
THE MICROCANOPEN PLUS PROTCOL STACK

MICROCANOPEN PLUS USER MANUAL

Revision 1700 for Version 5.50 of MicroCANopen Plus

1

E M B E D D E D
S Y S T E M S
A C A D E M Y

THE MICROCANOPEN PLUS PROTCOL STACK

MICROCANOPEN PLUS LICENSE AGREEMENT
EMBEDDED SYSTEMS ACADEMY, INC.

For MicroCANopen Plus V5.50

The enclosed software and documentation are the exclusive property of Embedded
Systems Academy, Inc. (ESA), protected under the copyrights laws of the United States
of America and under international treaty provisions. ESA agrees to grant LICENSEE a
license to use this copy of MicroCANopen Plus (the "SOFTWARE") and LICENSEE
agrees to pay for this license in accordance to the terms specified.

You should carefully read the following terms and conditions before using the
SOFTWARE. Unless you have a different license agreement signed by ESA your use of
the SOFTWARE indicates your acceptance of this license.

If you do not agree to any of the terms of this License, then do not use this copy of the
SOFTWARE.

If the SOFTWARE is used for a project that is rented, leased, sold or otherwise traded (a
"COMMERCIAL PROJECT") then this commercial license is required to use the
SOFTWARE. If the SOFTWARE is used to develop knowledge of CANopen for a
COMMERCIAL PROJECT then this commercial license is required.

Installation and Use. You may install and use an unlimited number of copies of the
SOFTWARE for a SINGLE PROJECT at a SINGLE SITE within your organization.

Reproduction and Distribution. You may not reproduce and distribute copies of the
SOFTWARE source code or parts thereof without written permission of ESA. You may
freely reproduce and distribute binary firmware compiled using the SOFTWARE without
limitations.

Third-party access. The SOFTWARE source code may be accessible only to employees
within your organization at the SINGLE SITE that the SOFTWARE is licensed for. Any
access from third-party personnel (consultants, temporary workers, clients, customers) or
personnel not on site requires the written permission of ESA.

Limitations for Consultants, Software Houses, Product Development companies and
other vendors of embedded development services: The SOFTWARE is licensed on a per-
client basis. The restrictions to third-party access apply to clients or customers as well.

All title and copyrights in and to the SOFTWARE (including but not limited to any
images, photographs, animations, video, audio, music, text, and "applets" incorporated
into the SOFTWARE), any accompanying printed materials, and any copies of the
SOFTWARE are owned by ESA. The SOFTWARE is protected by copyright laws and
international treaty provisions. Therefore, you must treat the SOFTWARE like any other
copyrighted material. All copyright notices, this license, header comments and similar
statements include with this distribution of the SOFTWARE must remain in the source
code at all times. No claim must be made as to the ownership of the SOFTWARE.

2

THE MICROCANOPEN PLUS PROTCOL STACK

THIS SOFTWARE, AND ALL ACCOMPANYING FILES, DATA AND MATERIALS,
ARE DISTRIBUTED "AS IS" AND WITH NO WARRANTIES OF ANY KIND,
WHETHER EXPRESS OR IMPLIED. Good data processing procedure dictates that any
program be thoroughly tested with non-critical data before relying on it. The user must
assume the entire risk of using the program. THIS DISCLAIMER OF WARRANTY
CONSTITUTES AN ESSENTIAL PART OF THE AGREEMENT.

IN NO EVENT SHALL ESA, OR ITS PRINCIPALS, SHAREHOLDERS, OFFICERS,
EMPLOYEES, AFFILIATES, CONTRACTORS, SUBSIDIARIES, OR PARENT
ORGANIZATIONS, BE LIABLE FOR ANY INCIDENTAL, CONSEQUENTIAL, OR
PUNITIVE DAMAGES WHATSOEVER RELATING TO THE USE OF THE
SOFTWARE, OR YOUR RELATIONSHIP WITH ESA.

IN ADDITION, IN NO EVENT DOES ESA AUTHORIZE YOU TO USE THE
SOFTWARE IN APPLICATIONS OR SYSTEMS WHERE THE SOFTWARE'S
FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO RESULT IN A
SIGNIFICANT PHYSICAL INJURY, OR IN LOSS OF LIFE. ANY SUCH USE BY
YOU IS ENTIRELY AT YOUR OWN RISK, AND YOU AGREE TO HOLD ESA
HARMLESS FROM ANY CLAIMS OR LOSSES RELATING TO SUCH
UNAUTHORIZED USE.

This Agreement is the complete statement of the Agreement between the parties on the
subject matter, and merges and supersedes all other or prior understandings, purchase
orders, agreements and arrangements. This Agreement shall be governed by the laws of
the State of California. Exclusive jurisdiction and venue for all matters relating to this
Agreement shall be in courts and fora located in the State of California, and you consent
to such jurisdiction and venue.

All rights of any kind in the SOFTWARE which are not expressly granted in this License
are entirely and exclusively reserved to and by ESA.

3

THE MICROCANOPEN PLUS PROTCOL STACK

Table of Contents
1 THE MICROCANOPEN PROTOCOL STACK..9

1.1 MICROCANOPEN AND MICROCANOPEN PLUS...9

1.2 MICROCANOPEN MANAGER ADD-ON...9

1.3 CANOPEN DOCUMENTATION..9

1.4 FILE AND DIRECTORY STRUCTURE..9

1.5 FUNCTION SUMMARY...12

1.6 DS401 GENERIC I/O EXAMPLE APPLICATION..14

1.7 CiA447 CAR ADD-ON DEVICES EXAMPLE APPLICATION.........................14

2 APPLICATION INTERFACE..15

2.1 THE PROCESS IMAGE..15

2.1.1 CONFIGURATION OF THE PROCESS IMAGE...15

2.1.2 ACCESSING THE PROCESS IMAGE..16

2.1.3 DATA INTEGRITY OF THE PROCESS IMAGE IN AN RTOS
ENVIRONMENT..16

2.2 OBJECT DICTIONARY CONFIGURATION..16

2.3 CANOPEN API FUNCTIONS AND MACROS...17

2.3.1 The MCO_Init function...17

2.3.2 The MCO_InitRPDO function...17

2.3.3 The MCO_InitTPDO function...18

2.3.4 The MCO_ProcessStack function..19

2.3.5 The MCO_TriggerTPDO function...19

2.3.6 Process Image Access Macros: The PI_READ macro....................................20

2.3.7 Process Image Access Macros: The PI_WRITE macro..................................20

2.3.8 Process Image Access Macros: The PI_COMP macro....................................21

2.3.9 Default Process Image Access Macros..21

2.3.10 Macros for PDO process image access..22

2.3.11 The MCO_ReadProcessData function...22

2.3.12 The MCO_WriteProcessData function..23

2.4 CANOPEN API CALL-BACK FUNCTIONS...24

2.4.1 The MCOUSER_ResetCommunication function..24

4

THE MICROCANOPEN PLUS PROTCOL STACK

2.4.2 The MCOUSER_ResetApplication function...24

2.4.3 The MCOUSER_NMTChange function..24

2.4.4 The MCOUSER_SYNCReceived function...25

2.4.5 The MCOUSER_RPDOReceived function...26

2.4.6 The MCOUSER_ODData function...26

2.4.7 The MCOUSER_TPDORdy function..27

2.4.8 The MCOUSER_FatalError function..27

2.4.9 The MCOUSER_GetSerial function..28

2.5 CANOPEN API EXTENDED FUNCTIONS..28

2.5.1 The MCOP_InitHBConsumer function...28

2.5.2 The MCOP_ProcessHBCheck function...29

2.5.3 The MCOP_GetStoredParameters function...29

2.5.4 The MCOP_PushEMCY function...30

2.5.5 The MCOP_TransmitSleepObjection() function...30

2.6 CANOPEN API EXTENDED CALLBACKS...31

2.6.1 The MCOUSER_AppSDOReadInit function...31

2.6.2 The MCOUSER_AppSDOWriteInit function..31

2.6.3 The MCOUSER_AppSDOWriteComplete function......................................32

2.6.4 The MCOUSER_SDORdPI function...33

2.6.5 The MCOUSER_SDORdAft function..33

2.6.6 The MCOUSER_SDOWrPI function...34

2.6.7 The MCOUSER_SDOWrAft function...34

2.6.8 The MCOUSER_SDORequest function..35

2.6.9 The MCOUSER_Sleep function..36

2.7 DRIVER FUNCTIONS..37

2.7.1 The MCOHW_Init function...37

2.7.2 The MCOHW_SetCANFilter function..37

2.7.3 The MCOHW_GetStatus function...37

2.7.4 The MCOHW_PushMessage function..38

2.7.5 The MCOHW_PullMessage function...38

2.7.6 The MCOHW_GetTime function...38

2.7.7 The MCOHW_IsTimeExpired function...39

5

THE MICROCANOPEN PLUS PROTCOL STACK

2.7.8 The NVOL_Init function (Plus)..39

2.7.9 The NVOL_ReadByte function (Plus)..39

2.7.10 The NVOL_WriteByte function (Plus)...39

2.7.11 The NVOL_WriteComplete function (Plus)...40

2.7.12 The MCOHWMGR_SetCANFilter function (MGR)...................................40

2.7.13 The MCOHWMGR_PullMessage function (MGR).....................................40

2.8 USING SOFTWARE CAN FILTERS AND FIFOS..41

2.8.1 USING SOFTWARE CAN RECEIVE FILTERS...41

2.8.2 USING THE FIFOS...41

2.8.3 SAMPLE CAN RECEIVE INTERRUPT IMPLEMENTATION...................42

3 CANOPEN CODE CONFIGURATION...43

3.1 TABLE SIZE SETTINGS OF PROCIMG.H...43

3.1.1 #define PROC_IMGSIZE [num]...43

3.2 GENERAL SETTINGS OF NODECFG.H..43

3.2.1 #define USE_MCOP [0|1]...43

3.2.2 #define CHECK_PARAMETERS [0|1]..43

3.2.3 #define USE_LEDS [0|1]..43

3.3 PDO SETTINGS OF NODECFG.H...43

3.3.1 #define NR_OF_RPDOS [num]..43

3.3.2 #define NR_OF_TPDOS [num]..44

3.3.3 #define USE_EVENT_TIME [0|1]..44

3.3.4 #define USE_INHIBIT_TIME [0|1]..44

3.3.5 #define USE_SYNC [0|1]..44

3.4 NMT SERVICE SETTINGS OF NODECFG.H (PLUS).......................................44

3.4.1 #define AUTOSTART [0|1]..44

3.4.2 #define DEFAULT_HEARTBEAT [ms]..44

3.4.3 #define DYNAMIC_HEARTBEAT_CONSUMER [0|1],
#define NR_HB_CONSUMER [num]..44

3.4.4 #define USE_EMCY [0|1],
#define ERROR_FIELD_SIZE [num]...45

3.4.5 #define USE_NODE_GUARDING [0|1]..45

6

THE MICROCANOPEN PLUS PROTCOL STACK

3.4.6 #define USE_STORE_PARAMETERS [0|1],
#define NVOL_STORE_START [num],
#define NVOL_STORE_SIZE [num]..45

3.4.7 #define NR_OF_SDOSERVER [num]..45

3.4.8 #define USE_SLEEP [0|1]...46

3.5 OTHER SETTINGS OF NODECFG.H (PLUS)..46

3.5.1 #define USE_CiA447 [0|1]..46

3.5.2 #define USE_SDOMESH [0/1]...46

3.6 USER CALL-BACK FUNCTIONS OF NODECFG.H (PLUS)............................46

3.6.1 #define USECB_NMTCHANGE [0|1]..46

3.6.2 #define USECB_SYNCRECEIVE [0|1]..46

3.6.3 #define USECB_RPDORECEIVE [0|1]..46

3.6.4 #define USECB_ODDATARECEIVED [0|1]..46

3.6.5 #define USECB_TPDORDY [0|1]..47

3.6.6 #define USECB_SDOREQ [0|1]...47

3.6.7 #define USECB_SDO_RD_PI [0|1]..47

3.6.8 #define USECB_SDO_RD_AFTER [0|1]...47

3.6.9 #define USECB_SDO_WR_PI [0|1]...47

3.6.10 #define USECB_SDO_WR_AFTER [0|1]..47

3.6.11 #define USECB_APPSDO_READ [0|1]...47

3.6.12 #define USECB_APPSDO_WRITE [0|1]...48

4 SDO FULLY-MESHED COMMUNICATION..49

4.1 PREREQUISITES..49

4.2 LIMITATIONS...49

4.3 SDO COMMUNICATION SETUP...50

4.4 USAGE EXAMPLE (WITH MANAGER ADD-ON)...50

5 APPENDIX - USING AUTO-GENERATED SOURCES..52

5.1 FILE GENERATION...52

5.2 FILE INTEGRATION..52

5.2.1 PIMG.H..52

5.2.2 STACKINIT.H...53

5.2.3 ENTRIESANDREPLIES.H...53

7

THE MICROCANOPEN PLUS PROTCOL STACK

6 APENDIX – ADVANCED MANUAL CONFIGURATION.......................................55

6.1 RTOS INTEGRATION..55

6.1.1 RTOS TASK: RECEIVE AND TICK...55

6.1.2 PROCESS IMAGE INTEGRETY...55

6.2 OBJECT DICTIONARY CONFIGURATION..55

6.2.1 CONSTANT EXPEDITED OBJECT DICTIONARY ENTRIES..................56

6.2.2 VARIABLE EXPEDITED AND MAPPED OBJECT DICTIONARY
ENTRIES...57

6.2.3 GENERIC OBJECT DICTIONARY ENTRIES (PLUS)................................58

8

THE MICROCANOPEN PLUS PROTCOL STACK

1 THE MICROCANOPEN PROTOCOL STACK

The MicroCANopen protocol stack implements all mandatory functionality of the
CiA (CAN in Automation user’s and manufacturer’s group) standard CiA 301
“CANopen Application Layer and Communication Profile” version 4.02 and
selected functionality of the standard CiA 302 “CANopen Framework for
CANopen Managers and Programmable CANopen Devices” version 3.21. The
examples included are in accordance to the standard CiA 401 “CANopen Device
Profile for Generic I/O Modules” version 2.1.

The CiA447 version provides examples for the implementation of car add-on
devices and includes the Manager functionality.

Examples implementations for other Device or Application Profiles are available
upon request.

1.1 MICROCANOPEN AND MICROCANOPEN PLUS
This manual covers MicroCANopen Plus, see www.microcanopen.com for details
on the basic version. This “Plus” version can be ordered separately but is also
included with the bundle “CANopen Development Kit”.

1.2 MICROCANOPEN MANAGER ADD-ON
Advanced CANopen Manager functionality as defined in CiA 302 “CANopen
Framework for CANopen Managers and Programmable CANopen Devices” is
available as an add-on package to MicroCANopen Plus. This add-on is included
in the CiA447 version of MicroCANopen. For details see the MicroCANopen
Manager User Manual or www.CANopenStore.com.

1.3 CANOPEN DOCUMENTATION
It is assumed that programmers using MicroCANopen have a general
understanding about how CANopen works. In addition they should either have
access to the CANopen specification or a CANopen book such as “Embedded
Networking with CAN and CANopen” (www.CANopenBook.com). The
MicroCANopen manual does not explain regular CANopen features, functions
and terms.

1.4 FILE AND DIRECTORY STRUCTURE
The directory structure used by MicroCANopen separates the files used into four
major groups. It is recommended to maintain this structure and to adopt it for the
grouping of source files in the project settings and layouts as supported by most
compiler systems.

1.) Common Shared Directory:

9

THE MICROCANOPEN PLUS PROTCOL STACK

Name: ../MCO

This directory contains all files implementing the core features of the CANopen
protocol. In order to allow easy future updates/upgrades and to ensure that the
code remains CANopen conform these files should not be modified by the end
user.

File / Module Content

mcohw.h CAN Driver interface definition

mco.h
mco.c

MicroCANopen core module

mcop.h
mcop.c

Generic MicroCANopen Plus extensions of MicroCANopen

storpara.c MicroCANopen Plus extension: support of the Store
Parameters functions storing configuration data in non-
volatile memory

xsdo.h
xsdo.c

MicroCANopen Plus extension: segmented SDO transfers
(Supporting Object Dictionary entries that are > 4 bytes)

lss.h
lssslv.c

MicroCANopen Plus extension: Layer Setting Services,
slave implementation

canfifo.h
canfifo.c

Implementation of CAN software filtering and transmit and
receive FIFOs

mlss.h
mlssslv.h

MicroLSS slave implementation implementing the LSS
FastScan

dynpdo.c Dynamic PDO Mapping functionality (add-on)

2.) Application Configuration Directories

Name: ../MCO_APPLICATIONNAME
This directory contains the files and modules configuring the CANopen device
implemented. These files need to be modified or generated for each particular
application.

File / Module Content

mcohwXXX.h
mcohwXXX.c

CANopen driver implementation. Provides CAN
communication routines and timer handling.

mcohwLEDs.h Defining access to optional RUN and ERR LEDs

procimg.h Definition of symbolic offsets for locations in the process
image and process image access macros

10

THE MICROCANOPEN PLUS PROTCOL STACK

nodecfg.h MicroCANopen functionality configuration

userXXX.c
mainXXX.c
user_cbdata.c

User specific CANopen code including Object Dictionary
contents, PDO settings and call-back functions

Name: ../MCO_APPLICATIONNAME/EDS
This directory contains the application’s EDS and DCF files (Electronic Data
Sheet and Device Configuration File) as well as auto-generated source code files
generated by the CANopen EDS Editor “CANopen Architect EDS”. He auto-
generated files should not be modified as any re-generation of the files by
CANopen Architect EDS would overwrite any modifications made manually.

File / Module Content

Application.eds Application’s Electronic Data Sheet

Application.dcf Application’s Device Configuration File. This is for a
specific node ID and is the file used as a basis to the auto-
generated files below.

entriesandreplies.h
stackinit.h
pimg.h

Auto-generated configuration files generated by “CANopen
Architect EDS” using the Device Configuration File above.

3.) Simulation Specific Directory

Name: ../MCO_simulator

This directory contains the source files that are required when compiling
MicroCANopen for the PCANopen Magic ProS simulation environment.

4.) Optional Common Shared Directory:

Name: ../MGR

This directory contains all files implementing CANopen Manager functionality.
This is only included in the delivery if the manager add-on option is ordered or
the CiA447 car add-on devices version of the code.

File / Module Content

comgr.h
comgr.c

Implements the basic functionality of a Manager

lssmgr.h
lssmgr.c

Optional LSS Master implementation

11

THE MICROCANOPEN PLUS PROTCOL STACK

mlssmgr.h
mlssmgr.c

Optional Micro LSS Master implementation with LSS Fast
Scan

concisedcf.h
concisedcf.c

Optional support of concise DCF

1.5 FUNCTION SUMMARY
MicroCANopen can be used to implement CANopen Slave nodes in accordance
with almost any Device profile or Application profile available today. However,
not all advanced CANopen functions defined by the standards are implemented.
MicroCANopen Plus covers the advanced functionality most often used in
CANopen slave nodes.

PROCESS IMAGE USAGE
All data communicated via CANopen is organized in a process image, an array of
bytes (type UNSIGNED8). Data is referred to by an offset into the process image.
These offsets can be auto-generated by the CANopen configuration tool
CANopen Architect EDS.

OBJECT DICTIONARY AND SDO SERVER
MicroCANopen Plus implements an object dictionary with one or multiple SDO
servers. In basic configuration, the SDO server is limited to expedited SDO
transfers. This means that no single variable stored in the Object Dictionary can
exceed 4 bytes. Longer variables must be divided into multiple 4-byte values. In
addition, MicroCANopen Plus can be configured to support segmented SDO
transfers as well as SDO block transfer, allowing access to Object Dictionary
entries longer than 4 bytes.

Using the SDO server, one Manager or configuration tool can send read/write
requests to the Object Dictionary.

HEARTBEAT VS. NODE GUARDING
As recommended by the CiA and other CANopen experts, MicroCANopen
implements the newer heartbeat method instead of the older node guarding
method. However, in order to better work with legacy devices (including the
CANopen conformance test) MicroCANopen Plus also has a very basic version of
node guarding implemented. Note that this needs support of the underlaying CAN
driver to receive RTR frames. This may not be readily available in every
supported architecture or not even possible with every CAN controller.

MICROCANOPEN PDO PARAMETERS
In MicroCANopen Plus, PDO parameters may be static (hard-coded, not
changeable during operation) or dynamic (changed during operation), depending
on configuration. PDO trigger options include change-of-state with an inhibit
time, event timer (periodical) and SYNC.
Due to the usage of a very simple driver API, the PDO linking (CAN message ID

12

THE MICROCANOPEN PLUS PROTCOL STACK

used for each PDO) can only be changed until the device goes operational for the
first time.

NUMBER OF PDOS
The maximum number of PDOs supported are 512 TPDOs and 512 RPDOs for
MicroCANopen Plus. This limit is not a MicroCANopen limit, but the limit as
specified by the CANopen standard.

EMERGENCY PRODUCER
MicroCANopen Plus supports the production of emergency messages.
Emergencies can be triggered by the application as well as by the CANopen stack,
for example if a PDO received has a different length then expected.

EMERGENCY CONSUMER
MicroCANopen Plus supports the consuming of emergency messages with the
manager add-on package. When used, all 127 emergencies can be received and
trigger a call-back function to the application.

HEARTBEAT CONSUMER
MicroCANopen Plus provides multiple heartbeat consumer channels. The
application is informed once a heartbeat monitored is lost. The channels can be
configured both through the CANopen network as well as by the application. So if
the application knows which heartbeats it should listen to, then that information
can be directly used without waiting for a configuration through the network.

STORE PARAMETERS
MicroCANopen Plus implements the store parameters functionality. This means
that the current configuration of the MicroCANopen device can be saved to non-
volatile memory and will automatically be used after power-up.

LAYER SETTING SERVICES
Using the layer setting services, MicroCANopen Plus based nodes can change
their node ID and or the bit rate settings during operation. An LSS Master is
required in the CANopen network to use this functionality.

Since V4.00 MicroCANopen Plus supports MicroLSS, the LSS Fast Scan service
that auto-identifies non-configured nodes on the network.

SDO FULLY-MESHED COMMUNICATION
For small networks of up to 16 nodes, MicroCANopen Plus features a built-in
configuration that allows any node to access all of the object dictionary of another
node at any time without restrictions. This is done by enabling 16 SDO server
channels and 16 SDO clients in each node and setting the channels up using a
custom COB-ID assignment scheme.

USER CALL-BACK FUNCTIONS
MicroCANopen provides call-back functions for the resets and for fatal errors.
The communication reset function is typically used to initialize the entire
CANopen stack.

13

THE MICROCANOPEN PLUS PROTCOL STACK

MicroCANopen Plus provides optional call-back functions for changes in the
NMT Slave state machine and for handling unknown SDO requests to the Object
Dictionary. The later can be used to implement very application specific Object
Dictionary entries.

All process image data accesses are made using macros. If such accesses need to
be protected / locked from each other, then the macros can be used to include such
locking calls.

1.6 DS401 GENERIC I/O EXAMPLE APPLICATION
The example code supplied with MicroCANopen implements a minimal CiA 401
compliant device with 4 digital input bytes, 4 digital output bytes, 2 analog input
words and 2 analog output words. The process data is transmitted using 2
Transmit PDOs and 2 Receive PDOs.

The output data send to the application is directly echoed back as input data.
Values send to RPDO1 are echoed back on TPDO1, values send to RPDO2 are
echoed back on TPDO2.

1.7 CiA447 CAR ADD-ON DEVICES EXAMPLE APPLICATION
The example code supplied with MicroCANopen Plus for CiA 447 implements
several examples for car add-on devices. The devices come up non-configured
and wait for the gateway to detect and configure them using the MicroLSS Fast
Scan detection cycle.

To manually configure the nodes and have them autostart with a fixed node ID
one needs to disable the MicroLSS service in nodecfg.h. In that file simply
comment out the defines for USE_LSS_SLAVE and USE_MICROLSS.

The node ID is now set by the DCF configuration. To change, modify the DCF
belonging to the application (stored in EDS_XXX directory) using Code Architect
EDS and re-generate the source files from there.

14

THE MICROCANOPEN PLUS PROTCOL STACK

2 APPLICATION INTERFACE

Both shared data memory and function calls are used to implement an interface
between MicroCANopen the application program. A process image (array of
bytes) is used as shared memory that can be accessed from both MicroCANopen
as well as from the application program. The process image contains all process
data variables that are communicated via CANopen. Access functions are
provided to allow the application program to read or write data from or to the
process image.

2.1 THE PROCESS IMAGE
In order to offer a generic method for addressing and exchanging the data
communicated via CANopen, the data is organized into a process image which is
implemented as an array of bytes. The length of the process image in bytes is
defined by PROCIMG_SIZE in file procimg.h and must be in the range of 1 to
FFFEh (values 0 and FFFFh are reserved).

A single variable of the process image can be addressed by specifying an offset
and a length. The offset specifies where in the process image the first byte of a
variable is stored and the length specifies how many bytes are used to store the
variable. The offset may have a value from 0 to FFFEh. Using an offset of FFFFh
indicates that the offset is invalid or unused.

If numeric values are stored in multiple byte variables, then the default byte order
is CANopen compatible: Little Endian – the lower bytes are stored at the lower
offset.

2.1.1 CONFIGURATION OF THE PROCESS IMAGE
Since version 2.6 the process image configuration can be automatically generated
by CANopen Architect EDS. The default file name for the file containing the
process image variable definitions generated by CANopen Architect EDS is
pimg.h.

Where exactly each variable is located in the process image is part of the
CANopen node configuration process that needs to be done by the
designer/programmer of the CANopen node. The CANopen configuration process
also includes assigning an Object Dictionary Index and Subindex to each variable
and to configure the PDOs (Process Data Objects) containing one or multiple
process data variables.

To simplify accessing the process image and to allow for easy re-configuration of
process images, it is recommended to use #define statements to define the offsets
to the individual variables in the process image. These should be defined in the
file procimg.h that can be included to all code modules requiring access to the
process image.

15

THE MICROCANOPEN PLUS PROTCOL STACK

In MicroCANopen it MUST be ensured that all variables mapped into one PDO
(one CAN message) are located consecutively in the process image. The entire
contents of PDOs is copied byte-by-byte from/to the process image.

2.1.2 ACCESSING THE PROCESS IMAGE
Any application program may directly access the data in the process image (for
example: gProcImg[offset] = x).

For a more generic access it is recommended to use the access functions and
macros provided by MicroCANopen. See chapter 2.3.6 Process Image Access
Macros: The PI_READ macro and below for details.

2.1.3 DATA INTEGRITY OF THE PROCESS IMAGE IN AN RTOS
ENVIRONMENT
The process image is accessed by both the application and MicroCANopen (both
with SDO and PDO accesses). If the MicroCANopen stack and the application
cannot interrupt each other, then process image integrity is ensured and no further
protection is required. This is true if both the application is running from a polling
loop, such as in a main while(1) loop.

If MicroCANopen is used in a multi-task implementation, it needs to be ensured
that accesses to the process image are not made “simultaneously” from multiple
tasks. A Mutex or single token semaphore should be used that only one instance
can access the process image at any given time.

To ease the implementation of such locks, all process image accesses need to be
made using the macros PI_READ(), PI_WRITE() and PI_COMP(). The read and
write macros need to be enhanced with custom code to create and release a lock
before and after accessing the process image.

Note: PI_COMP() also executes an read access, however it is only used to detect
a data change and therefore does not need to be protected.

2.2 OBJECT DICTIONARY CONFIGURATION
Since version 2.6, the Object Dictionary configuration can be automatically
generated by CANopen Architect EDS. The default file name for the file
containing the process image variable definitions is entriesandreplies.h.

In MicroCANopen the default configuration is setup via tables typically
implemented in a file called user_xxx.c (User Object Dictionary file).

For more details about the manual, advanced configuration of these tables see
chapter 6.2 OBJECT DICTIONARY CONFIGURATION.

16

THE MICROCANOPEN PLUS PROTCOL STACK

2.3 CANOPEN API FUNCTIONS AND MACROS
This section lists all the functions that can be called by the application program.

2.3.1 The MCO_Init function
The MCO_Init function (re-)initializes the CANopen protocol stack. It needs to be
called during system initialization. It may also be called to re-initialize the
CANopen stack, for example to force a reset of the CANopen communication
task(s).

Declaration
void MCO_Init (
 UNSIGNED16 Baudrate, // CAN baudrate in kbit
 UNSIGNED8 Node_ID, // CANopen node ID (1-126)
 UNSIGNED16 Heartbeat // Heartbeat time in ms
);
Passed
Baudrate selects the desired CAN bit rate to be used. The following values are
typically used for CANopen:

0 use default or predefined bit rate
10 use 10 kbps
20 use 20 kbps
50 use 50 kbps
125 use 125 kbps
250 use 250 kbps
500 use 500 kbps
800 use 800 kbps
1000 use 1,000 kbps

Node_ID is the CANopen node ID to be used by this CANopen node. The
allowed value range is 0 to 127. If 0 is selected, MicroCANopen will use the
default or preconfigured node ID.

Heartbeat is the heartbeat producer time in milliseconds. If set to zero,
MicroCANopen will try to use a default or predefined value.

Returned
Nothing.

2.3.2 The MCO_InitRPDO function
This function initializes a Receive Process Data Object.
When using the code generation of CANopen Architect EDS these calls are
automatically generated and provided in file initpdos.h.

17

THE MICROCANOPEN PLUS PROTCOL STACK

Declaration
void MCO_InitRPDO (
 UNSIGNED16 PDO_NR, // RPDO number (starting at 1)
 UNSIGNED16 CAN_ID, // CAN identifier (0 for default)
 UNSIGNED8 len, // Number of data bytes in RPDO
 UNSIGNED8 offset // Offset to data in process image
)
Passed
The parameter PDO_NR defines the PDO number as used in CANopen. The
default PDOs of a CANopen device are numbered 1 through 4.

The CAN_ID specifies the CAN message identifier used for this PDO. If left at
zero the CANopen default is used.

The len parameter defines the number of data bytes in the PDO.

The parameter offset defines the location of the PDO data within the process
image.

Returned
Nothing.

2.3.3 The MCO_InitTPDO function
This function initializes a Transmit Process Data Object.
When using the code generation of CANopen Architect EDS these calls are
automatically generated and provided in file initpdos.h.

Declaration
void MCO_InitRPDO (
 UNSIGNED16 PDO_NR, // TPDO number (starting at 1)
 UNSIGNED16 CAN_ID, // CAN ID to use (0 for default)
 UNSIGNED16 event_time, // Send every event_tim ms
 UNSIGNED16 inhibit_time, // Inhibit time in ms
 // (set to 0 if ONLY event_tim should be used)
 UNSIGNED8 len, // Number of data bytes in TPDO
 UNSIGNED8 offset // Offset to data in process image
)
Passed
The parameter PDO_NR defines the PDO number as used in CANopen. The
default PDOs of a CANopen device are numbered 1 through 4.

The CAN_ID specifies the CAN message identifier used for this PDO. If left at
zero the CANopen default is used.

18

THE MICROCANOPEN PLUS PROTCOL STACK

The event_time defines how often this PDO is transmitted. This message is
sent every event_time milliseconds.

The inhibit_time activates change-of-state transmission (transmission when
data to be transmitted actually changed) and defines the minimum delay before a
message can be transmitted again. Even if the state changes, the message is not re-
transmit before inhibit_time expires.

The len parameter defines the number of data bytes in the PDO.

The parameter offset defines the location of the PDO data within the process
image.

Returned
Nothing.

2.3.4 The MCO_ProcessStack function
This function must be called periodically to keep the CANopen stack operating.
With each call it is checked if the CAN receive queue contains a message that
needs to be processed. Depending on configuration it is also checked if timers
expired or process data changed. This is typically called from the main while(1)
loop. For best operation this should be called at least once per millisecond. If
called less often multiple calls should be executed (see return value below).

Declaration
UNSIGNED8 MCO_ProcessStack (
 void
);
Passed
Nothing.

Returned
The return value is TRUE, if something was processed and FALSE if there was
nothing to do. If called less frequent, like every few milliseconds this function
should be called repeatedly until the return value is FALSE.
 while (MCO_ProcessStack() == TRUE);

2.3.5 The MCO_TriggerTPDO function
This function may be called by the application when a TPDO should be
transmitted. Can be called after a write to the process image to avoid lengthy
auto-detection of a COS (Change Of State).

19

THE MICROCANOPEN PLUS PROTCOL STACK

Declaration
void MCO_TriggerTPDO (
 UNSIGNED16 TPDONr // TPDO number to transmit
);
Passed
The parameter TPDONr defines the TPDO number to be triggered. Must be in
range from 1 to NR_OF_TPDOS

Returned
Nothing.

2.3.6 Process Image Access Macros: The PI_READ macro
This macro is defined in procimg.h and used to execute read accesses from the
process image. This can be customized or provided as a function if the application
wants to have a direct call-back for any read access made from the process image.

Declaration
PI_READ(level,offset,pdst,len)
Passed
level indicates a priority level for the access, is set to PIACC_APP,
PIACC_PDO or PIACC_SDO depending on if the access is made from the
application, PDO processing or SDO processing.

offset is the offset into the process image to the location from which the read is
executed.

pdst is a memory pointer to the destination to which data is copied.

len is the length of the data to be copied in bytes.

Returned
Nothing or length of data copied.

2.3.7 Process Image Access Macros: The PI_WRITE macro
This macro is defined in procimg.h and used to execute write accesses to the
process image. This can be customized or provided as a function if the application
wants to have a direct call-back for any write access made to the process image.

Declaration
PI_WRITE(level,offset,psrc,len)

20

THE MICROCANOPEN PLUS PROTCOL STACK

Passed
level indicates a priority level for the access, is set to PIACC_APP,
PIACC_PDO or PIACC_SDO depending on if the access is made from the
application, PDO processing or SDO processing.

offset is the offset into the process image to the location to which the write is
executed.

psrc is a memory pointer to the source from which data is copied.

len is the length of the data to be copied in bytes.

Returned
Nothing or length of data copied.

2.3.8 Process Image Access Macros: The PI_COMP macro
This macro is defined in procimg.h and used to compare data with data in the
process image. This can be customized or provided as a function if the application
wants to have a direct call-back for any compare access made to the process
image.

Declaration
PI_COMP(level,offset,psrc,len)
Passed
level indicates a priority level for the access, is set to PIACC_APP,
PIACC_PDO or PIACC_SDO depending on if the access is made from the
application, PDO processing or SDO processing.

offset is the offset into the process image to the location that is to be compared.

psrc is a memory pointer to the data that is to be compared.

len is the length of the data to be compared in bytes.

Returned
0 if the data is identical and unequal 0 otherwise.

2.3.9 Default Process Image Access Macros
The code is delivered with default macros that use plain calls to memcpy resp.
memcmp from the ANSI-C string library:
#define PI_READ(level,offset,pdst,len) memcpy(pdst,&(gProcImg[offset]),len)
#define PI_WRITE(level,offset,psrc,len) memcpy(&(gProcImg[offset]),psrc,len)
#define PI_COMP(level,offset,psrc,len) memcmp(&(gProcImg[offset]),psrc,len)

In environments where the following is true, these will work fine:

21

THE MICROCANOPEN PLUS PROTCOL STACK

• No RTOS is used

• The process image is not accessed from within interrupt service routines

2.3.10 Macros for PDO process image access
For all PDO-related accesses, MicroCANopen Plus uses dedicated macros:
PDO_TXCOPY(tpdo,dat)

Copy from process image to TPDO CAN message buffer
PDO_RXCOPY(tpdo,dat)

Copy from RPDO CAN message buffer to process image
PDO_TXCOMP(tpdo,dat)

Compare TPDO CAN message buffer with what is in the process image
(for change-of-state detection)

These macros are defined using PI_READ, PI_WRITE and PI_COMP general
access macros with PIACC_PDO as the first parameter for the access level.

2.3.11 The MCO_ReadProcessData function
This function can be used to read data from the process image.

Declaration
UNSIGNED8 MCO_ReadProcessData (
 UNSIGNED8 *pDest, // Destination pointer
 UNSIGNED8 length, // Number of bytes to copy
 UNSIGNED8 offset // Offset of source data in process
 image
);
Passed
The pointer pDest is a destination pointer to the location to which the requested
process data should be copied. The caller must ensure that the buffer at the
destination locations is large enough to hold the number of data bytes requested.

The parameter length defines the number of data bytes requested.

The offset defines the location of the requested data within the process image.
If set to zero, the data is located at the first byte of the process image.

Returned
The number of bytes actually copied to the destination buffer is returned. If zero,
no data was copied because the requested offset was out of range.

22

THE MICROCANOPEN PLUS PROTCOL STACK

Notes
The function makes use of the PI_READ macro (see chapter 2.3.6).

2.3.12 The MCO_WriteProcessData function
This function is used to write data to the process image.

Declaration
UNSIGNED8 MCO_WriteProcessData (
 UNSIGNED8 offset, // Offset, destination in process image
 UNSIGNED8 length, // Number of bytes to copy
 UNSIGNED8 *pSrc // Source pointer
);
Passed
The parameter offset defines the location of the target data within the process
image. If set to zero, the data is located at the first byte of the process image.

The length defines the number of data bytes to be copied.

The pointer pSrc is a source pointer to the location from which the process data
should be copied.

Returned
The number of bytes actually copied to the process image is returned. If zero, no
data was copied because the requested offset was out of range.

Notes
The function makes use of the PI_WRITE macro (see chapter 2.3.7).

23

THE MICROCANOPEN PLUS PROTCOL STACK

2.4 CANOPEN API CALL-BACK FUNCTIONS
This section lists all call-back functions that can be called by the CANopen
protocol stack. They indicate important CANopen events to the application.

2.4.1 The MCOUSER_ResetCommunication function
This function is called to completely re-initialize the CANopen communication.
This includes re-initialization of the CAN interface. This function is called upon
initialization but also when the CANopen node received the NMT Master
command to soft-reset itself.

Declaration
void MCOUSER_ResetCommunication (
 void
);
Passed
Nothing.

Returned
Nothing.

2.4.2 The MCOUSER_ResetApplication function
This function is called when the CANopen node received the command from the
NMT Master to hard-reset itself. Both the CANopen communication as well as
the application is expected to fully reset. This is typically implemented using a
watchdog reset.

Declaration
void MCOUSER_ResetApplication (
 void
);
Passed
Nothing.

Returned
Nothing.

2.4.3 The MCOUSER_NMTChange function
This MicroCANopen Plus function only exists if the compiler directive
USECB_NMTCHANGE is defined. It is then called whenever the CANopen

24

THE MICROCANOPEN PLUS PROTCOL STACK

protocol stack changes the NMT Slave state – typically this happens after
receiving the NMT Master Message.

Declaration
void MCOUSER_NMTChange (
 UNSIGNED8 NMTState
);
Passed
The value for NMTSTATE indicates the current NMT Slave State. It can be one
of the following values: NMTSTATE_BOOT (0), NMTSTATE_STOP (4),
NMTSTATE_OP (5) or NMTSTATE_PREOP (127).

00h Initializing (sent after receiving the ‘I’ command)

04h CANopen NMT state “stopped” entered

05h CANopen NMT state “operational” entered

7Fh CANopen NMT state “preoperational” entered

Returned
Nothing.

2.4.4 The MCOUSER_SYNCReceived function
This MicroCANopen Plus function is only available when the compiler directive
USECB_SYNCRECEIVE is defined. The function signals the receipt of the
CANopen SYNC message. Synchronous TPDO data transmission will be
triggered and synchronous RPDO will be received after execution of this call-
back function.

Declaration
void MCOUSER_SYNCReceived (
 void
);
Passed
Nothing.

Returned
Nothing.

25

THE MICROCANOPEN PLUS PROTCOL STACK

2.4.5 The MCOUSER_RPDOReceived function
This MicroCANopen Plus function is only available when the compiler directive
USECB_RPDORECEIVE is defined. The function signals the receipt of a
Receive Process Data Object.

Declaration
void MCOUSER_RPDOReceived (
 UNSIGNED8 RPDONr, // RPDO Number
 UNSIGNED8 *pRPDO, // Pointer to RPDO data
 UNSIGNED8 len // Length of RPDO
);
Passed
The parameters passed include the number of the RPDO (starting at 1), a pointer
to the RPDO data (location in process image) and the number of bytes that were
received with the RPDO.

Returned
Nothing.

Notes
For a synchronous (SYNC triggered) RPDO, this function is called after the
SYNC has been received.

2.4.6 The MCOUSER_ODData function
This MicroCANopen Plus function is only available when the compiler directive
USECB_ODDATARECEIVED is set to one. The function signals the receipt of
process data stored into the process image, no matter if it came in by PDO or
SDO transfer..

Declaration
void MCOUSER_ODData (
 UNSIGNED16 idx,
 UNSIGNED8 subidx,
 UNSIGNED8 *pDat,
 UNSIGNED8 len
);
Passed
The parameters passed include the Index and Subindex of the data received into
the Object Dictionary as well as a pointer to the data and the length of the data in
bytes.

Returned
Nothing.

26

THE MICROCANOPEN PLUS PROTCOL STACK

2.4.7 The MCOUSER_TPDORdy function
This MicroCANopen Plus function is only available when the compiler directive
USECB_TPDORDY is defined. The stack calls the function right before it sends
a TPDO. In case the trigger was not under the application's control, such as in
case of an expired event timer or a received SYNC, this function is called before
the stack retrieves the TPDO-mapped data entries from the process image. This
allows the application to update the TPDO data before it is sent, if necessary.

Declaration
void MCOUSER_TPDOReady (
 UNSIGNED16 TPDONr, // TPDO Number
 UNSIGNED8 TPDOTrigger // Trigger for this TPDO's
 // transmission:
 // 0: Event Timer
 // 1: SYNC
 // 2: SYNC+COS
 // 3: COS or application trigger
);
Passed
The parameters include the number of the TPDO (starting at 1) and the trigger
that caused the TPDO to be sent.

Returned
Nothing.

Notes
Updating the TPDO-mapped data in the process image won't have any effect for
TPDOs that were triggered because of change-of-state detection or manually from
the application. In these cases the TPDO will be sent with the data that was in the
process image before the call-back function. Further processing will use the
updated data, however.

2.4.8 The MCOUSER_FatalError function
This indication signals the application that the CANopen stack ran into a fatal
error situation and needs to be reset or re-initialized to start operation again.

Declaration
void MCOUSER_FatalError (
 UNSIGNED16 ErrCode // the error code
);
Passed
The ErrCode is an internal 16-bit error code. As a general rule, error codes
below 8000h indicate a warning and the stack CANopen could still continue

27

THE MICROCANOPEN PLUS PROTCOL STACK

operation. However, an error code of 8000h or higher indicates a fatal error
requiring re-initialization or a reset of the system.

Returned
Nothing.

2.4.9 The MCOUSER_GetSerial function
This function is called before read accesses to the Object Dictionary entry
[1018h,0] – Serial Number. It can be used by the application to retrieve the serial
number, for example from non-volatile memory.

Declaration
UNSIGNED32 MCOUSER_GetSerial (
 void
);
Passed
Nothing.

Returned
The 32bit serial number of the device.

2.5 CANOPEN API EXTENDED FUNCTIONS
This section lists all functions considered extended functionality, only available in
the Plus version of MicroCANopen. They typically require that certain define
values are set to enable the functionality requested.

2.5.1 The MCOP_InitHBConsumer function
When heartbeat consumer functionality is enabled, this function can be used to
manually re-initialize a heartbeat consumer.

NOTE that under regular CANopen configuration the heartbeat consumers are
initialized through configuration – setting the heartbeat consumer times using a
CANopen configuration tool.

Declaration
void MCOP_InitHBConsumer (
 UNSIGNED8 consumer_channel, // HB Consumer channel
 UNSIGNED8 node_id, // Node ID to monitor
 UNSIGNED16 hb_time // Timeout to use (in ms)
);

28

THE MICROCANOPEN PLUS PROTCOL STACK

Passed
consumer_channel is the number of the heartbeat consumer channel that gets
initialized with this call.

node_id is the CANopen node ID of the node monitored.

hb_time is the heartbeat timeout used in milliseconds. As a rule over thumb this
should be a multiple of what the heartbeat producer timer is.

Returned
Nothing.

2.5.2 The MCOP_ProcessHBCheck function
When heartbeat consumer functionality is enabled, this function verifies if a
timeout occurred with any of the heartbeats consumed.

Declaration
UNSIGNED8 MCOP_ProcessHBCheck (
 UNSIGNED8 consumer_channel
)
Passed
consumer_channel is the number of the heartbeat consumer channel that gets
checked with this call.

Returned
Zero, if channel is not in use.

One, if channel is in use but monitoring did not yet start.

Two, if channel is in use and monitoring is active.

127, if a heartbeat timeout occurred, the node monitored by this channel did not
transmit its heartbeat in time.

2.5.3 The MCOP_GetStoredParameters function
When the Store Parameters functionality is enabled, this function checks if the
non-volatile memory memory contains any stored data. If it does, it retrieves the
data and applies it. This function may only be called after MicroCANopen and all
PDOs have been initialized.

Declaration
void MCOSP_GetStoredParameters (
 void
);

29

THE MICROCANOPEN PLUS PROTCOL STACK

Passed
Nothing.

Returned
Nothing.

2.5.4 The MCOP_PushEMCY function
When Emergency usage is enabled (#define USE_EMCY) functionality is enabled,
a CANopen Emergency message can be transmitted with this function call.

Declaration
UNSIGNED8 MCOP_PushEMCY
 (
 UNSIGNED16 emcy_code, // 16 bit error code
 UNSIGNED8 em_1, // 5 byte manufacturer
 UNSIGNED8 em_2, // specific error code
 UNSIGNED8 em_3,
 UNSIGNED8 em_4,
 UNSIGNED8 em_5
);
Passed
The 16bit emergency error code as specified by the CANopen standards.

Up to 5 bytes of manufacturer specific emergency / error information.

Returned
True if the message was successfully added to the transmit queue.

2.5.5 The MCOP_TransmitSleepObjection() function
When sleep mode usage is enabled (#define USE_SLEEP), this function can be
called to transmit the sleep objection message. It should only be called when a
sleep request was received by MCOUSER_Sleep().

Declaration
void MCOP_TransmitSleepObjection
 (void
);
Passed
Nothing.

Returned
Nothing.

30

THE MICROCANOPEN PLUS PROTCOL STACK

2.6 CANOPEN API EXTENDED CALLBACKS
This section lists all functions considered extended call-back functionality, only
available in the Plus version of MicroCANopen. They typically require that
certain define values are set to enable the functionality requested.

2.6.1 The MCOUSER_AppSDOReadInit function
This MicroCANopen Plus function is only available when the compiler directive
USECB_APPSDO_READ is defined. The function can be used to implement
custom Object Dictionary read entries of any length. Data is transferred in
segmented mode or block mode if activated.

Declaration
UNSIGNED8 MCOUSER_AppSDOReadInit (
 UNSIGNED8 sdoserver, // SDO server number
 UNSIGNED16 idx, // Index of OD entry
 UNSIGNED8 subidx, // Subindex of OD entry
 UNSIGNED32 *size, // RETURN: size of data
 UNSIGNED8 **pDat // RETURN: pointer to data buffer
);
Passed
The parameters passed include the SDO server number (in range from zero to
NR_OF_SDOSERVER-1), the idx (index) and subidx (subindex) of the Object
Dictionary and the return values being the data size and a pointer pDat to the data.

Returned
0: The specified OD entry is not handled by this function.

1: The specified OD entry is handled by this function. A valid pointer and data
size are returned.

5: An SDO abort SDO_ABORT_WRITEONLY is generated.

2.6.2 The MCOUSER_AppSDOWriteInit function
This MicroCANopen Plus function is only available when the compiler directive
USECB_APPSDO_WRITE is defined. The function can be used to implement
custom Object Dictionary write entries of any length. Data is transferred in
segmented mode or block mode if activated. Calls to
MCOUSER_AppSDOWriteComplete() are made if the transfer is completed or
the destination buffer is full and more data is about to be received.

31

THE MICROCANOPEN PLUS PROTCOL STACK

Declaration
UNSIGNED8 MCOUSER_AppSDOWriteInit (
 UNSIGNED8 sdoserver, // SDO server number
 UNSIGNED16 idx, // Index of OD entry
 UNSIGNED8 subidx, // Subindex of OD entry
 UNSIGNED32 *size, // RETURN: size of data
 UNSIGNED8 **pDat // RETURN: pointer to data buffer
);
Passed
The parameters passed include the SDO server number (in range from zero to
NR_OF_SDOSERVER-1), the idx (index) and subidx (subindex) of the Object
Dictionary and the return values being the data size and a pointer pDat to a
receive buffer.

Returned
0: The specified OD entry is not handled by this function.

1: The specified OD entry is handled by this function. A valid pointer and data
size are returned.

4: An SDO abort SDO_ABORT_READONLY is generated.

2.6.3 The MCOUSER_AppSDOWriteComplete function
This MicroCANopen Plus function is only available when the compiler directive
USECB_APPSDO_WRITE is defined. If a transfer was initiated using the
function MCOUSER_AppSDOWriteInit(), then this function is called upon
completion of the transfer, or if the destination buffer is full and needs to be
cleared to receive more data.

Declaration
void MCOUSER_AppSDOWriteComplete (
 UNSIGNED8 sdoserver, // The SDO server number
 UNSIGNED16 idx, // Index of OD entry
 UNSIGNED8 subidx, // Subindex of OD entry
 UNSIGNED32 size, // number of bytes written
 UNSIGNED32 more // number of bytes still to come
);
Passed
The parameters passed include the SDO server number (in range from zero to
NR_OF_SDOSERVER-1), the idx (index) and subidx (subindex) of the Object
Dictionary.
The value size indicates how many bytes were written to the receive buffer (the
one specified when calling MCOUSER_AppSDOWriteInit) and more how many

32

THE MICROCANOPEN PLUS PROTCOL STACK

more bytes are expected to be received. After this call data in the buffer will be
overwritten starting at the beginning of the buffer.

Returned
Nothing.

2.6.4 The MCOUSER_SDORdPI function
This MicroCANopen Plus function is only available when the compiler directive
USECB_SDO_RD_PI is set to one. With this function MicroCANopen Plus
signals the application that an SDO Read Request was received and is now to be
served. The application can use this call to either update the data or deny access.

Declaration
UNSIGNED32 MCOUSER_SDORdPI (
 UNSIGNED16 index, // Index of Object Dictionary entry
 UNSIGNED8 subindex, // Subindex of Object Dictionary entry
 UNSIGNED16 offset, // Offset to data in process image
 UNSIGNED8 len // Length of data
);
Passed
The arguments passed to the function include the Index and Subindex of the data
requested as well as the location in the process image (offset) and the length of
the data.

Returned
Zero if the access is granted (MicroCANopen Plus will automatically send the
appropriate SDO response message). Otherwise the SDO Abort Code to return to
the SDO client requesting the data.

2.6.5 The MCOUSER_SDORdAft function
This MicroCANopen Plus function is only available when the compiler directive
USECB_SDO_RD_AFTER is set to one. With this function MicroCANopen Plus
signals the application that an SDO Read Request completed. The application can
use this call to clear the data read or to mark it as read.

Declaration
void MCOUSER_SDORdAft (
 UNSIGNED16 index, // Index of Object Dictionary entry
 UNSIGNED8 subindex, // Subindex of Object Dictionary entry
 UNSIGNED16 offset, // Offset to data in process image
 UNSIGNED8 len // Length of data
);

33

THE MICROCANOPEN PLUS PROTCOL STACK

Passed
The arguments passed to the function include the Index and Subindex of the data
requested as well as the location in the process image (offset) and the length of
the data.

Returned
Nothing.

2.6.6 The MCOUSER_SDOWrPI function
This MicroCANopen Plus function is only available when the compiler directive
USECB_SDO_WR_PI is set to one. With this function MicroCANopen Plus
signals the application that an SDO Write Request was received and is now to be
processed. The call happens BEFORE data is copied to the process image. The
application can use this call to verify if the data is within expected range and can
send the SDO client sending the data an ABORT if it is not..

Declaration
UNSIGNED32 MCOUSER_SDOWrPI (
 UNSIGNED16 index, // Index of Object Dictionary entry
 UNSIGNED8 subindex, // Subindex of Object Dictionary entry
 UNSIGNED16 offset, // Offset to data in process image
 UNSIGNED8 *pDat, // Pointer to data received
 UNSIGNED8 len // Length of data);
Passed
The arguments passed to the function include the Index and Subindex of the data
requested as well as the location in the process image (offset), a pointer to the data
received and the length of the data.

Returned
Zero if the access is granted (MicroCANopen Plus will automatically copy the
data to the Process Image and sends the appropriate SDO response message).
Otherwise the SDO Abort Code to return to the SDO client sending the data.

2.6.7 The MCOUSER_SDOWrAft function
This MicroCANopen Plus function is only available when the compiler directive
USECB_SDO_WR_AFTER is set to one. With this function MicroCANopen Plus
signals the application that an SDO Write Request completed.

34

THE MICROCANOPEN PLUS PROTCOL STACK

Declaration
void MCOUSER_SDOWrAft (
 UNSIGNED16 index, // Index of Object Dictionary entry
 UNSIGNED8 subindex, // Subindex of Object Dictionary entry
 UNSIGNED16 offset, // Offset to data in process image
 UNSIGNED8 len // Length of data
);
Passed
The arguments passed to the function include the Index and Subindex of the data
received as well as the location in the process image (offset) and the length of the
data.

Returned
Nothing.

2.6.8 The MCOUSER_SDORequest function
LEGACY FUNCTION FOR BACKWARD COMPATIBILITY, PLEASE USE
MCOUSER_AppSDOReadInit() AND MCOUSER_AppSDOWriteInit() IN ALL
NEW IMPLEMENTATIONS.

This MicroCANopen Plus function is only available when the compiler directive
USECB_SDOREQ is defined. The function signals the receipt of an SDO request
for which MicroCANopen Plus has no answer. The Object Dictionary entry
requested is NOT available.

This can be used to implement custom, manufacturer specific Object Dictionary
entries. If this function works on the data received, it must generate the
appropriate SDO response message or an SDO Abort. To do so, it may use
functions provided by MicroCANopen: the function MCO_ReplyWith can be
used to generate a response, the function MCO_SendSDOAbort to generate an
abort.

Declaration
UNSIGNED8 MCOUSER_SDORequest (
 UNSIGNED8 SDO_Data[8]
);
Passed
SDO_Data contains the 8 data bytes with the SDO request.

Returned
A return value of 0 indicates that MCOUSER_SDORequest generated an SDO
Abort message.

35

THE MICROCANOPEN PLUS PROTCOL STACK

A return value of 1 indicates that MCOUSER_SDORequest generated an SDO
response.

A return value of 2 indicates that MCOUSER_SDORequest does not implement
any functionality for the Object Dictionary entry specified.

2.6.9 The MCOUSER_Sleep function
This function is called when a message related to the sleep and wake-up
mechanism is received. It is only available when the #define USE_SLEEP is set.
This mechanism was first introduced in CiA447-1.

Declaration
void MCOUSER_Sleep (
 UNSIGNED8 mode // 0: Wakeup message received
 // 1: Query Sleep Objection msg received
 // 2: Set Sleep Mode message received
);
Passed
The value mode is set to 0, 1 or 2 depending on which kind of message was
received.
0 – The wakeup message was received, all nodes to wake up.
1 – The sleep objection message was received, at least one node objects to
sleeping (partial power down)
2 – The set sleep mode message was received, a request to power down.
The function MCO_TransmitSleepObjection() should be called if the local
node objects to power down.

Returned
Nothing.

36

THE MICROCANOPEN PLUS PROTCOL STACK

2.7 DRIVER FUNCTIONS
This section lists all functions that need to be provided by the driver level. If
MicroCANopen is used on a microcontroller architecture for which there is no
example included, then these functions must be implemented on the driver level
and provided to for MicroCANopen.

2.7.1 The MCOHW_Init function
/**
DOES: This function implements the initialization of the CAN
 interface.
RETURNS: 1 if init is completed
 0 if init failed
**/
UNSIGNED8 MCOHW_Init (
 UNSIGNED16 BaudRate
 // Allowed values: 1000, 800, 500, 250, 125, 50, 25, 10
);

2.7.2 The MCOHW_SetCANFilter function
/**
DOES: This function implements the initialization of a CAN ID hardware
 filter as supported by many CAN controllers.
RETURNS: 1 if filter was set
 2 if this HW does not support filters
 (in this case HW will receive EVERY CAN message)
 0 if no more filter is available
**/
UNSIGNED8 MCOHW_SetCANFilter (
 UNSIGNED16 CANID // CAN-ID to be received by filter
);

2.7.3 The MCOHW_GetStatus function
/**
DOES: This function returns the global status variable.
CHANGES: Status can be changed anytime by this module, for example from
 within an interrupt service routine or by any of the other
 functions in this module.
BITS: 0: INIT - set to 1 after a completed initialization
 left 0 if not yet inited or init failed
 1: CERR - set to 1 if a CAN bit or frame error occurred
 2: ERPA - set to 1 if a CAN "error passive" occurred
 3: RXOR - set to 1 if a receive queue overrun occurred
 4: TXOR - set to 1 if a transmit queue overrun occurred
 5: Reserved
 6: TXBSY - set to 1 if Transmit queue is not empty
 7: BOFF - set to 1 if a CAN "bus off" error occurred
**/
UNSIGNED8 MCOHW_GetStatus (
 void
);

37

THE MICROCANOPEN PLUS PROTCOL STACK

2.7.4 The MCOHW_PushMessage function
/**
DOES: This function implements a CAN transmit queue. With each
 function call a message is added to the queue.
RETURNS: 1 Message was added to the transmit queue
 0 If queue is full, message was not added,
NOTES: The MicroCANopen stack will not try to add messages to the queue
 "back-to-back". With each call to MCO_ProcessStack, a maximum
 of one message is added to the queue. For many applications
 a queue with length "1" will be sufficient. Only applications
 with a high busload or very slow bus speed might need a queue
 of length "3" or more.
**/
UNSIGNED8 MCOHW_PushMessage (
 CAN_MSG *pTransmitBuf // Data structure with message to be send
);

2.7.5 The MCOHW_PullMessage function
/**
DOES: This function implements a CAN receive queue. With each
 function call a message is pulled from the queue.
RETURNS: 1 Message was pulled from receive queue
 0 Queue empty, no message received
NOTES: Implementation of this function greatly varies with CAN
 controller used. In an SJA1000 style controller, the hardware
 queue inside the controller can be used as the queue.
 Controllers with just one receive buffer need a bigger software
 queue. "Full CAN" style controllers might just implement
 multiple message objects, one each for each ID received (using
 function MCOHW_SetCANFilter).
**/
UNSIGNED8 MCOHW_PullMessage (
 CAN_MSG *pTransmitBuf // Data structure with message received
);

2.7.6 The MCOHW_GetTime function
/**
DOES: This function reads a 1 millisecond timer tick. The timer tick
 must be a UNSIGNED16 and must be incremented once per
 millisecond.
RETURNS: 1 millisecond timer tick
NOTES: Data consistency must be insured by this implementation.
 (On 8-bit systems, disable the timer interrupt incrementing
 the timer tick while executing this function)
 Systems that cannot provide a 1ms tick may consider incrementing
 the timer tick only once every "x" ms, if the increment is by
 "x".
**/
UNSIGNED16 MCOHW_GetTime (
 void
);

38

THE MICROCANOPEN PLUS PROTCOL STACK

2.7.7 The MCOHW_IsTimeExpired function
/**
DOES: This function compares a UNSIGNED16 timestamp to the internal
 timer tick and returns 1 if the timestamp expired/passed.
RETURNS: 1 if timestamp expired/passed
 0 if timestamp is not yet reached
NOTES: The maximum timer runtime measurable is 0x8000 (about 32 secs).
 For the usage in MicroCANopen that is sufficient.
**/
UNSIGNED8 MCOHW_IsTimeExpired (
 UNSIGNED16 timestamp // Timestamp to be checked for expiration
);

2.7.8 The NVOL_Init function (Plus)
This function is only needed when the Store Parameter functionality is used.

/**
DOES: Initializes access to non-volatile memory.
**/
void NVOL_Init (
 void
);

2.7.9 The NVOL_ReadByte function (Plus)
This function is only needed when the Store Parameter functionality is used.

/**
DOES: Reads a data byte from non-volatile memory.
RETURNS: The data read from memory
**/
UNSIGNED8 NVOL_ReadByte (
 UNSIGNED16 address // location of byte in NVOL memory
);

2.7.10 The NVOL_WriteByte function (Plus)
This function is only needed when the Store Parameter functionality is used.

/**
DOES: Writes a data byte to non-volatile memory
RETURNS: nothing
**/
void NVOL_WriteByte (
 UNSIGNED16 address, // location of byte in NVOL memory
 UNSIGNED8 data
);

39

THE MICROCANOPEN PLUS PROTCOL STACK

2.7.11 The NVOL_WriteComplete function (Plus)
This function is only needed when the Store Parameter functionality is used.

/**
DOES: Is called when a consecutive block of write cycles is complete.
 The driver may buffer the data from calls to NVOL_WriteByte with
 consecutive destination addrs. in RAM and then write the entire
 buffer to non-volatile memory upon a call to this function.
**/
void NVOL_WriteComplete (
 void
);

2.7.12 The MCOHWMGR_SetCANFilter function (MGR)
This function is only needed when the Manager functionality is used. CAN
messages received for the Manager are received in an additional receive queue
from which they are polled with an own Pull function (see below).

/**
DOES: This function implements an additional CAN receive filter
 used by the manager. Messages received using this ID are pulled
 by the manager using function MCOHWMGR_PullMessage
 Filter set receives msgs from 0x81 to 0xFF and 0x581 to 0x5FF
RETURNS: TRUE or FALSE, if filter was not set
**/
UNSIGNED8 MCOHWMGR_SetCANFilter
 (
 void
);

2.7.13 The MCOHWMGR_PullMessage function (MGR)
This function is only needed when the Manager functionality is used. CAN
messages received for the Manager are received in an additional receive queue
from which they are polled with this Pull function.

/**
DOES: This function is used by the manager to poll messages that are
 needed by the manager
RETURNS: TRUE or FALSE, if no message was received
**/
UNSIGNED8 MCOHWMGR_PullMessage (
 CAN_MSG *pReceiveBuf // buffer to witch a received message is copied
);

40

THE MICROCANOPEN PLUS PROTCOL STACK

2.8 USING SOFTWARE CAN FILTERS AND FIFOS
For maximum portability to various CAN controllers the module canfifo
implements CAN message receive filters in software including message FIFOs.
Applications requiring Manager functionality like listening to ALL Heartbeats,
Emergencies or SDO channels should use this module.

To activate the module, define USE_CANFIFO and specify the following sizes:
#define TXFIFOSIZE X
The value X must be 0, 4, 8, 16 or 32. Setting this to one of the non-zero values
implements a software transmit FIFO. Any CAN message transmitted is copied to
this FIFO first. The default behavior is that the FIFO is checked for transmission
by each 1ms timer interrupt.
#define RXFIFOSIZE Y
The value Y must be 0, 4, 8, 16 or 32. Setting this to one of the non-zero values
implements a software receive FIFO. Any CAN message received is copied by
the receive interrupt service routine to this FIFO first. Using the
MCOHW_PullMessage() function MicroCANopen periodically checks if a
message arrived and requires processing.
#define MGRFIFOSIZE Z
The value Z must be 0, 4, 8, 16 or 32. Setting this to one of the non-zero values
implements a software receive FIFO for CAN messages received by the Manager
functionality. These are all Heartbeats, Emergencies and SDO Client responses.
Any CAN message received for this is copied by the receive interrupt service
routine to this FIFO first. Using the MCOHWMGR_PullMessage() function
MicroCANopen periodically checks if a message arrived and requires processing.

2.8.1 USING SOFTWARE CAN RECEIVE FILTERS
When this module is used an array of 2048 bits is used to set which CAN
messages with which CAN message ID are received and processed. One bit
represents one of the 2048 possible CAN IDs.

By a call to CANSWFILTER_Set(CAN_ID) the corresponding bit is set – the
message with CAN_ID is now received.

With a call to CANSWFILTER_Match(CAN_ID) if the corresponding bit is set
and if the message needs to be received.

2.8.2 USING THE FIFOS
Each FIFO has its own access functions. To copy a CAN message into the FIFO,
the function CANxxxFIFO_GetInPtr() must be called. It returns a pointer to a
structure CAN_MSG to which the CAN message can now be copied. If a null

41

THE MICROCANOPEN PLUS PROTCOL STACK

pointer is returned the FIFO is full and a FIFO overrun needs to be signaled to the
application that this message is now lost.

Once copying is completed, the function CANxxxFIFO_InDone() must be called
to update the internal FIFO in and out counters.

To read a message from the FIFO, the function CANxxxFIFO_GetOutPtr() must
be called. It returns a null pointer if the FIFO is empty. If at least one message is
in the FIFO, then a pointer to the CAN_MSG structure in the FIFO is returned.
Data can now be retrieved using this pointer.

Once the message is fully retrieved, the function CANTXFIFO_OutDone() must
be called to update the internal FIFO in and out pointers.

2.8.3 SAMPLE CAN RECEIVE INTERRUPT IMPLEMENTATION
If a CAN controller is configured to receive ALL CAN messages on the bus, then
the following steps need to be taken in the CAN receive interrupt:

1.) Check if CAN message ID is for Manager functionality
 Heartbeat, Emergency, SDO Response

2.) If yes, copy message to MGR FIFO and leave interrupt
 CANMGRFIFO_GetInPtr(), copy data, CANMGRFIFO_InDone()
 Note: On FIFO overrun report overrun to status variable

3.) Check if CAN message ID is for this CANopen node
 CANSWFILTER_Match(CAN_ID)

4.) If yes, copy message to RX FIFO and leave interrupt
 CANRXFIFO_GetInPtr(), copy data, CANRXFIFO_InDone()
 Note: On FIFO overrun report overrun to status variable

42

THE MICROCANOPEN PLUS PROTCOL STACK

3 CANOPEN CODE CONFIGURATION

The file nodecfg.h contains the #define settings that configure and enable specific
CANopen code functionality. The file settings in procimg.h specify the size and
contents of the process image. The settings in mcohw.h define hardware related
settings.

Since Version 2.6 MicroCANopen Plus source code files can automatically be
generated by the CANopen Architect EDS.

3.1 TABLE SIZE SETTINGS OF PROCIMG.H

3.1.1 #define PROC_IMGSIZE [num]
This value specifies the total size of the process image in bytes.
It must not exceed FFFEh.

3.2 GENERAL SETTINGS OF NODECFG.H

3.2.1 #define USE_MCOP [0|1]
This setting enables the “Plus” functionality of MicroCANopen Plus. It must be
set to 1 when any of the functions in the module mcop.c are used.

3.2.2 #define CHECK_PARAMETERS [0|1]
If CHECK_PARAMETERS is enabled, additional code is generated that does
plausibility checks upon entry of code functions, such as checking if parameters
are within the allowed range. If a parameter is out of range, a call to
MCOUSER_FatalError() is executed.

3.2.3 #define USE_LEDS [0|1]
Setting USE_LEDS to 1 enables two CANopen indicator lights as specified by the
CiA document DR303. Both a RUN and ERR light are supported. When using
this option, additional defines must be used for the physical switching of each
light. These are LED_RUN_ON and LED_RUN_OFF for the RUN LED and
LED_ERR_ON and LED_ERR_OFF for the ERR LED.

3.3 PDO SETTINGS OF NODECFG.H

3.3.1 #define NR_OF_RPDOS [num]
This value defines the number of RPDOs (Receive Process Data Objects)
implemented. The value range is from 0 to 512.

43

THE MICROCANOPEN PLUS PROTCOL STACK

3.3.2 #define NR_OF_TPDOS [num]
This value defines the number of TPDOs (Transmit Process Data Objects)
implemented. The value range may be from 0 to 512.

3.3.3 #define USE_EVENT_TIME [0|1]
If USE_EVENT_TIME is enabled, TPDO trigger events may include using the
event timer (periodic transmission every X milliseconds).

3.3.4 #define USE_INHIBIT_TIME [0|1]
If USE_INHIBIT_TIME is enabled, TPDO trigger events may include COS
(Change Of State) detection with using the inhibit time.

NOTE:
Internally all inhibit times are calculated and used based on a resolution of one
millisecond. However, CANopen specifies the inhibit time with a resolution of
100 microseconds. To be CANopen compatible, MicroCANopen automatically
does a divide or multiply by 10 when communicating the inhibit time via SDO
requests/responses.

3.3.5 #define USE_SYNC [0|1]
If USE_SYNC is enabled, the PDOs support synchronized transmission. To
activate SYNC transmission, a configuration tool needs to write the appropriate
values to the transmission type field of the PDO communication parameters.

3.4 NMT SERVICE SETTINGS OF NODECFG.H (PLUS)

3.4.1 #define AUTOSTART [0|1]
When AUTOSTART is enabled, the CANopen device directly switches itself into
the operational state after power-on or reset without waiting for a CANopen NMT
Master message with an operational command.

3.4.2 #define DEFAULT_HEARTBEAT [ms]
The Object Dictionary entry [1017h,00h] Heartbeat Producer Time is
implemented as read-write. The DEFAULT_HEARTBEAT defines the default
heartbeat time used by MicroCANopen and is specified in milliseconds.

3.4.3 #define DYNAMIC_HEARTBEAT_CONSUMER [0|1],
#define NR_HB_CONSUMER [num]
When DYNAMIC_HEARTBEAT_CONSUMER is enabled, the Object
Dictionary entries [1016h,xx] Heartbeat Consumer are implemented as read-write

44

THE MICROCANOPEN PLUS PROTCOL STACK

and can be changed through configuration. Otherwise they are hard-coded and
cannot change during operation.

NR_HB_CONSUMER defines if the heartbeat consumer functionality is enabled.
If this define is set to 0, the heartbeat consumer functionality is disabled. If
unequal zero, it defines the maximum number of channels implemented, directly
specifying the number of CANopen nodes that can be monitored.

3.4.4 #define USE_EMCY [0|1],
#define ERROR_FIELD_SIZE [num]
When USE_EMCY is enabled, MicroCANopen Plus supports the generation of
emergency messages. Emergencies are generated after each reset (“No Error”
Emergency Message), upon critical failures (such as receiving a PDO with an
illegal length) and upon application specific emergency events. Emergencies
transmitted are copied into a error history, the predefined error field [1003h]. The
size of the error history (in number of errors saved) is defined using
ERROR_FIELD_SIZE.

3.4.5 #define USE_NODE_GUARDING [0|1]
CANopen experts do not recommend the usage of node guarding. Instead, the
newer heartbeat method should be used. However, to be compliant with legacy
devices, MicroCANopen Plus supports minimal node guarding functionality that
is enabled if this setting is enabled.

3.4.6 #define USE_STORE_PARAMETERS [0|1],
#define NVOL_STORE_START [num],
#define NVOL_STORE_SIZE [num]
When USE_STORE_PARAMETERS is enabled, the Store Parameters
functionality of MicroCANopen Plus is available. The module storpara.c is
required for this functionality.

When USE_STORE_PARAMETERS is enabled, the define
NVOL_STORE_START must be set to the first usable address in the non-volatile
memory. The default is zero. The application could use a value of greater than
zero to reserve/protect a memory area in the non-volatile memory from accesses
by the store parameters functionality. The functions of the store parameters
module will not access non-volatile memory outside the window defined by
NVOL_STORE_START and NVOL_STORE_SIZE. In case the window size is
too small, the function MCOUSER_FatalError will be called.

3.4.7 #define NR_OF_SDOSERVER [num]
Defines the number of SDO servers implemented. A value of greater than one is
currently only supported for CiA447 (car add-on devices) applications.

45

THE MICROCANOPEN PLUS PROTCOL STACK

3.4.8 #define USE_SLEEP [0|1]
Defines if the sleep mode as first introduced by CiA447-1 is implemented. If
enabled, the call-back function MCOUSER_Sleep() must be implemented.

3.5 OTHER SETTINGS OF NODECFG.H (PLUS)

3.5.1 #define USE_CiA447 [0|1]
Enables the CiA 447 specific support for the device profile for car add-on devices.
This will need the CiA447 add-on module to MicroCANopen Plus to build.

3.5.2 #define USE_SDOMESH [0/1]
Enable the SDO fully-meshed setup for SDO communication in any direction
between up to 16 nodes in a network.

3.6 USER CALL-BACK FUNCTIONS OF NODECFG.H (PLUS)

3.6.1 #define USECB_NMTCHANGE [0|1]
When USECB_NMTCHANGE is enabled, MicroCANopen Plus uses the call-
back function MCOUSER_NMTChange to signal a change in the NMT Slave
State to the application.

3.6.2 #define USECB_SYNCRECEIVE [0|1]
When USECB_SYNCRECEIVE is enabled, MicroCANopen Plus uses the call-
back function MCOUSER_SYNCReceived to signal the reception of the SYNC
signal to the application.

3.6.3 #define USECB_RPDORECEIVE [0|1]
When USECB_RPDORECEIVE is enabled, MicroCANopen Plus uses the call-
back function MCOUSER_RPDOReceived to signal the reception of an RPDO to
the application.

3.6.4 #define USECB_ODDATARECEIVED [0|1]
When USECB_ODDATARECEIVED is enabled, MicroCANopen Plus uses the
call-back function MCOUSER_ODData to signal the application that data was
received and copied into the process image. This is called for both PDO and SDO
accesses.

46

THE MICROCANOPEN PLUS PROTCOL STACK

3.6.5 #define USECB_TPDORDY [0|1]
When USECB_TPDORDY is enabled, MicroCANopen Plus calls the function
MCOUSER_TPDORdy right before it sends a TPDO. This allows the application
to update the TPDO data before it is sent, if necessary.

3.6.6 #define USECB_SDOREQ [0|1]
When USECB_SDOREQ is enabled, MicroCANopen Plus uses the call-back
function MCOUSER_SDORequest to signal the reception of an unknown SDO
request to the application.

3.6.7 #define USECB_SDO_RD_PI [0|1]
When USECB_SDO_RD_PI is enabled, MicroCANopen Plus uses the call-back
function MCOUSER_SDORdPI() to signal to the application, that a SDO read
request for data located in the process image was received. The call-back is
executed BEFORE MicroCANopen executes the read, allowing the application to
either update the data or deny access to it.

3.6.8 #define USECB_SDO_RD_AFTER [0|1]
When USECB_SDO_RD_AFTER is enabled, MicroCANopen Plus uses the call-
back function MCOUSER_SDORdAft() to signal to the application, that a SDO
read request for data located in the process image was executed. The call-back is
executed AFTER MicroCANopen executes the read, allowing the application to
mark the data as read or clear it.

3.6.9 #define USECB_SDO_WR_PI [0|1]
When USECB_SDO_WR_PI is enabled, MicroCANopen Plus uses the call-back
function MCOUSER_SDOWrPI() to signal to the application, that a SDO write
request for data stored in the process image was received. The call-back is
executed BEFORE MicroCANopen copies the data to the process image,
allowing the application to verify the data (e.g. execute a range check).

3.6.10 #define USECB_SDO_WR_AFTER [0|1]
When USECB_SDO_WR_AFTER is enabled, MicroCANopen Plus uses the call-
back function MCOUSER_SDOWrAft() to signal to the application, that a SDO
write request for data located in the process image was executed. The call-back is
executed AFTER MicroCANopen executes the write, allowing the application to
now use the data received..

3.6.11 #define USECB_APPSDO_READ [0|1]
When USECB_APPSDO_READ is enabled, MicroCANopen Plus uses the call-
back function MCOUSER_AppSDOReadInit() to allow the application to
implement access to readable, custom Object Dictionary entries of various

47

THE MICROCANOPEN PLUS PROTCOL STACK

lengths. One usage example would be a text buffer that can contain messages of
different lengths.

The parameters for MCOUSER_AppSDOReadInit() also include return values for
a size and pointer – these can be used to inform MicroCANopen Plus of the
location and size of the buffer that contains the “response”.

3.6.12 #define USECB_APPSDO_WRITE [0|1]
When USECB_APPSDO_WRITE is enabled, MicroCANopen Plus uses the call-
back functions MCOUSER_AppSDOWriteInit() and
MCOUSER_AppSDOWriteComplete() to allow the application to implement
access to writable, custom Object Dictionary entries of various lengths. One usage
example would be text display that can accept text messages of various length.

The parameters for MCOUSER_AppSDOWriteInit() also include return values
for a receive buffer and its size. MicroCANopen copies the data received to the
location specified.

With MCOUSER_AppSDOWriteComplete() MicroCANopen informs the
application that data was received and now has to be processed. The parameter
“more” indicates if all data was received or more will follow, in which case the
application needs to read all data from the buffer as it will be overwritten with the
following data segments.

48

THE MICROCANOPEN PLUS PROTCOL STACK

4 SDO FULLY-MESHED COMMUNICATION

For small networks of up to 16 nodes, MicroCANopen Plus together with the
manager add-on features a built-in configuration that allows any node to access all
of the object dictionary of another node at any time without restrictions. This is
done by enabling 16 SDO server channels and 16 SDO clients in each node and
setting the channels up using a custom COB-ID assignment scheme.

4.1 PREREQUISITES
Since the fully-meshed setup uses a custom COB-ID assignment scheme for the
SDO channels, all nodes have to support it. Essentially, this means that all nodes
have to use MicroCANopen Plus with SDO FULLY-MESHED enabled.

Since a successful SDO communication needs both the server and the client, and
the SDO client is part of the MicroCANopen Plus manager add-on, this
functionality needs the manager add-on to function.

4.2 LIMITATIONS
Regular CANopen nodes with default (CiA301) SDO servers cannot be combined
with MicroCANopen Plus “SDO fully meshed” nodes on the same network.

The scheme cannot be used in a network where the time stamp object (COB-ID
100h) is used, when both the node IDs 9 and 1 are present and node 9 accesses
node 1, using the scheme.

The scheme is not useful if nodes don't have access to the SDO client functions
only present in the manager add-on module.

49

THE MICROCANOPEN PLUS PROTCOL STACK

4.3 SDO COMMUNICATION SETUP
The following graph illustrates the SDO communication setup. The arrows point
from the node sending the request (SDO client) to the node responding (SDO
server). The first number accompanying each arrow is the COB-ID used for the
request, the second number is the COB-ID of the response:

4.4 USAGE EXAMPLE (WITH MANAGER ADD-ON)
For the meshed communication, the stack automatically defines macros to set up
the SDO client channels:
CAN_ID_SDOREQUEST(client,server)
CAN_ID_SDORESPONSE(client,server)
They should be used with client set to MY_NODE_ID. The following code
illustrates a non-blocking SDO access, using call-backs.

50

THE MICROCANOPEN PLUS PROTCOL STACK

Variables:
SDOCLIENT *pSC; // pointer to SDO client
UNSIGNED8 chn; // channel usage
UNSIGNED8 buf_SDO[4];

Setting up channel and starting request in the application:

chn = 0;
// Set up SDO channel 1 to talk to node 9 using buf_SDO data
pSC = MGR_InitSDOClient(1,CAN_ID_SDOREQUEST(MY_NODE_ID,9),
 CAN_ID_SDORESPONSE(MY_NODE_ID,9),
 &(buf_SDO[4]),4);

// Start read request of [0x1000,0x00] of remote node
MGR_SDOClientRead(pSC,0x1000,0x00);
chn = 1; // chn is in use

The manager processing function MGR_ProcessMGR() has to be called
periodically. When the request is completed, it will call MGRCB_SDOComplete:

/***
DOES: Called when an SDO client transfer is completed
RETURNS: nothing
***/
void MGRCB_SDOComplete (
 UNSIGNED8 channel, // SDO channel number in range of 1 to

// NR_OF_SDO_CLIENTS
 UNSIGNED32 abort_code // status, error, abort code
)
{
 // SDO Client example of non-blocking version
 if (channel == 1)
 {
 if ((abort_code == SDOERR_READOK) ||
 (abort_code == SDOERR_WRITEOK))
 {
 chn++; // signal OK
 }
 else
 {
 chn = 0xFF; // signal ABORT
 }
 }
}

In the application, we may react to our SDO status variable:

if (chn > 1)
 if (chn = 0xFF)
 [process SDO abort]
 else
 [start next request to node 9]

51

THE MICROCANOPEN PLUS PROTCOL STACK

5 APPENDIX - USING AUTO-GENERATED SOURCES

The CANopen EDS Editor “CANopen Architect EDS” can generate source files
directly usable by MicroCANopen Plus. This chapter summarizes the steps that
need to be taken to generate the files and integrate them to MicroCANopen Plus
based applications.

The application examples provided with MicroCANopen Plus have their EDS,
DCF and auto-generated files stored in the directory
“../MCO_APPLICATIONNAME/EDS”

5.1 FILE GENERATION
When editing an EDS or DCF with CANopen Architect EDS some extra care
should be taken when defining the access type for the Object Dictionary entry.

If the access type of an entry is CONST (constant), then CANopen Architect EDS
will not place the entry into the process image but will try to locate it in the non-
volatile code space area. This helps to conserve the limited space available for
process image data.

As an example, the entries [1008h-100Ah,00h] should be specified as CONST, as
these are constant, read-only strings.

For entries using multiple subindexes, the first subindex entry (subindex 0) should
also be marked as type CONST. CANopen Architect EDS then places these into
the SDO Reply table and not into the process image.

To generate the source files from CANopen Architect EDS simply select the
menu “File | Export C Sources Files...”. It is recommended to use the default file
names suggested when exporting the files.

5.2 FILE INTEGRATION
This section describes the information found in each of the generated files and
how these files need to be integrated into the application.

5.2.1 PIMG.H
The file pimg.h contains the basic #define settings required by MicroCANopen
Plus and all process image offset and size definitions for variables stored in the
process image.

This file needs to be included to all the application’s C source files that make
accesses to data contained in the process image.

52

THE MICROCANOPEN PLUS PROTCOL STACK

5.2.2 STACKINIT.H
The file stackinit.h contains auto-generated calls to the functions
MCO_InitRPDO() and MCO_InitTPDO() which initialize the PDOs. The calls
are provided as macro INITPDOS_CALLS.

The file also contains auto-generated calls to the functions
MCO_InitHBConsumer() to set up heartbeat consumer channels. The calls are
provided as macro INITHBCONSUMER_CALLS.

This file should be included to the C source file initializing the CANopen stack
and making the call to MCO_Init(). This is typically the file user_xxx.c and the
call to MCO_Init() is made in MCOUSER_ResetCommunication().

The recommended usage is:
if (MCO_Init(can_bps,node_id,DEFAULT_HEARTBEAT))
{
 //Initialization of PDOs comes from EDS
 INITPDOS_CALLS
 INITHBCONSUMER_CALLS
}
Note: If the CANopen Manager Add-on is used, the hearbeat consumers
must be initialized later, after MGR_InitMgr() has been called to initialize
the manager.

5.2.3 ENTRIESANDREPLIES.H
The file entriesandreplies.h contains all auto-generated Object Dictionary entries.
These are provided as macros and can directly be included into the data tables
defined in the user_xxx.c file.

Usage Example:
...
#include "EDS/entriesandreplies.h"
...
// Table with SDO Responses for read requests to OD
UNSIGNED8 MEM_CONST gSDOResponseTable[] = {
 // Include file generated by CANopen Architect
 SDOREPLY_ENTRIES
 // End-of-table marker
 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
};

53

THE MICROCANOPEN PLUS PROTCOL STACK

// Table with Object Dictionary entries to process Data
OD_PROCESS_DATA_ENTRY MEM_CONST gODProcTable[] =
{
 ODENTRY_ENTRIES
 // End-of-table marker
 ODENTRY(0xFFFF,0xFF,0xFF,0xFFFF)
};
#ifdef USE_EXTENDED_SDO
// Table with generic entries to memory
OD_GENERIC_DATA_ENTRY MEM_CONST gODGenericTable[] =
{
 ODGENTRY_ENTRIES
 ODGENTRYP(0xFFFF,0xFF,0xFF,0xFFFF,0xFFFFF)
};
#endif // USE_EXTENDED_SDO

54

THE MICROCANOPEN PLUS PROTCOL STACK

6 APENDIX – ADVANCED MANUAL CONFIGURATION

6.1 RTOS INTEGRATION
The most simplistic way to integrate MicroCANopen with a Real-Time Operating
System is to call MCO_ProcessStack() periodically, for example from a one
millisecond timer task.

6.1.1 RTOS TASK: RECEIVE AND TICK
A more advanced configuration would not use MCO_ProcessStack() at all, but the
mayor two sub functions MCO_ProcessStackRx() and MCO_ProcessStackTick().
In an RTOS environment, the driver function MCOHW_PullMessage() should be
implemented waiting / blocking and only return when a CAN message was
received. The function MCO_ProcessStackRx() can then be executed repeatedly
without further delay in its own task.
 for(;;) MCO_ProcessStackRx();
The function MCO_ProcessStackTick() should be called with every RTOS timer
tick. If a tick of 1ms or smaller is used, a single call is sufficient. If the RTOS tick
is greater than one, then MCO_ProcessStackTick() should be called repeatedly as
long as the return value is TRUE.
 while (MCO_ProcessStackTick() == TRUE);

6.1.2 PROCESS IMAGE INTEGRETY
In order to protect the process image from multiple accesses “at the same time”,
the tasks accessing it need to lock it as a single resource. To ease the
implementation of such locks, all process image accesses (also from the
application) must be made using the macros PI_READ(), PI_WRITE() and
PI_COMP().

These macros need to be customized to implement a mutex or single token
semaphore lock before making the access and a release /free of the mutex /
semaphore after the access.

6.2 OBJECT DICTIONARY CONFIGURATION
Since version 2.6 the Object Dictionary configuration can be automatically
generated by CANopen Architect EDS. Example directories ending in “_CA”
contain examples that use such automatically generated configurations. The
default file name for the file containing the process image variable definitions is
entriesandreplies.h.

Although working with CANopen EDS and DCF files is the standard procedure
for many CANopen configuration tools, many embedded CANopen nodes require

55

THE MICROCANOPEN PLUS PROTCOL STACK

a specific default configuration that a node should use if not configured through a
CANopen configuration tool or by a CANopen Configuration Manager.

In MicroCANopen the default configuration is setup via tables typically
implemented in a file called user_xxx.c (User Object Dictionary file).

The tables gSDOResponseTable and gODProcTable define the contents of the
Object Dictionary. When using auto-generated files the auto-generated data can
be included into these tables using the Macros SDOREPLY_ENTRIES,
ODENTRY_ENTRIES and ODGENTRY_ENTRIES.

6.2.1 CONSTANT EXPEDITED OBJECT DICTIONARY ENTRIES
The gSDOresponseTable table
The table gSDOresponseTable is an array of bytes that contains a list of SDO
responses for SDO requests to constant, read-only entries in the object dictionary
limited to 4 bytes or less. Typically these contain the [1000,00] Device Type
entry, the [1018,xx] Identity Objects and some “Number of Entries” type entries
with a Subindex of zero.

Each entry in this list has 8 bytes that directly contain the 8 bytes used in a CAN
message with an expedited SDO response to a read (upload) request.

The macros SDOREPLY and SDOREPLY4 are provided to ease the generation of
the 8-byte entries.

The last entry must be 8 times 0xFF to indicate the end of the table.

The current implementation does not require that the entries are sorted in any
way.

The SDOREPLY macro
This macro generates the 8-byte SDO response required for a read (upload)
request from an Object Dictionary entry with a constant entry.

SDOREPLY(INDEX,SUBINDEX,LENGTH,VALUE)

INDEX is the 16-bit Index of the Object Dictionary entry.

SUBINDEX is the 8-bit Subindex of the Object Dictionary entry.

LENGTH is the length of the Object Dictionary entry in bytes and must be in the
range of 1 to 4.

VALUE is the value of the Object Dictionary entry. It must be defined as a 32-bit
value even if LENGTH is less than 4-bytes. In that case the unused bytes must be
set to zero.

The Object Dictionary entry [1000h,00h] with a value of 00030191h can be
generated by:
SDOREPLY(0x1000,0x00,4,0x00030191L),

56

THE MICROCANOPEN PLUS PROTCOL STACK

The SDOREPLY4 macro
This macro generates the 8-byte SDO response required for a read (upload)
request from an Object Dictionary entry with a constant entry of 4 bytes with an
ASCII interpretation. This simplifies the generation of 32-bit Object Dictionary
entries whose contents are not interpreted as a 32-bit value but as 4 characters.

SDOREPLY4(INDEX,SUBINDEX,CHAR1,CHAR2,CHAR3,CHAR4)

INDEX is the 16-bit Index of the Object Dictionary entry.

SUBINDEX is the 8-bit Subindex of the Object Dictionary entry.

CHAR1 through CHAR4 contain the 4 characters stored at this Object Dictionary
entry.

6.2.2 VARIABLE EXPEDITED AND MAPPED OBJECT DICTIONARY
ENTRIES
The gODProcTable
This table is an array of structures that defines Object Dictionary entries whose
data is located in the process image and that can be mapped into PDOs (Process
Data Objects). All Object Dictionary entries that can be mapped to a PDO or need
to be shared with the application via the process image must be defined in this
table. The macro ODENTRY can be used to simplify entries into this table.

The last entry must use the index FFFFh to mark the end of the table.

The current implementation does not require that the entries are sorted in any
way.

The ODENTRY macro
ODENTRY(INDEX,SUBINDEX,TLINFO,OFFSET)

INDEX is the 16-bit Index of the Object Dictionary entry.

SUBINDEX is the 8-bit Subindex of the Object Dictionary entry.

TLINFO is an 8-bit value that defines access type and length of the Object
Dictionary entry. The TLINFO value can be generated by adding up the length of
the Object Dictionary entry (must be in the range of 1 to 4) and the following
status bits:

• if the entry is readable via SDO requests, add ODRD

• if the entry is writable via SDO requests, add ODWR
Note that an entry can be both readable and writable.

OFFSET defines the location of the data for this Object Dictionary entry in the
process image. If set to 3, the data is located starting at the 4th byte in the process
image.

57

THE MICROCANOPEN PLUS PROTCOL STACK

An Object Dictionary entry [6200h,01h] containing a one byte value that supports
both read and write accesses and whose data is located in the 8th byte of the
process image is defined as follows:
ODENTRY(0x6200,0x01,1+ODRD+ODWR,7),

6.2.3 GENERIC OBJECT DICTIONARY ENTRIES (PLUS)
The gODGenericTable
This table contains the remaining, generic Object Dictionary entries, typically
longer than 4 bytes. This data may also be located outside the process image as it
works with pointers that can point to any memory location. There are two macros
provided. ODGENTRYP is for entries that are located in the process image and
ODGENTRYC is used for entries using a pointer to any memory location
(intended usage is for constant values, hence ‘C’).

The ODGENTRYP macro
ODGENTRYP(INDEX,SUBINDEX,ACCESS,LENGTH,OFFSET)

INDEX is the 16-bit Index of the Object Dictionary entry.

SUBINDEX is the 8-bit Subindex of the Object Dictionary entry.

ACCESS is an 8-bit value that defines the access type of the Object Dictionary
entry. The following status bits are used:

• if the entry is readable via SDO requests, add ODRD

• if the entry is writable via SDO requests, add ODWR
Note that an entry can be both readable and writable.

LENGTH is the length of the Object Dictionary entry in bytes.

OFFSET defines the location of the data for this Object Dictionary entry in the
process image. If set to 3, the data is located starting at the 4th byte in the process
image.

An Object Dictionary entry [2200h,00h] containing a 10 byte value that supports
both read and write accesses and whose data is located in the 8th byte of the
process image is defined as follows:
ODGENTRYP(0x2200,0x00,ODRD+ODWR,10,7),
The ODGENTRYC macro
ODGENTRYC(INDEX,SUBINDEX,ACCESS,LENGTH,POINTER)

INDEX is the 16-bit Index of the Object Dictionary entry.

SUBINDEX is the 8-bit Subindex of the Object Dictionary entry.

ACCESS is an 8-bit value that defines the access type of the Object Dictionary
entry. The following status bits are used:

• if the entry is readable via SDO requests, add ODRD

58

THE MICROCANOPEN PLUS PROTCOL STACK

• if the entry is writable via SDO requests, add ODWR
Note that an entry can be both readable and writable.

LENGTH is the length of the Object Dictionary entry in bytes.

POINTER defines the location of the data for this Object Dictionary entry in the
memory of the microprocessor.

An Object Dictionary entry [1008h,00h] containing a read-only string is defined
as follows:
ODGENTRYC(0x1008,0x00,ODRD,23,&(” MicroCANopen DS401 Demo”))

59

	1 THE MICROCANOPEN PROTOCOL STACK
	1.1 MICROCANOPEN AND MICROCANOPEN PLUS
	1.2 MICROCANOPEN MANAGER ADD-ON
	1.3 CANOPEN DOCUMENTATION
	1.4 FILE AND DIRECTORY STRUCTURE
	1.5 FUNCTION SUMMARY
	1.6 DS401 GENERIC I/O EXAMPLE APPLICATION
	1.7 CiA447 CAR ADD-ON DEVICES EXAMPLE APPLICATION

	2 APPLICATION INTERFACE
	2.1 THE PROCESS IMAGE
	2.1.1 CONFIGURATION OF THE PROCESS IMAGE
	2.1.2 ACCESSING THE PROCESS IMAGE
	2.1.3 DATA INTEGRITY OF THE PROCESS IMAGE IN AN RTOS ENVIRONMENT

	2.2 OBJECT DICTIONARY CONFIGURATION
	2.3 CANOPEN API FUNCTIONS AND MACROS
	2.3.1 The MCO_Init function
	2.3.2 The MCO_InitRPDO function
	2.3.3 The MCO_InitTPDO function
	2.3.4 The MCO_ProcessStack function
	2.3.5 The MCO_TriggerTPDO function
	2.3.6 Process Image Access Macros: The PI_READ macro
	2.3.7 Process Image Access Macros: The PI_WRITE macro
	2.3.8 Process Image Access Macros: The PI_COMP macro
	2.3.9 Default Process Image Access Macros
	2.3.10 Macros for PDO process image access
	2.3.11 The MCO_ReadProcessData function
	2.3.12 The MCO_WriteProcessData function

	2.4 CANOPEN API CALL-BACK FUNCTIONS
	2.4.1 The MCOUSER_ResetCommunication function
	2.4.2 The MCOUSER_ResetApplication function
	2.4.3 The MCOUSER_NMTChange function
	2.4.4 The MCOUSER_SYNCReceived function
	2.4.5 The MCOUSER_RPDOReceived function
	2.4.6 The MCOUSER_ODData function
	2.4.7 The MCOUSER_TPDORdy function
	2.4.8 The MCOUSER_FatalError function
	2.4.9 The MCOUSER_GetSerial function

	2.5 CANOPEN API EXTENDED FUNCTIONS
	2.5.1 The MCOP_InitHBConsumer function
	2.5.2 The MCOP_ProcessHBCheck function
	2.5.3 The MCOP_GetStoredParameters function
	2.5.4 The MCOP_PushEMCY function
	2.5.5 The MCOP_TransmitSleepObjection() function

	2.6 CANOPEN API EXTENDED CALLBACKS
	2.6.1 The MCOUSER_AppSDOReadInit function
	2.6.2 The MCOUSER_AppSDOWriteInit function
	2.6.3 The MCOUSER_AppSDOWriteComplete function
	2.6.4 The MCOUSER_SDORdPI function
	2.6.5 The MCOUSER_SDORdAft function
	2.6.6 The MCOUSER_SDOWrPI function
	2.6.7 The MCOUSER_SDOWrAft function
	2.6.8 The MCOUSER_SDORequest function
	2.6.9 The MCOUSER_Sleep function

	2.7 DRIVER FUNCTIONS
	2.7.1 The MCOHW_Init function
	2.7.2 The MCOHW_SetCANFilter function
	2.7.3 The MCOHW_GetStatus function
	2.7.4 The MCOHW_PushMessage function
	2.7.5 The MCOHW_PullMessage function
	2.7.6 The MCOHW_GetTime function
	2.7.7 The MCOHW_IsTimeExpired function
	2.7.8 The NVOL_Init function (Plus)
	2.7.9 The NVOL_ReadByte function (Plus)
	2.7.10 The NVOL_WriteByte function (Plus)
	2.7.11 The NVOL_WriteComplete function (Plus)
	2.7.12 The MCOHWMGR_SetCANFilter function (MGR)
	2.7.13 The MCOHWMGR_PullMessage function (MGR)

	2.8 USING SOFTWARE CAN FILTERS AND FIFOS
	2.8.1 USING SOFTWARE CAN RECEIVE FILTERS
	2.8.2 USING THE FIFOS
	2.8.3 SAMPLE CAN RECEIVE INTERRUPT IMPLEMENTATION

	3 CANOPEN CODE CONFIGURATION
	3.1 TABLE SIZE SETTINGS OF PROCIMG.H
	3.1.1 #define PROC_IMGSIZE [num]

	3.2 GENERAL SETTINGS OF NODECFG.H
	3.2.1 #define USE_MCOP [0|1]
	3.2.2 #define CHECK_PARAMETERS [0|1]
	3.2.3 #define USE_LEDS [0|1]

	3.3 PDO SETTINGS OF NODECFG.H
	3.3.1 #define NR_OF_RPDOS [num]
	3.3.2 #define NR_OF_TPDOS [num]
	3.3.3 #define USE_EVENT_TIME [0|1]
	3.3.4 #define USE_INHIBIT_TIME [0|1]
	3.3.5 #define USE_SYNC [0|1]

	3.4 NMT SERVICE SETTINGS OF NODECFG.H (PLUS)
	3.4.1 #define AUTOSTART [0|1]
	3.4.2 #define DEFAULT_HEARTBEAT [ms]
	3.4.3 #define DYNAMIC_HEARTBEAT_CONSUMER [0|1], #define NR_HB_CONSUMER [num]
	3.4.4 #define USE_EMCY [0|1],
#define ERROR_FIELD_SIZE [num]
	3.4.5 #define USE_NODE_GUARDING [0|1]
	3.4.6 #define USE_STORE_PARAMETERS [0|1],
#define NVOL_STORE_START [num],
#define NVOL_STORE_SIZE [num]
	3.4.7 #define NR_OF_SDOSERVER [num]
	3.4.8 #define USE_SLEEP [0|1]

	3.5 OTHER SETTINGS OF NODECFG.H (PLUS)
	3.5.1 #define USE_CiA447 [0|1]
	3.5.2 #define USE_SDOMESH [0/1]

	3.6 USER CALL-BACK FUNCTIONS OF NODECFG.H (PLUS)
	3.6.1 #define USECB_NMTCHANGE [0|1]
	3.6.2 #define USECB_SYNCRECEIVE [0|1]
	3.6.3 #define USECB_RPDORECEIVE [0|1]
	3.6.4 #define USECB_ODDATARECEIVED [0|1]
	3.6.5 #define USECB_TPDORDY [0|1]
	3.6.6 #define USECB_SDOREQ [0|1]
	3.6.7 #define USECB_SDO_RD_PI [0|1]
	3.6.8 #define USECB_SDO_RD_AFTER [0|1]
	3.6.9 #define USECB_SDO_WR_PI [0|1]
	3.6.10 #define USECB_SDO_WR_AFTER [0|1]
	3.6.11 #define USECB_APPSDO_READ [0|1]
	3.6.12 #define USECB_APPSDO_WRITE [0|1]

	4 SDO FULLY-MESHED COMMUNICATION
	4.1 PREREQUISITES
	4.2 LIMITATIONS
	4.3 SDO COMMUNICATION SETUP
	4.4 USAGE EXAMPLE (WITH MANAGER ADD-ON)

	5 APPENDIX - USING AUTO-GENERATED SOURCES
	5.1 FILE GENERATION
	5.2 FILE INTEGRATION
	5.2.1 PIMG.H
	5.2.2 STACKINIT.H
	5.2.3 ENTRIESANDREPLIES.H

	6 APENDIX – ADVANCED MANUAL CONFIGURATION
	6.1 RTOS INTEGRATION
	6.1.1 RTOS TASK: RECEIVE AND TICK
	6.1.2 PROCESS IMAGE INTEGRETY

	6.2 OBJECT DICTIONARY CONFIGURATION
	6.2.1 CONSTANT EXPEDITED OBJECT DICTIONARY ENTRIES
	6.2.2 VARIABLE EXPEDITED AND MAPPED OBJECT DICTIONARY ENTRIES
	6.2.3 GENERIC OBJECT DICTIONARY ENTRIES (PLUS)

