Divelbiss

Boss Bear
User's Manual

Divelbiss Corporation

Divelbiss Corporation
9776 Mount Gilead Road
Fredericktown, OH 43019
Telephone: 614/694-9015

FAX: 614/694-9035

WARNING

The Boss Bear and UCP, as with other solid state controllers, must not be
used alone in applications which would be hazardous to personnel in the
event of failure of this device. Precautions must be taken by the user to
provide mechanical and/or electrical safeguards external to this device. This
device is NOT approved for domestic or human medical use.

All program examples are for the Boss Bear. If using the UCP, minor changes in software
will be needed because of hardware differences.

i

Contents

Introduction

1.1 Description of Features
1.2 Organization of Manual
1.3 Notational Conventions

Getting Started With the Boss Bear

2.1 Connecting to a Terminal or Personal Computer

2.2 Writing a Program in Bear BASIC

2.3 Bear BASIC Command Line Operation

2.4 Using the Command Line Editor

2.5 Loading and Saving Programs With a Personal Computer
2.6 Loading and Saving Programs With an EPROM

Overview of the Bear BASIC Compiler

3.1 Direct Commands

3.2 Organization of a Bear BASIC Program
3.3 Numeric Constants

3.4 Variables

3.5 Operators

3.6 Expressions

3.7 Statements

3.8 Functions

3.9 User Defined Functions

Writing Control Applications in BASIC

41 Programming for Real Time Control Systems
4.2 Project Specification
4.3 Real Time Programming Example

11l

10

v

Multitasking in Bear BASIC

5.1 Multitasking Fundamentals

5.2 Determining Task Timing

5.3 Determining When and How to use Multitasking
5.4 Interaction Between Tasks

5.5 Organization of Tasks and Subroutines

User Interface Support

6.1 Using the Built-In Display
6.2 Reading the Built-In Keypad
6.3 Working With the Serial Ports

Onboard Hardware Support

7.1 High Speed Counter

7.2 Analog to Digital Converter
7.3 Bear Bones Interface

7.4 Boss Bear Input and Output
7.5 Real Time Clock

7.6 Serial Ports

7.7 Nonvolatile Memory

Bear BASIC Language Reference

Optional Modules

9.1 Module Installation

9.2 High Speed Counter Module

9.3 12 Bit Analog to Digital Converter Module
9.4 10 Bit Digital to Analog Converter Module

Networking with the Boss Bear

10.1 Bear Direct Networking Principles
10.2 Bear BASIC Network Example

10.3 Using the Network Interface Card
10.4 Interfacing to Lotus 123

10.5 BearLog Data Logging TSR Program

11 Error Handling in Bear BASIC

11.1 1/O Errors
11.2 Program Errors

A Specifications

B Error Messages

C Accessing the Hardware

D Using Assembly Language Subroutines

E Hardware Installation Recommendations

F ASCII Character Table

G Bear BASIC Release History

H UCP Onboard Hardware Support

I Using Fuzzy Logic

Index

vi

Chapter 1

Introduction

1.1 Description of Features
1.2 Organization of This Manual
1.3 Notational Conventions

1-1

The Divelbiss Boss Bear is a unique programmable control system that integrates many
control functions into one easily used package. It starts as a compact, highly integrated
industrial computer system that is programmed using an extended, compiled BASIC. It
becomes an operations panel, containing a 2 line by 40 character display and a 20 key
entry pad; both are fully programmabile to suit the user's requirements. It supports onboard
control hardware such as a high speed counter, analog inputs, a Real Time Clock, two
serial ports, nonvolatile memory, and EPROM storage of the user's programs. Three
expansion ports are available for adding optional modules, including analog outputs, analog
inputs, high speed counters, resolver inputs, high speed input/output, etc.

The Boss Bear can be interfaced to a Divelbiss Bear Bones programmable controller with a
single cable, allowing a true multi-processing system to be easily created; this forms an
inexpensive system that provides performance equal to much larger controllers.

Several Boss Bears can be linked together with a network to provide control over a larger
area or to return information to a central point. This network can then be linked to another
computer system, which can provide long term data storage and display, supervisory
control of the entire network, and perform Statistical Process Control.

2 X 40 Display
1. LCD
2. LCD w/backlighting Industrial 256 I/0
3. Vacuum Fluorescent Computer Ke—
[Ueer 32K/128K RAM
User 32K PROM Interface
: To Bear Bones
Extended 1/0 Buse
20 KEY - “
7 Besio 16 in / 16 out
Key Ped ANE4Y ASEAIE4Y
-9, Enter, Clear
Function Keys 1-8
Real
Time
Clock
l&b 24 Bit 2Kk/8K Ezpr‘om
High Speed Counter for setpointe
Pulss B
3 Input Filter
:%-est=b Selectable
RS232
Command
High Speed COM 1 port
Output
RS232 or
—a—r RS422/485
== COM 2 port
> —31 8 Channel
|? —r
——
® [1@ Bit A/D
—=
—=—t EXPANSION
| e Up to 3
Option Boards
115710V
1evAC :
) Option Boeards
Pover 1. D/A's
Supply 2. Additionel RS232 ports
12VDC ——)| 3. Additional High Speed Counters
4. Additional A/D inputs

Figure 1 — Boss Bear system block diagram

1-2

1.1 Description of Features

A Boss Bear system consists of the Boss Bear, options added onboard the Boss Bear
itself, option modules plugged into the Boss Bear, and I/O expander modules connected to
the Boss Bear. By choosing the options carefully, an inexpensive system can be built with
only the hardware necessary to complete the task.

The minimal configuration of the Boss Bear contains the microprocessor circuitry with the
Bear BASIC compiler in PROM, 128K of RAM, an RS-232 serial port, EPROM
programming capability, and the Bear Bones interface. The RAM is used to hold the user's
program source code while it is being written, and to hold variables and data while the
user's program is executing. The serial port is used to interface with a terminal or personal
computer to allow entry and editing of programs. The onboard EPROM programmer allows
the user's program to be saved and loaded, either as source code or as executable object
code. The Bear Bones interface connects the Boss Bear to a Divelbiss Bear Bones
programmable controller to form a powerful multi-processing control system.

The Boss Bear may be purchased with a variety of options installed in the unit, such as a
front panel display and keypad, a high speed counter, analog input circuitry, a real time
clock, a second serial port, and nonvolatile memory.

The front panel display is a 2 line by 40 character display; this may be a liquid crystal
display (LCD), a backlit liquid crystal display, or a vacuum fluorescent display (VFD). The
keypad is a 4 row by 5 column tactile feel membrane keypad. These are both fully
programmable by the user.

The high speed counter is a 24 bit up/down counter with a built-in comparitor, providing a
high speed output when a specified count value is reached. This counter may be
programmed to support position control, rate metering, tachometer batch control, etc. It can
support multiple setpoints under software control.

The analog input circuitry contains an 8 channel, 10 bit, with 12 bit optional analog to digital
convertor (A/D). The values returned by the A/D can be displayed using the required
engineering units, used in a multiple setpoint control algorithm, and used as part of a PID
control loop, for example.

The Real Time Clock (RTC) maintains the current time and returns it as year, month, day,
hour, minute, second, day of week, and day of month. It is battery backed up, and so will
keep the correct time even when the Boss Bear is not powered.

The second serial port supports RS-232, RS-422, and RS-485. RS-232 is used to
communicate over short distances. RS-422 is used over longer distances and in
electrically noisy environments. RS-485 is used when several units need to communicate
over two wires, as in a network. The two onboard serial ports support 150, 300, 600, 1200,
2400, 4800, 9600, 19200, and 38400 baud.

1-3

1.2 Organization of This Manual

This manual is divided into 8 chapters, 5 appendices providing supplemental information,
and an index:

Chapter 1, "Introduction”, provides an overview of the Boss Bear and a description of this
manual.

Chapter 2, "Getting Started With the Boss Bear", describes how to set up the unit, attach it
to a terminal, enter Bear BASIC programs, use the editor, and execute programs.

Chapter 3, "Overview of the Bear BASIC Compiler", describes the various elements of Bear
Basic and how they fit together.

Chapter 4, "Writing Control Applications in BASIC", is an elementary tutorial on
programming for real time control systems, with emphasis on using the features of Bear
BASIC.

Chapter 5, "Multitasking in Bear BASIC", explains the specifics of using the multitasking
features of Bear BASIC.

Chapter 6, "User Interface Support", describes how to use the onboard display and keypad,
and also discusses using a serial communications port with a terminal.

Chapter 7, "Onboard Hardware Support", describes the BASIC instructions that support the
hardware options available on the Boss Bear.

Chapter 8, "Bear BASIC Language Reference", is an alphabetical list of all direct
commands, statements, operators, and functions in Bear BASIC.

Chapter 9, "Optional Modules", describes the optional hardware modules that are available
for the Boss Bear.

Chapter 10, “Networking with the Boss Bear”, describes how to setup and use the Boss
Bear network.

Chapter 11, “Error Handling in Bear Basic”, deals with the onboard Basic compiler.
Appendix A, "Specifications", list of system hardware and software specifications.
Appendix B, "Error Messages", describes the Boss Bear error messages.

Appendix C, "Accessing the Hardware", is a technical description of the hardware available
onboard the Boss Bear.

Appendix D, "Using Assembly Language Subroutines”, describes how to link assembly
language routines into a BASIC program.

1-4

Appendix E, "Hardware Installation Recommendations”, provides guidelines for installing
the Boss Bear into the user's system.

Appendix F, “ASCII Character Table”, is the character table used in the Boss Bear.

Appendix G, “Bear Basic Release History”, is the version release history showing additions,
modifications and anomalies in the Boss Bear Basic.

Appendix H, “UCP Onboard Hardware Support”, is the description of the UCP hardware
differences from the Boss Bear.

Appendix I, “Using Fuzzy Logic”, is a brief description of fuzzy logic and how it is
implemented on the Boss Bear and UCP.

1.3 Notational Conventions

In this manual, the following conventions are used to distinguish elements of text:

BOLD Denotes hardware labelling, commands, and literal portions of syntax
that must appear exactly as shown.

italic Used for variables and placeholders that represent the type of text to
be entered by the user.

EXAVPLE Used for example programs, sample command lines, and text
displayed by the Boss Bear.

SMALL CAPS Used to show key sequences, such as cTrL-c, where the user holds
down the <Ctrl> key and presses the <C> key at the same time.

[1] Brackets are used to indicate optional elements of a command, such
as LOAD [program_num] where program_num is optional.

1-5

1-6

Chapter 2

Getting Started With the Boss Bear

2.1
2.2
2.3
2.4
2.5
2.6
2.7

Connecting to a Terminal or Personal Computer

Writing a Program in Bear BASIC

Bear BASIC Command Line Operation

Using the Command Line Editor

Loading and Saving Programs With a Personal Computer
Loading and Saving Programs With an EPROM
Automatically Executing a Program on Power Up

2-1

The Boss Bear is a relatively simple computer system to get up and running; normally, even
an inexperienced user can have the unit operating a short while after unpacking it. This
chapter describes how to set up the Boss Bear and use its basic features. The chapter
includes sample programs that may be entered to learn about the general functions of the
system; these programs may then be used as a starting point from which to develop
applications.

2.1 Connecting to a Terminal or Personal Computer

The Boss Bear requires a 10 volt AC or 12 volt DC power source in order to operate; see
appendix A to determine the current drain for the various Boss Bear configurations. A
transformer is available from Divelbiss that allows the unit to be powered from the 120 volt
AC power line. The unit has onboard rectification and regulation to generate the voltages
used inside the system. 10-12 volts is fed into the system using the 3 pin POWER INPUT
connector on the back of the unit; see Figure 2. It is extremely important to provide an
earth ground for the unit, both as a safety precaution and to minimize electrical noise
related problems; earth ground is the third prong on a standard 3 prong electrical wall
socket. WARNING: DO NOT USE AUTO TRANSFORMER.

In order to program the Boss Bear, it must be attached to a terminal or a personal computer that is
running a serial communications program. This manual assumes that a personal computer is being
used; the operation of the unit is the same in either case. A cable connects the Boss Bear to the
personal computer; Divelbiss can supply a cable that will allow the unit to be used with an IBM

FIGURE C
TRANSFORMER
WIRE NUT

BLACK WIRES
YELLOW WIRES

YELLOW WIRES

TO CONN 1 ON BOSS BEAR

120 VAC
50/60 HZ

GREEN WIRE

EARTH GROUND
CONNECT TO
MACHINE/PANEL FRAME

\©/

WHEN 110-120 VAC POWER IS SUPPLIED FOR BOSS BEAR MAIN POWER,
USE SUPPLIED TRANSFORMER AND WIRE AS SHOWN ABOVE

ALTERNATE WIRING METHOD

YELLOW WIRES
TO CONN 1 ON BOSS BEAR

12 VvDC
OR 10 VAC
NOT POLARITY SENSITIVE

GREEN WIRE

Figure 2 - Boss Bear Power Supply Wiring Schematic

2-2

PC or compatible, or a null modem cable can be used. The user can easily manufacture a
cable to match other systems, see Figure 3. Note that pins 7 and 8 (the RTS and CTS
lines) must be connected to valid signals from the terminal/computer, or they must be
connected to each other.

Once the cable is installed between the Boss Bear COM1 connector and the personal
computer, apply power to the personal computer and enter the communications program.
The serial communications parameters must be set to 9600 baud, 8 data bits, no parity, 1
stop bit, and XON/XOFF flow control enabled; these values are required in order to match
the default values used by the Boss Bear. Make sure that the communications program is
set to use the serial port that is connected to the Boss Bear. Apply power to the Boss Bear;
it should respond with a signon message followed by the BASIC compiler prompt:

BEAR BASIC Compiler Version 2.01
>

No sign on message for Versions 2.03 and higher with battery backup memory. Only the
ll>|| Sign_

Each time that the enter key is pressed, the prompt character will be printed on the next line
down. The communications program should be set to emulate an ADM-3A or ADM-5
terminal type, in order for the cursor positioning commands on the Boss Bear to work
correctly.

25 pin

SHIELD 1/-\
9 pin Wiring Diagram 2
/\ s
i——N i L
[6RN}
: — —
NC BLK —
 —r - oE V —
\/ : —
BLU| —
Second Source -
Yendor Color Code] 20
_\J

Figure 3 - Serial Port COM 1 Wiring Diagram

2.2 Writing a Program in Bear BASIC

The best way to become familiar with the Boss Bear is by writing some simple programs;
the following sections will use several programs to demonstrate different features. We will
start with a very simple program. The first program that is always run on a new computer
system looks like this:

100 PRI NT "HELLO, WORLD!*"

2-3

Before entering this program, type NEW followed by the enter key; this will clear out any
existing program that might be in the Boss Bear memory. Although the examples in this
manual primarily use upper case characters, the Boss Bear is not case-sensitive, and so
lower case and upper case may be used interchangeably. Also, from here on itis assumed
that the user presses enTer at the end of each line.

Enter the one line of the program in and then enter RUN. The Boss Bear will print the
message COMPILED followed by HELLO, WORLD!. It will then return with the prompt, awaiting
further commands. The screen should look like this:

> NEW

> 100 PRI NT "HELLO WORLD "
> RUN

COWPI LED

HELLO, WORLD!

>

If an error message is printed instead of COMPILED, after typing RUN, then line 100 was
probably entered incorrectly; try entering it again, being careful to type it exactly as shown.
Remember to put the double quote marks around the HELLO, WORLD! message.

To modify a line of BASIC, just enter in a new line using the same line number; the new line
will overwrite the existing line. To remove a line of BASIC, enter the line number with
nothing after it; the line will be removed from the BASIC program. To look at your BASIC
program, enter LIST; the program will be displayed on the screen.

2.3 Bear BASIC Command Line Operation

Bear BASIC has three different modes of operation: command line entry, compilation of the
BASIC program, and execution of the BASIC program. The programmer interacts with
Bear BASIC while in the command line mode; this is where programs are entered, edited,
loaded, and saved. The user types a command after the compiler prompt (the ">'
character), then Bear BASIC performs the command and returns with the compiler prompt
again. The BackspAcE key may be used to back up while entering a command.

When a line is entered while in the command line mode, it is first examined to see if it is a
valid direct command; if it is, then the command is performed. Ifitisn't a direct command,
then it is handled as a line of BASIC source code; if it isn't a line of BASIC source code,
then an error is displayed. If it is valid BASIC source code, then it is entered into the
current program.

2-4

2.4 Using the Command Line Editor

If it is necessary to change a line of the current BASIC program, the line can be retyped;
the new line will replace the existing line. This is fine for short lines, but for longer lines this
can cause a lot of extra typing. In order to minimize the effort required to modify a line of
the program, Bear BASIC includes a line editor as a direct command. The EDIT command
allows a single line of BASIC source code to be modified without retyping the entire line.
For EDIT to work properly, the line must be less than 80 characters long; it must fit on a
single line of the terminal. For the cursor positioning to work correctly in EDIT, the console
terminal type must be set to ADM-3A or ADM-5.

To use EDIT, type EDIT followed by the line number of the BASIC line to be modified; for
example, EDIT 120. The existing line will be displayed with the cursor at the first character in
the line number. The cursor may be moved left and right with the following key
combinations:

cTrRL-s move the cursor left one character

cTRL-D move the cursor right one character

cTRL-A move the cursor to the beginning of the line
cTRL-F move the cursor to the end of the line

The editor can be toggled between insert and overwrite mode. In overwrite mode, any
character typed will replace the existing character at the current cursor position. In insert
mode, any character typed will be added at the current cursor position, causing the rest of
the line to be moved right one character position. When the editor is invoked, it starts out in
overwrite mode.

cTRL-v toggles between overwrite and insert mode

To delete characters from the line, either BackspAce or cTRL-G can be used. The BACKSPACE
key deletes the character to the left of the current cursor position, causing the rest of the
line to be moved left one character position. ctrL-G, on the other hand, deletes the
character at the current cursor position, causing the rest of the line to the right to be moved
left one character position.

cTr.-G deletes characters from line
When the desired changes have been made to the line, press enter to add the modified line
back into the program; the modified line will replace the existing line. Pressing escare or

any control key not listed above will abort the changes, leaving the existing line unchanged.
After leaving the editor, the compiler prompt will be displayed again.

2.5 Loading and Saving Programs With a Personal Computer

If the Boss Bear is being used with a personal computer as the console terminal, then it
may be desirable to transfer the current BASIC program to and from the computer's disk.

2-5

This allows the program to be edited on the personal computer, and to be printed out. The
exact method of transferring files depends upon the communications program that is being
used on the computer; it may be necessary to refer to the manual for that program to
ensure proper file transfer.

To transfer a program from the personal computer to the Boss Bear, enter NEW to clear
the current program out of memory, then enter DOWNLOAD. Execute the command in the
communications program to send a text (or ASCII) file, and type in the appropriate file
name. The file will be transferred to the Boss Bear. The file should not be echoed to the
screen; if it is being echoed, then it may indicate that a ctrL-z is stored in the file. If any
syntax errors are encountered while sending the file, they will be displayed on the screen.
After the file has been transferred, the Boss Bear will probably respond with the compiler
prompt; if it doesn't, then type ctrL-z, which turns off the DOWNLOAD mode. If two or more
lines were entered using the same line number, then the warning message Warning: duplicate
line numbers detected Will be printed; this probably indicates an error in the BASIC source
code.

To transfer a program from the Boss Bear to the personal computer, type LIST but do not
press eNTER. Execute the command in the communications program to receive a text (or
ASCII) file, and type in an appropriate file name. After the program is ready to receive the
file, press enter to make the Boss Bear display the program; the program will capture it and
store it in the selected file on the personal computer. After the entire BASIC program has
been displayed, execute the command in the communications program to finish the
reception of the file.

2.6 Loading and Saving Programs With an EPROM

The Boss Bear includes an onboard EPROM programmer that is used to save the user's
programs. An EPROM is a device that can be written to electrically, but can only be erased
by exposing it to ultraviolet light; EPROM stands for Erasable Programmable Read Only
Memory. When an EPROM is erased, the entire contents of the EPROM are lost; there is
no way to only erase part of the EPROM. The same file can be stored multiple times,
allowing different versions to be saved while developing a program.

The programmer supports two sizes of EPROM: 32KB and 128 KB. KB stands for
KiloByte, which is 1024 bytes. The jumper JW3 (see Figure 6, page 7-2) must be set to
match the type of EPROM that is being used; failure to set the EPROM type correctly could
destroy the EPROM, along with its contents. The EPROM is mounted in a special carrier
for easier handling; the carrier ensures that the EPROM can't be installed backwards. The
switch SW1 must be set to PROG (program mode) before the EPROM can be written to.

After installing the EPROM and checking that the JW3 setting matches the EPROM type,
the EPROM is ready to use. The DIR command will display the contents of the EPROM
and the amount of unused space remaining. Two types of files can be stored on the
EPROM: source code and compiled code. The source code is the human readable BASIC
program; this should be stored so that it isn't lost. Compiled code is the executable code
generated by the Bear BASIC compiler; this is stored on an EPROM so that it can be

2-6

automatically executed on power up, or so that it can be CHAINed to from another
program. Each type of file is numbered sequentially on the EPROM, starting at 1.

After a BASIC program (the source code) has been typed in, it should be saved before
compiling it and attempting to execute it; this is so that the program won't be lost if the Boss
Bear crashes when the program is run. When entering a long program, it is also advisable
to save the program periodically so that the entire program isn't lost in the event of a power
failure. To save the source code to EPROM, type SAVE progname, where progname is
the name of the program. The program name will be stored as the file name on the
EPROM,; if progname isn't entered, then it will default to all spaces.

After a program has been successfully compiled (ie. no syntax errors were encountered by
the compiler), then the compiled code can be saved to the EPROM, by typing SAVE CODE
progname, where progname is the name of the program. The program name will be stored
as the file name on the EPROM; if progname isn't entered, then it will default to all spaces.

2.7 Automatically Executing a Program on Power Up

When the user's program is operational and the Boss Bear is to be installed, it will probably
be necessary for the Boss Bear to automatically execute the program when it is turned on.
If SW1 is set to RUN (run mode), then the Boss Bear will load the last compiled code file
from the EPROM and execute it. Since the Boss Bear executes the last compiled code file
from the EPROM, the latest revision of a program will always be executed. If SW1 is set to
PROG (program mode), then the Boss Bear will respond with the compiler prompt when it
is turned on. Preprogrammed Eprom cannot be used with newer versions of firmware
without downloading and recompiling (erase Eprom and reprogram).

2-7

2-8

Chapter 3

Overview of the Bear BASIC Compiler

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Direct Commands

Organization of a Bear BASIC Program
Numeric Constants

Variables

Operators

Expressions

Statements

Functions

User Defined Functions

3-1

The Boss Bear software consists of two parts: the command line interface and the Bear
BASIC compiler. The command line interface executes direct commands as they are typed
in; it enters the BASIC source code, loads and saves programs, executes programs, and
starts the compiler. Section 3.1 describes the direct commands that are available. The
compiler converts BASIC source code into executable compiled code; it's input is the
current BASIC program in memory. Sections 3.2 through 3.9 describe the BASIC compiler,
the syntax of Bear BASIC, and the statements and functions that Bear BASIC supports.
The Bear BASIC commands, statements, and functions are described individually in
chapter 8.

3.1 Direct Commands

Direct commands are used while programming the Boss Bear, and entered at the compiler
prompt. They can be grouped into three categories: file commands, compiler commands,
and miscellaneous commands.

3.1.1 File Commands

DIR display a listing of files on the EPROM
DOWNLOAD disable echo while loading a program

LOAD [filenum] or

EPROM LOAD [filenum]

SAVE [CODE] [fname] or
EPROM SAVE [CODE] [fname]

3.1.2 Compiler Commands

C

COMPILE or C
ERROR

G

GOorG
NOERR

R

RUN or R
STAT

3.1.3 Miscellaneous Commands

BYE

CLEARMEMORY

CLS

E linenum

EDIT linenum or E
HELP

L

LIST [linenum] [,linenum]

3-2

load a program from the EPROM
load a program from the EPROM
save source or compiled code to the EPROM
save source or compiled code to the EPROM

abbreviation for COMPILE

compile the BASIC program

enable error checking in compiled BASIC
abbreviation for GO

start the compiled program executing
disable error checking in compiled BASIC
abbreviation for RUN

compile and execute the current BASIC program
display memory usage and compiler version

reset the Boss Bear

write 0's into all memory locations
erase the console display
abbreviation for EDIT

enter the line editor to alter linenum
display help text

list the entire program

list all or part of the program

LFDELAY delay at the end of each line displayed
NEW clear out the current BASIC program
SETOPTION DAC set DAC initialization values

3.2 Organization of a Bear BASIC Program

The Bear BASIC language has a structured syntax that requires that particular elements of
a program be placed in a specific order. Failure to follow this syntax could result in syntax
errors, or, worse yet, an inoperable program.

3.2.1 Program Lines

A Bear BASIC program consists of a series of program lines, sometimes referred to as
lines of code, or source lines. Each program line has a line number followed by one or
more statements. The line number is an integer between 1 and 32767. If there is more
than one statement in a program line, then each statement is separated by a colon (*).
The following are valid Bear BASIC program lines:

100 X=4

35 print "H there"
32000 J=K*4 + 3: | F J>0 Then GOSUB 2000:j =0

The following are invalid program lines:
43000 PRINT X Line number is too large
100 X=4 J=X No colon between statements

Bear BASIC does not require line numbers; if a line is entered without a line number, it will
add 2 to the previous line number and assign that number to the new line. If used carefully,
this can make the BASIC source code much more readable when it is viewed on a personal
computer. BASIC stores lines in a tokenized format, where special codes are stored
instead of the actual statement, in order to save space. A side effect of this is that the
program will look different when it is LISTed than when it was entered. An example will
demonstrate this; if the following is typed:

100 i nteger j,sum
sum=0 " Initialize the sum
for j=1 to 100
SUMES UMt " Add up the nunbers
130 next |
print "The sumis "; sum ' Display the result

3-3

when this program is LISTed, the following is displayed:

100 | NTEGER J, SUM

102 SUMFO: ' Initialize the sum

104 FOR J=1 TO 100

106 SUMESUM + J: ' Add up the nunbers

130 NEXT J

132 PRINT "The sumis ";SUM ' Display the result

Notice that line numbers were added to the lines that didn't have them. Also, the only
lowercase letters that remain are in text strings and comments. Bear BASIC is not case
sensitive, so code can be entered in upper or lower case, but it is always stored in upper
case.

3.2.2 Variable Declarations

Unlike many BASIC systems, all Bear BASIC variables must be explicitly declared. All
variable declarations (ie. INTEGER, REAL, and STRING statements) must be at the
beginning of the program. In order to create efficient code, the compiler needs to know
how many variables there are before it generates any machine code. Bear BASIC is limited
to 128 variable names in a program. No distinction is drawn between variables by mode.
This means that the variable A2 is the same variable as A2$. If the variable is declared as
both integer and string (both INTEGER A2 and STRING A2$ statements exist), a compilation
error will result. Similarly, variable A is the same as dimensioned variable A(n). Bear
BASIC supports a maximum of two dimensions for real and integer arrays; it supports
single dimension string arrays.

3.2.3 DATA and READ Statements

All DATA statements must be located before the first READ statement in the program.
DATA statements can be interspersed with other executable statements, but no DATA
statement can follow a READ statement.

3.2.4 Placement of Tasks

In a multitasking program, the beginning of each task is identified with a TASK statement.
The TASK statements must be in ascending numerical order starting with TASK 1. When a
task is run, it begins execution with the statement following the TASK statement. The code
located before the TASK 1 statement actually belongs to task 0; task 0 is present in every
Bear BASIC program. The placement of tasks and subroutines can be critical. In general,
the safest method is to not call subroutines that are located in another task. See Chapter 5
for further discussion of multitasking.

3.3 Numeric Constants

Constants are formed by combining decimal digits with an optional decimal point. Whenever a
decimal point is included in a constant, the compiler assumes this constant is a real number. If the
constant is expressed without a decimal point, the compiler assumes that the value is an integer.
This has significance when combining real and integer values within an expression. Even though

3-4

Bear Basic is smart enough to convert constants between integer and real as required, programs
will run more efficiently if modes are not mixed. Bear Basic provides a facility for using
hexadecimal constants. Hexadecimal constants are specified with a leading dollar sign. $1AB
represents the hexadecimal constant 1AB.

3.4 Variables

Bear BASIC variables are formed by a letter followed by up to six letters or digits. For
example, A is a legal variable, as well as A0, A1, HI92, and JUMP. However, 9AB is not a
legal variable, nor is A1234567899. String variables are formed the same way, but are
followed by a dollar sign. HIYA$, A1$, A9$ are all legal string variables. A maximum of
128 different variables may exist in any given program. These variables may be in any
form within the rules given above. Note that integer or real variables may not have the
same name as string variables. For example, the variable A may not be used in the same
program that uses the variable A$. Bear BASIC will try to use A and A$ as the same
variable, and a string variable error will result. Similarly, a dimensioned variable must not
have the same name as an undimensioned variable (for example, you cannot use B and
B(n) in the same program).

All variables must be declared at the beginning of the program before any executable code
is encountered. In practice, this means that the variable declaration statements (INTEGER,
REAL, and STRING) should be the first statements in the program. If undeclared variables
are found during the compilation, the compiler will display an error message. For strings,
the string length is specified in the STRING statement (for example, B$(80)). If no string
length is specified, a string length of 20 will be assigned. The maximum allowable string
length is 127.

String arrays are defined by specifying the length of each element, followed by the number
of elements in the array. STRING A$(10,20) specifies 20 strings, each of length 10. Any
element can be accessed just like a singly dimensioned array. A$(3)="123" assigns a value
to the third element of the string array.

Subscripted variables are specified within the INTEGER and REAL statements. Note that
subscripted variables start with the zero dimension, and extend to the maximum dimension
specified. Therefore, the statement INTEGER A(10) defines a variable with eleven
members, A(0) through A(10).

Integer variables are stored using a sixteen bit two's complement representation. An
integer value can range from +32,767 to -32,768. Positive values which exceed 32,767 will
appear as negative numbers. Real values are four byte (32 bit) IEEE compatible single
precision real numbers. This means that approximately 6.5 digits of precision are
maintained for real numbers (ie. numbers between +3.4028235x10%). Many BASIC
interpreters and compilers use BCD mathematics or 64 bit representations resulting in high
accuracy numbers that require lots of memory. Bear BASIC does not support either of
these in the interest of maximizing speed. The user must be aware that a real number may
not be exactly the number anticipated. For example, since real numbers are constructed
by using powers of 2, the value 0.1 cannot be exactly represented. It can be represented
very closely (within 2%%), but it will not be exact. Therefore, it is very dangerous to perform

3-5

a direct equality operation on a real number. The statement IF A=0.123 (assuming A is
real) will only pass the test if the two values are exactly equal, a case which rarely occurs.
This is true for all real relational operators, including, for example, the statement IF A>B, if
values very close to the condition being measured are being used. Be aware that the number you
expect may not be exactly represented by the compiler. If necessary, use a slight tolerance around
variables with relational operators.

3.5 Operators

Operators are connectors within expressions that perform logical or mathematical
computations.

These operators work both with integer and real numbers:

+ addition

- subtraction

* multiplication
/ division

Some operators are relational. They generate a nonzero result if their condition is met; the
nonzero value is unspecified (ie. it isn't necessarily 1 or -1, as in many languages). These
operators may be used in mathematical expressions, but they are more frequently used
with IF/THEN statements:

> greater than

< less than

<>or>< not equal to

= relational equality test

>= greater than or equal (integers and reals)
<= less than or equal (integers and reals)
AND logical AND

OR logical OR

Note that AND and OR are evaluated in integer mode. Real arguments are converted to
integer before AND and OR are evaluated. The equals sign ('=') is used in two different
ways in Bear BASIC: as the equality operator, and as the assignment statement.

All operators are in a hierarchy that defines what operators will be evaluated first. The
following is a list, from highest to lowest priority:

*,/
+,-

unary -, >, <, <> ><
AND, OR

3-6

A variable may hold the result of a relational comparison. For example, A=R>0. Strings
don't support the >= and <= relational operators. Some BASICs use + for string
concatenation, but Bear BASIC programs must use the CONCATS$ function.

3.6 Expressions

An expression is a mathematical, logical, or string calculation, such as 2+3, A/B, A=4, or
N$>C$. Expressions are formed using constants, variables, operators, and functions.
Expressions may be combined to form complex expressions, such as
(A+B)/SIN(A*SQR(C)); parenthesis are used to control the order of evaluation in a complex
expression. The evaluation of an expression produces a numeric or string result that is
used as an argument for a statement, or as part of another expression. An expression
cannot stand alone; it must be an argument to a statement, function, or another expression.

The following examples demonstrate the features of expressions; the result of each
expression is given to the right of the expression. In the examples, these variable values
are used:

INTEGER J,K: J=4: K=7
REAL X,)Y: X=2.3: Y=5.8
STRING A$,B$: A$="ABC": B$="DEF"

Numeric expressions use integer or real arguments and return an integer or real result:

2+3 Result is 5

2.0+3 Result is 5.0. Because 2.0 is a real constant, 3
is converted to real before performing the
addition.

JIK+2 Result is 2. J/K evaluates to 0.

X*Y Result is 13.34.

SQR(X*X+Y*Y) Result is 6.23969

String expressions use string arguments and return a string result:
CONCAT$(A$,B$) Result is "ABCDEF"

Relational expressions are used to make logical decisions in a program; they use the
relational operators (>, <, =, etc.) and return a 0 or nonzero result:

3>5 Result is 0, since 3 is not greater than 5.

A$<>B$ Result is nonzero, since A$ is not equal to B$.

3-7

Bear BASIC is unlike many BASIC dialects in that it forces the user to declare the mode of
each variable, thereby optimizing the compiler's speed. With all variables predeclared, the
compiler is not forced to evaluate all expressions in floating point at run time (which is a
very slow procedure), and then convert to integer as the need arises. Instead, the
algorithms used in Bear BASIC attempt to evaluate all expressions in the output mode (the
mode of the variable to which the expression is being assigned). To make it easier to write
programs, Bear BASIC provides automatic mixed mode expression evaluation. This means
that an expression may consist of a combination of real and integer values. Bear Basic will
automatically convert the components of the expression to the proper mode before
evaluating it, and will convert the result to the mode of the variable to which the expression
is being assigned. This is very convenient for programmers; however, there are some
important implications arising from it.

Whenever an expression is to be assigned to a real variable, then every component of that
expression is evaluated in real mode. Components of the expression which are integer (for
example, integer variables), are automatically converted to real before any arithmetic is
performed. This conversion takes place entirely within temporary values in the compiler;
the integer values themselves are not changed. Whenever a constant is specified with no
decimal point, the compiler assumes that it is an integer value. Any constant designated
with a decimal point will be assumed to be real. Since the process of converting an integer
to arealis relatively slow, faster code will result with real operations when all real operands
are specified.

Expressions are defined in terms of parentheses. Whenever an expression in parentheses
is encountered, this is treated as a new expression, although it may be part of a larger
expression. This has significance when expressions are being evaluated which will be
assigned to integer arguments. When the compiler encounters a new expression (one with
parenthesis), it attempts to evaluate that expression in the mode of the variable to which it
will be assigned. In the case of a real operator this is not important, since all values are
converted to real before any operation takes place. With integer variables, however, if any
component of an expression is real, the rest of that expression will be converted to real
before the operation takes place. A few examples will make this clear.

100 INTEGER A
110 A=(1/2)*2

In this case, the expression will evaluate to the value zero. All operations specified are
integer. Integer operations take place by truncating the result, so 1 divided by 2 evaluates
to 0.

100 INTEGER A
110 A=(1.0/2)*2

This expression also evaluates to zero, but for a different reason. The inner 1.0/2
evaluates to .5, but after the value is calculated, the compiler attempts to convert this back
to integer to be in the proper mode for variable A. The integer version of 0.5 is 0.

100 REAL A
110 A=(1.0/2)*2.0

3-8

In this case, the expression will evaluate to 1. Each of the operations is real, so all
operations take place in real mode.

100 INTEGER MOTOR ' DAC value to send to motor controller
110 REAL SPEED ' Speed setpoint for motor

120 SPEED=750.0 ' Set to 750 RPM

130 MOTOR=(SPEED/100.0)*1023/10 ' Convert RPM to DAC value

140 DAC 1,MOTOR

This example illustrates the problem that can occur with real/integer conversions in
expressions. In the example, it is assumed that DAC channel 1 is attached to a motor
controller which accepts a 0 to 10 VDC input; each 1 VDC corresponds to 100 RPM (ie 3.4
VDC is 340 RPM). Line 130 converts the speed, given in RPMs, to the DAC value
necessary to set the motor controller speed. Since the DAC statement works with integer
values, it seems reasonable that MOTOR should be an integer. SPEED is a real, so we
want the calculation to be handled using real numbers (result=767.25); the result should be
truncated and stored in MOTOR (767). Unfortunately, when Bear BASIC evaluates the
parenthesis, it converts the result at that point (7.50) to an integer (7), and then evaluates
the rest of the expression in integer mode. The integer multiplication of 71023 causes a
final result of 716. This is a relatively small error, but if the numbers that were being
multiplied resulted in a value greater than 32767, then the integer overflow would cause the
actual result to be quite far off.

By changing MOTOR to a real, the calculation in line 130 is performed as intended,
providing a result of 767.25 to be stored in MOTOR. When the DAC statement is executed
in line 140, MOTOR is truncated to 767, which is the expected result.

If MOTOR is left as an integer, and the parenthesis in line 130 are removed, then the
correct result is also obtained. In this case, the entire calculation is performed in real
mode, and then the result (767.25) is truncated and stored in MOTOR.

3.7 Statements

Statements describe the actions to be taken by the Bear BASIC program. Multiple
statements can be placed in a line, separated by colons (":'). Statements can be grouped
into seven categories: program flow, data storage, memory access, I/O, function definition,
multitasking, and miscellaneous.

3.7.1 Program Flow Statements

Bear BASIC normally executes statements in linear order, as they are stored in the
program. The following statements modify the program flow to allow code to be executed
multiple times, to allow code to be shared, and to allow the program to make decisions.

CALL laddr [,arg...] call an assembly language subroutine
CHAIN filenum or "fname" load and run another program from EPROM
CHAIN "fname" load and run another program from EPROM

3-9

FOR num=expr TO expr [STEP expr] beginning of a program loop; see NEXT

GOSUB linenum call a subroutine; see RETURN
GOTO linenum jump to a line number

IF expr THEN conditional execution of rest of line
NEXT end of a program loop; see FOR
ON ERROR linenum GOTO linenum if an error occurs

ON expr, GOSUB linenum [,linenum...] call subroutine based on value of expr
ON expr, GOTO linenum [,linenum...] jump to linenum based on value of expr

RETURN continue at line following GOSUB
STOP halt execution of program
SYSTEM laddr,regarray call an assembly language subroutine

3.7.2 Data Storage Statements

These statements are used to declare the variables that are used in the program, and to
embed data values in the program.

DATA arg [,arg...] store data for READ to access

INTEGER varname [,varname...] declare signed integer variables

READ arg [,arg...] read values from DATA statements

REAL varname [,varname...] declare floating-point variables

RESTORE reset READ pointer to first DATA statement
STRING varname [,varname...] declare text string variables

3.7.3 Memory Access Statements

These statements allow the programmer to directly access the Boss Bear memory.

CODE int [,int...] store assembly language code in program
DEFMAP int set memory map for POKE, PEEK, etc.
EEPOKE ee_addr,int store a word in EEPROM

POKE laddr,byte store byte at laddr

WPOKE laddr,int store integer value at laddr

3.7.4 Input/Output Statements

Control applications depend upon input and output with the real world, and the Boss Bear
supports a wide variety of I/O devices, so this is the largest group of Bear BASIC
statements.

BBOUT chan,bin_val send a data bit to an attached Bear Bones
CLS erase the current FILE display device
CNTRMODE chan,int set operating mode for counter

DAC chan,int set D/A output level

DOUT chan,bin_val control digital output channel

ERASE erase the current FILE display device
FILE int set current file 1/0 device

FINPUT fmt_str,arg formatted INPUT from current FILE
FPRINT fmt_str,arg [,arg...] formatted PRINT to current FILE

3-10

GETDATE month,day,year,wday
GETIME hour,minute,second
GOTOXY xpos,ypos

INPUT arg [,arg...]

INPUT$ arg [,arg...]

INTERRUPT device,chan,task
LOCATE row,col

NETMSG

NETWORK 0,unit,int,int,int,st
NETWORK 1,type,reg,int,unit,reg,st
NETWORK 2,type,reg,int,unit,reg,st
NETWORK 3,type,reg,expr,st
NETWORK 4,type,reg,varname,st
OUT port,byte

PRINT arg [,arg...]

RDCNTR chan,int,varname
SETDATE month,day,year,wday
SETIME hour,minute,second
WRCNTR chan,int,expr

get current date from real time clock

get current time from real time clock

set cursor position for current FILE device
wait for user input from current FILE
allow commas in user input

attach a task to a hardware interrupt source
set cursor position for current FILE device
send/receive network messages

initialize Boss Bear network handler

send registers to another Boss Bear

read registers from another Boss Bear
set the value of a network register

read the value of a network register

send byte to hardware output port

send output to current FILE device

read counter value into varname

set current date of real time clock

set current time of real time clock

write to counter register(s)

3.7.5 Function Definition Statements

Bear BASIC allows the programmer to extend the language by adding functions. See

section 3.9 for a complete description.

DEF funcname [,arg...]
FNEND

3.7.6 Multitasking Statements

mark beginning of a user defined function
mark end of a user defined function

These statements support the multitasking ability of Bear BASIC, allowing the programmer
to control which tasks are running and how often they are running.

CANCEL task

EXIT

JVECTOR laddr,task
PRIORITY int

RUN task [,int]
TASK task

VECTOR laddr,task
WAIT int

3.7.7 Miscellaneous Statements

DEBUG
INTOFF
INTON
RANDOMIZE

halt the rescheduling of a task

abort execution of current task

store a jump instr. for an interrupt vector
set priority of current task

begin task execution; set resched. interval
mark the beginning of a task area

store task number to an interrupt vector
suspend task execution for int tics

halt compile process to display variables
disable all interrupt processing

enable all interrupt processing

re-seed the random number generator

3-11

REM [string] comment text
TRACEON enable line number trace on current FILE
TRACEOFF disable line number trace on current FILE

3.8 Functions

A function is called by referencing it in an expression. A function returns an integer, real, or
string result. Functions can be grouped into five categories: math, string, memory access,
I/0O, and miscellaneous.

3.8.1 Math Functions

These include trigopnometric, logarithmic, and bitwise logical functions.

ACQOS (expr)
ASIN (expr)
ATAN (expr)
BAND (expr,expr)
BOR (expr,expr)
BXOR (expr,expr)
COS (expr)

EXP (expr)

LOG (expr)
LOG10 (expr)
RND

SIN (expr)

SQR (expr)

TAN (expr)

3.8.2 String Functions

arccosine of expr

arcsine of expr

arctangent of expr

bitwise logical AND of expr's
bitwise logical OR of expr's

bitwise logical XOR of expr's
cosine of expr

exponential function e**expr
natural logarithm (base e) of expr
common logarithm (base 10) of expr
generate a pseudo-random number
sine of expr

square root of expr

tangent of expr

These are used to work with strings and convert between strings and numbers.

ASC (strexpr)
CHRS$ (expr)

CONCAT$ (strexpr, strexpr)

CVI (strexpr)
CVS (strexpr)
LEN (strexpr)

MID$ (strexpr,expr,expr)

MKI$ (expr)
MKS$ (expr)
STRS$ (expr)
VAL (strexpr)

3-12

ASCII equivalent of first char. in strexpr
one char. equivalent of expr
appends second string after first
converts binary string to integer
converts binary string to real

length of strexpr

substring of strexpr

converts an integer to a binary string
converts a real to a binary string
converts a number to a string
converts a string to a number

3.8.3 Memory Access Functions

These functions allow the programmer to directly access the Boss Bear memory.

ADR (varname) address of specified variable
EEPEEK (ee_addr) read a word from EEPROM
PEEK (laddr) read a byte from laddr

WPEEK (laddr) read an integer value from laddr

3.8.4 Input/Output Functions

Each of these functions returns a value read from an input device.

ADC (chan) A/D value for chan

BBIN (chan) read a data bit from an attached Bear Bones
DIN (chan) read digital input channel; 0 or 1

GET waits for one byte from current FILE

INP (port) reads a hardware output port

KEY reads one byte from FILE, doesn't wait

3.8.5 Miscellaneous Functions

ERR last error number generated

3.9 User Defined Functions

Bear BASIC supports multi-line user defined functions. A function definition may be any
number of lines long. All functions must be defined as follows:

100 DEF function_name [arguments]
110 function_definition
120 FNEND

DEF indicates the start of a definition. FNEND indicates the end of a definition. The
function name can be up to seven characters, following the rules for variable names. The
function name must be declared in an INTEGER, REAL, or STRING statement. The
function can have arguments, which are part of the DEF statement, but are not part of the
INTEGER, REAL, or STRING statement where the function is declared. The arguments
are true variables and must be declared. When the function is called, the parameters
passed to the function will be copied to these variables so they should have unique names.

The following rules apply to user defined functions:
« Functions must be defined BEFORE they are used. It's a good idea to put all

function definitions near the beginning of your program, after the variable definitions.
If a function is referenced before it is declared, a FUNCTION ERROR will result.

3-13

A maximum of 64 functions can be declared in one program.

Function definitions cannot be nested. A FUNCTION ERROR will result if a DEF
statement is found inside of a function definition.

Function names must be unique. Do not use other variable names or names of
Bear BASIC statements or functions (even a function name very close to a Bear
BASIC reserved word may not be acceptable).

Arrays cannot be used as arguments to functions. Only simple strings, reals, or
integers are legal.

Do not attempt to perform console inputs or outputs inside of a function if it will be
used in a multitasking program. Your program may hang up since Bear Basic
blocks console access during some multitasking operations.

Functions are not recursive. A function cannot call itself, either directly or indirectly.

The result of a function can be assigned to the function name. To do this, in the function
definition use an assignment statement to place the desired value in the function's name
(ie. reference the function name like it was a variable name). In the assignment statement,
do not specify the function's arguments on the left hand side of the "=" sign. For example,
the following function returns the value 1:

100
110
120
130
140

| NTEGER FN1

DEF FN1

FN1=1

FNEND

PRI NT FN1 ' The value 1 will be printed.

The following function returns the sum of its arguments:

100
110
120
130
140

| NTEGER FN1, A, B, C

DEF FN1(A, B, O

FN1=A+B+C

FNEND

PRI NT FN1(1, 2, 3) ' The value 6 will be printed.

Note that in line 120 the function is referred to without its arguments.

Here's another example. This function returns the left N characters of a string:

100
110
120
130
140
150

STRING LEFT$(127), A$(127)

I NTEGER N

DEF LEFT$(AS$, N)

LEFT$=M D$(A$, 1, N)

FNEND

PRI NT LEFT$(" ABCDEF", 3) * This prints "ABC'

One function can reference another. For example:

100
110
120
130

| NTEGER FNA, FNB

DEF FNB : FNB=1 : FNEND

DEF FNA : FNA=FNB : FNEND

PRI NT FNA " This prints "1"

If functions that are using strings call each other, the STRING SPACE EXCEEDED error can
result if too many functions have partial string results stored in internal temporary storage.

3-14

If the message appears, you've called too many functions that need intermediate string
storage. Simplify your code somewhat.

3-15

3-16

Chapter 4
Writing Control Applications in BASIC

4.1 Programming for Real Time Control Systems
4.2 Project Specification
4.3 Real Time Programming Example

4-1

This chapter is an introductory tutorial on using the Boss Bear for real time control
applications. An example is provided to help clarify the programming and operation of the
Boss Bear in a real application; it is a moderately complex control system that uses
multitasking and the Bear Direct network interface. The program makes use of features
which are described later in this manual, so the reader is advised to make use of the index
when topics come up which haven't been covered previously.

4.1 Programming for Real Time Control Systems

The term 'real time control' implies that certain operations must be performed at particular
times. This differs from the general application program, which is not timing dependent.
For example, it doesn't matter too much whether a spreadsheet takes 1 second or 10
seconds to recalculate; on the other hand, it matters very much whether a motor controller
ramps the motor speed down in 1 second or 10 seconds. Real time events fall into three
categories: events that must happen before a specified time, events that must happen at a
specified time, and events that must happen after a specified time. Real time control often
involves managing multiple processes concurrently; in other words, several things may be
happening at the same time.

4.1.1 The Primary Rule of Real Time Programming

At its simplest, real time programming can be reduced to one rule: the program cannot
disregard any of the processes for too long. At any time that the program is waiting for an
event to occur in one process, it must still be handling the other processes. The following
example implements a system with two switches and two counters, with a counter being
incremented when the corresponding switch is closed. This example breaks the rule by
waiting for a switch to open, without continuing to check the other switch.

100 INTEGER C1, C2 ' Counter variables

105 C1=0: C2=0 " Initialize the counters to 0

110 IF DIN(1)=0 THEN 140 ' Continue if switch 1 not pressed

120 C1=C1+1 ' Switch 1 pressed, increment counter
125 PRINT "C1="; C1

130 IF DIN(1)=1 THEN 130 ' Wait for switch 1 to be released

140 IF DIN(2)=0 THEN 170 ' Continue if switch 2 not pressed

150 C2=C2+1 ' Switch 2 pressed, increment counter
155 PRINT "C2="; C2

160 IF DIN(2)=1 THEN 160 ' Wait for switch 2 to be released

170 GOTO 110 ' Loop forever

This program almost works correctly. When no switch is closed, the program will loop from
line 110 to line 140 to line 170 and back to line 110. If switch 1 is closed, then it will
increment C1 and print the new C1 value in lines 120 and 125. It will then sit in a loop in
line 130 until switch 1 is opened; when this happens, it will resume looping from 110 to 140
to 170, looking for a switch closure. Switch 2 and C2 are handled in the same manner.
The problem occurs when it is waiting for a switch to be opened (lines 130 and 160). Ifitis
looping in line 130, for instance, switch 2 could close and open while switch 1 remains
closed, and the program would not detect the switch 2 closure. The following example
handles this problem and counts

4-2

the two switches correctly.

100 I NTEGER C(1) ' Counters

110 I NTEGER S(1) ' Switch states

120 | NTEGER J, K

130 C(0)=0: C(1)=0 " Initialize the counters to O
140 FOR J=0 TO 1 ' Loop for both switches

150 GOsUB 300 ' Check for switch closure

160 | F K=0 THEN 190 " Junp if no closure

170 C(J)=C(J)+1 " Increnent counter

180 PRINT "C'; J;" ="; CJ) " Print counter

190 NEXT J

200 @OTO 140 ' Loop forever

210

300 ' Subroutine to check for switch 'J' closure. |If the switch was previously
310 ' open and is closed now, then return a 1; otherwise, return a O.

320 K=DI N(J+1)

330 |F K=1 AND S(J)=0 THEN S(J)=K: RETURN
340 |F K=0 AND S(J)=1 THEN S(J)=K

350 K=0: RETURN

This program is designed much better than the previous one; it is easily modified to handle
more switches, by changing the size of the arrays 'C' and 'S' and the loop size in line 140.
It constantly checks the state of both switches, incrementing the count when it detects that
a switch has closed. Since it continues checking the state of both switches at all times, it
won't miss a switch closure. The PRINT statement in line 180 will take about 5
milliseconds to complete (5 characters at 9600 baud). This means that it could miss a
switch closure that lasts less than 5 msec; normally, a switch closure this short would be
interpreted as a glitch, anyway, but it is still worth noting. In real time programming, any
time delay must be examined to see how it affects the operation of the system.

The first program could be made to work correctly by using the multitasking feature of Bear
BASIC. Inthe second example, extra code was written to allow the processor to perform
two functions at once; actually it switched between them quickly to give the appearance of
concurrent operation. This is precisely what the Bear BASIC context switcher does, so the
program could be simpler if it took advantage of the context switcher. Two tasks would be
written, with each one devoted to monitoring a switch. The following example
demonstrates this technique; note that the two tasks are very similar to the two loops from
the first example. Because each task gets 50 percent of the processor time, by executing
every other tick, a switch state that is shorter than 10 msec (one tick) may be missed. For
example, if the program is executing in line 210, and switch 2 toggles low and then high
again 5 msec later, then when task 2 executes it will see input 2 high as if nothing had
happened.

100 |INTEGER C1, 2 ' Counter variables

110 C1=0: C2=0 " Initialize the counters to O

120 RUN 1

200 ' Handle first switch

210 IF DIN(1)=0 THEN 210 " Wait for switch 1 to be pressed
220 C1=C1+1 ' Switch 1 pressed, increnent counter
230 PRINT "C1 ="; C

240 |1F DIN(1)=1 THEN 240 ' Wit for switch 1 to be rel eased
250 @Or0 210 ' Loop forever

300 ' Handl e second switch

305 TASK 1

310 IF DIN(2)=0 THEN 310 " Wit for switch 2 to be pressed
320 C2=C2+1 ' Switch 2 pressed, increnent counter
330 PRINT "C2 ="; Q2

340 |IF DIN(2)=1 THEN 340 " Wit for switch 2 to be rel eased

4-3

350 @GOTO 310 ' Loop forever
4.1.2 Managing Timing in a Control System

Obviously, one of the most important functions of a real time program is to ensure that
control operations happen at the proper time. Bear BASIC provides three methods for
handling real time scheduling of operations: the real time clock, the WAIT statement, and
the hardware timer. Each of these covers different areas of real time scheduling.

With a resolution of one second, the real time clock is only useful for handling relatively
long time periods. This makes it ideal for keeping track of down-time, run-time, shift totals,
daily totals, and other long term production statistics. Care must be used when
programming with a real time clock, because of the possibility of wrap-around at the end of
the minute, end of the hour, and end of the day. Also, the programmer must be aware of
the size of numbers that result when working with time of day values; for example, there
are 86400 seconds in a day, which means that an integer won't hold an entire day in
seconds. The following example shows how to handle the real time clock for long time
periods:

100 ' Exanple to denpbnstrate using the real tinme clock to neasure
102 ' long tinme intervals.

110 I NTEGER HA, MA, SA
120 INTEGER J, K, FLAGL, END1

130 FLAGL=0

190 ' When input 1 turns on, turn on output 1. Wen input 1 turns off,
192 ' wait for 140 seconds, then turn off output 1

200 J=DI N(1)

210 |IF J=0 AND FLAGL=0 THEN 200 " Input off, keep waiting

220 |IF J=1 AND FLAGL=1 THEN 200 " Input on, keep waiting

230 | F J=0 THEN 300 " Junp if input just turned off

240 ' Input just turned on, so turn on output

250 DOUT 1,1

260 FLAGL=1

270 GOTO 200

300 ' Input just turned off, so wait for 140 seconds, then turn off output 1
310 GETIME HA, MA, SA ' Get current time

320 END1=MA*60+SA+140 ' Calculate end time (cur.tine+140)
330 | F END1>3599 THEN END1=ENDL1- 3600 " Convert to 0-3599 range

340 CETIME HA, MA, SA

350 | F MA*60+SA <> END1 THEN 340 ' Wait for 140 seconds to pass

360 DOUT 1,0

370 FLAGL=0

380 GOrO 200

In order to execute a 140 second delay, the program reads the real time clock in line 310.
It converts the minutes (0-59) and seconds (0-59) to just seconds (0-3599), and adds in the
140 second delay time. This could resultin a number larger than 3599, so it checks for this
in line 330, wrapping the result around if it is larger than 3599. The program then loops in
lines 340 and 350, waiting for the 140 seconds to pass.

With a resolution of approximately 10 msec, the WAIT statement is suitable for medium
time intervals, on the order of 20 msec to 300 seconds. In a multitasking program, it can be

4-4

difficult to predict exactly what time delay a particular WAIT statement will generate, since it
depends upon what the other tasks are doing at the time, as well as the relative priorities of
all of the tasks.

For critical timing functions, the Boss Bear relies on the hardware timer (the Z180's internal
timer 1), which has a resolution of a few microseconds. Because of the way Bear BASIC
works internally, the fastest time interval that can be reliably handled is 1 millisecond. The
timer can be read periodically by the BASIC program to perform its timing functions, or a
timer interrupt handler can be set up. Note that the timer is a 16 bit integer number that
rolls over approximately 5 times per second. The following example shows how the WAIT
statement timing can vary, and how to read the timer to measure small time intervals:

105 |INTEGER X, RL, RLL, RLH
110 I NTEGER TI MER
120 I NTEGER T2, T3

200 @GOSUB 1000 ' Start the tiner running

210 RUN 2

220 RUN 3,1

230 T2 =0

300 TIMER =0 ' Reset the tiner value

310 WAIT 50 ' Wait for 50/100 second

320 PRI NT TI MER ' Display length of WAIT in nsec
330 GOrO 300

1000 VECTOR $E6, 1 ' Set up timer vector to task 1
1020 RL=6144000.0 / 20.0 / 1000.0 ' 1000 ints/sec reload val ue
1030 RLH=RL / $100: RLL=BAND(RL, $FF)

1040 QUT $14, RLL: QUT $15, RLH "Init timer value

1050 QUT $16, RLL: OUT $17, RLH " Init reload val ue

1060 OUT $10, BOR(| NP($10), $22) ' Enable tinmer 1

1070 RETURN

1100 ' Timer interrupt task. Called 1000 tines per second by hardware
1102 ' tiner 1.

1105 TASK 1

1110 X=I NP($10): X=I NP($14) ' Reset the timer 1 interrupt flag
1120 TI MER=TIMER + 1 " Increnent global tinmer val ue

1130 EXIT " End of timer interrupt task

2000 TASK 2

2010 T2 = T2 + 1

2020 IF T2 = 10000 THEN PRIORITY 1 " Bunp to higher priority for a while

2030 IF T2 = 20000 THEN T2=0: PRIORITY O ' Back to original priority
2040 GOTO 2010

2100 TASK 3

2110 FOR T3 = 1 TO 8000 ' Delay for a while, then exit
2120 NEXT T3

2130 EXIT

This program sets up a timer interrupt task to execute 1000 times per second. Timer 1 and
the interrupt are initialized in lines 1000 to 1070. Task 1 is the timer interrupt task; it simply
resets the timer hardware's interrupt flag and then increments the TIMER variable. Lines
300 to 330 perform a 50 tick (500 msec) WAIT, then print the actual number of milliseconds
that the WAIT took to complete. Task 2 just increments a variable, and periodically sets its
priority to a higher value, causing task 0 and task 3 to be suspended until task 2 resets its
priority. Task 3 executes a short loop (to waste some time) and then exits, to be restarted

45

after 1 tick. When task 2 sets itself to a higher priority, the task 0 WAIT statement will take
much longer than 50 ticks (about 300 ticks), because task 0 can't be run, even though it is
ready to run after the 50 tick waiting period. Periodically, task 3 will be ready to run when
the task 0 WAIT statement completes; task 3 will run before task 0 gets to run, causing an
extra tick to pass before task 0 executes. The following output was produced when this
program was run; it shows both of these effects:

502
495
506
495
505
496
495
505
496
505
2942
495
505
495
496
505
496
506

4.2 Project Specification

The project specification is an extremely important element of the control system design. A
complete, well thought out specification will increase the reliability of the system, and can
dramatically decrease the implementation time for the system. The ideal specification
would completely describe all components of the system in enough detail to allow an
independent party to construct the system; this should be the goal of the specification
writer. In reality, of course, this is not possible; questions will always arise during the
project implementation that had not been previously considered.

The exact contents of the specification depend on the project, but in general the following
elements should be included:

General description of application. Ideally, this will be detailed enough that
someone who is not familiar with the application will be able to understand it.

Input/Output requirements. List the inputs and outputs required to support the
application, including parameters such as voltage, current, pulse rate, temperature,
etc.

Screen and report formats. List the layout of any display screens or printed
reports. This should be done on grid paper to ensure that the text will fit in the
available space.

Timing requirements. List any timing requirements, including both timing required
for hardware reasons and timing desired by the user. For a machine control
application, this could include machine cycle time, setup time, motor speed,

4-6

minimum speed ramp time, sample rate for a control parameter, etc. For an
application that uses a personal computer, this could include file access times,
network poll rate, screen update speed, etc. Remember that minimum and
maximum times can both be important.

Mechanical requirements. List any special mounting or size requirements. This
may also include mechanical information about the machinery that will be interfaced
to.

Environmental requirements. List the operating and storage environment for the
system. This includes temperature, humidity, radiation, etc.

Hardware requirements. This is a list of hardware items to be used or interfaced
with. Include a note as to the reason for the requirement (ie. because it is a
standard part already in inventory, or because it is the only part that meets a
particular specification). Include exact part numbers, if possible.

Software requirements. This is a list of software packages to be used or
interfaced with. Include a note as to the reason for the requirement. Note any
special hardware that may be required by this software (ie. math coprocessor,
modem).

Initial system testing. List the items that should be tested "in the lab", including
the verification procedure for each item.

Final system testing. List the items that should be tested "in the field", including
the verification procedure for each item.

4.3 Real Time Programming Example

Many aspects of software design only come to light in larger programs. This section
demonstrates the use of Bear BASIC by implementing a realistic example program. The
goal is to develop a program that will perform a typical industrial control operation. Portions
of this program will be useful in the user's own programs. The example goes through the
project specification, program development, and system testing phases.

This example is based on a hypothetical rewind machine in which the product is drawn off
of an input roll and rewound onto shorter output rolls. The output rolls are wound onto
cores which feed in from a hopper. The product wraps onto the core as the machine speed
ramps up. The machine runs at operating speed until it nears the end of the output roll,
then the speed is ramped down. When the machine stops, a knife cuts the product and a
gate opens, allowing the output roll to fall onto a conveyor belt to be taken away. Several
pieces of production data must be maintained by the Boss Bear, in order to be uploaded to
a personal computer at the end of each shift. The operator will enter operating parameters
into the Boss Bear using the keypad; the display will indicate the current status of the
rewind operation.

4-7

4.3.1 Example Project Specification

The following specification shows the level of detail that should be the goal of the system
designer. In practice, much of this information is often only expressed verbally, which may
be acceptable if the project is small or if everyone involved has experience with the
application. In a larger project, or if some parties are unfamiliar with the application, then a
detailed specification will help to prevent misunderstandings. Typically, a specification such
as the following example would be arrived at through discussions between the client and
the programmer. The example is printed in courier 12cpi to distinguish it from the rest of the
text.

Ceneral description of application.

A control systemis needed for a new rew nd nachi ne which i s being constructed.
The machine pulls the product off of an input roll. The input roll wll be
approxi mately 3000 yards long and 2.5 feet in diameter. Each product nunber has
a preset length, between 10 and 30 yards, associated with it; this length of
product will be wound onto each output roll. The Boss Bear is attached to the
main drive notor; it ranps the speed up, winds at a preset speed, and ranps the
speed down. A shaft encoder (quadrature, with A B, and MARK outputs) wll be
used to neasure the main drive notion. The ranp down nust be cal cul ated so that
the main drive stops within 0.25 inches of the selected | ength. Wen the main
drive is stopped, the Boss Bear will cause a knife to cut the product and then
retract. A gate is then opened to allow the output roll to drop onto a conveyor
to be taken away; two optical sensors are positioned to detect that the roll
drops. The gate is closed, then another gate is opened to allow a new core to
drop into position froma hopper above the machine. The operator attaches the
product tail to the core then presses the RUN pushbutton to start the rew nd
operation again.

If an error is detected, then the nachine will be stopped and an error nessage
will be displayed on the Boss Bear; the operator wll correct the error
condition, insert a new core, and press the RUN pushbutton to start a newroll.

The user interface will consist of the Boss Bear keypad and display, the RUN
pushbutton, and the emergency stop switch (ESTOP). The operator enters the
product nunber, batch number, input roll |ength, operator nunber, and downtine
code fromthe keypad. The display will show the remaining product on the input
roll and the nunber of output rolls produced. Wen the input roll is renoved,
the Boss Bear will display the nunber of yards left (if any) on the input roll;
the operator will wite this on atag to go onthe roll. |If it takes longer than
60 seconds after a roll is produced for the operator to press the RUN button,
then the Boss Bear will accumul ate downtime (in seconds); the operator must enter
a downtine code before the nachine can be run again. One of the downti ne codes
is "maintenance"; if this is entered, then the machine can be run, but no
production data will be collected.

Production data is collected and transferred over the Bear Direct network
periodically to a personal conmputer (PC). Each tine that the operator enters a
new product nunber or batch nunber, the totals for the previous product/batch are
sent to the PC. At the end of the shift, the shift totals are collected by the
PC.

The table of product lengths will be stored as part of the Boss Bear program
since no new products will be added in the foreseeable future.

| nput / Qut put requirenents.
Hardware |/ O points:

« Shaft encoder. This is a 600 pul se/rev biphase optical shaft encoder.
The nechanical coupling with the machi ne produces 50 pul ses per inch of
material. It is connected to the Boss Bear's onboard counter.

e Motor control. Thisis a -10 to 10 VDC anal og signal to control the nain

drive speed; -10 VDC corresponds to 0 RPM and 10 VDC corresponds to

4-8

User

approxinately 10 feet/second. This is connected to a DAC nodul e on the
Boss Bear.

Knife output. This is a discrete output that causes the knife to cut the
material when the output turns on. This output should stay on for
approxi nately 200 nsec.

Optical sensor input. This is a discrete input that is connected to two

optical sensors (with open collector outputs), that show when a roll is in
pl ace in the machi ne.
Conveyor gate output. This is a discrete output that causes the |ower

gate to open, allowing the output roll to fall onto the conveyor. This
out put should stay on for approxinately 200 nmsec after both optical
sensors show that the roll has noved.

Core hopper gate output. This is a discrete output that causes the upper

gate to open, allowing the core to fall into place. This output can turn
of f as soon as both optical sensors show that the core is in place.
RUN pushbutton input. This is a discrete input attached to a nmonentary

pushbutton nounted near the operator's position

Emer gency stop pushbutton input. This is a discrete input attached to a
push-pull switch near the operator's position. QO her poles of the
emergency stop switch are connected to hardware failsafe systens; this
i nput just infornms the Boss Bear that the system has been stopped.

nput val ues:

Product nunber. This is an integer number (0..9999) which the operator
enters at the start of a product run

Qperator nunber. This is an integer number (0..999) which the operator
enters at the start of the shift.

Input roll length. This is an integer nunber (0..9999) which the operator
enters when a new input roll is nmounted on the nachine. It is the length
of the input roll in yards.

Batch nunber. This is an integer nunber (0..999999) which the operator
enters at the start of a new batch.

Downtine code. This is a nunber entered by the operator when the nachi ne
is stopped for nmore than 60 seconds. The operator will be pronpted for
the followi ng downti ne codes: Mintenance, break tine, input roll |oading,
and nmachi ne jam

Di spl ay out put val ues:

Qutput roll count for product. This is an integer nunber (0..99999) which
shows the number of output rolls produced for this product so far in this
shift.

Qutput roll count for batch. This is an integer nunber (0..99999) which
shows the nunmber of output rolls produced for this batch so far in this
shift.

Nunber of yards left on the input roll. This is an integer nunber
(0..9999) which shows the nunber of yards left on the input roll. This is
cal cul ated by subtracting the nunber of yards run through the machi ne from
the input roll length; if the result is less than 0, then 0 should be
di spl ayed.

Net wor k transfer val ues:

Current product nunber.

Current batch nunber.

Current operator nunber.

Total downtine thus far in shift.

For each product conpleted, the product nunber, total nunber of rolls, and
total yards are sent to the PC

For each batch conpleted, the batch nunber, total nunber of rolls, and
total yards are sent to the PC

The shift totals for number of rolls, nunber of yards, and downtime (per
category) are retrieved by the PC at the end of each shift. The operator
nunber for the conpleted shift is also retrieved by the PC at the end of
the shift.

Screen and report formats.
The display formats are not critical. The normal operating display will be
simlar to this:

Product # XXXX Bat ch # XXXXXX

4-9

Prod: XXXXX Batch: XXXXX Yds left: XXXX
The format of any other displays may be chosen by the programer.

Ti m ng requirenents.

The throughput of the machine should be maintained at the highest practical
val ue. The operator should be able to enter the maxi mum run speed from the
keypad. Qher than these requirenents and any previous constraints, there are no
critical timng requirenents.

Mechani cal requirenents.

The Boss Bear, its power supply, and any auxiliary equi pnent (excludi ng sensors)
will be nounted in a NEMA 4 encl osure, approximately 12 inches wide by 16 inches
high by 6 inches deep. Al wiring will enter the enclosure through 0.75 inch
hol es punched in the bottomsurface. Al field wiring will termnate at screw
type termnal strips.

Envi ronnental requirenents.
The machine will be located in a normal factory environment.

Har dwar e requirenents.

The optical shaft encoder and notor drive controller are being supplied by the
custoner; specifications are enclosed separately for these itens. 120VAC will be
brought into the enclosure; the Boss Bear and all 1/0O devices will be powered
fromthe 120VAC source. Proper steps should be taken to ensure noise i munity
and el ectrical isolation.

Sof tware requirenents.
The data should be stored on the PCin a Lotus 123 conpatible file format, to
facilitate post-processing of the data.

Initial systemtesting.
As much testing as is feasible will be perforned prior to nmounting the systemon

the actual machine. A shaft encoder will be provided for initial testing. The
notor drive will not be available for initial testing.

Fi nal systemtesting.

A machine will be made avail able for approximately two worki ng weeks for system
testing. An electrician and naintenance technician will be available during this
time. The machine will undergo a five day acceptance period, during which it
wi Il be run under nornmal production conditions.

Often, during the engineering implementation, the specification must be changed in
response to problems, new information, parameter changes, personal whims, etc. The
actual printed specification should be updated and distributed to all interested parties when
changes occur. This will help to avoid nasty surprises on anyone's part. Unfortunately, itis
often not until a project has started to fall apart that the specification (or lack of one)
becomes important.

4.3.2 Initial Software Design

For an experienced programmer, most of the initial phase of the software design occurs
while reading the specification and while sitting in meetings. This is the part of the design
where the overall structure of the program is laid out and data structures are chosen. For
the less experienced programmer, it is often useful to consider this as an independent
phase. The natural inclination for most people is to jump in and start writing the program;
this often leads to programs which are confusing to read and hard to debug. As with the
specification, a little bit of thought up front can save hours of frustration later.

4-10

Many different techniques can be used to lay out the structure of a program, such as flow
charting, data flow diagrams, state descriptions, etc. Each of these has been the focus of
entire books, and so won't be discussed in detail here. Primarily, the structure of a program
depends upon two things: determining which actions must be performed sequentially (one
following another), and determining which actions must be performed concurrently (taking
place at about the same time). Drawing a state diagram will point up any concurrency
issues in a design. The example program can be divided into 8 main states of operation.
Some of these states could be broken down again into another level of state diagrams, but
for a simple program like this one, it won't be necessary. Here are the main states:

1.

Program initialization. Set up the program variables and system hardware prior to
performing any control functions. Unless problems are detected which prohibit the
system from being used, this goes to state 4.

Running a product roll. Using the specified product length, calculate the motor
ramping parameters. Ramp the motor speed up to the preset operating speed, run
until it reaches the ramp-down point, and ramp the motor speed down to a full stop.
Cut the product by enabling the Knife output for 200 msec. Drop the product onto
the conveyor belt. Drop a new core into position. This goes to state 3.

Update current production data. If not in maintenance mode, then update the
current production totals. Update the display with the current number of rolls
produced and the amount of material left on the input roll. This goes to state 4.
Operator data entry. Based on the function key that was pressed, prompt the
operator to enter a product number, operator number, input roll length, or batch
number. If a new product number or batch number is entered, then go to state 6.
This goes to state 2 when the RUN pushbutton is pressed. If no operation is
performed for 60 seconds, then this goes to state 5.

Downtime accumulation. Display the downtime codes. Accumulate downtime while
waiting for the operator to enter a downtime code. When a downtime code is
selected, this goes to state 4.

Transfer product/batch data over the network. When a new product or batch
number has been entered, then the appropriate data is transferred to the central
computer. This goes to state 4.

Transfer shift data over the network. When the central computer requests the shift
end totals, transfer the data to it. This can occur while in any of states 2, 3, 4, 5, 6,
or 8.

Emergency stop. Put all outputs into a safe state. Wait for the emergency stop
pushbutton to be released. This can occur while in any of states 2, 3, 4, 5, 6, or 7.

4-11

Figure 4 graphically shows the relationship between the states. Note that two of the states
("8 Emergency stop" and "7 Transfer shift data over the network") aren't shown connected
to any other states. These two states can be entered at any time, based on outside events

1
Program
Initialization

2

4
Operator Runninﬁl a
Product Roll

Data Entry

3
Update Current
Production Data

Downtime
Accumulation

Product/Batch Data
Over the Network

8 7
Emergency Transfer Shift Data

Stop

Over the Network

Figure 4 — State Diagram for Example Program

that occur asynchronously to the Boss Bear control program. In other words, they operate
concurrently with the rest of the program. This makes them likely candidates for being
implemented as individual tasks in the program.

It is important to plan the program's data structures before writing the program. The term
"data structure" refers to the way that the program's data is stored in variables. Data
structure choices can have a huge effect on the operation of a program, both in terms of
programming complexity and of runtime size and speed. Control applications generally

have relatively simple data structures, but it still makes the programming go more smoothly
if they are laid out before hand. A list of variables should be made to show the name of
each variable, its type (integer, real, or string), a description, and a valid range (ie. 0.0 to
9.99). Note that the way a value is stored is often not the way that it is entered or
displayed; for example, a number that may range from 0.0 to 99.9 may actually be stored
as an integer between 0 and 999, to save space. This list doesn't need to show the

4-12

temporary variables used within the program, such as loop counters, intermediate results,
etc. The following is a preliminary list of variables that will be needed for the example

program:
INLEN
PRDNUM
OPNUM
BATNUM

LENSETP

CURLEN

DNTIME()

TOTDNTM
RROLCNT
PROLCNT
PYARDS

BROLCNT
BYARDS

SROLCNT

SYARDS

Input roll length. A number in the range (0..9999); it is stored as an integer.
Product number. A number in the range (0..9999); it is stored as an integer.
Operator number. A number in the range (0..999); it is stored as an integer.
Batch number. A number in the range (0..999999); it is stored as a text
string.

Length setpoint for the current product, in shaft encoder pulses (1/50's of an
inch); over the 10 to 30 yard range of output roll length, this yields a number
in the range (18000..54000). It is stored as a real.

Length of current roll being run, in shaft encoder pulses (1/50's of an inch). A
number in the range (18000..54000). It is stored as an integer.

Array of current downtime totals. There are four downtime codes, for which
downtime is accumulated separately in seconds over a shift, which is a range
of (0..28800). This is an integer array.

Total downtime thus far in the shift, in seconds. A number in the range
(0..28800); it is stored as an integer.

Output roll count for current input roll. A number in the range (0..1000); it is
stored as a real.

Output roll count for product. A number in the range (0..99999); it is stored
as a real.

Output roll total yards for product. A number in the range (0..9999); it is
stored as a real.

Output roll count for batch. A number in the range (0..99999); it is stored as
a real.

Output roll total yards for batch. A number in the range (0..9999); it is stored
as a real.

Output roll count for shift. A number in the range (0..99999); it is stored as a
real.

Output roll total yards for shift. A number in the range (0.9999); it is stored as
a real.

4-13

4.3.3 Rewind Program Example

new
downl oad

100 REW ND. BAS - Denp program for Boss Bear rew nder contro

hkhkhkkhkhkhhkhkhhhkhhhhhhhhdhhhdhhhdhhhdhhhdhdhhdhhhhhdhhhdhhhdhhddhddhddrdhrrdrxdk

Net wor k regi ster usage:

10 current product nunber

1l current operator nunber

' SO current batch number

12 total downtinme thus far in shift

" 110 | ast product: new data available flag
111 | ast product: product nunber

' R10 | ast product: total nunber of rolls

' R11 | ast product: total yards

" 120 | ast batch: new data available flag
'Sl | ast batch: batch nunber

" R20 | ast batch: total number of rolls

' R21 | ast batch: total yards

" 130 shift end: end of shift flag

" 131 shift end: data available flag

" R30 shift end: total nunber of rolls

' R31 shift end: total yards

" 132 shift end: operator break downtinme tota
" 133 shift end: input roll downtinme tota

' 134 shift end: machine jam downtinme tota
" 135 shift end: maintenance downtinme tota

LR R I R R I R I I I R I I R I I I R I R R I R R S R

' Variabl e decl arations
i nteger inlen
real ydsleft

i nt eger prdnum

i nt eger opnum
string bat nunt(6)
real Insetp

i nteger curlen

i nteger dntine(3)

Input roll length. (0..9999)

Yards left on roll (0.0..9999.0)

Product number. (0..9999)

Qperator number. (0..999)

Bat ch number. (0..999999)

Length setpoint, 1/50's of an inch (18000..54000)
Length of current roll, 1/50's inch (18000..54000)
Current downtinme totals. (0..28800)

O = operator break tine
1 = change input rol

= machi ne jam
3 = nmachi ne nai nt enance

Total downtinme for shift

Qutput roll count for input roll (0..1000)
Qutput roll count for product.

Total yards for product.

Qutput roll count for batch

Total yards for batch.

Qutput roll count for shift.

Total yards for shift.

1if in maintenance node, otherwi se O

1if in emergency stop node, otherw se O

' 2
i nteger totdntm '
real rrolcnt '
real prolcnt '
real pyards '
real brolcnt '
real byards '
real srolcnt '
real syards '
i nt eger mai nt nd '
i nteger estopnd '
i nteger hour, nmin, sec, sttine
i nt eger dhour, dmn, dsec

' Control |oop variables

real curpos ' Counter value indicating position in rol
real spd

4-14

500

520

530
540

800

real accelrt
real decelrt
real nmaxspd
real decel pt
" I/Oredirection variables. These are constant values that hold the
channel nunber corresponding to each I/0O function. This nmakes it

easy to change the I/O layout, if necessary.

nt eger | RUNBUT ' Operator run pushbutton

nt eger | ESTOP ' Emergency Stop switch

nteger | OPTIC ' Optical sensor for core in position
nt eger OVDRV ' Main drive enable

nt eger OKNI FE Kni f e out put
nt eger OCONV Conveyor gate
nt eger OCORE Core hopper gate

Variabl es for user interface code.

nt eger flush ' User defined function name
nteger flshtem ' Tenp used by 'flush’

nt eger ch ' User interface tenp

nt eger tinmeout, delay ' User interface timeout variabl es
nteger K, uivlu, uilen

real uirvlu

string uifnt$(50), uifnt2$(50)

string uisvlu$

Tenporary scratchpad vari abl es.
integer tenp, a, b, c

i nt eger done

i nteger tiltnp

i nteger t2, t2st

i nteger st

real ftenp ' Real tenp
string tenpstr$(40) " String tenp

M scel | aneous i nteger tenps

LR R I O R I R R I R I I I I I O R I I R O I I R R

' DATA statements

data 1000, 18000.0 ' Product # 1000, 360.0 inches
data 1001, 36000.0 ' #1001, 720.0 inches

data 1002, 5400.0 ' #1002, 108.0

data 1003, 5450.0 ' #1003, 109.0

data -1 ' End of table flag

VT hhkhkhhhhhhhhhhhhdhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhhhdhhhdhhhkhhhrdhrrhrkhkrx*

Function definitions

Flush the keypad buffer and wait for a key to be pressed
Returns: key pressed
" Modifies: flshtem
def flush
wait 10
if din($100) <> 0 then goto 520
wait 20
if key <> 0 then goto 530
flshtem = din($100): if flshtem= 0 then 540
flush = fl shtem
f nend

VT hhkhkhhhhhhdhhhdhhhhhhhhhhhhkhhhkhhhhhhhhhhhdhhhdhhhdhhhdhhhkhhhrdhkrrhrkhrx*

Initialization

file 6 ' Use onboard displ ay

' Set tinmeout delay to 30 seconds for waiting on the users input
delay = 300

| RUNBUT = 1 " RUN button is on input 1

4-15

| ESTOP = 3 ' Enmergency Stop switch
|OPTIC = 2 ' Optical sensor
OVDRV = 7 ' Main drive enable is on output 7
OKNIFE = 1 ' Knife output
OCONV = 2 ' Conveyor gate output
OCORE = 3 ' Core hopper gate
maintnd = 0 " Not in mint. node to start with
for a=0to 3
dntine(a) =0
next a

if len(batnun$) > 6 then batnunt = "000000"
if prdnum< 0 or prdnum > 9999 then prdnum= 0

maxspd = 300.0

accelrt = 200.0

decelrt = 500.0

totdntm= 0

estopnd = 0 " Not in emerg. stop node to start with
cntrnode 1,1 ' Quadrature X1 node

dout 5,1: dout 6,1 ' Enabl e shaft encoder inputs

dout 0,1 ' Set counter reset/latch to reset

run 1,2 ' Start energency stop task

run 2,2 ' Start shift end task

a = eepeek(1) ' Get unit nunber

network 0, a, 50, 50,2, b " Initialize network with 50 integers,

50 reals, and 2 strings

LR R R R I I S S R R R I O I O

Mainline loop. This is where we sit while waiting for the

operator to press a key or hit the RUN pushbutton. If it sits

here for nmore than 60 seconds, then gosub 4000 to accunul ate
downt i ne.

getine hour, mn, sec

sttine = m n*60+sec Save start tine

gosub 8100 ' Display fixed part of main screen

1000

if ch $41 then gosub 1200: goto 1000
if ch = $42 then gosub 4300: goto 1000
if din (I RUNBUT) then gosub 2000: goto 1000

1020 ch = key

" Don't look for downtine if currently in nmmintenance node.
if maintnd then 1020

' Has it been 60 seconds? Don't forget to handl e hour w ap-around.
getine a,b,c

a=b* 60 +c

if a-sttinme < 0 then sttine = sttime-3600

if a-sttime > 60 then gosub 4000: goto 1000

goto 1020

1200 VT hhkhkhhhhhhhhhdhhhhhhrhhhhhhhhhhhhhhhhhdhhhdhhhdhhhdhhhdhhhkhhhrdhkrrkhrkkxrx*

' Qperator Data Entry
erase

uifm$ = "Batch Nunber > ": uisvliu$ = batnun®h: uilen = 6
gosub 8600: if K= 0 then 1250

St ore batch nunber

Store batch roll count
Store batch yards

Set "data avail able" flag

network 3, 2,1, bat nun®, a
network 3,1, 20, brolcnt,a
network 3,1, 21, byards, a
network 3,0,20,1,a

4-16

1250

1300

1370

1400

1450

1490

2000

2050

bat nun$ = ui svl u$

brolcnt = 0.0 ' Clear batch roll count

byards = 0.0 ' Clear batch yards count

net work 3, 2, 0, bat nunt, st ' Store batch nunber in network var.
uifm2 = "1 4"

uifm$ = "Product Nunmber (0-9999) > ": uivlu = prdnum
gosub 8300: if K = 0 then 1400

' The operator typed a product nunber in, so we need to see if it
isinthe list.

restore

read a

if a = uivliu then 1370

if a<>-1then read a: goto 1300

' Looked through entire DATA table and didn't find it, so display
' a nessage and let the operator try again

erase

print "Unknown product number entered"

wait 200: goto 1250

Found it, so update the network registers, read the | ength setpoint,
and conti nue.

network 3,0, 11, prdnum a ' Store product number

network 3,1, 10, prolcnt,a ' Store product roll count

network 3,1, 11, pyards, a Store product yards
network 3,0,10,1, a Set "data avail able" flag

prdnum = uivlu

read | nsetp

prolcnt = 0.0

pyards = 0.0

network 3,0, 0, prdnum st

' Update product numnber

' Read the new | ength set point
' Clear the roll count

' Clear the yards count

uifm$ = "lInput Roll Length (1-9999) > ": uivlu = inlen

gosub 8300: if K = 0 then 1450

inlen = uivlu

rrolcnt =0
ydsleft = inlen

uifm$ = "Operator Number (0-9999) > ": uivlu = opnum
gosub 8300: if K= 0 then 1490
opnum = uivlu

network 3,0, 1, opnum st

return

LR R I I R I R I I I I I I I I R R I I I I I I R O O

" Run a Product Rol
if estopnd then 2990 ' EStop, so don't run

' Start main drive noving slowy

wentr 1,0,0

dac 1,580

dout OVDRV, 1 ' Enable nmin drive
wait 10

' Main drive control loop to run specified length. This ranps the
' drive speed up to its running speed, runs until it gets close to
' the stop point, then ranps the drive back down to 0, stopping
' when it reaches the correct |ength.
rdentr 1,2, curpos '
spd = curpos / accelrt * 51.1
if spd > maxspd then spd = nmaxspd
decel pt = (I nsetp - curpos) / decelrt * 51.1

Read current position in rol

Store product nunber in network var.

St ore operator nunmber in network var.

4-17

2100

2150

2990

3000

3490

4000

4-18

if spd > decel pt then spd = decel pt

if spd < 20.0 then spd = 20.0 ' Maintain a mnimum speed

if spd > 500.0 then spd = 500.0

if estopnmd then 2990 ' EStop button pressed, so exit
dac 1,spd + 512.0

if curpos < Insetp then 2050
' Reached the specified length, so stop the main drive.
dac 1,512

dout QOVDRV, O ' Disable main drive
' Cut the product

dout OKNIFE, 1

wait 20

if estopnd then 2990

dout OKNIFE, O

' Drop the product onto the conveyor

erase

print "Waiting for roll to drop onto conveyor™
dout OCONV, 1

if estopnd then 2990
if din(IOPTIC) = 1 then 2100
dout OCONV, 0

' The roll was successfully produced, so update production statistics
gosub 3000

Drop a new core into position

erase
print "Waiting for core to drop from hopper"
dout OCORE, 1

if estopnd then 2990
if din(IOPTIC) = 0 then 2150
dout OCORE, O

ydsl eft = ydsleft - Insetp / 50.0 / 36.0
if ydsleft < 0.0 or ydsleft > inlen then ydsleft = 0.0
return

LR R I O R I O I I I I I I R I R R I I I O I I R R R O

Update Current Production Data
rrolcnt = rrolent + 1
if maintmd then 3490

ftenmp = Insetp / 50.0 / 36.0 ' Calc length of roll in yards

brolcnt = brolcnt + 1.0
byards = byards + ftenp
prolcnt = prolent + 1.0
pyards = pyards + ftenp
srolcnt = srolcnt + 1.0
syards = syards + ftenp

Updat e batch total
Updat e batch yards
Updat e product tota
Updat e product yards
Update shift tota
Update shift yards

return

LR I Rk S S S R S R I R I S S R S I I

' Downtinme Accunul ation. Wit for the operator to select a downtine
' code, then add current downtime to that downtine total. Note

' that nmintenance downtine is a special case; it sets the 'nmaintnd
' flag and returns, so that the machine can still be run.

erase

print "F1-Break F2-1nput Roll F3- Jant

print "F4-Mi ntenance";
dhour = hour

dmin = mn

dsec =

4030 ch = get
if ch < $41 or ch > $44 then 4030
if ch = $44 then 4100
ch = ch - $41

gosub 4400 ' Update downtine array
erase

if ch =0 then print "Break";

if ch =1 then print "lnput Roll";

if ch =2 then print "Jant;

print " downtime total > "; dntime(ch);

wait 500

goto 4190

4100 ' Mai ntenance downti ne sel ect ed
maintmd = 1
4190 return

4300 LR R I R R R I I I I I I I I R I R R I I I O I I R I

' Mai ntenance Downti ne Accunul ati on

if maintmd = 0 then 4390 " Exit if not in maintenance nbde
ch =3 ' Sel ect nmi ntenance downti ne
gosub 4400 ' Update downtine array

maintmd = 0

4390 return

4400 VT hhkhkhhhhhhdhhhdhhhhhhhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhdhdhkhdhkrdhkrhhrkk rx*

Get current tine and cal cul ate downtime, then add to sel ected
' downtime array el enent.

" Input:

' ch = downtinme array el enent to update (0-3)

" Qutput:

' dntine(ch) = updated

' ch is unnodified

a - dhour
if a<0then a=a+ 24
b=Db- dmn
if b <0Othen b =Db + 60
c = c - dsec
if c <0then c = + 60

c
a=a*?24+b* 60 +C

dntine(ch) = dntine(ch) + a

totdntm= totdntm + a

network 3,0, 2,totdntm st ' Store total downtine in network var.

return

5000 LR R I O R I I R I R I I I I I I R R R I R I R I O

' Enmergency Stop

task 1

di n(| ESTOPR)

O then estopnd = 0: exit ' EStop button not pressed
1 and estopmd = 1 then exit ' Already in EStop node

1 =
f tltnp
f titnp

Signal the rest of the programthat EStop has occurred.
estopnmd = 1
' Force the main drive to stop. This happens even if we don't
" think that it is currently running.

dac 1,512 " Stop nain drive
wait 100 " Wit for it to stop
dout OVDRV, O ' Disable main drive

exit

4-19

6000 LR R I O R I I I I I I I I I I I R R I I L I I R R R S O

' Transfer Shift Data over Network

task 2
network 4,0, 30,t2,t2st ' Read the "end of shift" flag
if t2 = 0 then 6390 " If flag clear then exit

' Shift has ended, so copy data into network registers for PCto
' read.
network 3,1, 30, srolcnt, t2st
srolcnt = 0.0
network 3,1, 31, syards, t 2st
syards = 0 ' Clear the yards count
for t2 =0to 3

network 3,0, 32+t 2,dntime(t2),t2st

Clear the roll count

dntine(t2) =0 ' Clear the individual downtines
next t2
' Now set the flags so that the PCwill read the new data.
network 3,0, 30, 0, t 2st ' Clear the "end of shift" flag
network 3,0, 31,1,t2st ' Set "data available" flag
totdntm = 0 ' Clear the downtinme tota
6390 exit

VT hhkhkhhhhhhdhhhhhhdhhhdhhhhhhhhhhhhhhhhhdhhhdhhhdhhhdhhhdhhkhdhkrdhkrhhkrkk rx*

Need this TASK statenent to prevent corruption of tenporary vari abl es.
task 3

khkhkkhkhkhhkhkhhkhkhhhkhhkhhhhhhhhhhhhhhhhhhhhhkhhhkhhkhhhkhhhkhhhdhdhkhhhkrkhrk*x*

Get a key with tineout

Qut put: ch, tineout
timeout = 0

8010 if din($100) <> 0 then goto 8010
wait 10

8020 if key <> 0 then goto 8020

8000

8030 wait 10: ch = key
if ch =0 and tinmeout < delay then tinmeout = timeout + 1: goto 8030
return

LR R R R R I I S I S I I R R I R O

Di spl ay main screen
I nput :
mai nt nd, prdnum batnunt, prolcnt, brolcnt, rrolcnt, ydsleft
| nsetp
Modi fi es:
ftenmp
erase
print "Product# ";
fprint "i4x4z", prdnum
print "Batch# "; batnunt; " ",
if maintnd then print "Maint";

8100

| ocate 2,1

print "Prod:";

fprint "f5.0z", prol cnt
print " Batch:";
fprint "f5.0z", brol cnt
print " Yds left:";
a = ydsleft

fprint "i4z", a

return

8300 VT hhkhkhhhhhhdhhhdhhhhhhdhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhhhdhdhkhdhrdhkrrhrkhr*x*

4-20

8310

8400

8410

8500

8510

8530

8600

8610
8620

8630

8690

" Subroutine to get |INTEGER user input.

cls: print uifm$;, uiviu;: wait 30

K =din ($100): if K=0 then 8310

if K=8%$41 or K = 13 then K=key: K=0: return
i f K<$30 or K>$39 then K=key: goto 8310

| ocate 1,len(uifnt$)+1: print " "
locate 1,len(uifnt$)+1l: finput uifm2$, uivlu
K=1: return

LR R I O R I O I I I I I I R R I I I O I R R O O

Subroutine to get REAL user input.
cls: print uifm$;: fprint "F4.2z",uirvlu
print "F8 is decimal point";: wait 30
K =din ($100): if K=0 then 8410
if K=8%$41 or K = 13 then K=key: K=0: return
i f K<$30 or K>$39 then K=key: goto 8410
| ocate 1,len(uifnmt$)+1: print " "
locate 1,len(uifnt$)+1l: finput uifm2$, uirvliu
K=1: return

LR R I R R I O R I I R I I R I I R R I I I O R O O

Subroutine to get boolean (0 or 1) user input.
cls: print uifm$; uivliu: print uifnt2$;: wait 30

if K=%$41 or K= 13 then return

if K<> $7F then 8530

locate 1,len(uifnt$)+1l: print "0 "

ui vl u=0: goto 8510

i f K<$30 or K>$31 then 8510

locate 1,len(uifnt$)+1l: print chr$(K); " "
ui vl u=K- $30

goto 8510

VT hhkhkhhhhhhdhhhhhhhhhdhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhhhdhhkhdhrdhrkhrkh rx*

Subroutine to get string user input.

cls: print uifm$; uisviu$;: wait 30

K =din ($100): if K=0 then 8610

if K=%$41 or K = 13 then K=key: K=0: return

locate 1,len(uifnt$)+1l: print " "
locate 1,len(uifnt$)+1

a=20

ui svliu$ =
K = get

if K= 8 then 8620

if K= 13 then 8690

ui svl u$ = concat $(ui svl u$, chr $(K))
print chr$(K);

a=a+1

if a <uilen then 8630

K=1: return

4.3.4 Program Operating Instructions

The program has been designed to run on the Divelbiss Boss Bear Demonstration Case;
the /0 numbers were chosen to match the wiring of this case. In order to run the program
without a Demo Case, the following I/O devices must be supplied by the user:

Run pushbutton input 1
Switch to simulate optical sensor input 2

4-21

Emergency stop switch input 3

Knife output output 1
Conveyor gate open output 2
Core hopper gate open output 3
Main drive enable to turn on motor controller output 7
Main drive speed select DAC channel 1
Product length encoder counter 1

The main drive motor must be coupled to the product length shaft encoder in order for the
program to operator correctly, because the program uses the shaft encoder value to control
the motor speed.

Before running the example program, EEPROM location 1 must be set to the Boss Bear
unit number, so that the network works correctly. This is done by writing a short program to
POKE the correct value into location 1. For example, if there is only one Boss Bear wired
up to the network, the run the program 100 EEPOKE 1,1 (only one line).

Download the program into the Boss Bear and RUN it. The main screen will be displayed:

Pr oduct # 1002 Bat ch# 963895
Pr od: 0 Bat ch: 0 Yds | eft: 8532

If no action is taken for 60 seconds (no keypad buttons pressed, Run button not pressed,
and Emergency Stop button not pressed), then the downtime screen will be displayed:

F1- Break F2- 1 nput Rol | F3-Jam
F4- Mai nt enance

Press F1, F2, or F3 to enter a downtime code; the number of seconds attributed to that
downtime code thus far in the shift will be displayed. Press F4 to enter maintenance mode;
the main screen will be redisplayed with "Maint" showing in the top right corner; the system
may be run, but any rolls produced will not count towards production totals. When in
maintenance mode, press F2 from the main screen to exit maintenance mode.

While in the main screen, press F1 to enter the "Operator Data Entry" state. It will ask for
the batch number, product number, input roll length, and operator number. Enter a six digit
number for the batch number; the function keys will enter the characters A through F. For
the product number, it will only accept the numbers 1000, 1001, 1002, and 1003; these are
the only numbers in the program DATA statements. Enter a number between 1 and 9999
for the input roll length. Enter a number between 0 and 9999 for the operator number. If
the existing value of any parameter is still acceptable, then just press enter to leave the
existing value in place.

Make sure that the optical sensor switch is on and press the run pushbutton to start a
product roll. The motor speed will ramp up to a constant speed, hold that speed for a few
seconds, then ramp down and stop. The knife output will turn on for 1/5 second, then the
conveyor gate output will turn on. Turn off the optical sensor switch. The conveyor gate
output will turn back off, and the core hopper gate output will turn on. Turn on the optical

4-22

sensor switch; the core hopper gate output will turn back off. The production totals on the
main screen display will be updated. Press the run pushbutton to do this all again.

4-23

Chapter 5

Multitasking in Bear BASIC

5.1 Multitasking Fundamentals

5.2 Determining Task Timing

5.3 Determining When and How to use Multitasking
5.4 Interaction Between Tasks

5.5 Organization of Tasks and Subroutines

5-1

Many control problems can be separated into a small number of tasks that are mostly
independent of each other, yet must be performed at the same time. Traditionally, these
control systems have been constructed using several independent process controllers; for
example, a system may have two temperature controllers, a motor speed controller, a flow
controller, an operator's panel, and a general purpose programmable controller to interface
all of the others. Each of these controllers handles its own small part of the system, which
allows each part of the system to be easily understood.

When a system such as this is implemented on a single controller, however, it can quickly
become extremely complex, because the controller must be programmed to perform all of
the tasks concurrently. For example, while it is waiting for the operator to enter a number
on the keypad, it must still be controlling the motor speed, process temperature, etc. It
becomes especially difficult to modify the operation of the system, such as adding another
controller or changing the update rate of one of the existing controllers. What is needed is
some way to make the single controller act like multiple, individual control modules.

The Bear BASIC compiler supports multitasking, which is a powerful programming tool that
allows portions of a program to execute concurrently. The Boss Bear switches rapidly
between different portions of the program, called tasks, giving the illusion that each task is
being executed on it's own processor. If each of the controllers in the above example were
implemented as separate tasks, then it would be similar to building the system out of
individual controllers, making the software simpler to write and easier to modify in the
future. This chapter explains how multitasking works, how to decide when it should be
used, and how to use it correctly.

5.1 Multitasking Fundamentals

A Bear BASIC program may be divided into portions, called tasks, which can be thought of
as independent programs which execute concurrently. Bear BASIC contains a piece of
software called the context switcher, which manages all of the multitasking operations.
Every 10 milliseconds (ie. 100 times per second), the Boss Bear suspends normal program
execution and jumps to the context switcher (this is handled through the processor's
internal TIMERO interrupt, for those interested in the technical details). The context
switcher updates its timing information, performs some system housekeeping (reads the
keypad, handles the network, etc.), and then starts a task executing. The task that is
started could be the one that was just interrupted, one that was interrupted at some earlier
time, or one that had been waiting for an event to occur. Each 10 millisecond time interval
is referred to as a tick in Bear BASIC. This is known as preemptive scheduling, since a
task is preempted so that another task can execute.

All Bear BASIC programs consist of the main program, which is also known as the lead
task or task 0. In order to form a multitasking program, one or more tasks must be created
using the TASK statement, and task execution must be started with the RUN statement.
The context switcher then causes the processor to be split among the executing tasks.
Tasks are executed asynchronously with respect to each other; this means that it is
impossible to predict exactly when a task will be interrupted so that another task can be
run. It is possible for the programmer to synchronize the task execution, if necessary, by

5-2

using variables as semaphores (this will be discussed later). A simple example will show
the basic operation of multitasking.

100 RUN 1 ' Start task 1 executing

110 PRINT "|*"; ' Task O prints vertical bars

120 @GOro 110 ' Loop forever

200 TASK 1 ' Declare following code to be task 1
210 PRINT " _"; ' Task 1 prints underscores

220 @GOrO 210 ' Loop forever

When this program is executed, it will alternate between printing "|" characters and printing
" _"characters. Since each character will take about 1 millisecond to transmit at 9600 baud,
it should print about 10 characters in each group, since each tick is 10 milliseconds long.
Here is the output produced on one sample run:

As far as each task is concerned, it gets to run all of the time; the context switcher takes
care of switching between the tasks without any special BASIC code in the tasks. The
RUN statement in line 100 is necessary to execute task 1.

Note that tasks are much different than subroutines. A subroutine is just a method of
sharing a piece of code; it only executes when it is called with a GOSUB and it returns to
the line following the GOSUB. A task, on the other hand, shares the processor with other
tasks, appearing to execute at the same time as the other tasks. Tasks can be thought of
as separate programs executing on the same processor. Bear BASIC supports 32 tasks,
numbered 0 to 31. Since task 0 is always present, the first user task is number 1. Tasks
must be numbered sequentially, starting with 1; an error will be generated if a TASK
statement is found out of order.

5.1.1 RUN and EXIT Statements

The example above shows the simplest situation, in which two tasks run continuously, each
getting about 50 percent of the processor's time. In many cases, the programmer needs
more control of the task execution; the RUN, EXIT, WAIT, CANCEL, and PRIORITY
statements provide this control by causing task execution to be started, stopped, and
postponed. The following example is a modification of the previous example; it shows the
use of the RUN and EXIT statements.

100 RUN 1,2 ' Start task 1 executing, resched = 2
110 PRINT "|"; ' Task O prints vertical bars

120 @Or0 110 ' Loop forever

200 TASK 1 ' Declare following code to be task 1
210 PRINT "_"; ' Task 1 prints an underscore

220 EXIT

The RUN statement in line 100 starts task 1 executing with a reschedule interval of 2. This
means that when task 1 executes an EXIT statement, it will be rescheduled to begin
execution again in 2 ticks. Since task 1 just prints a single character, it is finished in about
1 millisecond. When it executes the EXIT statement in line 220, task 1 is stopped and
scheduled to start again in 2 ticks. The context switcher lets task O run for the rest of the
tick (approximately 9 milliseconds). At the next tick, task 0 gets to continue executing

5-3

because task 1 is still waiting for the second tick of its 2 tick reschedule period. At the next
tick, task 1 gets to execute, starting the process over again. The output from this program
should be a series of about 19 vertical bars (in the 19 milliseconds that task 0 executes)
followed by an underscore, repeated over and over. Here is a sample of the output:

5.1.2 WAIT Statement

When it is necessary for a task to delay processing for a given time period, the WAIT
statement is used. WAIT causes the task to suspend processing for the specified number
of ticks; for example, WAIT 100 will delay for 1 second, since each tick is 1/100 second.
While this task is suspended, other tasks continue to execute. When the context switcher
executes at the beginning of each tick, it decrements the "wait counter” for any task that
has executed a WAIT statement. When a task's counter reaches 0, that task is considered
to be ready to run, and re-enters the normal scheduling system; this does not necessarily
mean that this task will be the next one to be executed, unless it has the highest priority. If
all of the tasks are waiting at the same time, then the context switcher just kills time until
one of them is ready to run; background interrupt processing continues during this period.
The WAIT statement is useful in non-multitasking programs, also, since it allows the
programmer to easily delay for a fixed time period.

100 PRINT "*";
110 WAI'T 100
120 GOTO 100

This example uses the WAIT statement to cause a 1 second delay in a program. It will
print a "*" character each second until the program is stopped by pressing ctr.-c. The next
example shows a more complex use of the WAIT statement.

100 RUN 1,10 ' Start task 1, resched = 0.1 sec
110 PRINT "_";

120 WAIT 20 " Print "_" every 0.2 second

130 GOrO 110

200 TASK 1

210 PRINT "|";

220 WAIT 15 ' Delay for 0.15 second

230 PRINT "*";

240 EXIT ' Done. It will run again in 0.1 sec

This example uses WAIT in a multitasking program. Note that task 1 performs a WAIT
between printing the "|" and "*" characters, and that there is another delay caused by the
0.1 second reschedule interval that occurs when the EXIT is executed. The following
output is produced when this program is run:

* * * * * * *
SRR, Al

5-4

5.1.3 CANCEL Statement

In most situations, a task doesn't need to execute all of the time; for example, a task may
only need to execute when the machine is moving. The CANCEL statement stops the
rescheduling of a task. It does not halt the execution of the task at it's current location;
instead, it prevents it from being started again after it executes the next EXIT statement. A
task may CANCEL itself or any other task (except task 0, which always runs). The
following example shows the use of the CANCEL statement:

100 | NTEGER J

110 J=0

120 RUN 1,2 ' Start task 1, resched = 0.02 sec
130 | F J=8 THEN CANCEL 1: GOTO 150 ' Wit for task 1 to count to 8
135 PRINT "*"; " Print "*"s while waiting

140 GOTO 130

150 WAIT 200 ' Delay to allowtask 1 to finish
160 PRI NT "Done"

170 STOP

200 TASK 1

210 J=J+1 " Increnent counter variable

220 PRINT J

230 EXIT

Line 120 starts task 1 executing with a reschedule interval of 2 ticks (2/100 second). Line
130 checks to see if J, which is being incremented by task 1, has reached 8 yet; if it has,
then task 1 is CANCELed and the program jumps to line 150. If J hasn't reached 8 yet,
then it just prints "*" characters and continues waiting. Since the CANCEL statement only
prohibits the task from being rescheduled, the task must execute one more time after the
CANCEL statement is executed. Line 150 waits for 2 seconds to allow task 1 to finish
executing; this could be a much shorter delay, since task 1 will run again after 2 ticks. The
following output is produced when this program is run:

******l
****************2
****************3
****************4
****************5
*****************6
****************7
****************8

9
Done

This example demonstrates one of the most important points about canceling a task: the
task will execute one more time after the CANCEL statement is executed. This is because
CANCEL sets a flag which tells the context switcher to not reschedule the task when it next
executes an EXIT statement.

This example also shows an important point about task timing: below a certain resolution, it
is unpredictable. In the sixth line of the output, an extra ™' character is printed, because of

slight timing variations in the program execution and the serial port. This point will be
brought up several times, as it is extremely important.

5.1.4 PRIORITY Statement

5-5

Sometimes, one task needs to exclude the other tasks from executing. For example, a task
may be performing a time-critical section of code, and needs to guarantee that the context
switcher won't switch to other tasks in the middle of this code, causing an unacceptable
delay. The PRIORITY statement provides a solution to this problem. When the context
switcher is choosing the next task to execute, it will execute the highest priority task that is
ready to run. The task that has the highest priority will continue to execute until it hits a
WAIT statement or an EXIT statement, or until it resets its priority level low enough to allow
another task to run. If the highest priority task doesn't WAIT, EXIT, or reset its priority, then
no other task will get a chance to execute. The priority level of each task is set to 0 when
the program begins executing, causing the tasks to be executed in a round robin manner
until PRIORITY statements are used to set higher priorities. The priority level ranges from
0 through 127, with a higher number indicating higher priority.

100 ' PRIORITY statement exanple
110 | NTEGER J, K

150 RUN 1: RUN 2,1 ' Start tasks running

190 J=0 " Initialize counter variable
200 PRINT "0";

205 FOR K=1 TO 52: NEXT K ' Delay for awhile

210 J=J+1: IF J=15 THEN PRIORITY 1 ' Bump the priority up

220 |IF J=38 THEN PRIORITY 0: J=0: PRINT ' Reset priority to O
230 @OTO 200

300 TASK 1

310 PRINT "1";

315 WAIT 1

320 @OTO 310 ' Task 1 is an infinite |loop
400 TASK 2

410 PRINT "2";

420 EXIT ' Task 2 gets reschedul ed

This example uses the PRIORITY statement to cause task 0 to lock out tasks 1 and 2
periodically. After task 0 has printed 15 "0"s, it sets its priority up to 1 in line 210, making it
the highest priority task. After it has printed 38 "0"s, it resets its priority to 0, allowing tasks
1 and 2 to execute again. Following is a sample of the output:

00120000012000001200000000000000000000000000
01200000120000012000000000000000000000000000
00000120000012000001200000000000000000000000
00001200000120000012000000000000000000000000
00012000012000001200000000000000000000000000
0120000120000012000001200000000000000000000000
00001200000120000012000000000000000000000000
00012000001200000120000000000000000000000000
00120000120000012000000000000000000000000000
0120000120000012000001200000000000000000000000
00012000001200000120000000000000000000000000

5.2 Determining Task Timing

When the operation of the context switcher is viewed over a sufficiently long period of time,
it gives the illusion that multiple tasks are running concurrently. As shown in the previous
examples, however, when the operation is viewed over a smaller period of time, it is evident
that the processor is switching rapidly between tasks. In some situations, the context
switcher's operation must be considered carefully while programming.

5-6

It can be very difficult to predict how the context switcher is going to execute the tasks. In
fact, it is impossible to predict exactly what the context switcher is going to do, since there
is no way to predict exactly where the program will be when the tick occurs. For example, if
a program only has one task currently executing, and that task executes a WAIT 1
statement, then the delay will be between 200 psec and 10 msec. If the tick occurs
immediately after the WAIT statement is executed, then the task will continue executing
after a 200 to 1000 psec delay (the amount of time required for the context switcher to
process everything and restart the task). If the WAIT statement is executed immediately
after a tick has occurred, then it will be 10 msec until the next tick causes the task to be
restarted.

The situation is even more complex if multiple tasks are currently executing, since one or
more tasks may get to execute before a task that has executed a WAIT statement. For
example, in a program with three tasks that are all at priority level 0 (the default level),
suppose that task 1 executes a WAIT 10 statement. After 10 ticks in which tasks 0 and 2
continue to execute, task 1 is ready to run again. However, being ready to run does not
mean that the task will run immediately, only that it will be run the next time that the context
switcher gets to it. This means that it could execute both task 0 and 2 before it gets to task
1, causing the total time delay for the WAIT 10 statement to be 12 ticks. If task 1 were
executing at a higher priority than tasks 0 and 2, however, then it would have executed
before them, causing the delay to be 10 ticks.

The result of this is that the BASIC programmer shouldn't rely on the context switcher to
provide accurate timing at the millisecond level. The Boss Bear is capable of performing
operations with a timing accuracy of 1 msec, if necessary, using the timer interrupt. Also,
the programmer can modify the task priorities to ensure that time critical sections of code
get executed without interruptions from other tasks. If a section of code is extremely time
critical (for example, two outputs must be turned on within microseconds of each other),
then the INTON and INTOFF statements can be used to ensure that the code gets
executed without any interruptions (including hardware interrupts).

5.3 Determining When and How to use Multitasking

In many cases, multitasking techniques can make a program much simpler to write and
understand. It is not the proper choice for all programs, however. If a multitasking
approach is attempted in a situation which is not well suited to it, the resulting program
could be quite difficult to understand and debug. Programming experience is highly
desirable in order to determine whether a multitasking approach should be used. The
following guidelines can be used as a starting point when making this determination.

Fundamentally, multitasking should be used when a system consists of parallel
subsystems; each subsystem can be programmed as a separate task. An example would
be a control program that implements a temperature control and a speed control; each
controller would be a separate task. Multitasking should not be used with systems that are
primarily sequential; these should be handled as regular sequential BASIC code. For
example, a system that picks up a part, moves it into position, drills a hole, and then drops
it onto a conveyor, consists of a sequence of actions that must be performed in order;

5-7

attempting to write this as a multitasking program would be a major mistake. In practice,
most systems consist of both sequential and parallel components; multitasking should be
used when the parallel components are large and relatively independent of each other.

Another primary consideration is program speed. The overhead imposed by the context
switcher increases as the number of tasks increases. In some high speed applications it is
necessary to avoid multitasking in order to get the greatest speed. To get the maximum
performance from the Boss Bear, the program should be implemented using a combination
of assembly language and C; Divelbiss offers a C compiler and an assembler for the Boss
Bear.

A program's user interface is often difficult to implement, especially if the control system
must continue to run while the operator is pressing keys. This is a situation where
multitasking can make the program much simpler, since one task can handle the user
interface while other tasks continue to control the system. In general, the program will be
easier to write and debug if all user I/O to a particular file is contained in a single task. For
instance, if two tasks could be accessing the display concurrently, then the program will
have to ensure that they don't corrupt each others information; it doesn't do much good to
display an alarm, only to have another task clear the display an instant later.

5.4 Interaction Between Tasks

Each task will be performing an independent function in a well-organized program. In most
cases, though, some of the tasks will need to pass information to other tasks. An example
would be a system where a bar code reader task would need to change the setpoint values
being used by box folding task (when it detects different products coming in on a conveyor,
forinstance). A multitasking program will be easier to implement if the interaction between
tasks can be minimized. In most programs, the tasks will have to interact somewhat,
however. This can lead to some problems which the programmer needs to watch for.
Several techniques are given here that allow reliable communication between tasks.

Computer systems usually include items that are limited to a small number of units; these
items are referred to as "scarce resources". For example, a mainframe computer system
may have three identical line printers attached, allowing three print jobs to execute
concurrently; any new print requests must wait until one of the first three finishes. The
printers are a scarce resource. Software can also be a scarce resource; a subroutine can
usually only be called from one task at a time, making that subroutine a scarce resource.
In a multitasking system, the software must manage the scarce resources so that too many
tasks don't try to use a resource concurrently. This is another form of task interaction that
the programmer must be aware of.

The programmer must be careful when tasks interact, because there is no way to predict
when the context switcher will switch between tasks. This means that one task may be in
the middle of updating a variable when another task gets to execute; if the second task
uses the same variable, then unpredictable operation could result. The following example
demonstrates this:

100 [INTEGER J, K

5-8

140 J=0

150 RUN 1,10

210 K=J

220 IF K <> J THEN PRINT "Error": STOP
240 GOro 200

500 TASK 1

510 J=J+1

520 PRINT "*";

530 EXIT

If the context switcher interrupts task 0 after line 200 or while it is evaluating line 210, then
task 1 will modify the value of J. This will cause the test in line 210 to fail when task 0 gets
to execute again. A simple solution to this particular problem involves using the PRIORITY
statement to control access to the variable J, as follows:

100 |INTEGER J, K

140 J=0

150 RUN 1,10

200 PRIORITY 1 ' Lock out task 1
210 K=J

220 |IF K <> J THEN PRINT "Error": STOP

230 PRIOCRITY O " Allow task 1 to execute again
240 GOTO 200

500 TASK 1

510 J=J+1

520 PRINT "*";

530 EXIT

Once task 0 sets its priority to 1 in line 200, task 1 can't execute again until task 0 sets its
priority back to 0 in line 230. A side effect of this is that task 1 executes less often,
because task 0 is spending most of the time at priority 1. If this is a problem, then a WAIT
1 statement could be inserted at line 235 to allow task 1 time to execute. A more serious
problem with this approach is that it only protects task 0 from task 1; it doesn't protect task
1 from task O (ie. task 0 can interrupt task 1 and could modify values being used by task 1).
A solution to this problem involves using variables as flags to protect critical regions of
code; these are normally called semaphores in computer literature.

100 Exanmpl e to denonstrate the use of senmaphores to protect a region of
102 code fromother tasks. Task 0 and task 1 are both displayi ng nunbers
104 on the term nal using the LOCATE and PRI NT statenments. The code nust

106 ' ensure that one task can't wite to the display in between the other

108 task's LOCATE and PRI NT, thereby corrupting the display. The display
110 is the scarce resource in this exanple; it can only be used by one task
112 at a tinme (without displaying values at the wong | ocations.

120 | NTEGER COUNT1, COUNT2 ' Counter variables

130 | NTEGER SEML ' Semaphore flag

140 | NTEGER LOOP1, LOOP2 ' Loop counters

200 SEML=0 " Initialize semaphore to O

210 ERASE

220 COUNT1=0: COUNT2=COUNT1 " Initialize task counters to O

230 RUN 1

300 ' Task O main | oop

310 COUNT1=COUNT1+1

315 ' Next two lines performcritical region protection, to |lock the
316 ' consol e display.

320 INTOFF: IF SEML < O THEN INTON: WAIT 1: GOTO 320

330 SEML=SEML-1: | NTON

340 LOCATE 10, 10: PRI NT COUNTZ1; " Display current count

350 | NTOFF: SEML=SEML+1: | NTON " Unlock the consol e display

360 FOR LOOP1=1 TO 500: NEXT LOOP1 ' Simul ate execution of other code
370 @GOTO 300

59

400 TASK 1

410 COUNT2=COUNT2+1

415 ' Next two lines performcritical region protection, to lock the
416 ' consol e display.

420 INTOFF: IF SEML < O THEN I NTON: WAIT 1: GOTO 420

430 SEML=SEML-1: | NTON

440 LOCATE 20, 10: PRI NT COUNTZ; " Display current count

450 | NTOFF: SEML=SEML+1: | NTON " Unl ock the consol e display

460 FOR LOOP2=1 TO 900: NEXT LOOP2 ' Sinmul ate execution of other code
470 GQGOTO 410

This program has two tasks that are writing to different locations on the terminal (attached
to COM1); it uses a semaphore to control access to the COM1 port, so that one task
doesn't print at the other task's screen location. In task 0, lines 320, 330, and 350
implement the semaphore locking algorithm. In line 320, it checks to see if COM1 is
available (indicated by SEM1=0); if it isn't, then it waits 1 tick to allow the task that is using
COM1 to finish, and loops back to check again. When COM1 is finally available (SEM1=0),
then it decrements SEM1 (to -1) to indicate to other tasks that COM1 is in use. The
interrupts must be turned off while accessing SEM1, so that two tasks don't access it at the
same time, which could allow both tasks to access COM1 concurrently. When the task is
finished with COMA1, it unlocks it by incrementing SEM1 in line 350, allowing another
waiting task to continue when it sees SEM1=0. Intask 1, lines 420, 430, and 450 perform
the same locking function that lines 320, 330, and 350 do. This technique will work with
any number of tasks by using these three lines around any critical code that must be
protected.

5.5 Organization of Tasks and Subroutines

This section discusses the manner in which a multitasking program should be organized. It
is extremely important that the tasks and subroutines are put in the proper locations; if they
aren't, then the BASIC program will operate unpredictably. Incorrect organization of the
program can cause some very subtle problems that can be quite difficult to find.
Fortunately, the problem can be avoided in most cases by following a few simple rules.

Before getting into the details, a few comments must be made about tasks. Tasks must be
declared in numerical order starting with number 1; also note that the code before the 'task
1' statement actually belongs to task 0. All of the code between two TASK statements is
part of the same task, as far as the compiler is concerned; everything up to the 'task 1'
statement is in task 0 and everything from the 'task 1' statement up to the 'task 2' statement
is in task 1, for example.

In general, a Bear BASIC program must have its tasks declared at the end of the program,
after the variable declarations and mainline code; this includes any tasks that are handling
hardware interrupts (ie. referred to in a VECTOR statement). The following example
illustrates the proper form for a program; the program would contain code that has been left
out for clarity, but all TASK and GOSUB statements are included here (there are no
GOSUBs in this program). Note the test after line 300 ('if test <> 0 then ..."); this will never
print because 'test'is always 0. The following example demonstrates the basic form that a
Bear BASIC program should follow:

5-10

100

200

300

10000

11000

Vari abl e decl arati ons
i nteger test
i nteger x1, x2
Start of programcode. This is task O.

run 1,10 ' Run task 1 10 tinmes/second
run 2,5 " Run task 2 20 times/second
test =0 " Initialize test flag

Mai nl i ne code | oop
if test <> 0 then print "Failed mainline"
goto 300

task 1

' code for task 1
x1l =x1 +1

exit

task 2 ' Last task in program
code for task 2

X2 =x2 +1

exit

The existence of subroutines in a program complicates matters. The simplest situation
occurs when each subroutine is only called from within a single task. In this case, each
subroutine should be within the boundaries of the task that calls it; for example, a
subroutine that is called by task 4 must be between the 'task 4' and 'task 5' statements.
Let's expand the preceding program to illustrate this point; again, even though a lot of code
is missing from this example, all of the TASK and GOSUB statements are shown here.
The important point in this example is that the subroutine at 1000 (which is in task 0) is only
called from within task 0, and the subroutine at 10200 (which is in task 1) is only called from
task 1. The 'test' variable is checked in each task; since it is always 0, no messages will be
printed.

100

200

300

1000

10000

10200 '

Vari abl e decl arati ons
i nteger test
i nteger x0, x1, x2

Start of programcode. This is task O.
run 1,10 " Run task 1 10 tinmes/second
run 2,5 " Run task 2 20 tinmes/second
test = 0

Mai nl i ne code | oop
if test <> 0 then print "Failed mainline"
gosub 1000
goto 300

Subroutine called only by task O (mainline)
Code for subroutine goes here

x0 = x0 + 1

return

task 1
' Code for task 1
gosub 10200

x1 =x1+1
if test <> 0 then print "Failed task 1"
exit
Subroutine called only by task 1
Code for subroutine goes here
This is still part of task 1
return

5-11

11000 task 2 ' Last task in program
' Code for task 2
X2 = x2 + 1
if test <> 0 then print "Failed task 2"
exit

If the two rules outlined above are followed then your program will work as expected. Once
again, the rules are:

1. All tasks must be at the end of the program.

2. Never call a subroutine that is outside of the task that contains the GOSUB to that

subroutine.

Unfortunately, the second rule is quite limiting, because it means that multiple tasks can't
call a common subroutine. In order to arrive at a solution to this problem, you must
understand how the compiler works and why the above rules are necessary.

The situation comes about because of the method that the Bear BASIC compiler uses to
allocate memory for a program. As each BASIC statement is executed, there are
temporary values that are calculated and stored in a set of temporary variables; these
values are only needed during the execution of a single statement. Each task has its own
set of temporary variables; every statement within a task uses the same set of temporary
variables, which is the cause of the difficulty. Let's assume that a statement is being
executed when the timer tick occurs; one or more tasks will execute before that statement
gets to complete. If any one of those tasks is using the same temporary variables as the
statement, then when it finally gets to complete execution, its temporary values will have
been altered, resulting in incorrect operation of the program. How could one of the
intervening tasks use the same temporary variables as the original statement? The
simplest situation would be if one of the intervening tasks called a subroutine that was in
the same task as the statement that was interrupted. Here are two examples that illustrate
a few ways that this could happen:

10 ' This exanple contains a task that calls a subroutine that is
" located wthin another task (task 1 calls the subroutine at 1000,
which is in task 0). |If task O is executing the statement in

line 300 when the tiner tick occurs, allowing task 1 to run, then
when task O finishes executing line 300, an erroneous concl usion
will be reached. When task 1 calls 1000, it will have altered the
temporary variabl es being used in line 300, because 300 and 1000
both use the sane tenporary vari abl es.

100 " Variable declarations
i nteger test
i nteger x0, x1, x2

200 ' Start of programcode. This is task O.
run 1,10 ' Run task 1 10 tinmes/second
run 2,5 " Run task 2 20 tinmes/second
test = 0

Mai nl i ne code loop. Line 300 will sonetines operate
incorrectly, printing the nessage even though "test" is O.

300 if test <> 0 then print "Failed nmainline"
gosub 1000
goto 300
1000 ' Subroutine called fromnultiple tasks
Code for subroutine goes here
x0 = x0 + 1
return

5-12

10000

10200

11000

task 1
' Code for task 1
gosub 10200

gosub 1000

x1 =x1+1

if test <> 0 then print "Failed task 1"
exit

' Subroutine called only by task 1

' Code for subroutine goes here

" This is still part of task 1

return

task 2 ' Last task in program
' Code for task 2

X2 =x2 + 1

if test <> 0 then print "Failed task 2"
exit

Here is the second example:

10

100

200

1000

10000

10200 '

11000

20000

Thi s exanple breaks rule nunber 1 by putting the mainline code

after task 2, which neans that the mainline code will be using
the sane tenporary variables as task 2. Wen a tinmer tick causes
task 2 to execute, it will nodify its tenporary vari abl es and

possi bly cause an expression in the mainline to be eval uated
incorrectly. One possible solution to this would be to put a
"task 3' statenent at |ine 20000; this would cause the conpiler
to use a new set of tenporary variables for the mainline code.
Vari abl e decl arati ons

i nteger test

i nteger x0, x1, x2

' Start of programcode. This is task O.

run 1,10 " Run task 1 10 tinmes/second
run 2,5 " Run task 2 20 tinmes/second
test = 0

got o 20000 " Junp to mainline | oop

Subroutine called from mainline
Code for subroutine goes here
x0 = x0 + 1

return

task 1

' Code for task 1

gosub 10200

x1 =x1 + 1

if test <> 0 then print "Failed task 1"
exit

Subroutine called only by task 1
Code for subroutine goes here

" This is still part of task 1

return

task 2 ' Last task in program

' Code for task 2

X2 = x2 + 1

if test <> 0 then print "Failed task 2"

exit

' Mainline code loop. This is still part of task 2. Line
' 20000 will sonetimes operate incorrectly, printing the

nessage even though '"test' is O.

if test <> 0 then print "Failed mainline"
gosub 1000

goto 20000

5-13

So, is there a solution to the difficulties produced by rule number 2 above? Yes, it is
possible to call a subroutine that is located in a different task, which means that it is
possible to have a common subroutine that is called from multiple tasks. In order for it to
work correctly, you must be able to guarantee that the subroutine can't interrupt any other
code that is in the task that the subroutine is in. The simplest way to do this is to put the
subroutine in a separate task and disable interrupts at the beginning and end of the
subroutine. Of course, since the interrupts are disabled, the subroutine must be short and
fast so that no hardware interrupts are lost. Multiple subroutines can be put into the same
task, but they must all have interrupts disabled while executing. Remember that some
BASIC statements and functions can't be used while interrupts are disabled, because they
turn the interrupts back on prematurely; these include PRINT, INPUT, GET, string
operations, and user defined functions. If a subroutine must use one of these and also be
called from multiple tasks, then the subroutine should be placed in a task by itself. The
following example illustrates these techniques.

100 ' Variabl e decl arations
i nt eger test
i nteger x0, x1, x2

200 ' Start of programcode. This is task O.
run 1,10 " Run task 1 10 times/second
run 2,5 " Run task 2 20 tines/second
test =0
Mai nl i ne code | oop
300 if test <> 0 then print "Failed mainline"
gosub 20000 ' Subroutine called frommultiple tasks
gosub 21000 ' Also called fromnultiple tasks
goto 300

10000 task 1
' Code for task 1

gosub 10200 " Only called fromtask 1
gosub 20000 " Called fromnmultiple tasks
x1 =x1+1

i f band (x1, $7F) = 0 then gosub 22000
if test <> 0 then print "Failed task 1"
exi t

10200 ' Subroutine called only by task 1
' Code for subroutine goes here
This is still part of task 1
return

11000 task 2 ' Last task in program
' Code for task 2
11010 x2 = x2 + 1
i f band (x2, $7F) = 0 then gosub 22000
gosub 21000
if test <> 0 then print "Failed task 2"
goto 11010

The next task statement is used to separate the subroutines

fromthe rest of the code; everything after the "task 3"

statement will use the sanme set of tenporary variabl es.

Si nce the subroutines disable interrupts while executing,

they can be called frommultiple tasks w thout any problens.
task 3

5-14

20000 ' Subroutine called frommultiple tasks
i nt of f
' Code for subroutine goes here
x0 = x0 + 1
i nton
return

21000 ' Subroutine called frommultiple tasks
i nt of f
x0 = x0 - 1
i nton
return

task 4
22000 ' Subroutine called frommnultiple tasks. This routine uses
' the PRINT statenent, so it can't turn interrupts off. This
neans that it nust be put into a task by itself, so that it
doesn't share tenporary variables with any other routine.
print "x0 ="; x0
return

So, we can add a third rule to the list:

1. All tasks must be at the end of the program.

2. Never call a subroutine that is outside of the task that contains the GOSUB to that
subroutine.

3. Ifthe program contains subroutines that must be called from multiple tasks, then put
all of these subroutines into a separate task, and disable interrupts during the
subroutine execution. The subroutines must be short, and they can't use any of the
PRINT, GET, or INPUT statements.

If subroutines can't disable interrupts while executing (because they are too long or execute
statements that enable interrupts) then the subroutines should be treated as a scarce
resource and protected with a semaphore. This technique is described in section 5.4
above. The subroutines are placed in a separate task, and then all accesses to any
subroutine in that task must be protected with a semaphore flag. This will prevent multiple
tasks from executing subroutines simultaneously, thereby preventing the subroutine
temporary variables from being corrupted.

5-15

Chapter 6

User Interface Support

6.1 Using the Built-In Display
6.2 Reading the Built-In Keypad
6.3 Working With the Serial Ports

6-1

From an industrial control standpoint, one of the most attractive Boss Bear features is the
availability of an onboard display and keypad. The user interface is an important part of
many control systems, supplying the operator with important run time production
information, and allowing him to make control parameter changes.

6.1 Using the Built-In Display
The Boss Bear is available with three types of onboard display:

2 row by 40 character Liquid Crystal Display (LCD)
2 row by 40 character Backlit LCD
2 row by 40 character Vacuum Fluorescent Display (VFD)

The main difference between the three display types lies in cost and readability. The VFD
is the most readable under varying lighting conditions, and also the most expensive. The
LCD is least expensive, and can be difficult to read in low ambient lighting conditions. The
backlit LCD is easier to read in low light. Since all three displays are the same size, they
can be interchanged without affecting the Bear BASIC program. LCD contrast is controlled
by:

Clear & F1 - Increase
Clear & F2 - Decrease

The display is accessed as FILE 6. Any of the file output statements can be used: CLS,
ERASE, FPRINT, GOTOXY, LOCATE, and PRINT. Each task maintains its own cursor
position, so multiple tasks can write to the display concurrently without corrupting each
other's information. The following example demonstrates the use of the display. It starts by
scrolling a message onto the top line of the display, then it displays a counter value and the
time of day on the second line.

100 INTEGER J,H M S

110 STRI NG A$(50)

200 A$="Di vel bi ss Boss Bear Controller '

210 FILE 6 ' Set task 0 to onboard display

220 CLS ' Clear the display
290 ' Scroll a nessage onto the display

300 FOR J=1 TO LEN(A%)

310 LOCATE 1,41 - J " Position the cursor
320 PRINT M D$(AS$, 1,J)

330 WAIT 10

340 NEXT J

350 LOCATE 2,1: PRINT "Count:";
360 LOCATE 2,20: PRINT "Tine:";

370 RUN 1, 100 ' Start task 1, reschedul e once/second
380 J=0

390 LOCATE 2,8 ' Position the cursor

400 FPRINT "U5Zz",J ' Display current count val ue

410 WAIT 15: J=J + 1: GOTO 390 ' Update count and | oop forever
500 TASK 1

510 FILE 6 ' Set task 1 to onboard display
520 GETIME H M S " Get time fromreal tine clock
530 LOCATE 2, 26 ' Position the cursor

540 PRINT H ":"; " Print hour followed by col on
550 IF M< 10 THEN PRINT "0"; " Print leading zero if necessary
560 PRINT M":"; " Print minute foll owed by col on

6-2

570 IF S < 10 THEN PRINT "0"; " Print leading zero if necessary
580 PRINT S;" "; " Print second
590 EXIT " Finished for now

The FILE 6 statements are necessary to cause the output to go to the onboard display;
Bear BASIC will default to FILE 0, the console serial port. Each task must have its own
FILE 6 statement, because each task maintains its own current file number.

When writing to the display in a multitasking program, it is important to avoid corrupting a
portion of the display that another task may be using. In fact, it is often easier to handle all
display operations in one task, just to simplify the program debugging.

The display is a relatively slow device, by computer standards. When a PRINT or FPRINT
statement is executed, it is very likely that other tasks will get to execute before the
statement returns.

6.2 Reading the Built-In Keypad

The keypad is composed of 20 keys (4 rows by 5 columns): 0-9, ENTER, CLEAR, and Fi-Fs. Itis
accessed as FILE 6. Any of the file input statements or functions can be used: FINPUT,
GET, INPUT, INPUT$, and KEY. Figure 5 shows what values are returned for each key.
The keypad is scanned continuously in the background; if a key press is detected, that key
is inserted into an 8 key buffer. Each input operation returns the next character from this
buffer.

The keypad should not be read from more than one task at the same time. Some of the
key presses would go to one task and some would go to another, causing erroneous input.
Multiple tasks can read the keypad, but not concurrently.

6-3

Keypad GET/KEY INPUT INPUT

Overlay Integer String variable Numeric variable

0 48 "0" 0

1 49 "1 1

2 50 "2" 2

8 51 "3" 3

4 52 "4" 4

5 53 "5" 5

6 54 "6" 6

/ 55 "7" 7

8 56 "8" 8

9 57 "9" 9

ENTER 13 CR/LF CR/LF
CLEAR 8 Backspace Backspace

F1 65 "A"

F2 66 "B"

F3 67 "C"

Fa 68 "D"

F5 69 "E"

Fé 70 "F"

F7 45 """ minus sign -

F8 46 "." decimal point

CR/LF indicates a carriage return, line feed pair.
Figure 5— Keypad Return Values

The value returned by the keypad is dependent upon the operation being performed. The
KEY and GET functions return an integer that corresponds to the key that was pressed.
The INPUT and INPUT$ statements, when used with a string variable, return a text string;
when used with a numeric variable, they return the number that the user typed in. The
following example shows the values that are returned as keys are pressed.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300

6-4

| NTEGER J, K
STRI NG A$(40)
FILE 6
' Start by displaying GET values until ENTER is pressed
K=GET
LOCATE 1,1
PRINT K;" "; CHR$(K);
WAI' T 100
| F K<>13 THEN 140
Now di splay INPUT with an integer variable
CLS: PRINT "Enter a nunber > "
I NPUT J
CLS: PRINT "The nunber was ";J
Now di splay INPUT with a string variable
PRINT "Enter anything > "
| NPUT A$
CLS: PRI NT A$
" Now show how FI NPUT wor ks
PRI NT "Formatted i nput > "
FI NPUT "14",J
CLS: PRINT "The nunber was ";J

Line 120 sets the current file to FILE 6, the onboard display and keypad. Lines 140 through
180 use the GET function to read the keypad; both the integer key value and the string
equivalent are displayed. Because of the WAIT 100 in line 170, it is possible to type faster
than keypresses are being read; the first eight keys are buffered, so none should be lost,
however. When the enter key is pressed, the program continues to line 200, where it uses
INPUT to get a numeric value from the user. Lines 230 through 260 demonstrate the
INPUT statement with a string variable. Lines 270 through 300 use FINPUT to get a 4
character integer number.

6.3 Working With the Serial Ports

For applications which require a more complex user interface, a remote display, or remote
data entry, a terminal may be attached to either serial port (COM1 or COM2). If multiple
data entry stations are required, terminals could even be installed on both serial ports. All
of the file I/0 statements and functions (see 7-13 for more information) work with the serial
ports; COM1 is FILE 0, and COM2 is FILE 5. When a program starts executing, the default
output device is FILE 0; each time that a task is RUN, that task's default device is FILE 0.
Any of the file I/0O statements and functions may be used to access the serial ports: CLS,
ERASE, FPRINT, GOTOXY, LOCATE, PRINT, FINPUT, GET, INPUT, INPUT$, and KEY.

It is important to remember that the characters are displayed relatively slowly when using a
terminal: 1 millisecond per character at 9600 baud. This means that a long PRINT
statement may take 80 msec (or more) to complete. Device resource locking is performed
on each /O file individually. In a multitasking program, other tasks will continue to run while
the PRINT statement is taking place, but no other task will be able to PRINT to the same
port until the first PRINT finishes, however. Unfortunately, another task could change the
cursor position of the terminal between PRINT statements. An example will demonstrate
this problem and a simple solution.

100 I NTEGER J: J=0

110 CLS

120 RUN 1,39: WAIT 30: RUN 2, 60

130 J=J+1: WAIT 9: GOTO 130

200 TASK 1

220 LOCATE 10, 10

230 FPRINT "S16UsZz", "Task 1 value is ", J
250 EXIT

300 TASK 2

320 LOCATE 15, 40

330 FPRINT "S19Us5Z", "Value in task 2 is ", J
350 EXIT

The desired result of this program is to display the count value (J) at two places on the
screen using two tasks. When the program is run, however, it will periodically display one
of the strings at the wrong location. This happens whenever the context switcher causes
task 2 to execute immediately after task 1 has executed the LOCATE statement. Task 2
will perform another LOCATE, then print its message at the correct location. When task 1
runs again, though, it will print its message at the location following the message printed by
task 2. This same situation will occur in the opposite order, causing task 2's message to be
printed at the location following that of task 1's. The solution to this is to use a variable as a
flag to prohibit another task from moving the cursor while a task is accessing the terminal.

6-5

The variable PF has been added to the example (see line 100); it will be nonzero when
FILE Oisinuse. Lines 210, 215, 240, 310, 315, and 340 have been added to the previous
example. When a task is ready to output to the terminal, it increments PF; interrupts must
be disabled while updating PF (with INTOFF and INTON), to ensure that two tasks don't
conflict. If PF is nonzero, then the other task is already using the terminal, so this task just
waits and tries again later. When PF is zero, it indicates that the other task is finished, so
this task continues.

100 I NTEGER J, PF: J=0: PF=-1
110 CLS

120 RUN 1,39: WAIT 30: RUN 2, 60
130 J=J+1: WAIT 9: GOTO 130

200 TASK 1
210 |INTOFF: PF=PF+1: | NTON ' Update print flag
215 |F PF THEN WVAIT 1: GOTO 215 " Wait for other tasks to finish

220 LOCATE 10, 10
230 FPRINT "S16UsZ", "Task 1 value is ", J

240 |INTOFF: PF=PF-1: | NTON ' Finished with termnal, clear flag
250 EXIT

300 TASK 2

310 | NTOFF: PF=PF+1: | NTON ' Update print flag

315 IF PF THEN WAIT 1: GOTO 315 ' Wit for other tasks to finish

320 LOCATE 15, 40

330 FPRINT "S19U5Z7", "Value in task 2 is ", J

340 | NTOFF: PF=PF-1: | NTON " Finished with terminal, clear flag
350 EXIT

Chapter 7

Onboard Hardware Support

7.1 High Speed Counter

7.2 Analog to Digital Converter
7.3 Bear Bones Interface

7.4 Boss Bear Input and Output
7.5 Real Time Clock

7.6 Serial Ports

7.7 Nonvolatile Memory

7-1

One of the things which makes the Boss Bear such a cost effective control system is the
hardware support which is available onboard the main system. Since real time control
revolves around the ability to perform input and output with the real world, this is one of the
most important chapters in the manual. This chapter, along with chapter 9, Optional
Modules, describes the Boss Bear hardware that is available to the system designer.

Figure 6 and Figure 7 show the jumpers and connectors that are accessible from the Boss
Bear's rear panel. Since this information is applicable to many of the sections in this
chapter, it is presented first.

© \
e \
@ . 0\ Low Pass Filter Conﬁguration
. ILEA%:‘s
w
8 " ME:;
24 w G
4

% g mo KHz 20 Hz

@

@) e JW12 Configuration JW13 Configuration

@ 3 g

I E=9 +RES i asserts <R i
{O) H H +RES i asserts RES i inal becomes

HE JW3 Configuration
: H W4 Configuration
W 32K EPROM 128K EPROM &
B JW11 Configuration
SW1 Configuration
1 RES
\ Sndns dorns (o] [om)
If Is removed, then Program
function ls disabled Run Mode Mode

Figure 6 — Boss Bear Jumper Settings

7-2

S@@S@SS@S@SS@SS@i

FEETLIEEEEEFEEEEIR
O

COM, FILE 0
w Gz)o w252
=9 1] W1 Configuration
- .
w1 COM2, FILE §
RS232, RS422, RS485 Rs232 Rs422Rseas
RIRIH]
[(=4
Egi Paget [WB W9 W10
o [] [] § Gefauk)
1 B 00
2 P 8 8
To Bear Bones or 3 E E .
PIC Bear Bones controller 4 B 8 B
To VO Ex:lnth' modules 5 BE I
(up to 128 in / 128 ow) 6 1 8 g
r B 8 8

i
i

ogopaooonon
uuuuuuunnnuunun

Figure 7 — Boss Bear I/0O Connectors and Jumpers

7.1 High Speed Counter

Counting is a very common operation in real time control systems. For low speed signals
(less than 10 pulses/second), this can be handled easily in software. At higher rates,
however, hardware counters are required. The Boss Bear high speed counter circuit is
very flexible, providing several operating modes. It is a 24 bit binary up/down counter,
capable of greater than 1 MHz count rate (333 kHz in quadrature modes), with input
filtering, and a high speed output. It supports quadrature mode, which allows it to operate
with biphase shaft encoders. In order to understand the operation of the counter, it is
helpful to look at the hardware logic. The onboard counter circuitry is very similar to the
counter expansion module, so most of the following information applies to both.

7-3

COUNTER CIRCUIT

LOW PASS FILTER
+A AINPUT DATA —
JW5

A T INT

TO PROCESSOR
® LOW PASS FILTER B INPUT RES INT
JWB

g —————————————¢ RESOUT [~

Jwi2 Jwi1
LOW PASS FILTER
+RES LDCNT/LDLATCH
JW7
-RES Jwis
GATE/RESET
.

out

Figure 8 — High Speed Counter Logic

The A, B, and RES inputs are open-collector, with jumper selectable low pass filters (20Hz,
5kHz, and 100kHz). JW5 sets the filter cutoff frequency for A, JW6 for B, and JW7 for
RES. The A and B inputs are the signals to be counted; they are edge triggered. The
counter can operate in four input modes:

1. The A and B inputs are used in quadrature X1 mode, for use with biphase encoders.
The count value changes once for each biphase cycle.

2. The A and B inputs are used in quadrature X4 mode, for use with biphase encoders.
The count value changes with each input transition; X4 mode counts four times
faster than X1 mode, given the same input signal.

3. A falling edge on the A input (while the B input is low) causes the counter to
increment, and a falling edge on the B input (while the A input is low) causes the
counter to decrement. Inputs A and B should not be high at the same time.

4. The B input sets the count direction: high for increment, low for decrement. A falling
edge on the A input causes the counter to count in the selected direction.

If the counter is to be used in unidirectional mode, it should be put into mode 4. The count
signal would be connected to the A input, and the B input would control the direction.

The +RES input can be configured using JW11 to reset the counter, to load the counter
from the input latch, or to load the output latch from the counter. +RES can be either active
high or active low, selectable using JW12. When +RES is routed to the LDCNT/LDLATCH
control line, a pulse on +RES will cause the counter value to be preset from the input latch
or written to the output latch, depending upon the software configuration of the circuit.
When +RES is routed to the GATE/RESET control line, a pulse on +RES will cause the
counter hold its current value (disregarding A and B) or reset to 0, depending upon the
software configuration of the circuit.

The -RES input can be configured using JW13 to connect to ground or to connect to the
LDCNT/LDLATCH control line. It can be connected to ground for ease of wiring the reset
line; a sensor can be attached across +RES and -RES. |If it is connected to the
LDCNT/LDLATCH control line, then +RES can be connected to GATE/RESET, allowing fulll
access to the counter control signals. In this configuration, a single input signal can be
wired to latch the current counter value into the output latch, and then reset the counter
value to 0.

7-4

Counter Circuit

Output = DATA
Counter
A Input A N INT
. | Comparator RES INT
B tnput 8 . ' RES OUT
LDCNTADLATCH T m

GATE/RESET
our

Figure 9 — Internal Counter Logic

When the counter value matches the value stored in the input latch, the comparitor will
assert the high speed output and also send an interrupt signal to the processor. These
signals stay active until the processor resets each of them with the appropriate control line
(RES_OUT and RES_INT). RDCNTR can reset the high speed output. The interrupt
signal can be reset with OUT $40,1, although the INTERRUPT statement resets it
automatically. The output circuit is open-collector; Figure 10 shows two ways to use the
output.

)
\J
out+ | N %*SS . Load
\9, ~ \ & \&,
out-
—O >
O O
*‘; Y | so1id State Output
oyer
Supply
————— +va

o

IN4004 Ki
out+

Relay Output
out-

Figure 10 — Using the Counter Direct Output

7-5

The counter inputs A, B, and RES are designed to be used with open collector (ie. sinking)
sensor outputs. These inputs present a 12 VDC signal which the sensor must pull to
ground. The inputs must not be used with sourcing sensor outputs, as this will cause
erratic operation of both the sensor and the Boss Bear. Contact Divelbiss for encoder
recommendations. Figure 11 shows an example of wiring a biphase incremental encoder
to the Boss Bear.

For best noise immunity, shielded cable should be used between the counter inputs and the
device being monitored; this is especially important for long cable runs. To minimize any
potential crosstalk problems, it is recommended that individually paired and shielded cables
be used for each I/O device, especially at high counting speeds. Use the shield terminal
provided or connect the shield to earth ground by other means. Do not connect the cable
shield at both ends of the cable, as this can have an adverse effect. Always use separate
returns (minus terminal) for each signal pair, as this lessens the chance of ground loops
occurring by making all common terminations at the counter module.

When used correctly, the low pass filters on the A, B, and RES inputs can prevent potential
noise pickup problems. Always use the lowest cutoff frequency that can be tolerated for
your application, but remember that these are not high "Q" filters, and that a £20% corner
frequency tolerance is specified. The important point in determining the filter cutoff is not
the pulse frequency being measured, but the pulse width. For example, if a 100 sec pulse
arrives about once per second, the filter should be set to 100kHz, since a lower filter cutoff
would damp the pulse out.

8+5VDC N\ //\\ +5YDC
D +A
7, -A
D +B
7
>

Incremental

g
Encoder I:;
&1

+RES
RESET\ J \ [_oes

CEND
Figure 11 — Biphase Incremental Encoder Wiring Example

7.1.1 Counter Examples

The simplest example of using the counter just reads the current count value and displays it
on the onboard display. To try this example, just wire a pushbutton between the +A and -A
inputs to use as a pulse source. Each time that the button is pushed, the counter will
increment one or more times; the button will probably bounce when pressed, causing up to
20 pulses.

100 | NTEGER COUNT

110 CNTRMODE 1, 3 ' A counts up, B counts down
120 WRCNTR 1,0, 10 ' Set counter value to 10
130 FILE 6

140 RDCNTR 1, 0, COUNT ' Read the current val ue

7-6

150 FPRINT "U6Z", COUNT " Now display it
160 GOTO 140

The next example shows how to handle counter interrupts and use the high speed output.
This example sets up task 1 as the interrupt handler for counter 1. Inlines 120 and 130 it
initializes counter 1, setting its mode to A-count, B-direction and writing a 0 to the counter.
In lines 140 and 150 it sets the counter reload variable to 10 and writes this reload value
into the counter's compare register. Line 160 uses INTERRUPT to set task 1 as the
interrupt handler for the counter. Lines 210 to 240 form the program's main loop, which just
displays the latest counter value (COUNT) from the last interrupt; it also increments and
displays J, just to cause some action on the display. Lines 300 to 350 form task 1, the
interrupt handler; it reads the current counter value and updates the reload value. Lines
400 to 440 form task 2, which turns off the high speed output about 1/2 second after it is
turned on.

In task 1, the first thing that it does is read the current counter value. At low pulse rates,
this will be the same as RELOAD, since it is reading the same value that caused the
interrupt. As the pulse rate increases, however, the counter will increment before the task
1 gets to read the counter. At a very high pulse rate, a problem will occur when the counter
has already gone beyond the new RELOAD value before RELOAD is written to the counter
(ie. COUNT=783 and RELOAD=780); this effectively stops the interrupt, since the counter
will need to wrap completely around before the interrupt will occur again.

100 ' Programto denonstrate the high speed counter interrupt

110 | NTEGER J, RELOAD, COUNT, T2TEMP

120 CNTRMODE 1, 4 ' A count, B direction

130 WRCNTR 1,0,0 ' Set count to O

140 RELOAD=10: COUNT=0

150 WRCNTR 1, 1, RELOAD ' Set counter interrupt value

160 |INTERRUPT 1,1,1 ' Set counter interrupt to task 1
170 J=0

180 FILE 6 ' Qutput to onboard display

200 ' Main program | oop.

210 LOCATE 1,1

220 FPRINT "UsX5U5Z", J, COUNT

230 J=J+1 " Increnent junk variable
240 GOTO 210

300 ' Counter interrupt handl er task.

310 TASK 1

320 RDCNTR 1, 0, COUNT ' Get new count

330 RELOCAD=RELOAD+10 ' Set up new rel oad

340 WRCNTR 1, 1, RELOAD ' Set counter interrupt value

350 RUN 2: EXIT ' Set up task 2 to turn output off.
400 ' Task to turn off high speed output

410 TASK 2

420 WAIT 50 ' Wait 1/2 second, then turn

430 RDCNTR 1, 3, T2TEMP ' the output off

440 CANCEL 2: EXIT ' Don't reschedule this task.

7.2 Analog to Digital Converter

The optional A/D converter has 8 single ended, 10 bit, 0 to 5 VDC input channels. ltis read
using the ADC function, which scales the A/D output to return a value between 0 (at 0 VDC)
and 32767 (at 5 VDC). Using the ADC function, the A/D conversion time is approximately
350 microseconds. The 10 bit converter provides about 0.1% accuracy. On newer

7-7

revisions of the Boss Bear (revision E and later), the onboard A/D provides 12 bit
resolution, or about 0.025% accuracy.

The A/D input voltage is limited by zener diodes to protect the A/D converter. If an input
goes above 5 VDC, that input will be short-circuited to ground. Therefore, the system
should be designed so the input signal does not go above 5 VDC. All signal cables should
be shielded running to the sensor; the shield should be attached to chassis ground (CGND
on the A/D terminal strip) at the Boss Bear end only. See Figure 12.

SENSOR A A +AD
o 0 o—n8

@ T0 5YOC \ Y % ;:éﬂn

A/D terminal strip

@{-ceNo
@

@

@

@

@

@
D+
@

@

@

@

@

@

@

Figure 12 — A/D Wiring

When the 10 bit onboard A/D option is installed, it supplies the first 12 A/D channels (when
read with the ADC() function), as follows:

Channel Description

AD1

AD2

AD3

AD4

AD5

ADG6

AD7

ADS8

No connection

Internal +5 VDC supply divided by 2
+VA unregulated +12 VDC supply divided by 4

- 2 OCoo~NoOOCOThA~hWN =

—- O

7-8

12 Internal self test voltage. A good test will return a value between
16000 and 16767. If the value is out of this range, then the A/D
system is malfunctioning.

When the 12 bit onboard A/D option is installed, it supplies the first 12 A/D channels (when
read with the ADC() function), as follows:

Channel Description
AD1

AD2

AD3

AD4

AD5

ADG6

AD7

ADS8

No connection
10 No connection
11 No connection
12 No connection

O©ooNOOOTR~,WN =

The following example shows the use of the ADC function. It simply displays the voltage
being read by the first 8 A/D channels. In line 140, it reads the A/D value and converts it
from A/D units (0 to 32767) to voltage (0.0 to 5.0).

100 ' Display the first 8 A/D channel s

110 | NTEGER CHAN

120 REAL ADVAL

130 FOR NUM =1 TO 8

140 ADVAL = ADC(CHAN)/32768.0*5.0

150 PRI NT "Channel "; CHAN, " = "; ADVAL
160 NEXT CHAN

It is often necessary to convert an A/D reading into the appropriate engineering units, either
for display purposes or to make the program easier to understand. In the previous
example, the number was displayed as a voltage. In general the following formula
performs the necessary scaling:

Reading , (Maxval — Minval) + Minval
32767

where Reading is the A/D reading, Maxval is the maximum value that the sensor can
measure, and Minval is the minimum value that the sensor can measure. For example if a
temperature sensor returns 0 VDC at -50 degrees C and 5 VDC at 200 degrees C, then this
formula becomes:

Reading : 250
Redding » 60 — (—50Y) + (=50) = Reading *
32767 P00 (30 +(=50) = Reading * - =

7-9

or, reduced to the simplest form and written as BASIC code: CDEG=ADC(CH)*0.0076294-50.0.

The following points must be observed to get the greatest accuracy from the Boss Bear A/D
converter:

« The Boss Bear chassis ground (ground lead on the power input connector) must be
attached to earth ground.

e The unused inputs on the A/D connector should be shorted (ie. ADn+ tied to ADn-).

« Shielded cable should be used to attach to the sensor. The shield should be
attached to CGND at the Boss Bear A/D connector. The other end of the shield
should not be tied to ground, as this could cause a ground loop. Depending upon
the construction and mounting of the sensor, the shield may or may not be attached
to the sensor. If the sensor shield (which is probably it's housing) is isolated from
ground, then the shield should be attached to the sensor. If the sensor is attached
to ground, then do not attach the shield, as this could cause a ground loop.

« The cable should be kept short, although it should be routed away from noise-
producing equipment and power lines, if possible.

« The sensor should be chosen so that its output in the normal operating range is at
the upper end of the Boss Bear's A/D range. With the 12 bit, 0 to 5 VDC A/D, an
input of 0.5 VDC results in 0.24% accuracy, while an input of 4.5 VDC results in
0.027% accuracy.

. For the highest accuracy and greatest noise rejection, an instrument amplifier should
be installed at the Boss Bear. Since the Boss Bear's onboard A/D converter has
single-ended inputs, it has no common mode rejection. To improve the noise
rejection, especially on long cable runs, a differential instrument amplifier in a four
wire sensor configuration should be used. This will provide high common mode
rejection, will remove the losses caused by the long cable run and allows the sensor
output range to be adjusted to match the Boss Bear A/D input range. This amplifier
should be mounted in the enclosure with the Boss Bear.

7.3 Bear Bones Interface

The Bear Bones interface allows direct access to the Bear Bones Controller /0O Bus. This
looks like an I/O panel to the Bear Bones, with 16 inputs and 16 outputs; it is factory
assigned at I/O page 0, but can optionally be set in the field to any page. The Boss Bear
accesses the interface page with the BBOUT statement and BBIN function. The Bear
Bones interfaces using standard ladder logic to access page 0. The Boss Bear is
connected to the Bear Bones by wiring into the Bear Bones I/O expansion bus, as shown in
Figure 13.

This feature allows a powerful, dual processor system to be assembled at a very low cost.
The Bear Bones handles the discrete logic control, and the Boss Bear handles the analog
functions, high speed counters, user interface, and network communications. Each
processor performs the tasks that it is best suited to, providing performance that is greater
than the sum of their individual capabilities. It also allows the 1/O count to be increased,
since each unit supports a chain of I1/0O expanders.

7-10

| T

Boss Bear

Bear Bones Interface Cable Assembly

m.q

[

]

Presto
Panel

NN NNNNY)

O uls © Emmm R0 O

Bear Bones

(O o o o

1/0 Expander

o

B
I

7.4 Boss Bear Input and Output

Figure 13 — Boss Bear to Bear Bones Connection Example

Presto Panel or I/0 Panel

e /NN NNCNNY)
] o} o o 3
Boss Bear M |
I1/0 |E| I___I
] [] -
I/0 Panel
B

Figure 14 —1/0O Expander Connection Example

The Boss Bear I/O Bus allows up to 128 inputs and 128 outputs, using the standard
Divelbiss Bear Bones Expanders and Presto Panel; I/O boards of different types can be
intermixed in any combination. Figure 14 shows how the boards are connected to the Boss
Bear. The DIN function is used to read the status of inputs, and the DOUT statement is
used to control outputs. Figure 15 shows how the expander I/O address is related to the
Boss Bear I/0 number; note that the easiest way to specify an 1/0O address on the Boss
Bear is in hexadecimal.

7-11

When programming with I/O boards, remember to take the response time of the board into
account. Inputs may have debounce circuitry that delays the response to a signal change
by 10 to 20 msec. Outputs may take 20 msec to change state; this will limit the pulse rate
that can be generated.

Addr Hex Dec. Addr Hex Dec. Addr Hex Dec. Addr Hex Dec.
0/0 $00 0 2/0 $20 32 4/0 $40 64 6/0 $60 96

0/1 $01 1 2/1 $21 33 4/1 $41 65 6/1 $61 97

0/2 $02 2 2/2 $22 34 4/2 $42 66 6/2 $62 98

0/3 $03 3 2/3 $23 35 4/3 $43 67 6/3 $63 99

0/4 $04 4 2/4 $24 36 4/4 $44 68 6/4 $64 100
0/5 $05 5 2/5 $25 37 4/5 $45 69 6/5 $65 101
0/6 $06 6 2/6 $26 38 4/6 $46 70 6/6 $66 102
0/7 $07 7 2/7 $27 39 a/7 $47 71 6/7 $67 103
0/8 $08 8 2/8 $28 40 4/8 $48 72 6/8 $68 104
0/9 $09 9 2/9 $29 41 4/9 $49 73 6/9 $69 105
0/10 $0A 10 2/10 $2A 42 410 $4A 74 6/10 $6A 106
0/11 $0B 11 2/11 $2B 43 4/11 $4B 75 6/11 $6B 107
0/12 $0C 12 2/12 $2C 44 4/12 $4C 76 6/12 $6C 108
0/13 $0D 13 2/13 $2D 45 4/13 $4D 77 6/13 $6D 109
0/14 $OE 14 2114 $2E 46 414 $4E 78 6/14 $6E 110
0/15 $OF 15 2/15 $2F 47 4/15 $4F 79 6/15 $6F 111
1/0 $10 16 3/0 $30 48 5/0 $50 80 7/0 $70 112
11 $11 17 3/1 $31 49 5/1 $51 81 71 $71 113
1/2 $12 18 3/2 $32 50 5/2 $52 82 7/2 $72 114
1/3 $13 19 3/3 $33 51 5/3 $53 83 7/3 $73 115
1/4 $14 20 3/4 $34 52 5/4 $54 84 7/4 $74 116
1/5 $15 21 3/5 $35 53 5/5 $55 85 7/5 $75 117
1/6 $16 22 3/6 $36 54 5/6 $56 86 7/6 $76 118
1/7 $17 23 3/7 $37 55 5/7 $57 87 717 $77 119
1/8 $18 24 3/8 $38 56 5/8 $58 88 7/8 $78 120
1/9 $19 25 3/9 $39 57 5/9 $59 89 7/9 $79 121
1/10 $1A 26 3/10 $3A 58 510 $5A 90 7/10 $7A 122
1/11 $1B 27 3/11 $3B 59 5/11 $5B 91 7/11 $7B 123
1/12 $1C 28 3/12 $3C 60 5/12 $5C 92 712 $7C 124
113 $1D 29 3/13 $3D 61 513 $5D 93 713 $7D 125
1/14 $1E 30 3/14 $3E 62 5/14 $5E 94 7114 $7E 126
1/15 $1F 31 3/15 $3F 63 5/15 $5F 95 7/15 $7F 127

The Addr column shows the Expander I/O address; the Hex column shows the Boss
Bear I/0O number in hexadecimal form, while the Dec. column shows it in decimal form.

Figure 15 — Relation between |/O Board Address and Boss Bear 1/0O Number

7-12

7.5 Real Time Clock

The optional real time clock allows the Bear BASIC program to determine the time and date
at any point. The clock is accessed using GETDATE, SETDATE, GETIME, and SETIME.

7.6 Serial Ports

Many devices interface with other equipment using serial data transfer. The Boss Bear
provides one standard serial port (COM1) and one optional serial port (COM2). Both ports
support asynchronous serial transfer at baud rates between 150 and 38400 baud.

Note: Using CTR-C or Chain Command resets com ports to default settings.

7.6.1 COM1

COM1 supports RS-232 levels. While at the command line prompt, it is used to attach the
console terminal, which is the main programmer's interface to the Boss Bear. On power
up, it is set to 9600 baud, no parity, 8 data bits, and 1 stop bit. At runtime, COM1 is
accessed as FILE 0; it may be used as a general purpose serial port. The COM1
connector is a 9 pin male D connector; the pinout is given in Figure 16.

Pin ID Description

1 -- No connect

2 RX Receive data

3 TX Transmit data

4 DTR Data Terminal Ready (+10 VDC)
5 GND Signal ground

6 -- No connect

7 RTS Request To Send (Output)

8 CTS Clear To Send (Input)

9 -- No connect

Figure 16 — COM 1 Connector Pin Out

Divelbiss can supply the following cables to connect the Boss Bear COM1 port to a
personal computer:

Part No. Description
ICM-CA-28 9 pin female D to male 25 pin D, 6 ft long
ICM-CA-29 9 pin female D to female 25 pin D, 6 ft long

To set the operating mode for COM1, two I/O ports must be written to. Port O controls the
number of data bits, stop bits, and whether parity is enabled; see Figure 17. 1/O port 2
controls the baud rate and even/odd parity (if port 0 setup has enabled parity); see Figure

7-13

18. For example, the code OUT 0,97: OUT 2,13 sets COM1 to operate at 300 baud, no
parity, 7 data bits, and 1 stop bit; since parity is disabled, OUT 0,97: OUT 2,29 will set the
same parameters. As another example, OUT 0,102: OUT 2,5 will set 1200 baud, 8 data bits,
even parity, and 1 stop bit. Bit 4 of port 0 (the $10 bit) controls the state of the RTS line for
COMT1; clearing bit 4 asserts RTS. The CTS input is always enabled; if CTS goes low,

COM 1 will stop transmitting.

Decimal Hex Binary Description

96 $60 01100000 Start bit + 7 data bits + no parity + 1 stop bit
97 $61 01100001 Start bit + 7 data bits + no parity + 2 stop bits
98 $62 01100010 Start bit + 7 data bits + parity + 1 stop bit

99 $63 01100011 Start bit + 7 data bits + parity + 2 stop bits
100 $64 01100100 Start bit + 8 data bits + no parity + 1 stop bit
101 $65 01100101 Start bit + 8 data bits + no parity + 2 stop bits
102 $66 01100110 Start bit + 8 data bits + parity + 1 stop bit
103 $67 01100111 Start bit + 8 data bits + parity + 2 stop bits

Figure 17 — COM Port Setup Parameters

Decimal Hex Binary Description
0 $00 00000000 38400 baud, even parity (if parity set)
1 $01 00000001 19200 baud, even parity (if parity set)
2 $02 00000010 9600 baud, even parity (if parity set)
3 $03 00000011 4800 baud, even parity (if parity set)
4 $04 00000100 2400 baud, even parity (if parity set)
5 $05 00000101 1200 baud, even parity (if parity set)
6 $06 00000110 600 baud, even parity (if parity set)
13 $0D 00001101 300 baud, even parity (if parity set)
14 $0E 00001110 150 baud, even parity (if parity set)
16 $00 00010000 38400 baud, odd parity (if parity set)
17 $11 00010001 19200 baud, odd parity (if parity set)
18 $12 00010010 9600 baud, odd parity (if parity set)
19 $13 00010011 4800 baud, odd parity (if parity set)
20 $14 00010100 2400 baud, odd parity (if parity set)
21 $15 00010101 1200 baud, odd parity (if parity set)
22 $16 00010110 600 baud, odd parity (if parity set)
29 $1D 00011101 300 baud, odd parity (if parity set)
30 $1E 00011110 150 baud, odd parity (if parity set)

Figure 18 — COM Port Baud Rate Parameters

7.6.2 COM2
COM2 supports RS-232, RS-422, and RS-485. It is unused while at the command line

prompt. At runtime, it may be accessed as FILE 5 as a general purpose serial port, or it
can be used to link the Boss Bear into the Bear Direct network. On power up, it is set to

7-14

9600 baud, no parity, 8 data bits, and 1 stop bit. The COM2 connector is a 9 pin female D
connector; the pinout is given in Figure 19.

RS-422 RS-485
Pin ID Description Pin ID Description
1 TX- Transmit data (-) 1 TX- Data (-)
2 -- No connect 2 -- No connect
3 -- No connect 3 -- No connect
4 RX- Receive data (-) 4 -- No connect
5 GND Signal ground 5 GND Signal ground
6 RX+ Receive data (+) 6 -- No connect
7 -- No connect 7 -- No connect
8 -- No connect 8 -- No connect
9 TX+ Transmit data (+) 9 TX+ Data (+)
RS-232
Pin ID Description
1 -- No connect
2 TX Transmit data
3 RX Receive data
4 -- No connect
5 GND Signal ground
6 -- No connect
7 CTS Clear To Send (Input)
8 RTS Request To Send (Output)
9 -- No connect

Figure 19 — COM 2 Connector Pin Out

To set the operating mode for COM2, two I/O ports must be written to. Port 1 controls the
number of data bits, stop bits, and whether parity is enabled; see Figure 17. 1/O port 3
controls

the baud rate and even/odd parity (if port 1 setup has enabled parity); see Figure 18. For
example, the code OUT 1,97: OUT 3,13 sets COM2 to operate at 300 baud, no parity, 7 data
bits, and 1 stop bit; since parity is disabled, OUT 1,97: OUT 3,29 will set the same
parameters. As another example, OUT 1,99: OUT 3,20 will set 2400 baud, 7 data bits, odd
parity, and 2 stop bits.

JW1 is used to select between RS-232 and RS-422/485 modes. RS-232 can connect two
pieces of equipment using three conductor cable; it is generally used for short distances (up
to 50 ft) in environments that don't have much electrical noise. RS-422 can connect two
pieces of equipment using five conductor cable; it can drive much longer distances (up to
5000 ft) and is more immune to noise. RS-485 can connect up to 32 pieces of equipment
in a multidrop network using three conductor cable; it can also drive long distances in noisy
environments.

7-15

To operate COM2 in RS-422 mode, the line driver must be put into transmit mode, using
the code OUT $B,0: OUT $A,$10; this need only be done once, at the beginning of the
program.

When operating in RS-485 mode, the line driver must be switched between transmit and
receive mode; in an RS-485 multidrop network, only one unit can be in transmit mode at
any given time. As before, the code OUT $B,0: OUT $A,$10 sets it to transmit. After all
characters have been sent, allow at least two extra character times (ie. 2 msec at 9600
baud), then set the driver to receive mode using OUT $B, $FF: OUT $A, $10.

7.7 Nonvolatile Memory

Nonvolatile memory retains its state with the system power turned off. The Boss Bear
supports two types of nonvolatile memory as options: EEPROM and battery backed up
RAM. Each of these has characteristics that make it more suitable for some applications.

7.7.1 EEPROM

An EEPROM (Electrically Erasable Programmable Read Only Memory) requires no power
to retain its state; it can even be moved from one unit to another without affecting its
contents. Current EEPROM technology provides at least ten years of data retention.
Unfortunately, it takes approximately 10 milliseconds to write each byte into an EEPROM,
and each byte can only be written into approximately 10,000 times. This makes the
EEPROM most suitable for data that rarely changes, such as configuration information and
calibration data. Bear BASIC supports either a 2KB or 8KB EEPROM, using the EEPOKE
and EEPEEK statements to access the EEPROM.

7.7.2 Battery Backed Up RAM

The Boss Bear has a battery back up option for the system RAM. With this option installed,
the Boss Bear memory will be retained for approximately 6 months without power; the
battery is charging whenever the unit is powered up. The battery backed up RAM is most
suitable for values that change often, such as production information. When a BASIC
program is started, the RAM is not modified, except by the BASIC program itself. This
means that the variables will all have the same values that they held when power was
removed.

Note that every time the Boss Bear is turned on, the compiler is initialized, which deletes
the BASIC source code. This does not affect the runtime memory area, so the variable
values will be unchanged. This allows the programmer to leave information in BASIC
variables; it will be retained while the Boss Bear is without power. With newer versions of
the compiler (v2.02 and up), the BASIC source code is not deleted when power is applied.

7-16

Chapter 8

Bear BASIC Language Reference

8-1

= Statement

Summary:
The = statement assigns a value to a variable.

Syntax:

variable = expr

Arguments:

expr a numeric or string expression. The expression type must match the type of
variable.

Description:

The = statement is used to store the result of an expression into a variable. If variable is an
integer or real, then the result of the expression is converted to the proper type before
being stored. Care should be taken when assigning the result of an expression containing
real values to an integer variable. In this case, Bear BASIC may lose precision during the
expression evaluation; see section 3.6 for a discussion of this problem.

Note that the character '='is also used to represent the equality operator. This means that
the statement X=A=B is legal; it sets X to a nonzero value if A is equal to B.

In multitasking programs, the context switcher will not switch tasks during the assignment
operation. For example, if a program has a real variable X and a task executes the
statement X=3.1416, the task will always update all 4 bytes of X as a group, without
allowing another task to break in. This is also true of integers and strings. In an expression
evaluation, however, the context switcher may allow another task to corrupt a variable. If
one task is executing the statement X=X*1.5 and another task interrupts and executes
X=4.3, then the value of X depends on the exact spot that the context switcher interrupted.
The programmer should avoid this type of situation by using different variables or using the
PRIORITY statement to control the operation of the context switcher.

Example:

100 | NTEGER J
110 REAL X

120 X=2.7%4.0

130 J=(X*10000) - 21234
140 PRINT J

Related topics:
Section 3.6

8-2

ACOS Function

Summary:
The ACOS function calculates the arccosine function.

Syntax:
x = ACOS (expr)

Arguments:
expr a numeric expression.

Description:

The ACOS function returns the arccosine of its argument, which must be a numeric
expression. The result is returned as a REAL value, in degrees.

Example:

100 REAL X, Y

110 PRI NT ACOS(1.23)

120 X=4.0

130 Y=ACOS(X)

140 PRINT "Arccosine value of ";X;" is ";Y

This produces the following output when run:

157. 36422
Arccosi ne val ue of 4.00000 is 104.93141

8-3

ADC Function

Summary:
The ADC function is used to read an analog input value from one of the A/D channels.

Syntax:
advl = ADC(chan)

Arguments:
chan a numeric expression. The A/D channel number to read starting with 1.

Description:

The ADC function performs an analog conversion on the specified A/D channel, and returns
the result as an INTEGER value between 0 and 32767. The value returned by the A/D
hardware is scaled to cover the full range of 0 to 32767; this allows A/D converters of
different resolutions (ie. 10 bit, 12 bit, etc.) to be substituted without altering the user's
program. The ADC function takes approximately 350 microseconds to complete. The A/D
channels are assigned based on the hardware available on the Boss Bear; channel 1 could
be on the onboard A/D, or in any of the expansion ports (if there is no onboard A/D
converter). The order of precedence for assigning A/D channels is: onboard A/D followed
by J3 followed by J4 followed by J5.

Example:

100 ' Display the first 5 A/D channel s
110 | NTEGER NUM

120 FORNUM =1 TO 5

130 PRI NT " Channel ";NUM" = "; ADC(NUM
140 NEXT NUM

This produces the following output when run:

Channel 1 =0
Channel 2 =0
Channel 3 = 13440
Channel 4 =0
Channel 5 =0

Channels 1, 2, 4, and 5 indicate that 0 volts are present. Channel 3 indicates that 2.05
volts is present (13440/32767*5.0=2.05).

Related topics:
DAC, Chapter 7

8-4

ADR Function

Summary:
The ADR function returns the address of a variable in the BASIC program.

Syntax:
addr = ADR(name)

Arguments:

name a character constant. The name of a variable declared in the BASIC
program.

Description:

The ADR function returns the address of a variable; it is returned as an integer value. This
can be used to find the address of a string or array in which an assembly language
program will be POKEGd. It can also be used to access a variable without using the normal
BASIC operations.

Example:

100 ' Swap the bytes in a variable
110 |INTEGER J, K

120 K = $1234

130 POKE ADR(J), PEEK(ADR(K) +1)
140 POKE ADR(J) +1, PEEK(ADR(K))
150 FPRINT "S2H4S4H4", "J=", J, "

This produces the following output when run:

J=3412 K=1234

The key to understanding this example lies in remembering that an INTEGER occupies 2
bytes in memory. Inline 130, we put the second byte of K into the first byte of J, and in line
140 we put the first byte of K into the second byte of J. The numbers are represented in
hexadecimal to make the swap operation a little more obvious.

Related topics:
CALL, PEEK, POKE

8-5

ASC Function

Summary:
The ASC function calculates the ASCIl numeric equivalent of the first character of a string.

Syntax:
x = ASC (st$)

Arguments:
st$ a string expression.

Description:

The ASC function returns the ASCII equivalent of the first character in the specified string.
The result is returned as an INTEGER value. ASC is the converse of the CHR$ function.

Example:
100 STRI NG A$: :
110 1 NTEGER N This prod.ucesthe following output
120 PRINT "ASCI| value of X: ";ASC("X") when run:
130 A$="012ABCabc ."
140 FOR N = 1 TO LEN(A$) ASClI | val ue of X 88
150 PRINT N, " "; ASC(M D$(AS$, N, 1)) 1 48
160 NEXT N 2 49

3 50

4 65

5 66

6 67

7 97

8 08

9 99

10 32

11 46

Related topics:
CHRS$, Appendix F

8-6

ASIN Function

Summary:
The ASIN function calculates the arcsine function.

Syntax:
x = ASIN (expr)

Arguments:
expr a numeric expression.

Description:

The ASIN function returns the arcsine of its argument, which must be a numeric
expression. The result is returned as a REAL value, in degrees.

Example:

100 REAL X, Y

110 PRINT ASIN(1.23)

120 X=4.0

130 Y=ASI N(X)

140 PRINT "Arcsine value of "; X" is ";Y

This produces the following output when run:

-67.36422
Arcsi ne val ue of 4.00000 is -14.93141

8-7

ATAN Function

Summary:
The ATAN function calculates the arctangent function.

Syntax:
x = ATAN (expr)

Arguments:
expr a numeric expression.

Description:

The ATAN function returns the arctangent of its argument, which must be a numeric
expression. The result is returned as a REAL value, in degrees.

Example:

100 REAL X, Y

110 PRI NT ATAN(1.23)

120 X=4.0

130 Y=ATAN(X)

140 PRINT "Arctangent value of "; X" is ";Y

This produces the following output when run:

50. 88856
Arct angent val ue of 4.00000 is 75.96370

8-8

BAND Function

Summary:
The BAND function performs a bitwise logical AND function.

Syntax:
x = BAND (exprl,expr2)

Arguments:

exprl a numeric expression.
expr2 a numeric expression.

Description:

The BAND function logically ANDs exprl and expr2 as 16 bit integers; each of the bits is
individually ANDed together. This is useful for clearing bits in an integer variable, such as
when accessing hardware registers. This differs from the AND operator, which compares
two numbers as boolean values (ie. true or false). For example, BAND(2,6) returns 2, while
2 AND 6 evaluates to an undefined non-zero value.

Example:

100 | NTEGER J, K : -

110 PRINT " Th|§ produces the following output when
120 FORK =0 TO 7 run:

130 FPRINT "132", K

140 NEXT K 0 1 2 3 4 5 6 7
150 PRI NT 0 0000 OO0 O0 O
160 FORJ =0 TO7 101 0 1 0 1 0 1
170 FPRINT "132",J 2 00 2 2 0 0 2 2
180 FORK =0 TO 7 3 01 2 3 01 2 3
190 FPRI NT "13Z", BAND(J, K) 4 0 0 0 0 4 4 4 4
200 NEXT K 5 0 1 0 1 4 5 4 5
210 PRI NT 6 0 0 2 2 4 4 6 6
220 NEXT J 7 01 2 3 4 5 6 7

Related topics:
BOR, BXOR

8-9

BBIN Function

Summary:

The BBIN statement is used to interface with the Bear Bones Programmable Controllerin a
dual processor system.

Syntax:
x = BBIN (bbaddr)

Arguments:
bbaddr an integer value. An address in the range 0 to 15 (inclusive).

Description:

The BBIN function reads a single bit of information from an attached Bear Bones. The
Boss Bear and Bear Bones communicate using a single Bear Bones 1/O page (normally
page 0), which contains 32 single bit values: 16 from Boss Bear to Bear Bones, and 16
from Bear Bones to Boss Bear. This function is only useful if a member of the Bear Bones
family is attached to the Bear Bones Interface connector on the back of the Boss Bear. It
is important to remember that the Boss Bear and Bear Bones are running asynchronously
to each other; the Bear Bones could be at any point in its program when the Boss Bear
executes the BBIN function.

Example:

100 ' Read all 16 bits from

105 ' the Bear Bones

110 | NTEGER NUM

120 FOR NUM = 0 TO 15

130 PRINT NUM ","; BBIN(NUM; "
140 NEXT NUM

This produces the following output when run. Note that the actual values displayed would
depend on the program that was executing in the Bear Bones.

0,1 1,1 2,0 3,0 40 5,0 6,2 7,0 80 9,1 10,1 11,0 12,0 13,1 14,1
15,1

Related topics:
BBOUT, DOUT, DIN, Chapter 7

8-10

BBOUT Statement

Summary:

The BBOUT statement is used to interface with the Bear Bones Programmable Controllerin
a dual processor system.

Syntax:
BBOUT bbaddr,b

Arguments:

bbaddr an integer value. An address in the range 0 to 15 (inclusive).
b an integer value. A value of 0 clears the output bit to the Bear Bones, while a
nonzero value sets the output bit.

Description:

The BBOUT statement sends a single bit of information to an attached Bear Bones. The
Boss Bear and Bear Bones communicate using a single Bear Bones 1/O page (normally
page 0), which contains 32 single bit values: 16 from Boss Bear to Bear Bones, and 16
from Bear Bones to Boss Bear. This statement is only useful if a member of the Bear
Bones family is attached to the Bear Bones Interface connector on the back of the Boss
Bear. It is important to remember that the Boss Bear and Bear Bones are running
asynchronously to each other; the Bear Bones could be at any point in its program when
the Boss Bear executes the BBOUT statement.

Example:

100 ' Cear all 16 bits going to the Bear Bones
110 | NTEGER NUM

120 FOR NUM = 0 TO 15

130 BBOUT NUM 0

140 NEXT NUM

Related topics:
BBIN, DOUT, DIN, Chapter 7

8-11

BOR Function

Summary:
The BOR function performs a bitwise logical OR function.

Syntax:
x = BOR (exprl,expr2)

Arguments:

exprl a numeric expression.
expr2 a numeric expression.

Description:

The BOR function logically ORs exprl and expr2 as 16 bit integers; each of the bits is
individually ORed together. This is useful for setting bits in an integer variable, such as
when accessing hardware registers. This differs from the OR operator, which compares
two numbers as boolean values (ie. true or false). For example, BOR(2,5) returns 7, while
2 OR 5 evaluates to an undefined non-zero value.

Example:

100 I NTEGER J, K : :

110 PRINT " Th|§ produces the following output when
120 FORK =0 TO 7 run:

130 FPRINT "13Z", K

140 NEXT K 0 1 2 3 4 5 6 7
150 PRI NT 0 01 2 3 4 5 6 7
160 FORJ =0 TO7 11 1 3 3 5 5 7 7
170 FPRINT "132",J 2 2 3 2 3 6 7 6 7
180 FORK=0TO7 3 33 3 3 7 7 77
190 FPRINT "13Z", BOR(J, K) 4 4 5 6 7 4 5 6 7
200 NEXT K 5 5 5 7 7 5 5 7 7
210 PRI NT 6 6 7 6 7 6 7 6 7
220 NEXT J 7 7 7 7 7 7 7 7 7

Related topics:
BAND, BXOR

8-12

BXOR Function

Summary:
The BXOR function performs a bitwise logical exclusive OR function.

Syntax:
x = BXOR (exprl,expr2)

Arguments:

exprl a numeric expression.
expr2 a numeric expression.

Description:

The BXOR function logically XORs exprl and expr2 as 16 bit integers; each of the bits is
individually XORed together. This is useful for inverting bits in an integer variable, such as
when accessing hardware registers.

Example:

100 | NTEGER J, K : -

110 PRINT " Th|§ produces the following output when
120 FORK =0 TO 7 run:

130 FPRINT "132", K

140 NEXT K 0 1 2 3 4 5 6 7
150 PRI NT 0 01 2 3 45 6 7
160 FORJ =0 TO7 11 0 3 2 5 4 7 6
170 FPRINT "132",J 2 2 3 01 6 7 4 5
180 FORK =0 TO 7 3 32 10 7 6 5 4
190 FPRINT "13Z", BXOR(J, K) 4 4 5 6 7 0 1 2 3
200 NEXT K 5 5 4 7 6 1 0 3 2
210 PRI NT 6 6 7 4 5 2 3 0 1
220 NEXT J 7 7 6 5 4 3 2 1 0

Related topics:
BAND, BOR

8-13

BYE Direct Command

Summary:
The BYE direct command resets the Boss Bear.

Syntax:
BYE

Arguments:
BYE needs no arguments.

Description:

BYE performs a software reset of the Boss Bear. If SW1 (the RUN/PROGRAM switch) is
set to the RUN position, then the last program on the EPROM will be loaded and run.

Related topics:
Clear Memory

8-14

CALL Statement

Summary:
The CALL statement is used to link Bear BASIC to an assembly language subroutine.

Syntax:
CALL addr, [argl], [arg2]...

Arguments:

addr a numeric expression. The address of the subroutine to call.
argx a numeric or string expression. An argument to be passed to the assembly
language routine.

Description:

The CALL statement begins execution of an assembly language subroutine starting at addr.
Execution of the assembly language subroutine continues until a RET instruction is
encountered, at which point execution will continue at the point following the CALL
statement in the Bear BASIC program. No registers need be preserved while in the
assembly language subroutine.

If optional arguments are given after the address of the routine being called, then the
address of these arguments are passed to the routine, allowing any BASIC variable or
value to be passed to the assembly routine. Since the addresses of the values are passed,
the assembly routine can alter the values before returning to the calling program.

If optional arguments are supplied, then these arguments will be stored in a table following
the assembly language CALL instruction, so the return address on the stack will point at the
table. The table will consist of zero or more entries, with each entry consisting of a mode
byte followed by the argument address. The table will end with a 0 byte in place of a mode
byte. The mode byte is assigned as follows: 1 for integer, 2 for real, and 3 for string. The
arguments can be arrays, constants, or variables; array elements and constants are
passed using temporary variables, and so should not be modified. Variables can be
modified. For example, the code

100 | NTEGER J
110 REAL X(10)
120 STRI NG A3$(40)
' Other code goes here
500 CALL $C000, X(3), J, A3

would generate assembly language that looks like this:

CALL $0000

. BYTE 2 ; X(3) node is real
. WORD address of tenp hol ding val ue of X(3)

. BYTE 1 ; J node is integer
. WORD address of J

. BYTE 3 ; A% nbde is string
. WORD address of A$

.BYTE O ; End of table flag

; Next line of BASIC code.
If it is necessary to update an array element from a subroutine, then it must be done using
an intermediate variable. For example:

8-15

600 K=KARRAY(4)
610 CALL $B800, K
620 KARRAY(4) =K

In order to write robust code, the assembly language programmer must not assume that
the BASIC programmer used the correct number or type of arguments. The assembly code
should always look through the table for the 0 (end of table flag), and return to the next
address past it.

Even if the assembly routine requires no arguments (ie. 800 CALL $C000), the "end of table
flag" is still stored after the CALL instruction, so the assembly routine must look at the table
to determine the correct return address.

A CALL to address $100 will restart the Bear BASIC program that is currently running. It
will cause the hardware to be re-initialized.

Example:
100 | NTEGER NUM BYTE

110 DATA $E1 pop hi CGet table address

111 DATA $23 inc hl Ski p node byte

112 DATA $5E I d e, (hl) Get low byte of arg address
113 DATA $23 i nc h

114 DATA $56 I d d, (hl) Get high byte of arg address
115 DATA $23 inc hl Point to O byte

116 DATA $23 inc hl Point to next code byte

117 DATA $E5 push hl Store new return address
118 DATA $1A ld a, (de) Get | ow byte of argunent
119 DATA $C6, $05 add a,5 Add 5

120 DATA $12 | d (de), a Store | ow byte back

121 DATA $13 inc de

122 DATA $la I d a, (de) Get hi gh byte of argunent
123 DATA $CE, $00 adc a, 0 Propagate carry into high byte
124 DATA $12 | d (de), a Store high byte back

125 DATA $C9 ret Return to BASIC

130 FOR NUM = 0 TO 17

140 READ BYTE

150 POKE $B000+NUM BYTE ' Store assenmbly program at $B00O
160 NEXT NUM

160 NUM=90

170 CALL $B000, NUM ' Call assenbly program

180 PRI NT NUM

This example calls a simple subroutine that gets the address of the argument, adds 5 to the
argument, and returns. In the interest of space and clarity, this was programmed very
badly; no argument checking is done in the assembly language. If $B000 is called with the
wrong number of arguments, the system will almost certainly crash.

Related topics:
SYSTEM, CODE, Appendix D

8-16

CANCEL Statement

Summary:
The CANCEL statement stops a task from being restarted when the schedule interval given
in the RUN statement elapses.

Syntax:
CANCEL task

Arguments:
task an integer expression. The number of the task to cancel.

Description:

CANCEL stops the specified task from being started again when the schedule interval
given in the RUN statement elapses. CANCEL does not abort the task - only EXIT or
STOP can stop the execution of a task. When a RUN statement is entered, a schedule
interval is specified; each time the task EXITs, itis scheduled to restart after that many ticks
have elapsed. CANCEL causes the scheduling of the task to cease. When CANCEL is
executed, the task continues executing normally until it EXITs. The task will not run again
until it is specifically commanded to via another RUN statement. CANCEL is useful when a
task need only be run a fixed number of times; the task can CANCEL itself, as in the
example below.

Example:

100 I NTEGER J, K

105 K=0 " Initialize counter for task 1

110 RUN 1, 10 ' Set reschedule interval to 10 ticks.

120 FOR J =1 TO 1000
130 PRI NT "*":

140 VAIT 1

150 NEXT J

160 STCP

200 ' Task 1 prints 5 '.' characters.

210 TASK 1

220 PRINT ".";

230 K=K+ 1 " Increnent nunber of tinmes we've run
240 IF K>=5 THEN CANCEL 1 "' If 5 tinmes then done, don't reschedul e.
250 EXIT

Related topics:
RUN, EXIT, STOP, Chapter 5

8-17

CHAIN Statement

Summary:
The CHAIN statement loads and runs another program from the user's EPROM.

Syntax:

CHAIN filenum
or
CHAIN "filename"

Arguments:
filenum an integer expression. The number of the compiled code file to load and
execute.

filename atext string up to 10 characters long. The file name of the compiled code file
to load and execute.

Description:

CHAIN causes another program to start executing. This allows a program that is too large
to fit into memory to be broken into multiple smaller programs. Because Bear BASIC
doesn't overwrite variables when it loads the new program, values can be passed between
programs. The variables to be passed between programs must be the first variables
declared, and they must be declared in the same order.

When CHAIN is used with a file name, the last file on the EPROM with the specified name
is executed; this allows a file to be modified and stored on the same EPROM, since the
newest file is always executed. When CHAIN is used with a file number, then that specific
file is executed, even if there is a newer one with the same name.

The CHAIN statement disables interrupt processing. When the new program starts
executing, it will reset some of the onboard hardware. The serial ports get reset, timer 1 is
turned off, and the onboard display (LCD/VFD) is cleared. The high speed counter's value
and mode is left unchanged.

In order for the new program to start executing, the run/program switch (SW1) must be in
the RUN position. If it is in the PROG position, then CHAIN will cause the Boss Bear to
return to the command line prompt.

Examples:

100 PRINT "Hi there"
110 CHAIN 4 " Junp to program4 on EPROM

This example shows how to use CHAIN to run a specific program number.

100 ' First program Save on EPROM as "FI RST"
110 PRINT "This is the first progrant

120 WAIT 100

130 CHAI N " SECOND"

8-18

100 ' Second program Save on EPROM as " SECOND'
110 PRINT "This is the second progrant

120 PRIN’]’ LU R Rk kS b b R R R

130 WAIT 100
140 CHAIN "FI RST"

Type in the first program, compile it, and type SAVE CODE FIRST to save it on the EPROM.
Then type in the second program, compile it, type SAVE CODE SECOND, and run the
program. It will execute, then CHAIN to the first program, which will execute and CHAIN
back to the second program.

8-19

CHRS$ Function

Summary:
The CHRS$ function returns a string that corresponds to an integer value.

Syntax:
st$ = CHRS$ (expr)

Arguments:
expr an integer expression between 0 and 255.

Description:

CHRS$ returns a 1 character long string that corresponds to the ASCII value of the specified
expression. CHR$ is the converse of ASC.

Example:

100 ' Print the character equivalents of the values 32 to 126.
110 I NTEGER J

120 FOR J=32 TO 126

130 FPRI NT "i 3x1s1x3z", J, CHR$(J)

140 NEXT J

This produces the following output when run:

32 33 ! 34 " 35 # 36 $ 37 % 38 & 39 40 (41)
42 * 43 + 44 45 - 46 . 47 | 48 0 49 1 50 2 51 3
52 4 53 5 54 6 55 7 56 8 57 9 58 : 59 ; 60 < 61 =
62 > 63 ? 64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G
72 H 73 1 74 J 75 K 76 L 77 M 78 N 79 O 80 P 81 Q
82 R 83 S 84 T 85 U 86 V 87 W 88 X 89 Y 90 Z 91 [
92\ 93] 94 » 95 _ 96 - 97 a 98 b 99 ¢ 100 d 101 e
102 f 103 g 104 h 105 | 106 | 107 k 108 | 109 m 110 n 111 o
112 p 113 q 114 r 115 s 116 t 117 u 118 v 119 w120 x 121 y
122 z 123 { 124 | 125 } 126 ~ >

Related topics:
ASC

8-20

CLEARFLASH Direct Command

Summary:

The CLEARFLASH direct command erases the flash EPROM that the user's code is stored
on.

Syntax:
CLEARFLASH

Arguments:
CLEARFLASH needs no arguments.

Description:

The UCP stores the user's programs on a flash EPROM which can be erased electrically,
without being removed from the UCP. The CLEARFLASH command performs this erase
operation, removing all data from the EPROM. This command takes about 10 seconds to
complete. The flash EPROM can be erased at least 1000 times.

Example:
CLEARFLASH

Related topics:
SAVE, SAVE CODE

8-21

CLEARMEMORY Direct Command

Summary:
The CLEARMEMORY direct command fills the entire RAM memory area with zeroes.

Syntax:
CLEARMEMORY

Arguments:
CLEARMEMORY needs no arguments.

Description:

The CLEARMEMORY command allows the programmer to start the Boss Bear from a
"clean” state. It writes O to all RAM locations, and then restarts the Boss Bear from the
power-up state. Some BASIC program errors can change memory values in important
locations, causing strange behavior. Normally, resetting the Boss Bear (by turning the
power off and back on) will correct any problems of this nature, but using CLEARMEMORY
guarantees that all values will be correctly initialized.

This command is also helpful when debugging a program which stores values in the battery
backed up RAM. Such a program must handle the situation where the RAM hasn't been
initialized yet (for example, when the program is loaded into a new Boss Bear). Using
CLEARMEMORY allows the programmer to test the program's operation in this situation. If
SW1 is in the run mode the Boss Bear will run the last program code saved to the eprom.

Related Topics:
BYE

8-22

CLS Direct Command

Summary:
The CLS direct command erases the console terminal display.

Syntax:
CLS

Arguments:
CLS needs no arguments.

Description:

CLS sends the control sequence to erase the display on an ADM-3A terminal. If an
incompatible terminal is attached, then this won't erase the display.

8-23

CLS Statement

Summary:
The CLS statement erases the current display device.

Syntax:
CLS

Arguments:
CLS needs no arguments

Description:

CLS sends the clear-screen command to the currently active FILE. It works for the console
terminal (FILE 0) and the front panel display (FILE 6, which can be either LCD or VFD).
Note that in order for this to work correctly with FILE 0, the terminal must be set to emulate
an ADM3 or ADMS5 terminal.

NOTE: when entering BASIC programs that don't have line numbers, any line that
begins with the CLS statement must have a line number. This is because
CLS is also a direct command, so the line will be seen by the compiler as a
direct command, not as part of the program. This only occurs on lines that
begin with CLS, not on lines that just have CLS somewhere in the line. This
problem doesn't occur with the ERASE statement, which performs the same
operation, so itis recommended that ERASE be used in programs instead of
CLS.

Example:

100 I NTEGER J

110 FOR J = 1 TO 1000
120 FILE O: PRINT "*";
130 FILE 6: PRINT "*";
140 NEXT J

150 WAIT 100

160 CLS

170 FILE 0: CLS

Related topics:
ERASE

8-24

CNTRMODE Statement

Summary:
The CNTRMODE statement sets the operating mode of the high speed counter.

Syntax:
CNTRMODE num, mode

Arguments:

num an integer expression. The counter number to set up: 1 through 13. If there
is an onboard counter then it is 1, and the counter expansion modules would
be 2 through 13 (or 5 or 9, depending upon how many modules are installed).

If there is no onboard counter, then the counter expansion modules would

be 1 through 12 (or 4 or 8, depending upon how many modules are installed).
mode an integer expression. The mode to set the counter to; one of the following:

0 - disable the counter

1 - X1 quadrature mode

2 - X4 quadrature mode

3 - a pulse on counter input A causes the count to increase, and a pulse on
input B causes the count to decrease.

4 - counter input B sets the direction of counting (increase or decrease), and
a pulse on input A causes the counter to count by 1.

5 - X1 quadrature mode. RES input will enable/disable counter.

6 - X4 quadrature mode. RES input will enable/disable counter.

7 - a pulse on counter input A causes the count to increase, and a pulse on
input B causes the count to decrease. RES input will enable/disable
counter.

8 - counter input B sets the direction of counting (increase or decrease), and
a pulse on input A causes the counter to count by 1. RES input will
enable/disable counter.

Description:

The Boss Bear's high speed counter circuit is extremely flexible; it is capable of operating in
several modes, depending upon how the software and hardware is configured. The
hardware is configured using various jumpers. The software is configured with the
CNTRMODE statement. See chapter 7 for a description of the counter hardware.

Example:
100 CNTRMODE 1, 2 ' Set counter 1 to X4 quadrature node

Related topics:
WRCNTR, RDCNTR, Chapter 7

8-25

CODE Statement

Summary:
The CODE statement stores assembly language code in the Bear BASIC program.

Syntax:
CODE instr [,instr]

Arguments:
instr an integer number. The instruction to store.

Description:

Bear BASIC provides the SYSTEM and CALL statements to allow assembly language
subroutines to be called from the BASIC program. In addition to these, CODE stores
assembly language instructions inline with the BASIC program. These instructions will be
executed as they are encountered. Registers need not be preserved in the assembly
language code. Appendix D discusses using assembly language in conjunction with Bear
BASIC.

Note that Bear BASIC normally generates code for each line that stores the current line
number in case an error occurs. This is inhibited between CODE statements, since it would
corrupt the user's assembly routine.

Example:

100 I NTEGER J
110 FCOR J=0 TO 255

120 POKE $FB0O, J ' Store for assenbly routine to access
130 CODE $3A, $00, $FB ' LD A, (OFBOOH);

140 CODE $4F, $06, $08 ' LDCA LDB,8

150 CODE $AF, $ED, $39, $80 " XOR A; QUTO (80H), A

160 CODE $CB, $17 " LOOP: RRCC R A

170 CODE $F6, $02, $ED, $39, $80 " OR 2; QUTO (80H), A

180 CODE $E6, $01, $ED, $39, $80 ' AND 1; QUTO (80H), A

190 CODE $10, $FO " DINZ LOCP

200 NEXT J

This example assumes that there is an output port attached to the first expansion port (/O
address $80). The assembly code shifts a byte out serially over this port, with bit 0 being
the data and bit 1 being the clock signal. The outer loop (line 110) causes all 256 byte
values to be sent.

Related topics:
SYSTEM, CALL, POKE, PEEK, Appendix D

8-26

COMPILE Direct Command

Summary:
The COMPILE direct command compiles the BASIC program currently in memory.

Syntax:
COMPILE (may be abbreviated to C)

Arguments:
COMPILE needs no arguments.

Description:

COMPILE causes the Bear BASIC compiler to convert the BASIC source code entered by
the programmer into the native machine code used by the Boss Bear's 64180 processor.
This is necessary before the program can be executed. For a large program, it may take
as much as 20 seconds to compile. If the program is successfully compiled, then the
message COMPILED will be displayed, otherwise an error message will be displayed. After
the program has compiled successfully, the command STAT can be used to show some
compilation statistics.

Related topics:
RUN command, GO

8-27

CONCATS Function

Summary:
The CONCATS function returns a string that is the concatenation of two strings.

Syntax:
st$ = CONCATS (st1$, st2%)

Arguments:

st1$ a string expression.
st2$ a string expression.

Description:

CONCAT$ combines two strings into one, appending st2$ immediately after st1$. In some
other implementations of the BASIC language, strings are concatenated using the '+'
operator.

Example:

100 STRING A$(40), B$ ' A$ nust be |arge enough to hold both.
110 A$="This is one string, "

120 B%$="and this is another."

130 A$=CONCATS$(A$, BS$)

140 PRINT "<"; A$; ">"

Related topics:
Chapter 3

8-28

COS Function

Summary:
The COS function calculates the cosine function.

Syntax:
x = COS (expr)

Arguments:
expr a numeric expression.

Description:

The COS function returns the cosine of its argument, which must be a numeric expression,
in degrees. The result is returned as a REAL value.

Example:

100 REAL X, Y

110 PRI NT COS(45.0)

120 X=68.3

130 Y=COS(X)

140 PRI NT "Cosine value of ";X;" is ";Y

This produces the following output when run:

. 70711
Cosi ne val ue of 68.29999 is .36975

Related topics:
ACOS, SIN, ASIN, TAN, ATAN

8-29

CVI Function

Summary:
The CVI function converts a binary string to an integer.

Syntax:
x = CVI (st$)

Arguments:
st$ a string expression.

Description:

CVI performs the opposite function of MKI$; it takes the first two bytes of a string and
returns them as an integer value. See MKIS$ for a full explanation of binary strings.

Example:

100 STRI NG A$
110 A$=MKI $(1234)
120 PRI NT CVI (A$)

This produces the following output when run:

1234

Related topics:
MKI$, CVS, MKS$

8-30

CVS Function

Summary:
The CVS function converts a binary string to a real.

Syntax:
x = CVS (st$)

Arguments:
st$ a string expression.

Description:

CVS performs the opposite function of MKS$; it takes the first four bytes of a string and
returns them as a real value. See MKIS$ for a full explanation of binary strings.

Example:

100 STRING A$
110 A$=MKS$(123. 456)
120 PRI NT CVS(A$)

This produces the following output when run:

123. 45599

Related topics:
MKS$, CVI, MKI$

8-31

DAC Statement

Summary:
The DAC statement is used to control analog output channels.

Syntax:

DAC chan, value

Arguments:

chan an integer expression. The number of the channel to access, starting at 1.
value an integer expression. The level to set on the analog output, ranging
between 0 and 1023 for the Boss Bear, or 0 and 32767 for the UCP.

Description:

Up to three analog output modules can be attached to the Boss Bear expansion ports; each
module can have between one and four analog outputs. Each output is provided by a DAC
(Digital to Analog Converter) circuit. The DAC statement is used to assign an output level
to each DAC channel. Each DAC channel can be set up for a variety of output voltage and
current ranges, such as 0 to 10 volts, -10 to 10 volts, 4 to 20 mA, etc. This means that the
actual output supplied by a particular DAC statement value depends upon the configuration
of the analog output module. For instance, if DAC channel 3 jumpers are set for 0 to 10
volt operation, and the statement DAC 3,300 is executed, the output from channel 3 will be
10*300/1023 volts, or 2.93 volts.

UCP: Onthe UCP, the value argument is a number between 0 and 32767, corresponding
to 0 to 10 volts.

Example:

100 ' Programto output a sine wave on DAC channel 1.

110 I NTEGER J,Y

120 FOR J=0 TO 628 ' Go through an entire cycle.

130 Y=1023. 0*SI N(J/ 100. 0) ' Scale sine to fit Boss DAC range.
135 Y=32767. 0*SI N(J/ 100. 0) ' Scale sine to fit UCP DAC range.
140 DAC 1,Y ' Qutput the val ue.

150 NEXT J

160 @GOTO 120 ' Loop forever.

Notice that in line 130, the constants (1023.0 and 100.0) are given as real numbers (with a
decimal point). By doing this, the program runs slightly faster, since the compiler doesn't
have to convert the numbers from integer to real each time that the line is executed.

Related topics:
ADC, Chapter 7, Appendix H

8-32

DATA Statement

Summary:
The DATA statement defines constant values to be accessed with READ statements.

Syntax:
DATA data_list

Arguments:

data_list list of constant values separated by commas. The values may be numeric or
string. Strings must be surrounded by double quotes, and may contain
commas, colons, spaces, and other punctuation.

Description:

DATA statements are used to define a block of constants which will be read by READ
statements. All DATA statements must be in the program before the first READ statement;
when the first READ statement is encountered, BASIC searches for all DATA statements.
While the program is executing, each READ statement accesses the next DATA element in
order; the DATA elements are treated as a continuous list of items, regardless of how they
are arranged into statements. The variable type given in the READ statement must agree
with the corresponding constant in the DATA statement.

Example:

100 [INTEGER J, K

110 REAL X

120 STRI NG A$

130 PRI NT "DATA statenment exanpl e”

140 ' Data table for program

150 DATA 4.77,2,3,4,5,23,83,8 ' Must be before first READ
160 DATA 999, 3. 14159, 1. 6667

170 DATA 893. 664, 999, "Data 1"

180 DATA "This is a test: Hi, everybody"

190 FOR J=1 TO 3

200 READ K: PRI NT K " Print first 3 elenents

210 NEXT J

220 READ J

230 I F J<>999 THEN PRI NT J: GOTO 220 " Print elenents until a 999

240 READ X

250 | F X<999.0 THEN PRI NT X: GOTO 240 " Print elenents until a 999

260 READ A$: PRINT A$ " Print first string

270 READ A$: PRINT A$ " Print second string

280 READ X: PRINT X ' Wap around, do first one again

This produces the following output when run:

DATA st at enent exanpl e

NORWNA

8-33

83

8

3.14159

1. 66670

893. 66381

Data 1

This is a test: Hi,
4. 77000

The two 999 values in lines 160 and 170 are used as flags to indicate the end of portions of
the table; this makes it easy to add to the DATA table without needing to change the
program where the READ statements are executed. Inline 270, it prints "This is a test: Hi,
" because the string variable A$ defaults to 20 character maximum length, so it truncates
the rest of the string when it is read. Note that in line 280, it reads beyond the end of the
DATA table, so it wraps around and reads the first value in the table.

Related topics:
READ, RESTORE

8-34

DEF Statement

Summary:
The DEF statement marks the beginning of a user defined function.

Syntax:
DEF funcname, [argl] [,arg?2]...

Arguments:

funcname astring constant. The name to use for the function that will be defined on the
following lines; this must follow the rules for variable names.
argx a numeric or string expression. An argument to be passed to the function.

Description:
The DEF statement marks the beginning of a user defined function.

Example:

Related topics:
FNEND, Chapter 3

8-35

DEFMAP Statement

Summary:
The DEFMAP statement provides access to memory outside of the normal area accessible
by a BASIC program.

Syntax:
DEFMAP addr

Arguments:

addr an integer expression. The high order 8 bits of a 20 bit address. This is set
to -1 to access the normal 64KB BASIC program area; this is the default
value when a program starts executing.

Description:

Bear BASIC normally provides a 64KB area for the compiled program to execute in; all of
the code and data for a program reside in this area. The actual address space accessible
to the processor is 1MB, however. DEFMAP allows PEEK, WPEEK, POKE, and WPOKE
to access any address in the 1MB physical address space. Only some address areas
contain memory that may be accessed by the user; caution must be exercised when using
the DEFMAP statement. The DEFMAP value is global to all tasks; be careful when using
DEFMAP in more than one task.

The PEEK and POKE statements calculate the address to access as follows:
addr = D_ADDR * $1000 + P_ADDR AND $0FFF,

where D_ADDR is the DEFMAP address and P_ADDR is the PEEK or POKE address.
When a BASIC program starts execution, the D_ADDR value is set to -1, which causes all
PEEK and POKE commands to access the normal 64K area. When DEFMAP is executed
with any value other than -1, the D_ADDR is set to that value, and all succeeding PEEK
and POKE commands access addresses that are in a 4KB block somewhere in the 1MB
address space. For instance, to access physical address $20123, the program must
perform a DEFMAP $20, followed by a PEEK($123). Note that when using DEFMAP with a
value other than -1, the PEEK/POKE address is truncated to 12 bits (ie. ANDed with
$OFFF). If the DEFMAP address is set back to -1, then the PEEK/POKE address
translation is disabled, and all 16 bits are used to specify a logical address in the normal
64K BASIC area.

Example:

100 INTEGER X, Y,M C
110 STRING A$(20), B$(1)

120 FOR X=0 TO 7 ' Display 8 4K bl ocks of nenory
130 M=$20 + X ' Display starting at $20

140 DEFMAP M ' Set menory mappi hg base address
150 C=0: A$="'

160 FOR Y=0 TO $FFF Do a 4K bl ock

170 IF C = O THEN PRINT: FPRINT "H2H3X4z", MY ' Display address

180 FPRINT "H2X1Z", PEEK(Y) " Displ ay hex val ue

190 B$="." ' Default to period character

8-36

200
210
220
230
240
250
260

| F PEEK(Y)>31 AND PEEK(Y)<$7F THEN B$=CHR$(PEEK(Y))
' Build string of characters to display

A$ = CONCAT$(A$, B$)
CcC + 1
IF C = 16 THEN PRI NT A$:

NEXT Y
NEXT X
PRI NT

I ncrement character counter for |ine

C=0: A$=""

Finish this |ine

This example displays the contents of memory as hexadecimal values and ASCII
It displays 32 KB of memory
starting at $20000; change line 120 to set the number of 4 KB blocks to display, and
change line 130 to set the starting address. The Boss Bear stores the source code for the
user's BASIC program starting at $20000, so this program will show how Bear BASIC

characters (a "memory dump" in computer terminology).

stores a program. Here is a sample of the program's output:

20000
20010
20020
20030
20040
20050
20060
20070
20080
20090
200A0
20080
200C0
200D0
200EO0
200F0
20100
20110
20120
20130

64
02
04
00
3A
20
79
30
20
3A
53
6E
00
F1
01
44
00
20
2C
6C

00
00
00
00
20
62
3A
82
73
00
65
67
96
04
00
6F
20
3A
FO
61

42
2C
28
3D
B6
6C
00
FO
74
8C
74
20
00
00
3D
20
3A
02
02
79

3A
FO
32
3A
20
6F
82
00
61
00
20
62
32
3D
30
61
3A
B8
00
20

Related topics:

POKE, PEEK, WPOKE, WPEEK, Memory Map

3A
03
30
0C
44
63
00
00
72
0D
6D
61
58
22
20
20
0D
3A
2C
61

11
00
29
BO
69
6B
FO
3A
74
B2
65
73
3A
22
54
34
B2
13
FO
64

BD
3A
2C
FO
73
73
3A
1A
69
3A
6D
65
07
3A
4F
4B
FO
BA
01
64

FO
00
F1
00
70
20
3A
B6
6E
05
6F
20
CA
00
20
20
03
22
00
72

00
6E
05
00
6C
6F
(0]}
20
67
E9
72
61
FO
A0
24
62
00
48
3A
65

00
00
00
3D
61
66
CA
44
20
FO
79
64
03
00
46
6C
87
32
12
73

2C
3D
28
30
79
20
FO
69
61
02
20
64
00
00
46
6F
30
48
B6
73

FO
31
31
20
20
6D
02
73
74
00
6D
72
3D
3D
46
63
20
33
20
3A

01
3A
29
54
38
65
00
70
20
3A
61
65
30
3A
3A
6B
54
58
44
00

00
10
3A
4F
20
6D
3D
6C
24
22
70
73
3A
OF
10
3A
48
34
69
B4

2C
c2
00
20
34
6F
24
61
32
B6
70
73
08
BO
B6
00
45
5A
73
00

FO d.B::..... ,
F1 ..,...:.n. =1

78 ..(20), (1)

37 .= =0 TO 7
4B : . Display 8 4K
72 blocks of menor
32 yi.ooii =$2
79 O....:.. Di spl ay
30 starting at $20

20 .o
69 Set nenory napp|
3A ng base address
CA ...2X =0: .
FO ="t =
20 ..=0 TO $FFF
AA Do a 4K bl ock:

4E, 0 THEN
22 :..:.."H2H8X4Z"
70 Disp

03 Iay address:

8-37

DIN Function

Summary:
The DIN (Digital INput) function reads input expander modules attached to the Boss Bear.

Syntax:
x = DIN (addr)

Arguments:
addr an integer expression. The address of the input channel to read.

Description:
One or more Divelbiss I/0O expander boards can be attached to the Boss Bear; DIN is used
to read the input modules. It returns an INTEGER value; a 0 if the input is off, or a 1 if the

input is on. addr is the input address to read; it will be a number between 0 and 127 ($00
and $7F).

DIN can also be used to read the current keypad status; for example, so that one of the
keypad buttons can be used as a "jog" button. The keypad is accessed when addr is 256
($100); the INTEGER returned is the key number (same thing returned by KEY). When the
KEY function is used to read the keypad, it has an autorepeat delay which makes it hard to
determine how long a button has been pressed. DIN just returns the status of the keypad
at the current time, disregarding the autorepeat logic. DIN reads the keypad regardless of
what the current FILE is, unlike KEY, which only reads the keypad if a FILE 6 statement
has been executed.

Examples:

100 ' Programto read all 16 inputs on |I/O page 3.
110 |INTEGER J, K

120 FOR J=$%$30 TO $3F

130 K=DI N(J)

140 PRI NT J, K

150 NEXT J

100 ' Programto display the current keypad status.
110 | NTEGER J

120 LOCATE 1,1

130 FPRINT "13Z", DI N($100)

140 GOTO 120

Related topics:
DOUT, BBOUT, BBIN, Chapter 7, KEY, Chapter 5

8-38

DIR Direct Command

Summary:
The DIR direct command displays a list of files contained on the user's EPROM.

Syntax:
DIR

Arguments:
DIR needs no arguments.

Description:

DIR displays a list of files stored on the EPROM that is currently in the EPROM
programming socket. It displays the file name, file number (files are numbered
sequentially), file type (source or code), and file size (truncated to the nearest KB). It also
displays the amount of free space on the EPROM, truncated to the nearest KB.

Example:

Related topics:
LOAD, SAVE

8-39

DOUT Statement

Summary:

The DOUT (Digital OUTput) statement controls output expander modules attached to the
Boss Bear.

Syntax:

DOUT addr, state

Arguments:

addr an integer expression between 0 and 127. The address of the output
channel to turn off or on.

state an integer expression. A value of 0 turns the output off; any other value turns

the output on.

Description:

One or more Divelbiss 1/0 expander boards can be attached to the Boss Bear; DOUT is
used to control output modules.

Example:

100 ' Programto turn all 16 outputs on I/ O page 2 off, then del ay
110 ' for 2 seconds, then turn them on.

120 I NTEGER J, K

130 FOR J=0 TO 1 " Turn outputs off, then on

140 FOR K=$20 TO $2F " Access all outputs on I/0O page 2
150 DOUT K, J

160 NEXT K
170 WAI'T 200
180 NEXT J

Related topics:
DIN, BBOUT, BBIN

8-40

DOWNLOAD Direct Command

Summary:

The DOWNLOAD direct command disables echoing to the serial port to provide for more
reliable program downloading.

Syntax:
DOWNLOAD

Arguments:
DOWNLOAD needs no arguments.

Description:

Normally, the Boss Bear echoes all characters entered at the command line prompt back to
the terminal, to allow the user to see what is being typed. When downloading a program,
however, this causes errors to be scrolled off of the screen. The DOWNLOAD command
solves this by disabling the console echo until either an END command or a ctrL-z is
received; any errors that are encountered are still displayed. After the END or cTtrL-z is
received, the message Warning: duplicate line numbers detected is displayed if two lines were
entered with the same line number; this may or may not be a problem, depending upon the
programmer's style.

The easiest way to use DOWNLOAD is to put the DOWNLOAD command as the first line in
the file containing the BASIC program (don't put a line number in front of DOWNLOAD) and
put END as the last line in the file (again, with no line number). Then, when the file is sent
to the Boss Bear, only error messages will be displayed. Many editors put a cTrL-z at the
end of files; if this is the case, then the END does not need to be entered into the file, since
DOWNLOAD will enable echoing again when it sees the cTrL-z.

Another advantage of using DOWNLOAD is that the file transfer to the Boss Bear will be
faster, since the Boss Bear must use processor time to echo the characters back.

Note that if an error is detected while downloading a file, the Boss Bear may miss some
characters while it is printing the error message, which will cause other errors to be
displayed that aren't actually valid.

Example:

The following shows how to create a file that will download as described above.
DOANLOAD

100 ' This is the BASIC programto be downl oaded

110 PRINT "This is a BASIC progrant

END

8-41

EDIT Direct Command

Summary:
The EDIT direct command allows the programmer to modify the BASIC source code.

Syntax:
EDIT linenum
or

E linenum

Arguments:
linenum a valid BASIC line number. The number of the line to be modified.

Description:

EDIT invokes the Bear Basic line editor. The line is displayed with the cursor positioned at
the first character. The following function keys can be used:

Control S- Move the cursor left one position.

Control D - Move the cursor right one position.

Control G - Delete the character at the cursor.

Backspace - Delete the character one space to the left of the cursor.

Control A - Beginning of Line.

Control F - End of Line.

Control V- Toggle insert mode on and off.

If insert mode is off, any character entered will replace the character at the cursor and will
move the cursor to the right one space. If insert mode is on, any character entered will be
added at the cursor position, causing the entire line at the cursor and to the right of the
cursor to move right one space. A carriage return will cause the modified line to be sent to
the compiler. The editor will only work with a line short enough to fit on a single 80
character line.

Note that EDIT will not work correctly unless the console terminal is set up to emulate an
ADM-3A or ADM-5 terminal type.

8-42

EEPEEK Function

Summary:
The EEPEEK function returns the value stored at the specified address in the EEPROM
memory.

Syntax:
x = EEPEEK (addr)

Arguments:

addr an integer expression between 0 and 991 (for the 2K EEPROM), between 0
and 4063 (for the 8K EEPROM), or between 0 and 223 (for the UCP). The
address to be read from.

Description:

The Boss Bear can be purchased with an optional EEPROM memory device installed; this
can be either a 2KB or 8KB device. The EEPEEK function operates in a similar fashion to
the WPEEK function, except that it reads from the EEPROM instead of from the RAM.
EEPEEK returns the INTEGER value stored at addr in the EEPROM; note that the address
is specified as an offset from the beginning of the EEPROM. Unlike the EEPOKE
statement, EEPEEK can be performed an unlimited number of times, and it operates very
quickly (approximately 40 microseconds). The EEPROM can also be read by performing a
DEFMAP $60 followed by a PEEK or WPEEK; this technique should be avoided, however,
because the timing used by the EEPEEK is matched to the EEPROM, which may be slower
than the RAM. The EEPEEK statement takes about 100 microseconds to execute.

To store real variables in the EEPROM, the variable must be stored using two EEPOKEs
and retrieved using two EEPEEKs. The second example demonstrates this.

UCP: The UCP uses a Touch Memory device for non-volatile storage. This device cannot
be accessed using DEFMAP, as described above for the Boss Bear's EEPROM.
The EEPEEK statement on the UCP takes about 150 milliseconds to execute, which
is much slower than the Boss Bear.

Examples:

100 ' Programto read the first 20 val ues from EEPROM
110 I NTEGER J, K

120 FOR J=0 to 19

130 K=EEPEEK(J)

140 PRI NT J, K

150 NEXT J

8-43

100
110
120
130
140
150
160
180
190
192
194
200
300

REAL X, Y, HOLD, HOLD2

| NTEGER FI RST, SECOND
X=3. 45

FI RST=WPEEK(ADR(X))
SECOND=WPEEK(ADR(X) +2)
EEPOKE 10, FI RST

EEPOKE 11, SECOND
HOLD=EEPEEK(10)
HOLD2=EEPEEK(11)

WPOKE ADR(Y), HOLD
WPOKE ADR(Y) +2, HOLD2
PRI NT"Val ue of Y is":Y
PRI NT"Val ue of 10=";: PRI NT EEPEEK(10)

Related topics:
EEPOKE, PEEK, POKE, WPEEK, WPOKE, APPENDIX H

8-44

EEPOKE Statement

Summary:

The EEPOKE statement stores a value at the specified address in the EEPROM memory.
Note that this statement takes approximately 20 milliseconds to return. Also, each byte of
the EEPROM can only be written to approximately 10,000 times before the byte fails.

Syntax:
EEPOKE addr, value

Arguments:

addr an integer expression between 0 and 991 (for the 2K EEPROM), between 0
and 4063 (for the 8K EEPROM), or between 0 and 223 (for the UCP). The
address to be written to.

value an integer expression. The value to write into the EEPROM.

Description:

The Boss Bear can be purchased with an optional EEPROM memory device installed; this
can be either a 2KB or 8KB device. The EEPOKE statement operates in a similar fashion
to the WPOKE statement, except that it writes to the EEPROM instead of to the RAM.
EEPOKE stores the INTEGER value at addr in the EEPROM; note that the address is
specified as an offset from the beginning of the EEPROM. Remember that, due to the
characteristics of EEPROM technology, each byte in the EEPROM can only be written to
approximately 10,000 times before failing; if the value to be written matches the value
already stored at that location, then EEPOKE won't perform the write operation, so that it
doesn't waste one of the 10,000 write cycles. Note also that it takes about 20 msec for this
statement to return, since EEPROMSs write each byte in about 10 msec. The EEPROM can
also be written to by performing a DEFMAP $60 followed by a POKE or WPOKE; this
technique should be avoided, however, because EEPOKE handles the 20 msec delay
required by the EEPROM, whereas POKE and WPOKE do not take this delay into account.

See EEPEEK for an example demonstrating how to store real numbers in the EEPROM.

UCP: The UCP uses a Touch Memory device for non-volatile storage. There are no
limitations on the number of times that data can be written to this device. The
EEPOKE statement takes about 150 msec on the UCP.

Example:

100 ' Programto wite 20 val ues into EEPROM
110 [INTEGER J, K

120 FOR J=0 to 19

130 K=J*3+7

140 EEPCKE J, K

150 NEXT J

Related topics:
EEPOKE, PEEK, POKE, WPEEK, WPOKE, Appendix H

8-45

EPROM LOAD Direct Command

Summary:
The EPROM LOAD direct command loads a BASIC program from the user's EPROM.

Syntax:
EPROM LOAD [filenum]

Arguments:

filenum an integer number from 1 through the number of files stored on the EPROM.
The number of the file to load.

Description:
If filenum is specified, then EPROM LOAD loads source file number filenum from the
EPROM, otherwise, it loads the last source file from the EPROM. EPROM LOAD is
identical to LOAD.

Example:
EPROM LQOAD Loads the last source file.
EPROM LQOAD 3 Loads the third source file.

Related topics:
EPROM SAVE, LOAD, SAVE

8-46

EPROM SAVE Direct Command

Summary:

The EPROM SAVE direct command saves the BASIC source or compiled code that is in
memory to the user's EPROM.

Syntax:
EPROM SAVE [CODE] [filename]

Arguments:

filename a text string, up to 10 characters long. The filename to be stored on the
EPROM. The name will be stored in uppercase, even if it is entered in
lowercase.

Description:

EPROM SAVE stores the current BASIC source program onto the user's EPROM. EPROM
SAVE CODE stores the current compiled code onto the user's EPROM. If filename is
specified, then it is stored with the file. The file name for a source programis just used as a
comment, to indicate what the program does. With compiled code, however, the file's
name can be used with the CHAIN statement. It is possible to have more than one file on
an EPROM with the same name; these files will be differentiated by their file numbers.

Example:

EPROM SAVE Saves the BASIC source with no filename.
EPROM SAVE CODE Saves compiled code with no filename.
EPROM SAVE Pr ogr amil Saves the BASIC source as PROGRAM1.
EPROM SAVE CODE t est Saves compiled code as TEST.

Related topics:
EPROM LOAD, SAVE, LOAD

8-47

ERASE Statement

Summary:
The ERASE statement erases the current display device.

Syntax:
ERASE

Arguments:
ERASE needs no arguments

Description:

ERASE sends the clear-screen command to the currently active FILE. It works for the
console terminal (FILE 0) and the front panel display (FILE 6, which can be either LCD or
VFD). Note that in order for this to work correctly with FILE 0, the terminal must be set to
emulate an ADM3 or ADM5 terminal.

Example:

100 I NTEGER J

110 FOR J =1 TO 1000
120 FI LE O: PRINT "*";
130 FILE 6: PRINT "*";
140 NEXT J

150 WAIT 100

160 CLS

170 FILE 0: ERASE

Related topics:
CLS

8-48

ERR Function

Summary:
The ERR function returns the number corresponding to the last error that was detected.

Syntax:
x = ERR

Arguments:
ERR needs no arguments.

Description:

Bear BASIC detects two kinds of errors at runtime: 1/O errors and program errors. An |/O
error indicates that an I/O device reported an error during a transfer; this happens most
often with serial data transfer. A program error indicates that a serious program error was
detected, such as Return Wthout Gosub or Subscript Qut of Range. The ERR function
returns the integer number that corresponds to the most recently detected error:

0 $0 No error

1 $1 Serial transmission timeout

2 $2 Failure programming EEPROM

16 $10 COM1 receive error (overrun, parity, framing)
17 $11 COM2 receive error (overrun, parity, framing)
256 $100 Undefined error

263 $107 Expression Error

264 $108 String Variable Error

266 $10A Line Number Does Not Exist

267 $10B Task Error

271 $10F RETURN Without GOSUB

272 $110 Subscript out of Range

273 $111 Overflow

275 $113 Task Mismatch

276 $114 Function Error

277 $115 String Length Exceeded

280 $118 lllegal Print/Input Format

281 $119 String Space Exceeded

282 $11A lllegal File Number

283 $11B Improper Data to INPUT Statement

285 $11D Data Statement Does Not Match Read
286 $11E Failure Programming EPROM or EEPROM

The error numbers greater than 255 ($FF) are fatal program errors that will cause the

program execution to stop; they can be trapped using JVECTOR and address $13 to jump
to a task when a fatal error occurs (see JVECTOR). The error numbers up to 255 ($FF)

8-49

are nonfatal I/O errors that can be handled with the ON ERROR statement or by checking
the ERR function periodically.

Note that when ERR is referenced, it returns the most recent I/O error detected and resets
the 1/0 error to 0. This means that an error on one device could overwrite an error on
another device if ERR isn't checked often enough. It also means that the ERR value must
be read into another variable if it will be needed again (see the example below). A
successful I/0O operation won't reset the 1/O error value to 0; if a character is received on
COM1 with a parity error and then other characters are received successfully, when ERR is
checked it will return 16 to indicate that a receive error occurred on COM1.

Example:

100 I NTECGER J, K

110 K=KEY

120 | F K<>0 THEN PRI NT CHR$(K);

130 J=ERR

140 |IF J<>0 THEN FILE 6: PRINT "Error ";J: FILEO
150 @Or0 110

Run this example with the terminal set to 9600 bps, even parity, 8 data bits, and 1 stop bit.
Some of the ASCII characters sent to the Boss Bear will generate an error 16, because
those characters will cause a framing error when received by the Boss Bear, which is using
9600 bps, no parity, 8 data bits, and 1 stop bit. The value of ERR is stored in the variable J
in line 130 because it may be needed twice in line 140. If line 130 were removed and J in
line 140 were replaced with ERR, then it would always print "Error 0", because the first
reference to ERR would set the error status back to 0.

Related topics:
ON ERROR, JVECTOR, Chapter 11

8-50

ERROR Direct Command

Summary:
The ERROR direct command enables error checking in the compiled BASIC program.

Syntax:
ERROR

Arguments:
ERROR needs no arguments.

Description:

ERROR turns on the compiler's runtime error checking software. It is the converse of
NOERR. When Bear BASIC is first started, all runtime error checking is on. It stays on
until explicitly disabled by NOERR. Runtime error checking is essential in most programs
to insure that mistakes don't "blow up" the compiler. For example, if a "SUBSCRIPT OUT
OF RANGE" error were not detected, a program could write over itself, causing
unpredictable and undesirable results.

Like NOERR, ERROR modifies the code generated during compilation of the program, so it
must be specified before the program is RUN or COMPILEA (if you have used NOERR in
the Bear BASIC session before RUN or COMPILE). ERROR will then remain in effect
unless disabled by NOERR or NEW.

Unfortunately, the runtime error checking software makes the compiled code larger and
slower. If code size and speed are important, then the program should be compiled with
NOERR enabled after it has been debugged.

Related topics:
NOERR

8-51

EXIT Statement

Summary:

The EXIT statement causes the currently executing task to abort. When the schedule
interval specified in the RUN statement has elapsed, the task will be started at its
beginning.

Syntax:
EXIT

Arguments:
EXIT needs no arguments

Description:

EXIT causes the currently executing task to abort. When the EXIT is encountered, the task
stops until the schedule interval specified in the RUN statement elapses, at which point the
task starts over again from its beginning. Note that EXIT does not stop the task from being
rescheduled; only CANCEL can do that. Whenever EXIT is executed, it automatically turns
interrupts back on (ie. simulates an INTON). This feature is needed by hardware device
interrupt handlers to insure that the device interrupt handler can return just as interrupts are
re-enabled.

Example:

100 I NTEGER J, K
110 PRINT "Press any key to stop"

120 J=0: RUN 1,100 ' Start task 1 with 1 sec reschedul e.
130 K=CGET " Wait for a key.

140 CANCEL 1 ' Cancel task 1.

150 PRINT "WAit 2 seconds”: WAIT 200 " Wait for it to stop.

160 STOP ' Halt the program

200 TASK 1

210 PRINT J;

220 J=J+1

230 WAIT 50 " Wit for .5 seconds.

240 PRINT "*"; CHR$(13); ' Stay on sane line - print CR
250 EXIT ' Abort task, go get reschedul ed.

Related topics:
RUN, CANCEL, STOP, Chapter 5

8-52

EXMOD Statement

Summary:
The EXMOD statement is used to communicate with any of the intelligent expander
modules.

Syntax:

EXMOD port, st$ [, numbytes]

Arguments:

port expansion port number. 3, 4, or 5 corresponding to J3, J4, or J5.

st$ string containing data to transfer to the module. If we are reading from the

module, then the return data will be passed back in this string, also.
numbytes this parameter is only specified when reading from the module. It is the
number of bytes to be returned back from the module.

Description:

Some of the Divelbiss I/O expander modules are classed as intelligent expanders, which
means that they are a complete microprocessor system that acts as a slave processor to
the Boss Bear. These modules offload complex I/O processing tasks from the Boss Bear's
processor, allowing faster system throughput and better I/O timing accuracy. Since these
modules are custom-programmed to perform their specified task, the commands and
parameters for each module are unique. The EXMOD statement performs the
communications between the Boss Bear's processor and the module's processor. The
exact form of this communications depends on the module being used; refer to the
module's data sheet to find detailed information.

EXMOD writes a command (stored in st$) to the module plugged into the expansion
connector referred to by port. If the command causes a response from the module, then
EXMOD reads numbytes of data from the module, which is then returned in st$. This is not
currently being implemented on the UCP.

Example:

100 ' Exanple to show EXMOD comuni cating with stepper nodul e.
110 | NTEGER PORT, CHNL: STRI NG EX$(10)

200 PORT=4: CHNL=1 ' Modul e in J4, stepper channel 1
300 ' Set acceleration and decel eration rat es for channel 1.

310 EX$=CONCATS$(CHR$($83), CHR$(CHNL)) Command $83 and channel nunber
320 EX$=CONCATS(EX$, MKI $(2000)) ' Accel rate = 2000 pul se/ second
330 EX$=CONCAT$(EX$, MKI $(1500)) ' Decel rate = 1500 pul se/ second
340 EXMOD PORT, EX$ ' Send data to nodul e

400 ' Read status back from stepper nodul e.

410 EX$=CONCATS(CHR$($84) CHR$(CHNL)) ' Command $84 and channel nunber
420 EXMOD PORT, EXS$, 7 ' Read status from nodule (7 bytes)
430 FPRINT "H2", ASC(EX$) ' Display nodul e node in hexadeci mal

440 PRINT CVI (M D$(EXS$, 2, 2)) ' Display | ow word of step count
450 PRINT CVI (M D$(EXS$, 6, 2)) ' Display current pulse rate

Related topics:
Chapter 9

8-53

EXP Function

Summary:
The EXP function calculates the exponential function.

Syntax:
x = EXP (expr)

Arguments:
expr a numeric expression.

Description:

The EXP function returns e®*', which must be a numeric expression. The result is returned
as a REAL value. This is the converse of the natural logarithm function (LOG).

By using the properties of logarithms, a number X can be raised to a power Y (XY) using
EXP(LOG(X) *Y) .

Example:

100 REAL X, Y

110 PRI NT EXP(0. 35)

120 X=-1.82

130 Y=EXP(X)

140 PRINT "Exp value of ";X " is ":Y
150 PRINT "4 cubed = ": EXP(LOJ 4)*3)

This produces the following output when run:

1.41834
Exp value of -1.82000 is .16171
4 cubed = 64.00003

Related topics:
LOG, LOG10

8-54

EXPMEM Statement

Summary:
The EXPMEM statement stores and retrieves memory form the expanded memory
board on the UCP.

Syntax:
EXPMEM read/write, vartype, block, reg_number, variable, status
Arguments:
read/write an integer value of 0 or 1. This indicates what type of memory
transfer:
0 for READ, or 1 for WRITE.
vartype an integer value of 0, 1, or 2. This indicates the type of variable to
use: 0for INTEGER, 1 for REAL, 2 for STRING.
block an integer expression of 0, 1, 2, or 3. This value specifies which

memory block to use.

reg_number an integer expression from 0 to 65535. This value specifies which
memory register to use.

variable The value to be used in the memory transfer. The type depends
on the vartype argument.
status an integer expression. This will hold the status of the operation; a

0 will indicate a successful operation, while a nonzero value will
indicate that an error occurred.

Description:

The EXPMEM statement is used to save and retrieve values stored in the optional
expanded memory board on the UCP. The expanded memory board hold an additional
512K of battery backed memory to store large amounts of data. The memory is divided
up into four blocks of 128K. Each INTEGER uses 2 bytes, each REAL uses 4 bytes,
and each STRING uses 32 bytes thus allowing each block to hold 65536 INTEGERSs or
32768 REALs or 2048 STRINGs. Caution must be taken to not to use more than one
variable type in a single block. STRINGs must be defined as 32 bytes long when using
the EXPMEM statement. When reading a STRING from the expanded memory, a 32
byte STRING is always returned, regardless of what had been stored.

Example:

100 INTEGER A,B,C,D,E,F
110 REAL H,I

8-55

120
130
140
150
160

200
210
220
230
240
250
260
270
280
290

300
310
320
330
340
350
360
370
380
390

400
410
420
430
440
450
460
470
480
490
500

510

' make sure that the strings are 32 bytes long

STRING J$,K$(32) ,L$(32)
K$="01234567890123456789012345678901"
J$="ok" :C=0:A2=0

PRINT "start"

FOR B=0 TO 2047

EXPMEM 1,2,A,B,K$,D

IF D <> 0 THEN ?"STATUS ERROR":STOP
EXPMEM 0,2,A,B,L$,D

IF D <> 0 THEN ?"STATUS ERROR":STOP
IF K$ <> L$ THEN J$="problem":C=C+1
L$=" "

NEXT B

PRINT J$;" ";C;" ERRORS ACCRUED"

PRINT "block 0 finished":J$="ok":C=0:A=1

FOR B=0 TO 32767

I=0:H=B

EXPMEM 1,1,A,B,H,D

IF D <> 0 THEN ?"STATUS ERROR":STOP
EXPMEM 0,1,A,B,I,D

IF D <> 0 THEN ?"STATUS ERROR":STOP
IF H <> I THEN J$="problem":C=C+1
NEXT B

PRINT J$;" ";C;" ERRORS ACCRUED"

PRINT "block 1 finished":J$="ok":C=0:A=2

FOR E=1 TO 2

FOR B=0 TO 32767

EXPMEM 1,0,A,B*E,B,D

IF D <> 0 THEN ?"STATUS ERROR":STOP
EXPMEM 0,0,A,B*E,F,D

IF D <> 0 THEN ?"STATUS ERROR":STOP
IF F <> B THEN J$="problem":C=C+1
NEXT B

NEXT E
PRINT J$;" ";C;" ERRORS ACCRUED"
PRINT "block 2 finished"

PRINT "finished"

initialize the string

loop for 2048 springs

store string K$ at register B
check for error

read the string into L$

check for error

make sure they are the same

show errors if any

loop for 32768 reals

store in block 1 register B
check for error

read the real into F

check for error

make sure they are the same

show errors if any

must make the loop bigger
loop for 65536 integers

store in block 2 register B*E
check for error

read the integer into F

check for error

make sure they are the same

show errors if any

This program writes STRINGs into block 0, REALs into block 1, and INTEGERs into
block 2, checking the values as there written.

Related topics:

8-56

FILE Statement

Summary:
The FILE statement causes all subsequent character I/0 to be performed with the specified
device.

Syntax:
FILE fnum
Arguments:
fnum an integer expression. The file number to access; one of the following:
0 COM1 serial port (the "console" port)
1 future expansion
2 future expansion
3 future expansion
4 future expansion
5 COM2 serial port
6 onboard display and keypad
7 future expansion
Description:

The FILE statement causes all subsequent 1/0 from PRINT, FPRINT, INPUT, INPUTS,
FINPUT, GET, KEY, LOCATE, and GOTOXY to be performed with the specified device. It
sets the file number for the task that issues the statement; each task maintains its own
current file number. The file number for each task defaults to file 0, not to the file number
used in the preceding task.

Example:

100 PRINT "This is task 0" ' Qutput to console (COMVL).
110 RUN 1,100: RUN 2,250: RUN 3, 325

120 WAIT 1000: STOP " Allow tasks to run a few times.
200 TASK 1

210 FILE 5 ' CQutput to COwR

220 PRINT "This is task 1": EXIT

300 TASK 2

310 FILE 6 ' Qutput to onboard display.
320 PRINT "This is task 2": EXIT

400 TASK 3

410 PRINT "This is task 3" ' Qutput to console (COWVL).

420 FILE 6 ' Also to onboard display.
430 PRINT "Also task 3": EXIT

Related topics:
PRINT, FPRINT, INPUT, INPUT$, FINPUT, KEY, GET, LOCATE, GOTOXY, CLS

8-57

FINPUT Statement

Summary:
The FINPUT statement provides a simple way to get numeric entry from the user.

Syntax:
FINPUT format, variable

Arguments:

format a string expression. This defines the format of the number to get from the user. The
following are valid:
Ux unsigned integer, where x is the number of digits allowed.
Ix signed integer, where x is the number of digits allowed, not
including the minus sign (ie. "12" will allow the user to type -23).
Fx.y real, where x is the number of digits to the left of the decimal
point, and y is the number to the right.
variable integer or real variable name. The value entered will be put into this variable.

Description:

FINPUT provides a simpler way to get numeric input from the user. It will only accept
entries that follow the specified format; the user will not be allowed to deviate from this
format. For

example, if a 2 digit product code must be entered, the statement FI NPUT "1 2", PRDCOD Will
only allow 2 digits to be entered. If the user presses backspace (when using a terminal with
FILE O or 5) or CLEAR (when using the built in keypad) after entering some digits, then
these digits will be erased and the user can start again; the cursor will be at its original
starting position. If the format string does not follow the form recognized by Bear BASIC,
then FINPUT will instantly return zero, without waiting for input from the user.

FINPUT should not be used in an interrupt task, because it re-enables interrupts and allows
multitasking to continue. Depending upon what the other tasks are doing at the instant that
the interrupt task executes, FINPUT could cause the system to lock up.

Example:

100 | NTEGER J

110 REAL X

120 CLS: LOCATE 10,1

140 PRINT "Enter product nurrber (O 99) >

150 LOCATE 10, 31: FINPUT "I2"

160 LOCATE 12,1

170 PRI NT "Enter tenperature setpoint (180.00-209.99) >
180 LOCATE 12, 46: FINPUT "F3.2", X

190 IF X < 180.0 OR X >= 210.0 THEN GOTO 160

Related topics:
INPUT, FPRINT

8-58

FNEND Statement

Summary:
The FNEND statement marks the end of a user defined function.

Syntax:
FNEND

Arguments:
FNEND needs no arguments

Description:

FNEND is used in conjunction with DEF to create a user defined function: DEF marks the
beginning of the function, and FNEND marks the end.

Example:

100 | NTEGER RI GHTN

110 STRING TEST$, RIGHT$(127), RI GHTA$(127)

120 ' This function returns the N rightnost characters of AS$.
130 DEF RIGHT$ (RI GHTA$, RI GHTN)

140 Rl GHT$=M D$(Rl GHTA$, (LEN(RI GHTAS$) - Rl GHTN+1, RI GHTN)
150 FNEND

160 TEST$="This is a test"

170 PRINT TESTS$;" <"; RIGHT$ (TESTS, 4);">"

This produces the following output when run:

This is a test <test>

Related topics:
DEF, Chapter 3

8-59

FOR Statement

Summary:
The FOR statement is used with the NEXT statement to implement a loop control structure
to execute a range of lines multiple times.

Syntax:

FOR variable = exprl TO expr2 [STEP expr3]

Arguments:

variable an integer or real variable, to be used as the loop counter. This must be a
non-subscripted variable.

exprl a numeric expression. This is the starting value of the loop. variable will be
set to this value before executing the body of the loop for the first time.

expr2 a numeric expression. This is the ending value of the loop. variable is tested

against this value after executing the body of the loop; if variable is less than
expr2 then the loop will be executed again.

expr3 an optional numeric expression. If specified, this value will be added to
variable each time through the loop. If this isn't specified, then variable will
be incremented by 1 each time.

Description:

The FOR..NEXT construct specifies that a series of lines should be executed multiple
times in a loop. Program lines following the FOR statement are executed until the NEXT
statement is encountered, at which time variable is incremented by expr3, or by 1 if expr3is
not specified. If variable is less than expr2, then BASIC jumps back to the statement
immediately following the FOR statement, and this process repeats. If variable is greater
than or equal to expr2, then BASIC continues execution with the statement following the
NEXT statement. For example, the statement FOR X=4 TO 13 STEP 2 will cause the loop
to be executed 5 times, for 4, 6, 8, 10, and 12.

In order to cause a loop to count downwards, a negative STEP value may be used. If expr3 is
negative, then variable will be decremented each time through the loop. For example, the
statement FOR J=10 TO 1 STEP -1 will cause the loop to be executed 10 times, for 10, 9,
8, ... 1.

Note that the body of the loop is always executed once, because the test variable<expr2 is
performed when NEXT is encountered.

It is possible to alter the value of variable inside the body of the loop. Extreme care should
be used when doing this, however, as it can result in very subtle problems. In general,
variable should not be altered, except by the FOR statement itself.

A FOR..NEXT loop may be used inside of another FOR..NEXT loop; this is called a nested

loop. Each loop must have a unique variable name in the variable field. The inside
FOR..NEXT loop must be entirely enclosed in the outer one.

8-60

Example:

100 I NTEGER J,K

110 REAL X Y

120 FOR J=3 TO 8

130 FOR K=1 TO 7 STEP 2
140 FPRI NT "1212X2Z",
150 NEXT K: PRI NT

160 NEXT J

170 PRI NT

180

190 FPRI NT "F3. 1F7. 3",
200 NEXT X

This produces the following output when run:

o~NOUTh W
RPRRRRER

360.
337.
315.
292.
270.
247.
225.
202.
180.
157.
135.
112.

90.

67.

45,

22.

QUIOUI0UIOUITOUIOUIOUTIO V1O

Related topics:

NEXT

oNOOThW
WWWwWwww

LI B SE

oNOOUThW
gororororol

. 000
. 383
. 707
. 924
. 000
. 924
. 707
. 383
. 000
. 383
. 707
. 924
. 000
. 924
. 707
. 383
. 000

O~ U W
ENENENENENEN

J, K

FOR X=360.0 TO 0.0 STEP -22.5

X, SIN(X)

8-61

FPRINT Statement

Summary:
The FPRINT statement allows formatted printing to the current FILE.

Syntax:
FPRINT format, argl [,arg2]...

Arguments:
formata string expression. This specifies how the following arguments are to be printed.
The following symbols are valid:
Fn.x prints n digits before the decimal point and x digits following it.
Leading zeros are converted to spaces, and trailing zeros are
left as zeros. No more than 6 positions following the decimal
point are allowed.
Hn prints n hexadecimal digits. Leading zeros are printed.
In prints n integer digits. Leading zeros are converted to spaces.
Sn print n characters of a string. If the string more than n
characters long, then the first n characters are printed. If the
string is shorter than n characters, then trailing spaces are

printed.
Un print n unsigned integer digits. Leading zeros are converted to
spaces.
Xn prints n spaces.
Z suppresses the carriage return at the end of the line. This is
only legal at the end of the format string.
argx a numeric or string expression. Each argument must match the

corresponding entry in the format string.

Description:

FPRINT is a more sophisticated version of the PRINT statement which allows the
programmer to control the format of the data output by the program. FPRINT prints each
argument in the list of expressions using the corresponding control information from the
format string (format, above). The type of each expression must match it's corresponding
control string in format; a runtime error will occur if the types do not match. The specified
field widths are strictly enforced; each expression is forced to fit in it's field. If a numeric
value is too large to fit in the specified field, then the field is filled with asterisks instead. For
example, if a format of "H2" is given, and the number to be output is $123, then "**" will be
printed. For a string field, the string is truncated to fit in the specified field.

FPRINT should not be used in an interrupt task, because it re-enables interrupts and allows

multitasking to continue. Depending upon what the other tasks are doing at the instant that
the interrupt task executes, FPRINT could cause the system to lock up.

8-62

Examples:

100 INTEGER J, K

110 REAL X

120 J=123: K=$F7: X=38.8746

130 FPRINT "I15X2H4F5. 2", J, K, X

This produces the following output when run:

123 O0O0F7 38. 87

Two spaces are printed before the value of J because the field width is setto 5. Two space
are printed by the "X2" format in order to separate J and K. Two zeros are printed before
the value of K because the field width is set to 4. The fractional part of X is truncated to two
digits because the field with is "F5.2".

100 | NTEGER J

110 STRING A$, B$

120 J=40000

130 FPRINT "I317U7", J, J, J

140 A$="Hell o0": B$="There it is."
150 FPRINT "S5S2S5", A$, ", ", B$

This produces the following output when run:

*** 25536 40000
Hel | o, There

In this example, it is important to remember that the representation of a number is different
than the value of a number; the same numeric value may be represented many different
ways. In particular, the hexadecimal number $9C40 can be represented as a signed
integer as -25536, or it can be represented as an unsigned integer as 40000. Three
asterisks are printed because -25536 won't fit into the 3 digits allowed by the "I13" format.
The next line shows how strings are handled; B$ is truncated to the specified 5 characters.

Related topics:
PRINT, FINPUT

8-63

FUZZY Statement

Summary:

The FUZZY statement is a control algorithm for use on the UCP.

Syntax:

FUZZY array address, input 1, input 2, output 1, output 2, status

Arguments:
array an integer value of the address of the first element of the parameter
address array. The array contains all the mid values, sensitivity values, and

rules tables for the FUZZY control algorithm

input 1 an integer expression from -32767 to +32767. This is the first input
variable passed to the FUZZY routine.

input 2 an integer expression from -32767 to +32767. This is the second
input variable passed to the FUZZY routine.

output 1 an integer expression from -32767 to +32767. This is the first output
variable passed from the FUZZY routine.

output 2 an integer expression from -32767 to +32767. This is the second
output variable passed from the FUZZY routine.

status an integer expression. This will hold the status of the operation; a 0
will indicate a successful operation, a 1 indicates output 2 was beyond
the range of an integer, a 2 indicates output 1 was beyond the range
of an integer, and a 3 indicates both outputs were beyond the range of
an integer. When an output is beyond the range of an integer the
return value from the FUZZY routine will be +32767 or -32767
depending on the actual sign of the output.

Description:

The FUZZY statement supports two inputs, two outputs, seven fuzzy sets with symmetric
triangles, user-definable fuzzy set values and a return status. Typical applications include
temperature, climate, speed, position, pressure, flow, and fluid depth just to name a few.
The statement utilizes a data array which contains 106 integer values which are used by
the FUZZY statement to generate the outputs. The array address is the first value required
by the statement and provides the starting address of all of the data. Inputs 1 and 2 are
integer expressions which must be obtained and passed to the statement. In most process
control applications both inputs are obtained from the ADC statement which converts an
analog input (i.e., speed, pressure, angle, position, temperature, ...) to the UCP into
discrete numbers from 0 to 32767. The statement has three return values; output 1, output
2, and status. Outputs 1 and 2 are integer expressions which contain the results of the
Fuzzy Logic processing. The status expression will hold the status of the operation; a 0 will

8-64

indicate a successful operation, a 1 indicates output 2 was beyond the range of an integer,
a 2 indicates output 1 was beyond the range of an integer, and a 3 indicates both outputs
were beyond the range of an integer. When an output is beyond the range of an integer
the return value from the FUZZY routine will be +32767 or -32767 depending on the actual
sign of the output.

As mentioned, the statement requires 106 integer values in order to do the Fuzzy Logic
processing. Specifically there are 8 values for fuzzy set mid-points and sensitivities, 49 for
the rules for output 1 and 49 rules for output 2 for a total of 106. The data must be
contained in a data array in the following order:

input 1 midpoint, input 1 sensitivity
input 2 midpoint, input 2 sensitivity
output 1 midpoint, output 1 sensitivity
output 2 midpoint, output 2 sensitivity

rule output 1 [in1=1, in2=1] ... rule output 1 [in1=1, in2=7]
rule output 1 [in1=7, in2=1] ... rule output 1 [in1=7, in2=7]
rule output 2 [in1=1, in2=1] ... rule output 2 [in1=1, in2=7]
rule output 2 [in1=7, in2=1] ... rule output 2 [in1=7, in2=7]
Example:

The following example is for a motor speed control problem with two inputs (speed error
and rate of change of speed) and 1 output (change in speed).

80 ' Declare variables
100 INTEGER SPDERR, SPDRATE, OUT1l, OUT2, ST, DRIVE, FUZLOOP, FUZDAT (106)
110 INTEGER SETPNT, SPD, LASTSPD

115 ' Midpoint and sensitivity data
120 DATA 0,65

140 DATA 0,100

160 DATA 0,320

170 DATA 0,0

175 ' Rules for output 1
180 paTa 7,7,7,7,6,5,4
200 DATA 7,6,6,6,5,4,3
220 DATA 6,6,5,5,4,3,2
240 DATA 5,5,5,4,3,3,3
260 DATA 6,5,4,3,3,2,2
280 DATA 5,4,3,2,2,2,1
300 DATA 4,3,2,1,1,1,1

8-65

310 ' Rules for output 2

320 DATA 0,0,0,0,0,0,0

340 DATA 0,0,0,0,0,0,0

360 DATA 0,0,0,0,0,0,0

380 DATA 0,0,0,0,0,0,0

400 DATA 0,0,0,0,0,0,0

420 DATA 0,0,0,0,0,0,0

440 DATA 0,0,0,0,0,0,0

450 ' Initialize values to zero

460 SPDERR = 0: SPDRATE = 0: LASTSPD = 0: SETPNT = 0: DRIVE = 0

490 ' Read in the fuzzy data into the fuzzy array
500 FOR FUZLOOP = 0 TO 105

520 READ FUZDAT (FUZLOOP)

540 NEXT FUZLOOP

590 ' Setup task 1 to run 10 times a second
600 RUN 1,10

990 ' Infinite loop for the main loop
1000 GOTO 1000

3900 ' Task 1 to read setpoint, speed, calculate input 1 and 2, reserve last
3925 ' speed, use the FUZZY statement, use return value and add to drive,
3950 ' then output the drive.

4000 TASK 1

4020 SETPNT = ADC (1)

4040 SPD = ADC(2)

4060 SPDERR = SPD - SETPNT

4080 SPDRATE = SPD - LASTSPD

4100 LASTSPD = SPD

4120 FUZZY ADR (FUZDAT (0)) ,SPDERR, SPDRATE,OUT1,0UT2,ST
4140 DRIVE = OUT1 + DRIVE

4150 IF DRIVE < 0 THEN DRIVE = 0

4175 1IF DRIVE > 16000 THEN DRIVE = 16000
4160 DAC 1,DRIVE

4180 EXIT

The example code above is for a speed control problem. Lines 80 - 110 are for variable
declarations. Note that all variables related to the FUZZY statement are integers. Lines
115 - 170 contain the data for the midpoints and sensitivities for both inputs and outputs.
Lines 175 - 440 contains the rules for output 1 and output 2. Note that although output 2 is
not being used in the system the data is still required (all 0's). Lines 490 - 540
demonstrates the easiest way to get the fuzzy data into the data array. Typically this type
of setup will make the program easier to read and to modify. Lines 590 and 600 setup the
fuzzy control task to break the infinite loop of the main task 10 times per second. Lines
3900 - 4180 contains the fuzzy control task. The first step is to acquire the setpoint which
is read in from analog channel 1 using the ADC statement. Next, the current speed is read
from analog channel 2. Input 1 (speed error) and input 2 (rate of change of speed) are then
calculated for use as inputs to the controller. The current speed is then stored as the last
speed for use during the next execution of the task on line 4100. Finally, the FUZZY
statement is utilized with the array address, inputs 1 and 2, outputs 1 and 2, and the return
status. Output 1 is the change in the speed and thus the drive signal is added to the output
to obtain the next drive signal (line 4140) which is then limited to ensure valid data. Lastly,
the drive signal is output to the motor through D/A channel 1.

8-66

8-67

FOR MORE DETAILS ON Fuzzy LOGIC CONTROL AND USE OF THE FUZZY STATEMENT READ
APPENDIX I.

Related topics:
Appendix |

8-68

GET Function

Summary:
The GET function returns one character from the current file.

Syntax:
x = GET

Arguments:
GET needs no arguments.

Description:

The GET function reads data from the current file; it waits for the next available character
and returns it as an INTEGER value without performing any conversions or filtering.
Specifically, unlike INPUT and INPUT$, which treat the carriage return as a delimiter, GET
will return the carriage return using it's ASCII value, 13 ($0D). GET waits for the next
character to become available. In a multi-tasking program, if there isn't a character
available immediately, GET will allow another task to execute, minimizing the processor
overhead while waiting; when a character becomes available, GET will return it the next
time that the task gets to execute.

GET should not be used in an interrupt task, because it re-enables interrupts and allows
multitasking to continue. Depending upon what the other tasks are doing at the instant that
the interrupt task executes, GET could cause the system to lock up.

Example:

100 ' Programto get keys fromthe consol e and the keypad.

110 |INTEGER J, K

120 FILE 0: GOSUB 200 ' Read keys fromthe consol e.

130 FILE 6: GOSUB 200 ' Read keys fromthe keypad.

130 STOP

200 ' Subroutine to get 5 characters fromthe current file and

210 ' echo them back.
220 FORJ =1 TO5
230 K=GET

240 PRI NT K, CHR$(K)
250 NEXT J

260 RETURN

Related topics:
KEY, INPUT, INPUT$, FILE

8-69

GETDATE Statement

Summary:

The GETDATE statement retrieves the current date from the Real Time Clock.

Syntax:

GETDATE month, day, year, wday

Arguments:

month an integer variable. The month is stored in this variable. The months are
represented as 1-Jan, 2-Feb, ..., 12-Dec.

day an integer variable. The day of the month is stored in this variable. The days
are represented as 1..31.

year an integer variable. The year is stored in this variable. The years are
represented as 0..99.

wday an integer variable. The day of the week is stored in this variable. The days

are represented as 1-Sunday, 2-Monday, ..., 7-Saturday. On the UCP, this
value is always returned as 0.

Description:
GETDATE reads the current date from the Real Time Clock. Note that the Real Time Clock
is an option on the Boss Bear. GETDATE takes about 200 microseconds to execute.

UCP: The UCP uses a Touch Memory device for the real time clock. The GETDATE
statement takes about 150 milliseconds to execute on the UCP, which is much
longer than the Boss Bear.

Example:

100 | NTEGER MONTH, DAY, YEAR, WDAY

110 STRI NG WD$(22)

120 WD$="SunMonTueWedThuFri Sat "

130 GETDATE MONTH, DAY, YEAR, WDAY

140 PRINT "The date is "; M D$(WD$, WDAY*3-2, 3); " "
150 PRINT MONTH, "/"; DAY; "/"; YEAR

This produces the following output when run:

The date is Wed 10/ 24/ 90

Related topics:
GETIME, SETDATE, SETIME

8-70

GETIME Statement

Summary:

The GETIME statement retrieves the current time from the Real Time Clock.

Syntax:

GETIME hours, minutes, seconds

Arguments:

hours an integer variable. The hours are stored in this variable. The hours are
represented as 0..23, with 0 being midnight.

minutes an integer variable. The minutes are stored in this variable. The minutes are
represented as 0..59.

seconds an integer variable. The seconds are stored in this variable. The seconds

are represented as 0..59.

Description:
GETIME reads the current time from the Real Time Clock. Note that the Real Time Clock
is an option on the Boss Bear. GETIME takes about 200 microseconds to execute.

UCP: The UCP uses a Touch Memory device for the real time clock. The GETIME
statement takes about 150 milliseconds to execute on the UCP, which is much
longer than the Boss Bear.

Example:

100 | NTEGER HOUR, M N, SEC
110 GETIME HOUR, M N, SEC
120 PRINT "The tine is "; HOUR ":"; MN ":": SEC

This produces the following output when run:

The tinme is 17:25:56

Related topics:
SETDATE, SETIME, GETDATE

8-71

GO Direct Command

Summary:
The GO direct command starts the compiled code executing.

Syntax:
GO (may be abbreviated G)

Arguments:
GO needs no arguments.

Description:

GO begins execution of the most recently COMPILEd or RUN program. If the source code
has been modified, a NEW command has been executed, or an error was detected in the
last compile, then the No Conpil ed Code error will be displayed. GO is typically used to
run a program previously compiled via the RUN or COMPILE commands. If the program is
very long, then GO is faster than using RUN repeatedly, since RUN must first recompile the
program.

Related topics:
COMPILE, RUN, NEW

8-72

GOSUB Statement

Summary:
The GOSUB statement is used to call a subroutine.

Syntax:
GOSUB linenum

Arguments:
linenum a line number in the BASIC program.

Description:

It is often useful in a program to be able to execute a section of code from many places in
the program. Instead of using duplicate code in each spot that needs it, a subroutine may
be created and then called with GOSUB. When a GOSUB is encountered, program
execution continues at linenum, until a RETURN statement is executed, at which point
BASIC will transfer execution to the statement following the GOSUB. Subroutines have
three main advantages: they make the program smaller by eliminating redundant code,
they allow the logic to be debugged once and used many places, and they can make the
program easier to understand by hiding the details of the lower levels of the program.

Example:

100 REAL SLOPE(1), OFFSET(1), ADJST(1)
110 | NTEGER CHANL

120 SLOPE(0)=0.432: OFFSET(0)=11.5 ' Set up coefficients for chan O
130 SLOPE(1)=1.28: OFFSET(1)=-5.29 ' Set up for chan 1

140 ADJST(0)=ADC(2) ' Read value for chan O

150 ADJST(1)=ADC(5) ' Read value for chan 1

160 FOR CHANL=0 TO 1

170 G0suB 1000 " Perform adj ust nent
180 PRI NT "Adj usted value = "; ADIST(CHANL)

190 NEXT CHANL

200 STOP

1000 ' Subroutine to performa Y=MX+B adj ust nent .

1010 ADJST(CHANL) =SLOPE(CHANL) * ADJST(CHANL) +OFFSET(CHANL)

1020 RETURN

This produces the following output when run:

1241. 83600
465. 75000

Adj ust ed val ue
Adj ust ed val ue

Related topics:
GOTO, RETURN

8-73

GOTO Statement

Summary:
The GOTO statement transfers execution to a specific program line.

Syntax:
GOTO linenum

Arguments:
linenum a line number in the BASIC program.

Description:
GOTO linenum causes execution of the BASIC program to continue at line linenum.

Example:

100 PRINT "Line 100"
110 GOrO 200

120 PRI NT "Line 120"
130 STOP

200 PRI NT "Line 200"
210 GOro 120

This produces the following output when run:

Li ne 100
Li ne 200
Li ne 120

Related topics:
GOSUB

8-74

GOTOXY Statement

Summary:
The GOTOXY statement positions the cursor on the current FILE output device.

Syntax:
GOTOXY xpos, ypos

Arguments:

Xpos a numeric expression. The horizontal position to put the cursor at, starting at
0.

ypos a numeric expression. The vertical position to put the cursor at, starting at 0.

Description:

GOTOXY is used to position the cursor on the current FILE output device, using a
Cartesian coordinate system with (0,0) at the upper left corner. Each task maintains its
own cursor position, so that two tasks may print to a device at different locations at the
same time. GOTOXY works with the onboard display (FILE 6), as well as with COM1 (FILE
0) and COM2 (FILE 5); in order to work with FILE 0 and FILE 5, the terminal must be able
to emulate the ADM3A command set.

Example:

100 'Exanple to display a sine wave on the term nal
110 REAL X, Y: |INTEGER J

120 CLS

130 FOR J=0 TO 79 ' Use entire display

140 X=J * 360.0/ 79.0 ' Scale to 360 degrees

150 Y=SIN(X) * 8.0 + 9.0 ' Scale to +/- 8, with 0 in center
160 GOTOXY J,Y: PRINT "*"; ' Draw t he point

170 NEXT J

This produces the following output when run:

khkkkhkkhkkhkkkhkkk
* % * % %

* k% * %
kkhkkkkhkkxkkkhkkkk*k

Related topics:
LOCATE

8-75

HELP Direct Command

Summary:
The HELP direct command displays online help screens.

Syntax:
HELP

Arguments:
HELP needs no arguments.

Description:

HELP causes a set of online help screens to be displayed. The space bar must be pressed
at the end of each screen to cause the next screen to be displayed; any other key will abort
the help command and return to the compiler prompt.

8-76

IF..THEN Statement

Summary:
The IF..THEN statement controls program flow based on a relational expression.

Syntax:

IF rel_expr THEN statement [: statement]...

Arguments:

rel_expr a numeric or string expression. This is evaluated as a TRUE or FALSE
value, with nonzero values being TRUE and zero being FALSE.

statement BASIC statement to be executed if rel_expr is TRUE.

Description:

In general, the power of the computer is based upon its ability to make decisions based on
its input data. The IF. THEN statement is used in Bear BASIC to control the flow of
program execution based on the result of a calculation. rel_expr is evaluated; if itis TRUE
(nonzero), then statement is executed. If rel_expris FALSE (zero), then program execution
continues at the next line. Usually, rel_expr will be a comparison between variables or
expressions; for example: J=5, K>=N+3, or A$<>B$. However, since it is being evaluated as
a TRUE or FALSE value, rel_expr may just be a variable by itself; for example, the
statement I1F J THEN... will be executed if J is nonzero. For integer and real
expressions, the relational operators are: AND, OR, >=, <=, =, <> > and <. For string
expressions, the relational operators are: =, <>, >, and <.

Note that if rel_expris TRUE, then the rest of the line is executed. This means that multiple
statements can be placed after THEN; the statements will only be executed if the
expression is TRUE.

Often, statement will be a GOTO statement; for example: | F X>3.5 THEN GOTO 260. The
compiler accepts a shortened form of this, in which the word GOTO is left out;ie. I F X>3.5
THEN 260. The compiler will insertthe GOTO into the statement, so when the line is listed it
willread IF X > 3.5 THEN GOTO 260

Examples:

100 INTEGER J,K N
110 J=3: K=5: N=0

120 PRINT "J=3: "; J=3; " J>3: ", J>3

130 IF J=3 THEN PRINT "J = 3";: PRINT "...";
140 PRI NT

150 IF J>3 THEN PRINT "J > 3";: PRINT "...";
160 PRI NT

170 |1 F J<5 AND K>2 THEN PRI NT "Passed |ine 170"
180 IF K THEN PRINT "K is TRUE"
190 IF N THEN PRINT "N is TRUE"

This produces the following output when run:

8-77

J=3: 257 J>3: O

3.

J
Passed |ine 170
Kis TRUE

100 STRI NG A$, B$

110 A$="ABC': B$="ABD'

120 | F A$<>B$ THEN PRINT "Strings not equal"
130 I F A$<>"" THEN PRINT "1..String not enpty"
140 A$=""

150 |F A$<>"" THEN PRINT "2..String not enpty"

This produces the following output when run:

Strings not equa
1..String not enpty

Related topics:
Chapter 3

8-78

INP Function

Summary:
The INP function reads the current value from a hardware input port.

Syntax:
val = INP (port)

Arguments:

port an integer expression between 0 and 255. The hardware port number to
read from.

Description:

The Boss Bear processor interfaces with the real world through Input/Output (1/0O) devices.
The Boss Bear architecture supports both memory mapped devices, which are accessed
using PEEK and POKE, and I/0O mapped devices, which are accessed using INP and OUT.
It requires a thorough understanding of the Boss Bear hardware in order to use INP and
OUT; usually, the only time that these would be used is when copying example code
supplied by Divelbiss in an application note.

INP reads a single byte value (ie. an integer between 0 and 255) from a hardware input
port. If there is no hardware device located at port, then an indeterminate value will be
returned.

Example:

100 | NTEGER J
110 J=I NP($9F)

Related topics:
OUT, Chapter 7

8-79

INPUT Statement

Summary:
The INPUT statement waits for a data value to be entered on the current FILE device.

Syntax:
INPUT variable [,variable]...

Arguments:
variable a BASIC variable name. The value entered is stored in this variable.

Description:

The INPUT statement is used to enter data while the program is running. It waits for a data
value, followed by a carriage return, to be entered on the current FILE, then it stores that
value into a BASIC variable. The Backspace key may be used to modify the input data
before pressing enter. In a multitasking program, other tasks will continue executing while
this task is waiting for input; multiple tasks can even execute INPUT at the same time on
different FILEs. INPUT is particularly well suited to reading data that is being sent over one
of the serial ports; if data is to be entered by the user, then FINPUT will probably work
better.

If multiple variables are specified, then multiple data values can be entered separated by
commas. For example, INPUT J, K, X will accept 4,12,3.76 as a valid input. Note,
however, that it does not verify that the correct number of values was entered; with the
previous example, if 10, 8 were entered, then X would retain its original value, since no
new value was entered. Likewise, if 3,4, 10.32,8 were entered, then the 8 would be
thrown away, since there is no variable for it to be assigned to; J would be set to 3, Kto 4,
and X to 10.32, and no error would be generated.

If variable is a string, then commas and control characters cannot be read by INPUT.
Commas are used as delimiters between input data values; if necessary, the INPUT$
statement allows commas and most control characters to be entered.

If variable is an integer or real and a string is entered, then the error message *** Bad
Input: Please Re-enter *** will be displayed and it will wait for another value to be
entered. Note that this could make a mess out of the screen display, if the input is being
typed by a user; for this reason, it is probably better to get user input using FINPUT. If
multiple numeric variables are to be input, then this error will also be displayed if any
spaces are entered.

INPUT should not be used in an interrupt task, because it re-enables interrupts and allows

multitasking to continue. Depending upon what the other tasks are doing at the instant that
the interrupt task executes, INPUT could cause the system to lock up.

8-80

Examples:

100 STRING A$

110 PRINT "What is your nane? "
120 | NPUT A3

130 PRINT "Hello, "; A$

This example shows how text can be INPUT into a string variable. Run this and try using
BACKSPACE t0 modify the string. Also try entering commas in the string.

100 I NTEGER J,K

110 REAL X

120 PRINT "Enter J, K, X >"
130 INPUT J, K, X

140 PRINT J, K, X

This example shows how multiple items can be entered with one INPUT statement. Run
this and try entering more or less than three numbers.

100 I NTEGER J, K

110 RUN 1

120 I NPUT J

130 PRINT "The value entered is "; J
140 STOP

150 TASK 1

160 FILE 6

170 | NPUT K

180 PRINT "K = "; K

190 EXIT

This example shows how INPUT can be used concurrently in multiple tasks.

Related topics:
INPUT$, FINPUT, GET, KEY

8-81

INPUTS$ Statement

Summary:

The INPUT$ statement is identical to INPUT, except that it allows commas and some
control characters to be entered in strings.

Syntax:
INPUT$ variable [,variable]...

Arguments:
variable a BASIC variable name. The value entered is stored in this variable.

Description:

The INPUT$ statement is identical to INPUT, except in its handling of strings. Whereas
INPUT won't accept commas and control characters in strings, INPUT$ accepts commas
and most control characters. The only delimiter used by INPUT$ is the carriage return,
which signals the end of data entry. For example, I NPUT$ COLOR$ would accept red,
green, blue andleave COLORS$ holding the string "red, green, blue".

Note that there should only be one string variable field, and that no integer or real variables
can follow the string, since there is no way for it to detect the end of the string except for
the carriage return. For example, with the code | NPUT$ J, A$, K there is no way to enter a
value into K, because, if the user types 12, widget7,9 then J will be 12, A$ will be
"widget7,9", and K will be unchanged.

INPUTS$ should not be used in an interrupt task, because it re-enables interrupts and allows
multitasking to continue. Depending upon what the other tasks are doing at the instant that
the interrupt task executes, INPUT$ could cause the system to lock up.

Examples:

100 | NTEGER J, K
110 STRI NG A$(80)
120 INPUT$ J, K, A$
130 PRINT J, K, A$

Related topics:
INPUT, FINPUT, GET, KEY

8-82

INTEGER Statement

Summary:

The INTEGER statement is used to declare integer variables.

Syntax:

INTEGER variable [,variable]...

Arguments:

variable a text string. The name to use for the variable. Variable names in Bear

BASIC consist of an alphabetic character followed by up to 6 alphanumeric
characters. To declare an array, this will be followed by one or two numbers
enclosed in parenthesis. The following are valid integer variable names: J,
J(20), PRESURE, CHAN5, TIME4(10), J(10,7).

Description:

Integer variables are used to hold numeric data that ranges between -32768 and 32767.
Integers are stored in 16 bit, two's complement form, and therefore take up 2 bytes each.
All variables in a Bear BASIC program must be declared as INTEGER, REAL, or STRING;
all variable declarations must occur before any executable statements in the BASIC
program.

Integer arrays may be declared with the INTEGER statement, as well. Bear BASIC allows
one and two dimensional arrays. The variable name is followed by parenthesis enclosing
one or two array dimensions, such as J(5) or J(7,5). Note that the array dimension is not
the number of array elements, but the number of the last array element; arrays always start
with element 0. The array J(5) actually contains 6 variables, J(0) through J(5).

Example:

100 [INTEGER J, K

110 | NTEGER CHAN(9) ' Array of 10 integers: 20 bytes
120 | NTEGER TDAT(4, 19) ' 5 by 20 array: 200 bytes

130 FOR J=0 TO 9

140 CHAN(J) =J ' Shows how arrays are accessed
150 TDAT(0, J)=J*4

160 NEXT J

Related topics:
REAL, STRING

8-83

INTERRUPT Statement

Summary:
The INTERRUPT statement attaches a task to a hardware interrupt source, so that the task
becomes the handler for that interrupt.

Syntax:
INTERRUPT device, chan, task
Arguments:
device an integer expression. The type of device to work with:
1 = High speed counter
2 = Future expansion
chan an integer expression. The channel number of the device, from 1 up to the
number of channels available.
task an integer expression between 1 and 31. The number of the task to be

attached to the device.

Description:

The INTERRUPT statement provides a simple way to write interrupt service routines in
Bear BASIC. It causes a task to be executed when a specific hardware interrupt occurs.
For example, | NTERRUPT 1, 5, 3 will cause task 3 to be executed when high speed counter
number 5 causes an interrupt.

Example:

100 ' Programto denonstrate | NTERRUPT using the high speed counter
110 |INTEGER J, RELOAD, COUNT

120 CNTRMODE 1, 4 ' A count, B direction

130 WRCNTR 1,0,0 ' Set count to O

140 RELOAD=5: COUNT=0

150 WRCNTR 1, 1, RELOAD ' Set counter interrupt val ue

160 |INTERRUPT 1,1,1 ' Set counter interrupt to task 1
170 J=0

180 FILE 6

200 ' Main program | oop.

210 LOCATE 1,1

220 FPRINT "Us5X5U5Zz", J, COUNT

230 J=J+1 " Increnent junk variable
240 @GOTO 210

300 ' Counter interrupt handler task.

310 TASK 1

320 RDCNTR 1, 0, COUNT ' Get new count

330 RELOAD=RELQOAD+5 ' Set up new rel oad

340 WRCNTR 1, 1, RELOAD ' Set counter interrupt val ue
350 EXIT

This example sets up task 1 as the interrupt handler for counter 1. In lines 120 and 130 it
initializes counter 1, setting its mode to A-count, B-direction and writing a 0 to the counter.
Inlines 140 and 150 it sets the counter reload variable to 5 and writes this reload value into
the counter's compare register. Line 160 uses INTERRUPT to set task 1 as the interrupt
handler for the counter. Lines 210 to 240 form the program's main loop, which just displays
the latest counter value (COUNT) from the last interrupt; it also increments and displays J,

8-84

just to cause some action on the display. Line 300 to 350 form task 1, the interrupt handler;
it reads the current counter value and updates the reload value.

In task 1, the first thing that it does is read the current counter value. At low pulse rates,
this will be the same as RELOAD, since it is reading the same value that caused the
interrupt. As the pulse rate increases, however, the counter will increment before the task
1 gets to read the counter. At a very high pulse rate, a problem will occur when the counter
has already gone beyond the new RELOAD value before RELOAD is written to the counter
(ie. COUNT=783 and RELOAD=780); the counter will need to wrap completely around
before the interrupt will occur again.

Related topics:
Chapter 7

8-85

INTOFF Statement

Summary:
The INTOFF statement disables all processor interrupts.

Syntax:
INTOFF

Arguments:
INTOFF needs no arguments.

Description:

It is sometimes necessary to temporarily stop the processor from handling hardware
interrupts, for two reasons: to stop an interrupt handler from modifying a variable that
another routine needs to access, and because a section of code needs to execute
extremely quickly and interrupt processing would slow it down. INTOFF stops the
processor from handling interrupts; INTON enables the interrupt processing again.
Interrupts should only be turned off for very short periods; if they are off for too long, then
characters coming in on the serial ports could be lost, the timing of tasks with WAIT
statements could slow down, or hardware events could be handled erratically.

The Boss Bear uses a hardware timer interrupt to run the multitasking context switcher, so
executing INTOFF stops the multitasking operation. This can be used to keep one task
from corrupting a variable used in another task, for example. Some instructions enable
interrupt processing as part of their execution: INTON, WAIT, EXIT, INPUT, INPUTS, GET,
FINPUT, PRINT, FPRINT, NETWORK 1, NETWORK 2, and any string operations. These
instructions should not be used after an INTOFF, since they will defeat the purpose by re-
enabling interrupts.

If interrupts are left off for too long (more than 0.5 second) then the watchdog may reset the
system. Some BASIC statements reset the watchdog, and so this will not happen if those
statements are executed.

Example:

100 |INTEGER D, J, K, N
110 RUN 1,1

120 FOR J=1 TO 1000
130 | NTOFF

140 K=2

150 N=J* K/ 2

160 D=J+K- N

170 | NTON

180 FPRI NT "U5Z",D
190 NEXT J

200 PRINT: STOP

210 ' Task to denobnstrate variable corruption
220 TASK 1

230 K=9999

240 EXIT

8-86

This example shows that a task can corrupt a variable that another task is using. In this
case, task 1 modifies the value of K, which the main routine is using in lines 140 to 160.
Without the INTOFF in line 130, the context switcher could start task 1 running at any time,
including while the main routine is in line 140, 150 or 160, thus changing the value of K
from 2 to 9999. This would drastically affect the outcome of the calculation. To
demonstrate this, run the program as it is shown; it should print "2" 1000 times. Then
remove lines 130 and 170 and run the program again; this time it will print mostly "2", with
other numbers interspersed periodically. The other numbers are caused when task 1
executes while task 0 (the main routine) is in line 140, 150, or 160.

Related topics:
INTON

8-87

INTON Statement

Summary:
The INTON statement enables processor interrupts.

Syntax:
INTON

Arguments:
INTON needs no arguments.

Description:

INTON is used to re-enable interrupts after an INTOFF statement has disabled interrupt
processing. See INTOFF for a detailed description.

Example:

100 | NTEGER J

110 RUN 1,1

120 [INTOFF:. DOUT 1,1: DOUT 2,1: | NTON
130 WAIT 10

140 |INTOFF:. DOUT 1,0: DQUT 2,0: | NTON
150 WAIT 5: GOTO 120

200 TASK 1

210 PRINT "*";

220 EXIT

This example uses INTOFF and INTON to ensure that the two DOUT statements take

place at almost the same time. If the interrupts weren't disabled, then task 1 could break in
between the two DOUT statements, causing them to occur a few milliseconds apart.

Related topics:
INTOFF

8-88

JVECTOR Statement

Summary:
The JVECTOR statement stores a jump instruction to an interrupt service task at the
specified address.

Syntax:
JVECTOR logaddr, task

Arguments:

logaddr an integer expression. The logical address to store the jump instruction at.
task an integer expression from 1 through 31. The task number to jump to.

Description:

JVECTOR stores code at logaddr to jump to task. When the program execution reaches
logaddr, it will disable interrupt processing and transfer execution to task. With the current
Boss Bear hardware architecture, JVECTOR has two possible uses: to call a task when the
Boss Bear loses power, and to call a task when a fatal program error occurs.

Examples:

100 I NTEGER X

110 JVECTOR $66, 1 ' Set up NM vector to task 1
120 GOTO 120 " Wait for power to be turned off
200 TASK 1 ' This is the NM task

220 PRINT "*"; " Print until processor halts

230 GOTO 220

The power management circuitry activates the Non-Maskable Interrupt (NMI) line when the
12V power source drops below approximately 9V. Then, when the processor power drops
below about 4.6V, it will be halted; this leaves a little bit of time between when the NMI
occurs and when the processor is halted. The example shows how to set up a task to run
when power is lost. This task could be used to disable output control lines, write a data
value to EEPROM, etc. The example sets up the NMI task and then sits in a loop; when
the power is switched off, the NMI task will output "*' characters until the processor finally
halts. This demonstrates how much time is available between power loss and system
lockup; each ™' takes about 1 msec to send at 9600 baud. The vector for the NMI is at
address $66.

100 REAL X

110 JVECTOR $13,1 ' Set up vector to task 1 on error
120 X=3.5/0.0 ' Cause a "Divide by 0" error

130 PRI NT "Done": STOP

130 ' Fatal program error handl er

140 TASK 1

150 PRINT "Error "; ERR " Print error nessage

160 CALL %100 ' Restart BASIC program

When a program error occurs, such as Return Wt hout Gosub or Subscript Qut of Range,
Bear BASIC normally prints an error message on the console terminal and returns to the

8-89

compiler prompt. By using JVECTOR, it is possible to trap the error and handle it in the
BASIC program. The vector for the error handler is at address $13. Normally, PRINT
should not be executed inside of an interrupt service task (see line 150), but since no other
PRINT could be active in this program, it should work. In line 160, it restarts the BASIC

program by jumping to the starting address for the program; all Bear BASIC programs start
at $100.

Related topics:
VECTOR, ON ERROR, ERR, Chapter 11

8-90

KEY Function

Summary:

The KEY function reads one byte from the current FILE; it doesn't wait if no byte is
available.

Syntax:
x = KEY

Arguments:
KEY needs no arguments.

Description:

KEY returns a byte from the current FILE if one is available; the byte is returned as an
integer value. 0 is returned if no byte is available; if the byte's value is 0, then it is returned
as 256 ($100). KEY returns all bytes entered, no control codes are filtered out.

Since KEY goes through the normal FILE routines, it provides an autorepeat function when
accessing the onboard keypad (FILE 6). Sometimes, it is desirable to access the keypad
directly, as if it were an input module. The DIN function can be used to get the current
keypad state, without performing the autorepeat. See the DIN description for more
information.

KEY should not be used in an interrupt task, because it re-enables interrupts and allows
multitasking to continue. Depending upon what the other tasks are doing at the instant that
the interrupt task executes, KEY could cause the system to lock up.

Example:

100 [INTEGER N, K: N=0

110 K=KEY ' Cet a key, if one is available
120 FILE 6: LOCATE 1,1: PRINT N " Display counter on onboard display
130 FILE 0: N=N+1

140 | F K=0 THEN 110 " If no key then continue waiting
150 | F K=256 THEN K=0 ' Check for 0 byte val ue

160 PRINT "Key = "; K @GOTO 110

This example gets characters from the console and displays the value of the characters; it
also displays a counter on the onboard display, to show that KEY is not waiting. Line 110
gets the byte from the console. Line 120 prints the counter on the onboard display; note
that it changes to FILE 6, prints the counter, then changes back to FILE 0. Line 140 loops
back if no byte was retrieved. Line 150 handles the 0 value, which would have been
returned as 256; in this example, it is unlikely that a 0 would have been entered over the
console port.

Related topics:
GET, INPUT, INPUT$, FINPUT, FILE, DIN, Chapter 5

8-91

LEN Function

Summary:
The LEN function returns the length of a string.

Syntax:
x = LEN (st$)

Arguments:
st$ a string expression.

Description:

LEN returns the number of characters currently contained in st$ as an integer value. It
does not return the maximum size of st$; for example, if a string was declared as STRING
NAMES$(40), it will not return 40 unless there is a 40 character string stored in NAMES.

Example:

100 STRI NG A3$(80)

110 PRINT "Enter a string > "

120 | NPUT A$

130 PRINT "String length = "; LEN(A$)

Related topics:

8-92

LFDELAY Direct Command

Summary:

The LFDELAY direct command causes a slight delay to be performed with each carriage
return, line feed that is sent to the console.

Syntax:
LFDELAY

Arguments:
LFDELAY needs no arguments.

Description:

Some video terminals cannot scroll the screen fast enough to keep up at 9600 baud; they
will lose the first few characters at the beginning of each line. The LFDELAY command
causes the Boss Bear to pause at the beginning of each line to allow the terminal to catch
up. Once the LFDELAY command is issued, it remains in effect until the Boss Bear is reset
by executing the BYE command or turning the power off and back on.

8-93

LIST Direct Command

Summary:
The LIST direct command displays the current BASIC program.

Syntax:
LIST [start] [, end]

Arguments:

start a valid BASIC line number. The first line number to display.
end a valid BASIC line number. The last line number to display.

Description:

LIST displays the program currently in memory on the system's console terminal. If LIST is
typed with no arguments, or just L is typed, then the entire program will be listed. If LIST is
typed and only start is specified, then only that line will be listed (if it exists). If both start
and end are specified, then the program from start through end will be listed.

Examples:

LI ST Lists the entire program.

L Lists the entire program.

LI ST 190 Lists line 190, if it exists.

LI ST 190, 240 Lists lines 190 through 240.

8-94

LOAD Direct Command

Summary:
The LOAD direct command loads a BASIC program from the user's EPROM.

Syntax:
LOAD [filenum]

Arguments:

filenum an integer number from 1 through the number of files stored on the EPROM.
The number of the file to load.

Description:

If filenum is specified, then LOAD loads source file number filenum from the EPROM,
otherwise, it loads the last source file from the EPROM. LOAD is identical to EPROM
LOAD.

Example:
LOAD Loads the last source file.
LOAD 3 Loads the third source file.

Related topics:
SAVE, EPROM LOAD, EPROM SAVE

8-95

LOCATE Statement

Summary:
The LOCATE statement positions the cursor on the current FILE output device.

Syntax:
LOCATE row, column

Arguments:
row a numeric expression. The vertical position to put the cursor at, starting at 1.

column a numeric expression. The horizontal position to put the cursor at, starting at
1.

Description:

LOCATE is used to position the cursor on the current FILE output device, using a
row/column coordinate system with (1,1) at the upper left corner. Each task maintains its
own cursor position, so that two tasks may print to a device at different locations at the
same time. LOCATE works with the onboard display (FILE 6), as well as with COM1 (FILE
0) and COM2 (FILE 5); in order to work with FILE 0 and FILE 5, the terminal must be able
to emulate the ADM3A command set.

Example:

100 'Exanple to display a sine wave on the term nal
110 REAL X, Y: INTEGER J

120 CLS

130 FOR J=0 TO 79 ' Use entire display

140 X=J * 360.0 / 79.0 ' Scale to 360 degrees

150 Y=SIN(X) * 8.0 + 9.0 ' Scale to +/- 8, with 0 in center
160 LOCATE Y+1,J+1: PRINT "*";' Draw the point

170 NEXT J

This produces the following output when run:

kkhkkkkhkkkkkhkkkk*k
* % * k *

* k% * %
khkkkhkkhkkhkkhkhkk*k

Related topics:
GOTOXY

8-96

LOG Function

Summary:
The LOG function calculates the natural logarithm (base e) function.

Syntax:
x = LOG (expr)

Arguments:
expr a numeric expression.

Description:

The LOG function returns the natural logarithm of expr, which must be a numeric
expression. The result is returned as a REAL value.

By using the properties of logarithms, a number X can be raised to a power Y (XY) using
EXP(LOG(X) *Y) .

To calculate the common logarithm (LOG,,) of X, use LOG10.

Example:

100 REAL X, Y
110 PRINT LOH 72. 35)
120 X=0.82

130 Y=LOGE X)
140 PRINT "Logarithmof "; X" is ";Y
150 PRINT "4 cubed = "; EXP(LOE 4)*3)

This produces the following output when run:

4.28151
Logarithm of .82000 is -.19845
4 cubed = 64.00003

Related topics:
LOG10, EXP

8-97

LOG10 Function

Summary:
The LOG10 function calculates the common logarithm (base 10) function.

Syntax:
x =LOG10 (expr)

Arguments:
expr a numeric expression.

Description:
The LOG10 function returns the common logarithm of expr, which must be a numeric
expression. The result is returned as a REAL value.

To calculate the natural logarithm of X, use LOG.

Example:

100 REAL X, Y

110 PRI NT LOGLO(72.35)

120 X=0.82

130 Y=LOGLO(X)

140 PRINT "Common |ogarithmof "; X" is ";Y

This produces the following output when run:

1.85944
Conmon | ogarithm of .82000 is -.08619

Related topics:
LOG, EXP

8-98

MID$ Function

Summary:
The MID$ function returns a substring of a specified string.

Syntax:
st$ = MID$ (strexpr$, start, num)

Arguments:

strexpr$ a string expression.

start a numeric expression. The start of the substring.

num a numeric expression. The number of characters in the substring.

Description:

MID$ returns a string that is a substring of strexpr$. The substring will begin at start in
strexpr$ and continue for num characters. MID$ must not go beyond the end of strexpr$; if
start + num is greater then LEN(strexpr$),thena String Length Exceeded error will result.

Example:

100 STRING A$(60

110 As= The qui ¢ r own fox Junped over the |azy dog"

)
k
D$
DS$
D$

b
120 PRINT "<"; M D$(AS$, 1, 3)
130 PRI NT "<": M D$(A$, 20, 10); " >"
140 PRINT "<": M D$(A$, 38, LEN(A$) - 37) ;
150 PRI NT "<": CONCAT$(M D$(AS, 5, 6) , MD$(A$ 17, 3))

This produces the following output when run:

<The>

< junped ov>
<azy dog>
<qui ck fox>

In line 140, the LEN function is used to ensure that MID$ doesn't try to go beyond the end
of A$, which would cause an error.

Related topics:
LEN

8-99

MKI$ Function

Summary:
The MKI$ function converts an integer to a binary string.

Syntax:
st$ = MKI$ (intexpr)

Arguments:
intexpr an integer expression.

Description:

A binary string is a string that may contain more than just ASCII text data; it may contain
bytes that are not valid ASCII characters. Because of this, they are not usually human-
readable. A binary string is really just an array of numeric bytes. The main use for binary
strings is to provide a more efficient way to transfer blocks of numeric data over the serial
ports; numbers stored in binary strings take up fewer bytes than numbers stored as ASCI|I
characters. The functions MKI$, CVI, MKS$, and CVS are provided to work with binary
strings.

The MKI$ function returns intexpr as a two byte string. For example, MKI $($1234) returns
a string whose first byte is $34 and whose second byte is $12; note that $1234 takes up 4
characters when stored in ASCII, but only 2 when stored in binary form.

Example:

100 I NTEGER J

110 STRI NG A$: A$=""

120 FOR J=%$3030 TO $3036

130 A$=CONCATS$(A$, MKI $(J))
140 NEXT J

150 PRI NT A$

160 FOR J=1 to LEN(A$)

170 FPRI NT " H2X2Z", ASC(M D$(A$, J, 1))
180 NEXT J

190 PRI NT

200 J=CVI (A%$): FPRINT "H4",J

This produces the following output when run:

00102030405060
30 30 31 30 32 30 33 30 34 30 35 30 36 30
3030

The first line printed shows how the 7 integers $3030 through $3036 were stored in A$;
these numbers were chosen so that A$ would still be a printable string. The second line
shows how the individual bytes are stored in the string. The third line shows that CVI can
be used to convert the first two bytes of A$ back to an integer.

Related topics:
CVI, MKS$, CVS

8-100

MKS$ Function

Summary:
The MKS$ function converts a real to a binary string.

Syntax:
st$ = MKS$ (realexpr)

Arguments:
realexpr a real expression.

Description:

The MKS$ function returns realexpr as a four byte string. For example, MS$(123. 456)
returns a string whose bytes are $42, $F6, $E9, $78; note that 123.456 takes up 7
characters when stored in ASCII, but only 4 when stored in binary form. See MKI$ for
more information on binary strings.

Example:

100 | NTEGER J: REAL X
110 STRING A$: A$=""

120 FOR X=1.0 TO 3.0

130 A$=CONCATS$(A$, MKS$(X))

140 NEXT X

150 FOR J=1 to LEN(A$)

160 FPRI NT "H2X2Z", ASC(M D$(AS$, J, 1))
170 NEXT J

180 PRI NT

190 X=CVS(A$): PRINT X

This produces the following output when run:

3F 80 00 00O 40 OO0 OO OO 40 40 00 OO
1. 00000

The first line printed shows how the 3 reals 1.0, 2.0, and 3.0 were stored in A$. The
second line shows that CVS can be used to convert the first four bytes of A$ back to a real.

Related topics:
CVS, MKI$, CVI

8-101

NETMSG Function

Summary:

The NETMSG function sends and receives messages over the network. It returns an error
code.

Syntax:
ercode = NETMSG (message$,rdwr,unit)

Arguments:

message$ if rdwr is 0, then message$ is a string expression; this string will be sent to
the specified unit. If rdwr is 1, then message$ is a string variable; if a
message is available in the receive buffer, then it will be returned in
messages$.

rdwr an integer expression that evaluates to 0 or 1. 0 indicates that the message
is to be sent to another unit, while 1 indicates that a message should be read
from the network buffers, if one is waiting.

unit if rdwr is 0, then unit is the network address of the unit to send the message
to, and should be an integer expression that evaluates between 0 and 255. If
rdwr is 1, then unit is an integer variable that will be set to the network
address of the unit that sent the message.

Description:

The NETMSG function performs two different, but related, functions: it sends messages
over the network, and retrieves messages that have arrived over the network. In both
cases, it returns an integer error code that indicates the success or failure of the operation.

To send a message to another unit, the message is assembled into a string, then the string
is sent with NETMSG(message$,0,unit), which will wait until a response is received or until
it times out (in approximately 5 seconds). It returns a 0 if the message was successfully
transferred, or a 1 if a timeout error occurred.

Any incoming messages are received and buffered by the low level network handler.
NETMSG(message$,1,unit) will return a 0 if no message is waiting in the buffer. It will
return a 1 if there is a message; the message will be returned in message$, and the
number of the unit that sent the message will be returned in unit.

Examples:

100 | NTEGER J, K

110 STRI NG NMB(127)

200 ' Initialization

210 NETWORK 0,1,1,1,1,J

220 | F J<>0 THEN PRINT "Network initialization failed": STOP

300 ' Send a nessage to unit 2

310 NWMB=CHR$(0) ' Message type = 0

320 NMH=CONCATS$(NMB, MKS$(20. 0)) ' Send the value 20.0

330 J=NETMSG NMB, 0, 2) Send the nessage to unit 2
340 |F J<>0 THEN PRI NT " Net wor k send error": STOP

400 ' Now wait for a response

8-102

410
420
430
440

J=NETMSG(NVB, 1, K)

I F J=0 THEN GOTO 410 ' Loop if no response yet
| F K<>2 THEN GOTO 410 " Loop if not fromunit #2
PRI NT "Response = "; CVS(M D$(NM5, 2, 4))

The program above is run on one Boss Bear on the network. It initializes the Boss Bear to
be unit number 1, sends a message that consists of the number 20.0, and then waits for a
response to arrive. The following program is run on another Boss Bear on the network to
generate the response to the program above.

100
110
120
200
210
220
300
310
320
330
400
410
420
430
440
450
460

| NTEGER J, K
STRI NG | N$(127)
REAL X
Initialization
NETWORK 0,2,1,1,1,J
IF J<>0 THEN PRINT "Network initialization failed": STOP
' Wait for a nmessage fromunit 1
J=NETMSGE | MB, 1, K)

I F J=0 THEN GOTO 310 " Loop if no message yet
| F K<>1 THEN GOTO 310 " Loop if not fromunit #1
CGenerate the response nessage
X=SQR(CVS(M D$(1 M, 2,4))) ' Send back the square root
| Mb=CHR$(0) ' Message type = 0
| MB=CONCATS$(| Mb, MKS$(X)) ' Put the square root in the string
J=NETVMSG(| M, 0, 1) ' Send the nessage to unit 1
| F J<>0 THEN PRI NT "Network send error": STOP
GOTO 300 " Do it all again

This program initializes the Boss Bear to unit number 2, waits for a message from unit
number 1, calculates the square root of the number in the message, and sends a message
that consists of the square root.

Related topics:
NETWORK 0, NETWORK 1, NETWORK 2, NETWORK 3, NETWORK 4, Chapter 10

8-103

NETSERVER Statement

Summary:
The NETSERVER statement starts the UCP as a peer to peer network server.
Syntax:
NETSERVER units, autotime, debug, year, month, day, hour, minute
Arguments:

units an integer value of 1 to 31. This indicates the number of networked

units on the line.

autotime an integer value of 0 or 1. This turns on or off the autotime feature.
0 for OFF, 1 for ON.

debug an integer value of 0 or 1. This turns on or off the debug feature.
0 for OFF, 1 for ON.

year an integer expression. This value specifies the year. This is used
with the autotime feature.

month an integer expression. This value specifies the month. This is
used with the autotime feature.

day an integer expression. This value specifies the day. This is used

with the autotime feature.

hour an integer expression. This value specifies the hour. This is used
with the autotime feature.

minute an integer expression. This value specifies the minute. This is
used with the autotime feature.

Description:

The NETSERVER statement is used to set up a UCP as a dedicated peer to peer
network server. Once this statement is run the UCP will only act as a server. The
statement does not return control to basic. It must be noted that this command can only
be used on one unit in the network and must not be used when a computer with a
network card is on the network.

Example:

100 INTEGER YEAR,MONTH,DAY,WDAY,HOUR,MINUTE , SECOND
110 GETDATE MONTH,DAY,YEAR,WDAY

120 GETTIME HOUR,MINUTE, SECOND

130 PRINT “STARTING NETWORK FOR TWO UNITS”

140 ‘Start the network with autotime enabled

150 NETSERVER 2,1,0,YEAR,MONTH,DAY,HOUR,MINUTE

Related topics:
NETWORK 0, NETWORK 1, NETWORK 2, NETWORK 3, NETWORK 4, Chapter 10

8-104

NETWORK 0 Statement

Summary:

The NETWORK 0 statement initializes the network handler on the Boss Bear.
Syntax:

NETWORK 0, unit_id, num_int, num_real, num_string, status

Arguments:

unit_id an integer expression that evaluates between 1 and 254. This is the unit

number of this Boss Bear in the network. Each unit in the network must have
a unique number.

num_int an integer expression. This is the number of INTEGER registers to allocate
space for.

num_real an integer expression. This is the number of REAL registers to allocate
space for.

num_string an integer expression. This is the number of STRING registers to allocate
space for.

status an integer variable. This will hold the status of the NETWORK operation; a 0

will indicate successful completion, while a nonzero value will indicate that an
error occurred.

Description:

This sets the unit ID for this Boss Bear and allocates space for the network registers. Each
unit on the network must have a unique unit ID; if two units have the same ID, then neither
of them will be able to access the network reliably. The unit ID may range between 1 and
254; for maximum network efficiency, the unit numbers should be allocated sequentially
from 1 to N. If there are any unused unit numbers, then the network master will waste time
trying to talk to those units periodically.

BASIC accesses the network using a set of network registers; these are just values that are
shared between the BASIC program and the network. There are three sets of network
registers: one each for INTEGERSs, REALs, and STRINGs. The BASIC program controls
how many registers are allocated of each type. Each INTEGER register uses 2 bytes, each
REAL uses 4 bytes, and each STRING uses 41 bytes. The total space allocated for all
three register sets must be less than approximately 20000 bytes. The network registers do
not take any variable space away from BASIC; they are stored in a memory segment that
BASIC does not normally use (at $2A through $2F).

The network operates through the COM2 serial interface, so FILE 5 (which uses COM2)

should not be accessed after the network is initialized. This could slow the network down
and possibly corrupt data transfer on the network.

Example:

8-105

100 | NTEGER ST

110 ' Set up this unit's network handler to be unit #3, with

112 ' 200 integer registers, 50 real registers, and 10 string registers.
120 NETWORK 0, 3, 200, 50, 10, ST

130 | F ST<>0 THEN PRI NT "Network initialization failed"

Related topics:
NETWORK 1, NETWORK 2, NETWORK 3, NETWORK 4, Chapter 10

8-106

NETWORK 1 Statement

Summary:
The NETWORK 1 statement sends a block of network registers to another unit on the
network.

Syntax:

NETWORK 1, vartype, source_reg, number, unit_id, dest_reg, status

Arguments:

vartype an integer value of 0, 1, or 2. This indicates the type of network register to

send: 0 for INTEGER, 1 for REAL, and 2 for STRING.

source_reg an integer expression. This is the starting register number of the register
block to send.

number an integer expression. This is the number of registers in the block to send.

unit_id an integer expression that evaluates between 1 and 254. This is the unit
number of the Boss Bear to send to. Each unit in the network must have a
unigue number.

dest_reg an integer expression. This is the register number to store the register block
at in the destination unit.

status an integer variable. This will hold the status of the NETWORK operation; a 0
will indicate successful completion, while a nonzero value will indicate that an
error occurred.

Description:

The NETWORK 1 statement is used to transfer data to another unit on the network. It
sends a block of network registers from this Boss Bear to a register block in another unit.
The next time that the network master polls this unit, the registers are transferred; when
the destination unit receives the registers, it will acknowledge the reception, and this
statement will return. It will wait for at least five seconds for a response before timing out
and returning an error; in a multitasking program, it may take longer than five seconds to
time out, perhaps as much as 30 seconds or more.

It is often useful to send a register to a different register number in the destination unit. The
source_reg and dest_reg fields determine which registers are sent and where they are
stored in the destination unit. For example, NETWORK 1,0, 12,2, 3,36, ST will send
INTEGER registers 12 and 13 to unit 3, where they will be stored in INTEGER registers 36
and 37. Of course, a register can be sent to the same register number; for example,
NETWORK 1,1,7,1, 2,7, ST willsend REAL register number 7 to unit 2, where it will be stored
in register 7.

No range checking is performed. If an attempt is made to read from a register that does
not exist, then invalid data will be transferred. If an attempt is made to store into a register
that does not exist, then other registers will be overwritten and unpredictable operation may
occur.

8-107

This statement may not be used concurrently in a multitasking program; in other words, it
can't be called from two tasks at the same time. It is highly recommended that all
NETWORK 1 and NETWORK 2 statements be located in the same task.

Example:
100 I NTEGER J, K, ST
110 NETWORK 0, 1, 20, 30, 0, ST " Initialize the network

120 IF ST THEN PRINT "Init Error"
130 FOR J=0 TO 19

140 NETWORK 3, 0, J, J+100, ST ' Store 100..119 in registers 0..19
150 NEXT J

160 NETWORK 1, 0,0, 20, 2,0, ST ' Send integer registers to unit 2
170 |1 F ST THEN PRI NT "Ti meout"

180 NETWORK 1,0, 18,1, 3,28, ST ' Send reg 18 to unit 3, reg 28

190 | F ST THEN PRI NT "Ti meout "

In line 110, the network driver is initialized to unit 1 with 20 INTEGER registers, 30 REAL
registers, and 0 STRING registers. In lines 130 to 150, the 20 integer registers (0 to 19)
are filled with the values 100 to 119. In line 160, all 20 integer registers are sent to unit 2,
where they are stored in the same register locations. Inline 180, integer register 18 is sent
to unit 3, where it is stored in register 28. Note that in line 160 we are assuming that unit 2
has at least 20 integer registers are available, and in line 180 we are assuming that unit 3
has at least 28 integer registers available.

Related topics:
NETWORK 0, NETWORK 2, NETWORK 3, NETWORK 4, Chapter 10

8-108

NETWORK 2 Statement

Summary:
The NETWORK 2 statement reads a block of network registers from another unit on the
network.

Syntax:

NETWORK 2, vartype, dest_reg, number, unit_id, source_reg, status

Arguments:

vartype an integer value of 0, 1, or 2. This indicates the type of network register to

read: O for INTEGER, 1 for REAL, and 2 for STRING.

dest_reg an integer expression. This is the first register number to store into in the
destination unit.

number an integer expression. This is the number of registers in the block to read.

unit_id an integer expression that evaluates between 1 and 254. This is the unit
number of the Boss Bear to read from. Each unitin the network must have a
unigue number.

source_reg an integer expression. This is the first register number to read from the
source unit.

status an integer variable. This will hold the status of the NETWORK operation; a 0
will indicate successful completion, while a nonzero value will indicate that an
error occurred.

Description:

The NETWORK 2 statement is used to transfer data from another unit on the network. It
reads a block of network registers from the source Boss Bear to a register block in this unit.
The next time that the network master polls this unit, a register request is transferred;
when the destination unit receives the request, it will return the register data, and this
statement will return. It will wait for at least five seconds for a response before timing out
and returning an error; in a multitasking program, it may take longer than five seconds to
time out, perhaps as much as 30 seconds or more.

It is often useful to read a register from a different register number in the source unit. The
dest_reg and source_reg fields determine which registers are read and where they are
stored in this unit. For example, NETWORK 2, 0, 12, 2, 3, 36, ST willread INTEGER registers
36 and 37 from unit 3 and store them in INTEGER registers 12 and 13 in this Boss Bear.
Of course, a register can be read from the same register number; for example, NETWORK
2,1,7,1,2,7, ST willread REAL register number 7 from unit 2 and store it in REAL register
7 in this Boss Bear.

No range checking is performed. If an attempt is made to read from a register that does
not exist, then invalid data will be transferred. If an attempt is made to store into a register
that does not exist, then other registers will be overwritten and unpredictable operation may
occur.

8-109

This statement may not be used concurrently in a multitasking program; in other words, it
can't be called from two tasks at the same time. It is highly recommended that all
NETWORK 1 and NETWORK 2 statements be located in the same task.

Example:
100 I NTEGER J, K, ST
110 NETWORK 0, 1, 20, 30, 0, ST " Initialize the network

120 IF ST THEN PRINT "Init Error"
130 FOR J=0 TO 19

140 NETWORK 3, 0, J, 0, ST ' Zero out registers 0..19
150 NEXT J
160 NETWORK 2,0, 0, 20, 2,0, ST ' Read integer registers fromunit 2

170 | F ST THEN PRI NT "Ti meout"
180 FOR J=0 TO 19

190 NETWORK 4, 0, J, K, ST ' K =register J val ue
200 PRI NT J, K
210 NEXT J

220 NETWORK 2,0, 18,1, 3, 28, ST ' Read reg 28 fromunit 3 into reg 18
230 |F ST THEN PRI NT "Ti neout"

240 NETWORK 4,0, 18, K, ST

250 PRINT "Register 18 = "; K

In line 110, the network driver is initialized to unit 1 with 20 INTEGER registers, 30 REAL
registers, and 0 STRING registers. In lines 130 to 150, the 20 integer registers (0 to 19)
are filled with 0. In line 160, all 20 integer registers are read from the same registers in unit
2. Lines 18010 210 print out the 20 values just read. In line 180, integer register 18 is read
from unit 3, register 28; this value is printed in lines 230 and 240. Note thatin line 160 we
are assuming that unit 2 has at least 20 integer registers are available, and in line 180 we
are assuming that unit 3 has at least 28 integer registers available.

Related topics:
NETWORK 0, NETWORK 1, NETWORK 3, NETWORK 4, Chapter 10

8-110

NETWORK 3 Statement

Summary:
The NETWORK 3 statement writes data into a network register.

Syntax:
NETWORK 3, vartype, regnum, value, status

Arguments:

vartype an integer value of 0, 1, or 2. This indicates the type of network register to
read: O for INTEGER, 1 for REAL, and 2 for STRING.

regnum an integer expression. This is the register number to be written to.

value an numeric or string expression. This is the value to be written to regnum.

status an integer variable. This will hold the status of the NETWORK operation; a 0

will indicate successful completion, while a nonzero value will indicate that an
error occurred.

Description:

The network registers are stored in an area that is normally inaccessible to the BASIC
program as variable space. The NETWORK 3 statement writes data into a network
register. This does not cause the data to be sent over the network, however. Data is only
transferred when this unit performs a NETWORK 1 statement, another Boss Bear performs
a NETWORK 2 statement, or the network master reads or writes data in the register.
There are three sets of network registers, INTEGERs, REALs, and STRINGs; the number
of each of these is set up with the NETWORK 0 statement. Each group of registers is
numbered starting at 0; for example if there isa NETWORK 0, 1, 25, 15, 5, ST statement, then
there are 25 INTEGER registers (numbered 0 to 24), 15 REAL registers (0 to 14), and 5
STRING registers (0 to 4). If an attempt is made to write outside of these ranges, then an
error will be returned; for example, NETWORK 3, 0, 30, 99, ST would return an error (ST will
be nonzero) because only 25 INTEGER registers were declared above.

Example:
100 I NTEGER J, K, ST
110 NETWORK 0, 1, 20, 30, 0, ST " Initialize the network

120 IF ST THEN PRINT "Init Error"

130 FOR J=0 TO 19

140 NETWORK 3, 0, J, J+100, ST ' Store 100..119 in registers 0..19
150 NEXT J

Related topics:
NETWORK 0, NETWORK 1, NETWORK 2, NETWORK 4, Chapter 10

8-111

NETWORK 4 Statement

Summary:
The NETWORK 4 statement reads data from a network register.

Syntax:
NETWORK 4, vartype, regnum, variable, status

Arguments:

vartype an integer value of 0, 1, or 2. This indicates the type of network register to
read: O for INTEGER, 1 for REAL, and 2 for STRING.

regnum an integer expression. This is the register number to be read from.

variable a numeric or string variable. The value read from regnum will be stored in
this variable.

status an integer variable. This will hold the status of the NETWORK operation; a 0

will indicate successful completion, while a nonzero value will indicate that an
error occurred.

Description:

The network registers are stored in an area that is normally inaccessible to the BASIC
program as variable space. The NETWORK 4 statement reads data from a network
register into a BASIC variable. There are three sets of network registers, INTEGERS,
REALs, and STRINGs; the number of each of these is set up with the NETWORK 0
statement. Each group of registers is numbered starting at 0; for example if there is a
NETWORK 0, 1, 25, 15, 5, ST statement, then there are 25 INTEGER registers (numbered 0 to
24), 15 REAL registers (0 to 14), and 5 STRING registers (0 to 4). If an attempt is made to
read outside of these ranges, then an error will be returned; for example, NETWORK
4,0,30,J,ST would return an error (ST will be nonzero) because only 25 INTEGER
registers were declared above.

Example:
100 |INTEGER J, K, ST
110 NETWORK 0, 1, 20, 30, 0, ST " Initialize the network

120 IF ST THEN PRINT "Init Error"
130 FOR J=0 TO 19

140 NETWORK 4, 0, J, K, ST ' Read registers 0..19
150 PRI NT J, K
160 NEXT J

Related topics:
NETWORK 0, NETWORK 1, NETWORK 2, NETWORK 3, Chapter 10

8-112

NEW Direct Command

Summary:
The NEW direct command erases the program currently in memory.

Syntax:
NEW

Arguments:
NEW needs no arguments.

Description:

NEW erases the BASIC source code that is currently in memory. It enables runtime error
checking, clears the duplicate line numbers flag, and erases the compiled code.

Related topics:
ERROR, DOWNLOAD, GO

8-113

NEXT Statement

Summary:
The NEXT statement marks the end of a FOR...NEXT control structure.

Syntax:
NEXT

Arguments:

variable an integer or real variable. This must match the variable referenced in the
corresponding FOR statement.

Description:
See the FOR statement for a description of the FOR...NEXT control structure.

Related topics:
FOR

8-114

NOERR Direct Command

Summary:
The NOERR direct command disables the runtime error checking.

Syntax:
NOERR

Arguments:
NOERR needs no arguments

Description:

NOERR turns off much of the runtime error checking of Bear BASIC, resulting in a program
that runs much faster, and takes less memory. To insure that a program doesn't run wild
and destroy itself, Bear BASIC inserts quite a lot of error checking code into the compiled
program. For example, tests are made for "SUBSCRIPT OUT OF RANGE", "NEXT
WITHOUT FOR?", etc. NOERR also removes the test for a ctrL-c. (cTRL-c aborts a running
program, so a program compiled under NOERR can't be killed.) Most of these tests are
removed by specifying NOERR. Some error checking routines remain, since in some
cases the error checking code does not greatly effect execution speed. An increase in
execution speed of several hundred percent can often be realized by using NOERR. The
compiled program will also be significantly shorter. Be warned, though- NOERR permits
the user's program to execute erroneously, possibly trashing Bear BASIC. Only fully
debugged programs should be compiled under NOERR. When the compiler starts, all error
checking is enabled and remains on until NOERR is specified. NOERR affects the way a
program is compiled, so it must be specified before the program is COMPILEd or RUN.

Related topics:
ERROR, COMPILE, RUN, GO

8-115

ON ERROR Statement

Summary:
The ON ERROR statement traps I/O errors.

Syntax:
ON ERROR linenum

Arguments:

linenum a valid BASIC line number. This must be a line number that is in task 0 (ie.
before the TASK 1 statement in the program).

Description:

ON ERROR causes the execution of the program to transfer to linenum when an I/O error
is detected. ON ERROR is limited to operation in task 0. Both the function (or statement)
that encounters the error and linenum must be before the TASK 1 statement.

Example:

100 | NTEGER K

110 ON ERROR 900 ' Set up error handl er

120 K=GET ' Get a character from COML

130 PRI NT CHR$(K); ' Echo the character

140 WAIT 10: GOTO 120 ' Do it again

900 ' Error handl er

910 FILE 6 ' Display error on LCD VFD

920 PRINT "Error ";ERR " detected" ' Print error nunber

930 FILE 0: GOro 120 ' Back to COML and conti nue above

This example will get bytes from COM1 and echo them back on COM1 at a rate of 10 per
second. If an I/O error occurs, then execution will transfer to line 900, where it will display
the error number on the onboard display, then jump back to line 120.

Related topics:
ERR, JVECTOR, Chapter 11

8-116

ON GOSUB Statement

Summary:
The ON GOSUB statement calls one of a number of subroutines based on the value of an
expression.

Syntax:
ON expr, GOSUB linenum [,linenum]...

Arguments:

expr an integer expression between 1 and the number of line numbers specified in
the statement.
linenum a valid BASIC line number.

Description:

ON GOSUB causes the program to GOSUB to a line number based on the value of expr,
which must evaluate to a number from 1 to the number of line numbers given in the
statement. If expr evaluates to 1, then the program branches to the first line number. Ifitis
2, then the program branches to the second line number, and so on. If expr evaluates to a
number larger or smaller than the number of line numbers given, then the error message
Li ne Nunber Does Not Exist will appear.

Example:

100 | NTEGER J

110 PRINT "Enter a nunber (1 to 5) > "
120 FINPUT "U1", J

130 PRI NT

140 ON J, GOsSUB 200, 300, 400, 500, 600
150 @GOrO0 110

200 PRI NT "Line 200": RETURN

300 PRINT "Line 300": RETURN

400 PRINT "Line 400": RETURN

500 PRINT "Line 500": RETURN

600 PRI NT "Line 600": RETURN

This example calls a subroutine based on the number entered by the userin line 120. Note

that there is no range checking on the value entered, so it is possible to enter a number
greater than 5, which will cause an error to occur.

Related topics:
ON GOTO, GOSUB, GOTO

8-117

ON GOTO Statement

Summary:
The ON GOTO statement jumps to line number based on the value of an expression.

Syntax:
ON expr, GOTO linenum [,linenum]...

Arguments:

expr an integer expression between 1 and the number of line numbers specified in
the statement.

linenum a valid BASIC line number.

Description:

ON GOTO causes the program to GOTO to a line number based on the value of expr,
which must evaluate to a number from 1 to the number of line numbers given in the
statement. If expr evaluates to 1, then the program branches to the first line number. If itis
2, then the program branches to the second line number, and so on. If expr evaluates to a
number larger or smaller than the number of line numbers given, then the error message
Li ne Number Does Not Exist will appear.

Example:

100 | NTEGER J

110 PRINT "Enter a nunber (1 to 5) > "
120 FINPUT "UL", J

130 PRINT

140 ON J, GOTO 200, 300, 400, 500, 600
150 STOP

200 PRINT "Line 200"

300 PRINT "Line 300"

400 PRI NT "Line 400"

500 PRINT "Line 500"

600 PRINT "Line 600"

This example jumps to a line based on the number entered by the user in line 120. Note

that there is no range checking on the value entered, so it is possible to enter a number
greater than 5, which will cause an error to occur.

Related topics:
ON GOSUB, GOTO, GOSUB

8-118

OUT Statement

Summary:
The OUT statement writes a value to a hardware output port.

Syntax:
OUT port, value

Arguments:

port an integer expression between 0 and 255. The hardware port number to
read from.

value an integer expression between 0 and 255. The value to write to the port.

Description:

The Boss Bear processor interfaces with the real world through Input/Output (1/0) devices.
The Boss Bear architecture supports both memory mapped devices, which are accessed
using PEEK and POKE, and I/0O mapped devices, which are accessed using INP and OUT.
It requires a thorough understanding of the Boss Bear hardware in order to use INP and
OUT; usually, the only time that these would be used is when copying example code
supplied by Divelbiss in an application note.

OUT writes a single byte to an output port. If there is no hardware device at port, then this
will have no effect.

Example:
100 QUT $80, $F7

Related topics:
INP, Chapter 7

8-119

PEEK Function

Summary:
The PEEK function reads a byte value from the specified address.

Syntax:
x = PEEK (logaddr)

Arguments:
logaddr an integer expression. The logical address to read from.

Description:

The PEEK function returns an integer from 0 through 255 that is the byte value at memory
location logaddr. Normally, this reads from the 64KB address space that the BASIC
program is running in. However, DEFMAP can be used to allow access to the entire 1MB
physical address space; see DEFMAP for a complete explanation.

Example:

100 | NTEGER K

110 POKE $A000, $12 ' Wite a $12 into $A000

120 PRI NT "$A000=": PEEK($A000)

130 K=500

140 FPRINT "H2", PEEK(ADR(K)) " Print the low byte of K

150 FPRINT "H2", PEEK(ADR(K) +1) ' Now print the high byte of K

This produces the following output when run:

$A000=18
F4
01

Line 120 prints $A000=18 because 18 is the decimal equivalent of $12. Line 140 reads the

low byte of the variable K; K is 500 ($1F4), so this prints "F4". Line 160 reads the high byte
of K, which is 1.

Related topics:
POKE, WPOKE, WPEEK, EEPOKE, EEPEEK, DEFMAP

8-120

POKE Statement

Summary:
The POKE statement writes a byte value to the specified address.

Syntax:
POKE logaddr, value

Arguments:

logaddr an integer expression. The logical address to write to.
value an integer expression between 0 and 255. The value to write.

Description:

The POKE statement writes a byte (value) into memory at logaddr. Normally, this writes
into the 64KB address space that the BASIC program is running in. However, DEFMAP
can be used to allow access to the entire 1MB physical address space; see DEFMAP for a
complete explanation.

Example:

100 [INTEGER J, K

110 POKE $A000, $12 " Wite a $12 into $A000
120 PRI NT "$A000="; PEEK($A000)

130 J=0: K=500

140 POKE ADR(K),J ' Wite a $00 into | ow byte of K
150 PRINT K
160 POKE ADR(K) +1,J " Now wite to high byte of K

170 PRINT K

This produces the following output when run:

$A000=18
256
0

Line 120 prints $A000=18 because 18 is the decimal equivalent of $12. Line 140 stores a

0 into the low byte of the variable K; K was originally 500 ($1F4), so this changes it to 256
($100). Line 160 stores a 0 into the high byte of K.

Related topics:
PEEK, WPOKE, WPEEK, EEPOKE, EEPEEK, DEFMAP

8-121

PRINT Statement

Summary:
The PRINT statement sends output to the current FILE device.

Syntax:
PRINT expr [;expr]...[]]

Arguments:
expr a numeric or string expression.

Description:

PRINT outputs data in a human-readable form to the current FILE device, as set by the last
FILE statement executed. The console (FILE 0, COM1) is the default FILE. Commas or
semicolons may separate expr values. A comma causes expr to be printed at the next tab
stop; tab stops are 16 characters wide. A semicolon causes expr to be printed without
inserting any extra spaces; if the last thing on the PRINT line is a semicolon, then no
carriage return or line feed will be printed. The question mark can be used as an
abbreviation for PRINT when typing in a program; the '?" will be replaced with PRINT when
the program is LISTed.

Integer numbers are printed using the minimum number of characters. Real numbers are
printed with 5 digits to the right of the decimal point.

PRINT should not be used in an interrupt task, because it re-enables interrupts and allows
multitasking to continue. Depending upon what the other tasks are doing at the instant that
the interrupt task executes, PRINT could cause the system to lock up.

Example:

100 |INTEGER J: REAL X: STRI NG A$
120 J=12: X:1.234
130 PRI NT "Boss Bear™

140 PRINT ' Integrated "; "controller”
150 PRINT "J = "; J, "X="; X
160 PRINT "Tan(X) = "; TAN(X)

170 A$="ABCDEFGH JK'
180 PRINT A$;" "
190 PRI NT M D$(A$, 2, 3)

Line 140 uses the semicolon (';') to cause the two strings to be printed together; note that
the first string ends with a space. Line 160 shows the use of PRINT with an expression;
the expression is evaluated and the result is printed. Line 180 ends with a semicolon,
which causes the following PRINT (line 190) to appear on the same line. This produces the
following output when run:

8-122

Boss Bear

Integrated controller

J =12 X = 1.23400
Tan(X) = .02154
ABCDEFGHI JK BCD

Related topics:
FPRINT

8-123

PRIORITY Statement

Summary:

The PRIORITY statement controls the order of execution of tasks in a multitasking program
by setting a priority level for the current task.

Syntax:
PRIORITY pri_num

Arguments:

pri_num an integer expression between 0 and 127. This is the priority level to assign
to the current task.

Description:

The PRIORITY statement assigns a priority level to a task. It is used to alter the manner in
which tasks are executed. It allows the user to assign a priority, or degree of importance,
to a task. PRIORITY is useful only in multitasking programs. The PRIORITY statement
must be issued from within the task whose priority level is to be altered.

PRIORITY takes one argument, which is the relative priority level for that task. The larger
the number, the more important the task is. These numbers may range from 0 to 127.
Therefore, 0 is least important, and 127 is most important. Note that Bear BASIC assumes
all tasks run at priority level 0 if no PRIORITY statement is issued.

In a multitasking program with no PRIORITY statements, each task is executed in a "round
robin" fashion. This means that upon receipt of a tic, Bear Basic stops running the current
task and starts running the next sequential task, if it is ready to be run. PRIORITY can be
used to alter this sequence.

Whenever a tic is received, Bear Basic examines the priority levels of all tasks that are
ready to execute. The first highest priority task is then run. This means that if task 1 is
level 2, task 2 is level 3, and task 3 is level 3, then task 2 will run until it completes. If all
the tasks have the same priority level, than the lowest number task that is ready to run will
continue to run until it relinquishes control (by executing EXIT, WAIT, INPUT, etc.). If the
task with the highest priority level does not EXIT or WAIT, then it will use all of the
computer time, effectively disabling multitasking, until it EXITs, goes into a WAIT, or
reduces its priority level.

Bear Basic reevaluates the priorities on each tic, so tasks can dynamically change their
level and the compiler will alter the scheduling as demanded.

Whenever a CANCEL statement is encountered, the priority level for that task is dropped to
0. This yields faster context switching.

Example:

8-124

100 RUN 1,10

110 RUN 2, 20

120 GOTO 30

130 TASK 1

140 PRIORITY 3
150 PRINT 'Task 1
160 EXIT

170 TASK 2

180 PRINT ' Task 2'
190 EXIT

This program shows task 1 issuing a PRIORITY 3. This means that if this task is ready to
run, and if task 2 is also ready, then task 1 will execute first, and will continue to execute
until it is complete. When it is done, task 2 will run, since task 1 has been told to wait 10
tics (via the RUN statement in line 10) before starting again.

Related topics:
EXIT, WAIT, CANCEL

8-125

RANDOMIZE Statement

Summary:
The RANDOMIZE statement reseeds the random number generator.

Syntax:
RANDOMIZE

Arguments:
RANDOMIZE needs no arguments.

Description:

The RND function generates pseudo-random numbers, which means that they are
generated by a mathematical algorithm. This algorithm starts with a seed number; the first
call to RND returns a number that is based on this seed. Each succeeding number is
based on the previous number, and becomes the new seed. The RANDOMIZE statement
changes the seed value by reading the processor refresh register, which provides a
constantly changing value.

Example:

100 | NTEGER J

110 RANDOM ZE ' Reseed the random nunber generator
120 FOR J=1 TO 20

130 FPRI NT "U2X3U5", J, RND " Print 20 random nunbers

140 NEXT J

Related topics:
RND

8-126

RDCNTR Statement

Summary:
The RDCNTR statement reads the count value from the high speed counter. It also can
reset the counter's high speed output.

Syntax:

RDCNTR chan, flag, variable

Arguments:

chan an integer expression between 1 and the number of counter channels
installed. This is the counter channel to read.

flag an integer expression from 0 through 3. This determines whether to read the
current count or latched count, and whether or not to reset the high speed
output:

0 to latch and read the current count.
1 to read only the last latched count value; this is used to read a value
that was latched when the marker input was activated.
2 tolatch and read the current count; also reset the high speed output.
3 to read only the last latched count value; also reset the high speed
output.
variable an integer or real variable. The count value will be stored in this variable. If it
is an integer, then only the least significant 16 bits of the 24 bit count value
will be used. Ifitis a real, then all 24 bits will be stored.

Description:

The RDCNTR statement reads the one of the counter's registers, and optionally resets the
high speed output. The counter hardware provides two 24 bit count registers: one holds
the current count, and one holds the count value when the latch input was activated. In
order to read the current count, the hardware first loads it into the latched count register.

The counter channels are assigned based on the hardware available on the Boss Bear;
channel 1 could be the onboard counter, or in any of the expansion ports (if there is no
onboard counter. The order of precedence for assigning counter channels is: onboard
counter followed by J3 followed by J4 followed by J5.

The counter automatically wraps around when it reaches the 24 bit limit ($FFFFFF). When
it is read as an integer value, it will wrap from 32767 back to -32768, or from -32768 to
32767 if counting down. When it is read as a real value, it will wrap from 8388607.0 to -
8388608.0, or from -8388608.0 to 8388607.0 if counting down.

Care must be exercised when accessing the counter using real values, because the
roundoff error associated with real numbers may affect the operation of the counter. If real
values are to be used, then it will be simpler if the counter is not allowed to go above about
4000000.0 or below about -4000000.0; for instance, the counter should be set to 0
periodically, such as at the end of a batch or the end of a shift.

8-127

Examples:
100 | NTEGER COUNTI : REAL COUNTR

120 CNTRMODE 1, 4 ' A count, B direction

130 WRCNTR 1, 0, 65500. 0 ' Set count to 65500

140 ' Main program | oop

150 RDCNTR 1, 0, COUNTI ' Read current count as integer
160 RDCNTR 1, 0, COUNTR ' Read current count as real

170 PRI NT COUNTI, COUNTR
180 WAIT 10: GOTO 150

This example demonstrates reading counter 1 with both integer and real variables. It
simply sits in a loop, reading and displaying the counter value. Note that when the counter
passes 65535, the values of COUNTI and COUNTR will be different because COUNTI only
holds the least significant 16 bits of the counter value.

Related topics:
CNTRMODE, WRCNTR, Chapter 7

8-128

READ Statement

Summary:
The READ statement loads variables with values stored in DATA statements.

Syntax:
READ variable [,variable]...

Arguments:

variable an integer, real, or string variable name. The next DATA item will be stored
in this variable.

Description:

READ loads the variables in its argument list with values from DATA statements. As
successive READs are executed, data is taken from each DATA statement in the program.
All DATA statements must appear before the first READ in the program.

Example:

100 | NTEGER J, K

110 REAL X

120 STRING A$

130 PRI NT "DATA statenment exanple"

140 ' Data table for program

150 DATA 4.77,2,3,4,5,23,83,8 ' Must be before first READ
160 DATA 999, 3. 14159, 1. 6667

170 DATA 893. 664,999, "Data 1"

180 DATA "This is a test: Hi, everybody"

190 FOR J=1 TO 3

200 READ K: PRI NT K " Print first 3 elenents

210 NEXT J

220 READ J

230 | F J<>999 THEN PRINT J: GOTO 220 " Print elenents until a 999

240 READ X

250 | F X<999.0 THEN PRI NT X: GOTO 240 " Print elenents until a 999

260 READ A$: PRINT A$ " Print first string

270 READ A$: PRINT A$ " Print second string

280 READ X: PRINT X ' Wap around, do first one again

This produces the following output when run:

DATA st atenment exanple

OO NI WN I
w w

3.14159
1.66670
893. 66381
Data 1

8-129

This is a test: Hi,
4.77000

The two 999 values in lines 160 and 170 are used as flags to indicate the end of portions of
the table; this makes it easy to add to the DATA table without needing to change the
program where the READ statements are executed. Inline 270, it prints "This is a test: Hi,
" because the string variable A$ defaults to 20 character maximum length, so it truncates
the rest of the string when it is read. Note that in line 280, it reads beyond the end of the
DATA table, so it wraps around and reads the first value in the table.

Related topics:
DATA, RESTORE

8-130

REAL Statement

Summary:
The REAL statement is used to declare floating point variables.

Syntax:
REAL variable [,variable]...

Arguments:

variable a text string. The name to use for the variable. Variable names in Bear
BASIC consist of an alphabetic character followed by up to 6 alphanumeric
characters. To declare an array, this will be followed by one or two numbers
enclosed in parenthesis. The following are valid real variable names: J,
J(20), PRESURE, CHAN5, TIME4(10), J(10,7).

Description:

Real variables are used to hold numeric data that ranges between -1.7x10% and 1.7x10%.
Reals are stored in 32 bit IEEE single precision format, taking up 4 bytes. All variablesin a
Bear BASIC program must be declared as INTEGER, REAL, or STRING; all variable
declarations must occur before any executable statements in the BASIC program.

Real arrays may be declared with the REAL statement, as well. Bear BASIC allows one
and two dimensional arrays. The variable name is followed by parenthesis enclosing one
or two array dimensions, such as J(5) or J(7,5). Note that the array dimension is not the
number of array elements, but the number of the last array element; arrays always start
with element 0. The array J(5) actually contains 6 variables, J(0) through J(5).

Approximately 6.5 digits of precision are maintained for real numbers. Many BASIC
interpreters and compilers use BCD mathematics or 64 bit representations resulting in high
accuracy numbers that require lots of memory. Bear BASIC does not support either of
these in the interest of maximizing speed. The user must be aware that a real number may
not be exactly the number anticipated. For example, since real numbers are constructed
by using powers of 2, the value 0.1 cannot be exactly represented. It can be represented
very closely (within 2**-23, or about 0.0000001), but it will not be exact. Therefore, it is
very dangerous to perform a direct equality operation on a real number. The statement | F
A=0. 123 (assuming A is real) will only pass the test if the two values are exactly equal, a
case which rarely occurs. This is true for all real relational operators, including, for
example, the statement | F A>B, if values very close to the condition being measured are
being used. Be aware that the number you expect may not be exactly represented by the
compiler. If necessary, use a slight tolerance around variables with relational operators.

8-131

Example:

100 | NTEGER J

110 REAL X

110 REAL CHAN(9) ' Array of 10 integers: 40 bytes
120 REAL TDAT(4, 19) ' 5 by 20 array: 400 bytes

130 FOR J=0 TO 9

140 CHAN(J) =J ' Shows how arrays are accessed
150 TDAT(0, J)=J*1. 234

160 NEXT J

Related topics:
INTEGER, STRING

8-132

REM Statement

Summary:
The REM statement is used to mark the rest of the line as comment text.

Syntax:
REM text

Arguments:
text any text string.

Description:

The REM statement allows the programmer to put informational comments (also called
remarks) into the BASIC program. The compiler disregards anything between a REM
statement and the end of the line, including the colon (:). Comment text increases the size
of the BASIC source code, but does not increase the size of the compiled code. REM is
equivalent to ! and ', which also mark comment text; REM statements will be displayed as
single quotes (') when the program is LISTed.

Example:

100 REM Thi s program denonstrates the REM st at enent

110 |INTEGER J: REM Declare an integer : this is still a comrent

120 J=3600 ' This conment starts with the quote character

130 J=J/3 ' Note that there doesn't have to be a colon before the quote
140 I This coment starts with the exclamation point

If this example were typed in (or downloaded) exactly as shown above and then LISTed, it
would be displayed like this:

100 ' This program denonstrates the REM st at enent

110 INTEGER J: ' Declare an integer : this is still a comrent

120 J=3600: ' This comrent starts with the quote character

130 J=J / 3: ' Note that there doesn't have to be a colon before the quote
140 ' This coment starts with the exclamation point

8-133

RESTORE Statement

Summary:
The RESTORE statement resets the DATA pointer to the first DATA statement in the
program.

Syntax:
RESTORE

Arguments:
RESTORE needs no arguments.

Description:

As READ statements are executed to load values from DATA statements, a pointer is
incremented to point to the succeeding DATA statement. RESTORE sets this pointer to
the first DATA statement in the program. The next READ will load the first DATA item.

Example:

100 [INTEGER J, K

110 DATA 1,2,3,4

120 DATA 5,6

130 FOR J=1to 5

140 READ K: PRI NT K

150 NEXT J

160 RESTORE ' Set back to first DATA, which is 1
170 READ K: PRI NT K

This produces the following output when run:

RPOIARWNE

Related topics:
DATA, READ

8-134

RETURN Statement

Summary:
The RETURN statement ends a subroutine started by a GOSUB.

Syntax:
RETURN

Arguments:
RETURN needs no arguments.

Description:

The RETURN statement causes program execution to continue at the statement following
the GOSUB that called the subroutine containing the RETURN. If a RETURN is
encountered without a corresponding GOSUB, then the error message RETURN W t hout
aosuB will be displayed.

Example:

100 GOSUB 200: PRINT "We're back"™ ' Call subroutine at |ine 200
110 STOP ' Don't fall into subroutine
200 PRI NT "Line 200"

210 RETURN " Return from subroutine

This example just calls a subroutine and displays messages to indicate what is being
executed. Line 110 is needed so that it doesn't continue executing and fall into line 200,
which would generate an error when it got to line 210. Try removing line 110 and running
the program.

Related topics:
GOSUB

8-135

RND Function

Summary:
The RND function returns a pseudo-random integer.

Syntax:
x = RND

Arguments:
RND needs no arguments.

Description:
The RND function generates pseudo-random numbers, which means that they are
generated by a mathematical algorithm. It returns an integer value between -32768 and
32767. This algorithm starts with a seed number; the first call to RND returns a number
that is based on this seed. Each succeeding number is based on the previous number, and
becomes the new seed. The seed may be initialized using the RANDOMIZE statement.

Example:

100
110
120
130
140
150

This produces the following output when run:

I NTEGER J
RANDOM ZE

FOR J=1 TO 32

FPRI NT "110Z", RND
NEXT J

PRI NT

11546 28119 11026 -19169
-26118 19959 30194 1855
-16678 -18921 -1838 24927
- 25670 - 22985 -19534 - 15489

Related topics:

8-136

- 21366
-19094
30282
-4310

11495

4359
32039
28999

10626

-12190
- 20670
- 14814

- 25297

13135

-11921

30607

RUN Direct Command

Summary:
The RUN direct command compiles and executes a program.

Syntax:
RUN

Arguments:
RUN needs no arguments.

Description:

RUN compiles the BASIC program in memory. If no errors are detected, then it executes
the program. It can take up to 20 seconds to compile a long program.

Related topics:
COMPILE, GO

8-137

RUN Statement

Summary:
The RUN statement starts execution of a task in a multitasking program.

Syntax:
RUN task [,resched]

Arguments:

task an integer expression from 1 through 31. The task number to begin
executing.

resched an integer expression from 1 through 32767. The reschedule interval for
task. If this isn't specified, then the reschedule interval for the task is
undefined.

Description:

The RUN statement makes a task ready to run, so that the context switcher will execute it
at some future time. If the task EXITs, then it will be rescheduled to start executing again
after resched tics have elapsed; this provides a convenient way of making something
happen periodically.

The RUN statement should not be used if the task is already executing. This will cause the
task to be restarted at the beginning, regardless of where it is currently executing. This
would cause erratic operation of the task.

Examples:

100 RUN 1,100 ' Start task 1 running, resched once/second
110 GOro 110 ' Loop forever

200 TASK 1

210 PRINT "Task 1 running"

220 EXIT

Line 100 sets up task 1 to start running with a reschedule interval of 100 tics, or once per
second. The main program then sits in a loop forever. When task 1 runs, it prints a
message then EXITs, which causes it to be rescheduled for 100 tics later.

100 RUN 1,100 ' Start task 1 running, resched once/second
110 @GOrO 110 ' Loop forever

200 TASK 1

210 PRINT "Task 1 running"

220 @GOTO 210 ' Loop and print again

The difference between this example and the previous one is in line 220. In the second
example, task 1 doesn't EXIT, but instead just loops and prints the message again. Since it
doesn't EXIT, the reschedule interval has no effect, so line 100 could have just been RUN
1.

Related topics:
EXIT, CANCEL

8-138

SAVE Direct Command

Summary:

The SAVE direct command saves the BASIC source or compiled code that is in memory to
the user's EPROM.

Syntax:
SAVE [CODE] [filename]

Arguments:

filename a text string, up to 10 characters long. The filename to be stored on the
EPROM. The name will be stored in uppercase, even if it is entered in
lowercase.

Description:

SAVE stores the current BASIC source program onto the user's EPROM. SAVE CODE
stores the current compiled code onto the user's EPROM. I[f filename is specified, theniitis
stored with the file. The file name for a source program is just used as a comment, to
indicate what the program does. With compiled code, however, the file's name can be
used with the CHAIN statement. It is possible to have more than one file on an EPROM
with the same name; these files will be differentiated by their file numbers. SAVE is
identical to EPROM SAVE.

Example:

SAVE Saves the BASIC source with no filename.
SAVE CODE Saves compiled code with no filename.
SAVE Progr am Saves the BASIC source as PROGRAM1.
SAVE CODE t est Saves compiled code as TEST.

Related topics:
LOAD, EPROM SAVE, EPROM LOAD

8-139

SERIALDIR Statement

Summary:
The SERIALDIR statement sets the direction and RTS level of the serial ports.

Syntax:
SERIALDIR file, direction

Arguments:

file an integer expression. The file number of the serial port: 0 for COM1, 5 for
COM2.
direction an integer expression. 0 for receive and 1 for transmit.

Description:

For an RS-232 serial port, SERIALDIR sets the RTS output level. For an RS-422 serial
port, SERIALDIR enables and disables the transmitter (O=disabled, 1=enabled). For an
RS-422 serial port, SERIALDIR sets the direction of the port (O=receive, 1=transmit).

Upon power-up, the hardware sets the RTS active for RS-232 ports, and sets the
transmitter off for RS-422 and RS-485 ports.

Boss Bear: This currently isn't implemented on the Boss Bear.

Example:
100 SERIALDIR O, 1 ' Set COML RTS inactive
110 SERIALDIR 5,0 ' Set COMR to receive node

Related topics:
Chapter 7, Appendix H

8-140

SETDATE Statement

Summary:

The SETDATE statement sets the current date on the Real Time Clock.

Syntax:

SETDATE month, day, year, wday

Arguments:

month an integer expression. The month in the year, represented as 1-Jan, 2-Feb,
..., 12-Dec.

day an integer expression. The day of the month, represented as 1..31.

year an integer expression. The year, represented as 0..99.

wday an integer expression. The day of the week, represented as 1-Sunday, 2-

Monday, ..., 7-Saturday. This value is not stored on the UCP, but an
expression must still be supplied to avoid generating a syntax error.

Description:

SETDATE sets the current date on the Real Time Clock. Note that the Real Time Clock is
an option on the Boss Bear. SETDATE takes about 200 microseconds to execute.

UCP: The UCP uses a Touch Memory device for the real time clock. The SETDATE

statement takes about 150 milliseconds to execute on the UCP, which is much
longer than the Boss Bear.

Example:
100 SETDATE 4,1,91,2 ' Set Monday, April 1, 1991

Related topics:
GETDATE, GETIME, SETIME

8-141

SETIME Statement

Summary:
The SETIME statement sets the current time on the Real Time Clock.

Syntax:

SETIME hours, minutes, seconds

Arguments:

hours an integer expression. The hours, represented as 0..23, with 0 being
midnight.

minutes an integer expression. The minutes, represented as 0..59.

seconds an integer expression. The seconds, represented as 0..59.

Description:

SETIME sets the current time on the Real Time Clock. Note that the Real Time Clock is an
option on the Boss Bear. SETIME takes about 200 microseconds to execute.

UCP: The UCP uses a Touch Memory device for the real time clock. The SETIME

statement takes about 150 milliseconds to execute on the UCP, which is much
longer than the Boss Bear.

Example:
100 SETI ME 14, 23, 45 ' Set tinme to 2:23:45 pm

Related topics:
GETIME, SETDATE, SETDATE

8-142

SETOPTION DAC Direct Command

Summary:

The SETOPTION DAC command sets the initial power-up value for a DAC output channel.
The Boss Bear must have the optional EEPROM installed in order for this command to
take effect.

Syntax:
SETOPTION DAC chan,value

Arguments:

chan the DAC channel number, between 1 and 12.
value the initial DAC value, between 0 and 1023.

Description:

Prior to version 2.03 of Bear BASIC, the DAC channels were not initialized when the Boss
Bear was turned on, causing the DAC outputs to go to a random voltage. With version
2.03, the initial DAC values are stored in the reserved area of the EEPROM; when the Boss
Bear is turned on, each DAC channel is set to the corresponding EEPROM value. These
EEPROM values are set using the SETOPTION DAC command.

UCP: Because the DAC values on the UCP range from 0 to 32767, the value parameter
should be 0 to 32767 for SETOPTION DAC on the UCP.

Examples:
SETOPTI ON DAC 1, 512

This sets the EEPROM DAC table so that channel 1 will be set to 512 when the Boss Bear
is turned on. If the DAC module is configured so that channel 1 is -5V to +5V, then this
causes the output to be OV at power-up, for example.

SETOPTI ON DAC 3,0

This causes DAC channel 3 to be initialized to 0. If channel 3 is configured as a 4-20mA
current loop, then the output would be 4mA at power-up.

Related topics:
DAC, Chapter 7, Chapter 9, Appendix H

8-143

SIN Function

Summary:
The SIN function calculates the sine function.

Syntax:
x = SIN (expr)

Arguments:
expr a numeric expression.

Description:

The SIN function returns the sine of its argument, which must be a numeric expression, in
degrees. The result is returned as a REAL value.

Example:

100 REAL X, Y

110 PRI NT SI N(45. 0)

120 X=68. 3

130 Y=SI N(X)

140 PRINT "Sine value of "; X" is ";Y

This produces the following output when run:

. 70711
Sine val ue of 68.29999 is .92913

Related topics:
ASIN, COS, ACOS, TAN, ATAN

8-144

SQR Function

Summary:
The SQR function calculates the square root function.

Syntax:
x = SQR (expr)

Arguments:
expr a numeric expression.

Description:

The SQR function returns the square root of its argument, which must be a numeric
expression. The result is returned as a REAL value.

Example:

100 REAL X, Y

110 PRINT SQR(2.0)

120 X=144.0

130 Y=COs(X)

140 PRINT "Square root of ";X;" is ";VY

This produces the following output when run:

1.41422
Square root of 144.00000 is 12.00000

Related topics:
COS, ACOS, SIN, ASIN, TAN, ATAN

8-145

STAT Direct Command

Summary:

The STAT direct command displays the Bear BASIC software version number and the
memory usage of the last compiled program.

Syntax:
STAT

Arguments:
STAT needs no arguments.

Description:

The STAT command can be issued at any time. It displays the Boss Bear's software
version number. It also displays the memory usage information for the last successfully
compiled program; this information is always displayed, but it is only valid after a program
has been successfully compiled. If a program was compiled and generated errors, then
some of the numbers displayed by STAT may be incorrect.

Example:

STAT displays data such as the following:

Start: 0100 Starting address of program.

End: 3EC4 End address of program code.

Vari abl e: EOF6 Starting address of program variables.
27k Source Bytes Free Source code bytes free.

40k Runtinme Bytes Free Runtime bytes free.

BEAR BASI C Conpi |l er Version 2.00 Boss Bear software version number.

Related topics:
COMPILE, RUN

8-146

STOP Statement

Summary:
The STOP statement stops execution of the program.

Syntax:
STOP

Arguments:
STOP needs no arguments.

Description:
STOP immediately stops execution of the program and returns to the compiler prompt.

Example:

100 PRINT "Line 100"
110 PRINT "Line 110"
120 STOP

130 PRINT "Line 130"

This produces the following output when run:

Li ne 100
Line 110

8-147

STR$ Function

Summary:
The STRS$ function converts a number into a string.

Syntax:
st$ = STR$ (expr)

Arguments:
expr a numeric expression.

Description:

The STRS$ function returns a STRING result that is the human readable, decimal text
representation of expr. It formats the result as a real number (ie. 12.34000, 5.00000, etc.).
Remember that a number may have many different representations; for example, the
decimal number 100 is represented in hexadecimal as $0064. The result of STR$(100) is a
9 character string: "100.00000".

Note that this is much different than MKI$ or MKS$, which convert a number into a binary
string. Binary strings are not human readable, and in fact are just arrays of bytes.

Example:

100 INTEGER J: REAL X

110 STRING A$(60)

120 J=45:. X=38.014

130 PRI NT STR$(J)

140 A$=CONCAT$("The value of X is ", STR$(X))
150 PRINT A%

This produces the following output when run:

45. 00000
The value of X is 38.01399

Related topics:
VAL

8-148

STRING Statement

Summary:
The STRING statement is used to declare string variables.

Syntax:
STRING variable [,variable]...

Arguments:

variable a text string. The name to use for the string variable. String variable names
in Bear BASIC consist of an alphabetic character followed by up to 6
alphanumeric characters followed by a '$'. To declare an array, this will be

followed by one or two numbers enclosed in parenthesis. The following are
valid string variable names: A$, A$(20), NAMES$, TIME4$(10), A$(10,7).

Description:

String variables are used to hold text data. All variables in a Bear BASIC program must be
declared as INTEGER, REAL, or STRING; all variable declarations must occur before any
executable statements in the BASIC program.

Variables in the STRING statement may have a maximum string length specified by
enclosing the maximum length in parenthesis; no more than 127 may be specified. If no
maximum is given, it will default to 20 characters. If an attempt is made to access beyond
the end of the string, the error message String Length Exceeded will be displayed. A
string array may be specified by giving two parameters enclosed in parenthesis: the first is
the length of each element, and the second is the number of elements in the array. When
accessing a string array, however, only one parameter is given inside the parenthesis; for
example, if STRING RL$(10,24) is used to declare an array of 25 strings, each 10
characters long, then the 11th array element is accessed using RL$(10).

Example:

100 | NTEGER J

110 STRING A$ ' 20 character string

120 STRI NG RDLI N$(80) ' 80 character string

130 STRI NG DAY$(3, 6) " Array of 7 strings, 3 chars |ong

140 DATA "Sun","Mon","Tue","Wed","Thu","Fri", "Sat"
150 | NPUT RDLI N$

160 A$=M D$(RDLI N$, 5, 8)

170 FOR J=0 TO 6

180 READ DAY$(J) ' Shows how arrays are accessed
190 PRI NT DAY$(J)
200 NEXT J

Related topics:
REAL, STRING

8-149

SYSTEM Statement

Summary:
The SYSTEM statement is used to link Bear BASIC to an assembly language subroutine.

Syntax:
SYSTEM addr, regarray

Arguments:

addr a numeric expression. The address of the subroutine to call.

regarray an array of at least 4 integers. On entry, these hold the register values to
pass to the subroutine. On return, these hold the register values passed
back from the subroutine. The registers are formatted in the array as follows:

Array Element High Byte Low Byte
0 A flags
1 B C
2 D E
3 H L

Description:

The SYSTEM statement calls an assembly language subroutine, passing register values in
an integer array. This is similar to the CALL statement, except that CALL passes the
addresses of BASIC variables to the subroutine. To pass values to an assembly language
subroutine, put the values into the correct spots in regarray and use SYSTEM to transfer to
the subroutine, which will use the values in the registers as it needs them. When the
subroutine executes a RET instruction ($C9), the current value of the registers will be
passed back to the BASIC program.

Example:

100 | NTEGER RA(3)
110 |INTEGER J, K
200 DATA $3C

205 DATA $04

210 DATA $0C

215 DATA $14

220 DATA s$1C

225 DATA $24

230 DATA $2C

235 DATA $C9

300

305 ' Store the assenbly | anguage subroutine at address $8000
310 FOR J=0 TO 7

315 READ K

320 POKE J + $8000, K

330 NEXT J

18555555
FrIMoQOw>

il

350 RA(0)=$0001 A = $00, F = $01
360 RA(1)=%$0203 B = $02, C = $03
370 RA(2)=%0405 D = $04, E = $05
380 RA(3)=%$0607 ' H= %06, L = $07
400 SYSTEM $8000, RA(0) " Must specify RA(O)
410 ' Display return values from subroutine

420 FPRINT "HAX2HAX2HAX2HA" | RA(0) , RA(1), RA(2) , RA(3)

8-150

This program stores an assembly language subroutine at location $8000 (in lines 310 to
330) and calls it with the SYSTEM statement (in line 400). The address $8000 was chosen
because STAT indicated that the area from around $3C00 to around $E800 was unused,
so an address in the middle of this range was picked. The subroutine just increments all of
the registers (except the flags register) and returns. Lines 350 to 380 set the values to
pass to the subroutine. Line 420 displays the return values from the subroutine. This
produces the following output when run:

0101 0304 0506 0708

Related topics:
CALL, CODE, Appendix D

8-151

TAN Function

Summary:
The TAN function calculates the tangent function.

Syntax:
x = TAN (expr)

Arguments:
expr a numeric expression.

Description:

The TAN function returns the tangent of its argument, which must be a numeric expression,
in degrees. The result is returned as a REAL value.

Example:

100 REAL X, Y

110 PRI NT TAN(45.0)

120 X=68.3

130 Y=TAN(X)

140 PRINT "Tangent value of "; X" is ";Y

This produces the following output when run:

1. 00000
Tangent val ue of 68.29999 is 2.51288

Related topics:
ATAN, COS, ACOS, SIN, ASIN

8-152

TASK Statement

Summary:
The TASK statement marks the beginning of a task.

Syntax:
TASK task

Arguments:

task an integer number from 1 through 31. This is the number of the task in the
program.

Description:

In a multitasking program, all tasks, other than task 0 (the main program), must begin with
a TASK statement. The TASK statement must be at the start of a BASIC line; it cannot be
in the middle of a multi-statement line. The tasks must be numbered sequentially starting
at 1;the error message Task Error is displayed by the compiler if a task is numbered out
of order.

Each task has its own set of temporary variables that are used by BASIC to perform
operations; they must be separate so that a task doesn't corrupt other task's variables
when it starts to execute. A task must not GOTO or GOSUB a line that is part of another
task without taking special precautions; see Chapter 5 for further details.

Example:

100 RUN 1,100 ' Start task 1, reschedul e once/ second
110 PRI NT "Main progrant

120 WAIT 90: GOTO 110

200 TASK 1 " Mark beginning of task 1

210 PRI NT "Task 1"

220 EXIT

Related topics:
RUN statement, EXIT, WAIT, CANCEL

8-153

TMADDR Statement

Summary:
The TMADDR statement sets the ID for succeeding Touch Memory accesses.

Syntax:
TMADDR idstr

Arguments:
idstr Touch Memory ID stored in first 8 bytes of string.

Description:

After TMSEARCH is used to find the ID's of all attached Touch Memories, TMADDR
specifies which Touch Memory to communicate with. After TMADDR | D is executed, all
succeeding TMREAD and TMWRITE accesses will go to the Touch Memory with the
specified ID. This is not currently implemented on the Boss Bear.

Example:

100 | NTEGER NDEV, NUM ST
110 STRING | D$(80), DAT$(30)

200 NDEV=TMSEARCH(| D$) ' Read device |Ds.

210 | F NDEV=0 THEN WAIT 50: GOTO 200 " Loop if none found

220 FOR NUMEO TO NDEV-1

230 TMADDR M D$(| D$, NUMF 8+1, 8) ' Set up IDto wite to.

240 ST=TMREAD(DAT$, 0, 20) ' Zero out data at l|ocation O.
250 PRI NT ST, DAT$ ' Display data.

260 NEXT NuM

Related topics:
TMSEARCH, TMREAD, TMWRITE

8-154

TMREAD Function

Summary:
The TMREAD function reads data from a Touch Memory device attached to the Touch
Memory port.

Syntax:

stat=TMREAD(datstr$,location,length)

Arguments:

datstr$ string variable to store data into.

location an integer expression. The starting byte location to read from within the
Touch Memory.

length an integer expression. The number of bytes to read from the Touch Memory.

Description:

TMREAD transfers data from a Touch Memory device into a BASIC string variable. It
transfers length number of bytes starting at location in the Touch Memory.

Note that no range checking is performed on the location and length arguments. It is
possible to read beyond the end of the Touch Memory device. This causes unpredictable
values to be stored in datstr$. This is not currently being implemented on the Boss Bear.

Example:

100 | NTEGER NDEV, NUM ST

110 STRING | D$(80), DAT$(30)

200 NDEV=TMSEARCH(| D$) ' Read device |Ds.

210 | F NDEV=0 THEN WAI T 50: GOTO 200 " Loop if none found.
220 FOR NUMEO TO NDEV- 1

230 TMADDR M D$(| D$, NUM8+1, 8) ' Set up IDto wite to
240 ST=TMREAD(DATS$, 30, 10) ' Read bytes 30..39

250 PRI NT ST, DAT$
260 NEXT NUM

Related topics:
TMADDR, TMSEARCH, TMWRITE

8-155

TMSEARCH Function

Summary:
The TMSEARCH function reads the ID string for all Touch Memory devices attached. It
returns the number of devices found.

Syntax:
num=TMSEARCH(idstr)

Arguments:
idstr string variable to store any Touch Memory ID strings in.

Description:

Each Touch Memory device has a unique eight byte ID string stored permanently in it. In
order to access the device, this ID must be sent as part of all commands. The TMSEARCH
function scans the Touch Memory interface port, getting the ID strings for all attached
Touch Memories. All of these ID strings are concatenated together in idstr. If two Touch
Memories were found, for example, then idstr would be 16 characters long, with the first ID
at the first character of the string, and the second ID starting at the eighth character of the
string. This is not currently being implemented on the Boss Bear.

Example:

100 | NTEGER NDEV, NUM ST
110 STRING | D$(80), DAT$(30)

150 DAT$=""

160 FOR NUME1 TO 30

170 DAT$=CONCATS$(DAT$, CHR$(0)) " Build string of 0 bytes.

180 NEXT NUM

200 NDEV=TMSEARCH(| D$) ' Read device |Ds.

210 | F NDEV=0 THEN WAIT 50: GOTO 200 " Loop if none found

220 FOR NUMEO TO NDEV-1

230 TMADDR M D$(| D$, NUMF 8+1, 8) ' Set up IDto wite to.

240 ST=TMARI TE(DAT$, 0) ' Zero out data at l|ocation O.

250 PRINT "Wite status=";ST
260 NEXT NUM

Related topics:
TMADDR, TMREAD, TMWRITE

8-156

TMWRITE Function

Summary:
The TMWRITE function writes data to a Touch Memory device attached to the Touch
Memory port.

Syntax:
stat=TMWRITE(datstr$,location)

Arguments:

datstr$ string variable containing the data to write.

location an integer expression. The starting byte location to read from within the
Touch Memory.

Description:
TMWRITE transfers data from a BASIC string variable into a Touch Memory device. It
transfers length number of bytes starting at location in the Touch Memory.

Note that no range checking is performed on the location and length arguments. It is
possible to attempt to write beyond the end of the Touch Memory device. This causes data
to be lost, since the data that won't fit in the Touch Memory is discarded. This is not
currently being implemented on the Boss Bear.

Example:

100 | NTEGER NDEV, NUM ST
110 STRING | D$(80), DATS$(30)

200 NDEV=TMSEARCH(| D$) ' Read device |Ds.

210 | F NDEV=0 THEN WAI T 50: GOTO 200 " Loop if none found.
220 FOR NUMEO TO NDEV- 1

230 TMADDR M D$(| D$, NUM8+1, 8) ' Set up IDto wite to
240 DAT$="This is a test"

250 ST=TM\RI TE(DAT$, 73) ' Wite to bytes 73..86

260 PRI NT ST
270 ST=TMREAD(DAT$, 73, 14)
280 PRI NT ST, DAT$

290 NEXT NUM

Related topics:
TMADDR, TMSEARCH, TMWRITE

8-157

TRACEON and TRACEOFF Statements

Summary:

The TRACEON and TRACEOFF statements enable and disable the line number trace,
respectively.

Syntax:

TRACEON
TRACEOFF

Arguments:
TRACEON and TRACEOFF need no arguments.

Description:

TRACEON causes the line number of each line to print as it is executed; the line numbers
are printed on the current FILE device. TRACEOQOFF disables the trace.

Example:

100 | NTEGER J

110 TRACEON

120 FOR J=1 TO 3

130 PRI NT "Nunber "; J
140 NEXT J

150 TRACEOFF

160 PRI NT " Done"

This produces the following output when run:

120
130
Nunber 1
140
130
Nunber 2
140
130
Nurmber 3
140
150
Done

Related topics:
DEBUG

8-158

VAL Function

Summary:
The VAL function converts a string into a number.

Syntax:
x = VAL (strexpr$)

Arguments:
strexpr$ a string expression.

Description:
The VAL function returns a REAL result that is the numeric conversion of the number at the
beginning of strexpr$. If strexpr$ can't be interpreted as a number, then VAL returns 0.

Note that this is much different than CVI or CVS, which convert a binary string into a
number. Binary strings are not human readable, and in fact are just arrays of bytes.

Example:

100 | NTEGER J: REAL X
110 STRI NG A$(60)

120 A%$="123"

130 J=VAL(A3)

140 PRINT "Nuneric value of "; A$; " is "; J
150 X=VAL("83.298")

160 PRINT "X ="; X

This produces the following output when run:

Nuneric value of 123 is 123
X = 83.29799

Related topics:
STR$

8-159

VECTOR Statement

Summary:
The VECTOR statement stores the address of an interrupt service task at the specified
address.

Syntax:

VECTOR laddr, task

Arguments:

laddr an integer expression. The address at which to store the address of the
interrupt service task.

task an integer expression from 1 through 31. The task number of the interrupt

service task.

Description:

VECTOR is used to link a hardware interrupt source to a Bear BASIC task. This is similar
to the INTERRUPT statement, but INTERRUPT is much easier to use; in general, the only
time that VECTOR will be used is when copying code supplied in a Divelbiss application
note. When VECTOR is executed, the starting address of task is stored at laddr, which
should be a hardware interrupt vector address. When the interrupt occurs, task will be
executed as an interrupt service routine. Unlike INTERRUPT, VECTOR does not provide
any hardware support for the interrupt source; specifically, it does not automatically clear
the interrupt.

Example:

100 INTEGER X, T, RL, RLH, RLL, I NTS
110 PRINT "Enter nunber of ints per second (5 to 2000):
120 FINPUT "U4", I NTS

130 T =0 " Initialize interrupt counter
140 FILE 6 ' Wite to the onboard display
150 GOSUB 200 ' Set up tiner interrupt

160 LOCATE 1,1: FPRINT "U5Z",T " Display current count

170 GOTO 160 ' Loop forever

200 ' Set up tinmer 1 for specified interrupt rate

210 RL = 6144000.0 / 20.0 / INTS ' Calc reload val ue

220 RLH = RL / $100 ' Calc high byte of reload

230 RLL = BAND (RL , $FF) " Calc |low byte of reload

240 VECTOR $ES6, 1 ' Set up timer vector to task 1
250 OQUT $14, RLL : OQUT $15, RLH "Init timer value

260 OQUT $16, RLL : QUT $17, RLH " Init reload val ue

270 QUT $10, BOR(INP($10), $22) ' Enable tinmer 1

280 RETURN

1000 ' Tinmer interrupt task

1010 TASK 1

1020 X=I NP($10): X=I NP($14) ' Reset the timer 1 interrupt flag
1030 T=T + 1 " Increnent counter val ue

1040 EXIT

This example demonstrates how to use the spare timer on the processor to generate an
extremely accurate high speed timebase. Lines 110 and 120 get the timer rate from the
user and store itin INTS. Line 130 calls the subroutine at line 200, which sets up the timer

8-160

interrupt. Line 210 calculates the reload value for the timer, which determines how many
interrupts per second will be generated. Lines 220 and 230 split the reload value into a
high byte and a low byte. Line 240 uses VECTOR to attach task 1 to the timer interrupt.
Line 250 initializes the timer value, and line 260 initializes the reload value; every time the
timer reaches 0, the reload value will be written into the timer. Line 270 starts the timer
running. Lines 160 and 170 form the mainline of the program; they just print the current
count value onto the onboard display. Task 1 is the timer interrupt task, at line 1000; every
time the timer reaches 0, this task is executed. Line 1020 resets the timer 1 interrupt flag,
which is necessary so that it doesn't jump back into task 1 as soon as it exits, since the
interrupt flag would still be set. Line 1030 just increments a count value. Line 1040 EXITs
back to continue processing; an interrupt task must end with an EXIT statement.

Related topics:
INTERRUPT, JVECTOR

8-161

WAIT Statement

Summary:
The WAIT statement delays execution of the current task for a specified period.

Syntax:
WAIT num_tics

Arguments:

num_tics a numeric expression from 1 to 32767. The number of tics (1/100 second) to
delay. A tick equals 10msec which equals 1/100 second.

Description:

The WAIT statement provides an efficient way to put a delay into a program. It delays the
execution of the current task for at least num_tics hundredths of a second; the task may be
delayed for more than num_tics, depending upon how many tasks are ready to run when
num_tics have elapsed. Any other tasks that are ready to run will continue to execute; if no
other task is ready to run, then the processor will be idle until one of the tasks is done
WAITing and can execute again. WAIT enables interrupts, since it depends upon the
context switcher being called, so it can't be used inside of a hardware interrupt service task.
WAIT works fine in a single-task program, the processor just sits idle until num_tics have
elapsed.

Example:

100 RUN 1 ' Start task 1 executing

110 PRINT "*"; " Print a'*" every 300 nmsec

120 WAIT 30: GOTO 110

130 TASK 1

140 PRINT "-";: GOTO 140 " Print a'-' every 1 nsec at 9600 baud

Related topics:
RUN, CANCEL, EXIT

8-162

WPEEK Function

Summary:
The WPEEK statement reads an integer word value from the specified address.

Syntax:
x = WPEEK (logaddr)

Arguments:
logaddr an integer expression. The logical address to read from.

Description:

The WPEEK function reads a word from memory at logaddr; it returns the word as an
INTEGER.