 5904 interface.

The function has one parameter: the module number of the 5904 HART Interface (0 to 3).

The function returns TRUE if the 5904 HART Interface responded and FALSE if it did not
if the module number is not valid.

Notes
This function is called automatically if the 5904 module is in the register assignment. Use
this function to implement communication with the 5904 if register assignment is not used.

See Also
hartSetConfiguration, hartGetC

ISaGRAF C Tools User and Reference Manual
May 8, 2007

176

hartCommand
Send Command using HART Interface Module

MMAND * const command,
 processResponse)(unsigned,

.
tion can be used to implement HART commands not provided by the Network

ice for details.

h parameter is a pointer to a function that will process the response. This function
when a response to the command is received by the HART interface. The function

arameter is a structure containing the response code and the data field from the

5904 HART Interface responded and FALSE if it did not or

Notes
returns immediately after the command is sent. The calling program must wait

he number of attempts and the number of preambles sent are set with the
hartSetConfiguration command.

A program must initialize the link before executing any other commands.

The function determines if long or short addressing is to be used by the command number.
Long addressing is used for all commands except commands 0 and 11.

The functions hartCommand0, hartCommand1, etc. are used to send commands provided
by the Network Layer.

See Also
hartStatus, hartSetConfiguration, hartCommand0, hartCommand1

Syntax
#include <ctools.h>
BOOLEAN hartCommand(
 unsigned module,
 HART_DEVICE * const device,
 HART_CO
 void (*
 HART_RESPONSE)
);

Description
This function sends a command to a HART slave device using a HART interface module
This func
Layer API.

The function has four parameters. The first is the module number of the 5904 HART
interface (0 to 3). The second is the device to which the command is to be sent.

The third parameter is a structure describing the command to send. This contains the
command number, and the data field of the HART message. See the HART protocol
documentation for your dev

The fourt
is called
is defined as follows:

void function_name(HART_RESPONSE response)

The single p
message.

The function returns TRUE if the
if the module number is not valid or there is an error in the command.

The function
for the response to be received. Use the hartStatus command to read the status of the
command.

T

ISaGRAF C Tools User and Reference Manual
May 8, 2007

177

hartCommand0
Read Unique Identifier

Syntax
#include <ctools.h>
BOOLEAN hartCommand0(unsigned module, unsigned address, HART_DEVICE
device);

 * const

 initialization function.

 by the 5904 HART interface module.

e

ait
ived. Use the hartStatus command to read the status of the

command.

ber of attempts and the number of preambles sent are set with the

Description
This function reads the unique identifier of a HART device using command 0 with a short-
form address. This is a link

The function has three parameters: the module-number of the 5904 module (0 to 3); the
short-form address of the HART device (0 to 15); and a pointer to a HART_DEVICE
structure. The information read by command 0 is written into the HART_DEVICE structure
when the response is received

The function returns TRUE if the command was sent. The function returns FALSE if th
module number is invalid, or if the device address is invalid.

Notes
The function returns immediately after the command is sent. The calling program must w
for the response to be rece

The num
hartSetConfiguration command.

A program must initialize the link before executing any other commands.

See Also
hartCommand11, hartStatus, hartSetConfiguration

ISaGRAF C Tools User and Reference Manual
May 8, 2007

178

hartCommand1
Read Primary Variable

Syntax
#includ
BOOLEAN
HART_VA

ee parameters: the module-number of the 5904 module (0 to 3); the

face

ld

 response received after the variable is

tion returns TRUE if the command was sent. The function returns FALSE if the
module number is invalid.

N
The HART_DEVICE structure must be initialized using hartCommand0 or hartCommand11.

The function returns immediately after the command is sent. The calling program must wait
for the response to be received. Use the hartStatus command to read the status of the

d the number of preambles sent are set with the
hartSetConfiguration command.

 field of the HART_VARIABLE structure not changed. Command 1 does not return

nd2, hartStatus, hartSetConfiguration

e <ctools.h>
 hartCommand1(unsigned module, HART_DEVICE * const device,
RIABLE * primaryVariable);

Description
This function reads the primary variable of a HART device using command 1.

The function has thr
device to be read; and a pointer to the primary variable. The variable pointed to by
primaryVariable is updated when the response is received by the 5904 HART inter
module.

The primaryVariable must be a static modular or global variable. A primaryVariable shou
be declared for each HART I/O module in use. A local variable or dynamically allocated
variable may not be used because a late command
freed will write data over the freed variable space.

The func

otes

command.

The number of attempts an

The code
a variable code.

See Also
hartComma

ISaGRAF C Tools User and Reference Manual
May 8, 2007

179

hartCommand2
Read Primary Variable Current and Percent of Range

d 2.

 received

ariable should be declared for each HART I/O module in use. A
local variable or dynamically allocated variable may not be used because a late command

 received after the variable is freed will write data over the freed variable space

st be initialized using hartCommand0 or hartCommand11.

ogram must wait
for the response to be received. Use the hartStatus command to read the status of the

 sent are set with the

he code field of both HART_VARIABLE structures is not changed. The response from the
HART device to command 2 does not include variable codes.

The units field of the pvCurrent variable is set to 39 (units = mA). The units field of the
pvPercent variable is set to 57 (units = percent). The response from the HART device to
command 2 does not include units.

See Also
hartCommand1, hartStatus, hartSetConfiguration

Syntax
#include <ctools.h>
BOOLEAN hartCommand2(unsigned module, HART_DEVICE * const device,
HART_VARIABLE * pvCurrent, HART_VARIABLE * pvPercent);

Description
This function reads the primary variable (PV), as current and percent of range, of a HART
device using comman

The function has four parameters: the module-number of the 5904 module (0 to 3); the
device to be read; a pointer to the PV current variable; and a pointer to the PV percent
variable. The pvCurrent and pvPercent variables are updated when the response is
by the 5904 HART interface.

The pvCurrent and pvPercent variables must be static modular or global variables. A
pvCurrent and pvPercent v

response

The function returns TRUE if the command was sent. The function returns FALSE if the
module number is invalid.

Notes
The HART_DEVICE structure mu

The function returns immediately after the command is sent. The calling pr

command.

The number of attempts and the number of preambles
hartSetConfiguration command.

T

ISaGRAF C Tools User and Reference Manual
May 8, 2007

180

hartCommand3
Read Primary Variable Current and Dynamic Variables

 device

read; and a pointer to an array of five HART_VARIABLE structures.

Syntax
#include <ctools.h>
BOOLEAN hartCommand3(unsigned module, HART_DEVICE * const device,
HART_VARIABLE * variables);

Description
This function reads dynamic variables and primary variable current from a HART
using command 3.

The function has three parameters: the module number of the 5904 module (0 to 3); the
device to be

The variables array must be static modular or global variables. An array of variables should
be declared for each HART I/O module in use. A local variable or dynamically allocated
variable may not be used because a late command response received after the variable is
freed will write data over the freed variable space.

The variables array is updated when the response is received by the 5904 interface as
follows.

Variable Contains
variables[0] primary variable current
variables[1] iable primary var
variables[2] secondary variable
variables[3] tertiary variable
variables[4] fourth variable

et

odule number is invalid.

T_DEVICE structure must be initialized using hartCommand0 or hartCommand11.

es return primary, secondary, tertiary and fourth variables. If the device does not
le.

IABLE structures is not changed. The response from the

The units field of variable[0] is set to 39 (units = mA). The response from the HART device to
oes not include units.

ee Also
hartCommand33, hartStatus, hartSetConfiguration

T
m

he function r urns TRUE if the command was sent. The function returns FALSE if the

Notes
The HAR

The function returns immediately after the command is sent. The calling program must wait
for the response to be received. Use the hartStatus command to read the status of the
command.

The number of attempts and the number of preambles sent are set with the
hartSetConfiguration command.

Not all devic
support a variable, zero is written into the value and units code for that variab

The code field of both HART_VAR
HART device to command 3 does not include variable codes.

command 3 d

S

ISaGRAF C Tools User and Reference Manual
May 8, 2007

181

hartCommand11

s a link

f the HART device; and a pointer to a
HART_DEVICE structure. The information read by command 11 is written into the
HART_DEVICE structure when the response is received by the 5904 interface.

T the un rns FALSE if the
m

N
The function returns immediately after the co
fo d. comman
c

The number of attempts and the number of preambles sent a
hartSetConfiguration command.

A link ny other .

artStatus, hartSetConfiguration

Read Unique Identifier Associated with Tag

Syntax
#include <ctools.h>
BOOLEAN hartCommand11(unsigned module, char * deviceTag, HART_DEVICE *
device);

Description
This function reads the unique identifier of a HART device using command 11. This i
initialization function.

The function has three parameters: the module number of the 5904 module (0 to 3); a
pointer to a null terminated string containing the tag o

he function returns TRUE if command was sent. The f ction retu
odule number is invalid.

otes
mmand is sent. The calling program must wait

Use the hartStatus r the response to be receive
ommand.

d to read the status of the

re set with the

 program must initialize the before executing a commands

See Also
hartCommand0, h

ISaGRAF C Tools User and Reference Manual
May 8, 2007

182

hartCo
Read Transmitter Variables

Syntax
ude <ct
BOOLEAN hartCommand33(unsigned module, HART_DEVICE * const device, unsigned
variableCode[4], HART_VARIABLE * variables);

De
This g command 33.

The function has four parameters: the module number of the 5904 module (0 to 3); the
device to be read; an array of codes; and a pointer to an array of four HART_VARIABLE
st tures.

The variables array must be static modular or global variables. An array of variables should
b eclared fo ble or dynamically allocated
variable may not be used because a late command response received after the variable is
fr will write

T variableC be read from the transmitter.
Consult the documentation for the transmitter for valid values.

The variables array is updated when the response is received by the 5904 interface as

mmand33

incl ools.h>

scription
 function reads selected variables from a HART device usin

ruc

e d r each HART I/O module in use. A local varia

eed data over the freed variable space.

he ode array specifies which variables are to

follows.

Variable Contains
variables[0] transmitter variable, code and units specified by variableCode[0]
variables[1] transmitter variable, code and units specified by variableCode[1]
variables[2] transmitter variable, code and units specified by variableCode[2]
variables[3] transmitter variable, code and units specified by variableCode[3]

The function returns TRUE if the command was sent. The function returns FALSE if the
module number is invalid.

Notes
The HART_DEVICE structure must be initialized using hartCommand0 or hartCommand11.

The pointer variables must point to an array with at least four elements.

The function returns immediately after the command is sent. The calling program must wait
for the response to be received. Use the hartStatus command to read the status of the
command.

The number of attempts and the number of preambles sent are set with the
hartSetConfiguration command.

The function always requests four variables and expects four variables in the response.

See Also
hartCommand3, hartStatus, hartSetConfiguration

ISaGRAF C Tools User and Reference Manual
May 8, 2007

183

hartStatus
Return Status of Last HART Command Sent

;

 a 5904 module (0 to 3).

rs: the module number of the 5904 module; a pointer to the

Syntax
#include <ctools.h>
BOOLEAN hartStatus(unsigned module, HART_RESULT * status, unsigned * code)

Description
This function returns the status of the last HART command sent by
Use this function to determine if a response has been received to a command sent.

The function has three paramete
status variable; and a pointer to the additional status code variable. The status and code
variables are updated with the following information.

Result Status code
HART inter
not commu

face module is HR_NoModuleResponse not used
nicating

Command ready to be sent HR_CommandPending not used
Command sent to device HR_CommandSent current attempt number
Response received HR_Response response code from HART

device (see Notes)
No valid response received
after all attempts made

HR_NoResponse 0=no response from HART
device.
Other = error response code
from HART device (see
Notes)

HART interface module is
not ready to transmit

HR_WaitTransmit not used

The function returns TRUE if the status was read. The function returns FALSE if the module
number is invalid.

Notes
The response code from the HART device contains communication error and status
information. The information varies by device, but there are some common values.

• If bit 7 of the high byte is set, the high byte contains a communication error summary.
This field is bit-mapped. The table shows the meaning of each bit as defined by the
HART protocol specifications. Consult the documentation for the HART device for more
information.

Bit Description
6 vertical parity error
5 overrun error
4 framing error
3 longitudinal parity error
2 reserved – always 0
1 buffer overflow
0 Undefined

ISaGRAF C Tools User and Reference Manual
May 8, 2007

184

• If bit 7 of the high byte is cleared, the high byte contains a command response
s common values. Other values may be defined for specific
ocumentation for the HART device.

summary. The table show
commands. Consult the d

Code Description
32 Busy – the device is performing a function

that cannot be interrupted by this command
64 Command not Implemented – the command

is not defined for this device.

 contains the field device status. This field is bit-mapped. The table shows
specifications. Consult the

• The low byte
the meaning of each bit as defined by the HART protocol
documentation for the HART device for more information.

Bit Description
7 field device malfunction
6 configuration changed
5 cold start
4 more status available (use command 48 to

read)
3 primary variable analog output fixed
2 primary variable analog output saturated
1 non-primary variable out of limits
0 primary variable out of limits

See Also
hartSetConfiguration

ISaGRAF C Tools User and Reference Manual
May 8, 2007

185

hartGetConfiguration

urns the configuration settings of a 5904 module.

See Also
iguration

Read HART Module Settings

Syntax
#include <ctools.h>
BOOLEAN hartGetConfiguration(unsigned module, HART_SETTINGS * settings);

Description
This function ret

The function has two parameters: the module number of the 5904 module (0 to 3); and a
pointer to the settings structure.

The function returns TRUE if the settings were read. The function returns FALSE if the
module number is invalid.

hartSetConf

ISaGRAF C Tools User and Reference Manual
May 8, 2007

186

hartSetConfiguration

tes configuration settings to a 5904 module.

ation settings are stored in the EEPROM_RUN section of the EEPROM. The
ngs are used when the controller is reset in the RUN mode. Default

ettings are used when the controller is reset in the SERVICE or COLD BOOT modes.

If a CNFG 5904 HART Interface module is in the register assignment, forced registers from
it take precedence over the settings supplied here.

See Also
hartGetConfiguration

Write HART Module Settings

Syntax
#include <ctools.h>
BOOLEAN hartSetConfiguration(unsigned module, HART_SETTINGS settings);

Description
This function wri

The function has two parameters: the module number of the 5904 module (0 to 3); and a
settings structure.

The function returns TRUE if the settings were written. The function returns FALSE if the
module number or the settings are invalid.

Notes
The configur
user-defined setti
s

ISaGRAF C Tools User and Reference Manual
May 8, 2007

187

hartPackString
Convert String to HART Packed String

pointer to a packed array; a pointer to an unpacked

s no return value.

o

Syntax
#include <ctools.h>
void hartPackString(char * pPackedString, const char * pString, unsigned
sizePackedString);

Description
This function stores an ASCII string into a HART packed ASCII string.

The function has three parameters: a
array; and the size of the packed array. The packed array must be a multiple of three in size.
The unpacked array must be a multiple of four in size. It should be padded with spaces at
the end if the string is not long enough.

The function ha

See Als
hartUnpackString

ISaGRAF C Tools User and Reference Manual
May 8, 2007

188

hartU
Convert HART Packed String to String

PackedString, unsigned

tring into a normal ASCII string.

packed array; a pointer to a packed
be a multiple of three in size.

npackString

Syntax
#include <ctools.h>
oid ha char * pv rtUnpackString(char * pString, const
sizePackedString);

Description
his funT ction unpacks a HART packed ASCII s

The function has three parameters: a pointer to an un
array; and the size of the packed array. The packed array must

multiple of four in size. The unpacked array must be a

The function has no return value.

See Also
hartPackString

ISaGRAF C Tools User and Reference Manual
May 8, 2007

189

install_handler
Install Serial Port Handler

Syntax
#include <ctools.h>
void install_handler(FILE *stream, void *function(unsigned, unsigned));

 valid

function specifies the handler function, which takes two arguments. The first argument is the
character. The second argument is an error flag. A non-zero value indicates an
nction is NULL, the default handler for the port is installed. The default handler

andler function can be used to write custom communication protocols.

lled at the completion of the receiver interrupt handler. RTOS calls (see
 the section Real Time Operating System Functions at the start of this

chapter) may not be made within the interrupt handler, with one exception. The
gnal_event RTOS call can be used to signal events.

 on com3 and com4. Examples
l operator display terminals, and for

This er
is received on com1. If there is an error, the

/

l_event(CHAR_RECEIVED);

ved
ng an installed handler to signal

Description
The install_handler function installs a serial port character handler function. The serial port
driver calls this function each time it receives a character. If stream does not point to a
serial port the function has no effect.

received
error. If fu
does nothing.

Notes
The install_h

The handler is ca
functions listed in

interrupt_si

To optimize performance, minimize the length of messages
of recommended uses for com3 and com4 are for loca
programming and diagnostics using the ISaGRAF program.

Example
#include <ctools.h>

#define CHAR_RECEIVED 11

----------------------- /* ---------------------
 signal

 routine signals an event when a charact

 character is ignored.

- * ---

void signal(unsigned character, unsigned error)
{

if (error == 0)
 interrupt_signa

 character;
}

-- /* --
 main

m displays all characters recei This progra
 on com1 usi

ISaGRAF C Tools User and Reference Manual
May 8, 2007

190

 the reception of a character.
-------------------------------- */ ------------

ttings);

 */

void main(void)
{
 struct prot_settings protocolSettings;
 int character;

 /* Disable protocol */
 get_protocol(com1, &protocolSettings);

TOCOL; protocolSettings.type = NO_PRO
TEM); request_resource(IO_SYS

 set_protocol(com1, &protocolSe
 release_resource(IO_SYSTEM);

 /* Enable character handler */
 install_handler(com1, signal);

 /* Print each character as it is recevied
 while (TRUE)
 {
 wait_event(CHAR_RECEIVED);
 character = fgetc(com1);
 fputs("character: ", com1);
 fputc(character, com1);
 fputs("\r\n", com1);
 }
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

191

installClockHandler
Install Handler for Real Time Clock

Syntax
#include <ctools.h>
void installClockHandler(void (*function)(void));

e
tion installs a real time clock alarm handler function. The real

e on calls this function each time a real time clock alarm occurs.

pecifies the handler function. If function is NULL, the handler is disabled.

ls (see functions listed in the section Real Time Operating System Functions at the

/* --

ccurs.

(ALARM_EVENT);

{

wait_event(ALARM_EVENT);

 /* Reset the alarm for the next day */

;

D scription
The installClockHand

 alarm functi
ler func

tim clock

function s

Notes
RTOS cal
start of this chapter) may not be made within the interrupt handler, with one exception. The
interrupt_signal_event RTOS call can be used to signal events.

See Also
setClockAlarm

Example
/* --
 This program demonstrates how to call a
 function at a specific time of day.
 -- */

#include <ctools.h>

#define ALARM_EVENT 20

 This function signals an event when the alarm
 o
-- */
void alarmHandler(void)
{
 interrupt_signal_event
}

/* --
 This task processes alarms signaled by the
 clock handler
-- */
void processAlarms(void)

 while(TRUE)
 {

 request_resource(IO_SYSTEM);
 resetClockAlarm();
 release_resource(IO_SYSTEM)

ISaGRAF C Tools User and Reference Manual
May 8, 2007

192

 fprintf(com1, "It’s quitting time!\r\n");

{

ARM_SETTING alarm;

l on serial port 1 */
TOCOL;

= 1;
 = 3;
ng = FALSE;
O_SYSTEM);

l(com1, &settings);
lease_resource(IO_SYSTEM);

ClockHandler(alarmHandler);

eate_task(processAlarms, 3, APPLICATION, 4);

pe = AT_ABSOLUTE;

}

 }
}

void main(void)

 struct prot_settings settings;
 AL

 /* Disable the protoco

ettings.type = NO_PRO s
 settings.station

ttings.priority se
 settings.SFMessagi

ource(I request_res
t_protoco se
e r

 /* Install clock handler function */
 install

 /* Create task for processing alarm events */
 cr

 /* Set real time clock alarm */
 alarm.ty
 alarm.hour = 16;
 alarm.minute = 0;
 alarm.second = 0;

 request_resource(IO_SYSTEM);
 setClockAlarm(alarm);
 release_resource(IO_SYSTEM);

 while(TRUE)
 {
 /* body of main task loop */

 /* other processing code */

 /* Allow other tasks to execute */
 release_processor();
 }

ISaGRAF C Tools User and Reference Manual
May 8, 2007

193

insta
Install User Defined Dbase Handler

Syntax
#include <ctools.h>
void installDbaseHandler
 (
 BOOLEAN (* handler)
 (
 unsigned address,
 int *value
)
)

Description
The installDbaseHandler function allows an extension to be defined for the dbase()
function.

If a handler is installed, it is called by the dbase function when one of the following
conditions apply:

• There is no ISaGRAF application downloaded, or

• There is no ISaGRAF variable assigned to the specified Modbus address.

The function installDbaseHandler has one parameter: a pointer to a function to handle the
dbase extensions. See the section Dbase Handler Function for a full description of the
handler function and it’s parameters. If the pointer is NULL, no handler is installed.

The installed handler is always called with a Modbus address. Linear addresses are
converted to Modbus addresses before calling the handler. Use the
installSetdbaseHandler function to install a write access handler for the same addresses
handled by the dbase handler.

Note that the C Tools functions dbase and setdbase are used by all protocols to access
Modbus or Linear registers.

Notes
Call this function with the NULL pointer to remove the dbase handler. This must be done
when the application program is ended with an exit handler. Use the installExitHandler
function to install the exit handler.

If the Dbase handler is not removed within an exit handler, it will remain installed and
continue to operate until the controller power is cycled. Erasing the C Program from the
Initialize dialog will not remove the Dbase handler. If the handler is located in a RAM-based
application and left installed while a different C application is downloaded, the original
handler will be corrupted and the system will likely crash.

See Also
setdbase

Example
See example for Dbase Handler Function.

llDbaseHandler

ISaGRAF C Tools User and Reference Manual
May 8, 2007

194

installSetdbaseHandler
Install

void installSetdbaseHandler

AN (* handler)

,

()

n downloaded, or

dbus address.

ndler for the same addresses handled by the setdbase
handler.

 the C Tools functions dbase and setdbase are used by all protocols to access

e
r

function to install the exit handler.

se handler is not removed within an exit handler, it will remain installed and
il the controller power is cycled. Erasing the C Program from the

Initialize dialog will not remove the Setdbase handler. If the handler is located in a RAM-
ation and left installed while a different C application is downloaded, the original
e corrupted and the system will likely crash.

See Also
setdbas

 User Defined Setdbase Handler

Syntax
#include <ctools.h>

 (
 BOOLE
 (
 unsigned address
 int value
)
)

Description
The installSetdbaseHandler function allows an extension to be defined for the setdbase
function.

If a handler is installed, it is called by the setdbase function when one of the following
conditions apply:

• There is no ISaGRAF applicatio

• There is no ISaGRAF variable assigned to the specified Mo

The function installSetdbaseHandler has one parameter: a pointer to a function to handle
the setdbase extensions. See the section Setdbase Handler Function for a full description of
the handler function and it’s parameters. If the pointer is NULL, no handler is installed.

The installed handler is always called with a Modbus address. Linear addresses are
converted to Modbus addresses before calling the handler. Use the installDbaseHandler
function to install a read access ha

Note that
Modbus or Linear registers.

Notes
Call this function with the NULL pointer to remove the setdbase handler. This must be don
when the application program is ended with an exit handler. Use the installExitHandle

If the Setdba
continue to operate unt

based applic
handler will b

e, installDbaseHandler

ISaGRAF C Tools User and Reference Manual
May 8, 2007

195

Examp
See example for .

le
Setdbase Handler Function

ISaGRAF C Tools User and Reference Manual
May 8, 2007

196

Dbase Handler Function
User Defined Dbase Handler Function
The dbase handler function is a user-defined function that handles reading of Modbus
addresses not assigned in the ISaGRAF Dictionary. The function can have any name;
dbaseHandler is used in the description below.

Syntax
#include <ctools.h>
BOOLEAN dbaseHandler(
 unsigned address,
 int * value
)

Description
This function is called by the dbase function when one of the following conditions apply:

• There is no ISaGRAF application downloaded, or

• There is no ISaGRAF variable assigned to the specified Modbus address.

The function has two parameters:

• The address parameter is the Modbus address to be read.

• The value parameter is a pointer to an integer containing the current value at address.

If the address is to be handled, the handler function must return TRUE and the value pointed
to by value must be set to the current value for the specified Modbus address.

If the address is not to be handled, the function must return FALSE and the value pointed to
by value must be left unchanged.

Notes
The IO_SYSTEM resource must be requested before calling dbase, which calls this handler.
Requesting the IO_SYSTEM resource ensures that only one task may call the handler at a
time. Therefore, the function does not have to be re-entrant.

An array may be defined to store the current values for all Modbus addresses handled by
this function. See the section Data Storage if a non-initialized data array is required.

See Also
installDbaseHandler

Example
/* ---
 dbaseHandler.c

This is a sample program for the installDbaseHandler and
installSetdbaseHandler functions. This sample program demonstrates
database handlers for the Modbus registers 1001 to 1100 and 31001 to
31100.

When the handlers are installed, calls to the functions dbase() or
setdbase() for these Modbus registers will call these handlers. This

ISaGRAF C Tools User and Reference Manual
May 8, 2007

197

is true as long as the register is not already assigned to an ISaGRAF
variable.

Note that the dbase() and setdbase() functions are used by C
applications and by all protocols.
--- */
#include "ctools.h"

/* See section on Data Storage in this manual if coilDbase and
inputDbase need to be saved when controller is off */

static unsigned char coilDbase[100];
static unsigned inputDbase[100];

static BOOLEAN dbaseHandler(
 unsigned address, /* Modbus register address */
 int *value /* pointer to value at address */
)
{
 if ((address > 1000) && (address <= 1100))
 {
 *value = coilDbase[address - 1001];
 return TRUE;
 }
 else if ((address > 31000)&&(address <= 31100))
 {
 *value = inputDbase[address - 31001];
 return TRUE;
 }
 else
 {
 /* all other addresses are not handled */
 return FALSE;
 }
}

static BOOLEAN setdbaseHandler(
 unsigned address,/* Modbus register address */
 int value /* value to write at address */
)
{
 if ((address > 1000) && (address <= 1100))
 {
 if (value == 0)
 {
 coilDbase[address - 1001] = FALSE;
 }
 else
 {
 coilDbase[address - 1001] = TRUE;
 }
 return TRUE;
 }
 else if ((address > 31000)&&(address <= 31100))
 {
 inputDbase[address - 31001] = value;
 return TRUE;
 }
 else
 {
 /* all other addresses are not handled */
 return FALSE;
 }
}

static void shutdown(void)
{

ISaGRAF C Tools User and Reference Manual
May 8, 2007

198

 /* remove database handlers */
 installDbaseHandler(NULL);
 installSetdbaseHandler(NULL);
}

/* ---
 main

 This routine is the main program.
 The exit handler is installed.
 The database handlers are installed.
 The database is then updated continuously with
 I/O data in the main loop.
 --- */
void main(void)
{
 int ainData[8];
 unsigned char doutData;
 unsigned index;
 TASKINFO taskStatus;

 taskStatus = getTaskInfo(0);
 installExitHandler(taskStatus.taskID, shutdown);
 installDbaseHandler(dbaseHandler);
 installSetdbaseHandler(setdbaseHandler);

 while (TRUE)
 {
 request_resource(IO_SYSTEM);

 isaRead8Ain(0, ainData);

 for (index=0; index<8; index++)
 {
 /* copy Ain data to the database */
 setdbase(MODBUS, 31001 + index, ainData[index]);

 /* get Dout data from the database */
 doutData <<= 1;
 doutData |= dbase(MODBUS, 1008 - index);
 }

 isaWrite8Dout(0, doutData);

 release_resource(IO_SYSTEM);
 release_processor();
 }
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

199

Setdbase Handler Function
User Defined Setdbase Handler Function
The setdbase handler function is a user-defined function that handles writing to Modbus
addresses not assigned in the ISaGRAF Dictionary. The function can have any name;
setdbaseHandler is used in the description below.

Syntax
#include <ctools.h>
BOOLEAN setdbaseHandler(
 unsigned address,
 int value
)

Description
This function is called by the setdbase function when one of the following conditions apply:

• There is no ISaGRAF application downloaded, or

• There is no ISaGRAF variable assigned to the specified Modbus address.

The function has two parameters:

• The address parameter is the Modbus address to be written.

• The value parameter is the integer value to write to the Modbus address.

If the address is to be handled, the handler function must return TRUE and write value to the
current value at the Modbus address.

If the address is not to be handled, the function must return FALSE and do nothing.

Notes
The IO_SYSTEM resource must be requested before calling setdbase, which calls this
handler. Requesting the IO_SYSTEM resource ensures that only one task may call the
handler at a time. Therefore, the function does not have to be re-entrant.

An array may be defined to store the current values for all Modbus addresses handled by
this function. See the section Data Storage if a non-initialized data array is required.

See Also
installSetdbaseHandler

Example
See example for Dbase Handler Function.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

200

installExitHandler
Install Handler Called when Task Ends

Syntax
#include <ctools.h>
unsigned installExitHandler(unsigned taskID, void (*function)(void));

Description
The installExitHandler function defines a function that is called when the task, specified by
taskID, is ended. function specifies the handler function. If function is NULL, the handler is
disabled.

Notes
The exit handler function will be called when:

• the task is ended by the end_task function

• the end_application function is executed and the function is an APPLICATION type
function

• the program is stopped from the ISaGRAF program and the task is an APPLICATION
type function

• the C program is erased by the ISaGRAF program.

The exit handler function is not called if power to the controller is removed. In this case all
execution stops when power fails. The application program starts from the beginning when
power is reapplied.

Do not call any RTOS functions from the exit handler.

Example
See the example for startTimedEvent.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

201

installModbusHandler
Install User Defined Modbus Handler

Syntax
#include <ctools.h>
void installModbusHandler(
unsigned (* handler)(unsigned char *, unsigned,
 unsigned char *, unsigned *)
);

Description
The installModbusHandler function allows user-defined extensions to standard Modbus
protocol. This function specifies a function to be called when a Modbus message is received
for the station, but is not understood by the standard Modbus protocol. The installed handler
function is called only if the message is addressed to the station, and the message
checksum is correct.

The function has one parameter: a pointer to a function to handle the messages. See the
section Handler Function for a full description of the function and it’s parameters. If the
pointer is NULL, no function is called for non-standard messages.

The function has no return value.

Notes
This function is used to create a user-defined extension to the standard Modbus protocol.

Call this function with the NULL pointer to disable processing of non-standard Modbus
messages. This must be done when the application program is ended with an exit handler.
Use the installExitHandler function to install the exit handler.

If the Modbus handler is not disabled within an exit handler, it will remain installed and
continue to operate until the controller power is cycled. Changing the protocol type or
Erasing the C Program from ISaGRAF Initialize dialog will not remove the Modbus handler.
If the handler is located in a RAM-based application and left enabled while a different C
application is downloaded, the original handler will be corrupted and the system will likely
crash.

See Also
Handler Function

ISaGRAF C Tools User and Reference Manual
May 8, 2007

202

Handler Function
User Specified Handler Function

The handler function is a user-specified function that handles processing of Modbus
messages not recognized by the protocol. The function can have any name; handler is used
in the description below.

Syntax
#include <ctools.h>
unsigned handler(
 unsigned char * message,
 unsigned messageLength,
 unsigned char * response,
 unsigned * responseLength
);

Description
This function handler is a user-defined handler for processing Modbus messages. The
function is called for each Modbus message with a function code that is not recognized by
the standard Modbus protocol.

The handler function should process the message string and create a response string. IF the
message is not understood, one of the error codes should be returned.

The function has four parameters.

• The message parameter is a pointer to the first character of the received message. The
first character of the message is the function code. The format of the data after the
function code is defined by the function code.

• The messageLength parameter is the number of characters in the message.

• The response parameter is a pointer to the first character of a buffer to hold the
response. The function should write the response into this buffer. The buffer is 253
characters long. The first character of the buffer is the function code of the message.
The format of the data after the function code is defined by the function code.

• The responseLength parameter is a pointer to the length of the response. The function
should set the length of the response using this pointer. The length is the number of
characters placed into the response buffer.

The function must return one of four values. The first causes a normal response to be sent.
The others cause an exception response to be sent.

• NORMAL indicates the response and responseLength have been set to valid values.
The Modbus protocol will add the station address and checksum to this string and
transmit the reply to the master station.

• ILLEGAL_FUNCTION indicates the function code in the message was not understood.
The handler function must return this value for all function codes it does not process.
The Modbus protocol will return an Illegal Function exception response.

• ILLEGAL_DATA_ADDRESS indicates the function code in the message was
understood, but that the command referenced an address that is not valid. The Modbus
protocol will return an Illegal Data Address exception response.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

203

• ILLEGAL_DATA_VALUE indicates the function code in the message was understood,
but that the command included data that is not valid. The Modbus protocol will return an
Illegal Data Address exception response.

Function Codes Used
The following function codes are currently used by the TeleBUS Modbus-compatible
protocol. All other function codes are available for use. For maximum compatibility with other
Modbus and Modbus-compatible devices it is recommended that codes in the user-defined
function code range be used first.

Code Type Description
1 Modbus standard Read coil registers from I/O database
2 Modbus standard Read status registers from I/O database
3 Modbus standard Read holding registers from I/O database
4 Modbus standard Read input registers from I/O database
5 Modbus standard Write a single coil register
6 Modbus standard Write a single holding register
7 Modbus standard Read exception status
15 Modbus standard Write multiple coil registers
16 Modbus standard Write multiple holding registers
17 Modbus standard Report slave identification string
65 TeleBUS extension Used by TelePACE
66 TeleBUS extension Used by TelePACE
67 TeleBUS extension Used by TelePACE
68 TeleBUS extension Used by TelePACE
69 TeleBUS extension Used by TelePACE
70 TeleBUS extension Used by TelePACE

Notes
One handler function is used for all serial ports. Only one port will be active at any time.
Therefore, the function does not have to be re-entrant.

The handler function is called from the Modbus protocol task. This task may pre-empt the
execution of another task. If there are shared resources, the handler function must request
and release the appropriate resources to ensure proper operation.

The station address is not included in the message or response string. It will be added to the
response string before sending the reply.

The checksum is not included in the message or the response string. It will be added to the
response string before sending the reply.

The maximum size of the response string is 253 bytes. If a longer response length is
returned, the Modbus protocol will report an ILLEGAL_DATA_VALUE exception. The
response will not be returned.

See Also
installModbusHandler

Example
/* ---
 handler.c

ISaGRAF C Tools User and Reference Manual
May 8, 2007

204

 This is a sample program for the InstallModbusHandler function. This
sample program uses function code 71 to demonstrate a simple method
for using the installModbusHandler function.
 When the handler is installed Modbus ASCII messages using function code
71 that are received on com2 of the controller will
 be processed as shown in the program text.

 To turn on digital output 00001:
 From a terminal send the ASCII command :014701B7
 Where;
 01 is the station address
 47 is the function code in hex
 01 is the command for the function code
 B7 is the message checksum

 To turn off digital output 00001:
 From a terminal send the ASCII command :014700B8
 Where;
 01 is the station address
 47 is the function code in hex
 00 is the command for the function code
 B8 is the message checksum
 -- */
#include <ctools.h>

static unsigned myModbusHandler(
 unsigned char * message,
 unsigned messageLength,
 unsigned char * response,
 unsigned * responseLength
)
{
 unsigned char * pMessage;
 unsigned char * pResponse;

 pMessage = message;

 if (*pMessage == 71)
 {
 /* Action for command data */
 pMessage++;

 if (*pMessage == 0)
 {
 request_resource(IO_SYSTEM);
 setdbase(MODBUS, 1, 0);
 release_resource(IO_SYSTEM);

 pResponse = response;

 *pResponse = 71;
 pResponse++;
 *pResponse = 'O';
 pResponse++;
 *pResponse = 'F';
 pResponse++;
 *pResponse = 'F';
 pResponse++;

 *responseLength = 4;

 return NORMAL;
 }

 if (*pMessage == 1)
 {

ISaGRAF C Tools User and Reference Manual
May 8, 2007

205

 request_resource(IO_SYSTEM);
 setdbase(MODBUS, 1, 1);
 release_resource(IO_SYSTEM);

 pResponse = response;
 *pResponse = 71;
 pResponse++;
 *pResponse = 'O';
 pResponse++;
 *pResponse = 'N';
 pResponse++;
 *responseLength = 3;

 return NORMAL;
 }

 }
}

static void shutdown(void)
{
 installModbusHandler(NULL);
}

/* ---
 main

 This routine is the modbus slave application.
 Serial port com2 is configured for Modbus ASCII protocol.
 Register Assignment is configured.
 The modbus handler is installed.
 The exit handler is installed.
 -- */
void main(void)
{
 TASKINFO taskStatus;

 struct pconfig portSettings;
 struct prot_settings protSettings;

 portSettings.baud = BAUD9600;
 portSettings.duplex = FULL;
 portSettings.parity = NONE;
 portSettings.data_bits = DATA7;
 portSettings.stop_bits = STOP1;
 portSettings.flow_rx = DISABLE;
 portSettings.flow_tx = DISABLE;
 portSettings.type = RS232;
 portSettings.timeout = 600;
 set_port(com2, &portSettings);

 get_protocol(com2, &protSettings);
 protSettings.station = 1;
 protSettings.type = MODBUS_ASCII;
 set_protocol(com2, &protSettings);

 /* Configure Register Assignment */
 clearRegAssignment();
 addRegAssignment(DIN_generic8, 0, 10017, 0, 0, 0);
 addRegAssignment(SCADAPack_lowerIO,0, 1, 10001, 30001, 0);
 addRegAssignment(DIAG_protocolStatus,1,31000, 0, 0, 0);

 /* Install Modbus Handler */
 request_resource(IO_SYSTEM);
 installModbusHandler(myModbusHandler);
 release_resource(IO_SYSTEM);

ISaGRAF C Tools User and Reference Manual
May 8, 2007

206

 /* Install Exit Handler */
 taskStatus = getTaskInfo(0);
 installExitHandler(taskStatus.taskID, shutdown);

 while(TRUE)
 {
 release_processor();
 }
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

207

installRTCHandler
Install User Defined Real-Time-Clock Handler

Syntax
#include <ctools.h>
void installRTCHandler(
void (* rtchandler)(TIME *now,
 TIME *new)
);

Description
The installRTCHandler function allows an application program to override Modbus protocol
and DNP protocol commands to set the real time clock. This function specifies a function to
be called when a Modbus or DNP message is received for the station. The installed handler
function is called only if the message is intended to set the real time clock.

The function has one parameter: a pointer to a function to handle the messages. See the
section RTCHandler Function for a full description of the function and its parameters. If the
pointer is NULL, no function is called for set the real time clock commands, and the default
method is used set the real time clock.

The function has no return value.

Notes
Call this function with the NULL pointer to disable processing of Set Real Time Clock
messages. This must be done when the application program is ended with an exit handler.
Use the installExitHandler function to install the exit handler.

If the RTC handler is not disabled within an exit handler, it will remain installed and continue
to operate until the controller power is cycled. Changing the protocol type or Erasing the C
Program from the TelePACE Initialize dialog will not remove the handler. If the handler is
located in a RAM-based application and left enabled while a different C application is
downloaded, the original handler will be corrupted and the system will likely crash.

See Also
RTCHandler Function, installExitHandler

ISaGRAF C Tools User and Reference Manual
May 8, 2007

208

RTCHandler Function
User Specified Real Time Clock Handler Function

The handler function is a user-specified function that handles processing of Modbus
messages or DNP messages for setting the real time clock. The function can have any
name; rtchandler is used in the description below.

Syntax
#include <ctools.h>
void rtchandler(
 TIME *now,
 TIME *new
);

Description
This function rtchandler is a user-defined handler for processing Modbus messages or DNP
messages. The function is called only for messages that set the real time clock.

The rtchandler function should set the real time clock to the requested time. If there is a
delay before this can be done, the time when the message was received is provided so that
a correction to the requested time can be made.

The function has two parameters.

• The now parameter is a pointer to the structure containing the time when the message
was received.

• The new parameter is a pointer to the structure containing the requested time.

The function does not return a value.

Notes
The IO_SYSTEM resource has already been requested before calling this function. If this
function calls other functions that require the IO_SYSTEM resource (e.g. setclock), there is
no need to request or release the resource.

This function must not request or release the IO_SYSTEM resource.

See Also
installRTCHandler

ISaGRAF C Tools User and Reference Manual
May 8, 2007

209

interruptCounter
Read Interrupt Input Counter

Syntax
#include <ctools.h>
unsigned long interruptCounter(unsigned clear);

Description
The interruptCounter routine reads the interrupt input as a counter. If clear is TRUE the
counter is cleared after reading; otherwise if it is FALSE the counter continues to
accumulate.

Notes
The interrupt input is located on the 5203 or 5204 controller board. Refer to the System
Hardware Manual for more information on the hardware.

The counter increments on the rising edge of the input signal.

The maximum input frequency that can be counted by the interrupt input is 200 Hz.

See Also
interruptInput, readBoolVariable

ISaGRAF C Tools User and Reference Manual
May 8, 2007

210

interruptInput
Read State of Interrupt Digital Input

Syntax
#include <ctools.h>
unsigned interruptInput(void);

Description
The interruptInput function reads the status of the interrupt input point on the controller. It
returns TRUE if the input is energized and FALSE if it is not.

Notes
The interrupt input can be used as wake up source for the controller or as an additional a
digital input. Refer to the System Hardware Manual for wiring details.

See Also
installRTCHandler

Install User Defined Real-Time-Clock Handler

Syntax
#include <ctools.h>
void installRTCHandler(
void (* rtchandler)(TIME *now,
 TIME *new)
);

Description
The installRTCHandler function allows an application program to override Modbus protocol
and DNP protocol commands to set the real time clock. This function specifies a function to
be called when a Modbus or DNP message is received for the station. The installed handler
function is called only if the message is intended to set the real time clock.

The function has one parameter: a pointer to a function to handle the messages. See the
section RTCHandler Function for a full description of the function and its parameters. If the
pointer is NULL, no function is called for set the real time clock commands, and the default
method is used set the real time clock.

The function has no return value.

Notes
Call this function with the NULL pointer to disable processing of Set Real Time Clock
messages. This must be done when the application program is ended with an exit handler.
Use the installExitHandler function to install the exit handler.

If the RTC handler is not disabled within an exit handler, it will remain installed and continue
to operate until the controller power is cycled. Changing the protocol type or Erasing the C
Program from the TelePACE Initialize dialog will not remove the handler. If the handler is
located in a RAM-based application and left enabled while a different C application is
downloaded, the original handler will be corrupted and the system will likely crash.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

211

See Also
RTCHandler Function, installExitHandler

ISaGRAF C Tools User and Reference Manual
May 8, 2007

212

RTCHandler Function
User Specified Real Time Clock Handler Function

The handler function is a user-specified function that handles processing of Modbus
messages or DNP messages for setting the real time clock. The function can have any
name; rtchandler is used in the description below.

Syntax
#include <ctools.h>
void rtchandler(
 TIME *now,
 TIME *new
);

Description
This function rtchandler is a user-defined handler for processing Modbus messages or DNP
messages. The function is called only for messages that set the real time clock.

The rtchandler function should set the real time clock to the requested time. If there is a
delay before this can be done, the time when the message was received is provided so that
a correction to the requested time can be made.

The function has two parameters.

• The now parameter is a pointer to the structure containing the time when the message
was received.

• The new parameter is a pointer to the structure containing the requested time.

The function does not return a value.

Notes
The IO_SYSTEM resource has already been requested before calling this function. If this
function calls other functions that require the IO_SYSTEM resource (e.g. setclock), there is
no need to request or release the resource.

This function must not request or release the IO_SYSTEM resource.

See Also
installRTCHandler

interruptCounter

ISaGRAF C Tools User and Reference Manual
May 8, 2007

213

interrupt_signal_event
Signal Event in Interrupt Handler

Syntax
#include <ctools.h>
void interrupt_signal_event(unsigned event_number);

Description
The interrupt_signal_event function is used in an interrupt handler to signal events. The
function signals that the event_number event has occurred.

If there are tasks waiting for the event, the highest priority task is made ready to execute.
Otherwise the event flag is incremented. Up to 255 occurrences of an event will be
recorded. The current task is blocked of there is a higher priority task waiting for the event.

Notes
Refer to the Real Time Operating System section for more information on events.

This function must only be used within an interrupt handler.

Valid events are numbered 0 to RTOS_EVENTS - 1. Any events defined in ctools.h. are not
valid events for use in an application program.

See Also
signal_event, startTimedEvent, installClockHandler

ISaGRAF C Tools User and Reference Manual
May 8, 2007

214

interval
Set Timer Tick Interval

Syntax
#include <ctools.h>
void interval(unsigned timer, unsigned value);

Description
The interval function sets the tick interval for timer to value. Tick intervals are measured in
multiples of 0.1 second.

If the timer number is invalid, the task's error code is set to TIMER_BADTIMER.

Notes
The default timer tick interval is 1/10 second.

See Also
settimer,

Example
Set timer 5 to count 12 seconds using 1.0 s ticks.
interval(5, 10); /* 1.0 s ticks */
settimer(5, 12); /* time = 12 seconds */

Set timer 5 to count 12 seconds using 0.1 s ticks.
interval(5, 1); /* 0.1 s ticks */
settimer(5, 120); /* time = 12 seconds */

ISaGRAF C Tools User and Reference Manual
May 8, 2007

215

ioBusReadByte
Read One Byte from I2C Slave Device

Syntax
#include <ctools.h>
unsigned char ioBusReadByte(void);

Description
The ioBusReadByte function returns one byte read from an I2C slave device. The byte is
acknowledged by the master receiver. This function can be used multiple times in sequence
to read data from a slave device. The last byte read from the slave must be read with the
ioBusReadLastByte function.

If only one byte is to be read from a device, the ioBusReadLastByte function must be used
instead of this function.

Notes
The IO_SYSTEM resource must be requested before calling this function.

See Also
ioBusStart, ioBusStop, ioBusReadLastByte, ioBusReadMessage, ioBusSelectForRead
ioBusSelectForWrite, ioBusWriteByte, ioBusWriteMessage

Example
#include <ctools.h>

void main(void)
{
 unsigned char data[3];
 unsigned char ioBusAddress = 114;

 request_resource(IO_SYSTEM);

 ioBusStart();
 if (ioBusSelectForRead(ioBusAddress))
 {
 data[0] = ioBusReadByte();
 data[1] = ioBusReadByte();
 /* reading the last byte terminates read */
 data[2] = ioBusReadLastByte();
 }
 ioBusStop();

 release_resource(IO_SYSTEM);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

216

ioBusReadLastByte
Read Last Byte from I2C Slave Device

Syntax
#include <ctools.h>
unsigned char ioBusReadLastByte(void);

Description
The ioBusReadLastByte function returns one byte read from an I2C slave device and
terminates reading from the slave. The byte is not acknowledged by the master receiver.
This signals to the slave device that the read is complete. This function must be used once
at the end of a read.

Notes
The IO_SYSTEM resource must be requested before calling this function.

See Also
ioBusStart, ioBusStop, ioBusReadByte, ioBusReadMessage, ioBusSelectForRead
ioBusSelectForWrite, ioBusWriteByte, ioBusWriteMessage

Example
See example for ioBusReadByte.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

217

ioBusReadMessage
Read Message from I2C Slave Device

Syntax
#include <ctools.h>
READSTATUS ioBusReadMessage(unsigned address, unsigned numberBytes, unsigned

char *message);

Description
The ioBusReadMessage function reads a specified number of bytes from an I2C slave
device.

The function issues a START condition, selects the device for reading, reads the specified
number of bytes, and issues a STOP condition. It detects if the device cannot be selected
and, if so, aborts the read.

The function has three parameters: the address of the device; the number of bytes to read,
numberBytes; and a pointer to a buffer, message, capable of holding the data read.

The function returns the status of the read:

Value Description
RS_success read was successful
RS_selectFailed slave device could not be selected

Notes
The IO_SYSTEM resource must be requested before calling this function.

See Also
ioBusWriteMessage, ioBusStart, ioBusStop, ioBusReadByte ioBusReadLastByte,
ioBusSelectForRead ioBusSelectForWrite, ioBusWriteByte, ioBusWriteMessage

Example
#include <ctools.h>
void main(void)
{
 unsigned char message[10];
 unsigned char ioBusAddress = 114;
 READSTATUS status;
 request_resource(IO_SYSTEM);

 /* Read a 10 byte message from I2C device */
 status = ioBusReadMessage(ioBusAddress, 10,
 message);
 release_resource(IO_SYSTEM);

 if (status != RS_success)
 {
 fprintf(com1, "I/O error = %d\n\r", status);
 }
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

218

ioBusSelectForRead
Select I2C Slave Device for Reading

Syntax
#include <ctools.h>
unsigned ioBusSelectForRead(unsigned char address);

Description
The ioBusSelectForRead function selects an I2C slave device for reading. It writes the
slave device address with the read/write bit set to the read state. The function handles the
formatting of the address byte.

The function has one parameter, the address of the device. It returns TRUE if the write
succeeded, that is the byte was acknowledged by the slave. It returns FALSE if the write
failed, that is the byte was not acknowledged by the slave.

Notes
This function can only be used immediately after a START condition, e.g. ioBusStart.

The IO_SYSTEM resource must be requested before calling this function.

See Also
ioBusStart, ioBusStop, ioBusReadByte, ioBusReadLastByte, ioBusReadMessage,
ioBusSelectForWrite, ioBusWriteByte, ioBusWriteMessage

Example
See example for ioBusReadByte.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

219

ioBusSelectForWrite
Select I2C Slave Device for Writing

Syntax
#include <ctools.h>
unsigned ioBusSelectForWrite(unsigned char address);

Description
The ioBusSelectForWrite function selects an I2C slave device for writing. It writes the slave
device address with the read/write bit set to the write state. The function handles the
formatting of the address byte.

The function has one parameter, the address of the device. It returns TRUE if the write
succeeded, that is the byte was acknowledged by the slave. It returns FALSE if the write
failed, that is the byte was not acknowledged by the slave.

Notes
This function can only be used immediately after a START condition, e.g. ioBusStart.

The IO_SYSTEM resource must be requested before calling this function.

See Also
ioBusStart, ioBusStop, ioBusReadByte, ioBusReadLastByte, ioBusReadMessage,
ioBusSelectForRead, ioBusWriteByte, ioBusWriteMessage

Example
See example for ioBusWriteByte.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

220

ioBusStart
Issue an I2C Bus START Condition

Syntax
#include <ctools.h>
void ioBusStart(void);

Description
The ioBusStart function issues an I2C bus START condition.

Notes
The IO_SYSTEM resource must be requested before calling this function.

See Also
ioBusStop, ioBusReadByte, ioBusReadLastByte, ioBusReadMessage,
ioBusSelectForRead ioBusSelectForWrite, ioBusWriteByte, ioBusWriteMessage

Example
See example for ioBusReadByte.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

221

ioBusStop
Issue an I2C Bus STOP Condition

Syntax
#include <ctools.h>
void ioBusStop(void);

Description
The ioBusStop function issues an I2C bus STOP condition.

Notes
The IO_SYSTEM resource must be requested before calling this function.

See Also
ioBusStart, ioBusReadByte, ioBusReadLastByte, ioBusReadMessage,
ioBusSelectForRead ioBusSelectForWrite, ioBusWriteByte, ioBusWriteMessage

Example
See example for ioBusReadByte.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

222

ioBusWriteByte
Write One Byte to I2C Slave Device

Syntax
#include <ctools.h>
unsigned ioBusWriteByte(unsigned char byte);

Description
The ioBusWriteByte function writes one byte to an I2C slave device and returns the
acknowledge signal from the slave. It returns TRUE if the write succeeded, that is the byte
was acknowledged by the slave. It returns FALSE if the write failed, that is the byte was not
acknowledged by the slave.

This function can be used multiple times in sequence to write data to a device.

Notes
ioBusWriteByte can be used to write the address selection byte at the start of an I2C
message; however, the ioBusSelectForRead and ioBusSelectForWrite functions provide
a more convenient interface for doing this.

The IO_SYSTEM resource must be requested before calling this function.

See Also
ioBusStart, ioBusStop, ioBusReadByte, ioBusReadLastByte, ioBusReadMessage,
ioBusSelectForRead ioBusSelectForWrite, ioBusWriteMessage

Example
#include <ctools.h>

void main(void)
{
 unsigned char data[2];
 unsigned char ioBusAddress = 114;

 request_resource(IO_SYSTEM);

 ioBusStart();
 if (ioBusSelectForWrite(ioBusAddress))
 {
 ioBusWriteByte(data[0]);
 ioBusWriteByte(data[1]);
 }
 ioBusStop();

 release_resource(IO_SYSTEM);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

223

ioBusWriteMessage
Write Message to I2C Slave Device

Syntax
#include <ctools.h>
WRITESTATUS ioBusWriteMessage(unsigned address, unsigned numberBytes,

unsigned char *message);

Description
The ioBusWriteMessage function writes a specified number of bytes to an I2C slave device.

The function issues the START condition, selects the device for writing, writes the specified
number of bytes, and issues a STOP condition. If the slave fails to acknowledge the
selection or any data written to it, the write is aborted immediately.

The function has three parameters: the address of the device; the number of bytes to write,
numberBytes; and a pointer to the buffer, message, containing the data.

The function returns the status of the write:

Value Description
WS_success write was successful
WS_selectFailed slave could not be selected
WS_noAcknowledge slave failed to acknowledge data

Notes
The IO_SYSTEM resource must be requested before calling this function.

See Also
ioBusStart, ioBusStop, ioBusReadByte, ioBusReadLastByte, ioBusReadMessage,
ioBusSelectForRead ioBusSelectForWrite, ioBusWriteByte

Example
#include <ctools.h>

void main(void)
{
 unsigned char message[10];
 unsigned char ioBusAddress = 114;
 WRITESTATUS status;

 request_resource(IO_SYSTEM);

 /* Write a 10 byte message to I2C device */
 status = ioBusWriteMessage(ioBusAddress, 10,
 message);

 release_resource(IO_SYSTEM);

 if (status != WS_success)
 {
 fprintf(com1, "I/O error = %d\n\r", status);
 }
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

224

ioClear
Turn Off all Outputs

Syntax
#include <ctools.h>
void io_clear(void)

Description
The ioClear function turns off all outputs as follows.

• analog outputs are set to 0;

• digital outputs are turned set to 0 (turned off).

Also, all delayed digital I/O actions started by the pulse, pulse_train and timeout functions
are always canceled.

Notes
The IO_SYSTEM resource must be requested before calling this function.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

225

ioDatabaseReset
Initialize I/O Database with Default Values

Syntax
#include <ctools.h>
void ioDatabaseReset(void);

Description
The ioDatabaseReset function resets the target controller to default settings.

• Configuration parameters are reset to default values.
• All other registers are set to zero.
• All forcing is removed.
• Locked variables are unlocked.
• Set all database locations to zero
• Clear real time clock alarm settings
• Clear serial port event counters
• Clear store and forward configuration
• Enable LED power by default and return to default state after 5 minutes
• Set Outputs on Stop settings to Hold
• Set 5904 HART modem configuration for all modems
• Set Modbus/TCP default configuration
• Write new default data to Flash

Notes
This function can be used to restore the controller to its default state. ioDatabaseReset has
the same effect as selecting the Initialize Controller option from the Initialize command in
the ISaGRAF program.

The IO_SYSTEM resource must be requested before calling this function.

Example
#include <ctools.h>

void main(void)
{
 /* Power Up Initialization */
 request_resource(IO_SYSTEM);
 ioDatabaseReset();
 release_resource(IO_SYSTEM);

 /* ... the rest of the program */
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

226

ioRefresh
Update Outputs with Internal Data

Syntax
#include <ctools.h>
void ioRefresh(void);

Description
The ioRefresh function resets devices on the 5000 series I/O bus. Input channels are
scanned to update their values from the I/O hardware. Output channels are scanned to write
their values from output tables in memory.

Notes
This function is normally only used by the sleep function to restore output states when the
controller wakes.

The IO_SYSTEM resource must be requested before calling this function.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

227

ioReset
Reset 5000 Series I/O Modules

Syntax
#include <ctools.h>
void ioReset(unsigned state)

Description
The ioReset function sets the state of the 5000 Series I/O bus reset signal. state may be
TRUE or FALSE.

The reset signal restarts all devices on the 5000 Series I/O bus. Output modules clear all
their output points. Input modules restart their input scanning. All modules remain in the
reset state until the reset signal is set to FALSE.

Notes
Do not leave the reset signal in the TRUE state. This will disable I/O.

The ioClear function provides a more effective method of resetting the I/O system.

The IO_SYSTEM resource must be requested before calling this function.

See Also
ioRefresh, ioClear

ISaGRAF C Tools User and Reference Manual
May 8, 2007

228

isaRead16Din
Read 16 Digital Inputs

Syntax
#include <ctools.h>
unsigned isaRead16Din(unsigned moduleAddress, unsigned *data)

Description
The isaRead16Din function reads any 16-point Digital Input Module at the specified
moduleAddress. Data is read from all 16 digital inputs and copied to the 16-bit value pointed
to by data.

The function returns FALSE if the moduleAddress is invalid or if an I/O error occurs;
otherwise TRUE is returned. The valid range for moduleAddress is 0 to 15.

The IO_SYSTEM resource must be requested before calling this function.

See Also
isaRead8Din

Example
This program displays the values of the 16 digital inputs read from a 16 point Digital Input
Module at module address 0.
#include <ctools.h>

void main(void)
{
 unsigned point;
 unsigned dinData;

 /* Read data from digital input module */
 request_resource(IO_SYSTEM);
 isaRead16Din(0, &dinData);
 release_resource(IO_SYSTEM);

 /* Print module data */
 fprintf(com1, "Point Value");
 for (point = 0; point < 16; point++)
 {
 fprintf(com1, "\n\r%d ", point);
 putchar(dinData & 0x0001 ? '1' :'0');
 dinData >>= 1;
 }
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

229

isaRead32Din
Read 32 Digital Inputs

Syntax
#include <ctools.h>
unsigned isaRead32Din(
 UINT16 moduleAddress,
 UINT32 *data)

Description
The isaRead32Din function reads any 32 point Digital Input Module at the specified
moduleAddress. Data is read from all 32 digital inputs and copied to the 32-bit value
pointed to by data.

The function returns FALSE if the moduleAddress is invalid or if an I/O error occurs;
otherwise TRUE is returned. The valid range for moduleAddress is 0 to 15.

The IO_SYSTEM resource must be requested before calling this function.

See Also
isaRead8Din, isaRead16Din

Example
This program displays the values of the 32 digital inputs read from a 32 point Digital Input
Module at module address 0.
#include <ctools.h>

void main(void)
{
 UINT16 point;
 UINT32 dinData;

 /* Read data from digital input module */
 request_resource(IO_SYSTEM);
 isaRead32Din(0, &dinData);
 release_resource(IO_SYSTEM);

 /* Print module data */
 fprintf(com1, "Point Value");
 for (point = 0; point < 32; point++)
 {
 fprintf(com1, "\n\r%d ", point);
 putchar(dinData & 0x0001 ? '1' :'0');
 dinData >>= 1;
 }
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

230

isaRead4Ain
Read 4 Analog Inputs

Syntax
#include <ctools.h>
unsigned isaRead4Ain(unsigned moduleAddress, int *dataArray)

Description
The isaRead4Ain function reads any 4 point Analog Input Module at the specified
moduleAddress. Data is read from all 4 analog inputs and copied to the array pointed to by
dataArray. dataArray must point to an array of four 16-bit integers.

The function returns FALSE if the moduleAddress is invalid or if an I/O error occurs;
otherwise TRUE is returned. The valid range for moduleAddress is 0 to 15.

The IO_SYSTEM resource must be requested before calling this function.

See Also
isaRead8Ain

Example
This program displays the values of the 4 analog inputs read from a 4 point Analog Input
Module at module address 0.
#include <ctools.h>

void main(void)
{
 unsigned point;
 int dataArray[4];

 /* Read data from analog input module */
 request_resource(IO_SYSTEM);
 isaRead4Ain(0, dataArray);
 release_resource(IO_SYSTEM);

 /* Print module data */
 fprintf(com1, "Point Value\n\r");
 for (point = 0; point < 4; point++)
 {
 fprintf(com1, "%d %d\n\r", point, dataArray[point]);
 }
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

231

isaRead4Counter
Read 4 Counter Inputs

Syntax
#include <ctools.h>
unsigned isaRead4Counter(unsigned moduleAddress, unsigned long *dataArray)

Description
The isaRead4Counter function reads any 4 point Counter Input Module at the specified
moduleAddress. Data is read from all 4 counter inputs and copied to the array pointed to by
dataArray. dataArray must point to an array of four 32-bit integers.

The maximum count is 4,294,967,295. Counters roll back to 0 when the maximum count is
exceeded.

The function returns FALSE if the moduleAddress is invalid or if an I/O error occurs;
otherwise TRUE is returned. The valid range for moduleAddress is 0 to 15.

The IO_SYSTEM resource must be requested before calling this function.

Example
This program displays the values of the 4 counter inputs read from a 4 point Counter Input
Module at module address 0.
#include <ctools.h>

void main(void)
{
 unsigned point;
 unsigned long dataArray[4];

 /* Read data from counter input module */
 request_resource(IO_SYSTEM);
 isaRead4Counter(0, dataArray);
 release_resource(IO_SYSTEM);

 /* Print counter data */
 fprintf(com1, "Point Value\n\r");
 for (point = 0; point < 4; point++)
 {
 fprintf(com1, "%d %lu\n\r", point,
 dataArray[point]);
 }
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

232

isaRead4202Inputs
Read SCADASense 4202 DR Inputs

Syntax
#include <ctools.h>
unsigned isaRead4202Inputs(
 unsigned * dinData,
 int * ainData,
 unsigned long * counterDataArray
)

Description
The isaRead4202Inputs function reads the digital, counter, and analog inputs from the
SCADASense 4202 DR I/O. Data is read from the digital input and copied to the 16-bit value
pointed to by dinData. Data is read from the analog input and copied to the value pointed
to by ainData. Data is read from 2 counter inputs and copied to the array pointed to by
counterDataArray.

dinData must point to a 16-bit unsigned integer.

ainData must point to a 16-bit integer.

couterDataArray must point to an array of two 32-bit unsigned integers.

The function returns FALSE if an I/O error occurs; otherwise TRUE is returned.

Notes
When this function reads data from the transmitter, it also processes the receiver buffer for
the com3 serial port. The com3 serial port is also continuously processed automatically. The
additional service to the com3 receiver caused by this function does not affect the normal
automatic operation of com3.

The IO_SYSTEM resource must be requested before calling this function.

See Also
isaWrite4202Outputs

Example
This program displays the values of the 1 digital input, 2 counter inputs and 1 analog input
read from SCADASense 4202 DR I/O.
#include <ctools.h>

void main(void)
{
 unsigned point;
 unsigned dinData;
 int ainData;
 unsigned long counterData[2];

 /* Read input data from 4202 DR I/O */
 request_resource(IO_SYSTEM);
 isaRead4202Inputs (&dinData, &ainData, counterData);

ISaGRAF C Tools User and Reference Manual
May 8, 2007

233

 release_resource(IO_SYSTEM);

 /* Print digital input data */
 fprintf(com1, "Din Point Value\n\r");
 fprintf(com1, "\n\r%d ", 0);
 putchar(dinData & 0x0001 ? '1' :'0');
 }

 /* Print analog input data */
 fprintf(com1, "\r\nAin Point Value\n\r");
 fprintf(com1, "%d %d\n\r", 0, ainData);

 /* Print counter input data */
 fprintf(com1, "\r\nAin Point Value\n\r");
 for (point = 0; point < 2; point++)
 {
 fprintf(com1, "%d %d\n\r", point,
 counterData[point]);
 }
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

234

isaRead4202DSInputs
Read SCADASense 4202 DS Inputs

Syntax
#include <ctools.h>
unsigned isaRead4202DSInputs(
 unsigned * dinData,
 int * ainData,
 unsigned long * counterDataArray
)

Description
The isaRead4202DSInputs function reads the digital, counter, and analog inputs from the
SCADASense 4202 DS I/O. Data is read from the digital input and copied to the 16-bit value
pointed to by dinData. Data is read from 3 analog inputs and copied to the value pointed to
by ainData. Data is read from 2 counter inputs and copied to the array pointed to by
counterDataArray.

dinData must point to a 16-bit unsigned integer.

ainData must point to an array of three 16-bit integers.

couterDataArray must point to an array of two 32-bit unsigned integers.

The function returns FALSE if an I/O error occurs; otherwise TRUE is returned.

Notes
When this function reads data from the SCADASense 4202 DS I/O it also processes the
receiver buffer for the com3 serial port. The com3 serial port is also continuously processed
automatically. The additional service to the com3 receiver caused by this function does not
affect the normal automatic operation of com3.

The IO_SYSTEM resource must be requested before calling this function.

See Also
isaWrite4202DSOutputs

Example
This program displays the values of the digital input, 2 counter inputs and 3 analog input
read from the SCADASense 4202 DS I/O.
#include <ctools.h>

void main(void)
{
 unsigned point;
 unsigned dinData;
 int ainData;
 unsigned long counterData[2];

 /* Read input data from 4202 DS I/O */
 request_resource(IO_SYSTEM);
 isaRead4202DSInputs (&dinData, &ainData, counterData);

ISaGRAF C Tools User and Reference Manual
May 8, 2007

235

 release_resource(IO_SYSTEM);

 /* Print digital input data */
 fprintf(com1, "Din Point Value\n\r");
 fprintf(com1, "\n\r%d ", 0);
 putchar(dinData & 0x0001 ? '1' :'0');
 }

 /* Print analog input data */
 fprintf(com1, "\r\nAin Point Value\n\r");
 fprintf(com1, "%d %d\n\r", 0, ainData[0]);
 fprintf(com1, "%d %d\n\r", 1, ainData[1]);
 fprintf(com1, "%d %d\n\r", 2, ainData[2]);

 /* Print counter input data */
 fprintf(com1, "\r\nAin Point Value\n\r");
 for (point = 0; point < 2; point++)
 {
 fprintf(com1, "%d %d\n\r", point,
 counterData[point]);
 }
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

236

isaRead5505Inputs
Read 5505 Inputs

Syntax
#include <ctools.h>
unsigned isaRead5505Inputs(
 UINT16 moduleAddress,

UINT16 *dinData,
float *ainDataArray,
)

Description
The isaRead5505Inputs function reads the digital and analog inputs from the specified
5505 I/O module. Data is read from all 16 digital inputs and copied to the variable pointed to
by dinData. Data is read from all 4 analog inputs and copied to the array pointed to by
ainDataArray.

moduleAddress is the address of the 5505 module. Valid values are 0 to 15.

dinData must point to a 16-bit unsigned integer. Each of the 16 bits in the integer
represents one input point.

There are 16 digital input points on the module. The function of these inputs is described in
the table below.

Point
Offset

Function

0 OFF = channel 0 RTD is good
ON = channel 0 RTD is open or PWR input is off

1 OFF = channel 0 data in range
ON = channel 0 data is out of range

2 OFF = channel 0 RTD is using 3-wire measurement
ON = channel 0 RTD is using 4-wire measurement

3 reserved for future use

4 OFF = channel 1 RTD is good
ON = channel 1 RTD is open or PWR input is off

5 OFF = channel 1 data in range
ON = channel 1 data is out of range

6 OFF = channel 1 RTD is using 3-wire measurement
ON = channel 1 RTD is using 4-wire measurement

7 reserved for future use

8 OFF = channel 2 RTD is good
ON = channel 2 RTD is open or PWR input is off

9 OFF = channel 2 data in range
ON = channel 2 data is out of range

10 OFF = channel 2 RTD is using 3-wire measurement
ON = channel 2 RTD is using 4-wire measurement

11 reserved for future use

12 OFF = channel 3 RTD is good
ON = channel 3 RTD is open or PWR input is off

ISaGRAF C Tools User and Reference Manual
May 8, 2007

237

13 OFF = channel 3 data in range
ON = channel 3 data is out of range

14 OFF = channel 3 RTD is using 3-wire measurement
ON = channel 3 RTD is using 4-wire measurement

15 reserved for future use

ainDataArray must point to an array of four floating point values.

The function returns FALSE if an I/O error occurs; otherwise, TRUE is returned.

Notes
The IO_SYSTEM resource must be requested before calling this function.

See Also
isaWrite5505Outputs

Example
This program displays the values of the 16 digital inputs and 4 analog inputs read from 5505
I/O module 3.
#include <ctools.h>

void main(void)
{
 UINT16 point;
 UINT16 dinData;
 float ainDataArray[4];
 /* Read input data from 5505 I/O module */
 request_resource(IO_SYSTEM);
 isaRead5505Inputs(3, dinData, ainDataArray);
 release_resource(IO_SYSTEM);
 /* Print digital input data */
 fprintf(com1, "Din Point Value\n\r");
 for (point = 0; point < 15; point++)
 {
 fprintf(com1, "\n\r%d ", point);

 /* if the point is on */
 if ((dinData & (1 << point)) != 0)
 {
 putchar('1');
 }
 else
 {
 putchar('0');

}
 }
 /* Print analog input data */
 fprintf(com1, "\r\nAin Point Value\n\r");
 for (point = 0; point < 4; point++)
 {
 fprintf(com1, "%d %f\n\r", point,
 ainDataArray[point]);
 }

ISaGRAF C Tools User and Reference Manual
May 8, 2007

238

}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

239

isaRead5506Inputs
Read 5506 Inputs

Syntax
#include <ctools.h>
unsigned isaRead5506Inputs(
 UINT16 moduleAddress,

UCHAR *dinData,
INT16 *ainDataArray,
)

Description
The isaRead5506Inputs function reads the digital and analog inputs from the specified
5506 I/O module. Data is read from all 8 digital inputs and copied to the variable pointed to
by dinData. Data is read from all 8 analog inputs and copied to the array pointed to by
ainDataArray.

moduleAddress is the address of the 5506 module. Valid values are 0 to 15.

dinData must point to an 8-bit unsigned character. Each of the 8 bits in the character
represents one input point.

ainDataArray must point to an array of eight 16-bit integers.

The function returns FALSE if an I/O error occurs; otherwise, TRUE is returned.

Notes
The IO_SYSTEM resource must be requested before calling this function.

See Also
isaWrite5506Outputs

Example
This program displays the values of the 8 digital inputs and 8 analog inputs read from 5506
I/O module 3.
#include <ctools.h>

void main(void)
{
 UINT16 point;
 UCHAR dinData;
 INT16 ainDataArray[8];

 /* Read input data from 5506 I/O module */
 request_resource(IO_SYSTEM);
 isaRead5506Inputs(3, dinData, ainDataArray);
 release_resource(IO_SYSTEM);

 /* Print digital input data */
 fprintf(com1, "Din Point Value\n\r");
 for (point = 0; point < 7; point++)
 {

ISaGRAF C Tools User and Reference Manual
May 8, 2007

240

 fprintf(com1, "\n\r%d ", point);

 /* if the point is on */
 if ((dinData & (1 << point)) != 0)
 {
 putchar('1');
 }
 else
 {
 putchar('0');

}
 }

 /* Print analog input data */
 fprintf(com1, "\r\nAin Point Value\n\r");
 for (point = 0; point < 8; point++)
 {
 fprintf(com1, "%d %d\n\r", point,
 ainDataArray[point]);
 }
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

241

isaRead5601Inputs
Read SCADAPack Lower I/O Module Inputs

Syntax
#include <ctools.h>
unsigned isaRead5601Inputs(unsigned *dinData, int *ainDataArray)

Description
The isaRead5601Inputs function reads the digital and analog inputs from a 5601 I/O
Module (SCADAPack lower I/O module). Data is read from all 16 digital inputs and copied to
the 16-bit value pointed to by dinData. Data is read from all 8 analog inputs and copied to
the array pointed to by ainDataArray.

dinData must point to a 16-bit integer. ainDataArray must point to an array of eight 16-bit
integers.

The function returns FALSE if an I/O error occurs; otherwise TRUE is returned.

Notes
Note that when this function reads data from the 5601 it also processes the receiver buffer
for the com3 serial port. If the controller type is a SCADAPack or SCADAPack PLUS, the
com3 serial port is also continuously processed automatically.

The additional service to the com3 receiver caused by this function does not affect the
normal automatic operation of com3.

The IO_SYSTEM resource must be requested before calling this function.

See Also
isaWrite5601Outputs

Example
This program displays the values of the 16 digital inputs and 8 analog inputs read from a
5601 I/O Module.
#include <ctools.h>

void main(void)
{
 unsigned point;
 unsigned dinData;
 int ainDataArray[8];

 /* Read input data from 5601 module */
 request_resource(IO_SYSTEM);
 isaRead5601Inputs(&dinData, ainDataArray);
 release_resource(IO_SYSTEM);

 /* Print digital input data */
 fprintf(com1, "Din Point Value\n\r");
 for (point = 0; point < 16; point++)
 {
 fprintf(com1, "\n\r%d ", point);
 putchar(dinData & 0x0001 ? '1' :'0');
 dinData >>= 1;

ISaGRAF C Tools User and Reference Manual
May 8, 2007

242

 }

 /* Print analog input data */
 fprintf(com1, "\r\nAin Point Value\n\r");
 for (point = 0; point < 8; point++)
 {
 fprintf(com1, "%d %d\n\r", point, ainDataArray[point]);
 }
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

243

isaRead5602Inputs
Read SCADAPack Upper I/O Module Inputs

Syntax
#include <ctools.h>
unsigned isaRead5602Inputs(unsigned char *dinData, int *ainDataArray)

Description
The isaRead5602Inputs function reads the inputs from a 5602 I/O Module (SCADAPack
Upper I/O module) as digital or analog inputs. Data is read from all 5 analog inputs and
copied to the array pointed to by ainDataArray. The same 5 analog inputs are also read as 5
digital inputs and copied to the 8-bit value pointed to by dinData.

A digital input is ON if the corresponding filtered analog input value is greater than or equal
to 20% of its full-scale value, otherwise it is OFF. Analog inputs 0 to 4 correspond to digital
inputs 0 to 4.

dinData must point to an 8-bit value. ainDataArray must point to an array of five 16-bit
integers.

The function returns FALSE if an I/O error occurs; otherwise TRUE is returned.

Notes
Note that when this function reads data from the 5602 it also processes the receiver buffer
for the com4 serial port. If the controller type is a SCADAPack LIGHT or SCADAPack PLUS,
the com4 serial port is also continuously processed automatically.

The additional service to the com4 receiver caused by this function does not affect the
normal automatic operation of com4.

The IO_SYSTEM resource must be requested before calling this function.

See Also
isaWrite5602Outputs

Example
This program displays the values of the 5 inputs read from a 5602 I/O Module as both digital
and analog inputs.
#include <ctools.h>

void main(void)
{
 unsigned point;
 unsigned char dinData;
 int ainDataArray[5];

 /* Read input data from 5601 module */
 request_resource(IO_SYSTEM);
 isaRead5602Inputs(&dinData, ainDataArray);
 release_resource(IO_SYSTEM);

 /* Print digital input data */
 fprintf(com1, "Din Point Value\n\r");
 for (point = 0; point < 5; point++)

ISaGRAF C Tools User and Reference Manual
May 8, 2007

244

 {
 fprintf(com1, "\n\r%d ", point);
 putchar(dinData & 0x01 ? '1' :'0');
 dinData >>= 1;
 }

 /* Print analog input data */
 fprintf(com1, "\r\nAin Point Value\n\r");
 for (point = 0; point < 5; point++)
 {
 fprintf(com1, "%d %d\n\r", point, ainDataArray[point]);
 }
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

245

isaRead5604Inputs
Read 5604 Inputs

Syntax
#include <ctools.h>
unsigned isaRead5604Inputs(

UCHAR *dinData,
INT16 *ainDataArray)

Description
The isaRead5604Inputs function reads the digital and analog inputs from 5604 I/O
module. Data is read from all 35 digital inputs and copied to the array pointed to by
dinData. Data is read from all 10 analog inputs and copied to the array pointed to by
ainDataArray.

dinData must point to an array of five 8-bit unsigned characters. Each bit in the array
represents one input point.

ainDataArray must point to an array of ten 16-bit integers.

The function returns FALSE if an I/O error occurs; otherwise, TRUE is returned.

Notes
When this function reads data from the 5604 I/O module it also processes the receiver buffer
for the com3 serial port. The com3 serial port is also continuously processed automatically.
The additional service to the com3 receiver caused by this function does not affect the
normal automatic operation of com3.

The IO_SYSTEM resource must be requested before calling this function.

See Also
isaWrite5604Outputs

Example
This program displays the values of the 35 digital inputs and 10 analog inputs read from the
5604 I/O.
#include <ctools.h>

void main(void)
{
 UINT16 point;
 UCHAR dinData[5];
 INT16 ainDataArray[10];

 /* Read input data from 5604 I/O */
 request_resource(IO_SYSTEM);
 isaRead5604Inputs(dinData, ainDataArray);
 release_resource(IO_SYSTEM);

 /* Print digital input data */
 fprintf(com1, "Din Point Value\n\r");

ISaGRAF C Tools User and Reference Manual
May 8, 2007

246

 for (point = 0; point < 35; point++)
 {
 fprintf(com1, "\n\r%d ", point);

 /* if the point is on */
 if (dinData[point/8] & (1 << (point % 8)) != 0)
 {
 putchar('1');
 }
 else
 {
 putchar('0');

}
 }

 /* Print analog input data */
 fprintf(com1, "\r\nAin Point Value\n\r");
 for (point = 0; point < 10; point++)
 {
 fprintf(com1, "%d %d\n\r", point,
 ainDataArray[point]);
 }
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

247

isaRead5606Inputs
Read 5606 Inputs

Syntax
#include <ctools.h>
unsigned isaRead5606Inputs(
 UINT16 moduleAddress,

UCHAR *dinDataArray,
INT16 *ainDataArray,
)

Description
The isaRead5606Inputs function reads the digital and analog inputs from the specified
5606 I/O module. Data is read from all 40 digital inputs and copied to the array pointed to by
dinDataArray. Data is read from all 8 analog inputs and copied to the array pointed to by
ainDataArray.

moduleAddress is the address of the 5606 module. Valid values are 0 to 7.

dinDataArray must point to an array of five 8-bit unsigned characters. Each bit in the
array represents one input point.

ainDataArray must point to an array of eight 16-bit integers.

The function returns FALSE if an I/O error occurs; otherwise, TRUE is returned.

Notes
The IO_SYSTEM resource must be requested before calling this function.

See Also
isaWrite5606Outputs

Example
This program displays the values of the 40 digital inputs and 8 analog inputs read from 5606
I/O module 3.
#include <ctools.h>

void main(void)
{
 UINT16 point;
 UCHAR dinData[5];
 INT16 ainDataArray[8];

 /* Read input data from 5606 I/O module */
 request_resource(IO_SYSTEM);
 isaRead5606Inputs(3, dinData, ainDataArray);
 release_resource(IO_SYSTEM);

 /* Print digital input data */
 fprintf(com1, "Din Point Value\n\r");
 for (point = 0; point < 40; point++)
 {

ISaGRAF C Tools User and Reference Manual
May 8, 2007

248

 fprintf(com1, "\n\r%d ", point);

 /* if the point is on */
 if ((dinData[point/8] & (1 << (point % 8))) != 0)
 {
 putchar('1');
 }
 else
 {
 putchar('0');

}
 }

 /* Print analog input data */
 fprintf(com1, "\r\nAin Point Value\n\r");
 for (point = 0; point < 8; point++)
 {
 fprintf(com1, "%d %d\n\r", point,
 ainDataArray[point]);
 }
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

249

isaRead8Ain
Read 8 Analog Inputs

Syntax
#include <ctools.h>
unsigned isaRead8Ain(unsigned moduleAddress, int *dataArray)

Description
The isaRead8Ain function reads any 8 point Analog Input Module at the specified
moduleAddress. Data is read from all 8 analog inputs and copied to the array pointed to by
dataArray. dataArray must point to an array of eight 16-bit integers.

The function returns FALSE if the moduleAddress is invalid or if an I/O error occurs;
otherwise TRUE is returned. The valid range for moduleAddress is 0 to 15.

The IO_SYSTEM resource must be requested before calling this function.

See Also
isaRead4Ain

Example
This program displays the values of the 8 analog inputs read from an 8 point Analog Input
Module at module address 0.
#include <ctools.h>

void main(void)
{
 unsigned point;
 int dataArray[8];

 /* Read data from analog input module */
 request_resource(IO_SYSTEM);
 isaRead8Ain(0, dataArray);
 release_resource(IO_SYSTEM);

 /* Print module data */
 fprintf(com1, "Point Value\n\r");
 for (point = 0; point < 8; point++)
 {
 fprintf(com1, "%d %d\n\r", point, dataArray[point]);
 }
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

250

isaRead8Din
Read 8 Digital Inputs

Syntax
#include <ctools.h>
unsigned isaRead8Din(unsigned moduleAddress, unsigned char *data)

Description
The isaRead8Din function reads any 8 point Digital Input Module at the specified
moduleAddress. Data is read from all 8 digital inputs and copied to the 8-bit value pointed to
by data.

The function returns FALSE if the moduleAddress is invalid or if an I/O error occurs;
otherwise TRUE is returned. The valid range for moduleAddress is 0 to 15.

The IO_SYSTEM resource must be requested before calling this function.

See Also
isaRead16Din

Example
This program displays the values of the 8 digital inputs read from an 8 point Digital Input
Module at module address 0.
#include <ctools.h>

void main(void)
{
 unsigned point;
 unsigned char dinData;

 /* Read data from digital input module */
 request_resource(IO_SYSTEM);
 isaRead8Din(0, &dinData);
 release_resource(IO_SYSTEM);

 /* Print module data */
 fprintf(com1, "Point Value");
 for (point = 0; point < 8; point++)
 {
 fprintf(com1, "\n\r%d ", point);
 putchar(dinData & 0x01 ? '1' :'0');
 dinData >>= 1;
 }
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

251

isaReadLPInputs
Read SCADAPack LP Inputs

Syntax
#include <ctools.h>
unsigned isaReadLPInputs(unsigned *dinData, int *ainDataArray)

Description
The isaReadLPInputs function reads the digital and analog inputs from SCADAPack LP
I/O. Data is read from all 16 digital inputs and copied to the 16-bit value pointed to by
dinData. Data is read from all 8 analog inputs and copied to the array pointed to by
ainDataArray.

dinData must point to a 16-bit integer. ainDataArray must point to an array of eight 16-
bit integers.

The function returns FALSE if an I/O error occurs; otherwise TRUE is returned.

Notes
When this function reads data from the SCADAPack LP I/O it also processes the receiver
buffer for the com3 serial port. The com3 serial port is also continuously processed
automatically. The additional service to the com3 receiver caused by this function does not
affect the normal automatic operation of com3.

The IO_SYSTEM resource must be requested before calling this function.

See Also
isaWriteLPOutputs

Example
This program displays the values of the 16 digital inputs and 8 analog inputs read from the
SCADAPack LP I/O.
#include <ctools.h>

void main(void)
{
 unsigned point;
 unsigned dinData;
 int ainDataArray[8];

 /* Read input data from SCADAPack LP I/O */
 request_resource(IO_SYSTEM);
 isaReadLPInputs (&dinData, ainDataArray);
 release_resource(IO_SYSTEM);

 /* Print digital input data */
 fprintf(com1, "Din Point Value\n\r");
 for (point = 0; point < 16; point++)
 {
 fprintf(com1, "\n\r%d ", point);
 putchar(dinData & 0x0001 ? '1' :'0');

ISaGRAF C Tools User and Reference Manual
May 8, 2007

252

 dinData >>= 1;
 }

 /* Print analog input data */
 fprintf(com1, "\r\nAin Point Value\n\r");
 for (point = 0; point < 8; point++)
 {
 fprintf(com1, "%d %d\n\r", point,
 ainDataArray[point]);
 }
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

253

isaReadSP100Inputs
Read SCADAPack 100 Inputs

Syntax
#include <ctools.h>
unsigned isaReadSP100Inputs(

 unsigned *dinData,
 int *ainDataArray,
 unsigned long *cinDataArray
)

Description
The isaReadSP100Inputs function reads the digital, analog, and counter inputs from
SCADAPack 100 I/O. Data is read from all 6 digital inputs and copied to the 16-bit value
pointed to by dinData. Data is read from all 6 analog inputs and copied to the array pointed
to by ainDataArray. Data is read from the counter input and copied to the array pointed to
by cinDataArray.

dinData must point to a 16-bit integer. ainDataArray must point to an array of six 16-bit
integers. cinDataArray must point to an array of one 32-bit integer.

The function returns FALSE if an I/O error occurs; otherwise TRUE is returned.

Notes
The IO_SYSTEM resource must be requested before calling this function.

The first four analog inputs are read from the external analog inputs.

The fifth and sixth analog inputs are read from the temperature sensor and the battery
voltage sensor respectively.

See Also
isaWriteSP100Outputs

Example
This program displays the values of the 6 digital inputs, 6 analog inputs, and one counter
input read from the SCADAPack 100 I/O.
#include <ctools.h>

void main(void)
{
 unsigned point;
 unsigned dinData;
 int ainDataArray[6];
 unsigned long cinData;

 /* Read input data from SCADAPack 100 I/O */
 request_resource(IO_SYSTEM);
 isaReadSP100Inputs (&dinData, ainDataArray, &cinData);
 release_resource(IO_SYSTEM);

ISaGRAF C Tools User and Reference Manual
May 8, 2007

254

 /* Print digital input data */
 for (point = 0; point < 6; point++)
 {
 if (dinData & 0x0001)
 {
 fprintf(com1, "DIN %d = 1\r\n", point);
 }
 else
 {
 fprintf(com1, "DIN %d = 0\r\n", point);
 }
 dinData >>= 1;
 }
 fprintf(com1, "\r\n");

 /* Print analog input data */
 for (point = 0; point < 6; point++)
 {
 fprintf(com1, "AIN %d = %d\n\r", point,
 ainDataArray[point]);
 }
 fprintf(com1, "\r\n");

 /* Print counter input data */
 fprintf(com1, "\r\nCounter = %ul\n\r", cinData);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

255

isaWrite16Dout
Write to 16 Digital Outputs

Syntax
#include <ctools.h>
unsigned isaWrite16Dout(unsigned moduleAddress, unsigned data)

Description
The isaWrite16Dout function writes data to any 16-point Digital Output Module at the
specified moduleAddress. Data from the specified 16-bit value is written to the 16 digital
outputs.

The function returns FALSE if the moduleAddress is invalid or if an I/O error occurs;
otherwise TRUE is returned. The valid range for moduleAddress is 0 to 15.

The IO_SYSTEM resource must be requested before calling this function.

See Also
isaWrite8Dout

Example
This program turns ON all 16 digital outputs of a 16-point Digital Output Module at module
address 0.
#include <ctools.h>

void main(void)
{
 /* Write data to digital output module */
 request_resource(IO_SYSTEM);
 isaWrite16Dout(0, 0xFFFF);
 release_resource(IO_SYSTEM);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

256

isaWrite2Aout
Write to 2 Analog Outputs

Syntax
#include <ctools.h>
unsigned isaWrite2Aout(unsigned moduleAddress, int *dataArray)

Description
The isaWrite2Aout function writes data to any 2 point Analog Output Module at the
specified moduleAddress. Data is read from the array pointed to by dataArray and written to
the 2 analog outputs. dataArray must point to an array of two 16-bit integers.

The function returns FALSE if the moduleAddress is invalid or if an I/O error occurs;
otherwise TRUE is returned. The valid range for moduleAddress is 0 to 15.

The IO_SYSTEM resource must be requested before calling this function.

See Also
isaWrite4Aout, isaWrite5303Aout

Example
This program sets both analog outputs to half scale on a 2-point Analog Output Module at
module address 0.
#include <ctools.h>

void main(void)
{
 int dataArray[2];

 dataArray[0] = 16384;
 dataArray[1] = 16384;

 /* Write data to analog output module */
 request_resource(IO_SYSTEM);
 isaWrite2Aout(0, dataArray);
 release_resource(IO_SYSTEM);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

257

isaWrite32Dout
Write to 32 Digital Outputs

Syntax
#include <ctools.h>
unsigned isaWrite32Dout(
 UINT16 moduleAddress,
 UINT32 data)

Description
The isaWrite32Dout function writes data to any 32-point Digital Output Module at the
specified moduleAddress. Data from the specified 32-bit value is written to the 32 digital
outputs.

The function returns FALSE if the moduleAddress is invalid or if an I/O error occurs;
otherwise TRUE is returned. The valid range for moduleAddress is 0 to 15.

The IO_SYSTEM resource must be requested before calling this function.

See Also
isaWrite8Dout, isaWrite16Dout

Example
This program turns ON all 32 digital outputs of a 32-point Digital Output Module at module
address 0.
#include <ctools.h>

void main(void)
{
 /* Write data to digital output module */
 request_resource(IO_SYSTEM);
 isaWrite32Dout(0, 0xFFFFFFFF);
 release_resource(IO_SYSTEM);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

258

isaWrite4Aout
Write to 4 Analog Outputs

Syntax
#include <ctools.h>
unsigned isaWrite4Aout(unsigned moduleAddress, int *dataArray)

Description
The isaWrite4Aout function writes data to any 4 point Analog Output Module at the
specified moduleAddress. Data is read from the array pointed to by dataArray and written to
the 4 analog outputs. dataArray must point to an array of four 16-bit integers.

The function returns FALSE if the moduleAddress is invalid or if an I/O error occurs;
otherwise TRUE is returned. The valid range for moduleAddress is 0 to 15.

The IO_SYSTEM resource must be requested before calling this function.

See Also
isaWrite2Aout, isaWrite5303Aout

Example
This program sets all 4 analog outputs to half scale on a 4 point Analog Output Module at
module address 0.
#include <ctools.h>

void main(void)
{
 int dataArray[4];

 dataArray[0] = 16384;
 dataArray[1] = 16384;
 dataArray[2] = 16384;
 dataArray[3] = 16384;

 /* Write data to analog output module */
 request_resource(IO_SYSTEM);
 isaWrite4Aout(0, dataArray);
 release_resource(IO_SYSTEM);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

259

isaWrite4AoutChecksum
Write to 4 Point Analog Output Module with Checksum

Syntax
#include <ctools.h>
UINT16 isaWrite4AoutChecksum(
 UINT16 moduleAddress,
 INT16 *dataArray
)

Description
The isaWrite4AoutChecksum function writes data to a 4-point analog output module with
checksum support. The function can be used with 5304 analog output modules. Use the
isaWrite4Aout function for all other analog output modules.

The function has two parameters.

• moduleAddress is the address of the module. The valid range is 0 to 15.

• dataArray must point to an array of four INT16 variables.

The function returns FALSE if the moduleAddress is invalid or if an I/O error occurs;
otherwise TRUE is returned.

Notes
The IO_SYSTEM resource must be requested before calling this function.

See Also
isaWrite2Aout, isaWrite4Aout, isaWrite5303Aout

Example
This program sets all 4 analog outputs to half scale on a 5304 Analog Output Module at
module at address 0.
#include <ctools.h>

void main(void)
{
 INT16 dataArray[4];

 /* set all output values to one-half scale */
 dataArray[0] = 16384;
 dataArray[1] = 16384;
 dataArray[2] = 16384;
 dataArray[3] = 16384;

 /* Write data to 5304 analog output module */
 request_resource(IO_SYSTEM);
 isaWrite4AoutChecksum(0, dataArray);
 release_resource(IO_SYSTEM);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

260

isaWrite4202Outputs
Write to SCADASense 4202 DR Analog Output

Syntax
#include <ctools.h>
unsigned isaWrite4202Outputs(
 int aoutData
)

Description
The isaWrite4202Outputs function writes data to the analog output of the SCADASense
4202 DR I/O.

aoutData is the analog output value.

The function returns FALSE if an I/O error occurs; otherwise TRUE is returned.

Notes
When this function writes data to the SCADASense 4202 DS I/O it also processes the
transmit buffer for the com3 serial port. The com3 serial port is also continuously processed
automatically. The additional service to the com3 receiver caused by this function does not
affect the normal automatic operation of com3.

The IO_SYSTEM resource must be requested before calling this function.

See Also
isaRead4202Inputs, isaWrite4202OutputsEx

Example
This program sets the analog output to full scale.
#include <ctools.h>

void main(void)
{
 int analogData;

 /* set analog output to full scale */
 analogData = 32767;

 /* Write output data to 4202 DR output */
 request_resource(IO_SYSTEM);
 isaWrite4202Outputs(analogData);
 release_resource(IO_SYSTEM);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

261

isaWrite4202OutputsEx
Write to SCADASense 4202 DR with Extended Outputs

Syntax
#include <ctools.h>
unsigned isaWrite4202OutputsEx(
 unsigned doutData,
 int aoutData
)

Description
The isaWrite4202OutputsEx function writes data to the outputs of a SCADASense 4202
DR equipped with a digital output (Extended I/O).

doutData is the digital output value. Bit 0 of the value controls the digital output. If this bit is
1, the digital output is turned on.

aoutData is the analog output value.

The function returns FALSE if an I/O error occurs; otherwise TRUE is returned.

Notes
When this function writes data to the SCADASense 4202 DR I/O, it also processes the
transmit buffer for the com3 serial port. The com3 serial port is also continuously processed
automatically. The additional service to the com3 receiver caused by this function does not
affect the normal automatic operation of com3.

The IO_SYSTEM resource must be requested before calling this function.

See Also
isaRead4202Inputs

Example
This program sets the analog output to full scale and turns on the digital output.
#include <ctools.h>

void main(void)
{
 unsigned digitalData;
 int analogData;

 /* turn on digital output */
 digitalData = 0x01;

 /* set analog output to full scale */
 analogData = 32767;

 /* Write output data to 4202 DR outputs */
 request_resource(IO_SYSTEM);
 isaWrite4202OutputsEx(digitalData, analogData);
 release_resource(IO_SYSTEM);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

262

isaWrite4202DSOutputs
Write to SCADASense 4202 DS Outputs

Syntax
#include <ctools.h>
unsigned isaWrite4202DSoutputs(
 unsigned doutData
)

Description
The isaWrite4202DSOutputs function writes data to the outputs of the SCADASense
4202 DS I/O.

doutData is the digital output value. Bits 0 and 1 of the value control the digital outputs. If a
bit is 1, the corresponding digital output is turned on.

The function returns FALSE if an I/O error occurs; otherwise TRUE is returned.

Notes
When this function writes data to the SCADASense 4202 DS I/O it also processes the
transmit buffer for the com3 serial port. The com3 serial port is also continuously processed
automatically. The additional service to the com3 receiver caused by this function does not
affect the normal automatic operation of com3.

The IO_SYSTEM resource must be requested before calling this function.

See Also
isaRead4202DSInputs

Example
This program turns on the digital outputs.
#include <ctools.h>

void main(void)
{
 unsigned digitalData;

 /* turn on digital outputs */
 digitalData = 0x02;

 /* Write output data to 4202 DS outputs */
 request_resource(IO_SYSTEM);
 isaWrite4202DSOutputs(digitalData);
 release_resource(IO_SYSTEM);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

263

isaWrite5303Aout
Write to 5303 Analog Outputs

Syntax
#include <ctools.h>
unsigned isaWrite5303Aout(int *dataArray)

Description
The isaWrite5303Aout function writes data to the 2 points on a 5303 SCADAPack Analog
Output Module. Data is read from the array pointed to by dataArray and written to the 2
analog outputs. dataArray must point to an array of two 16-bit integers.

The function returns FALSE if an I/O error occurs; otherwise TRUE is returned.

The IO_SYSTEM resource must be requested before calling this function.

See Also
isaWrite2Aout, isaWrite2Aout

Example
This program sets both analog outputs to half scale on a 5303 Analog Output Module.
#include <ctools.h>

void main(void)
{
 int dataArray[2];

 dataArray[0] = 16384;
 dataArray[1] = 16384;

 /* Write data to analog output module */
 request_resource(IO_SYSTEM);
 isaWrite5303Aout(dataArray);
 release_resource(IO_SYSTEM);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

264

isaWrite5505Outputs
Write 5505 Configuration

Syntax
#include <ctools.h>
unsigned isaWrite5505Outputs(
 UINT16 moduleAddress,
 UINT16 *inputType,
 UINT16 inputFilter
)

Description
The isaWrite5505Outputs function writes configuration data to the 5505 I/O module.

moduleAddress is the address of the 5505 module. Valid values are 0 to 15.

inputType must point to an array of 4 unsigned integers that select the type of analog
inputs on the module. Valid values for each integer are

• 0 = RTD in deg Celsius
• 1 = RTD in deg Fahrenheit
• 2 = RTD in deg Kelvin
• 3 = resistance measurement in ohms.

inputFilter selects the analog input filter. This is used for all inputs. Valid values are

• 0 = 0.5 s
• 1 = 1 s
• 2 = 2 s
• 3 = 4 s

The function returns FALSE if an I/O error occurs; otherwise, TRUE is returned.

Notes
The IO_SYSTEM resource must be requested before calling this function.

See Also
isaRead5505Inputs

Example
This program writes the configuration data to a 5505 I/O module at address 1.
#include <ctools.h>

void main(void)
{
 UINT16 inputType[4];
 UINT16 inputFilter;

 /* set analog input types to RTD deg F */
 inputType[0] = 1;
 inputType[1] = 1;
 inputType[2] = 1;

ISaGRAF C Tools User and Reference Manual
May 8, 2007

265

 inputType[3] = 1;

 /* set filter */
 inputFilter = 0; // mimimum filter

 /* Write configuration data to 5505 I/O module */
 request_resource(IO_SYSTEM);
 isaWrite5505Outputs(1, inputType, inputFilter);
 release_resource(IO_SYSTEM);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

266

isaWrite5506Outputs
Write to 5506 Configuration

Syntax
#include <ctools.h>
unsigned isaWrite5506Outputs(
 UINT16 moduleAddress,
 UINT16 *inputType,
 UINT16 inputFilter,
 UINT16 scanFrequency
)

Description
The isaWrite5506Outputs function writes configuration data to the 5506 I/O module.

moduleAddress is the address of the 5506 module. Valid values are 0 to 15.

inputType must point to an array of 8 unsigned integers that select the type of analog
inputs on the module. Valid values for each integer are

• 0 = 0 to 5V

• 1 = 1 to 5 V

• 2 = 0 to 20 mA

• 3 = 4 to 20 mA.

inputFilter selects the analog input filter. This is used for all inputs. Valid values are

• 0 = 3 Hz
• 1 = 6 Hz
• 2 = 11 Hz
• 3 = 30 Hz
scanFrequency is the scan frequency setting. Valid values are

• 0 = 60 Hz

• 1 = 50 Hz

The function returns FALSE if an I/O error occurs; otherwise, TRUE is returned.

Notes
The IO_SYSTEM resource must be requested before calling this function.

See Also
isaRead5506Inputs

Example
This program writes the configuration data to a 5506 I/O module.
#include <ctools.h>

void main(void)

ISaGRAF C Tools User and Reference Manual
May 8, 2007

267

{
 UINT16 inputType[8];
 UINT16 inputFilter;
 UINT16 scanFrequency;

 /* set analog input types to 4-20 mA */
 inputType[0] = 3;
 inputType[1] = 3;
 inputType[2] = 3;
 inputType[3] = 3;
 inputType[4] = 3;
 inputType[5] = 3;
 inputType[6] = 3;
 inputType[7] = 3;

 /* set filter and frequency */
 inputFilter = 0; // maximum filter
 scanFrequency = 0; // 60 Hz

 /* Write configuration data to 5506 I/O module */
 request_resource(IO_SYSTEM);
 isaWrite5506Outputs(1, inputType, inputFilter, scanFrequency);
 release_resource(IO_SYSTEM);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

268

isaWrite5601Outputs
Write to SCADAPack Lower I/O Module Outputs

Syntax
#include <ctools.h>
unsigned isaWrite5601Outputs(unsigned data)

Description
The isaWrite5601Outputs function writes data to the digital outputs of a 5601 I/O Module
(SCADAPack lower I/O module). The first 12 bits of the specified 16-bit data value are
written to the 12 digital outputs.

The function returns FALSE if an I/O error occurs; otherwise TRUE is returned.

Notes
Note that when this function writes data to the 5601 it also services the transmit buffer of the
com3 serial port. If the controller type is a SCADAPack or SCADAPack PLUS, the com3
serial port is also continuously processed automatically.

The additional service to the com3 transmitter caused by this function does not affect the
normal automatic operation of com3.

The IO_SYSTEM resource must be requested before calling this function.

See Also
isaRead5601Inputs

Example
This program turns ON all 12 digital outputs of a 5601 I/O Module.
#include <ctools.h>

void main(void)
{
 /* Write output data to 5601 I/O module */
 request_resource(IO_SYSTEM);
 isaWrite5601Outputs(0x0FFF);
 release_resource(IO_SYSTEM);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

269

isaWrite5602Outputs
Write to SCADAPack Upper I/O Module Outputs

Syntax
#include <ctools.h>
unsigned isaWrite5602Outputs(unsigned char data)

Description
The isaWrite5602Outputs function writes data to the digital outputs of a 5602 I/O Module
(SCADAPack upper I/O module). The first 2 bits of the specified 8-bit data value are written
to the 2 digital outputs.

The function returns FALSE if an I/O error occurs; otherwise TRUE is returned.

Notes
Note that when this function writes data to the 5602 it also services the transmit buffer of the
com4 serial port. If the controller type is a SCADAPack LIGHT or SCADAPack PLUS, the
com4 serial port is also continuously processed automatically.

The additional service to the com4 transmitter caused by this function does not affect the
normal automatic operation of com4.

The IO_SYSTEM resource must be requested before calling this function.

See Also
isaRead5602Inputs

Example
This program turns ON both digital outputs of a 5602 I/O Module.
#include <ctools.h>

void main(void)
{
 /* Write output data to 5602 I/O module */
 request_resource(IO_SYSTEM);
 isaWrite5602Outputs(0x03);
 release_resource(IO_SYSTEM);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

270

isaWrite5604Outputs
Write to 5604 Outputs

Syntax
#include <ctools.h>
unsigned isaWrite5604Outputs(
 UCHAR *doutData,
 INT16 *aoutData)

Description
The isaWrite5604Outputs function writes data to the digital and analog outputs of the
5604 I/O module.

doutData must point to an array of five 8-bit unsigned characters. Each bit in the array
represents one output point. The first 36 bits of the array are written to the 36 digital outputs.

aoutData must point to an array of two 16-bit integers. Analog data from this array are
written to the two analog outputs.

The function returns FALSE if an I/O error occurs; otherwise, TRUE is returned.

Notes
When this function writes data to the 5604 I/O it also processes the transmit buffer for the
com3 serial port. The com3 serial port is also continuously processed automatically. The
additional service to the com3 transmitter caused by this function does not affect the normal
automatic operation of com3.

The IO_SYSTEM resource must be requested before calling this function.

See Also
isaRead5604Inputs

Example
This program turns on all 32 digital outputs and sets the analog outputs to full scale. The
internal digital outputs are turned off.
#include <ctools.h>

void main(void)
{
 UCHAR digitalData[5];
 INT16 analogData[2];

 /* turn on all external digital outputs */
 digitalData[0] = 0xFF;
 digitalData[1] = 0xFF;
 digitalData[2] = 0xFF;
 digitalData[3] = 0xFF;

 /* turn off all internal digital outputs */
 digitalData[4] = 0x00;

 /* set analog outputs to full scale */

ISaGRAF C Tools User and Reference Manual
May 8, 2007

271

 analogData[0] = 32767;
 analogData[1] = 32767;

 /* Write output data to 5604 I/O */
 request_resource(IO_SYSTEM);
 isaWrite5604Outputs(digitalData, analogData);
 release_resource(IO_SYSTEM);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

272

isaWrite5606Outputs
Write to 5606 Outputs

Syntax
#include <ctools.h>
unsigned isaWrite5606Outputs(
 UINT16 moduleAddress,
 UCHAR *doutData,
 INT16 *aoutData,
 UINT16 *inputType,
 UINT16 inputFilter,
 UINT16 scanFrequency,
 UINT16 outputType
)

Description
The isaWrite5606Outputs function writes data to the digital and analog outputs of the
5606 I/O module, and configures the module.

moduleAddress is the address of the 5606 module. Valid values are 0 to 7.

doutData must point to an array of two 8-bit unsigned characters. Each bit in the array
represents one output point. The 16 bits of the array are written to the 16 digital outputs.

aoutData must point to an array of two 16-bit integers. Analog data from this array are
written to the two analog outputs.

inputType must point to an array of 8 unsigned integers that select the type of analog
inputs on the module. Valid values for each integer are

• 0 = 0 to 5V
• 1 = 0 to 10 V
• 2 = 0 to 20 mA
• 3 = 4 to 20 mA.

inputFilter selects the analog input filter. This is used for all inputs. Valid values are

• 0 = 3 Hz
• 1 = 6 Hz
• 2 = 11 Hz
• 3 = 30 Hz

scanFrequency is the scan frequency setting. Valid values are

• 0 = 60 Hz
• 1 = 50 Hz

outputType selects the type of analog outputs on the module. Valid values are

• 0 = 0 to 20 mA
• 1 = 4 to 20 mA.

The function returns FALSE if an I/O error occurs; otherwise, TRUE is returned.

Notes
The IO_SYSTEM resource must be requested before calling this function.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

273

See Also
isaRead5606Inputs

Example
This program turns on all 16 digital outputs and sets the analog outputs to full scale.
#include <ctools.h>

void main(void)
{
 UCHAR digitalData[2];
 INT16 analogData[2];
 UINT16 inputType[8];
 UINT16 inputFilter;
 UINT16 scanFrequency;
 UINT16 outputType;

 /* turn on all external digital outputs */
 digitalData[0] = 0xFF;
 digitalData[1] = 0xFF;

 /* set analog outputs to full scale */
 analogData[0] = 32767;
 analogData[1] = 32767;

 /* set analog input types to 4-20 mA */
 inputType[0] = 3;
 inputType[1] = 3;
 inputType[2] = 3;
 inputType[3] = 3;
 inputType[4] = 3;
 inputType[5] = 3;
 inputType[6] = 3;
 inputType[7] = 3;

 /* set filter and frequency */
 inputFilter = 0; // maximum filter
 scanFrequency = 0; // 60 Hz

 /* set analog output type to 4-20 mA */
 outputType = 1;

 /* Write output data to 5606 I/O module */
 request_resource(IO_SYSTEM);
 isaWrite5606Outputs(1, digitalData, analogData, inputType,
inputFilter, scanFrequency, outputType);
 release_resource(IO_SYSTEM);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

274

isaWrite8Dout
Write to 8 Digital Outputs

Syntax
#include <ctools.h>
unsigned isaWrite8Dout(unsigned moduleAddress, unsigned char data)

Description
The isaWrite8Dout function writes data to any 8 point Digital Output Module at the specified
moduleAddress. Data from the specified 8-bit value is written to the 8 digital outputs.

The function returns FALSE if the moduleAddress is invalid or if an I/O error occurs;
otherwise TRUE is returned. The valid range for moduleAddress is 0 to 15.

The IO_SYSTEM resource must be requested before calling this function.

See Also
isaWrite16Dout

Example
This program turns ON all 8 digital outputs of an 8 point Digital Output Module at module
address 0.
#include <ctools.h>

void main(void)
{
 /* Write data to digital output module */
 request_resource(IO_SYSTEM);
 isaWrite8Dout(0, 0xFF);
 release_resource(IO_SYSTEM);
}

isaWriteAout
Write to Analog Output Module

Syntax
#include <ctools.h>
unsigned isaWriteAout(
 UINT16 moduleAddress,
 enum ioModuleType moduleType,
 INT16 * pData)

Description
The isaWriteAout function writes data to an analog output module. The function has
three parameters.

moduleAddress is the address of the module. The valid range is 0 to 15.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

275

moduleType is the type of the module. It must be one of io5301, io5302, io5303
(SCADAPack Analog Output), or io5304.

pData is a pointer to an array of INT16 variables. The size of the array depends on the
module type.

• If moduleType is io5301 or io5303, pData must point to an array of two INT16
variables.

• If moduleType is io5302 or io5304, pData must point to an array of four INT16
variables.

The function returns FALSE if the moduleAddress is invalid or if an I/O error occurs;
otherwise TRUE is returned.

Notes
The IO_SYSTEM resource must be requested before calling this function.

See Also
isaWrite2Aout, isaWrite4Aout, isaWrite5303Aout

Example
This program sets all 4 analog outputs to half scale on a 5304 Analog Output Module at
module at address 0.
#include <ctools.h>

void main(void)
{
 INT16 dataArray[4];

 /* set all output values to one-half scale */
 dataArray[0] = 16384;
 dataArray[1] = 16384;
 dataArray[2] = 16384;
 dataArray[3] = 16384;

 /* Write data to 5304 analog output module */
 request_resource(IO_SYSTEM);
 isaWriteAout(0, io5304, dataArray);
 release_resource(IO_SYSTEM);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

276

isaWriteLPOutputs
Write to SCADAPack LP Outputs

Syntax
#include <ctools.h>
unsigned isaWriteLPOutputs(unsigned doutData, int aoutData[2])

Description
The isaWriteLPOutputs function writes data to the digital and analog outputs of the
SCADAPack LP I/O.

doutData is the digital output data. The first 12 bits of the specified 16-bit data value are
written to the 12 digital outputs.

aoutData is an array of two analog output values.

The function returns FALSE if an I/O error occurs; otherwise TRUE is returned.

Notes
When this function writes data to the SCADAPack LP I/O it also processes the transmit
buffer for the com3 serial port. The com3 serial port is also continuously processed
automatically. The additional service to the com3 receiver caused by this function does not
affect the normal automatic operation of com3.

The IO_SYSTEM resource must be requested before calling this function.

See Also
isaReadLPInputs

Example
This program turns on all 12 digital outputs and sets the analog outputs to full scale.
#include <ctools.h>

void main(void)
{
 unsigned digitalData;
 int analogData[2];

 /* turn on all digital outputs */
 digitalData = 0x0FFF;

 /* set analog outputs to full scale */
 analogData[0] = 32767;
 analogData[1] = 32767;

 /* Write output data to SCADAPack LP I/O */
 request_resource(IO_SYSTEM);
 isaWriteLPOutputs(digitalData, analogData);
 release_resource(IO_SYSTEM);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

277

isaWriteSP100Outputs
Write to SCADAPack 100 Outputs

Syntax
#include <ctools.h>
unsigned isaWriteSP100Outputs(unsigned doutData)

Description
The isaWriteSP100Outputs function writes data to the digital outputs of the SCADAPack
100 I/O.

doutData is the digital output data. The first 6 bits of the specified 16-bit data value are
written to the 6 digital outputs.

The function returns FALSE if an I/O error occurs; otherwise TRUE is returned.

Notes
The IO_SYSTEM resource must be requested before calling this function.

See Also
isaReadSP100Inputs

Example
This program turns on all 6 digital outputs.
#include <ctools.h>

void main(void)
{
 unsigned digitalData;

 /* turn on all digital outputs */
 digitalData = 0x0FFF;

 /* Write output data to SCADAPack 100 I/O */
 request_resource(IO_SYSTEM);
 isaWriteSP100Outputs(digitalData);
 release_resource(IO_SYSTEM);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

278

ledGetDefault
Read LED Power Control Parameters

Syntax
#include <ctools.h>
struct ledControl_tag ledGetDefault(void);

Description
The ledGetDefault routine returns the default LED power control parameters. The controller
controls LED power to 5000 series I/O modules. To conserve power, the LEDs can be
disabled.

The user can change the LED power setting with the LED POWER switch on the controller.
The LED power returns to its default state after a user specified time period.

Example
See the example for the ledSetDefault function.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

279

ledPower
Set LED Power State

Syntax
#include <ctools.h>
unsigned ledPower(unsigned state);

Description
The ledPower function sets the LED power state. The LED power will remain in the state
until the default time-out period expires. state must be LED_ON or LED_OFF.

The function returns TRUE if state is valid and FALSE if it is not.

Notes
The LED POWER switch also controls the LED power. A user may override the setting
made by this function.

The ledSetDefault function sets the default state of the LED power. This state overrides the
value set by this function.

See Also
ledPowerSwitch, ledSetDefault

ISaGRAF C Tools User and Reference Manual
May 8, 2007

280

ledPowerSwitch
Read State of the LED Power Switch

Syntax
#include <ctools.h>
unsigned ledPowerSwitch(void);

Description
The ledPowerSwitch function returns the status of the led power switch. The function returns
FALSE if the switch is released and TRUE if the switch is pressed.

Notes
The program for user input may use this switch. However, pressing the switch will have the
side effect of changing the LED power state.

See Also
ledPower, ledSetDefault

ISaGRAF C Tools User and Reference Manual
May 8, 2007

281

ledSetDefault
Set Default Parameters for LED Power Control

Syntax
#include <ctools.h>
unsigned ledSetDefault(struct ledControl_tag ledControl);

Description
The ledSetDefault routine sets default parameters for LED power control. The controller
controls LED power to 5000 series I/O modules. To conserve power, the LEDs can be
disabled.

The LED power setting can be changed by the user with the LED POWER switch on the
controller. The LED power returns to its default state after a user specified time period.

The ledControl structure contains the default values. Refer to the Structures and Types
section for a description of the fields in the ledControl_tag structure. Valid values for the
state field are LED_ON and LED_OFF. Valid values for the time field are 1 to 65535
minutes.

The function returns TRUE if the parameters are valid and false if they are not. If either
parameter is not valid, the default values are not changed.

The IO_SYSTEM resource must be requested before calling this function.

Example
#include <ctools.h>

void main(void)
{
 struct ledControl_tag ledControl;

 request_resource(IO_SYSTEM);

 /* Turn LEDS off after 20 minutes */
 ledControl.time = 20;
 ledControl.state = LED_OFF;
 ledSetDefault(ledControl);

 release_resource(IO_SYSTEM);

 /* ... the reset of the program */
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

282

load
Read Parameters from EEPROM

Syntax
#include <ctools.h>
void load(unsigned section);

Description
The load function reads data from the specified section of the EEPROM into RAM.. Valid
values for section are EEPROM_EVERY and EEPROM_RUN.

The save function writes data to the EEPROM.

Notes
The IO_SYSTEM resource must be requested before calling this function.

The EEPROM_EVERY section is not used.

The EEPROM_RUN section is loaded from EEPROM to RAM when the controller is reset
and the Run/Service switch is in the RUN position. Otherwise default information is used for
this section. This section contains:

• serial port configuration tables

• protocol configuration tables

See Also
save

ISaGRAF C Tools User and Reference Manual
May 8, 2007

283

master_message
Send Protocol Command

Syntax
#include <ctools.h>

extern unsigned master_message(FILE *stream, unsigned
function, unsigned slave_station, unsigned slave_address,
unsigned master_address, unsigned length);

Description
The master_message function sends a command using a communication protocol. The
communication protocol task waits for the response from the slave station. The current task
continues execution.

• stream specifies the serial port.

• function specifies the protocol function code. Refer to the communication protocol
manual for supported function codes.

• slave specifies the network address of the slave station. This is also known as the slave
station number.

• address specifies the location of data in the slave station. Depending on the protocol
function code, data may be read or written at this location.

• master_address specifies the location of data in the master (this controller). Depending
on the protocol function code, data may be read or written at this location.

• length specifies the number or registers.

e ma e command status from the protocol driver. Th ster_message function returns th

Value Description
MM_SENT message transmitted to slave
MM_BAD_FUNCTION function is not recognized
MM_BAD_SLAVE slave station number is not valid
MM_BAD_ADDRESS slave or master database address not valid
MM_BAD_LENGTH too many or too few registers specified
MM_EOT Master message status: AB slave response

was an EOT message
MM_WRONG_RSP Master message status: AB slave response

did not match command sent.
MM_CMD_ACKED Master message status: AB half duplex

command has been acknowledged by slave
– Master may now send poll command.

MM_EXCEPTION_FUNCTION Master message status: Modbus slave
returned a function exception.

MM_EXCEPTION_ADDRESS Master message status: Modbus slave
returned an address exception.

MM_EXCEPTION_VALUE Master message status: Modbus slave
returned a value exception.

MM_RECEIVED Master message status: response received.
MM_RECEIVED_BAD_LENGTH Master message status: response received

with incorrect amount of data.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

284

The calling task monitors the status of the command sent using the get_protocol_status
function. The command field of the prot_status structure is set to MM_SENT if a master
message is sent. It will be set to MM_RECEIVED when the response to the message is
received with the proper length. It will be set to MM_RECEIVED_BAD_LENGTH when a
response to the message is received with the improper length.

Notes
Refer to the communication protocol manual for more information.

Users of TeleSAFE BASIC and the TeleSAFE 6000 C compiler should note that the address
parameter now specifies the actual database address, when used with the Modbus protocol.
This parameter specified the address offset on these older TeleSAFE products.

To optimize performance, minimize the length of messages on com3 and com4. Examples
of recommended uses for com3 and com4 are for local operator display terminals, and for
programming and diagnostics using the ISaGRAF program.

The IO_SYSTEM resource must be requested before calling this function.

See Also
clear_protocol_status

Example Using Modbus Protocol
This program sends a master message, on com2, using the Modbus protocol, then waits for
a response from the slave. The number of good and failed messages is printed to com1.
/* --
 poll.c
 Polling program for Modbus slave.
 -- */

#include <ctools.h>

/* --
 wait_for_response

 The wait_for_response function waits for a
 response to be received to a master_message on
 the serial port specified by stream. It returns
 when a response is received, or when the period
 specified by time (in tenths of a second)
 expires.
 -- */

void wait_for_response(FILE *stream, unsigned time)
{
 struct prot_status status;
 static unsigned long good, bad;

 interval(0, 1);
 settimer(0, time);
 do {
 /* Allow other tasks to execute */
 release_processor();

 status = get_protocol_status(stream);
 }
 while (timer(0) && status.command == MM_SENT);

ISaGRAF C Tools User and Reference Manual
May 8, 2007

285

 if (status.command == MM_RECEIVED)
 good++;
 else
 bad++;
 fprintf(com1, "Good: %8lu Bad: %8lu\r", good,
 bad);

}
/* --
 main

 The main function sets up serial ports then
 sends commands to a Modbus slave.
 -- */
void main(void)
{
 struct prot_settings settings;
 struct pconfig portset;

 request_resource(IO_SYSTEM);

 /* disable protocol on serial port 1 */
 settings.type = NO_PROTOCOL;
 settings.station = 1;
 settings.priority = 3;
 settings.SFMessaging = FALSE;
 set_protocol(com1, &settings);

 /* Set communication parameters for port 1 */
 portset.baud = BAUD9600;
 portset.duplex = FULL;
 portset.parity = NONE;
 portset.data_bits = DATA8;
 portset.stop_bits = STOP1;
 portset.flow_rx = DISABLE;
 portset.flow_tx = DISABLE;
 portset.type = RS232;
 portset.timeout = 600;
 set_port(com1, &portset);

 /* enable Modbus protocol on serial port 2 */
 settings.type = MODBUS_ASCII;
 settings.station = 2;
 settings.priority = 3;
 settings.SFMessaging = FALSE;
 set_protocol(com2, &settings);

 /* Set communication parameters for port 2 */
 portset.baud = BAUD9600;
 portset.duplex = HALF;
 portset.parity = NONE;
 portset.data_bits = DATA8;
 portset.stop_bits = STOP1;
 portset.flow_rx = DISABLE;
 portset.flow_tx = DISABLE;
 portset.type = RS485_2WIRE;
 portset.timeout = 600;
 set_port(com2, &portset);

 release_resource(IO_SYSTEM);

ISaGRAF C Tools User and Reference Manual
May 8, 2007

286

 /* Main communication loop */
 while (TRUE)
 {
 /* Transfer slave inputs to outputs */
 request_resource(IO_SYSTEM);
 master_message(com2, 2, 1, 10001, 17, 8);
 release_resource(IO_SYSTEM);
 wait_for_response(com2, 10);

 /* Transfer inputs to slave outputs */
 request_resource(IO_SYSTEM);
 master_message(com2, 15, 1, 1, 10009, 8);
 release_resource(IO_SYSTEM);
 wait_for_response(com2, 10);

 /* Allow other tasks to execute */
 release_processor();
 }
}

Examples using DF1 Protocol
Full Duplex
Using the same example program above, apply the following calling format for the
master_message function.

This code fragment uses the protected write command (function=0) to transmit 13
(length=13) 16-bit registers to slave station 10 (slave=10). The data will be read from
registers 127 to 139 (master_address=127), and stored into registers 180 to 192
(address=180) in the slave station. The command will be transmitted on com2
(stream=com2).

master_message(com2, 0, 10, 180, 127, 13);

This code fragment uses the unprotected read command (function=1) to read 74 (length=74)
16-bit registers from slave station 37 (slave=37). The data will be read from registers 300 to
373 in the slave (address=300), and stored in registers 400 to 473 in the master
(master_address=400). The command will be transmitted on com2 (stream=com2).

master_message(com2, 1, 37, 300, 400, 74);

This code fragment will send specific bits from a single 16-bit register in the master to slave
station 33. The unprotected bit write command (function=5) will be used. Bits 0,1,7,12 and
15 of register 100 (master_address=100) will be sent to register 1432 (address=1432) in the
slave. The length parameter is used as a bit mask and is evaluated as follows:

 bit mask = 1001 0000 1000 0011 in binary

 = 9083 in hexadecimal

 = 36,995 in decimal

Therefore the command, sent on com2, is:
master_message(com2, 5, 33, 1432, 100, 36995);

Half Duplex
The example program is the same as for Full Duplex except that instead of waiting for a
response after calling master_message, the slave must be polled for a response. Add the
following function poll_for_response to the example program above and call it instead of
wait_for_response:

/* --

ISaGRAF C Tools User and Reference Manual
May 8, 2007

287

 poll_for_response

 The poll_for_response function polls the
 specified slave for a response to a master
 message sent on the serial port specified by
 stream. It returns when the correct response
 is received, or when the period specified by
 time (in tenths of a second) expires.
 -- */
unsigned poll_for_response(FILE *stream, unsigned slave, unsigned
time)
{
 struct prot_status status;
 unsigned done;
 static unsigned long good, bad;

 /* set timeout timer */
 interval(0, 10);
 settimer(0, time);
 do
 {
 /* wait until command status changes or
 timer expires */
 do
 {
 status = get_protocol_status(stream);
 release_processor();
 }
 while(timer(0)&& (status.command==MM_SENT));

 /* command has been ACKed, send poll */
 if (status.command == MM_CMD_ACKED)
 {
 pollABSlave(stream, slave);
 done = FALSE;
 }

 /* response/command mismatch, poll again */
 else if (status.command == MM_WRONG_RSP)
 {
 pollABSlave(stream, slave);
 done = FALSE;
 }

 /* correct response was received */
 else if (status.command == MM_RECEIVED)
 {
 good++;
 done = TRUE;
 }

 /* timer has expired or status is MM_EOT */
 else
 {
 bad++;
 done = TRUE;
 }
 } while (!done);

 fprintf(com1, "Good: %8lu Bad: %8lu\r", good,
 bad);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

288

modbusExceptionStatus
Set Response to Protocol Command

Syntax
#include <ctools.h>
void modbusExceptionStatus(unsigned char status);

Description
The modbusExceptionStatus function is used in conjunction with the Modbus compatible
communication protocol. It sets the result returned in response to the Read Exception Status
command. This command is provided for compatibility with some Modbus protocol drivers
for host computers.

The value of status is determined by the requirements of the host computer.

Notes
The specified result will be sent each time that the protocol command is received, until a
new result is specified.

The result is cleared when the controller is reset. The application program must initialize the
status each time it is run.

See Also
modbusSlaveID

ISaGRAF C Tools User and Reference Manual
May 8, 2007

289

modbusSlaveID
Set Response to Protocol Command

Syntax
#include <ctools.h>
void modbusSlaveID(unsigned char *string, unsigned length);

Description
The modbusSlaveID function is used in conjunction with the Modbus compatible
communication protocol. It sets the result returned in response to the Report Slave ID
command. This command is provided for compatibility with some Modbus protocol drivers
for host computers.

string points to a string of at least length characters. The contents of the string is determined
by the requirements of the host computer. The string is not NULL terminated and may
contain multiple NULL characters.

The length specifies how many characters are returned by the protocol command. length
must be in the range 1 to REPORT_SLAVE_ID_SIZE. If length is too large only the first
REPORT_SLAVE_ID_SIZE characters of the string will be sent in response to the
command.

Notes
The specified result will be sent each time that the protocol command is received, until a
new result is specified.

The function copies the data pointed to by string. string may be modified after the function is
called.

The result is cleared when the controller is reset. The application program must initialize the
salve ID string each time it is run.

See Also
modbusExceptionStatus

ISaGRAF C Tools User and Reference Manual
May 8, 2007

290

modbusProcessCommand Function
Process a Modbus command and return the response.

Syntax
#include <ctools.h>
BOOLEAN processModbusCommand(
 FILE * stream,
 UCHAR * pCommand,
 UINT16 commandLength,
 UINT16 responseSize,
 UCHAR * pResponse,
 UINT16 * pResponseLength
)

Description
The processModbusCommand function processes a Modbus protocol command and
returns the response. The function can be used by an application to encapsulate Modbus
RTU commands in another protocol.

stream is a FILE pointer that identifies the serial port where the command was received.
This is used for to accumulate statistics for the serial port.

pCommand is a pointer to a buffer containing the Modbus command. The contents of the
buffer must be a standard Modbus RTU message. The Modbus RTU checksum is not
required.

commandLength is the number of bytes in the Modbus command. The length must include
all the address and data bytes. It must not include the checksum bytes, if any, in the
command buffer.

responseSize is the size of the response buffer in bytes. A 300-byte buffer is
recommended. If this is not practical in the application, a smaller buffer may be supplied.
Some responses may be truncated if a smaller buffer is used.

pResponse is a pointer to a buffer to contain the Modbus response. The function will store
the response in this buffer in standard Modbus RTU format including two checksum bytes at
the end of the response.

pResponseLength is a pointer to a variable to hold response length. The function will store
the number of bytes in the response in this variable. The length will include two checksum
bytes.

The function returns TRUE if the response is valid and can be used. It returns FALSE if the
response is too long to fit into the supplied response buffer.

Notes
To use the function on a serial port, a protocol handler must be created for the
encapsulating protocol. Set the protocol type for the port to NO_PROTOCOL to allow the
custom handler to be used.

The function supports standard and extended addressing. Configure the protocol settings for
the serial port for the appropriate protocol.

The Modbus RTU checksum is not required in the command so the encapsulating protocol
may omit them if they are not needed. This may be useful in host devices that don't create a
Modbus RTU message with checksum prior to encapsulation.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

291

The Modbus RTU checksum is included in the response to support encapsulating a
complete Modbus RTU format message. If the checksum is not needed by the
encapsulating protocol the checksum bytes may be ignored.

See Also
set_protocol

Example
This example is taken from a protocol driver than encapsulates Modbus RTU messages in
another protocol. It shows how to pass the Modbus RTU command to the Modbus driver,
and obtain the response.

The example assumes the Modbus RTU messages are transmitted with the checksum. The
length of the checksum is subtracted when calling the processModbusCommand function.
The checksum is included when responding.
/* receive the packet in the encapsulating protocol */
/* verify the packet is valid */

/* locate the Modbus RTU command in the command buffer */
pCommandData = commandBuffer + PROTOCOL_HEADER_SIZE;

/* get length of Modbus RTU command from the packet header */
commandLength = commandBuffer[DATA_SIZE] - 2;

/* locate the Modbus RTU response in the response buffer leaving
room for the packet header */
pResponseData = responseBuffer + PROTOCOL_HEADER_SIZE;

/* process the Modbus message */
if (processModbusCommand(
 stream,
 pCommandData,
 commandLength,
 MODBUS_BUFFER_SIZE,
 pResponseData,
 &responseLength))
{
 /* put the response length in the header */
 responseBuffer[DATA_SIZE] = responseLength;

 /* fill in rest of packet header */
 /* transmit the encapsulated response */
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

292

modemAbort
Unconditionally Terminate Dial-up Connection

Syntax
#include <ctools.h>
void modemAbort(FILE *port);

Description
The modemAbort function unconditionally terminates a dial-up connection, connection in
progress or modem initialization started by the C application. port specifies the serial port
the where the modem is installed.

The connection or initialization is terminated only if it was started from a C application.
Connections made from a Ladder Logic application and answered calls are not terminated.

This function can be used in a task exit handler.

Notes
The serial port type must be set to RS232_MODEM.

Note that a pause of a few seconds is required between terminating a connection and
initiating a new call. This pause allows the external modem time to hang up.

Use this function in a task exit handler to clean-up any open dial-up connections or modem
initializations. If a task is ended by executing end_task from another task, modem
connections or initializations must be aborted in the exit handler. Otherwise, the reservation
ID for the port remains valid. No other task or Ladder Logic program may use modem
functions on the port. Failing to call modemAbort or modemAbortAll in the task exit
handler may result in the port being unavailable to any programs until the controller is reset.

The modem connection or initialization is automatically terminated when ISaGRAF stops the
C application and when the controller is rebooted.

All reservation IDs returned by the modemDial and modemInit functions on this port are
invalid after calling modemAbort.

See Also
modemAbortAll, modemDial, modemDialEnd, modemDialStatus, modemInit,
modemInitEnd, modemInitStatus, modemNotification

Example
Refer to the examples in the Functions Overview section.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

293

modemAbortAll
Unconditionally Terminate All Dial-up Connections

Syntax
#include <ctools.h>
void modemAbort(void);

Description
The modemAbortAll function unconditionally terminates all dial-up connections,
connections in progress or modem initializations started by the C application.

The connections or initializations are terminated only if they were started from a C
application. Connections made from a Ladder Logic application and answered calls are not
terminated.

This function can be used in a task exit handler.

Notes
Note that a pause of a few seconds is required between terminating a connection and
initiating a new call. This pause allows the external modem time to hang up.

Use this function in a task exit handler to clean-up any open dial-up connections or modem
initializations. If executing end_task from another task ends a task, modem connections or
initializations must be aborted in the exit handler. Otherwise, the reservation ID for the port
remains valid. No other task or Ladder Logic program may use modem functions on the port.
Failing to call modemAbort or modemAbortAll in the task exit handler may result in the
port being unavailable to any programs until the controller is reset.

The modem connection or initialization is automatically terminated when ISaGRAF stops the
C application and when the controller is rebooted.

This function will terminate all open dial-up connections or modem initializations started by
the C application - even those started by other tasks. The exit handler can safely call this
function instead of multiple calls to modemAbort if all the connections or initializations were
started from the same task.

All reservation IDs returned by the modemDial and modemInit functions are invalid after
calling modemAbort.

See Also
modemAbort, modemDial, modemDialEnd, modemDialStatus, modemInit,
modemInitEnd, modemInitStatus, modemNotification

Example
This program installs an exit handler for the main task that terminates any dial-up
connections made by the task. This handler is not strictly necessary if ISaGRAF ends the
main task. However, it demonstrates how to use the modemAbortAll function and an exit
handler for another task in a more complex program.
#include <ctools.h>

/* --
 The shutdown function aborts any active

ISaGRAF C Tools User and Reference Manual
May 8, 2007

294

 modem connections when the task is ended.
 -- */
void shutdown(void)
{
 modemAbortAll();
}

void main(void)
{
 TASKINFO taskStatus;

 /* set up exit handler for this task */
 taskStatus = getTaskInfo(0);
 installExitHandler(taskStatus.taskID, shutdown);

 while(TRUE)
 {
 /* rest of main task here */

 /* Allow other tasks to execute */
 release_processor();
 }
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

295

modemDial
Connect to a Remote Dial-up Controller

Syntax
#include <ctools.h>
enum DialError modemDial(struct ModemSetup *configuration, reserve_id *id);

Description
The modemDial function connects a controller to a remote controller using an external dial-
up modem. One modemDial function may be active on each serial port. The modemDial
function handles all port sharing and multiple dialing attempts.

The ModemSetup structure specified by configuration defines the serial port, dialing
parameters, modem initialization string and the phone number to dial. Refer to the
Structures and Types section for a description of the fields in the ModemSetup structure.

id points to a reservation identifier for the serial port. The identifier ensures that no other
modem control function can access the serial port. This parameter must be supplied to the
modemDialEnd and modemDialStatus functions.

The function returns an error code. DE_NoError indicates that the connect operation has
begun. Any other code indicates an error. Refer to the description in the Structures and
Types section for a complete description of error codes.

Notes
The serial port type must be set to RS232_MODEM.

Note: The SCADAPack 100 does not support dial up connections on com port 1.
The SCADASense family of controllers also do not support dial up connections.

The modemDialStatus function returns the status of the connection attempt initiated by
modemDial.

The modemDialEnd function terminates the connection to the remote controller. Note that a
pause of a few seconds is required between terminating a connection and initiating a new
call. This pause allows the external modem time to hang up.

If a communication protocol is active on the serial port when a connection is initiated, the
protocol will be disabled until the connection is made, then re-enabled. This allows the
controller to communicate with the external modem on the port. The protocol settings will
also be restored when a connection is terminated with the modemDialEnd function.

If a modemInit function or an incoming call is active on the port, the modemDial function
cannot access the port and will return an error code of DE_NotInControl. If communication
stops for more than five minutes, then outgoing call requests are allowed to end the
incoming call. This prevents problems with the modem or the calling application from
permanently disabling outgoing calls.

The reservation identifier is valid until the call is terminated and another modem function or
an incoming call takes control of the port.

To optimize performance, minimize the length of messages on com3 and com4. Examples
of recommended uses for com3 and com4 are for local operator display terminals, and for
programming and diagnostics using the ISaGRAF program.

Do not call this function in a task exit handler.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

296

See Also
modemAbort, modemAbortAll, modemDialEnd, modemDialStatus, modemInit,
modemInitEnd, modemInitStatus, modemNotification

Example
Refer to the examples in the Functions Overview section.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

297

modemDialEnd
Terminate Dial-up Connection

Syntax
#include <ctools.h>
void modemDialEnd(FILE *port, reserve_id id, enum DialError *error);

Description
The modemDialEnd function terminates a dial-up connection or connection in progress.
port specifies the serial port the where the modem is installed. id is the port reservation
identifier returned by the modemDial function.

The function sets the variable pointed to by error. If no error occurred DE_NoError is
returned. Any other value indicates an error. Refer to the Structures and Types section for
a complete description of error codes.

Notes
The serial port type must be set to RS232_MODEM.

A connection can be terminated by any of the following events. Once terminated another
modem function or incoming call can take control of the serial port.

• Execution of the modemDialEnd function.

• Execution of the modemAbort or modemAbortAll functions.

• The remote device hangs up the phone line.

• An accidental loss of carrier occurs due to phone line problems.

Note that a pause of a few seconds is required between terminating a connection and
initiating a new call. This pause allows the external modem time to hang up.

The reservation identifier is valid until the call is terminated and another modem function or
an incoming call takes control of the port. The modemDialEnd function returns a
DE_NotInControl error code, if another modem function or incoming call is in control of the
port.

Do not call this function in a task exit handler. Use modemAbort instead.

See Also
modemAbort, modemAbortAll, modemDial, modemDialStatus, modemInit,
modemInitEnd, modemInitStatus, modemNotification

ISaGRAF C Tools User and Reference Manual
May 8, 2007

298

modemDialStatus
Return Status of Dial-up Connection

Syntax
#include <ctools.h>
void modemDialStatus(FILE *port, reserve_id id, enum DialError * error, enum

DialState *state);

Description
The modemDialStatus function returns the status of a remote connection initiated by the
modemDial function. port specifies the serial port where the modem is installed. id is the
port reservation identifier returned by the modemDial function.

The function sets the variable pointed to by error. If no error occurred DE_NoError is
returned. Any other value indicates an error. Refer to the Structures and Types section for
a complete description of error codes.

The function sets the variable pointed to by state to the current execution state of dialing
operation. The state value is not valid if the error code is DE_NotInControl. Refer to the
dialup.h section for a complete description of state codes.

Notes
The serial port type must be set to RS232_MODEM.

The reservation identifier is valid until the call is terminated and another modem function or
an incoming call takes control of the port. The modemDialStatus function will return a
DE_NotInControl error code, if another dial function or incoming call is now in control of the
port.

Do not call this function in a task exit handler.

See Also
modemAbort, modemAbortAll, modemDial, modemDialEnd, modemInit,
modemInitEnd, modemInitStatus, modemNotification

ISaGRAF C Tools User and Reference Manual
May 8, 2007

299

modemInit
Initialize Dial-up Modem

Syntax
#include <ctools.h>
enum DialError modemInit(struct ModemInit *configuration, reserve_id *id);

Description
The modemInit function sends an initialization string to an external dial-up modem. It is
typically used to set up a modem to answer incoming calls. One modemInit function may be
active on each serial port. The modemInit function handles all port sharing and multiple
dialing attempts.

The ModemInit structure pointed to by configuration defines the serial port and modem
initialization string. Refer to the Structures and Types section for a description of the fields
in the ModemInit structure.

The id variable is set to a reservation identifier for the serial port. The identifier ensures that
no other modem control function can access the serial port. This parameter must be
supplied to the modemInitEnd and modemInitStatus functions.

The function returns an error code. DE_NoError indicates that the initialize operation has
begun. Any other code indicates an error. Refer to the Structures and Types section for a
complete description of error codes.

Notes
The serial port type must be set to RS232_MODEM.

The modemInitStatus function returns the status of the connection attempt initiated by
modemInit.

The modemInitEnd function terminates initialization of the modem.

If a communication protocol is active on the serial port, the protocol will be disabled until the
initialization is complete then re-enabled. This allows the controller to communicate with the
external modem on the port. The protocol settings will also be restored when initialization is
terminated with the modemInitEnd function.

If a modemDial function or an incoming call is active on the port, the modemInit function
cannot access the port and will return an error code of DE_NotInControl.

The reservation identifier is valid until the call is terminated and another modem function or
an incoming call takes control of the port.

To optimize performance, minimize the length of messages on com3 and com4. Examples
of recommended uses for com3 and com4 are for local operator display terminals, and for
programming and diagnostics using the ISaGRAF program.

Do not call this function in a task exit handler.

See Also
modemAbort, modemAbortAll, modemDial, modemDialEnd, modemDialStatus,
modemInitEnd, modemInitStatus, modemNotification

ISaGRAF C Tools User and Reference Manual
May 8, 2007

300

Example
Refer to the example in the Functions Overview section.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

301

modemInitEnd
Abort Initialization of Dial-up Modem

Syntax
#include <ctools.h>
void modemInitEnd(FILE *port, reserve_id id, enum DialError *error);

Description
The modemInitEnd function terminates a modem initialization in progress. port specifies the
serial port where the modem is installed. id is the port reservation identifier returned by the
modemInit function.

The function sets the variable pointed to by error. If no error occurred DE_NoError is
returned. Any other value indicates an error. Refer to the Structures and Types section for
a complete description of error codes.

Notes
The serial port type must be set to RS232_MODEM.

Normally this function should be called once the modemInitStatus function indicates the
initialization is complete.

The reservation identifier is valid until the initialization is complete or terminated, and another
modem function or an incoming call takes control of the port. The modemInitEnd function
returns a DE_NotInControl error code, if another modem function or incoming call is in
control of the port.

Do not call this function in a task exit handler. Use modemAbort instead.

See Also
modemAbort, modemAbortAll, modemDial, modemDialEnd, modemDialStatus,
modemInit, modemInitStatus, modemNotification

ISaGRAF C Tools User and Reference Manual
May 8, 2007

302

modemInitStatus
Return Status of Dial-up Modem Initialization

Syntax
#include <ctools.h>
void modemInitStatus(FILE *port, reserve_id id, enum DialError *error, enum

DialState *state);

Description
The modemInitStatus function returns the status a modem initialization started by the
modemInit function. port specifies the serial port where the modem is installed. id is the port
reservation identifier returned by the modemInit function.

The function sets the variable pointed to by error. If no error occurred DE_NoError is
returned. Any other value indicates an error. Refer to the Structures and Types section for
a complete description of error codes.

The function sets the variable pointed to by state to the current execution state of dialing
operation. The state value is not valid if the error code is DE_NotInControl. Refer to the
dialup.h section for a complete description of state codes.

Notes
The serial port type must be set to RS232_MODEM.

The port will remain in the DS_Calling state until modem initialization is complete or fails.
The application should wait until the state is not DS_Calling before calling the
modemInitEnd function.

The reservation identifier is valid until the initialization is complete or terminated, and another
modem function or an incoming call takes control of the port.

Do not call this function in a task exit handler.

See Also
modemAbort, modemAbortAll, modemDial, modemDialEnd, modemDialStatus,
modemInit, modemInitEnd, modemNotification

ISaGRAF C Tools User and Reference Manual
May 8, 2007

303

modemNotification
Notify the modem handler of an important event

Syntax
#include <ctools.h>
void modemNotification(UINT16 port_index);

Description
The modemNotification function notifies the dial-up modem handler that an interesting
event has occurred. This informs the modem handler not to disconnect an incoming call
when an outgoing call is requested with modemDial.

This function is used with custom communication protocols. The function is usually called
when a message is received by the protocol, although it can be called for other reasons.

The port_index indicates the serial port that received the message.

Notes
The serial port type must be set to RS232_MODEM.

Use the portIndex function to obtain the index of the serial port.

The dial-up connection handler prevents outgoing calls from using the serial port when an
incoming call is in progress and communication is active. If communication stops for more
than five minutes, then outgoing call requests are allowed to end the incoming call. This
prevents problems with the modem or the calling application from permanently disabling
outgoing calls.

The function is used with programs that dial out through an external modem using the
modemDial function. It is not required where the modem is used for dialing into the
controller only.

See Also
modemAbort, modemAbortAll, modemDial, modemDialEnd, modemDialStatus,
modemInit, modemInitEnd, modemInitStatus

ISaGRAF C Tools User and Reference Manual
May 8, 2007

304

optionSwitch
Read State of Controller Option Switches

Syntax
#include <ctools.h>
unsigned optionSwitch(unsigned option);

Description
The optionSwitch function returns the state of the controller option switch specified by
option. option may be 1, 2 or 3.

The function returns OPEN if the switch is in the open position. It returns CLOSED if the
switch is in the closed position.

Notes
The option switches are located under the cover of the controller module.

The SCADAPack LP, SCADAPack 100 and SCADASense series of controllers do not have
option switches.

All options are user defined.

However, when a SCADAPack I/O module is placed in the Register Assignment, option
switch 1 selects the input range for analog inputs on this module. When the SCADAPack
AOUT module is placed in the Register Assignment, option switch 2 selects the output range
for analog outputs on this module. Refer to the SCADAPack System Hardware Manual for
further information on option switches.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

305

pollABSlave
Poll DF1 Slave for Response

Syntax
#include <ctools.h>
unsigned pollABSlave(FILE *stream, unsigned slave);

Description
The pollABSlave function is used to send a poll command to the slave station specified by
slave in the DF1 Half Duplex protocol configured for the specified port. stream specifies the
serial port.

The function returns FALSE if the slave number is invalid, or if the protocol currently
installed on the specified serial port is not an DF1 Half Duplex protocol. Otherwise it returns
TRUE and the protocol command status is set to MM_SENT.

Notes
See the example using the pollABSlave function in the sample polling function
"poll_for_response" shown in the example for the master_message function.

See Also
master_message

Example
This program segment polls slave station 9 for a response communicating on the com2
serial port.
#include <ctools.h>

pollABSlave(com2, 9);

ISaGRAF C Tools User and Reference Manual
May 8, 2007

306

poll_event
Test for Event Occurrence

Syntax
#include <ctools.h>
int poll_event(int event);

Description
The poll_event function tests if an event has occurred.

The poll_event function returns TRUE, and the event counter is decrements, if the event
has occurred. Otherwise it returns FALSE.

The current task always continues to execute.

Notes
Refer to the Real Time Operating System section for more information on events.

Valid events are numbered 0 to RTOS_EVENTS - 1. Any events defined in primitiv.h are not
valid events for use in an application program.

See Also
signal_event, startTimedEvent

Example
This program implements a somewhat inefficient transfer of data between com1 and com2.
(It would be more efficient to test for EOF from getc).
#include <ctools.h>

void main(void)
{
 while(TRUE)
 {
 if (poll_event(COM1_RCVR))
 fputc(getc(com1), com2);
 if (poll_event(COM2_RCVR))
 fputc(getc(com2), com1);

 /* Allow other tasks to execute */
 release_processor();
 }
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

307

poll_message
Test for Received Message

Syntax
#include <ctools.h>
envelope *poll_message(void);

Description
The poll_message function tests if a message has been received by the current task.

The poll_message function returns a pointer to an envelope if a message has been
received. It returns NULL if no message has been received.

The current task always continues to execute.

Notes
Refer to the Real Time Operating System section for more information on messages.

See Also
send_message, receive_message

Example
This task performs a function continuously, and processes received messages (from higher
priority tasks) when they are received.
#include <ctools.h>

void task(void)
{
 envelope *letter;

 while(TRUE)
 {
 letter=poll_message();
 if (letter != NULL)
 /* process the message now */

 /* more code here */
 }
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

308

poll_resource
Test Resource Availability

Syntax
#include <ctools.h>
int poll_resource(int resource);

Description
The poll_resource function tests if the resource specified by resource is available. If the
resource is available it is given to the task.

The poll_resource function returns TRUE if the resource is available. It returns FALSE if it
is not available.

The current task always continues to execute.

Notes
Refer to the Real Time Operating System section for more information on resources.

See Also
request_resource, release_resource

ISaGRAF C Tools User and Reference Manual
May 8, 2007

309

portConfiguration
Get Pointer to Port Configuration Structure

Syntax
#include <ctools.h>
struct pconfig *portConfiguration(FILE *stream);

Description
The portConfiguration function returns a pointer to the configuration structure for stream. A
NULL pointer is returned if stream is not valid.

Notes
It is recommended the get_port and set_port functions be used to access the configuration
table.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

310

portIndex
Get Index of Serial Port

Syntax
#include <ctools.h>
unsigned portIndex(FILE *stream);

Description
The portIndex function returns an array index for the serial port specified by stream. It is
guaranteed to return a value suitable for an array index, in increasing order of external serial
port numbers, if no error occurs.

If the stream is not recognized, SERIAL_PORTS is returned, to indicate an error.

See Also
portStream

ISaGRAF C Tools User and Reference Manual
May 8, 2007

311

portStream
Get Serial Port Corresponding to Index

Syntax
#include <ctools.h>
FILE *portStream(unsigned index);

Description
The portStream function returns the file pointer corresponding to index. This function is the
inverse of the portIndex function. If the index is not valid, the NULL pointer is returned.

See Also
portIndex

ISaGRAF C Tools User and Reference Manual
May 8, 2007

312

processModbusCommand
Process a Modbus Command and Return the Response

Syntax
#include <ctools.h>
BOOLEAN processModbusCommand(
 FILE * stream,
 UCHAR * pCommand,
 UINT16 commandLength,
 UINT16 responseSize,
 UCHAR * pResponse,
 UINT16 * pResponseLength
)

Description
The processModbusCommand function processes a Modbus protocol command and
returns the response. The function can be used by an application to encapsulate Modbus
RTU commands in another protocol.

stream is a FILE pointer that identifies the serial port where the command was received.
This is used for to accumulate statistics for the serial port.

pCommand is a pointer to a buffer containing the Modbus command. The contents of the
buffer must be a standard Modbus RTU message. The Modbus RTU checksum is not
required.

commandLength is the number of bytes in the Modbus command. The length must include
all the address and data bytes. It must not include the checksum bytes, if any, in the
command buffer.

responseSize is the size of the response buffer in bytes. A 300-byte buffer is
recommended. If this is not practical in the application, a smaller buffer may be supplied.
Some responses may be truncated if a smaller buffer is used.

pResponse is a pointer to a buffer to contain the Modbus response. The function will store
the response in this buffer in standard Modbus RTU format including two checksum bytes at
the end of the response.

pResponseLength is a pointer to a variable to hold response length. The function will store
the number of bytes in the response in this variable. The length will include two checksum
bytes.

The function returns TRUE if the response is valid and can be used. It returns FALSE if the
response is too long to fit into the supplied response buffer.

Notes
To use the function on a serial port, a protocol handler must be created for the
encapsulating protocol. Set the protocol type for the port to NO_PROTOCOL to allow the
custom handler to be used.

The function supports standard and extended addressing. Configure the protocol settings for
the serial port for the appropriate protocol.

The Modbus RTU checksum is not required in the command so the encapsulating protocol
may omit them if they are not needed. This may be useful in host devices that don't create a
Modbus RTU message with checksum prior to encapsulation.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

313

The Modbus RTU checksum is included in the response to support encapsulating a
complete Modbus RTU format message. If the checksum is not needed by the
encapsulating protocol the checksum bytes may be ignored.

See Also
setProtocolSettings

Example
This example is taken from a protocol driver than encapsulates Modbus RTU messages in
another protocol. It shows how to pass the Modbus RTU command to the Modbus driver,
and obtain the response.

The example assumes the Modbus RTU messages are transmitted with the checksum. The
length of the checksum is subtracted when calling the processModbusCommand function.
The checksum is included when responding.

Contact Control Microsystems technical support department for a complete program that
uses this function.
/* receive the packet in the encapsulating protocol */
/* verify the packet is valid */

/* locate the Modbus RTU command in the command buffer */
pCommandData = commandBuffer + PROTOCOL_HEADER_SIZE;

/* get length of Modbus RTU command from the packet header */
commandLength = commandBuffer[DATA_SIZE] - 2;

/* locate the Modbus RTU response in the response buffer leaving room for
the packet header */
pResponseData = responseBuffer + PROTOCOL_HEADER_SIZE;

/* process the Modbus message */
if (processModbusCommand(
 stream,
 pCommandData,
 commandLength,
 MODBUS_BUFFER_SIZE,
 pResponseData,
 &responseLength))
{
 /* put the response length in the header */
 responseBuffer[DATA_SIZE] = responseLength;

 /* fill in rest of packet header */
 /* transmit the encapsulated response */
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

314

queue_mode
Control Serial Data Transmission

Syntax
#include <ctools.h>
void queue_mode(FILE *stream, int mode);

Description
The queue_mode function controls transmission of the serial data. Normally data output to
a serial port are placed in the transmit buffer and transmitted as soon as the hardware is
ready. If queuing is enabled, the characters are held in the transmit buffer until queuing is
disabled. If the buffer fills, queuing is disabled automatically.

stream specifies the serial port. If it is not valid the function has no effect.

mode specifies the queuing control. It may be DISABLE or ENABLE.

Notes
Queuing is most often used with communication protocols that use character timing for
message framing. Its uses in an application program are limited.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

315

readBoolVariable
Read ISaGRAF Boolean Variable

Syntax
#include <ctools.h>
BOOLEAN readBoolVariable(unsigned char * varName, unsigned char * value)

Description
This function returns the current value of the specified boolean variable.

The variable is specified by its name expressed as a character string. The name is case
insensitive (The ISaGRAF Dictionary also treats variable names as case insensitive). If the
variable is found, TRUE is returned and the variable value is written to the unsigned char
value pointed to by value. If the variable is not found or if the ISaGRAF Symbols Status is
invalid, FALSE is returned and the current value is left unchanged. The ISaGRAF Symbols
Status is invalid if the Application TIC code download and Application Symbols download do
not share the same symbols CRC checksum.

Notes
This function requires the ISaGRAF Application Symbols to be downloaded to the controller
in addition to the Application TIC code. This function provides a convenient method to
access ISaGRAF variables by name; however, because the variable name must be looked
up in the ISaGRAF variable list each call, the performance of the function may be slow for
large numbers of variables. For better performance, use the variable’s network address and
the dbase function.

The IO_SYSTEM system resource must be requested before calling this function.

See Also
writeBoolVariable

Example
This program displays the contents of the boolean variable named “Switch1”.

#include <ctools.h>

void main(void)
{
 BOOLEAN status;
 unsigned char value;

 request_resource(IO_SYSTEM);
 status = readBoolVariable("Switch1", &value);
 release_resource(IO_SYSTEM);

 printf("status = %u, Switch1 = %d\r\n", status, value);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

316

readCounter
Read Accumulator Input

Syntax
#include <ctools.h>
unsigned long readCounter(unsigned counter, unsigned clear);

Description
The readCounter routine reads the digital input counter specified by counter. The counter
may be 0, 1 or 2. If clear is TRUE the counter is cleared after reading; otherwise if it is
FALSE the counter continues to accumulate.

If counter is not valid, a BAD_COUNTER error is reported for the current task.

Notes
The three DIN/counter inputs are located on the 5203 or 5204 controller board. Refer to the
System Hardware Manual for more information on the hardware.

The counter increments on the rising edge of the input signal.

See Also
readCounterInput, check_error

ISaGRAF C Tools User and Reference Manual
May 8, 2007

317

readCounterInput
Read Counter Input Status

Syntax
#include <ctools.h>
unsigned readCounterInput(unsigned input)

Description
The readCounterInput function returns the status of the DIN/counter input point specified by
input. It returns TRUE if the input is ON and FALSE if the input is OFF.

If input is not valid, the function returns FALSE.

Notes
The three DIN/counter inputs are located on the 5203 or 5204 controller board. Refer to the
System Hardware Manual for more information on the hardware.

See Also
readBoolVariable

ISaGRAF C Tools User and Reference Manual
May 8, 2007

318

readBattery
Read Lithium Battery Voltage

Syntax
#include <ctools.h>
int readBattery(void);

Description
The readBattery function returns the RAM backup battery voltage in millivolts. The range is
0 to 5000 mV. A normal reading is about 3600 mV.

Example
#include <ctools.h>

if (readBattery() < 2500)
{
 fprintf(com1, “Battery Voltage is low\r\n”);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

319

readInternalAD
Read Controller Internal Analog Inputs

Syntax
#include <ctools.h>
int readInternalAD(unsigned channel);

Description
The readInternalAD function reads analog inputs connected to the internal AD converter.
channel may be 0 to 7.

The function returns a value in the range 0 to 32767.

Notes
There are only two channels with signals connected to them.

• AD_THERMISTOR reads the thermistor input.

• AD_BATTERY reads the battery input

See Also
readBattery, readIntVariable

ISaGRAF C Tools User and Reference Manual
May 8, 2007

320

readIntVariable
Read ISaGRAF Integer Variable

Syntax
#include <ctools.h>
BOOLEAN readIntVariable(unsigned char * varName, signed long * value)

Description
This function returns the current value of the specified integer variable.

The variable is specified by its name expressed as a character string. The name is case
insensitive (The ISaGRAF Dictionary also treats variable names as case insensitive). If the
variable is found, TRUE is returned and the variable value is written to the signed long value
pointed to by value. If the variable is not found or if the ISaGRAF Symbols Status is invalid,
FALSE is returned and the current value is left unchanged. The ISaGRAF Symbols Status is
invalid if the Application TIC code download and Application Symbols download do not share
the same symbols CRC checksum.

Notes
This function requires the ISaGRAF Application Symbols to be downloaded to the controller
in addition to the Application TIC code. This function provides a convenient method to
access ISaGRAF variables by name; however, because the variable name must be looked
up in the ISaGRAF variable list each call, the performance of the function may be slow for
large numbers of variables. For better performance, use the variable’s network address and
the dbase function.

The IO_SYSTEM system resource must be requested before calling this function.

See Also
writeIntVariable

Example
This program displays the contents of the integer variable named “Temperature”.

#include <ctools.h>

void main(void)
{
 BOOLEAN status;
 signed long value;

 request_resource(IO_SYSTEM);
 status = readIntVariable("Temperature", &value);
 release_resource(IO_SYSTEM);

 printf("status = %u, Temp = %ld\r\n", status, value);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

321

readMsgVariable
Read ISaGRAF Message Variable

Syntax
#include <ctools.h>
BOOLEAN readMsgVariable(unsigned char * varName, unsigned char * msg)

Description
This function returns the current value of the specified message variable.

The variable is specified by its name expressed as a character string. The name is case
insensitive (The ISaGRAF Dictionary also treats variable names as case insensitive). If the
variable is found, TRUE is returned and the message is written to the string pointed to by
msg. If the variable is not found or if the ISaGRAF Symbols Status is invalid, FALSE is
returned and the buffer is left unchanged. The ISaGRAF Symbols Status is invalid if the
Application TIC code download and Application Symbols download do not share the same
symbols CRC checksum.

The pointer msg must point to a character string large enough to hold the maximum length
declared for the specified message variable plus two length bytes and a null termination byte
(i.e. max declared length + 3). ISaGRAF message variables have the following format:

Byte
Location

Description

0 Maximum length as declared in ISaGRAF
Dictionary (1 to 255)

1 Current Length = number of bytes up to first
null byte in message data (0 to maximum
length)

2 First message data byte

…

max + 1 Last byte in message buffer

max + 2 Null termination byte (Terminates a message
having the maximum length.)

Notes
This function requires the ISaGRAF Application Symbols to be downloaded to the controller
in addition to the Application TIC code. This function provides a convenient method to
access ISaGRAF variables by name; however, because the variable name must be looked
up in the ISaGRAF variable list each call, the performance of the function may be slow for
large numbers of variables. For better performance, use the variable’s network address and
the dbase function.

The IO_SYSTEM system resource must be requested before calling this function.

See Also
writeMsgVariable

ISaGRAF C Tools User and Reference Manual
May 8, 2007

322

Example
This program displays the contents of the message variable named “msgData” of maximum
length 20.

#include <ctools.h>

void main(void)
{
 BOOLEAN status;
 unsigned char msg[23];

 request_resource(IO_SYSTEM);
 status = readMsgVariable("msgData", msg);
 release_resource(IO_SYSTEM);

 printf("status = %u, max length = %d, current length = %d,
 message = %s\r\n", status, msg[0], msg[1], msg + 2);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

323

readRealVariable
Read ISaGRAF Real Variable

Syntax
#include <ctools.h>
BOOLEAN readRealVariable(unsigned char * varName, float * value)

Description
This function returns the current value of the specified real (i.e. floating point) variable.

The variable is specified by its name expressed as a character string. The name is case
insensitive (The ISaGRAF Dictionary also treats variable names as case insensitive). If the
variable is found, TRUE is returned and the variable value is written to the floating point
value pointed to by value. If the variable is not found or if the ISaGRAF Symbols Status is
invalid, FALSE is returned and the current value is left unchanged. The ISaGRAF Symbols
Status is invalid if the Application TIC code download and Application Symbols download do
not share the same symbols CRC checksum.

Notes
This function requires the ISaGRAF Application Symbols to be downloaded to the controller
in addition to the Application TIC code. This function provides a convenient method to
access ISaGRAF variables by name; however, because the variable name must be looked
up in the ISaGRAF variable list each call, the performance of the function may be slow for
large numbers of variables. For better performance, use the variable’s network address and
the dbase function.

The IO_SYSTEM system resource must be requested before calling this function.

See Also
writeRealVariable

Example
This program displays the contents of the real variable named “Flow”.

#include <ctools.h>

void main(void)
{
 BOOLEAN status;
 float value;

 request_resource(IO_SYSTEM);
 status = readRealVariable("Flow", &value);
 release_resource(IO_SYSTEM);

 printf("status = %u, Flow = %f\r\n", status, value);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

324

readRoutingTableEntry
Read Routing Table entry

Syntax:
#include <ctools.h>
BOOLEAN readRoutingTableEntry (
 UINT16 index,
 routingTable *pRoute
);

Description:
This function reads an entry from the routing table.

pRoute is a pointer to a table entry; it is written by this function.

The return value is TRUE if pRoute was successfully written or FALSE otherwise.

 Notes:
DNP must be enabled before calling this function in order to create the DNP configuration.

The function returns the total number of entries in the DNP routing table.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

325

readRoutingTableSize
Read Routing Table size

Syntax:
#include <ctools.h>
UINT16 readRoutingTableSize (void);

Description:
This function reads the total number of entries in the routing table.

Notes:
DNP must be enabled before calling this function in order to create the DNP configuration.

The function returns the total number of entries in the routing table.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

326

readStopwatch
Read Stopwatch Timer

Syntax
#include <ctools.h>
unsigned long readStopwatch(void)

Description
The readStopwatch function reads the stopwatch timer. The stopwatch time is in ms and
has a resolution of 10 ms. The stopwatch time rolls over to 0 when it reaches the maximum
value for an unsigned long integer: 4,294,967,295 ms (or about 497 days).

See Also
settimer, timer

Example
This program measures the execution time in ms of an operation.

#include <ctools.h>

void main(void)
{
 unsigned long startTime, endTime;

 startTime = readStopwatch();
 /* operation to be timed */
 endTime = readStopwatch();

 printf("Execution time = %lu ms\r\n", endTime - startTime);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

327

readThermistor
Read Controller Ambient Temperature

Syntax
#include <ctools.h>
int readThermistor(unsigned scale);

Description
The readThermistor function returns the temperature measured at the main board in the
specified temperature scale. If the temperature scale is not recognized, the temperature is
returned in Celsius. The scale may be T_CELSIUS, T_FAHRENHEIT, T_KELVIN or
T_RANKINE.

The temperature is rounded to the nearest degree.

Example
#include <ctools.h>

void checkTemperature(void)
{
 int temperature;

 temperature = readThermistor(T_FAHREHEIT);
 if (temperature < 0)
 fprintf(com1, “It’s COLD!!!\r\n”);
 else if (temperature > 90)
 fprintf(com1, “It’s HOT!!!\r\n”);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

328

readTimerVariable
Read ISaGRAF Timer Variable

Syntax
#include <ctools.h>
BOOLEAN readTimerVariable(unsigned char * varName, unsigned long * value)

Description
This function returns the current value in milliseconds of the specified timer variable. The
maximum value returned is 86399999 ms (or 24 hours). The specified timer may be active or
stopped.

The variable is specified by its name expressed as a character string. The name is case
insensitive (The ISaGRAF Dictionary also treats variable names as case insensitive). If the
variable is found, TRUE is returned and the variable value is written to the unsigned long
value pointed to by value. If the variable is not found or if the ISaGRAF Symbols Status is
invalid, FALSE is returned and the current value is left unchanged. The ISaGRAF Symbols
Status is invalid if the Application TIC code download and Application Symbols download do
not share the same symbols CRC checksum.

Notes
This function requires the ISaGRAF Application Symbols to be downloaded to the controller
in addition to the Application TIC code. This function provides a convenient method to
access ISaGRAF variables by name; however, because the variable name must be looked
up in the ISaGRAF variable list each call, the performance of the function may be slow for
large numbers of variables. For better performance, use the variable’s network address and
the dbase function.

The IO_SYSTEM system resource must be requested before calling this function.

See Also
writeTimerVariable

Example
This program displays the contents of the timer variable named “Time1”.

#include <ctools.h>

void main(void)
{
 BOOLEAN status;
 unsigned long value;

 request_resource(IO_SYSTEM);
 status = readTimerVariable("Time1", &value);
 release_resource(IO_SYSTEM);

 printf("status = %u, Time1 = %lu\r\n", status, value);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

329

read_timer_info
Get Timer Status

Syntax
#include <ctools.h>
struct timer_info read_timer_info(unsigned timer);

Description
The read_timer_info function gets status information for the timer specified by timer.

The read_timer_info function returns a timer_info structure with information about the
specified timer. Refer to the description of the timer_info structure for information about
the fields.

See Also
settimer

Example
This program starts a pulse train and displays timer information.
#include <ctools.h>
void main(void)
{
 struct timer_info tinfo;

 /* Start Pulse Train */
 interval(10, 1); /* multiplier = 1 */
 pulse_train(3, 5, 10, 500);
 while (timer(10) > 100) /* wait a while */
 {
 /* Allow other tasks to execute */
 release_processor();
 }
 /* Display Status of Pulse Train */
 tinfo = read_timer_info(10);
 printf("Pulses Remaining: %d\r\n",
 tinfo.time/2);
 printf("Output Channel: %d\r\n",
 tinfo.channel);
 printf("Output Bit: %d\r\n", tinfo.bit);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

330

receive_message
Receive a Message

Syntax
#include <ctools.h>
envelope *receive_message(void);

Description
The receive_message function reads the next available envelope from the message queue
for the current task. If the queue is empty, the task is blocked until a message is sent to it.

The receive_message function returns a pointer to an envelope structure.

Notes
Refer to the Real Time Operating System section for more information on messages.

See Also
send_message, poll_message

Example
This task waits for messages, then prints their contents. The envelopes received are
returned to the operating system.
#include <ctools.h>

void show_message(void)
{
 envelope *msg;
 while (TRUE)
 {
 msg = receive_message();
 printf("Message data %ld\r\n", msg->data);
 deallocate_envelope(msg);
 }
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

331

release_processor
Release Processor to other Tasks

Syntax
#include <ctools.h>
void release_processor(void);

Description
The release_processor function releases control of the CPU to other tasks. Other tasks of
the same priority will run. Tasks of the same priority run in a round-robin fashion, as each
releases the processor to the next.

Notes
The release_processor function must be called in all idle loops of a program to allow other
tasks to execute.

Release all resources in use by a task before releasing the processor.

Refer to the Real Time Operating System section for more information on tasks and task
scheduling.

See Also
release_resource

ISaGRAF C Tools User and Reference Manual
May 8, 2007

332

release_resource
Release Control of a Resource

Syntax
#include <ctools.h>
void release_resource(int resource);

Description
The release_resource function releases control of the resource specified by resource.

If other tasks are waiting for the resource, the highest priority of these tasks, is given the
resource and is made ready to execute. If no tasks are waiting the resource is made
available, and the current task continues to run.

Notes
Refer to the Real Time Operating System section for more information on resources.

See Also
request_resource, poll_resource

Example
See the example for the request_resource function.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

333

report_error
Set Task Error Code

Syntax
#include <ctools.h>
void report_error(int error);

Description
The report_error functions sets the error code for the current task to error. An error code is
maintained for each executing task.

Notes
This function is used in sharable I/O routines to return error codes to the task using the
routine.

Some functions supplied with the Microtec C compiler report errors using the global variable
errno. The error code in this variable may be written over by another task before it can be
used.

See also:
check_error

ISaGRAF C Tools User and Reference Manual
May 8, 2007

334

request_resource
Obtain Control of a Resource

Syntax
#include <ctools.h>
void request_resource(int resource);

Description
The request_resource function obtains control of the resource specified by resource. If the
resource is in use, the task is blocked until it is available.

Notes
Use the request_resource function to control access to non-sharable resources. Refer to
the Real Time Operating System section for more information on resources.

See Also
release_resource, poll_resource

Example
This code fragment obtains the dynamic memory resource, allocates some memory, and
releases the resource.
#include <ctools.h>

void task(void)
{
 unsigned *ptr;

 /* ... code here */

 request_resource(DYNAMIC_MEMORY);
 ptr = (unsigned *)malloc((size_t)100);
 release_resource(DYNAMIC_MEMORY);

 /* ... more code here */
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

335

resetAllABSlaves
Erase All AB Slave Responses

Syntax
#include <ctools.h>
unsigned resetAllABSlaves(FILE *stream);

Description
The resetAllABSlaves function is used to send a protocol message to all slaves
communicating on the specified port to erase all responses not yet polled. stream specifies
the serial port.

This function applies to the DF1 Half Duplex protocols only. The function returns FALSE if
the protocol currently installed on the specified serial port is not an DF1 Half Duplex
protocol, otherwise it returns TRUE.

Notes
The purpose of this command is to re-synch slaves with the master if the master has lost
track of the order of responses to poll. This situation may exist if the master has been power
cycled, for example. This function should not normally be needed if polling is done using the
sample polling function "poll_for_response" shown in the example for the master_message
function.

Example
This program segment will cause all slaves communicating on the com2 serial port to erase
all pending responses.
#include <protocol.h>

resetAllABSlaves(com2);

ISaGRAF C Tools User and Reference Manual
May 8, 2007

336

resetClockAlarm
Acknowledge and Reset Real Time Clock Alarm

Syntax
#include <ctools.h>
void resetClockAlarm(void);

Description
Real time clock alarms occur once after being set. The alarm setting remains in the real time
clock. The alarm must be acknowledged before it can occur again.

The resetClockAlarm function acknowledges the last real time clock alarm and re-enables
the alarm. Calling the function after waking up from an alarm will reset the alarm for 24 hours
after the current alarm.

Notes
This function should be called after a real time clock alarm occurs. This includes after
returning from the sleep function with a return code of WS_REAL_TIME_CLOCK.

The alarm time is not changed by this function.

The IO_SYSTEM resource must be requested before calling this function.

See Also
setClockAlarm, getClockAlarm, alarmIn

Example
See the example for the installClockHandler function.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

337

route
Redirect Standard I/O Streams

Syntax
#include <ctools.h>
void route(FILE *logical, FILE *hardware);

Description
The route function redirects the I/O streams associated with stdout, stdin, and stderr.
These streams are routed to the com1 serial port. logical specifies the stream to redirect.
hardware specifies the hardware device which will output the data. It may be one of com1,
com2, com3 or com4.

Notes
This function has a global effect, so all tasks must agree on the routing.

Output streams must be redirected to a device that supports output. Input streams must be
redirected to a device that supports input.

Example
This program segment will redirect all input, output and errors to the com2 serial port.
#include <ctools.h>

route(stderr, com2); /* send errors to com2 */
route(stdout, com2); /* send output to com2 */
route(stdin, com2); /* get input from com2 */

ISaGRAF C Tools User and Reference Manual
May 8, 2007

338

runLed
Control Run LED State

Syntax
#include <ctools.h>
void runLed(unsigned state);

Description
The runLed function sets the run light LED to the specified state. state may be one of the
following values.

LED_ON turn on run LED
LED_OFF turn off run LED

The run LED remains in the specified state until changed, or until the controller is reset.

Notes
The ladder logic interpreter controls the state of the RUN LED. If ladder logic is installed in
the controller, a C program should not use this function.

The SCADASense series of programmable controllers do not have a Run Led.

Example
#include <ctools.h>

void main(void)
{
 runLed(LED_ON); /* program is running */
 /* ... the rest of the code */
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

339

save
Write Parameters to EEPROM

Syntax
#include <ctools.h>
void save(unsigned section);

Description
The save function writes data from RAM to the specified section of the EEPROM. Valid
values for section are EEPROM_EVERY and EEPROM_RUN.

Notes
The EEPROM_EVERY section is loaded whenever the controller is reset. It is not used.

The EEPROM_RUN section is loaded from EEPROM to RAM when the controller is reset
and the Run/Service switch is in the RUN position. Otherwise default information is used for
this section. This section contains:

• serial port configuration tables

• protocol configuration tables

• store and forward enable flags

• LED power settings

• make for wake-up sources

• execution period on power-up for PID controllers

• HART modem settings

The IO_SYSTEM resource must be requested before calling this function.

See Also
load

Example
This code fragment saves all parameters.
request_resource(IO_SYSTEM);
save(EEPROM_RUN);
release_resource(IO_SYSTEM);

ISaGRAF C Tools User and Reference Manual
May 8, 2007

340

searchRoutingTable
Search Routing Table

Syntax
#include <ctools.h>
BOOLEAN searchRoutingTable (
 UINT16 Address
 routingTable *pRoute
);

Description
This function searches the routing table for a specific DNP address.

pRoute is a pointer to a table entry; it is written by this function.

The return value is TRUE if pRoute was successfully written or FALSE otherwise.

Notes
DNP must be enabled before calling this function in order to create the DNP configuration.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

341

send_message
Send a Message to a Task

Syntax
#include <ctools.h>
void send_message(envelope *penv);

Description
The send_message function sends a message to a task. The envelope specified by penv
contains the message destination, type and data.

The envelope is placed in the destination task's message queue. If the destination task is
waiting for a message it is made ready to execute.

The current task is not blocked by the send_message function.

Notes
Envelopes are obtained from the operating system with the allocate_envelope function.

See Also
receive_message, poll_message, allocate_envelope

Example
This program creates a task to display a message and sends a message to it.
#include <ctools.h>

void showIt(void)
{
 envelope *msg;

 while (TRUE)
 {
 msg = receive_message();
 printf("Message data %ld\r\n", msg->data);
 deallocate_envelope(msg);
 }
}

void main(void)
{
 envelope *msg; /* message pointer */
 unsigned tid; /* task ID */

 tid = create_task(showIt, 2, APPLICATION, 1);
 msg = allocate_envelope();
 msg->destination = tid;
 msg->type = MSG_DATA;
 msg->data = 1002;
 send_message(msg);

 /* wait for ever so that main and other
 APPLICATION tasks won’t end */
 while(TRUE)
 {
 /* Allow other tasks to execute */

ISaGRAF C Tools User and Reference Manual
May 8, 2007

342

 release_processor();
 }
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

343

setABConfiguration
Set DF1 Protocol Configuration

Syntax
#include <ctools.h>
int setABConfiguration(FILE *stream, struct ABConfiguration *ABConfig);

Description
The setABConfiguration function sets DF1 protocol configuration parameters. stream
specifies the serial port. ABConfig references an DF1 protocol configuration structure. Refer
to the description of the ABConfiguration structure for an explanation of the fields.

The setABConfiguration function returns TRUE if the settings were changed. It returns
FALSE if stream does not point to a valid serial port.

See Also
getABConfiguration

Example
This code fragment changes the maximum protected address to 7000. This is the maximum
address accessible by protected DF1 commands received on com2.
#include <ctools.h>
struct ABConfiguration ABConfig;

getABConfiguration(com2, &ABConfig);
ABConfig.max_protected_address = 7000;
setABConfiguration(com2, &ABConfig);

ISaGRAF C Tools User and Reference Manual
May 8, 2007

344

setBootType
Set Controller Boot Up State

Syntax
#include <ctools.h>
void setBootType(unsigned type);

Description
The setBootType function defines the controller boot up type code. This function is used by
the operating system start up routines. It should not be used in an application program.

Notes
The value set with this function can be read with the getBootType function.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

345

setclock
Set Real Time Clock

Syntax
#include <ctools.h>
void setclock(struct clock *now);

Description
The setclock function sets the real time clock. now references a clock structure containing
the time and date to be set.

Refer to the Structures and Types section for a description of the fields. All fields of the
clock structure must be set with valid values for the clock to operate properly.

Notes
The IO_SYSTEM resource must be requested before calling this function.

See Also
getclock

Example
This function switches the clock to daylight savings time.
#include <ctools.h>
#include <primitiv.h>

void daylight(void)
{
 struct clock now;

 request_resource(IO_SYSTEM);
 now = getclock();
 now.hour = now.hour + 1 % 24;
 setclock(&now);
 request_resource(IO_SYSTEM);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

346

setClockAlarm
Set the Real Time Clock Alarm

Syntax
#include <ctools.h>
unsigned setClockAlarm(ALARM_SETTING alarm);

Description
The setClockAlarm function configures the real time clock to alarm at the specified alarm
setting. The ALARM_SETTING structure alarm specifies the time of the alarm. Refer to the
rtc.h section for a description of the fields in the structure.

The function returns TRUE if the alarm can be configured, and FALSE if there is an error in
the alarm setting. No change is made to the alarm settings if there is an error.

Notes
An alarm will occur only once, but remains set until disabled. Use the resetClockAlarm
function to acknowledge an alarm that has occurred and re-enable the alarm for the same
time.

Set the alarm type to AT_NONE to disable an alarm. It is not necessary to specify the hour,
minute and second when disabling the alarm.

The IO_SYSTEM resource must be requested before calling this function.

See Also
alarmIn, getclock

Example
#include <ctools.h>

/* --
 wakeUpAtEight

 The wakeUpAtEight function sets an alarm
 for 08:00 AM and puts the controller into
 sleep mode.
 -- */

void wakeUpAtEight(void)
{
 ALARM_SETTING alarm;
 unsigned wakeSource;

 /* Set alarm for 08:00 */
 alarm.type = AT_ABSOLUTE;
 alarm.hour = 8;
 alarm.minute = 0;
 alarm.second = 0;

 /* Set the alarm */
 request_resource(IO_SYSTEM);
 setClockAlarm(alarm)
 release_resource(IO_SYSTEM);

ISaGRAF C Tools User and Reference Manual
May 8, 2007

347

 /* Sleep until alarm ignoring other wake ups */
 do
 {
 request_resource(IO_SYSTEM);
 wakeSource = sleep();
 release_resource(IO_SYSTEM);
 } until (wakeSource == WS_REAL_TIME_CLOCK);

 /* Disable the alarm */
 alarm.type = AT_NONE;
 request_resource(IO_SYSTEM);
 setClockAlarm(alarm);
 release_resource(IO_SYSTEM);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

348

setdbase
Write Value to I/O Database

Syntax
#include <ctools.h>
void setdbase(unsigned type, unsigned address, int value);

Description
The setdbase function writes value to the I/O database. type specifies the method of
addressing the database. address specifies the location in the database. If the specified
address is not valid then nothing is done. The table below shows the valid address types
and ranges.

Type Address Ranges Register
Size

MODBUS 00001 to NUMCOIL
10001 to 10000 + NUMSTATUS
30001 to 30000 + NUMINPUT
40001 to 40000 + NUMHOLDING

1 bit
1 bit
16 bit
16 bit

LINEAR 0 to NUMLINEAR-1 16 bit

Notes
When writing to LINEAR digital addresses, value is a bit mask which writes data to 16 1-bit
registers at once. If any of these 1-bit registers is invalid, only the valid registers are written.

Refer to the Functions Overview section for more information.

If the specified address is in the valid range but it has not been defined by an application,
then the address also is invalid. An address is defined if any of the following is true:

1. The address has been assigned as the Network Address for an ISaGRAF Dictionary
variable.

2. The address is defined in a database handler installed by a C or C++ application.

3. The address is within the default range of the Permanent Non-volatile Modbus
Registers: 40001 to 40000 + NUMHOLDING_PERMANENT, and 00001 to
NUMCOIL_PERMANENT.

When this function is called, the specified address is searched for under these three
categories in the order listed above until the address is found. If the address is not found,
nothing is done. If the address is defined in more than one of these categories, the first
occurrence of the address in the order listed is always used.

Refer to the section Permanent Non-Volatile Modbus Registers for details on potential
addressing conflicts during application downloading.

The IO_SYSTEM resource must be requested before calling this function.

Example
#include <ctools.h>

void main(void)
{
 request_resource(IO_SYSTEM);

ISaGRAF C Tools User and Reference Manual
May 8, 2007

349

 setdbase(MODBUS, 40001, 102);

 /* Turn ON the first 16 coils */
 setdbase(LINEAR, START_COIL, 255);

 /* Write to a 16 bit register */
 setdbase(LINEAR, 3020, 240);

 /* Write to the 12th holding register */
 setdbase(LINEAR, START_HOLDING, 330);

 /* Write to the 12th holding register */
 setdbase(LINEAR, START_HOLDING, 330);

 release_resource(IO_SYSTEM);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

350

setDTR
Control RS232 Port DTR Signal

Syntax
#include <ctools.h>
void setDTR(FILE *stream, unsigned state);

Description
The setDTR function sets the status of the DTR signal line for the communication port
specified by stream. When state is SIGNAL_ON the DTR line is asserted. When state is
SIGNAL_OFF the DTR line is de-asserted.

Notes
The DTR line follows the normal RS232 voltage levels for asserted and de-asserted states.

This function is only useful on RS232 ports. The function has no effect if the serial port is not
an RS232 port.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

351

setIOErrorIndication
Set I/O Module Error Indication

Syntax
#include <ctools.h>
void setIOErrorIndication(unsigned state);

Description
The setIOErrorIndication function sets the I/O module error indication to the specified
state. If set to TRUE, the I/O module communication status is reported in the controller
status register and Status LED. If set to FALSE, the I/O module communication status is not
reported.

Notes
Refer to the 5203/4 System Manual or the SCADAPack System Manual for further
information on the Status LED and Status Output.

See Also
getIOErrorIndication

ISaGRAF C Tools User and Reference Manual
May 8, 2007

352

setPowerMode
Set Current Power Mode

Syntax
#include <ctools.h>
BOOLEAN setPowerMode(UCHAR cpuPower, UCHAR lan, UCHAR usbPeripheral, UCHAR
usbHost);

Description
The setPowerMode function returns TRUE if the new settings were successfully applied.
The setPowerMode function allows for power savings to be realized by controlling the power
to the LAN port, changing the clock speed, and individually controlling the host and
peripheral USB power. The following table of macros summarizes the choices available.

Macro Meaning
PM_CPU_FULL The CPU is set to run at full speed
PM_CPU_REDUCED The CPU is set to run at a reduced speed
PM_CPU_SLEEP The CPU is set to sleep mode
PM_LAN_ENABLED The LAN is enabled
PM_LAN_DISABLED The LAN is disabled
PM_USB_PERIPHERAL_ENABLED The USB peripheral port is enabled
PM_USB_PERIPHERAL_DISABLED The USB peripheral port is disabled
PM_USB_HOST_ENABLED The USB host port is enabled
PM_USB_HOST_DISABLED The USB host port is disabled
PM_NO_CHANGE The current value will be used

TRUE is returned if the requested change was made, otherwise FALSE is returned.

The application program may view the current power mode with the getPowerMode
function.

See Also
getPowerMode, setWakeSource, getWakeSource

ISaGRAF C Tools User and Reference Manual
May 8, 2007

353

set_port
Set Serial Port Configuration

Syntax
#include <ctools.h>
void set_port(FILE *stream, struct pconfig *settings);

Description
The set_port function sets serial port communication parameters. stream must specify one
of com1, com2, com3 or com4. settings references a serial port configuration structure.
Refer to the description of the pconfig structure for an explanation of the fields.

Notes
If the serial port settings are the same as the current settings, this function has no effect.

The serial port is reset when settings are changed. All data in the receive and transmit
buffers are discarded.

To optimize performance, minimize the length of messages on com3 and com4. Examples
of recommended uses for com3 and com4 are for local operator display terminals, and for
programming and diagnostics using the ISaGRAF program.

The IO_SYSTEM resource must be requested before calling this function.

See Also
get_port

Example
This code fragment changes the baud rate on com2 to 19200 baud.
#include <ctools.h>
struct pconfig settings;

get_port(com2, &settings);
settings.baud = BAUD19200;
request_resource(IO_SYSTEM);
set_port(com2, &settings);
release_resource(IO_SYSTEM);

This code fragment sets com2 to the same settings as com1.
#include <serial.h>
#include <primitiv.h>
struct pconfig settings;

request_resource(IO_SYSTEM);
set_port(com2, get_port(com1, &settings));
release_resource(IO_SYSTEM);

ISaGRAF C Tools User and Reference Manual
May 8, 2007

354

setProgramStatus
Get Program Status Flag

Syntax
#include <ctools.h>
void setProgramStatus(unsigned status);

Description
The setProgramStatus function sets the application program status flag. The status flag is
set to NEW_PROGRAM when a cold boot of the controller is performed, or a program is
downloaded to the controller from the program loader.

Notes
There are two pre-defined values for the flag. However the application program may make
whatever use of the flag it sees fit.

NEW_PROGRAM indicates the program is newly loaded.

PROGRAM_EXECUTED indicates the program has been executed.

See Also
getProgramStatus

Example
See the example for getProgramStatus.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

355

set_protocol
Set Communication Protocol Configuration

Syntax
#include <ctools.h>
int set_protocol(FILE *stream, struct prot_settings *settings);

Description
The set_protocol function sets protocol parameters. stream must specify one of com1,
com2, com3 or com4. settings references a protocol configuration structure. Refer to the
description of the prot_settings structure for an explanation of the fields.

The set_protocol function returns TRUE if the settings were changed. It returns FALSE if
there is an error in the settings or if the protocol fails to start.

The IO_SYSTEM resource must be requested before calling this function.

Notes
Setting the protocol type to NO_PROTOCOL ends the protocol task and frees the stack
resources allocated to it.

Be sure to add a call to modemNotification when writing a custom protocol.

See Also
get_protocol, start_protocol, modemNotification

Example
This code fragment changes the station number of the com2 protocol to 4.
#include <ctools.h>
struct prot_settings settings;

get_protocol(com2, &settings);
settings.station = 4;
request_resource(IO_SYSTEM);
set_protocol(com2, &settings);
release_resource(IO_SYSTEM);

ISaGRAF C Tools User and Reference Manual
May 8, 2007

356

setProtocolSettings
Set Protocol Extended Addressing Configuration

Syntax
#include <ctools.h>
BOOLEAN setProtocolSettings(

FILE * stream,
PROTOCOL_SETTINGS * settings
);

Description
The setProtocolSettings function sets protocol parameters for a serial port. This function
supports extended addressing.

The function has two arguments: stream is one of com1, com2, com3 or com4; and settings,
a pointer to a PROTOCOL_SETTINGS structure. Refer to the description of the structure for
an explanation of the parameters.

The function returns TRUE if the settings were changed. It returns FALSE if the stream is
not valid, or if the protocol fails to start.

The IO_SYSTEM resource must be requested before calling this function.

Notes
Setting the protocol type to NO_PROTOCOL ends the protocol task and frees the stack
resources allocated to it.

Be sure to add a call to modemNotification when writing a custom protocol.

Extended addressing is available on the Modbus RTU and Modbus ASCII protocols only.
See the TeleBUS Protocols User Manual for details.

See Also
getProtocolSettings, start_protocol, get_protocol, set_protocol, modemNotification

Example
This code fragment sets protocol parameters for the com2 serial port.
#include <ctools.h>
PROTOCOL_SETTINGS settings;

settings.type = MODBUS_RTU;
settings.station = 1234;
settings.priority = 3;
settings.SFMessaging = FALSE;
settings.mode = AM_extended;

request_resource(IO_SYSTEM);
setProtocolSettings(com2, &settings);
release_resource(IO_SYSTEM);

ISaGRAF C Tools User and Reference Manual
May 8, 2007

357

setProtocolSettingsEx
Sets extended protocol settings for a serial port.

Syntax
#include <ctools.h>
BOOLEAN setProtocolSettingsEx(
 FILE * stream,
 PROTOCOL_SETTINGS_EX * pSettings
);

Description
The setProtocolSettingsEx function sets protocol parameters for a serial port. This
function supports extended addressing and Enron Modbus parameters.

The function has two arguments:

• stream specifies the serial port. It is one of com1, com2, com3 or com4.

• pSettings is a pointer to a PROTOCOL_SETTINGS_EX structure. Refer to the
description of the structure for an explanation of the parameters.

The function returns TRUE if the settings were changed. It returns FALSE if the stream is not
valid, or if the protocol fails to start.

Notes
The IO_SYSTEM resource must be requested before calling this function.

Setting the protocol type to NO_PROTOCOL ends the protocol task and frees the stack
resources allocated to it.

Be sure to add a call to modemNotification when writing a custom protocol.

Extended addressing and the Enron Modbus station are available on the Modbus RTU and
Modbus ASCII protocols only. See the TeleBUS Protocols User Manual for details.

See Also
getProtocolSettingsEx

Example
This code fragment sets protocol parameters for the com2 serial port.
#include <ctools.h>
PROTOCOL_SETTINGS_EX settings;

settings.type = MODBUS_RTU;
settings.station = 1;
settings.priority = 3;
settings.SFMessaging = FALSE;
settings.mode = AM_standard;
settings.enronEnabled = TRUE;
settings.enronStation = 4;

request_resource(IO_SYSTEM);

ISaGRAF C Tools User and Reference Manual
May 8, 2007

358

setProtocolSettingsEx(com2, &settings);
release_resource(IO_SYSTEM);

ISaGRAF C Tools User and Reference Manual
May 8, 2007

359

setSFTranslation
Write Store and Forward Translation

Syntax
#include <ctools.h>
struct SFTranslationStatus setSFTranslation(unsigned index, struct

SFTranslation translation);

Description
The setSFTranslation function writes translation into the store and forward address
translation table at the location specified by index. translation consists of two port and station
address pairs. The function checks for invalid translations; if the translation is not valid it is
not stored.

The function returns a SFTranslationStatus structure. It is described in the Structures and
Types section. The code field of the structure is set to one of the following. If there is an
error, the index field is set to the location of the translation that is not valid.

Result code Meaning
SF_VALID All translations are valid
SF_NO_TRANSLATION The entry defines re-transmission of the same

message on the same port
SF_PORT_OUT_OF_RANGE One or both of the serial port indexes is not valid
SF_STATION_OUT_OF_RANG
E

One or both of the stations is not valid

SF_ALREADY_DEFINED The translation already exists in the table
SF_INDEX_OUT_OF_RANGE The entry referenced by index does not exist in the

table

Notes
The TeleBUS Protocols User Manual describes store and forward messaging mode.

Writing a translation with both stations set to station 256 can clear a translation in the table.
Station 256 is not a valid station.

The protocol type and communication parameters may differ between serial ports. The store
and forward messaging will translate the protocol messages.

The IO_SYSTEM resource must be requested before calling this function.

See Also
getSFTranslation, clearSFTranslationTable, checkSFTranslationTable

Example
This program enables store and forward messaging on com1 and com2. Two entries are
placed into the store and forward table.

Note that the communication parameters and protocol type on com2 are different from
com1.
#include <ctools.h>
void main(void)
{
 struct prot_settings settings;

ISaGRAF C Tools User and Reference Manual
May 8, 2007

360

 struct pconfig portset;
 struct SFTranslation translation;
 struct SFTranslationStatus status;

 request_resource(IO_SYSTEM);

 /* Set communication parameters for port 1 */
 portset.baud = BAUD9600;
 portset.duplex = FULL;
 portset.parity = NONE;
 portset.data_bits = DATA8;
 portset.stop_bits = STOP1;
 portset.flow_rx = DISABLE;
 portset.flow_tx = DISABLE;
 portset.type = RS232;
 portset.timeout = 600;
 set_port(com1, &portset);

 /* Set communication parameters for port 2 */
 portset.baud = BAUD1200;
 portset.duplex = HALF;
 portset.parity = NONE;
 portset.data_bits = DATA8;
 portset.stop_bits = STOP1;
 portset.flow_rx = DISABLE;
 portset.flow_tx = DISABLE;
 portset.type = RS232;
 portset.timeout = 600;
 set_port(com2, &portset);

 /* Set up the translation table */
 clearSFTranslationTable();

 translation.portA = portIndex(com1);
 translation.stationA = 2;
 translation.portB = portIndex(com2);
 translation.stationB = 3;
 setSFTranslation(0, translation);

 translation.portA = portIndex(com1);
 translation.stationA = 4;
 translation.portB = portIndex(com2);
 translation.stationB = 5;
 setSFTranslation(1, translation);

 /* Enable store and forward messaging */
 settings.type = MODBUS_RTU;
 settings.station = 1;
 settings.priority = 3;
 settings.SFMessaging = TRUE;
 set_protocol(com1, &settings);

 settings.type = MODBUS_ASCII;
 settings.station = 1;
 settings.priority = 3;
 settings.SFMessaging = TRUE;
 set_protocol(com2, &settings);

 release_resource(IO_SYSTEM);

 /* Check if everything is correct */
 status = checkSFTranslationTable();
 if (status.code != SF_VALID)
 {
 /* Blink the error code on the status LED */
 setStatus(status.code);
 }

ISaGRAF C Tools User and Reference Manual
May 8, 2007

361

 else
 {
 setStatus(0);
 }

 while (TRUE)
 {
 /* main loop of application program */
 }
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

362

setStatus
Set Controller Status Code

Syntax
#include <ctools.h>
void setStatus(unsigned code);

Description
The setStatus function sets the controller status code. When the status code is non-zero,
the STAT LED blinks a binary sequence corresponding to the code. If code is zero, the
STAT LED turns off.

Notes
The status output opens if code is non-zero. Refer to the System Hardware Manual for
more information. The SCADASense series of programmable controllers do not have a
Status output.

The binary sequence consists of short and long flashes of the error LED. A short flash of
1/10th of a second indicates a binary zero. A binary one is indicated by a longer flash of
approximately 1/2 of a second. The least significant digit is output first. As few bits as
possible are displayed – all leading zeros are ignored. There is a two second delay between
repetitions.

The Register Assignment uses bits 0 and 1 of the status code. It is recommended that the
setStatusBit function be used instead of setStatus to prevent modification of these bits.

See Also
setStatusBit, clearStatusBit, getStatusBit

ISaGRAF C Tools User and Reference Manual
May 8, 2007

363

setStatusBit
Set Bits in Controller Status Code

Syntax
#include <ctools.h>
unsigned setStatusBit(unsigned bitMask);

Description
The setStatusBit function sets the bits indicated by bitMask in the controller status code.
When the status code is non-zero, the STAT LED blinks a binary sequence corresponding to
the code. If code is zero, the STAT LED turns off.

The function returns the value of the status register.

Notes
The status output opens if code is non-zero. Refer to the System Hardware Manual for
more information. The SCADASense series of programmable controllers do not have a
status output.

The binary sequence consists of short and long flashes of the error LED. A short flash of
1/10th of a second indicates a binary zero. A binary one is indicated by a longer flash of
approximately 1/2 of a second. The least significant digit is output first. As few bits as
possible are displayed – all leading zeros are ignored. There is a two second delay between
repetitions.

The Register Assignment uses bits 0 and 1 of the status code.

See Also
clearStatusBit, clearStatusBit, getStatusBit

ISaGRAF C Tools User and Reference Manual
May 8, 2007

364

settimer
Set a Timer

Syntax
#include <ctools.h>
void settimer(unsigned timer, unsigned value);

Description
The settimer function loads value into timer specified by timer. The timer counts down at the
timer interval frequency.

The settimer function can reset a timer before it has finished counting down.

Notes
The settimer function cancels delayed digital I/O actions started with the timeout, pulse
and pulse_train functions..

See Also
interval

Example
This code fragment sets timer 8 for 10 seconds, using an interval of 0.5 seconds.
interval(8, 5); /* interval = 1/2 second */
settimer(8, 20); /* 10 second timer */

This code fragment sets timer 9 for 60 seconds using an interval of 1.0 seconds.
interval(9, 10); /* interval = 1 second */
settimer(9, 60); /* 60 second timer */

ISaGRAF C Tools User and Reference Manual
May 8, 2007

365

setWakeSource
Sets Conditions for Waking from Sleep Mode

Syntax
#include <ctools.h>
void setWakeSource(unsigned enableMask);

Description
The setWakeSource routine enables and disables sources that will wake up the processor. It
enables all sources specified by enableMask. All other sources are disabled.

Valid wake up sources are listed below. Multiple sources may be OR’ed together.

• WS_NONE

• WS_ALL

• WS_REAL_TIME_CLOCK

• WS_INTERRUPT_INPUT

• WS_LED_POWER_SWITCH

• WS_COUNTER_0_OVERFLOW

• WS_COUNTER_1_OVERFLOW

• WS_COUNTER_2_OVERFLOW

Notes
Specifying WS_NONE as the wake up source will prevent the controller from waking, except
by a power on reset.

See Also
getWakeSource, sleep

Example
The code fragments below show how to enable and disable wake up sources.
/* Wake up on all sources */
setWakeSource(WS_ALL);

/* Enable wake up on real time clock only */
setWakeSource(WS_REAL_TINE_CLOCK);

ISaGRAF C Tools User and Reference Manual
May 8, 2007

366

signal_event
Signal Occurrence of Event

Syntax
#include <ctools.h>
void signal_event(int event_number);

Description
The signal_event function signals that the event_number event has occurred.

If there are tasks waiting for the event, the highest priority task is made ready to execute.
Otherwise the event flag is incremented. Up to 255 occurrences of an event will be
recorded. The current task is blocked of there is a higher priority task waiting for the event.

Notes
Refer to the Real Time Operating System section for more information on events.

Valid events are numbered 0 to RTOS_EVENTS - 1. Any events defined in ctools.h are not
valid events for use in an application program.

See Also

Example
This program creates a task to wait for an event, then signals the event.
#include <ctools.h>

void task1(void)
{
 while(TRUE)
 {
 wait_event(20);
 printf("Event 20 occurred\r\n");
 }
}

void main(void)
{
 create_task(task1, 3, APPLICATION, 4);

 while(TRUE)
 {
 /* body of main task loop */
 /* The body of this main task is intended solely for
signaling the event waited for by task1. Normally main would be busy
with more
 important things to do otherwise the code in
 task1 could be executed within main’s wait
 loop */

 settimer(0, 10); /* 1 second interval */
 while (timer(0)) /* wait for 1 s */
 {
 /* Allow other tasks to execute */
 release_processor();
 }
 signal_event(20);

ISaGRAF C Tools User and Reference Manual
May 8, 2007

367

 }
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

368

sleep
Suspend Controller Operation

Syntax
#include <ctools.h>
unsigned sleep(void);

Description
The sleep function puts the controller into a sleep mode. Sleep mode reduces the power
consumption to a minimum by halting the microprocessor clock and shutting down the power
supply. All programs halt until the controller resumes execution. All output points turn off
while the controller is in sleep mode.

The SCADAPack 100 and SCADASense series of programmable controllers do not support
sleep mode.

The controller resumes execution under the conditions shown in the table below. The
application program may disable some wake up conditions. If a wake up condition is
disabled the controller will not resume execution when the condition occurs. The table below
shows the effect of disabling the various wake up conditions. All wake up conditions will be
enabled by default. Refer to the description of the setWakeSource function for details.

Condition Wake Up Effects Disable
Allowed

Disable Effect

Hardware
Reset

Application programs
execute from start of
program.

No Not applicable.

External
Interrupt

Program execution
continues from point
sleep function was
executed.

Yes Interrupt input ignored

Real Time
Clock Alarm

Program execution
continues from point
sleep function was
executed.

Yes Alarm ignored

LED Power
Button

Program execution
continues from point
sleep function was
executed.

Yes LED power button
ignored

Hardware
Counter
Rollover

Software portion of
counter is incremented.
Program execution
continues from point
sleep function was
executed.

Yes Software portion of
counter is incremented.
Controller returns to
sleep mode.

The sleep function returns a wake up code indicating which condition caused the controller
to resume execution.

Return Code Condition
WS_REAL_TIME_CLOCK real time clock alarm
WS_INTERRUPT_INPUT rising edge of interrupt input
WS_LED_POWER_SWITCH LED Power switch pushed

ISaGRAF C Tools User and Reference Manual
May 8, 2007

369

Return Code Condition
WS_COUNTER_0_OVERFLO
W

roll over of low word of counter 0 (every 65536
transitions)

WS_COUNTER_1_OVERFLO
W

roll over of low word of counter 1 (every 65536
transitions)

WS_COUNTER_2_OVERFLO
W

roll over of low word of counter 2 (every 65536
transitions)

The IO_SYSTEM resource must be requested before calling this function.

See Also
setclock, alarmIn, setWakeSource, getWakeSource

Example
See the examples for the setClockAlarm and alarmIn functions.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

370

start_protocol
Enable Protocol Task

Syntax
#include <ctools.h>
int start_protocol(FILE *stream);

Description
The start_protocol function enables a protocol task on the port specified by stream. The
protocol configuration settings stored in memory are used.

The start_protocol function returns TRUE if the protocol started and FALSE if there was an
error.

Notes
The start_protocol function is used by the system start up routine. Application programs
should use the set_protocol function to control protocol operation.

See Also
get_protocol, set_protocol

ISaGRAF C Tools User and Reference Manual
May 8, 2007

371

startup_task
Identify Start Up Task

Syntax
#include <ctools.h>
void *startup_task(void);

Description
The startup_task function returns the address of the system or application start up task.

Notes
This function is used by the reset routine. It is normally not used in an application program.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

372

startTimedEvent
Enable Signaling of a Regular Event

Syntax
#include <ctools.h>
unsigned startTimedEvent(unsigned event, unsigned interval);

Description
The startTimedEvent function causes the specified event to be signaled at the specified
interval. interval is measured in multiples of 0.1 seconds. The task that is to receive the
events should use the wait_event or poll_event functions to detect the event.

The function returns TRUE if the event can be signaled. If interval is 0 or if the event number
is not valid, the function returns FALSE and no change is made to the event signaling (a
previously enabled event will not be changed).

Notes
Valid events are numbered 0 to RTOS_EVENTS - 1. Any events defined in ctools.h are not
valid events for use in an application program.

The application program should stop the signaling of timed events when the task which
waits for the events is ended. If the event signaling is not stopped, events will continue to
build up in the queue until a function waits for them. The example below shows a simple
method using the installExitHandler function.

See Also
endTimedEvent, signal_event

Example
The program prints the time every 10 seconds.
#include <string.h>
#include <ctools.h>

#define TIME_TO_PRINT 15

/* --
 The shutdown function stops the signalling
 of TIME_TO_PRINT events.
 -- */
void shutdown(void)
{
 endTimedEvent(TIME_TO_PRINT);
}

/* --
 The main function sets up signalling of
 a timed event, then waits for that event.
 The time is printed each time the event
 occurs.
 -- */
void main(void)
{
 struct prot_settings settings;
 struct clock now;

ISaGRAF C Tools User and Reference Manual
May 8, 2007

373

 TASKINFO taskStatus;

 /* Disable the protocol on serial port 1 */
 settings.type = NO_PROTOCOL;
 settings.station = 1;
 settings.priority = 3;
 settings.SFMessaging = FALSE;
 request_resource(IO_SYSTEM);
 set_protocol(com1, &settings);
 release_resource(IO_SYSTEM);

 /* set up task exit handler to stop
 signalling of events when this task ends */
 taskStatus = getTaskInfo(0);
 installExitHandler(taskStatus.taskID, shutdown);

 /* start timed event */
 startTimedEvent(TIME_TO_PRINT, 100);

 while (TRUE)
 {
 wait_event(TIME_TO_PRINT);
 request_resource(IO_SYSTEM);
 now = getclock();
 release_resource(IO_SYSTEM);
 fprintf(com1, "Time %02u:%02u:%02u\r\n", now.hour, now.minute,

now.second);
 }
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

374

timer
Read a Timer

Syntax
#include <ctools.h>
unsigned timer(unsigned timer);

Description
The timer function returns the time remaining in timer. timer must be in the range 0 to 31. A
zero value means that the timer has finished counting down.

If the timer number is invalid, the function returns 0 and the task's error code is set to
TIMER_BADTIMER.

Notes

See Also
interval, settimer

Example
This code fragment sets a timer, then displays the time remaining until it reaches 0.
#include <ctools.h>

interval(0, 1);
settimer(0, 10);
while (timer(0))
 printf("Time %d\r\n", timer(0));

ISaGRAF C Tools User and Reference Manual
May 8, 2007

375

timeoutCancel
Cancel Timeout Notification Function

Syntax
#include <ctools.h>
unsigned timeoutCancel(unsigned timeoutID);

Description
This function cancels a timeout notification that was requested with the timeoutRequest
function. No notification will be sent. The envelope provided when the request was made is
de-allocated.

The function has one parameter: the ID of the timeout request. This is the value returned by
the timeoutRequest function.

The function returns TRUE if the request was cancelled and FALSE if the timeout ID is not
currently active.

Notes
The function will return FALSE if the timeout notification has already been made. In this case
the envelope will not be de-allocated as it has already been given to the destination task.
That task is responsible for de-allocating the envelope.

This function cannot be called from a task exit handler. See installExitHandler
function for details of exit handlers.

See Also
timeoutRequest

Example
See the example for the timeoutRequest function.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

376

timeoutRequest
Request Timeout Notification Function

Syntax
#include <ctools.h>
unsigned timeoutRequest(unsigned delay, envelope * pEnvelope);

Description
This function requests a timeout notification. A message is sent to the task specified in the
envelope after the specified delay.

A task receives the message using the receive_message or poll_message function. The
envelope received by the receiving task has the following characteristics.

• The source field is set to the task ID of the task that called timeoutRequest.

• The message type field is set to MSG_TIMEOUT.

• The message data is set to the timeout ID.

The function has two parameters: the length of time in tenths of a second before the timeout
occurs, and a pointer to an envelope. The resolution of the delay is –0.1/+0 seconds. The
notification message is sent delay-1 to delay tenths of a second after the function call.

The function returns the ID of the timeout request. This can be used to identify and cancel
the timeout. The timeout ID changes with each call to the function. Although the ID will
eventually repeat, it is sufficiently unique to allow the timeout notification to be identified.
This can be useful in identifying notifications received by a task and matching them with
requests.

Notes
Do not de-allocate the envelope passed to timeoutRequest in the calling function. After a
call to timeoutRequest either use timeoutCancel to free the envelope if the timeout
has not occurred yet, or call deallocate_envelope in the destination task after the
envelope has been delivered.

The timeout may be cancelled using the timeoutCancel function.

The task that receives the notification message must de-allocate the envelope after
receiving it.

No checking is done on the task ID. The caller must ensure it is valid.

If the delay is zero, the message is sent immediately, provided an envelope is available.

This function cannot be called from a task exit handler. See installExitHandler
function for details of exit handlers.

See Also
timeoutCancel

ISaGRAF C Tools User and Reference Manual
May 8, 2007

377

Example
This example shows a task that acts on messages received from other tasks and when a
timeout occurs. The task waits for a message for up to 10 seconds. If it does not receive
one, it proceeds with other processing anyway.

The task shows how to deal with notifications from older timeout requests. These occur
when the notification was send before the timeout was cancelled. The task ignores timeout
notifications that don’t match the last timeout request.
#include <mriext.h>
#include <ctools.h>

void aTask(void)
{
envelope * pEnvelope;
TASKINFO thisTask;
unsigned timeoutID;
unsigned done;

/* get the task ID for this task */
thisTask = getTaskInfo(0);

while (TRUE)
 {
 /* allocate an envelope and address it to this task */
 pEnvelope = allocate_envelope();
 pEnvelope->destination = thisTask.taskID;

 /* request a timeout in 10 seconds */
 timeoutID = timeoutRequest(100, pEnvelope);

 done = FALSE;
 while (!done)
 {
 /* wait for a message or a timeout */
 pEnvelope = receive_message();

 /* determine the message type */
 if (pEnvelope->type == MSG_TIMEOUT)
 {
 /* does it match the last request? */
 if (pEnvelope->data == timeoutID)
 {
 /* accept the timeout */
 done = TRUE;
 }
 }
 else
 {
 /* cancel the timeout */
 timeoutCancel(timeoutID);
 done = TRUE;

 /* process message from other task here */
 }

 /* return the envelope to the RTOS */
 deallocate_envelope(pEnvelope);
 }

ISaGRAF C Tools User and Reference Manual
May 8, 2007

378

 /* proceed with rest of task’s actions here */
 }
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

379

wait_event
Wait for an Event

Syntax
#include <ctools.h>
void wait_event(int event);

Description
The wait_event function tests if an event has occurred. If the event has occurred, the event
counter is decrements and the function returns. If the event has not occurred, the task is
blocked until it does occur.

Notes
Refer to the Real Time Operating System section for more information on events.

Valid events are numbered 0 to RTOS_EVENTS - 1. Any events defined in primitiv.h are not
valid events for use in an application program.

See Also
signal_event, startTimedEvent

Example
See the example for the signal_event function.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

380

wd_auto
Automatic Watchdog Timer Mode

Syntax
#include <ctools.h>
void wd_auto(void);

Description
The wd_auto function gives control of the watchdog timer to the operating system. The
timer is automatically updated by the system.

Notes
Refer to the Functions Overview section for more information.

See Also
wd_manual, wd_pulse

Example
See the example for the wd_manual function

ISaGRAF C Tools User and Reference Manual
May 8, 2007

381

wd_manual
Manual Watchdog Timer Mode

Syntax
#include <ctools.h>
void wd_manual(void);

Description
The wd_manual function takes control of the watchdog timer.

Notes
The application program must retrigger the watchdog timer at least every 0.5 seconds using
the wd_pulse function, to prevent an controller reset.

Refer to the Functions Overview section for more information.

See Also
wd_auto, wd_pulse

Example
This program takes control of the watchdog timer for a critical section of code, then returns it
to the control of the operating system.

#include <ctools.h>

void main(void)
{
 wd_manual();
 wd_pulse();
 /* ... code executing in less than 0.5 s */
 wd_pulse();
 /* ... code executing in less than 0.5 s */
 wd_auto()
 /* ... as much code as you wish */
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

382

wd_pulse
Retrigger Watchdog Timer

Syntax
#include <ctools.h>
void wd_pulse(void);

Description
The wd_pulse function retriggers the watchdog timer.

Notes
The wd_pulse function must execute at least every 0.5 seconds, to prevent an controller
reset, if the wd_manual function has been executed.

Refer to the Functions Overview section for more information.

See Also
wd_auto, wd_manual

Example
See the example for the wd_manual function

ISaGRAF C Tools User and Reference Manual
May 8, 2007

383

writeBoolVariable
Write to ISaGRAF Boolean Variable

Syntax
#include <ctools.h>
BOOLEAN writeBoolVariable(unsigned char * varName, unsigned char value)

Description
This function writes to the specified boolean variable.

The variable is specified by its name expressed as a character string. The name is case
insensitive (The ISaGRAF Dictionary also treats variable names as case insensitive). If the
variable is found, TRUE is returned and the specified value is written to the variable. If the
variable is not found or if the ISaGRAF Symbols Status is invalid, nothing is done and
FALSE is returned. The ISaGRAF Symbols Status is invalid if the Application TIC code
download and Application Symbols download do not share the same symbols CRC
checksum.

TRUE is written when value is any non-zero value. FALSE is written when value is 0.

Notes
This function requires the ISaGRAF Application Symbols to be downloaded to the controller
in addition to the Application TIC code. This function provides a convenient method to
access ISaGRAF variables by name; however, because the variable name must be looked
up in the ISaGRAF variable list each call, the performance of the function may be slow for
large numbers of variables. For better performance, use the variable’s network address and
the setdbase function.

The IO_SYSTEM system resource must be requested before calling this function.

See Also
setdbase, readBoolVariable

Example
This program writes a TRUE state to the boolean variable named “Switch1”.

#include <ctools.h>

void main(void)
{
 BOOLEAN status;

 request_resource(IO_SYSTEM);
 status = writeBoolVariable("Switch1", TRUE);
 release_resource(IO_SYSTEM);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

384

writeIntVariable
Write to ISaGRAF Integer Variable

Syntax
#include <ctools.h>
BOOLEAN writeIntVariable(unsigned char * varName, signed long value)

Description
This function writes to the specified integer variable.

The variable is specified by its name expressed as a character string. The name is case
insensitive (The ISaGRAF Dictionary also treats variable names as case insensitive). If the
variable is found, TRUE is returned and the specified signed long value is written to the
variable. If the variable is not found or if the ISaGRAF Symbols Status is invalid, nothing is
done and FALSE is returned. The ISaGRAF Symbols Status is invalid if the Application TIC
code download and Application Symbols download do not share the same symbols CRC
checksum.

Notes
This function requires the ISaGRAF Application Symbols to be downloaded to the controller
in addition to the Application TIC code. This function provides a convenient method to
access ISaGRAF variables by name; however, because the variable name must be looked
up in the ISaGRAF variable list each call, the performance of the function may be slow for
large numbers of variables. For better performance, use the variable’s network address and
the setdbase function.

The IO_SYSTEM system resource must be requested before calling this function.

See Also
setdbase, readIntVariable

Example
This program writes the value 120,000 to the integer variable named “Pressure1”.

#include <ctools.h>

void main(void)
{
 BOOLEAN status;

 request_resource(IO_SYSTEM);
 status = writeIntVariable("Pressure1", 120000);
 release_resource(IO_SYSTEM);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

385

writeRealVariable
Write to ISaGRAF Real Variable

Syntax
#include <ctools.h>
BOOLEAN writeRealVariable(unsigned char * varName, float value)

Description
This function writes to the specified real (i.e. floating point) variable.

The variable is specified by its name expressed as a character string. The name is case
insensitive (The ISaGRAF Dictionary also treats variable names as case insensitive). If the
variable is found, TRUE is returned and the specified floating-point value is written to the
variable. If the variable is not found or if the ISaGRAF Symbols Status is invalid, nothing is
done and FALSE is returned. The ISaGRAF Symbols Status is invalid if the Application TIC
code download and Application Symbols download do not share the same symbols CRC
checksum.

Notes
This function requires the ISaGRAF Application Symbols to be downloaded to the controller
in addition to the Application TIC code. This function provides a convenient method to
access ISaGRAF variables by name; however, because the variable name must be looked
up in the ISaGRAF variable list each call, the performance of the function may be slow for
large numbers of variables. For better performance, use the variable’s network address and
the setdbase function.

The IO_SYSTEM system resource must be requested before calling this function.

See Also
setdbase, readRealVariable

Example
This program writes the value 25.607 to the real variable named “Flowrate”.

#include <ctools.h>

void main(void)
{
 BOOLEAN status;

 request_resource(IO_SYSTEM);
 status = writeRealVariable("Flowrate", 25.607);
 release_resource(IO_SYSTEM);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

386

writeMsgVariable
Write to ISaGRAF Message Variable

Syntax
#include <ctools.h>
BOOLEAN writeMsgVariable(unsigned char * varName, unsigned char * msg)

Description
This function writes to the specified message variable.

The variable is specified by its name expressed as a character string. The name is case
insensitive (The ISaGRAF Dictionary also treats variable names as case insensitive). If the
variable is found, TRUE is returned and the specified string is written to the message
variable. If the variable is not found or if the ISaGRAF Symbols Status is invalid, nothing is
done and FALSE is returned. The ISaGRAF Symbols Status is invalid if the Application TIC
code download and Application Symbols download do not share the same symbols CRC
checksum.

The pointer msg must point to a character string large enough to hold the maximum length
declared for the specified message variable plus two length bytes and a null termination byte
(i.e. max declared length + 3).

When writing to the message variable, all bytes are copied except the first byte (max length
byte) and the last byte (null termination byte). ISaGRAF message variables have the
following format:

Byte
Location

Description

0 Maximum length as declared in ISaGRAF Dictionary (1 to 255)

1 Current Length = location of first null byte (0 to maximum length)

2 First message data byte

…

max + 1 Last byte in message buffer

max + 2 Null termination byte (Terminates a message having the maximum
length.)

Notes
This function requires the ISaGRAF Application Symbols to be downloaded to the controller
in addition to the Application TIC code. This function provides a convenient method to
access ISaGRAF variables by name; however, because the variable name must be looked
up in the ISaGRAF variable list each call, the performance of the function may be slow for
large numbers of variables. For better performance, use the variable’s network address and
the setdbase function.

The IO_SYSTEM system resource must be requested before calling this function.

See Also
setdbase, readMsgVariable

ISaGRAF C Tools User and Reference Manual
May 8, 2007

387

Example
This program writes the message “Warning” to the message variable named “TextData”.
TextData has a maximum length of 10 bytes and a current length of 7 bytes.

#include <ctools.h>

void main(void)
{
 BOOLEAN status;
 unsigned char msg[13];

 msg[0] = 10;
 msg[1] = 7;
 msg[2] = 'W';
 msg[3] = 'a';
 msg[4] = 'r';
 msg[5] = 'n';
 msg[6] = 'i';
 msg[7] = 'n';
 msg[8] = 'g';
 msg[9] = 0;
 msg[10] = 0;
 msg[11] = 0;
 msg[12] = 0;

 request_resource(IO_SYSTEM);
 status = writeMsgVariable("TextData", msg);
 release_resource(IO_SYSTEM);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

388

writeTimerVariable
Write to ISaGRAF Timer Variable

Syntax
#include <ctools.h>
BOOLEAN writeTimerVariable(unsigned char * varName, unsigned long value)

Description
This function writes a value in milliseconds to the specified timer variable. The maximum
value that may be written is 86399999 ms (or 24 hours). If the value is greater than
86399999 ms, the value modulus 86399999 is written to the timer variable. The specified
timer may be active or stopped.

The variable is specified by its name expressed as a character string. The name is case
insensitive (The ISaGRAF Dictionary also treats variable names as case insensitive). If the
variable is found, TRUE is returned and the specified unsigned long value is written to the
variable. If the variable is not found or if the ISaGRAF Symbols Status is invalid, nothing is
done and FALSE is returned. The ISaGRAF Symbols Status is invalid if the Application TIC
code download and Application Symbols download do not share the same symbols CRC
checksum.

Notes
This function requires the ISaGRAF Application Symbols to be downloaded to the controller
in addition to the Application TIC code. This function provides a convenient method to
access ISaGRAF variables by name; however, because the variable name must be looked
up in the ISaGRAF variable list each call, the performance of the function may be slow for
large numbers of variables. For better performance, use the variable’s network address and
the setdbase function.

The IO_SYSTEM system resource must be requested before calling this function.

See Also
setdbase, readTimerVariable

Example
This program writes the value 10000 ms to the timer variable named “Delay”.

#include <ctools.h>

void main(void)
{
 BOOLEAN status;

 request_resource(IO_SYSTEM);
 status = writeTimerVariable("Delay", 10000);
 release_resource(IO_SYSTEM);
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

389

writeRoutingTableEntry
Write Routing Table Entry

Syntax
#include <ctools.h>
BOOLEAN writeRoutingTableEntry (
 UINT16 index,
 UINT16 dnpAddress,
 UINT16 commPort,
 UINT16 DataLinkRetries,
 UINT16 DataLinkTimeout
);

Description
This function writes an entry in the DNP routing table.

Notes
DNP must be enabled before calling this function in order to create the DNP configuration.

The function returns TRUE if successful, FALSE otherwise.

Example
See the example in the dnpSendUnsolicited section.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

390

ISaGRAF C Tools Macro Definitions

A

Macro Definition
AB Specifies Allan-Bradley database addressing.
AB_PARSER System resource: DF1 protocol message parser.
AB_FULL_BCC Specifies the DF1 Full Duplex protocol emulation for

the serial port. (BCC checksum)
AB_FULL_CRC Specifies the DF1 Full Duplex protocol emulation for

the serial port. (CRC checksum)
AB_HALF_BCC Specifies the DF1 Half Duplex protocol emulation for

the serial port. (BCC checksum)
AB_HALF_CRC Specifies the DF1 Half Duplex protocol emulation for

the serial port. (CRC checksum)
AB_PROTOCOL DF1 protocol firmware option
AD_BATTERY Internal AD channel connected to lithium battery
AD_THERMISTOR Internal AD channel connected to thermistor
ADDITIVE Additive checksum
AIN_END Number of last analog input channel.
AIN_START Number of first analog input channel.
AIO_BADCHAN Error code: bad analog input channel specified.
AIO_SUPPORTED If defined indicates analog I/O supported.
AIO_TIMEOUT Error code: input device did not respond.
AO Variable name: alarm output address
AOUT_END Number of last analog output channel.
AOUT_START Number of first analog output channel.
APPLICATION Specifies an application type task. All application tasks

are terminated by the end_application function.
AT_ABSOLUTE Specifies a fixed time of day alarm.
AT_NONE Disables alarms

B

Macro Definition
BACKGROUND System event: background I/O requested. The

background I/O task uses this event. It should not be
used in an application program.

BASE_TYPE_MASK Controller type bit mask
BAUD110 Specifies 110-baud port speed.
BAUD115200 Specifies 115200-baud port speed.
BAUD1200 Specifies 1200-baud port speed.
BAUD150 Specifies 150-baud port speed.
BAUD19200 Specifies 19200-baud port speed.
BAUD2400 Specifies 2400-baud port speed.
BAUD300 Specifies 300-baud port speed.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

391

Macro Definition
BAUD38400 Specifies 38400-baud port speed.
BAUD4800 Specifies 4800-baud port speed.
BAUD57600 Specifies 57600-baud port speed.
BAUD600 Specifies 600-baud port speed.
BAUD75 Specifies 75-baud port speed.
BAUD9600 Specifies 9600-baud port speed.
BYTE_EOR Byte-wise exclusive OR checksum

C

Macro Definition
CA Variable name: cascade setpoint source
CLASS0_FLAG specifies a flag for enabling DNP Class 0 data
CLASS1_FLAG specifies a flag for enabling DNP Class 1 data
CLASS2_FLAG specifies a flag for enabling DNP Class 2 data
CLASS3_FLAG specifies a flag for enabling DNP Class 3 data
CLOSED Specifies switch is in closed position
COLD_BOOT Cold-boot switch depressed when CPU was reset.
com1 Points to a file object for the com1 serial port.
COM1_FREE System event: com1 transmit buffer is no longer full.

This event is used internally by the serial I/O driver.
COM1_RCVR System event: indicates activity on com1 receiver. The

meaning depends on the character handler installed.
com2 Points to a file object for the com2 serial port.
COM2_FREE System event: com2 transmit buffer is no longer full.

This event is used internally by the serial I/O driver.
COM2_RCVR System event: indicates activity on com2 receiver. The

meaning depends on the character handler installed.
com3 Points to a file object for the com3 serial port.
COM3_RCVR System event: indicates activity on com3 receiver. The

meaning depends on the character handler installed.
com4 Points to a file object for the com4serial port.
COM4_RCVR System event: indicates activity on com4 receiver. The

meaning depends on the character handler installed.
COUNTER_CHANNELS Specifies number of 5000 Series counter input

channels
COUNTER_END Number of last counter input channel
COUNTER_START Number of first counter input channel
COUNTER_SUPPORTED If defined indicates counter I/O hardware supported.
CPU_CLOCK_RATE Frequency of the system clock in cycles per second
CR Variable name: control register
CRC_16 CRC-16 type CRC checksum (reverse algorithm)
CRC_CCITT CCITT type CRC checksum (reverse algorithm)

D

Macro Definition
DATA_SIZE Maximum length of the HART command or response

field.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

392

Macro Definition
DATA7 Specifies 7 bit world length.
DATA8 Specifies 8 bit word length.
DB Variable name: deadband
DB_BADSIZE Error code: out of range address specified
DB_BADTYPE Error code: bad database addressing type specified
DB_OK Error code: no error occurred
DE_BadConfig The modem configuration structure contains an error
DE_BusyLine The phone number called was busy
DE_CallAborted A call in progress was aborted by the user
DE_CarrierLost The connection to the remote site was lost (modem

reported NO CARRIER). Carrier is lost for a time
exceeding the S10 setting in the modem. Phone lines
with call waiting are very susceptible to this condition.

DE_FailedToConnect The modem could not connect to the remote site
DE_InitError Modem initialization failed (the modem may be turned

off)
DE_NoDialTone Modem did not detect a dial tone or the S6 setting in

the modem is too short.
DE_NoError No error has occurred
DE_NoModem The serial port is not configured as a modem (port type

must be RS232_MODEM). Or no modem is connected
to the controller serial port.

DE_NotInControl The serial port is in use by another modem function or
has answered an incoming call.

DIN_END Number of last regular digital input channel.
DIN_START Number of first regular digital input channel
DIO_SUPPORTED If defined indicates digital I/O hardware supported.
DISABLE Specifies flow control is disabled.
DNP Specifies the DNP protocol for the serial port
DO Variable name: decrease output
DOUT_END Number of last regular digital output channel.
DOUT_START Number of first regular digital output channel
DS_Calling The controller is making a connection to a remote

controller
DS_Connected The controller is connected to a remote controller
DS_Inactive The serial port is not in use by a modem
DS_Terminating The controller is ending a connection to a remote

controller.
DUTY_CYCLE Specifies timer is generating square wave output.
DYNAMIC_MEMORY System resource: all memory allocation functions such

as malloc, alloc, and zalloc.

E

Macro Definition
EEPROM_EVERY EEPROM section loaded to RAM on every CPU reboot
EEPROM_RUN EEPROM section loaded to RAM on RUN type boots

only.
EEPROM_SUPPORTED If defined, indicates that there is an EEPROM in the

controller.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

393

Macro Definition
ENABLE Specifies flow control is enabled.
ER Variable name: error
EVEN Specifies even parity.
EX Variable name: automatic execution period
EXTENDED_DIN_END Number of last extended digital input channel.
EXTENDED_DIN_START Number of first extended digital input channel
EXTENDED_DOUT_END Number of last extended digital output channel.
EXTENDED_DOUT_START Number of first extended digital output channel

F

Macro Definition
FOPEN_MAX Redefinition of macro from stdio.h
FORCE_MULTIPLE_COILS Modbus function code
FORCE_SINGLE_COIL Modbus function code
FULL Specifies full duplex.

G

Macro Definition
GASFLOW Gas Flow calculation firmware option
GFC_4202 SCADASense 4202 DR controller
GFC_4202DS SCADASense 4202 DS controller

H

Macro Definition
HALF Specifies half duplex.

I

Macro Definition
IO_SYSTEM System resource for all I/O hardware functions.

L

Macro Definition
LED_OFF Specifies LED is to be turned off.
LED_ON Specifies LED is to be turned on.
LINEAR Specifies linear database addressing.
LOAD_MULTIPLE_REGISTERS Modbus function code
LOAD_SINGLE_REGISTER Modbus function code
LOCAL_COUNTERS Number of 5203/4 counter inputs

ISaGRAF C Tools User and Reference Manual
May 8, 2007

394

M

Macro Definition
MAX_PRIORITY The maximum task priority.
MM_BAD_ADDRESS Master message status: invalid database

address
MM_BAD_FUNCTION Master message status: invalid function code
MM_BAD_LENGTH Master message status: invalid message length
MM_BAD_SLAVE Master message status: invalid slave station

address
MM_NO_MESSAGE Master message status: no message was sent.
MM_PROTOCOL_NOT_SUPPORTED Master message status: selected protocol is not

supported.
MM_RECEIVED Master message status: response received.
MM_RECEIVED_BAD_LENGTH Master message status: response received with

the incorrect amount of data.
MM_SENT Master message status: message was sent.
MODBUS Specifies Modbus database addressing.
MODBUS_ASCII Specifies the Modbus ASCII protocol emulation

for the serial port.
MM_EOT Master message status: DF1 slave response

was an EOT message
MM_WRONG_RSP Master message status: DF1 slave response did

not match command sent.
MM_CMD_ACKED Master message status: DF1 half duplex

command has been acknowledged by slave –
Master may now send poll command.

MM_EXCEPTION_ADDRESS Master message status: Modbus slave returned
an address exception.

MM_EXCEPTION_DEVICE_BUSY Master message status: Modbus slave returned
a Device Busy exception.

MM_EXCEPTION_DEVICE_FAILURE Master message status: Modbus slave returned
a Device Failure exception.

MM_EXCEPTION_FUNCTION Master message status: Modbus slave returned
a function exception.

MM_EXCEPTION_VALUE Master message status: Modbus slave returned
a value exception.

MODBUS_PARSER System resource: Modbus protocol message
parser.

MODBUS_RTU Specifies the Modbus RTU protocol emulation for
the serial port.

MODEM_CMD_MAX_LEN Maximum length of the modem initialization
command string

MODEM_MSG System event: new modem message generated.
MSG_DATA Specifies the data field in an envelope contains a

data value.
MSG_POINTER Specifies the data field in an envelope contains a

pointer.

N

ISaGRAF C Tools User and Reference Manual
May 8, 2007

395

Macro Definition
NEVER System event: this event will never occur.
NEW_PROGRAM Application program is newly loaded.
NO_ERROR Error code: indicates no error has occurred.
NO_PROTOCOL Specifies no communication protocol for the serial

port.
NONE Specifies no parity.
NORMAL Specifies normal count down timer.
NORMAL Specifies normal count down timer.
NOTYPE Specifies serial port type is not known.
NUMAB Number of registers in the Allan-Bradley database.
NUMCOIL Number of registers in the Modbus coil section.
NUMCOIL_PERMANENT Number of coil registers in the Permanent Non-Volatile

Modbus Registers section.
NUMHOLDING Number of registers in the Modbus holding register

section.
NUMHOLDING_PERMANENT Number of holding registers in the Permanent Non-

Volatile Modbus Registers section.
NUMINPUT Number of registers in the Modbus input register

section.
NUMLINEAR Number of registers in the linear database.
NUMSTATUS Number of registers in the Modbus status section.

O

Macro Definition
ODD Specifies odd parity.
OPEN Specifies switch is in open position

P
Macro Definition
PC_FLOW_RX_RECEIVE_STOP Receiver disabled after receipt of a message.
PC_FLOW_RX_XON_XOFF Receiver Xon/Xoff flow control.
PC_FLOW_TX_IGNORE_CTS Transmitter flow control ignores CTS.
PC_FLOW_TX_XON_XOFF Transmitter Xon/Xoff flow control.
PC_PROTOCOL_RTU_FRAMING Modbus RTU framing.
PHONE_NUM_MAX_LEN Maximum length of the phone number string
PM_CPU_FULL_CLOCK The CPU is set to run at full speed
PM_CPU_REDUCED_CLOCK The CPU is set to run at a reduced speed
PM_CPU_SLEEP The CPU is set to sleep mode
PM_LAN_ENABLED The LAN is enabled
PM_LAN_DISABLED The LAN is disabled
PM_USB_PERIPHERAL_ENABLED The USB peripheral port is enabled
PM_USB_PERIPHERAL_DISABLED The USB peripheral port is disabled
PM_USB_HOST_ENABLED The USB host port is enabled
PM_USB_HOST_DISABLED The USB host port is disabled
PM_UNAVAILABLE The status of the device could not be read.
PM_NO_CHANGE The current value will be used
PROGRAM_EXECUTED Application program has been executed.
PROGRAM_NOT_LOADED The requested application program is not loaded.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

396

R

Macro Definition
READ_COIL_STATUS Modbus function code
READ_EXCEPTION_STATUS Modbus function code
READ_HOLDING_REGISTER Modbus function code
READ_INPUT_REGISTER Modbus function code
READ_INPUT_STATUS Modbus function code
READSTATUS enum ReadStatus
REPORT_SLAVE_ID Modbus function code
RS232 Specifies serial port is an RS-232 port.
RS232_COLLISION_AVOIDAN
CE

Specifies serial port is RS232 and uses CD for
collision avoidance.

RS232_MODEM Specifies serial port is an RS-232 dial-up modem.
RS485_4WIRE Specifies serial port is a 4 wire RS-485 port.
RTOS_ENVELOPES Number of RTOS envelopes.
RTOS_EVENTS Number of RTOS events.
RTOS_PRIORITIES Number of RTOS task priorities.
RTOS_RESOURCES Number of RTOS resource flags.
RTOS_TASKS Number of RTOS tasks.
RUN Run/Service switch is in RUN position.

S

Macro Definition
S_MODULE_FAILURE Status LED code for I/O module communication failure
S_NORMAL Status LED code for normal status
SCADAPACK SCADAPack controller
SCADAPACK_LIGHT SCADAPack LIGHT controller
SCADAPACK_PLUS SCADAPack PLUS controller
SERIAL_PORTS Number of serial ports.
SERVICE Run/Service switch is in SERVICE position.
SF_ALREADY_DEFINED Result code: translation is already defined in the table
SF_INDEX_OUT_OF_RANGE Result code: invalid translation table index
SF_NO_TRANSLATION Result code: entry does not define a translation
SF_PORT_OUT_OF_RANGE Result code: serial port is not valid
SF_STATION_OUT_OF_RANGE Result code: station number is not valid
SF_TABLE_SIZE Number of entries in the store and forward table
SF_VALID Result code: translation is valid
SIGNAL_CTS I/O line bit mask: clear to send signal
SIGNAL_CTS Matches status of CTS input.
SIGNAL_DCD I/O line bit mask: carrier detect signal
SIGNAL_DCD Matches status of DCD input.
SIGNAL_OFF Specifies a signal is de-asserted
SIGNAL_OH I/O line bit mask: off hook signal
SIGNAL_OH Not supported – forced low (1).

ISaGRAF C Tools User and Reference Manual
May 8, 2007

397

Macro Definition
SIGNAL_ON Specifies a signal is asserted
SIGNAL_RING I/O line bit mask: ring signal
SIGNAL_RING Not supported – forced low (0).
SIGNAL_VOICE I/O line bit mask: voice/data switch signal
SIGNAL_VOICE Not supported – forced low (0).
SLEEP_MODE_SUPPORTED Defined if sleep function is supported
SMARTWIRE_5201_5202 SmartWIRE 5201 and 5202 controllers
STACK_SIZE Size of the machine stack.
START_COIL Start of the coils section in the linear database.
START_HOLDING Start of the holding register section in the linear

database.
START_INPUT Start of the input register section in the linear

database.
START_STATUS Start of the status section in the linear database.
STARTUP_
APPLICATION

Specifies the application start up task.

STARTUP_SYSTEM Specifies the system start up task.
STOP1 Specifies 1 stop bit.
STOP2 Specifies 2 stop bits.
SYSTEM Specifies a system type task. System tasks are not

terminated by the end_application function.

T

Macro Definition
T_CELSIUS Specifies temperatures in degrees Celsius
T_FAHRENHEIT Specifies temperatures in degrees Fahrenheit
T_KELVIN Specifies temperatures in degrees Kelvin
T_RANKINE Specifies temperatures in degrees Rankine
TELESAFE_6000_16EX TeleSAFE 6000-16EX controller
TELESAFE_MICRO_16 TeleSAFE Micro16 controller
TIMED_OUT Specifies timer is has reached zero.
TIMEOUT Specifies timer is generating timed output change.
TIMER_BADADDR Error code: invalid digital I/O address
TIMER_BADINTERVAL Error code: invalid timer interval
TIMER_BADTIMER Error code: invalid timer
TIMER_BADVALUE Error code: invalid time value
TIMER_MAX Number of last valid software timer.
TS_EXECUTING Task status indicating task is executing.
TS_READY Task status indicating task is ready to execute
TS_WAIT_
RESOURCE

Task status indicating task is blocked waiting for a
resource

TS_WAIT_ENVELOPE Task status indicating task is blocked waiting for an
envelope

TS_WAIT_EVENT Task status indicating task is blocked waiting for an
event

TS_WAIT_MESSAGE Task status indicating task is blocked waiting for a
message

ISaGRAF C Tools User and Reference Manual
May 8, 2007

398

V

Macro Definition
VI_DATE_SIZE Number of characters in version information date field

W

Macro Definition
WRITESTATUS enum WriteStatus
WS_ALL All wake up sources enabled
WS_COUNTER_0_OVERFLOW Bit mask to enable counter 0 overflow as wake up

source
WS_COUNTER_1_OVERFLOW Bit mask to enable counter 1 overflow as wake up

source
WS_COUNTER_2_OVERFLOW Bit mask to enable counter 2 overflow as wake up

source
WS_INTERRUPT_INPUT Bit mask to enable interrupt input as wake up source
WS_LED_POWER_SWITCH Bit mask to enable LED power switch as wake up

source
WS_NONE No wake up source enabled
WS_REAL_TIME_CLOCK Bit mask to enable real time clock as wake up source
WS_UNDEFINED Undefined wake up source

ISaGRAF C Tools User and Reference Manual
May 8, 2007

399

ISaGRAF C Tools Structures and
Types

ABConfiguration
The ABConfiguration structure defines settings for DF1 communication protocol.

/* DF1 Protocol Configuration */
struct ABConfiguration {
 unsigned min_protected_address;
 unsigned max_protected_address;
 };

• min_protected_address is the minimum allowable DF1 physical 16-bit address
allowed in all protected commands. The default value is 0.

• max_protected_address is the maximum allowable DF1 physical 16-bit address
allowed in all protected commands. The default value is NUMAB.

ADDRESS_MODE
The ADDRESS_MODE enumerated type describes addressing modes for communication
protocols.
typedef enum addressMode_t
 {
 AM_standard = 0,
 AM_extended
 }
 ADDRESS_MODE;

• AM_standard returns standard Modbus addressing. Standard addressing allows 255

stations and is compatible with standard Modbus devices

• AM_extended returns extended addressing. Extended addressing allows 65534
stations.

ALARM_SETTING
The ALARM_SETTING structure defines a real time clock alarm setting.
typedef struct alarmSetting_tag {
 UINT16 type;
 UINT16 hour;
 UINT16 minute;
 UINT16 second;
 } ALARM_SETTING;

• type specifies the type of alarm. It may be the AT_NONE or AT_ABSOLUTE macro.

• hour specifies the hour at which the alarm will occur.

• minute specifies the minute at which the alarm will occur.

• second specifies the second at which the alarm will occur.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

400

clock
The clock structure contains time and date for reading or writing the real time clock.
struct clock {
 UINT16 year;
 UINT16 month;
 UINT16 day;
 UINT16 dayofweek;
 UINT16 hour;
 UINT16 minute;
 UINT16 second;
 };

• year is the current year. It is two digits in the range 00 to 99.

• month is the current month. It is in the range 1 to 12.

• day is the current day. It is in the range 1 to 31.

• dayofweek is the current day of the week. It is in the range 1 to 7. 1 = Sunday, 2 =
Monday…7 = Saturday.

• hour is the current hour. It is in the range 00 to 23.

• minute is the current minute. It is in the range 00 to 59.

• second is the current second. It is in the range 00 to 59.

DATALOG_CONFIGURATION
The data log configuration structure holds the configuration of the data log. Each record in a
data log may hold up to eight fields. Not all the fields are used if fewer than eight variables
are declared.

The amount of memory used for a record depends on the number of fields in the record and
the size of each field. Use the datalogRecordSize function to determine the memory
needed for each record.
typedef struct datalogConfiguration_type {
 UINT16 records; /* # of records */
 UINT16 fields; /* # of fields per record */
 DATALOG_VARIABLE typesOfFields[MAX_NUMBER_OF_FIELDS];
} DATALOG_CONFIGURATION;

DATALOG_STATUS
The data log status enumerated type is used to report status information.
typedef enum {
 DLS_CREATED, /* data log created */
 DLS_BADID, /* invalid log ID */
 DLS_EXISTS, /* log already exists */
 DLS_NOMEMORY, /* insufficient memory for log */
 DLS_BADCONFIG /* invalid configuration */
 DLS_BADSEQUENCE /* sequence number not in use */
} DATALOG_STATUS;

DATALOG_VARIABLE
The data log variable enumerated type is specify the type and size of variables to be
recorded in the log.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

401

typedef enum {
 DLV_UINT16 = 0, /* 16 bit unsigned integer */
 DLV_INT16, /* 16 bit signed integer */
 DLV_UINT32, /* 32 bit unsigned integer */
 DLV_INT32, /* 32 bit signed integer */
 DLV_FLOAT, /* 32 bit floating point */
 DLV_CMITIME, /* 64 bit time */
 DLV_DOUBLE /* 64 bit floating point */
} DATALOG_VARIABLE;

DialError
The DialError enumerated type defines error responses from the dial-up modem
functions and may have one of the following values.
enum DialError
{
 DE_NoError = 0,
 DE_BadConfig,
 DE_NoModem,
 DE_InitError,
 DE_NoDialTone,
 DE_BusyLine,
 DE_CallAborted,
 DE_FailedToConnect,
 DE_CarrierLost,
 DE_NotInControl
 DE_CallCut
};
• DE_NoError returns no error has occurred

• DE_BadConfig returns the modem configuration structure contains an error

• DE_NoModem returns the serial port is not configured as a modem (port type must be
RS232_MODEM). Or no modem is connected to the controller serial port.

• DE_InitError returns modem initialization failed (the modem may be turned off)

• DE_NoDialTone returns modem did not detect a dial tone or the S6 setting in the
modem is too short.

• DE_BusyLine returns the phone number called was busy

• DE_CallAborted returns a call in progress was aborted by the user

• DE_FailedToConnect returns the modem could not connect to the remote site

• DE_CarrierLost returns the connection to the remote site was lost (modem reported
NO CARRIER). Carrier is lost for a time exceeding the S10 setting in the modem. Phone
lines with call waiting are very susceptible to this condition.

• DE_NotInControl returns the serial port is in use by another modem function or has
answered an incoming call.

• DE_CallCut returns an incoming call was disconnected while attempting to dial out.

DialState
The DialState enumerated type defines the state of the modemDial operation and may
have one of the following values.
enum DialState
{

ISaGRAF C Tools User and Reference Manual
May 8, 2007

402

 DS_Inactive,
 DS_Calling,
 DS_Connected,
 DS_Terminating
};
• DS_Inactive returns the serial port is not in use by a modem

• DS_Calling returns the controller is making a connection to a remote controller

• DS_Connected returns the controller is connected to a remote controller

• DS_Terminating returns the controller is ending a connection to a remote controller.

dnpAnalogInput
The dnpAnalogInput type describes a DNP analog input point. This type is used for both
16-bit and 32-bit points.
typedef struct dnpAnalogInput_type
{
 UINT16 modbusAddress;
 UCHAR class;
 UINT32 deadband;
 } dnpAnalogInput;

• modbusAddress is the address of the Modbus register number associated with the
point.

• class is the reporting class for the object. It may be set to CLASS_1, CLASS_2 or
CLASS_3.

• deadband is the amount by which the analog input value must change before an event
will be reported for the point.

dnpAnalogOutput
The dnpAnalogOutput type describes a DNP analog output point. This type is used for
both 16-bit and 32-bit points.
typedef struct dnpAnalogOutput_type
{
 UINT16 modbusAddress;
} dnpAnalogOutput;

• modbusAddress is the address of the Modbus register associated with the point.

dnpBinaryInput
The dnpBinaryInput type describes a DNP binary input point.

typedef struct dnpBinaryInput_type
{
 UINT16 modbusAddress;
 UCHAR class;
} dnpBinaryInput;

• modbusAddress is the address of the Modbus register associated with the point.

• class is the reporting class for the object. It may be set to CLASS_1, CLASS_2 or
CLASS_3.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

403

dnpBinaryInputEx_type
The dnpBinaryInputEx type describes an extended DNP Binary Input point.

typedef struct dnpBinaryInputEx_type
{
 UINT16 modbusAddress;
 UCHAR eventClass;
 UCHAR debounce;
} dnpBinaryInputEx;

• modbusAddress is the address of the Modbus register associated with the point.

• class is the reporting class for the object. It may be set to CLASS_1, CLASS_2 or
CLASS_3.

• debounceTime is the debounce time for thebinary input.

dnpBinaryOutput
The dnpBinaryOutput type describes a DNP binary output point.

typedef struct dnpBinaryOutput_type
{
 UINT16 modbusAddress1;
 UINT16 modbusAddress2;
 UCHAR controlType;
 } dnpBinaryOutput;

• modbusAddress1 is the address of the first Modbus register associated with the point.
This field is always used.

• modbusAddress2 is the address of the second Modbus register associated with the
point. This field is used only with paired outputs. See the controlType field.

• controlType determines if one or two outputs are associated with this output point. It
may be set to PAIRED or NOT_PAIRED.

• A paired output uses two Modbus registers for output. The first output is the Trip
output and the second is the Close output. This is used with Control Relay Output
Block objects.

• A non-paired output uses one Modbus register for output. This is used with Binary
Output objects.

DNP_CONNECTION_EVENT Type
This enumerated type lists DNP events.
typedef enum dnpConnectionEventType
{
 DNP_CONNECTED=0,
 DNP_DISCONNECTED,
 DNP_CONNECTION_REQUIRED,
 DNP_MESSAGE_COMPLETE,
 DNP_MESSAGE_TIMEOUT
} DNP_CONNECTION_EVENT;

• The DNP_CONNECTED event indicates that the handler has connected to the master

station. The application sends this event to DNP. When DNP receives this event it will
send unsolicited messages.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

404

• The DNP_DISCONNECTED event indicates that the handler has disconnected from the
master station. The application sends this event to DNP. When DNP receives this event
it will request a new connection before sending unsolicited messages.

• The DNP_CONNECTION_REQUIRED event indicates that DNP wishes to connect to
the master station. DNP sends this event to the application. The application should
process this event by making a connection.

• The DNP_MESSAGE_COMPLETE event indicates that DNP has received confirmation
of unsolicited messages from the master station. DNP sends this event to the
application. The application should process this event by disconnecting. In many
applications a short delay before disconnecting is useful as it allows the master station
to send commands to the slave after the unsolicited reporting is complete.

• The DNP_MESSAGE_TIMEOUT event indicates that DNP has attempted to send an
unsolicited message but did not receive confirmation after all attempts. This usually
means there is a communication problem. DNP sends this event to the application. The
application should process this event by disconnecting.

dnpConfiguration
The dnpConfiguration type describes the DNP parameters.

typedef struct dnpConfiguration_type
{
 UINT16 masterAddress;
 UINT16 rtuAddress;
 CHAR datalinkConfirm;
 CHAR datalinkRetries;
 UINT16 datalinkTimeout;
 UINT16 operateTimeout;
 UCHAR applicationConfirm;
 UINT16 maximumResponse;
 UCHAR applicationRetries;
 UINT16 applicationTimeout;
 INT16 timeSynchronization;
 UINT16 BI_number;

UINT16 BI_startAddress;
 CHAR BI_reportingMethod;
 UINT16 BI_soebufferSize;
 UINT16 BO_number;

UINT16 BO_startAddress;
 UINT16 CI16_number;

UINT16 CI16_startAddress;
 CHAR CI16_reportingMethod;
 UINT16 CI16_bufferSize;
 UINT16 CI32_number;

UINT16 CI32_startAddress;
 CHAR CI32_reportingMethod;
 UINT16 CI32_bufferSize;

CHAR CI32_wordOrder;
 UINT16 AI16_number;

UINT16 AI16_startAddress;
 CHAR AI16_reportingMethod;
 UINT16 AI16_bufferSize;
 UINT16 AI32_number;

UINT16 AI32_startAddress;
 CHAR AI32_reportingMethod;
 UINT16 AI32_bufferSize;

ISaGRAF C Tools User and Reference Manual
May 8, 2007

405

CHAR AI32_wordOrder;
 UINT16 AISF_number;

UINT16 AISF_startAddress;
 CHAR AISF_reportingMethod;
 UINT16 AISF_bufferSize;

CHAR AISF_wordOrder;
 UINT16 AO16_number;

UINT16 AO16_startAddress;
 UINT16 AO32_number;

UINT16 AO32_startAddress;
CHAR AO32_wordOrder;

 UINT16 AOSF_number;
UINT16 AOSF_startAddress;
CHAR AOSF_wordOrder;

 UINT16 autoUnsolicitedClass1;
 UINT16 holdTimeClass1;
 UINT16 holdCountClass1;
 UINT16 autoUnsolicitedClass2;
 UINT16 holdTimeClass2;
 UINT16 holdCountClass2;
 UINT16 autoUnsolicitedClass3;
 UINT16 holdTimeClass3;
 UINT16 holdCountClass3;
} dnpConfiguration;

• masterAddress is the address of the master station. Unsolicited messages are sent to
this station. Solicited messages must come from this station. Valid values are 0 to
65534.

• rtuAddress is the address of the RTU. The master station must send messages to this
address. Valid values are 0 to 65534.

• datalinkConfirm enables requesting data link layer confirmations. Valid values are
TRUE and FALSE.

• datalinkRetries is the number of times the data link layer will retry a failed
message. Valid values are 0 to 255.

• datalinkTimeout is the length of time the data link layer will wait for a response
before trying again or aborting the transmission. The value is measured in milliseconds.
Valid values are 100 to 60000 in multiples of 100 milliseconds.

• operateTimeout is the length of time an operate command is valid after receiving a
select command. The value is measured in seconds. Valid values are 1 to 6500.

• applicationConfirm enables requesting application layer confirmations. Valid
values are TRUE and FALSE.

• maximumResponse is the maximum length of an application layer response. Valid
values are 20 to 2048. The recommended value is 2048 unless the master cannot
handle responses this large.

• applicationRetries is the number of times the application layer will retry a
transmission. Valid values are 0 to 255.

• applicationTimeout is the length of time the application layer will wait for a
response before trying again or aborting the transmission. The value is measured in
milliseconds. Valid values are 100 to 60000 in multiples of 100 milliseconds. This value
must be larger than the data link timeout.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

406

• timeSynchronization defines how often the RTU will request a time synchronization
from the master.

• Set this to NO_TIME_SYNC to disable time synchronization requests.

• Set this to STARTUP_TIME_SYNC to request time synchronization at start up only.

• Set this to 1 to 32767 to set the time synchronization period in seconds.

• BI_number is the number of binary input points. Valid values are 0 to 9999.

• BI_startAddress is the DNP address of the first Binary Input point.

• BI_reportingMethod determines how binary inputs are reported either Change Of
State or Log All Events.

• BI_bufferSize is the Binary Input Change Event Buffer Size.

• BO_number is the number of binary output points. Valid values are 0 to 9999.

• BO_startAddress is the DNP address of the first Binary Output point.

• CI16_number is the number of 16-bit counter input points. Valid values are 0 to 9999.

• CI16_startAddress is the DNP address of the first CI16 point.

• CI16_reportingMethod determines how CI16 inputs are reported either Change Of
State or Log All Events.

• CI16_bufferSize is the number of events in the 16-bit counter change buffer. Valid
values are 0 to 9999.

• CI32_number is the number of 32-bit counter input points. Valid values are 0 to 9999.

• CI32_startAddress is the DNP address of the first CI32 point.

• CI32_reportingMethod determines how CI32 inputs are reported either Change Of
State or Log All Events.

• CI32_bufferSize is the number of events in the 32-bit counter change buffer. Valid
values are 0 to 9999.

• CI32_wordOrder is the Word Order of CI32 points (0=LSW first, 1=MSW first).

• AI16_number is the number of 16-bit analog input points. Valid values are 0 to 9999.

• AI16_startAddress is the DNP address of the first AI16 point.

• AI16_reportingMethod determines how 16-bit analog changes are reported.

• Set this to FIRST_VALUE to report the value of the first change event measured.

• Set this to CURRENT_VALUE to report the value of the latest change event
measured.

• AI16_bufferSize is the number of events in the 16-bit analog input change buffer.
Valid values are 0 to 9999.

• AI32_number is the number of 32-bit analog input points. Valid values are 0 to 9999.

• AI32_startAddress is the DNP address of the first AI32 point.

• AI32_reportingMethod determines how 32-bit analog changes are reported.

• Set this to FIRST_VALUE to report the value of the first change event measured.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

407

• Set this to CURRENT_VALUE to report the value of the latest change event
measured.

• AI32_bufferSize is the number of events in the 32-bit analog input change buffer.
Valid values are 0 to 9999.

• AI32_wordOrder is the Word Order of AI32 points (0=LSW first, 1=MSW first)

• AO16_number is the number of 16-bit analog output points. Valid values are 0 to 9999.

• AO16_startAddress is the DNP address of the first AO16 point.

• AO32_number is the number of 32-bit analog output points. Valid values are 0 to 9999.

• AO32_startAddress is the DNP address of the first AO32 point.

• AO32_wordOrder is the Word Order of AO32 points (0=LSW first, 1=MSW first)

• AOSF_number is the number of short float Analog Outputs.

• AOSF_startAddress is the DNP address of first AOSF point.

• AOSF_wordOrder is the Word Order of AOSF points (0=LSW first, 1=MSW first).

• autoUnsolicitedClass1 enables or disables automatic Unsolicited reporting of
Class 1 events.

• holdTimeClass1 is the maximum period to hold Class 1 events before
reporting

• holdCountClass1 is the maximum number of Class 1 events to hold before reporting.

• autoUnsolicitedClass2 enables or disables automatic Unsolicited reporting of
Class 2 events.

• holdTimeClass2 is the maximum period to hold Class 2 events before reporting

• holdCountClass2 is the maximum number of Class 2 events to hold before reporting.

• autoUnsolicitedClass3 enables or disables automatic Unsolicited reporting of
Class 3 events.

• holdTimeClass3 is the maximum period to hold Class 3 events before reporting.

• HoldCountClass3 is the maximum number of Class 3 events to hold before reporting.

dnpConfigurationEx
The dnpConfigurationEx type includes extra parameters in the DNP Configuration.

typedef struct dnpConfigurationEx_type
{
 UINT16 rtuAddress;
 UCHAR datalinkConfirm;
 UCHAR datalinkRetries;
 UINT16 datalinkTimeout;
 UINT16 operateTimeout;
 UCHAR applicationConfirm;
 UINT16 maximumResponse;
 UCHAR applicationRetries;
 UINT16 applicationTimeout;
 INT16 timeSynchronization;
 UINT16 BI_number;
 UINT16 BI_startAddress;

ISaGRAF C Tools User and Reference Manual
May 8, 2007

408

 UCHAR BI_reportingMethod;
 UINT16 BI_soeBufferSize;
 UINT16 BO_number;
 UINT16 BO_startAddress;
 UINT16 CI16_number;
 UINT16 CI16_startAddress;
 UCHAR CI16_reportingMethod;
 UINT16 CI16_bufferSize;
 UINT16 CI32_number;
 UINT16 CI32_startAddress;
 UCHAR CI32_reportingMethod;
 UINT16 CI32_bufferSize;
 UCHAR CI32_wordOrder;
 UINT16 AI16_number;
 UINT16 AI16_startAddress;
 UCHAR AI16_reportingMethod;
 UINT16 AI16_bufferSize;
 UINT16 AI32_number;
 UINT16 AI32_startAddress;
 UCHAR AI32_reportingMethod;
 UINT16 AI32_bufferSize;
 UCHAR AI32_wordOrder;
 UINT16 AISF_number;
 UINT16 AISF_startAddress;
 UCHAR AISF_reportingMethod;
 UINT16 AISF_bufferSize;
 UCHAR AISF_wordOrder;
 UINT16 AO16_number;
 UINT16 AO16_startAddress;
 UINT16 AO32_number;
 UINT16 AO32_startAddress;
 UCHAR AO32_wordOrder;
 UINT16 AOSF_number;
 UINT16 AOSF_startAddress;
 UCHAR AOSF_wordOrder;
 UINT16 autoUnsolicitedClass1;
 UINT16 holdTimeClass1;
 UINT16 holdCountClass1;
 UINT16 autoUnsolicitedClass2;
 UINT16 holdTimeClass2;
 UINT16 holdCountClass2;
 UINT16 autoUnsolicitedClass3;
 UINT16 holdTimeClass3;
 UINT16 holdCountClass3;
 UINT16 enableUnsolicitedOnStartup;
 UINT16 sendUnsolicitedOnStartup;
 UINT16 level2Compliance;
 UINT16 masterAddressCount;
 UINT16 masterAddress[8];
 UINT16 maxEventsInResponse;
 UINT16 dialAttempts;
 UINT16 dialTimeout;
 UINT16 pauseTime;
 UINT16 onlineInactivity;
 UINT16 dialType;
 Char modemInitString[64];
} dnpConfigurationEx;
• rtuAddress is the address of the RTU. The master station must send messages to this

address. Valid values are 0 to 65534.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

409

• datalinkConfirm enables requesting data link layer confirmations. Valid values are
TRUE and FALSE.

• datalinkRetries is the number of times the data link layer will retry a failed
message. Valid values are 0 to 255.

• datalinkTimeout is the length of time the data link layer will wait for a response
before trying again or aborting the transmission. The value is measured in milliseconds.
Valid values are 100 to 60000 in multiples of 100 milliseconds.

• operateTimeout is the length of time an operate command is valid after receiving a
select command. The value is measured in seconds. Valid values are 1 to 6500.

• applicationConfirm enables requesting application layer confirmations. Valid
values are TRUE and FALSE.

• maximumResponse is the maximum length of an application layer response. Valid
values are 20 to 2048. The recommended value is 2048 unless the master cannot
handle responses this large.

• applicationRetries is the number of times the application layer will retry a
transmission. Valid values are 0 to 255.

• applicationTimeout is the length of time the application layer will wait for a
response before trying again or aborting the transmission. The value is measured in
milliseconds. Valid values are 100 to 60000 in multiples of 100 milliseconds. This value
must be larger than the data link timeout.

• timeSynchronization defines how often the RTU will request a time synchronization
from the master.

• Set this to NO_TIME_SYNC to disable time synchronization requests.

• Set this to STARTUP_TIME_SYNC to request time synchronization at start up only.

• Set this to 1 to 32767 to set the time synchronization period in seconds.

• BI_number is the number of binary input points. Valid values are 0 to 9999.

• BI_startAddress is the DNP address of the first Binary Input point.

• BI_reportingMethod determines how binary inputs are reported either Change Of
State or Log All Events.

• BI_soebufferSize is the Binary Input Change Event Buffer Size.

• BO_number is the number of binary output points. Valid values are 0 to 9999.

• BO_startAddress is the DNP address of the first Binary Output point.

• CI16_number is the number of 16-bit counter input points. Valid values are 0 to 9999.

• CI16_startAddress is the DNP address of the first CI16 point.

• CI16_reportingMethod determines how CI16 inputs are reported either Change Of
State or Log All Events.

• CI16_bufferSize is the number of events in the 16-bit counter change buffer. Valid
values are 0 to 9999.

• CI32_number is the number of 32-bit counter input points. Valid values are 0 to 9999.

• CI32_startAddress is the DNP address of the first CI32 point.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

410

• CI32_reportingMethod determines how CI32 inputs are reported either Change Of
State or Log All Events.

• CI32_bufferSize is the number of events in the 32-bit counter change buffer. Valid
values are 0 to 9999.

• CI32_wordOrder is the Word Order of CI32 points (0=LSW first, 1=MSW first).

• AI16_number is the number of 16-bit analog input points. Valid values are 0 to 9999.

• AI16_startAddress is the DNP address of the first AI16 point.

• AI16_reportingMethod determines how 16-bit analog changes are reported.

• Set this to FIRST_VALUE to report the value of the first change event measured.

• Set this to CURRENT_VALUE to report the value of the latest change event
measured.

• AI16_bufferSize is the number of events in the 16-bit analog input change buffer.
Valid values are 0 to 9999.

• AI32_number is the number of 32-bit analog input points. Valid values are 0 to 9999.

• AI32_startAddress is the DNP address of the first AI32 point.

• AI32_reportingMethod determines how 32-bit analog changes are reported.

• Set this to FIRST_VALUE to report the value of the first change event measured.

• Set this to CURRENT_VALUE to report the value of the latest change event
measured.

• AI32_bufferSize is the number of events in the 32-bit analog input change buffer.
Valid values are 0 to 9999.

• AI32_wordOrder is the Word Order of AI32 points (0=LSW first, 1=MSW first)

• AISF_number is the number of short float Analog Inputs.

• AISF_startAddress is the DNP address of first AISF point.

• AISF_reportingMethod is the event reporting method, Change Of State or Log All
Events.

• AISF_bufferSize is the short float Analog Input Event Buffer Size.

• AISF_wordOrder is the word order of AISF points (0=LSW first, 1=MSW first) */

• AO16_number is the number of 16-bit analog output points. Valid values are 0 to 9999.

• AO16_startAddress is the DNP address of the first AO16 point.

• AO32_number is the number of 32-bit analog output points. Valid values are 0 to 9999.

• AO32_startAddress is the DNP address of the first AO32 point.

• AO32_wordOrder is the Word Order of AO32 points (0=LSW first, 1=MSW first)

• AOSF_number is the number of short float Analog Outputs.

• AOSF_startAddress is the DNP address of first AOSF point.

• AOSF_wordOrder is the Word Order of AOSF points (0=LSW first, 1=MSW first).

ISaGRAF C Tools User and Reference Manual
May 8, 2007

411

• autoUnsolicitedClass1 enables or disables automatic Unsolicited reporting of
Class 1 events.

• holdTimeClass1 is the maximum period to hold Class 1 events before
reporting

• holdCountClass1 is the maximum number of Class 1 events to hold before reporting.

• autoUnsolicitedClass2 enables or disables automatic Unsolicited reporting of
Class 2 events.

• holdTimeClass2 is the maximum period to hold Class 2 events before reporting

• holdCountClass2 is the maximum number of Class 2 events to hold before reporting.

• autoUnsolicitedClass3 enables or disables automatic Unsolicited reporting of
Class 3 events.

• holdTimeClass3 is the maximum period to hold Class 3 events before reporting.

• HoldCountClass3 is the maximum number of Class 3 events to hold before reporting.

• EnableUnsolicitedOnStartup enables or disables unsolicited reporting at start-up.

• SendUnsolicitedOnStartup sends an unsolicited report at start-up.

• level2Compliance reports only level 2 compliant data types (excludes floats, AO-32).

• MasterAddressCount is the number of master stations.

• masterAddress[8] is the number of master station addresses.

• MaxEventsInResponse is the maximum number of change events to include in read
response.

• PSTNDialAttempts is the maximum number of dial attempts to establish a PSTN
connection.

• PSTNDialTimeout is the maximum time after initiating a PSTN dial sequence to wait
for a carrier signal.

• PSTNPauseTime is the pause time between dial events.

• PSTNOnlineInactivity is the maximum time after message activity to leave a PSTN
connection open before hanging up.

• PSTNDialType is the dial type: tone or pulse dialling.

• modemInitString[64] is the initialization string to send to the modem.

dnpCounterInput
The dnpCounterInput type describes a DNP counter input point. This type is used for
both 16-bit and 32-bit points.
typedef struct dnpCounterInput_type
{
 UINT16 modbusAddress;
 UCHAR class;
 UINT32 threshold;
 } dnpCounterInput;

ISaGRAF C Tools User and Reference Manual
May 8, 2007

412

• modbusAddress is the address of the Modbus register number associated with the
point.

• class is the reporting class for the object. It may be set to CLASS_1, CLASS_2 or
CLASS_3.

• threshold is the amount by which the counter input value must change before an
event will be reported for the point.

dnpPointType
The enumerated type DNP_POINT_TYPE includes all allowed DNP data point types.

typedef enum dnpPointType
{
 BI_POINT=0, /* binary input */
 AI16_POINT, /* 16 bit analog input */
 AI32_POINT, /* 32 bit analog input */
 AISF_POINT, /* short float analog input */
 AILF_POINT, /* long float analog input */
 CI16_POINT, /* 16 bit counter output */
 CI32_POINT, /* 32 bit counter output */
 BO_POINT, /* binary output */
 AO16_POINT, /* 16 bit analog output */
 AO32_POINT, /* 32 bit analog output */
 AOSF_POINT, /* short float analog output */
 AOLF_POINT /* long float analog output */
} DNP_POINT_TYPE;

DNP_RUNTIME_STATUS
The DNP_RUNTIME_STATUS type describes a structure for holding status information
about DNP event log buffers.
/* DNP Runtime Status */
typedef struct dnp_runtime_status
{
 UINT16 eventCountBI; /* number of binary input events */
 UINT16 eventCountCI16; /* number of 16-bit counter events */
 UINT16 eventCountCI32; /* number of 32-bit counter events */
 UINT16 eventCountAI16; /* number of 16-bit analog input events

*/
 UINT16 eventCountAI32; /* number of 32-bit analog input events

*/
 UINT16 eventCountAISF; /* number of short floating-point

analog input events */
 UINT16 eventCountClass1; /* number of class 1 events */
 UINT16 eventCountClass2; /* number of class 2 events */
 UINT16 eventCountClass3; /* number of class 3 events */
} DNP_RUNTIME_STATUS;

• eventCountBI is number of binary input events.

• eventCountCI16 is number of 16-bit counter events.

• eventCountCI32 is number of 32-bit counter events.

• eventCountAI16 is number of 16-bit analog input events.

• eventCountAI32 is number of 32-bit analog input events.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

413

• eventCountAISF is number of short floating-point analog input events.

• eventCountClass1 is the class 1 event counter.

• eventCountClass2 is the class 2 event counter.

• eventCountClass3 is the class 3 event counter.

envelope
The envelope type is a structure containing a message envelope. Envelopes are used for
inter-task communication.
typedef struct env {
 struct env *link;
 unsigned source;
 unsigned destination;
 unsigned type;
 unsigned long data;
 unsigned owner;
 }
 envelope;

• link is a pointer to the next envelope in a queue. This field is used by the RTOS. It is of

no interest to an application program.

• source is the task ID of the task sending the message. This field is specified
automatically by the send_message function. The receiving task may read this field to
determine the source of the message.

• destination is the task ID of the task to receive the message. It must be specified
before calling the send_message function.

• type specifies the type of data in the data field. It may be MSG_DATA,
MSG_POINTER, or any other value defined by the application program. This field is not
required.

• data is the message data. The field may contain a datum or pointer. The application
program determines the use of this field.

• owner is the task that owns the envelope. This field is set by the RTOS and must not be
changed by an application program.

HART_COMMAND
The HART_COMMAND type is a structure containing a command to be sent to a HART
slave device. The command field contains the HART command number. The length field
contains the length of the data string to be transmitted (the byte count in HART
documentation). The data field contains the data to be sent to the slave.
typedef struct hartCommand_t
 {
 unsigned command;
 unsigned length;
 char data[DATA_SIZE];
 }
 HART_COMMAND;

• command is the HART command number.

• length is the number of characters in the data string.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

414

• data[DATA_SIZE] is the data field for the command.

HART_DEVICE
The HART_DEVICE type is a structure containing information about the HART device. The
information is read from the device using command 0 or command 11. The fields are
identical to those read by the commands. Refer to the command documentation for more
information.
typedef struct hartDevice_t
 {
 unsigned char manufacturerID;
 unsigned char manufacturerDeviceType;
 unsigned char preamblesRequested;
 unsigned char commandRevision;
 unsigned char transmitterRevision;
 unsigned char softwareRevision;
 unsigned char hardwareRevision;
 unsigned char flags;
 unsigned long deviceID;
 }
 HART_DEVICE;

HART_RESPONSE
The HART_RESPONSE type is a structure containing a response from a HART slave
device. The command field contains the HART command number. The length field contains
the length of the data string to be transmitted (the byte count in HART documentation). The
data field contains the data to be sent to the slave.
typedef struct hartResponse_t
 {
 unsigned responseCode,
 unsigned length,
 char data[DATA_SIZE];
 }
 HART_RESPONSE;

• response is the response code from the device.

• length is the length of response data.

• data[DATA_SIZE] is the data field for the response.

HART_RESULT
The HART_RESULT enumeration type defines a list of results of sending a command.
typedef enum hartResult_t
 {
 HR_NoModuleResponse=0,
 HR_CommandPending,
 HR_CommandSent,
 HR_Response,
 HR_NoResponse,
 HR_WaitTransmit
 }
 HART_RESULT;

• HR_NoModuleResponse returns no response from HART modem module.

• HR_CommandPending returns command ready to be sent, but not sent.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

415

• HR_CommandSent returns command sent.

• HR_Response returns response received.

• HR_NoResponse returns no response after all attempts.

• HR_WaitTransmit returns modem is not ready to transmit.

HART_SETTINGS
The HART_SETTINGS type is a structure containing the configuration for the HART modem
module. The useAutoPreamble field indicates if the number of preambles is set by the
value in the HART_SETTINGS structure (FALSE) or the value in the HART_DEVICE
structure (TRUE). The deviceType field determines if the 5904 modem is a HART primary
master or secondary master device (primary master is the recommended setting).
typedef struct hartSettings_t
 {
 unsigned attempts;
 unsigned preambles;
 BOOLEAN useAutoPreamble;
 unsigned deviceType;
 }
 HART_SETTINGS;

• attempts is the number of command attempts (1 to 4).

• preambles is the number of preambles to send (2 to 15).

• useAutoPreamble is a flag to use the requested preambles.

• deviceType is the type of HART master (1 = primary; 0 = secondary).

HART_VARIABLE
The HART_VARIABLE type is a structure containing a variable read from a HART device.
The structure contains three fields that are used by various commands. Note that not all
fields will be used by all commands. Refer to the command specific documentation.
typedef struct hartVariable_t
 {
 float value;
 unsigned units;
 unsigned variableCode;
 }
 HART_VARIABLE;

• value is the value of the variable.

• units are the units of measurement.

• variableCode is the transmitter specific variable ID.

ledControl_tag
The ledControl_tag structure defines LED power control parameters.
struct ledControl_tag {
 unsigned state;
 unsigned time;
 };
• state is the default LED state. It is either the LED_ON or LED_OFF macro.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

416

• time is the period, in minutes, after which the LED power returns to its default state.

ModemInit
The ModemInit structure specifies modem initialization parameters for the modemInit
function.
struct ModemInit
{
 FILE * port;
 char modemCommand[MODEM_CMD_MAX_LEN + 2];
};

• port is the serial port where the modem is connected.

• modemCommand is the initialization string for the modem. The characters AT will be
prefixed to the command, and a carriage returned suffixed to the command when it is sent
to the modem. Refer to the section Modem Commands for suggested command strings
for your modem.

ModemSetup
The ModemSetup structure specifies modem initialization and dialing control parameters for
the modemDial function.
struct ModemSetup
{
 FILE * port;
 unsigned short dialAttempts;
 unsigned short detectTime;
 unsigned short pauseTime;
 unsigned short dialmethod;
 char modemCommand[MODEM_CMD_MAX_LEN + 2];
 char phoneNumber[PHONE_NUM_MAX_LEN + 2];
};

• port is the serial port where the modem is connected.

• dialAttempts is the number of times the controller will attempt to dial the remote
controller before giving up and reporting an error.

• detectTime is the length of time in seconds that the controller will wait for carrier to be
detected. It is measured from the start of the dialing attempt.

• pauseTime is the length of time in seconds that the controller will wait between dialing
attempts.

• dialmethod selects pulse or tone dialing. Set dialmethod to 0 for tone dialing or 1 for
pulse dialing.

• modemCommand is the initialization string for the modem. The characters AT will be
prepended to the command, and a carriage returned appended to the command when it
is sent to the modem. Refer to the section Modem Commands for suggested command
strings for your modem.

• phoneNumber is the phone number of the remote controller. The characters ATD and
the dialing method will be prepended to the command, and a carriage returned appended
to the command when it is sent to the modem.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

417

PROTOCOL_SETTINGS
The Extended Protocol Settings structure defines settings for a communication protocol.
This structure differs from the standard settings in that it allows additional settings to be
specified.
typedef struct protocolSettings_t
 {
 unsigned char type;
 unsigned station;
 unsigned char priority;
 unsigned SFMessaging;
 ADDRESS_MODE mode;
 }
 PROTOCOL_SETTINGS;

• type is the protocol type. It may be one of NO_PROTOCOL, MODBUS_RTU, or
MODBUS_ASCII macros.

• station is the station address of the controller. Note that each serial port may have a
different address. The valid values are determined by the communication protocol. This
field is not used if the protocol type is NO_PROTOCOL.

• priority is the task priority of the protocol task. This field is not used if the protocol
type is NO_PROTOCOL.

• SFMessaging is the enable Store and Forward messaging control flag.

• ADDRESS_MODE is the addressing mode, standard or extended.

PROTOCOL_SETTINGS_EX Type
This structure contains serial port protocol settings including Enron Modbus support.
typedef struct protocolSettingsEx_t
 {
 UCHAR type;
 UINT16 station;
 UCHAR priority;
 UINT16 SFMessaging;
 ADDRESS_MODE mode;
 BOOLEAN enronEnabled;
 UINT16 enronStation;
 }
 PROTOCOL_SETTINGS_EX;

• type is the protocol type. It may be one of NO_PROTOCOL, MODBUS_RTU, or
MODBUS_ASCII.

• station is the station address of the controller. Note that each serial port may have a
different address. The valid values are determined by the communication protocol. This
field is not used if the protocol type is NO_PROTOCOL.

• priority is the task priority of the protocol task. This field is not used if the protocol
type is NO_PROTOCOL.

• SFMessaging is the enable Store and Forward messaging control flag.

• ADDRESS_MODE is the addressing mode, AM_standard or AM_extended.

• enronEnabled determines if the Enron Modbus station is enabled. It may be TRUE or
FALSE.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

418

• enronStation is the station address for the Enron Modbus protocol. It is used if
enronEnabled is set to TRUE. Valid values are 1 to 255 for standard addressing, and
1 to 65534 for extended addressing.

prot_settings
The Protocol Settings structure defines settings for a communication protocol. This structure
differs from the extended settings in that it allows fewer settings to be specified.
struct prot_settings {
 unsigned char type;
 unsigned char station;
 unsigned char priority;
 unsigned SFMessaging;
 };

• type is the protocol type. It may be one of NO_PROTOCOL, MODBUS_RTU,
MODBUS_ASCII, AB_FULL_BCC, AB_HALF_BCC, AB_FULL_CRC, AB_HALF_CRC or
DNP macros.

• station is the station address of the controller. Note that each serial port may have a
different address. The valid values are determined by the communication protocol. This
field is not used if the protocol type is NO_PROTOCOL.

• priority is the task priority of the protocol task. This field is not used if the protocol
type is NO_PROTOCOL.

• SFMessaging is the enable Store and Forward messaging control flag.

prot_status
The prot_status structure contains protocol status information.
struct prot_status {
 unsigned command_errors;
 unsigned format_errors;
 unsigned checksum_errors;
 unsigned cmd_received;
 unsigned cmd_sent;
 unsigned rsp_received;
 unsigned rsp_sent;
 unsigned command;
 int task_id;
 unsigned stored_messages;
 unsigned forwarded_messages;
 };

• command_errors is the number of messages received with invalid command codes.

• format_errors is the number of messages received with bad message data.

• checksum_errors is the number of messages received with bad checksums.

• cmd_received is the number of commands received.

• cmd_sent is the number of commands sent by the master_message function.

• rsp_received is the number of responses received by the master_message function.

• rsp_sent is the number of responses sent.

• command is the status of the last protocol command sent.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

419

• task_id is the ID of the protocol task. This field is used by the set_protocol function
to control protocol execution.

• stored_messages is the number of messages stored for forwarding.

• forwarded_messages is the number of messages forwarded.

pconfig
The pconfig structure contains serial port settings.
struct pconfig {
 unsigned baud;
 unsigned duplex;
 unsigned parity;
 unsigned data_bits;
 unsigned stop_bits;
 unsigned flow_rx;
 unsigned flow_tx;
 unsigned type;
 unsigned timeout;
 };

• baud is the communication speed. It is one of the BAUD_xxx macros.

• duplex is either the FULL or HALF macro.

• parity is one of NONE, EVEN or ODD macros.

• data_bits is the word length. It is either the DATA7 or DATA8 macro.

• stop_bits in the number of stop bits transmitted. It is either the STOP1 or STOP2
macro.

• flow_rx specifies flow control on the receiver. It is either the DISABLE or ENABLE
macro.

• For com1 and com2 setting this parameter selects XON/XOFF flow control. It may be
enabled or disabled.

If any protocol, other than Modbus ASCII, is used on the port you must set flow_rx
to DISABLE. If Modbus ASCII or no protocol is used, you can set flow_rx to
ENABLE or DISABLE. In most cases DISABLE is recommended.

• For com3 and com4 setting this parameter selects Receiver Disable after message
reception. This is used with the Modbus RTU protocol only. If the Modbus RTU
protocol is used, set flow_rx to ENABLE. Otherwise set flow_rx to DISABLE.

• flow_tx specifies flow control on the transmitter. It is either the DISABLE or ENABLE
macro.

• For com1 and com2 setting this parameter selects XON/XOFF flow control. It may be
enabled or disabled.

If any protocol, other than Modbus ASCII, is used on the port you must set flow_tx
to DISABLE. If Modbus ASCII or no protocol is used, you can set flow_tx to
ENABLE or DISABLE. In most cases DISABLE is recommended.

• For com3 and com4 setting this parameter indicates if the port should ignore the CTS
signal. Setting the parameter to ENABLE causes the port to ignore the CTS signal.

• type specifies the serial port type. It is one of NOTYPE, RS232, RS232_MODEM,
RS485, or RS232_COLLISION_AVOIDANCE macros.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

420

• timeout specifies the time the driver will wait when the transmit buffer fills, before it
clears the buffer.

PORT_CHARACTERISTICS
The PORT_CHARACTERISTICS type is a structure that contains serial port characteristics.
typedef struct portCharacteristics_tag {
 unsigned dataflow;
 unsigned buffering;
 unsigned protocol;
 unsigned long options;
 } PORT_CHARACTERISTICS;

• dataflow is a bit mapped field describing the data flow options supported on the serial

port. ANDing can isolate the options with the PC_FLOW_RX_RECEIVE_STOP,
PC_FLOW_RX_XON_XOFF, PC_FLOW_TX_IGNORE_CTS or
PC_FLOW_TX_XON_XOFF macros.

• buffering describes the buffering options supported. No buffering options are
currently supported.

• protocol describes the protocol options supported. The macro,
PC_PROTOCOL_RTU_FRAMING is the only option supported.

• options describes additional options supported. No additional options are currently
supported.

pstatus
The pstatus structure contains serial port status information.
struct pstatus {
 unsigned framing;
 unsigned parity;
 unsigned c_overrun;
 unsigned b_overrun;
 unsigned rx_buffer_size;
 unsigned rx_buffer_used;
 unsigned tx_buffer_size;
 unsigned tx_buffer_used;
 unsigned io_lines;
 };

• framing is the number of received characters with framing errors.

• parity is the number of received characters with parity errors.

• c_overrun is the number of received character overrun errors.

• b_overrun is the number of receive buffer overrun errors.

• rx_buffer_size is the size of the receive buffer in characters.

• rx_buffer_used is the number of characters in the receive buffer.

• tx_buffer_size is the size of the transmit buffer in characters.

• tx_buffer_used is the number of characters in the transmit buffer.

• io_lines is a bit mapped field indicating the status of the I/O lines on the serial port.
The values for these lines differ between serial ports (see tables below). ANDing can

ISaGRAF C Tools User and Reference Manual
May 8, 2007

421

isolate the signals with the SIGNAL_CTS, SIGNAL_DCD, SIGNAL_OH, SIGNAL_RING
or SIGNAL_VOICE macros.

READSTATUS
The READSTATUS enumerated type indicates the status of an I2C bus message read and
may have one of the following values.
enum ReadStatus {
 RS_success,
 RS_selectFailed
 };
typedef enum ReadStatus READSTATUS;

• RS_success returns read was successful.

• RS_selectFailed returns slave device could not be selected

routingTable
The routingTable type describes an entry in the DNP Routing Table.

Note that the DNP Routing Table is a list of routes, which are maintained in ascending order
of DNP addresses.

typedef struct RoutingTable_type
{
 UINT16 address; /* station address */
 UINT16 comPort; /* com port interface */
 UINT16 retries; /* number of retries */
 UINT16 timeout; /* timeout in milliseconds */
} routingTable;

• address is the DNP address.

• comPort is the serial port interface.

• retries is the number of data link retires for this table entry.

• timeout is the timeout in milliseconds.

SFTranslation
The SFTranslation structure contains Store and Forward Messaging translation
information. This is used to define an address and port translation.
struct SFTranslation {
 unsigned portA;
 unsigned stationA;
 unsigned portB;
 unsigned stationB;
 };

• portA is the index of the first serial port. The index is obtained with the portIndex

function.

• stationA is the station address of the first station.

• portB is the index of the second serial port. The index is obtained with the portIndex
function.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

422

• stationB is the station address of the second station.

SFTranslationStatus
The SFTranslationStatus structure contains information about a Store and Forward
Translation table entry. It is used to report information about specific table entries.
struct SFTranslationStatus {
 unsigned index;
 unsigned code;
 };

• index is the location in the store and forward table to which the status code applies.

• code is the status code. It is one of SF_VALID, SF_INDEX_OUT_OF_RANGE,
SF_NO_TRANSLATION, SF_PORT_OUT_OF_RANGE,
SF_STATION_OUT_OF_RANGE, or SF_ALREADY_DEFINED macros.

TASKINFO
The TASKINFO type is a structure containing information about a task.

/* Task Information Structure */
typedef struct taskInformation_tag {
 unsigned taskID;
 unsigned priority;
 unsigned status;
 unsigned requirement;
 unsigned error;
 unsigned type;
 } TASKINFO;

• taskID is the identifier of the task.

• priority is the execution priority of the task.

• status is the current execution status the task. This may be one of TS_READY,
TS_EXECUTING, TS_WAIT_ENVELOPE, TS_WAIT_EVENT, TS_WAIT_MESSAGE, or
TS_WAIT_RESOURCE macros.

• requirement is used if the task is waiting for an event or resource. If the status field
is TS_WAIT_EVENT, then requirement indicates on which event it is waiting. If the
status field is TS_WAIT_RESOURCE then requirement indicates on which resource
it is waiting.

• error is the task error code. This is the same value as returned by the check_error
function.

• type is the task type. It will be either SYSTEM or APPLICATION.

taskInfo_tag
The taskInfo_tag structure contains start up task information.
struct taskInfo_tag {
 void *address;
 unsigned stack;
 unsigned identity;
 };
• address is the pointer to the start up routine.

• stack is the required stack size for the routine

ISaGRAF C Tools User and Reference Manual
May 8, 2007

423

• identity is the type of routine found (STARTUP_APPLICATION or
STARTUP_SYSTEM)

timer_info
The timer_info structure contains information about a timer.
struct timer_info {
 unsigned time;
 unsigned interval;
 unsigned interval_remaining;
 unsigned flags;
 unsigned duty_on;
 unsigned duty_period;
 unsigned channel;
 unsigned bit;
 };

• time is the time remaining in the timer in ticks.

• interval is the length of a timer tick in 10ths of a second.

• interval_remaining is the time remaining in the interval count down register in 10ths
of a second.

• flags is the timer type and status bits (NORMAL, PULSE TRAIN, DUTY_CYCLE,
TIMEOUT, and TIMED_OUT). More than one condition may be true at any time.

• duty_on is the length of the on high portion of the square wave output. This is used
only by the pulse function.

• duty_period is the period of the square wave output This is used only by the pulse
function.

• channel and bit specify the digital output point. This is used by pulse, pulse_train
and timeout functions.

VERSION
The Firmware Version Information Structure holds information about the firmware.
typedef struct versionInfo_tag {
 unsigned version;
 unsigned controller;
 char date[VI_DATE_SIZE + 1];
 char copyright[VI_STRING_SIZE + 1];
 } VERSION;

• version is the firmware version number.

• controller is target controller for the firmware.

• date is a string containing the date the firmware was created.

• copyright is a string containing Control Microsystems copyright information.

WRITESTATUS
The WRITESTATUS enumerated type indicates the status of an I2C bus message read and
may have one of the following values.
enum WriteStatus {

ISaGRAF C Tools User and Reference Manual
May 8, 2007

424

 WS_success,
 WS_selectFailed,
 WS_noAcknowledge
 };
typedef enum WriteStatus WRITESTATUS;

• WS_success returns write was successful

• WS_selectFailed returns slave could not be selected

• WS_noAcknowledge returns slave failed to acknowledge data

ISaGRAF C Tools User and Reference Manual
May 8, 2007

425

C Compiler Known Problems
The C compiler supplied with the ISaGRAF C Tools is a product of Microtec. There is two
known problems with the compiler.

Use of Initialized Static Local Variables
The compiler incorrectly allocates storage for initialized static local variables. The storage is
allocated incorrectly in memory reserved for constant string data. The storage should be
allocated in memory for initialized variables.

Problems Caused
A program loaded in ROM cannot modify a variable declared in this fashion.

A program loaded in RAM can modify the variable. However, the variable is in a section of
program memory that the operating system expects to remain constant. Modifying the
variable causes the operating system to think the program has been modified. The program
continues to run correctly, but will not run again if it is stopped by the C Program Loader or if
the controller is reset. The operating system detects that the program memory is corrupt and
does not execute the program.

Example
The compiler generates incorrect code for the following example. Storage for the variable a
is allocated in the strings section. It should be in the initvars section.

If the program is loaded in ROM, it cannot modify the variable a.

If the program is loaded in RAM, it can be run once after being written to a controller
memory. All subsequent attempts to run the program will fail.
void main(void)
{
 static int a = 1;

 a++;
 /* other code here */
}

Working Around the Problem
There are two ways to work around the problem.

1. Use global variable instead of a local variable. For example:
static int a = 1;

void main(void)
{
 a++;
 /* other code here */
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

426

2. If the local variable is to be initialized to zero, then a non-initialized static local variable
can be used. For example:

void main(void)
{
 static int a;

 a++;
 /* other code here */
}

In this example the declaration:
 static int a;
is the same as the following:
 static int a = 0;

The operating systems sets non-initialized variables (stored in the zerovars section) to
zero before running the program.

Correction to the Problem
This problem exists with the C Compiler supplied by Microtec. It will not be corrected. Users
must work around the problem as described above.

Use of pow Function
The compiler sometimes incorrectly evaluates expressions involving the pow function with
other arithmetic.

Also, a task calling the pow function requires at least 5 stack blocks. The need for more
stack space by the pow function is not a compiler problem, it is simply a requirement of pow.

Problems Caused
Some arithmetic expressions involving the pow function may result in incorrect results.
When testing expressions that call pow, if the result is found to be incorrect, it will be
consistently incorrect for all values used by variables in the expression.

The pow function requires at least 5 stack blocks. If 4 or less stack blocks are used by the
task calling pow, the controller will overflow its stack space. When the stack space overflows
the behavior is unpredictable, and will most likely cause the controller to reset.

Example
The compiler generates incorrect code for the following example. The result of this
expression is incorrect for all values used for its variables.
void main(void)
{
 double a, b, c, d, e;

 a = pow(b, c) * (d + e);

 /* other code here */
}

ISaGRAF C Tools User and Reference Manual
May 8, 2007

427

ISaGRAF C Tools User and Reference Manual
May 8, 2007

428

Working Around the Problem
There are two ways to work around the problem.

1. To work around the problem compute the pow result on a separate line and use the
result in the arithmetic expression afterwards. For example:
void main(void)
{
 double a, b, c, d, e, result;

 result = pow(b, c);
 a = result * (d + e);

 /* other code here */
}

Note that when a task calls the pow function it requires at least 5 stack blocks. The
default stack space allocated to the main task is only 4 blocks. To modify the number of
stack blocks allocated to the main task refer to the section Start-Up Function Structure
for details on editing appstart.c. See the function create_task to specify the stack used
by other tasks.

2. The powf function may be used instead of pow where double precision is not required.

Correction to the Problem
This problem exists with the C Compiler supplied by Microtec. It will not be corrected. Users
must work around the problem as described above.

ISaGRAF C Tools User and Reference Manual
May 8, 2007

429

ISaGRAF C Tools Warranty and
License

Warranty Disclaimer
Control Microsystems makes no representation or warranty with respect to the ISaGRAF C
Tools. The sole obligation of Control Microsystems shall be to make available all published
updates or modifications to the ISaGRAF C Tools at a price which will not exceed the
current market price.

Limitation of Liability
The foregoing warranty is in lieu of all other warranties, expressed or implied, including but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
The user shall at their own discretion determine the suitability of the ISaGRAF C Tools for
their intended use. In no event will Control Microsystems, its agents, distributors,
representatives, employees, officers, directors, or contractors be liable for any special,
direct, indirect or consequential damages, losses, costs, claims, demands or claim for lost
profits, fees or expenses of any nature or kind arising from the use of the ISaGRAF C Tools.
In accepting this product, you agree to these terms.

Modifications
Control Microsystems reserves the right to make modifications to the ISaGRAF C Tools and
to change its specifications without notice.

Non-Disclosure
SCADAPack, TeleSAFE and TelePACE are registered trademarks of Control Microsystems.
The ISaGRAF C Tools is a copyrighted product of Control Microsystems. Users are
specifically prohibited from copying the ISaGRAF C Tools, in whole or in part, by any means
whatsoever, except for purposes of a backup copy, and from disclosing proprietary
information belonging to Control Microsystems.

	Table of Contents
	ISaGRAF C Tools Overview
	Supported Language Features
	Serial Communication
	Clock/Calendar
	Timers
	Duty Cycle and Pulse Outputs
	Watchdog Timer
	Checksums
	Standard I/O Functions
	The ISaGRAF Workbench
	Additional Documentation

	Getting Started
	System Requirements
	Making Backup Disks
	Installation of C Compiler
	Installation of ISaGRAF

	Program Development Tutorial
	Writing and Editing
	Compiling and Linking
	Example

	Loading and Executing
	Controller Initialization
	Loading the Program
	Executing the Program

	Serial Communication Parameters

	C Program Development
	Program Architecture
	Main Function Structure
	Example

	Start-Up Function Structure
	Data Storage

	Compiling Source Code
	Example

	Linking Object Files
	RAM Based Applications
	Example

	Controller Initialization
	Loading Programs into RAM
	Executing Programs

	Real Time Operating System
	Task Management
	Task Execution
	Priority Inversion Prevention
	Task Management Functions
	Task Management Macros
	Task Management Structures

	Resource Management
	Resource Management Functions
	IO_SYSTEM Resource
	DYNAMIC_MEMORY Resource
	AB_PARSER Resource
	MODBUS_PARSER Resource
	Resource Management Macros

	Inter-task Communication
	Inter-task Communication Functions
	Inter-task Communication Macros
	Inter-task Communication Structures

	Event Notification
	Event Notification Functions
	Event Notification Macros

	System Events

	Error Reporting
	Error Reporting Functions
	Error Reporting Macros

	SCADAPack Task Architecture
	RTOS Example Application Program
	Explanation of Task Execution
	Execution Point 1
	Execution Point 2
	Execution Point 3
	Execution Point 4
	Execution Point 5
	Execution Point 6
	Execution Point 7
	Execution Point 8
	Execution Point 9

	Overview of Programming Functions
	Controller Operation
	Start Up Functions
	Start Up Macros
	Start Up Task Info Structure

	Program Status Information Functions
	Program Status Information Macros

	Controller Information Functions
	Controller Information Macros

	Firmware Version Information Functions
	Firmware Version Information Macros
	Firmware Version Information Structure

	Sleep Mode Functions
	Sleep Mode Macros

	Power Management Functions
	Power Management Macros

	Configuration Data EEPROM Functions
	Configuration Data EEPROM Macros

	I/O Bus Communication Functions
	I/O Bus Communication Macros
	I/O Bus Communication Types

	System Functions

	Controller I/O Hardware
	Analog Input Functions
	Analog Input Macros

	Analog Output Functions
	Digital Input Functions
	Digital Output Functions
	Counter Input Functions
	Counter Input Macros

	Status LED and Output Functions
	Status LED and Output Macros

	Options Switches Functions
	Option Switches Macros

	LED Indicators Functions
	LED Indicators Macros

	LED Power Control Functions
	LED Power Control Macros
	LED Power Control Structure

	Software Timer Functions
	Software Timer Macros
	Timer Information Structure
	Timer Example Programs

	Real Time Clock Functions
	Real Time Clock Macros
	Real Time Clock Structures
	Real Time Clock Program Example

	Stopwatch Timer Functions
	Watchdog Timer Functions
	Watchdog Timer Program Example

	Checksum Functions
	Checksum Macros

	Serial Communication
	Default Serial Parameters
	Serial Communication Time Out
	Debugging Serial Communication
	Serial Communication Functions
	Serial Communication Macros
	Serial Communication Structures

	Microtec Serial I/O Functions
	Dial-Up Modem Functions
	Dial-Up Modem Macros
	Dial-Up Modem Enumeration Types
	Dial-up Modem Structures

	Modem Initialization Example
	Connecting with a Remote Controller Example

	Communication Protocols
	Protocol Type
	Station Number
	Store and Forward Messaging
	Communication Protocols Functions
	Communication Protocols Macros
	Communication Protocols Enumeration Types
	Communication Protocols Structures

	Modbus Database
	Modbus Database Functions
	Database Macros

	Modbus Addressing
	ISaGRAF Dictionary Variables
	C/C++ Application Database Handler
	Permanent Non-Volatile Modbus Registers

	DNP Communication Protocol
	DNP Communication Protocols Functions

	ISaGRAF Variable Access Functions
	HART Communication
	HART Command Functions
	HART Command Macros
	HART Command Enumeration Types
	HART Command Structures

	ISaGRAF C Tools Function Specifications
	alarmIn
	allocate_envelope
	check_error
	checksum
	checkSFTranslationTable
	clear_errors
	clear_protocol_status
	clearSFTranslationTable
	clearStatusBit
	clear_tx
	crc_reverse
	createRoutingTable
	create_task
	databaseRead
	databaseWrite
	datalogCreate
	datalogDelete
	datalogPurge
	datalogReadNext
	datalogReadStart
	datalogRecordSize
	datalogSettings
	datalogWrite
	dbase
	deallocate_envelope
	dnpInstallConnectionHandler
	dnpClearEventLog
	dnpConnectionEvent
	dnpCreateRoutingTable
	dnpGenerateEventLog
	dnpGetAI16Config
	dnpGetAI32Config
	dnpGetAISFConfig
	dnpGetAO16Config
	dnpGetAO32Config
	dnpGetAOSFConfig
	dnpGetBIConfig
	dnpGetBIConfigEx
	dnpGetBOConfig
	dnpGetCI16Config
	dnpGetCI32Config
	dnpGetConfiguration
	dnpGetConfigurationEx
	dnpGetRuntimeStatus
	dnpReadRoutingTableDialStrings
	dnpReadRoutingTableEntry
	dnpReadRoutingTableSize
	dnpSaveAI16Config
	dnpSaveAI32Config
	dnpSaveAISFConfig
	dnpSaveAO16Config
	dnpSaveAO32Config
	dnpSaveAOSFConfig
	dnpSaveBIConfig
	dnpSaveBIConfigEx
	dnpSaveBOConfig
	dnpSaveCI16Config
	dnpSaveCI32Config
	dnpSaveConfiguration
	dnpSaveConfigurationEx
	dnpSendUnsolicited
	dnpSendUnsolicitedResponse
	dnpWriteRoutingTableEntry
	dnpWriteRoutingTableDialStrings
	end_application
	end_task
	endTimedEvent
	enronInstallCommandHandler
	forceLed
	getABConfiguration
	getBootType
	getclock
	getClockAlarm
	getClockTime
	getControllerID
	getIOErrorIndication
	getPortCharacteristics
	getPowerMode
	get_port
	getProgramStatus
	get_protocol
	getProtocolSettings
	getProtocolSettingsEx
	get_protocol_status
	getSFTranslation
	get_status
	getStatusBit
	getTaskInfo
	getVersion
	getWakeSource
	hartIO
	hartCommand
	hartCommand0
	hartCommand1
	hartCommand2
	hartCommand3
	hartCommand11
	hartCommand33
	hartStatus
	hartGetConfiguration
	hartSetConfiguration
	hartPackString
	hartUnpackString
	install_handler
	installClockHandler
	installDbaseHandler
	installSetdbaseHandler
	Dbase Handler Function
	Setdbase Handler Function
	installExitHandler
	installModbusHandler
	Handler Function
	installRTCHandler
	RTCHandler Function
	interruptCounter
	interruptInput
	RTCHandler Function
	interrupt_signal_event
	interval
	ioBusReadByte
	ioBusReadLastByte
	ioBusReadMessage
	ioBusSelectForRead
	ioBusSelectForWrite
	ioBusStart
	ioBusStop
	ioBusWriteByte
	ioBusWriteMessage
	ioClear
	ioDatabaseReset
	ioRefresh
	ioReset
	isaRead16Din
	isaRead32Din
	isaRead4Ain
	isaRead4Counter
	isaRead4202Inputs
	isaRead4202DSInputs
	isaRead5505Inputs
	isaRead5506Inputs
	isaRead5601Inputs
	isaRead5602Inputs
	isaRead5604Inputs
	isaRead5606Inputs
	isaRead8Ain
	isaRead8Din
	isaReadLPInputs
	isaReadSP100Inputs
	isaWrite16Dout
	isaWrite2Aout
	isaWrite32Dout
	isaWrite4Aout
	isaWrite4AoutChecksum
	isaWrite4202Outputs
	isaWrite4202OutputsEx
	isaWrite4202DSOutputs
	isaWrite5303Aout
	isaWrite5505Outputs
	isaWrite5506Outputs
	isaWrite5601Outputs
	isaWrite5602Outputs
	isaWrite5604Outputs
	isaWrite5606Outputs
	isaWrite8Dout
	isaWriteAout
	isaWriteLPOutputs
	isaWriteSP100Outputs
	ledGetDefault
	ledPower
	ledPowerSwitch
	ledSetDefault
	load
	master_message
	modbusExceptionStatus
	modbusSlaveID
	modbusProcessCommand Function
	modemAbort
	modemAbortAll
	modemDial
	modemDialEnd
	modemDialStatus
	modemInit
	modemInitEnd
	modemInitStatus
	modemNotification
	optionSwitch
	pollABSlave
	poll_event
	poll_message
	poll_resource
	portConfiguration
	portIndex
	portStream
	processModbusCommand
	queue_mode
	readBoolVariable
	readCounter
	readCounterInput
	readBattery
	readInternalAD
	readIntVariable
	readMsgVariable
	readRealVariable
	readRoutingTableEntry
	readRoutingTableSize
	readStopwatch
	readThermistor
	readTimerVariable
	read_timer_info
	receive_message
	release_processor
	release_resource
	report_error
	request_resource
	resetAllABSlaves
	resetClockAlarm
	route
	runLed
	save
	searchRoutingTable
	send_message
	setABConfiguration
	setBootType
	setclock
	setClockAlarm
	setdbase
	setDTR
	setIOErrorIndication
	setPowerMode
	set_port
	setProgramStatus
	set_protocol
	setProtocolSettings
	setProtocolSettingsEx
	setSFTranslation
	setStatus
	setStatusBit
	settimer
	setWakeSource
	signal_event
	sleep
	start_protocol
	startup_task
	startTimedEvent
	timer
	timeoutCancel
	timeoutRequest
	wait_event
	wd_auto
	wd_manual
	wd_pulse
	writeBoolVariable
	writeIntVariable
	writeRealVariable
	writeMsgVariable
	writeTimerVariable
	writeRoutingTableEntry

	ISaGRAF C Tools Macro Definitions
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W

	ISaGRAF C Tools Structures and Types
	ABConfiguration
	ADDRESS_MODE
	ALARM_SETTING
	clock
	DATALOG_CONFIGURATION
	DATALOG_STATUS
	DATALOG_VARIABLE
	DialError
	DialState
	dnpAnalogInput
	dnpAnalogOutput
	dnpBinaryInput
	dnpBinaryInputEx_type
	dnpBinaryOutput
	DNP_CONNECTION_EVENT Type
	dnpConfiguration
	dnpConfigurationEx
	dnpCounterInput
	dnpPointType
	DNP_RUNTIME_STATUS
	envelope
	HART_COMMAND
	HART_DEVICE
	HART_RESPONSE
	HART_RESULT
	HART_SETTINGS
	HART_VARIABLE
	ledControl_tag
	ModemInit
	ModemSetup
	PROTOCOL_SETTINGS
	PROTOCOL_SETTINGS_EX Type
	prot_settings
	prot_status
	pconfig
	PORT_CHARACTERISTICS
	pstatus
	READSTATUS
	routingTable
	SFTranslation
	SFTranslationStatus
	TASKINFO
	taskInfo_tag
	timer_info
	VERSION
	WRITESTATUS

	C Compiler Known Problems
	Use of Initialized Static Local Variables
	Problems Caused
	Example
	Working Around the Problem
	Correction to the Problem

	Use of pow Function
	Problems Caused
	Example
	Working Around the Problem
	Correction to the Problem

	ISaGRAF C Tools Warranty and License

