
Weston, FL 33326

User’s Manual

µC/ TCP-IP TM

The Embedded Protocol Stack

µC/TCP-IP User's Manual

1. UserManual . 3

1.1 About . 6

1.2 Getting Started . 11

1.2.1 Installing . 12

1.2.2 Building and Running the Sample Application . 15

1.2.2.1 Wired Ethernet Interface Setup . 19

1.2.2.2 WiFi Interface Setup . 24

1.3 Directories and Files . 29

1.3.1 TCPIP Network Devices . 38

1.3.2 TCPIP Network Interface . 41

1.3.3 TCPIP Network File System Abstraction Layer . 43

1.3.4 TCPIP Network CPU Specific Code . 45

1.3.5 TCPIP Network CPU Independent Source Code . 47

1.3.6 TCPIP Network Security Manager CPU Independent Source Code . 48

1.3.7 TCPIP Network Examples Code . 49

1.4 Configuration . 51

1.4.1 Network Stack Configuration . 52

1.4.2 Network Tasks Configuration . 62

1.4.3 Network Interface Configuration . 65

1.4.4 LIB Memory Heap Configuration . 81

1.5 TCPIP Initialization Guide . 85

1.5.1 Prerequisite module initialization . 86

1.5.2 Initializing Tasks and objects . 88

1.5.3 Initializing Interfaces . 89

1.5.4 IP Address Configuration . 96

1.5.5 Initializing+Shell+commands . 103

1.5.6 Sample applications . 105

1.5.6.1 Ethernet Sample Application . 106

1.5.6.2 WiFi Sample Application . 113

1.5.6.3 Multiple Interfaces Sample Application . 124

1.6 Network Board Support Package . 129

1.6.1 Ethernet BSP Layer . 130

1.6.2 Wireless BSP Layer . 136

1.6.3 Specifying the Interface Number of the Device ISR . 145

1.7 Troubleshooting Guide . 146

1.7.1 Initialization Issues . 147

1.7.2 Application Issues . 153

1.7.3 Performance Issues . 155

1.7.4 Statistics and Error Counters . 159

1.7.5 Architecture . 162

1.7.5.1 Module Relationships . 164

1.7.5.2 Network Buffer Architecture . 169

1.7.5.3 TCPIP Tasks and Priorities . 171

1.7.5.4 Receiving a Packet . 173

1.7.5.5 Transmitting a Packet . 176

1.7.5.6 Timer Management . 178

UserManual

µC/TCP-IP User's Manual

3Copyright 2015 Micrium Inc.

UserManual

Version 3.03.00

µC/TCP-IP is a compact, reliable, high-performance TCP/IP protocol stack. Built from the

ground up with Micrium’s unique combination of quality, scalability and reliability,

µC/TCP-IP, the result of many man-years of development, enables the rapid configuration of

required network options to minimize time to market.

The source code for µC/TCP-IP contains over 100,000 lines of the cleanest, most consistent

ANSI C source code available in a TCP/IP stack implementation. C was chosen since C is the

predominant language in the embedded industry.

Portable

C/TCP-IP is ideal for resource-constrained embedded applications. The code was designed for

use with nearly any CPU, RTOS, and network device. Although C/TCP-IP can work on some

8 and 16-bit processors, C/TCP-IP is optimized for use with 32 or 64-bit CPUs.

Scalable

The memory footprint of C/TCP-IP can be adjusted at compile time depending on the features

required, and the desired level of run-time argument checking appropriate for the design at

hand. Since C/TCP-IP is rich in its ability to provide statistics computation, unnecessary

statistics computation can be disabled to further reduce the footprint.

Coding Standards

Coding standards were established early in the design of C/TCP-IP. They include:

C coding style

Naming convention for #define constants, macros, variables and functions

Commenting

µC/TCP-IP User's Manual

4Copyright 2015 Micrium Inc.

Directory structure

These conventions make C/TCP-IP the preferred TCP/IP stack implementation in the industry,

and result in the ability to attain third party certification more easily as outlined in the next

section.

MISRA C

The source code for C/TCP-IP follows Motor Industry Software Reliability Association

(MISRA) C Coding Standards. These standards were created by MISRA to improve the

reliability and predictability of C programs in safety-critical automotive systems. Members of

the MISRA consortium include such companies as Delco Electronics, Ford Motor Company,

Jaguar Cars Ltd., Lotus Engineering, Lucas Electronics, Rolls-Royce, Rover Group Ltd., and

universities dedicated to improving safety and reliability in automotive electronics. Full details

of this standard can be obtained directly from the MISRA web site at: .www.misra.org.uk

Safety Critical Certification

C/TCP-IP was designed from the ground up to be certifiable for use in avionics, medical

devices, and other safety-critical products. Validated Software’s Validation SuiteTM for

C/TCP-IP will provide all of the documentation required to deliver C/TCP-IP as a

pre-certifiable software component for avionics RTCA DO-178B and EUROCAE ED-12B,

medical FDA 510(k), IEC 61508 industrial control systems, and EN-50128 rail transportation

and nuclear systems. The Validation Suite, available through Validated Software, will be

immediately certifiable for DO-178B Level A, Class III medical devices, and SIL3/SIL4

IEC-certified systems. For more information, check out the C/TCP-IP page on the Validated

Software web site at: .www.ValidatedSoftware.com

If your product is not safety critical, however, the presence of certification should be viewed as

proof that C/TCP-IP is very robust and highly reliable.

RTOS

C/TCP-IP assumes the presence of an RTOS, yet there are no assumptions as to which RTOS

to use with C/TCP-IP. The only requirements are that it must:

Be able to support multiple tasks

http://www.misra.org.uk/
http://www.validatedsoftware.com/

µC/TCP-IP User's Manual

5Copyright 2015 Micrium Inc.

Provide binary and counting semaphore management services

Provide message queue services

Micrium provides an Kernel Abstraction layer that allows for the use of almost any

commercial or open source RTOS. It can be found under the KAL folder of the µC/Common

directory. Details regarding the RTOS are thus hidden from C/TCP-IP. KAL includes the

encapsulation layer for C/OS-II and C/OS-III real-time kernels.

µC/TCP-IP User's Manual

6Copyright 2015 Micrium Inc.

About
This chapter presents a quick introduction to the Micriµm Internet protocol suite also

commonly known as µC/TCP-IP.

TCP/IP Layer Model

Layers

The Internet Protocol suite regroups all the protocols used for communication accross

the Internet or similar networks.

A TCP/IP stack is divided into layers of same functionnality. Each communication protocol

belongs to one of the layers. shows the differents layers of theTable - TCP/IP Layer Model

TCP/IP model and also the OSI model. At the rigth, a list of the protocols associated with each

layer that the Micriµm µC/TCP-IP stack supports.

OSI Model TCP/IP Model
(Dod)

µC/TCP-IP
Internet Protocol Suite

Application

Application HTTP, FTP, DNS, SMTP, POP3, SNTP, TELNET, TFTP, SSL, DHCPPresentation

Session

Transport Transport TCP, UDP

Network Internet IPv4, IGMP, ICMPv4, ARP IPv6, MLDP, ICMPv6, NDP

DataLink
Network Access

IF / 802x

Ethernet WiFi

Physical Ethernet Driver PHY Driver WiFi Driver WiFi Manager

Table - TCP/IP Layer Model

µC/TCP-IP Protocols

µC/TCP-IP consists of the following protocols:

Device drivers

µC/TCP-IP User's Manual

7Copyright 2015 Micrium Inc.

Network interfaces (e.g., Ethernet, WiFi, etc.)

Address Resolution Protocol (ARP)

Neighbor Discovery Protocol (NDP)

Internet Protocol (IPv4 and IPv6)

Internet Control Message Protocol (ICMPv4 and ICMPv6)

Internet Group Management Protocol (IGMP)

Multicast Listener Discovery Protocol (MLDP)

User Datagram Protocol (UDP)

Transport Control Protocol (TCP)

Sockets (Micrium and BSD v4)

Interfaces

Actually µC/TCP-IP supports Ethernet interface that use Ethernet frame and/or IEEE 802.4.

Also WiFi interfaces can be used as long as the device implements by itself IEEE 802.11.

Basically, µC/TCP-IP only sends some commands to the module to scan for wireless networks,

join or leave a specific network. The WiFi module must be able to encrypt and decrypt by

itself all the network data. The network data between the host and the wireless module is

transferred using IEEE 802.4. Currently only SPI is supported as communication bus between

the host and the wireless module.

Devices

µC/TCP-IP may be configured with multiple-network devices and network (IP) addresses. Any

device may be used as long as a driver with appropriate API and BSP software is provided.

The API for a specific device (i.e., chip) is encapsulated in a couple of files and it is quite easy

to adapt devices to µC/TCP-IP.

µC/TCP-IP User's Manual

8Copyright 2015 Micrium Inc.

IPv4 & IPv6

IPv4

The Micriµm Network Stack supports IPv4 as described in RFC #791, with the following

restrictions/constraints:

ONLY supports a single default gateway per interface.

IPv4 forwarding/routing NOT currently supported.

Transmit fragmentation NOT currently supported.

IPv4 Security options NOT supported.

The IPv4 Layer also implements:

ICMPv4 protocol for Internet control messages;

ARP protocol for link layer address resolution;

IGMP protocol for multicast communication.

IPv6

The Micriµm Network Stack supports IPv6 as described in RFC #2460, with the following

restrictions/constrains:

IPv6 Extension Headers is NOT currently supported.

The IPv6 layer also implements:

ICMPv6 protocol for Internet control messages;

NDP protocol for link layer address resolution;

µC/TCP-IP User's Manual

9Copyright 2015 Micrium Inc.

MLDP protocol for mutlicast communication.

Socket API

The user application interfaces to µC/TCP-IP via a well known API called BSD sockets (or

µC/TCP-IP’s internal socket interface). The application can send and receive data to/from other

hosts on the network via this interface. Many books and tutorials exist about BSD sockets

programming, mostly the concepts explained in these reference can be applied to µC/TCP-IP

socket programming.

Network Application Protocols

Micrium Add-ons

Micrium offers application layer protocols as add-ons to µC/TCP-IP. A list of these network

services and applications includes:

µC/DCHPc DHCP client

µC/DNSc DNS client

µC/HTTPs HTTP server (web server)

µC/FTPc FTP client

µC/FTPs FTP server

µC/SMTPc SMTP client

µC/SNTPc Network Time Protocol client

µC/TELNETs Telnet server

µC/POP3c POP3 client

µC/TFTPc FTP client

µC/TFTPc TFTP client

µC/IPerf Network testing tool

BSD Based Application

Any well known application layer protocols following the BSD socket API standard can be

used with µC/TCP-IP.

µC/TCP-IP User's Manual

10Copyright 2015 Micrium Inc.

RFC validation

µC/TCPIP is regularly validated via a popular automated network validation library provided

by Ixia and called IxANVL. It guaranteed that RFCs are always respected and correctly

implemented.

µC/TCP-IP User's Manual

11Copyright 2015 Micrium Inc.

Getting Started
This chapter gives you some insight into how to install and use the µC/TCP-IP stack. The

following topics are explained in this chapter:

Prerequisites

Downloading the Source Code

Installing the Files

Building and Running the Sample Application

At the end of this chapter, you should be able to build and run your first TCP/IP application

using the µC/TCP-IP stack.

https://doc.micrium.com/display/TCPIPDOC303/Installing#Installing-Prerequisites
https://doc.micrium.com/display/TCPIPDOC303/Installing#Installing-Downloadingthesourcecode
https://doc.micrium.com/display/TCPIPDOC303/Installing#Installing-InstallingtheFiles

µC/TCP-IP User's Manual

12Copyright 2015 Micrium Inc.

Installing

Prerequisites

Before running your first application, you must ensure that you have the minimal set of

required tools and components:

Toolchain for your specific microcontroller.

Development board.

Source code for the µC/TCPI-IP stack.

Source code for all the other Micriµm modules required by the µC/TCPI-IP stack (see

section)Additional Modules

Interface device driver compatible with your hardware for the µC/TCP-IP stack (Ethernet +

PHY driver or WiFi driver).*

Board support package (BSP) for your development board.*

A running project for your selected RTOS.

Additional Modules

µC/TCP-IP depends on other modules to run. First, it needs the presence of a RTOS.

Furthermore, µC/CPU, µC/LIB and µC/Common modules are required.

If you are using one of the two Micriµm OS, complete documentation can be found forhere

µC/OS-II and for µ/COS-III. Refer to those guides for more information on thehere

requirements, installation, configuration and running of those RTOS.

* If Micrium does not support your network device driver, you will have to write your own
device driver. The same goes for your BSP. However, you can contact Micriµm
(support@micrium.com) to see if a BSP example exists for your development board to help
you get started. Refer to section for more information on writingµC/TCPIP Driver Manual
your own Ethernet or WiFi device driver and section forNetwork Board Support Package
writing your own BSP.

https://doc.micrium.com/pages/viewpage.action?pageId=10753158
https://doc.micrium.com/pages/viewpage.action?pageId=10753180
https://doc.micrium.com/pages/viewpage.action?pageId=12851811

µC/TCP-IP User's Manual

13Copyright 2015 Micrium Inc.

The µC/CPU module regroups the processor's hardware-dependent code. µC/CPU includes

many ports for all the different CPU architectures Micriµm supports. You must therefore used

the port corresponding to your specific CPU. The complete µC/CPU documentation can be

found . here

The µC/LIB module is the Micriµm run-time library, implementing the most common standard

library functions, macros, and constants. The complete µC/LIB documentation can be found

.here

The µC/Common repository comprises multiple modules required by the µC/TCP-IP stack.

Among others, the KAL module is included. KAL stands for Kernel-Abstraction Layer. It is

used by µC/TCP-IP stack and other Micriµm products to interacts with the RTOS by

specifying a set of generic API functions. KAL comes with the µC/OS-II and µC/OS-III ports.

The complete KAL documentation can be found .here

Downloading the source code

µC/TCP-IP stack can be downloaded from the Micrium customer portal as all the other

required modules. The distribution package includes the full source code and documentation.

The customer portal also includes all the network interface device driver supported by

Micriµm. Wired Ethernet devices and WiFi devices are supported by Micriµm. Download the

device driver adequate for your project. If your device is not support by Micriµm, you will

need to develop your own device driver. Refer to section for all theµC/TCPIP Driver Manual

details.

You can log into the Micrium customer portal at the address below to begin your download

(you must have a valid license to gain access to the file):

http://micrium.com/login

https://doc.micrium.com/display/cpudoc
https://doc.micrium.com/display/libdoc
https://doc.micrium.com/display/KAL/KAL+User+Manual
https://doc.micrium.com/pages/viewpage.action?pageId=12851811
http://micrium.com/login

µC/TCP-IP User's Manual

14Copyright 2015 Micrium Inc.

Installing the Files

Once all the distribution packages have been downloaded to your host machine, extract all the

files at the root of your C:\ drive for instance. The package may be extracted to any location.

After extracting all the files, the directory structure should look as illustrated in Figure -

 . In the example, all Micriµm products sub-folders shown in Directory Tree for µC/TCP-IP

 will be located in . TheFigure - Directory Tree for µC/TCP-IP C:\Micrium\Software\

Micriµm µC/OS-III RTOS has been chosen for this example.

Figure - Directory Tree for µC/TCP-IP

µC/TCP-IP User's Manual

15Copyright 2015 Micrium Inc.

Building and Running the Sample Application

This section describes all the steps required to build a TCPIP-based application. The

instructions provided in this section are not intended for any particular toolchain, but instead

are described in a generic way that can be adapted to any toolchain.

The best way to start building a TCPIP-based project is to start from an existing project. If you

are using µC/OS-II or µC/OS-III, Micrium provides example projects for multiple development

boards and compilers. If your target board is not listed on Micrium’s web site, you can

download an example project for a similar board or microcontroller.

Working project with RTOS

The first step before including the µC/TCP-IP stack is to have a working project with the

RTOS of your choice. As previously mentioned, Micriµm offers starting example with the

µC/OS-II and µC/OS-III kernels for many evalboards.

Complete documentation for µC/OS-II, including a Getting Started Guide

Complete documentation for µC/OS-III, including a Getting Started Guide

Including Additional Modules to the Project

Once you have a working project with your RTOS, additional modules are needed by the

Micriµm TCP/IP stack that are not necessarily already included in your project. Therefore, be

sure to add µC/CPU, µC/LIB and µC/Common to your project.

Complete documentation for µC/CPU

Complete documentation for µC/LIB

Complete documentation for µC/Common

Bear in mind to include the required paths associated with those modules to your project’s C

compiler settings.

https://doc.micrium.com/display/osiidoc
https://doc.micrium.com/display/osiiidoc
https://doc.micrium.com/display/cpudoc
https://doc.micrium.com/display/libdoc
https://doc.micrium.com/pages/viewpage.action?pageId=10754328

µC/TCP-IP User's Manual

16Copyright 2015 Micrium Inc.

Including the Board Support Package (BSP)

In order for the network device driver to remain hardware independent, µC/TCPIP requires a

BSP abstraction layer to implement such things as configuring clocks, interrupt controllers,

general-purpose input/ouput (GPIO) pins. Inside your project folder tree, under the board

name, you should already have a BSP folder. Boards for which TCPIP application have been

develop should have a TCPIP folder inside the BSP directory. You can add this directory to

your project tree. If your board does not have such a folder, you would have to write your own

BSP for the network device driver. Refer to section for moreNetwork Board Support Package

details on how to write a BSP for µC/TCP-IP. Micrium offers template files inside the BSP

folder in the µC/TCP-IP source code distribution to get you started with your own

BSP. However, we recommend starting with a working configuration from an example project

for your network device. Micrium might have some projects available only for internal usage,

so if no working project are found online, please ask at for a BSP filesupport@micrium.com

example specific for your network device.

Afterwords, add a path leading to the following include paths to your project’s C compiler

settings:

\Micrium\Software\EvalBoards\<manufactuer>\<boardname>\BSP\TCPIP

Including TCP-IP Stack Source Code

The µC/TCP-IP files to include in your project depends on the network interface(s) presents on

your development board. Therefore, the complete files list we will be presented inside each

following sub-sections associated with an interface type.

Ethernet Interface Setup

Wi-Fi Interface Setup

Copying and Modifying Template Files

Copy the files from the uC-TCPIP configuration folder into your application as illustrated in

 .Figure - Copying Template Files

µC/TCP-IP User's Manual

17Copyright 2015 Micrium Inc.

Figure - Copying Template Files

net_cfg.c is a configuration file including the objects used to configured theNET_TASK_CFG

µC/TCP-IP internal tasks. The µC/TCP-IP stack has three internal tasks : the Receive task, the

Transmit De-allocation task and the Timer task. Each task as its own objectNET_TASK_CFG

defining the task priority, the task's stack size and the pointer to start of task stack. Refer to

 section for more details on the µC/TCP-IP tasks configuration.Network Tasks Configuration

net_cfg.h is a configuration file used to setup µC/TCP-IP stack static parameters such as the

number of available sockets, TCP connections and network timers, the ARP and NDP

parameters, the number of configurable interface and so on. Refer to section Static Stack

 for more details on all the configurations inside . Configuration net_cfg.h

net_dev_cfg.c and net are configuration files used to set the wired or wireless_dev_cfg.h

device interface parameters such as the number and size of network buffers available for

transmission and reception and the base address of the device's registers. They also include the

PHY parameters such as the PHY bus mode (RMII or MII) in the case of a wired Ethernet

device.

https://doc.micrium.com/display/DOC/Static+Stack+Configuration
https://doc.micrium.com/display/DOC/Static+Stack+Configuration

µC/TCP-IP User's Manual

18Copyright 2015 Micrium Inc.

Since the device configuration is different depending if your interface is wired or wireless, the

details on the device configuration modifications will be shown in the corresponding

sub-sections.

Modifying the Application Configuration Files

The µC/TCP-IP stack uses additional heap memory space. Therefore, it is possible that your

example application will require more allocation of heap memory. If ti is the case, you can

increase the value of the #define inside the file of yourLIB_MEM_CFG_HEAP_SIZE lib_cfg.h

example project. You can refer to section for more detailsLIB Memory Heap Configuration

on the heap usage of the µC/TCP-IP stack.

Wired Ethernet Interface Setup

µC/TCP-IP User's Manual

19Copyright 2015 Micrium Inc.

Wired Ethernet Interface Setup

Including TCP-IP Stack Source Code

Include the following files in your project tree from the µC/TCP-IP source code distribution, as

indicated in . In this figure, the IP folder only show theFigure - µC/TCP-IP Source Code

sub-folder IPv4 as an example. If you are running with IPv6, please add the IPv6 folder instead

or add both IPv4 and IPv6 folders if you want your project to support both IP version.

Figure - µC/TCP-IP Source Code

µC/TCP-IP User's Manual

20Copyright 2015 Micrium Inc.

As indicated in the , all the files in the Source folder must beFigure - µC/TCP-IP Source Code

added to your project tree. Furthermore, if a TCP-IP port exists for your CPU architecture

inside the "Ports" folder, you can also include it to your project files.

Second, add the following include paths to your project’s C compiler settings:

\Micrium\Software\uC-TCPIP
\Micrium\Software\uC-TCPIP\Dev\Ether\<device_name>
\Micrium\Software\uC-TCPIP\Dev\Ether\PHY\<phy_device_name>

Modify the Interface Device Configuration

Modify Ethernet Device Configuration

Inside the net_dev_cfg.c file, there are different device configuration templates. Since that, in

this section, the example project we want to run is with a Ethernet wired device, the

configuration that interests us is beneath the section "EXAMPLE ETHERNET DEVICE

CONFIGURATION".

Next you need to modify the Ethernet device configuration template as needed by your

application. Refer to section and forMemory Configuration Ethernet Interface Configuration

all the details on the parameters to configure.

Modify PHY Configuration

Under the Ethernet device configuration, you will also found the PHY device configuration.

This configuration will also need to be adjusted according to your PHY setup on the

development board. Refer to section for all the details on theEthernet Interface Configuration

PHY configuration.

Modify Static Configurations

As previously mentionned, the µC/TCP-IP static configurations are located in the net_cfg.h

file. For this getting started guide, the template file without modification should be enough to

get you started. Depending on your Interface device configuration, it is possible that you would

need to adjust the µC/TCP-IP queues' configurations as listed in Listing - µC/TCP-IP Static

. Refer to section for more details onConfiguration Modifications Task Queue Configuration

the TCP-IP queues's configurations.

https://doc.micrium.com/display/TCPIPDOC303/Network+Interface+Configuration#NetworkInterfaceConfiguration-MemoryConfiguration
https://doc.micrium.com/display/CTCPIP/Ethernet+Interface+Configuration
https://doc.micrium.com/display/CTCPIP/Ethernet+Interface+Configuration

µC/TCP-IP User's Manual

21Copyright 2015 Micrium Inc.

#define NET_CFG_IF_RX_Q_SIZE 50
#define NET_CFG_IF_TX_DEALLOC_Q_SIZE 50

Listing - µC/TCP-IP Static Configuration Modifications

Tasks Priority

The file includes the three network task configurations. You will need to defined thenet_cfg.c

priority of each of those tasks. The priorities will depend on the other tasks already present in

your application. Refer to section for all the details onNetwork Tasks Configuration

configuring the network tasks and their priority.

Example Project Setup

The purpose of this example project is to setup a network host on the target board to allow it to

communicate with other hosts on the network. shows theFigure - Example Application Setup

project test setup for a Ethernet wired interface. The target board is wire-connected to an

Ethernet switch or via an Ethernet cross-over cable to a Windows-based PC. The PC’s IP

address is set to 10.10.10.111 and the target’s addresses will be configure to 10.10.10.64 as it

will be shown in the next section .Adding µC/TCP-IP application function

This example project contains enough code to be able to ping the board. Therefore, after

successfully running the project, You will be able to issue the following command form a

command-prompt:

ping 10.10.10.64

Ping (on the PC) should reply back with the ping time to the target. µC/TCP-IP target projects

connected to the test PC on the same Ethernet switch or Ethernet cross-over cable achieve ping

times of less than 2 milliseconds.

µC/TCP-IP User's Manual

22Copyright 2015 Micrium Inc.

Figure - Sample Application Setup

After you have successfully completed and run the example project, you can use it as a starting

point to run other µC/TCP-IP demos you may have purchased.

Adding Additional includes

Since the µC/TCP-IP module was added to the example project, the following include must be

added to the app.c file :

#include <KAL/kal.h>

 #include <Source/net.h>

 #include <net_dev_????.h>

 #include <net_phy_????.h>

 #include <net_dev_cfg.h>

#include <net_bsp.h>

Adding µC/TCP-IP Application Function

Before running the example application, you will need to add the new funtion,

, in your app.c file to initialize and setup the µC/TCP-IP stack. Section AppInit_TCPIP() Tasks

 gives an example of the main application task inside which the and Objects Initialization

 function will be called. Section gives an AppInit_TCPIP() Ethernet Sample Application

 example for a wired Ethernet interface.AppInit_TCPIP()

Those code examples will need to be modified in accordance with your project setup. For

µC/TCP-IP User's Manual

23Copyright 2015 Micrium Inc.

example, when adding an interface, your network device configuration object name (inside

) will need to be specify and the IP address used in the example could need to benet_dev_cfg.c

change to match your network.

Once the source code is built and loaded into the target, the target will respond to ICMP Echo

(ping) requests.

WiFi Interface Setup

µC/TCP-IP User's Manual

24Copyright 2015 Micrium Inc.

WiFi Interface Setup

Including TCP-IP Stack Source Code

Include the following files in your project tree from the µC/TCP-IP source code distribution, as

indicated in . In this figure, the IP folder only show theFigure - µC/TCP-IP Source Code

subfolder IPv4 as an example. If you are running with IPv6, please add the IPv6 folder instead

or add both IPv4 and IPv6 folders if you want your project to support both IP version.

Figure - µC/TCP-IP Source Code

µC/TCP-IP User's Manual

25Copyright 2015 Micrium Inc.

As indicated in the , all the files in the Source folder must beFigure - µC/TCP-IP Source Code

added to your project tree. Furthermore, if a TCP/IP port exists for your CPU architecture

inside de Ports folder, you can also include it to your project files.

Second, add the following include paths to your project’s C compiler settings:

\Micrium\Software\uC-TCPIP
\Micrium\Software\uC-TCPIP\Dev\WiFi\<device_name>
\Micrium\Software\uC-TCPIP\Dev\WiFi\Manager\Generic

Modify the Interface Device Configuration

Inside the file, there are different device configuration templates.net_dev_cfg.c

Since that, in this section, the example project we want to run is with a WiFi device, the

configuration that interests us is beneath the section "EXAMPLE WIFI DEVICE

CONFIGURATION".

Next, you need to modify the WiFi device configuration template as needed by your

application. Refer to section and forMemory Configuration Wireless Interface Configuration

all the details on the parameters to configure.

Modify Static Configurations

As previously mentionned, the µC/TCP-IP static configurations are located in the net_cfg.h

file. For this getting started guide, the template file without modification should be enough to

get you started. Depending on your Interface device configuration, it is possible that you would

need to ajust the µC/TCP-IP queues' configurations as listed in Listing - µC/TCP-IP Static

. Refer to for more details onConfiguration Modifications section Static Stack Configuration

the TCP-IP queues's configurations.

#define NET_CFG_IF_RX_Q_SIZE 50
#define NET_CFG_IF_TX_DEALLOC_Q_SIZE 50

Listing - µC/TCP-IP Static Configuration Modifications

https://doc.micrium.com/display/TCPIPDOC/Network+Interface+Configuration#NetworkInterfaceConfiguration-MemoryConfiguration
https://doc.micrium.com/display/TCPIPDOC/Wireless+Interface+Configuration
https://doc.micrium.com/display/DOC/Static+Stack+Configuration

µC/TCP-IP User's Manual

26Copyright 2015 Micrium Inc.

Tasks Priority

The net_cfg.c file includes the three network task configurations. You will need to defined the

priority of each of those tasks. The priorities will depend on the other tasks already present in

your applicaiton. Refer to section for all the details onNetwork Tasks Configuration

configuring the network tasks and their priority.

Example Project Setup

The purpose of this example project is to setup a network host on the target board to allow it to

communicate with other hosts on the network. shows theFigure - Example Application Setup

project test setup for a target board with a WiFi interface. The target board has WiFi interface

that allows the board to connect to a WiFi access point. In this example, a router acts as the

access point and allows the PC to be on the same network as the board. The PC’s IP address is

set to 10.10.10.111 and the target’s addresses wil be configure to 10.10.10.64 as it will be

shown in the next section .Running the Example Application

This example project contains enough code to be able to ping the board. Therefore, after

successfully running the project, You will be able to issue the following command form a

command-promt:

ping 10.10.10.64

Ping (on the PC) should reply back with the ping time to the target. µC/TCP-IP target projects

connected to the test PC on the same Ethernet switch or Ethernet cross-over cable achieve ping

times of less than 2 milliseconds.

https://doc.micrium.com/display/TCPIPDOC/Network+Tasks+Configuration
https://doc.micrium.com/display/CTCPIP/Running+the+Sample+Application

µC/TCP-IP User's Manual

27Copyright 2015 Micrium Inc.

Figure - Sample Application Setup

After you have successfully completed and run the example project, you can use it as a starting

point to run other µC/TCP-IP demos you may have purchased.

Adding Additional includes

Since the µC/TCP-IP module was added to the example project, the following include must be

added to the app.c file :

#include <KAL/kal.h>

#include <Source/net.h>

#include <net_dev_????.h>

#include <net_wifi_mgr.h>

#include <net_dev_cfg.h>

#include <net_bsp.h>

Adding µC/TCP-IP application function

Before running the example application, you will need to add the new funtion,

 in your app.c file to initialize and setup the µC/TCP-IP stack. Section ,AppInit_TCPIP() Tasks

 gives an example of the main application task inside which the and Objects Initialization

 function will be called. Section gives anAppInit_TCPIP() WiFi Example Application

AppInit_TCPIP() example for a WiFi interface.

µC/TCP-IP User's Manual

28Copyright 2015 Micrium Inc.

Those code examples will need to be modified in accordance with your project setup. For

example, when adding an interface, your network device configuration object name (inside

) will need to be specify and the IP address used in the example could need to benet_dev_cfg.c

change to match your network.

Once the source code is built and loaded into the target, the target will respond to ICMP Echo

(ping) requests.

µC/TCP-IP User's Manual

29Copyright 2015 Micrium Inc.

Directories and Files
Below is a summary of all directories and files involved in the µC/TCP-IP stack. The ‘ ’<-Cfg

on the far right indicates that these files are typically copied into the application (i.e., project)

directory and edited based on project requirements.

\Micrium
 \Examples
 \<manufacturer>
 \<board_name>
 \<project_name>
 \<compiler>
 .
 \Software
 \uC-TCPIP
 \BSP
 \Template
 \net_bsp_ether.c
 \net_bsp_ether.h
 \net_bsp_wifi.c
 \net_bsp_wifi.h
 \Cfg
 \Template
 \net_cfg.c <-Cfg
 \net_cfg.h <-Cfg
 \net_dev_cfg.c <-Cfg
 \net_dev_cfg.h <-Cfg
 \Cmd
 \net_cmd.c
 \net_cmd.h
 \net_cmd_args_parser.c
 \net_cmd_args_parser.h
 \net_cmd_output.c
 \net_cmd_output.h
 \Dev
 \Ether
 \<controller>
 \net_dev_<controller>.c
 \net_dev_<controller>.h
 \PHY
 \controller>
 \net_phy_<controller>.c
 \net_phy_<controller>.h
 \Generic
 \net_phy.c
 \net_phy.h
 \WiFi
 \<controller>
 \net_dev_<controller>.c
 \net_dev_<controller>.h
 \Manager
 \Generic
 \net_wifi_mgr.c
 \net_wifi_mgr.h
 \Examples
 \Init
 init_ether.c
 init_multiple_if.c
 init_wifi.c
 \Socket
 tcp_client.c

µC/TCP-IP User's Manual

30Copyright 2015 Micrium Inc.

 tcp_server.c
 udp_client.c
 udp_server.c
 \TLS-SSL
 client_secure.c
 server_secure.c
 \IF
 \net_if.c
 \net_if.h
 \net_if_802x.c
 \net_if_802x.h
 \net_if_ether.c
 \net_if_ether.h
 \net_if_wifi.c
 \net_if_wifi.h
 \net_if_loopback.c
 \net_if_loopback.h
 \IP
 \IPv4
 \net_arp.c
 \net_arp.h
 \net_icmpv4.c
 \net_imcpv4.h
 \net_igmp.c
 \net_igmp.h
 \net_ipv4.c
 \net_ipv4.h
 \IPv6
 \net_icmpv6.c
 \net_icmpv6.h
 \net_ipv6.c
 \net_ipv6.h
 \net_mldp.c
 \net_mldp.h
 \net_ndp.c
 \net_ndp.h
 \Modules
 \Common
 \net_base64.c
 \net_base64.h
 \net_sha1.c
 \net_sha1.h
 \Ports
 \<architecture>
 \<compiler>
 \net_util_a.asm
 \Secure
 net_secure.h
 \<security_suite_name>
 \net_secure_<suite_name>.c
 \net_secure_<suite_name>.h
 \Source
 \net.c
 \net.h
 \net_app.c
 \net_app.h
 \net_ascii.c
 \net_ascii.h
 \net.bsd.c
 \net.bsd.h
 \net.buf.c
 \net.buf.h
 \net_cache.c
 \net_cache.h
 \net_cfg_net.h
 \net_conn.c
 \net_conn.h
 \net_ctr.c

µC/TCP-IP User's Manual

31Copyright 2015 Micrium Inc.

 \net_ctr.h
 \net_def.h
 \net_err.h
 \net_icmp.c
 \net_icmp.h
 \net_ip.c
 \net_ip.h
 \net_mgr.c
 \net_mgr.h
 \net_sock.c
 \net_sock.h
 \net_stat.c
 \net_stat.h
 \net_tcp.c
 \net_tcp.h
 \net_tmr.c
 \net_tmr.h
 \net_type.h
 \net_udp.c
 \net_udp.h
 \net_util.c
 \net_util.h

\Micrium

Contains all software components and projects provided by Micrium.

\Software

This sub-directory contains all software components and projects.

\uC-TCPIP

This is the main directory for the µC/TCP-IP code.

BSP

\BSP\Template

This directory contains templates files, where functions might need to be implemented.

See the section for further information.Network Board Support Package

Configuration

\Cfg

This directory contains configuration template file that must be copied to your project and

µC/TCP-IP User's Manual

32Copyright 2015 Micrium Inc.

modified following our requirements. See the section for furtherConfiguration

information.

Shell Commands

\Cmd

This directory contains the function that can be called from the command shell. This

directory should be added to the project only if is present and network commandµC/Shell

must be added to this module.

See the following document for further information :

µC/Shell Documentation

Devices

Only the driver for your network controller(s) should be added to your project.

\Dev

This directory contains device drivers for different interfaces. Currently, µC/TCP-IP only

supports one type of interface, Ethernet. µC/TCP-IP is tested with many types of Ethernet

devices.

Ethernet

\Ether

Ethernet controller drivers are placed under the Ether sub-directory. Note that device

drivers must also be called .net_dev_<controller>.*

\<controller>

The name of the Ethernet controller or chip manufacturer used in the project. The ‘<’ and

‘>’ are not part of the actual name. This directory contains the network device driver for

the Network Controller specified.

https://doc.micrium.com/pages/viewpage.action?pageId=10753210
https://doc.micrium.com/pages/viewpage.action?pageId=10753210

µC/TCP-IP User's Manual

33Copyright 2015 Micrium Inc.

net_dev_<controller>.h is the header file for the network device driver.

net_dev_<controller>.c contains C code for the network device driver API.

\PHY

This is the main directory for Ethernet Physical layer drivers.

\Generic

This is the directory for the Micrium provided generic PHY driver. Micrium’s generic

Ethernet PHY driver provides sufficient support for most (R)MII compliant Ethernet

physical layer devices. A specific PHY driver may be developed in order to provide

extended functionality such as link state interrupt support.

net_phy.h is the network physical layer header file.

net_phy.c provides the (R)MII interface port that is assumed to be part of the host

Ethernet MAC. Therefore, (R)MII reads/writes be performed through themust

network device API interface via calls to function pointers and Phy_RegRd()

.Phy_RegWr()

Wireless

\WiFi

Wireless controller drivers are placed under the WiFi sub-directory. Note that device

drivers must also be called net_dev_<controller>.*.

\<controller>

The name of the Wifi controller or chip manufacturer used in the project. The ‘<’ and ‘>’

are not part of the actual name. This directory contains the network device driver for the

Network Controller specified.

net_dev_<controller>.h is the header file for the network device driver.

net_dev_<controller>.c contains C code for the network device driver API.

µC/TCP-IP User's Manual

34Copyright 2015 Micrium Inc.

\Manager

This is the main directory for Wireless Manager layer.

\Generic

This is the directory for the Micriµm provided generic Wireless Manager layer. Micriµm's

generic Wireless Manager layer provides sufficient support for most wireless devices that

embed a wireless supplicant. A specific Wireless Manager may be developed in order to

provide extended functionality.

net_wifi_mgr.h is the network Wireless Manager layer header file.

net_wifi_mgr.c provides functionality to access the device for management

command that could required asynchronous response such as scan for available

network.

Interface

This directory contains interface-specific files. Currently, µC/TCP-IP only supports three type

of interfaces, Ethernet, wireless and loopback. The Ethernet and wireless interface-specific

files are found in the following directories:

\IF

This is the main directory for network interfaces.

net_if.* presents a programming interface between higher µC/TCP-IP layers and

the link layer protocols. These files also provide interface management routines to

the application. This file should always be part of the project

net_if_802x.* contains common code to receive and transmit 802.3 and Ethernet

packets. This file must not be modified. This file should always be part of the project

net_if_ether.* contains the Ethernet interface specifics. This file must not be

modified and should be added to the project only if a Ethernet interface is used.

net_if_wifi.* contains the wireless interface specifics. This file must not be

µC/TCP-IP User's Manual

35Copyright 2015 Micrium Inc.

modified and should be added to the project only if a Wireless interface is used.

net_if_loopback.* contains loopback interface specifics. This file must not be

modified and should be added to the project only if a Loopback interface is used.

File System Abstraction Layer

This directory contains the file system abstraction layer which allows the TCP-IP application

such as µC/HTTPs, µC/FTPc, µC/FTPs, etc. with nearly any commercial or in-house file

system. The abstraction layer for the selected file system is placed in a sub-directory under FS

as follows:

\FS

This is the main FS directory that contain generic file system port header file. This file

must be included if one or more application that required a file system such as µC/HTTPs,

µC/FTPc, µC/FTPs, etc. are present in the project.

\<file_system_name>

This is the directory that contains the files to perform file system abstraction.

µC/TCP-IP has been tested with µC/FS-V4 and the file system layer files for this file

system are found in the following directories:

\Micrium\Software\uC-TCPIP\FS\uC-FS-V4\net_fs_v4.*

Modules Code

This directory contains some code that can be shared between many Network application, such

as HTTP, DNS, DHCP, etc. Each applications would tell you which file of this directory is

required.

CPU Specific Code (Optimization)

Some functions can be optimized in assembly to improve the performance of the network

protocol stack. An easy candidate is the checksum function. It is used at multiple levels in the

stack, and a checksum is generally coded as a long loop.

µC/TCP-IP User's Manual

36Copyright 2015 Micrium Inc.

\Ports

This is the main directory for processor specific code.

\<architecture>

The name of the CPU architecture that was ported to. The ‘<’ and ‘>’ are not part of the

actual name.

\<compiler>

The name of the compiler or compiler manufacturer used to build code for the optimized

function(s). The ‘<’ and ‘>’ are not part of the actual name.

net_util_a.asm contains assembly code for the specific CPU architecture. All functions

that can be optimized for the CPU architecture are located here.

Core - CPU independent Source Code

This directory contains all the CPU and RTOS independent files for µC/TCP-IP. Nothing must

be changed in this directory in order to use µC/TCP-IP.

\Source

This is the directory that contains all the CPU and RTOS independent source code files.

Examples Code

This directory contains code examples to help customers develop their network application.

Those examples are given as guide lines and are not part of the µC/TCP-IP stack, therefore

they are not part of the support Micriµm offers.

\Examples

This is the directory that contains the sample codes to help customers with their network

application. It includes µC/TCP-IP stack initialization examples, socket programming

examples, etc.

\Init

µC/TCP-IP User's Manual

37Copyright 2015 Micrium Inc.

This is the directory that contains the sample codes to help customers with their network

application. It includes µC/TCP-IP stack initialization examples.

\Multicast

This is the directory that contains the example codes to help customers with their network

application. It includes multicast examples.

\Socket

This is the directory that contains the sample codes to help customers with their network

application. It includes socket programming examples.

\TLS-SSL

This is the directory that contains the sample codes to help customers with their network

application. It includes examples about how to use TLS/SSL with an application.

Notes

This section discusses the modules available for C/TCP-IP, and how they all fit together. A

Windows®-based development platform is assumed. The directories and files make references

to typical Windows-type directory structures. However, since C/TCP-IP is available in source

form, it can also be used with any ANSI-C compatible compiler/linker and any Operating

System.

The names of the files are shown in upper case to make them stand out. However, file names

are actually lower case.

µC/TCP-IP User's Manual

38Copyright 2015 Micrium Inc.

TCPIP Network Devices

The files in these directories are

\Micrium
 \Software
 \uC-TCPIP
 \Dev
 \Ether
 \PHY
 \Generic
 \<Controller>
 \WiFi
 \Manager
 \Generic
 \<Controller>

\Micrium

Contains all software components and projects provided by Micrium.

\Software

This sub-directory contains all software components and projects.

\uC-TCPIP

This is the main directory for the µC/TCP-IP code.

\Dev

This directory contains device drivers for different interfaces. Currently, µC/TCP-IP only

supports one type of interface, Ethernet. µC/TCP-IP is tested with many types of Ethernet

devices.

\Ether

Ethernet controller drivers are placed under the Ether sub-directory. Note that device

drivers must also be called .net_dev_<controller>.*

µC/TCP-IP User's Manual

39Copyright 2015 Micrium Inc.

\WiFi

Wireless controller drivers are placed under the WiFi sub-directory. Note that device

drivers must also be called net_dev_<controller>.*.

\PHY

This is the main directory for Ethernet Physical layer drivers.

\Generic

This is the directory for the Micrium provided generic PHY driver. Micrium’s generic

Ethernet PHY driver provides sufficient support for most (R)MII compliant Ethernet

physical layer devices. A specific PHY driver may be developed in order to provide

extended functionality such as link state interrupt support.

net_phy.h is the network physical layer header file.

net_phy.c provides the (R)MII interface port that is assumed to be part of the host

Ethernet MAC. Therefore, (R)MII reads/writes be performed through themust

network device API interface via calls to function pointers and Phy_RegRd()

.Phy_RegWr()

\Manager

This is the main directory for Wireless Manager layer.

\Generic

This is the directory for the Micriµm provided generic Wireless Manager layer. Micriµm's

generic Wireless Manager layer provides sufficient support for most wireless devices that

embed a wireless supplicant. A specific Wireless Manager may be developed in order to

provide extended functionality.

net_wifi_mgr.h is the network Wireless Manager layer header file.

net_wifi_mgr.c provides functionality to access the device for management

command that could required asynchronous response such as scan for available

µC/TCP-IP User's Manual

40Copyright 2015 Micrium Inc.

network.

\<controller>

The name of the Ethernet or wireless controller or chip manufacturer used in the project.

The ‘<’ and ‘>’ are not part of the actual name. This directory contains the network

device driver for the Network Controller specified.

net_dev_<controller>.h is the header file for the network device driver.

net_dev_<controller>.c contains C code for the network device driver API.

µC/TCP-IP User's Manual

41Copyright 2015 Micrium Inc.

TCPIP Network Interface

This directory contains interface-specific files. Currently, µC/TCP-IP only supports three type

of interfaces, Ethernet, wireless and loopback. The Ethernet and wireless interface-specific

files are found in the following directories:

\Micrium
 \Software
 \uC-TCPIP
 \IF

\Micrium

Contains all software components and projects provided by Micrium.

\Software

This sub-directory contains all software components and projects.

\uC-TCPIP

This is the main µC/TCP-IP directory.

\IF

This is the main directory for network interfaces.

net_if.* presents a programming interface between higher µC/TCP-IP layers and

the link layer protocols. These files also provide interface management routines to

the application.

net_if_802x.* contains common code to receive and transmit 802.3 and Ethernet

packets. This file should not need to be modified.

net_if_ether.* contains the Ethernet interface specifics. This file should not need to

be modified.

µC/TCP-IP User's Manual

42Copyright 2015 Micrium Inc.

net_if_wifi.* contains the wireless interface specifics. This file should not need to

be modified.

net_if_loopback.* contains loopback interface specifics. This file should not need to

be modified.

µC/TCP-IP User's Manual

43Copyright 2015 Micrium Inc.

TCPIP Network File System Abstraction Layer

This directory contains the file system abstraction layer which allows the TCP-IP application

such as µC/HTTPs, µC/FTPc, µC/FTPs, etc. with nearly any commercial or in-house file

system. The abstraction layer for the selected file system is placed in a sub-directory under FS

as follows:

\Micrium
 \Software
 \uC-TCPIP
 \FS
 \net_fs.h
 \<file_system_name>

\Micrium

Contains all software components and projects provided by Micrium.

\Software

This sub-directory contains all software components and projects.

\uC-TCPIP

This is the main µC/TCP-IP directory.

\FS

This is the main FS directory that contain generic file system port header file. This file

must be included if one or more application that required a file system such as µC/HTTPs,

µC/FTPc, µC/FTPs, etc. are present in the project.

\<file_system_name>

This is the directory that contains the files to perform file system abstraction.

µC/TCP-IP has been tested with µC/FS-V4 and the file system layer files for this file

system are found in the following directories:

µC/TCP-IP User's Manual

44Copyright 2015 Micrium Inc.

\Micrium\Software\uC-TCPIP\FS\uC-FS-V4\net_fs_v4.*

µC/TCP-IP User's Manual

45Copyright 2015 Micrium Inc.

TCPIP Network CPU Specific Code

Some functions can be optimized in assembly to improve the performance of the network

protocol stack. An easy candidate is the checksum function. It is used at multiple levels in the

stack, and a checksum is generally coded as a long loop.

\Micrium
 \Software
 \uC-TCPIP
 \Ports
 \<architecture>
 \<compiler>
 \net_util_a.asm

\Micrium

Contains all software components and projects provided by Micrium.

\Software

This sub-directory contains all software components and projects.

\uC-TCPIP

This is the main µC/TCP-IP directory.

\Ports

This is the main directory for processor specific code.

\<architecture>

The name of the CPU architecture that was ported to. The ‘<’ and ‘>’ are not part of the

actual name.

\<compiler>

The name of the compiler or compiler manufacturer used to build code for the optimized

µC/TCP-IP User's Manual

46Copyright 2015 Micrium Inc.

function(s). The ‘<’ and ‘>’ are not part of the actual name.

net_util_a.asm contains assembly code for the specific CPU architecture. All functions

that can be optimized for the CPU architecture are located here.

µC/TCP-IP User's Manual

47Copyright 2015 Micrium Inc.

TCPIP Network CPU Independent Source Code

This directory contains all the CPU and RTOS independent files for µC/TCP-IP. Nothing

should be changed in this directory in order to use µC/TCP-IP.

\Micrium
 \Software
 \uC-TCPIP
 \Source

\Micrium

Contains all software components and projects provided by Micrium.

\Software

This sub-directory contains all software components and projects.

\uC-TCPIP

This is the main µC/TCP-IP directory.

\Source

This is the directory that contains all the CPU and RTOS independent source code files.

µC/TCP-IP User's Manual

48Copyright 2015 Micrium Inc.

TCPIP Network Security Manager CPU
Independent Source Code

This directory contains all the CPU independent files for µC/TCP-IP Network Security

Manager. Nothing should be changed in this directory in order to use µC/TCP-IP.

\Micrium
 \Software
 \uC-TCPIP
 \Secure
 \<security_suite_name>

\Micrium

Contains all software components and projects provided by Micrium.

\Software

This sub-directory contains all software components and projects.

\uC-TCPIP

This is the main µC/TCP-IP directory.

\Secure

This is the main Secure directory that contains the generic secure port header file. This

file should be included in the project only if a security suite is available and is to be used

by the application.

\Secure\<security_suite_name>

This is the directory that contains the files to perform security suite abstraction. These

files should only be included in the project if a security suite (i.e Mocana - NanoSSL) is

available and is to be used by the application.

µC/TCP-IP User's Manual

49Copyright 2015 Micrium Inc.

TCPIP Network Examples Code

This directory contains code examples to help customers develop their network application.

Those examples are given as guide lines and are not part of the µC/TCP-IP stack, therefore

they are not part of the support Micriµm offers.

\Micrium
 \Software
 \uC-TCPIP
 \Examples
 \Init
 \Socket
 \TLS-SSL

\Micrium

Contains all software components and projects provided by Micriµm.

\Software

This sub-directory contains all software components and projects.

\uC-TCPIP

This is the main µC/TCP-IP directory.

\Examples

This is the directory that contains the sample codes to help customers with their network

application. It includes µC/TCP-IP stack initialization examples, socket programming

examples, etc.

\Init

This is the directory that contains the sample codes to help customers with their network

application. It includes µC/TCP-IP stack initialization examples.

\Multicast

µC/TCP-IP User's Manual

50Copyright 2015 Micrium Inc.

This is the directory that contains the example codes to help customers with their network

application. It includes multicast examples.

\Socket

This is the directory that contains the sample codes to help customers with their network

application. It includes socket programming examples.

\TLS-SSL

This is the directory that contains the sample codes to help customers with their network

application. It includes examples about how to use TLS/SSL with an application.

µC/TCP-IP User's Manual

51Copyright 2015 Micrium Inc.

Configuration
Prior to usage, µC/TCP-IP must be properly configured. There are four groups of configuration

parameters:

Network Stack Configuration

Network Tasks Configuration

Network Interface Configuration

LIB Memory Heap Configuration

This chapter explains how to setup all these groups of configuration.

µC/TCP-IP User's Manual

52Copyright 2015 Micrium Inc.

Network Stack Configuration

µC/TCP-IP is configurable at compile time via approximately 50 in the application’s #defines

 file. µC/TCP-IP uses because they allow code and data sizes to be scaled atnet_cfg.h #defines

compile time based on enabled features and the configured number of network objects. This

allows the ROM and RAM footprints of µC/TCP-IP to be adjusted based on application

requirements.

Most of the should be configured with the default configuration values. A handful of#defines

values may likely never change because there is currently only one configuration choice

available. This leaves approximately a dozen values that should be configured with values that

may deviate from the default configuration.

It is recommended that the configuration process begins with the default configuration values

which in the next sections will be shown in .bold

The sections in this chapter are organized following the order in µC/TCP-IP's template

configuration file, .net_cfg.h

Sub-modules Configuration

µC/TCP-IP contains code that can use sub-modules such as DNS client to perform some

specific operation and extend the functionalities of some particular API.

Constant Description Possible
Values

NET_EXT_MODULE_CFG_DNS_EN Select portions of µC/TCP-IP code may call µC/DNSc
API to resolve remote hostname. If µC/DNSc
files/functions are included in the µC/TCP-IP build set
NET_EXT_MODULE_CFG_DNS_EN to DEF_ENABLED.
Set to DEF_DISABLED otherwise.

DEF_ENABLED
 or
DEF_DISABLED

Table - Compile Feature Constants

https://doc.micrium.com/display/ucdnsc/doc
https://doc.micrium.com/display/ucdnsc/doc

µC/TCP-IP User's Manual

53Copyright 2015 Micrium Inc.

Task Queue Configuration

The µC/TCP-IP stack has two queues that need to be configured. The first one is the Rx queue

and is used to store the Rx buffer that have been filled and are ready to be process. The second

queue is the Tx deallocation and is used to store the Tx buffers that are ready to be deallocate.

Constant Description Possible
Values

NET_CFG_IF_RX_Q_SIZE Should be configured such that it reflects the total
number of receive buffer minus the number of receive
descriptor on all physical interfaces. If DMA is not
available, or a combination of DMA and I/O based
interfaces are configured then this number reflects the
maximum number of packets that can be acknowledged
and signaled during a single receive interrupt event for all
interfaces.

Depends on
the device
configuraiton
(see
net_dev_cfg.c)

NET_CFG_IF_TX_DEALLOC_Q_SIZE Should be defined to be the total number of small and
large transmit buffers declared for all interfaces.

Depends on
the device
configuraiton
(see
net_dev_cfg.c)

Table - Task Queue Constants

Compile Features Configuration

Constant Description Possible
Values

NET_CFG_OPTIMIZE_ASM_EN Select portions of µC/TCP-IP code may call optimized
assembly functions by configuring

to IfNET_CFG_OPTIMIZE_ASM_EN DEF_ENABLED.
optimized assembly files/functions are included in the

µC/TCP-IP build set to NET_CFG_OPTIMIZE_ASM_EN
. Set to otherwise.DEF_NEABLED DEF_DISABLED

DEF_ENABLED
 or
DEF_DISABLED

Table - Compile Feature Constants

µC/TCP-IP User's Manual

54Copyright 2015 Micrium Inc.

Debug Features Configuration

Constant Description Possible
Values

NET_DBG_CFG_MEM_CLR_EN Is used to clear internal network data structures when
allocated or de-allocated. By clearing, all bytes in internal
data structures are set to ‘0’ or to default initialization values.
This configuration is typically set it to DEF_DISABLED
 unless the contents of the internal network data structures
need to be examined for debugging purposes. Having the
internal network data structures cleared generally helps to
differentiate between “proper” data and “pollution”.

DEF_ENABLED
 or
DEF_DISABLED

Table - Debug Feature Constants

Argument Check Configuration

Most functions in µC/TCP-IP include code to validate arguments that are passed to it.

Specifically, µC/TCP-IP checks to see if passed pointers are NULL, if arguments are within valid

ranges, etc. The following constants configure additional argument checking.

Constant Description Possible
Values

NET_ERR_CFG_ARG_CHK_EXT_EN Allows code generated to check arguments for
functions that can be called by the user and, for
functions which are internal but receive arguments
from an API that the user can call. Also, enabling this
check verifies that µC/TCP-IP is initialized before API
tasks and functions perform the desired function.

DEF_ENABLED
 or
DEF_DISABLED

NET_ERR_CFG_ARG_CHK_DBG_EN Allows code to be generated which checks to make
sure that pointers passed to functions are not NULL,
and that arguments are within range, etc.

DEF_ENABLED
 or
DEF_DISABLED

Table - Argument Check Constants

Counters Configuration

µC/TCP-IP contains code that increments counters to keep track of statistics such as the

number of packets received, the number of packets transmitted, etc. Also, µC/TCP-IP contains

counters that are incremented when error conditions are detected.

µC/TCP-IP User's Manual

55Copyright 2015 Micrium Inc.

Constant Description Possible Values

NET_CTR_CFG_STAT_EN Determines whether the code and data space used to keep
track of statistics will be included.

DEF_ENABLED or
DEF_DISABLED

NET_CTR_CFG_ERR_EN Determines whether the code and data space used to keep
track of errors will be included.

DEF_ENABLED or
DEF_DISABLED

Table - Counter Management Constants

Timer Configuration

µC/TCP-IP manages software timers used to keep track of timeouts and execute callback

functions when needed.

Constant Description Possible
Values

NET_TMR_CFG_NBR_TMR Determines the number of timers that µC/TCP-IP will be
managing. Number of timer to configure depends on the network
application. It is recommended to set a large number of timer and
look at the counter to see the maximum numberNetTmr_PoolStat
of timer needed and make sure that we never run out of free
buffer by looking at the error counter
Net_ErrCtrs.Tmr.NoneAvailCtr.

Depends on
TCPIP stack
configuration.

NET_TMR_CFG_TASK_FREQ Determines how often (in Hz) network timers are to be updated.
This value be configured as a floating-point number.must not

Typically set
to Hz10

Table - Timer Management Constants

µC/TCP-IP User's Manual

56Copyright 2015 Micrium Inc.

Network Interfaces Configuration

Constant Description Possible
Values

NET_IF_CFG_MAX_NBR_IF Determines the maximum number of network
interfaces that µC/TCP-IP may create at
run-time.

1u if a single
network
interface is
present.

NET_IF_CFG_LOOPBACK_EN Determines whether the code and data space
used to support the loopback interface for
internal-only communication only will be
included.

DEF_ENABLED
 or
DEF_DISABLED

NET_IF_CFG_ETHER_EN Determines whether the code and data space
used to support Ethernet interfaces and devices
will be included.

 DEF_ENABLED
or
DEF_DISABLED

NET_IF_CFG_WIFI_EN Determines whether the code and data space
used to support wireless interfaces and devices
will be included.

DEF_ENABLED
 or
DEF_DISABLED

NET_IF_CFG_TX_SUSPEND_TIMEOUT_MS Configures the network interface transmit
suspend timeout value. The value is specified in
integer milliseconds.

1u

Table - Interfaces Configuration Constants

Address Resolution Protocol (ARP) Configuration

ARP is only used when the IPv4 stack is enabled.

Constant Description Possible Values

NET_ARP_CFG_CACHE_NBR Configures the number of ARP cache entries. 3u

Table - ARP Configuration Constants

ARP caches the mapping of IPv4 addresses to physical (i.e., MAC) addresses.

 configures the number of ARP cache entries. Each cache entryNET_ARP_CFG_NBR_CACHE

requires approximately bytes of RAM, plus seven pointers, plus a hardware address and18

protocol address (bytes assuming Ethernet interfaces and IPv4 addresses).10

The number of ARP caches required by the application depends on how many different hosts

are expected to communicate. If the application communicates with hosts on remoteonly

networks via the local network’s default gateway (i.e., router), then only a single ARP cache

needs to be configured.

µC/TCP-IP User's Manual

57Copyright 2015 Micrium Inc.

To test µC/TCP-IP with a smaller network, a default number of 3 ARP caches should be

sufficient.

Neighbor Discovery Protocol (NDP) Configuration

NDP is only used when the IPv6 stack is enabled.

Constant Description Possible Values

NET_NDP_CFG_CACHE_NBR Configures the number of NDP Neighbor cache entries. 6u

NET_NDP_CFG_DEST_NBR Configures the number of NDP Destination cache entries. 5u

NET_NDP_CFG_PREFIX_NBR Configures the number of NDP Prefix entries. 5u

NET_NDP_CFG_ROUTER_NBR Configures the number of NDP Router entries. 1u

Table - NDP Configuration Constants

NDP caches the mapping of IPv6 addresses to physical (i.e., MAC) addresses.

 configures the number of NDP Neighbor cache entries. Each cacheNET_NDP_CFG_NBR_CACHE

entry requires approximately bytes of RAM, plus seven pointers, plus a hardware address18

and protocol address (bytes assuming Ethernet interfaces and IPv6 addresses).22

NDP also caches recent IPv6 destination addresses by mapping next-hop address to final

destination address. It allows the µC/TCP-IP stack not having to re-calculating the next-hop for

each packet to send. configured the numver of NDP destination cachesNET_NDP_CFG_DEST_NBR

available for the TCPIP stack.

In IPv6, routers send router advertisement messages to inform hosts on different values like the

IPv6 prefix considered on-link. Those on-link prefix are stored in a NDP prefix list.

 configured the the number of prefix entries available in the list.NET_NDP_CFG_PREFIX_NBR

IPv6 defines an algorithm to chose the adequate router on the network to transmit packet

outside in case more than one IPv6 router is present. defines theNET_NDP_CFG_ROUTER_NBR

number of router information that can be store by the µC/TCP-IP stack.

µC/TCP-IP User's Manual

58Copyright 2015 Micrium Inc.

IPv4 Layer Configuration

Constant Description Possible
Values

NET_IPv4_CFG_EN Enables the IPv4 module. DEF_ENABLED
or
DEF_DISABLED

NET_IPv4_CFG_IF_MAX_NBR_ADDR Determines the maximum number of IPv4 addresses
that may be configured per network interface at
run-time.

At least 1

Table - IPv4 Configuration Constants

IPv6 Layer Configuration

Constant Description Possible
Values

NET_IPv6_CFG_EN Enables the IPv6 module. DEF_ENABLED
or
DEF_DISABLED

NET_IPv6_CFG_ADDR_AUTO_CFG_EN Enables the IPv6 Staless Address
Auto-Configuration module.

 DEF_ENABLED
or
DEF_DISABLED

NET_IPv6_CFG_DAD_EN Enables the Duplication Address Detection (DAD)
module.

 DEF_ENABLED
or
DEF_DISABLED

NET_IPv6_CFG_IF_MAX_NBR_ADDR Determines the maximum number of IPv6
addresses that may be configured per network
interface at run-time.

At least 2

Table - IPv6 Configuration Constants

µC/TCP-IP User's Manual

59Copyright 2015 Micrium Inc.

Multicast Configuration (IGMP and MLDP)

Constant Description Possible Values

NET_MCAST_CFG_IPv4_RX_EN Enables the multicast support in reception for
IPv4.

 DEF_ENABLED
or
DEF_DISABLED

NET_MCAST_CFG_IPv4_TX_EN Enables the multicast support in transmittion for
IPv4.

 DEF_ENABLED
or
DEF_DISABLED

NET_MCAST_CFG_HOST_GRP_NBR_MAX Configures the maximum number of IGMP host
groups that may be joined at any one time.

2u

Table - IGMP Configuration Constants

NET_IGMP_CFG_MAX_NBR_HOST_GRP configures the maximum number of IGMP host groups that

may be joined at any one time. Each group entry requires approximately bytes of RAM,12

plus three pointers, plus a protocol address (bytes assuming IPv4 address).4

The number of IGMP host groups required by the application depends on how many host

groups are expected to be joined at a given time. Since each configured multicast address

requires its own IGMP host group, it is recommended to configure at least one host group per

multicast address used by the application, plus one additional host group. Thus for a single

multicast address, it is recommended to set with an initialNET_IGMP_CFG_MAX_NBR_HOST_GRP

value of .2

Socket Layer Configuration

µC/TCP-IP supports BSD 4.x sockets and basic socket API for the TCP/UDP/IP protocols.

µC/TCP-IP User's Manual

60Copyright 2015 Micrium Inc.

Constant Description Possible Values

NET_SOCK_CFG_SOCK_NBR_TCP Configures total number of TCP
connections.

5

NET_SOCK_CFG_SOCK_NBR_UDP Configures total number of UDP
connections.

2

NET_SOCK_CFG_SEL_EN Configures socket select
functionality.

 DEF_ENABLED or
DEF_DISABLED

NET_SOCK_CFG_CONN_ACCEPT_Q_SIZE_MAX Configures stream-type sockets'
accept queue.

2

NET_SOCK_CFG_RX_Q_SIZE_OCTET Configurse socket receive queue
buffer size.

4096

NET_SOCK_CFG_TX_Q_SIZE_OCTET Configures socket transmit queue
buffer size.

4096

Table - Socket Configuraiton Constants

See for more information about how to configure receive andConfiguring window sizes

transmit queues buffer size.

TCP Layer Configuration

Constant Description Possible Values

NET_TCP_CFG_EN Enables the TCP module. DEF_ENABLED or DEF_DISABLED

Table - TCP Configuration Constants

UDP Layer Configuration

Constant Description Possible
Values

NET_UDP_CFG_RX_CHK_SUM_DISCARD_EN Is used to determine whether received UDP
packets without a valid checksum are
discarded or are handled and processed.
Before a UDP Datagram Check-Sum is
validated, it is necessary to check whether
the UDP datagram was transmitted with or
without a computed Check-Sum.

DEF_ENABLED
or
DEF_DISABLED

NET_UDP_CFG_TX_CHK_SUM_EN Is used to determine whether UDP
checksums are computed for transmission to
other hosts.

DEF_ENABLED
or
DEF_DISABLED

Table - UDP Configuration Constants

https://doc.micrium.com/display/TCPIPDOC303/Performance+Issues#PerformanceIssues-Configuringwindowsizes

µC/TCP-IP User's Manual

61Copyright 2015 Micrium Inc.

Transport Layer Security Configuration

Constant Description Possible Values

NET_SECURE_CFG_EN Configures network security manager. DEF_ENABLED or
DEF_DISABLED

NET_SECURE_CFG_MAX_NBR_SOCK_SERVER Configures total number of server secure
sockets.

5

NET_SECURE_CFG_MAX_NBR_SOCK_CLIENT Configures total number of client secure
sockets.

5

NET_SECURE_CFG_MAX_CERT_LEN Configures max length (in octets) of
Server certificates.

1500

NET_SECURE_CFG_MAX_KEY_LEN Configures max length (in octets) of
Server keys.

1500

NET_SECURE_CFG_MAX_NBR_CA Configures maximum number of
certificate authorities that can be
installed.

1

NET_SECURE_CFG_MAX_CA_CERT_LEN Configure maximum length (in octets) of
certificate authority certificates.

1500

Table - Security Management Constants

µC/TCP-IP User's Manual

62Copyright 2015 Micrium Inc.

Network Tasks Configuration

This section defines the configuration structures related to C/TCP-IP but that are

application-specific. All these configurations relate to the RTOS. For many OSs, the C/TCP-IP

task priorities and stack sizes will need to be explicitly configured for the particular OS

(consult the specific OS’s documentation for more information).

These configurations are defined in the file.net_cfg.c

Network Task Configuration

µC/TCP-IP use the following structure to configure its network tasks.

typedef struct net_task_cfg {
 CPU_INT32U Prio; /* Task priority.
*/
 CPU_INT32U StkSizeBytes; /* Size of the stack.
*/
 void *StkPtr; /* Pointer to base of the stack.
*/
} NET_TASK_CFG;

Listing - µC/TCP-IP task configuration structure

µC/TCP-IP stack has three internal tasks that need to be configured : the Receive task, the

Transmit De-allocation task and the Timer task. Each task has its own NET_TASK_CFG object

defining the task priority, the task's stack size and the pointer to start of task stack.

Task Priorities

We recommend you configure the Network Protocol Stack task priorities & Network

application task priorities as follows:

Network TX De-allocation task (highest priority)

Network application tasks, such as HTTPs instance.

µC/TCP-IP User's Manual

63Copyright 2015 Micrium Inc.

Network timer task

Network RX task (lowest priority)

We recommend that the uC/TCP-IP Timer task and network interface Receive task to be

lower priority than almost all other application tasks; but we recommend that the

network interface Transmit De-allocation task to be higher priority than all application tasks

that use uC/TCP-IP network services.

However better performance can be observed when the network application task is set with

the lowest priority. Some experimentation could be required to identify the best task

priority configuration.

Task Stack Size

In general, the size of µC/TCP-IP task stacks is dependent on the CPU architecture and

compiler used.

The only guaranteed method of determining the required task stack sizes is to calculate the

maximum stack usage for each task. Obviously, the maximum stack usage for a task is the total

stack usage along the task’s most-stack-greedy function path plus the (maximum) stack usage

for interrupts. Note that the most-stack-greedy function path is not necessarily the longest or

deepest function path.

The easiest and best method for calculating the maximum stack usage for any task/function

should be performed statically by the compiler or by a static analysis tool since these can

calculate function/task maximum stack usage based on the compiler’s actual code generation

and optimization settings. So for optimal task stack configuration, we recommend to invest in a

task stack calculator tool compatible with your build toolchain.

On ARM processors, experience has shown that configuring the task stacks to 1024 OS_STK

 entries (4,096 bytes) is sufficient for most applications. Certainly, the stack sizes may be

examined and reduced accordingly once the run-time behavior of the device has been analyzed

and additional stack space deemed to be unnecessary.

µC/TCP-IP User's Manual

64Copyright 2015 Micrium Inc.

Task Stack Location and Allocation

If a specific memory location is desired for a task stack, the StkPtr parameter can be set to

point to this specific memory segment. Else, if is set to NULL, the task stack will beStkPtr

allocate on µC/LIB Heap.

µC/TCP-IP User's Manual

65Copyright 2015 Micrium Inc.

Network Interface Configuration

This section gives more details on how to configure a network interface for C/TCP-IP.

Buffers' Management

This section describe how µC/TCP-IP uses buffers to receive and transmit application data and

network protocol control information. You should understand how network buffers are used by

µC/TCP-IP to correctly configure your interface(s).

Network Buffers

µC/TCP-IP stores transmitted and received data in data structures known as Network Buffers.

Each Network Buffer consists of two parts: the Network Buffer header and the Network Buffer

Data Area pointer. Network Buffer headers contain information about the data pointed to via

the data area pointer. Data to be received or transmitted is stored in the Network Buffer Data

Area.

µC/TCP-IP is designed with the inherent constraints of an embedded system in mind, the most

important being the restricted RAM space. µC/TCP-IP defines network buffers for the

Maximum Transmission Unit (MTU) of the Data Link technology used, which is most of the

time Ethernet. Default Ethernet’s maximum transmit unit (MTU) size is 1500 bytes.

Receive Buffers

Network Buffers used for reception for a Data Link technology are buffers that can hold one

maximum frame size. Because it is impossible to predict how much data will be received, only

large buffers can be configured. Even if the packet does not contain any payload, a large buffer

must be used, as worst case must always be assumed.

µC/TCP-IP User's Manual

66Copyright 2015 Micrium Inc.

Transmit Buffers

On transmission, the number of bytes to transmit is always known, so it is possible to use a

Network Buffer size smaller than the maximum frame size. µC/TCP-IP allows you to reduce

the RAM usage of the system by defining small buffers. When the application does not require

a full size frame to transmit, it is possible to use smaller Network Buffers. Depending on the

configuration, up to eight pools of Network Buffer related objects may be created per network

interface. Only four pools are shown below and the remaining pools are used for maintaining

Network Buffer usage statistics for each of the pools shown.

In transmission, the situation is different. The TCP/IP stack knows how much data is being

transmitted. In addition to RAM being limited in embedded systems, another feature is the

small amount of data that needs to be transmitted. For example, in the case of sensor data to be

transmitted periodically, a few hundred bytes every second can be transferred. In this case, a

small buffer can be used and save RAM instead of waste a large transmit buffer. Another

example is the transmission of TCP acknowledgment packets, especially when they are not

carrying any data back to the transmitter. These packets are also small and do not require a

large transmit buffer. RAM is also saved.

µC/TCP-IP requires that network buffer sizes configured in satisfy thenet_dev_cfg.c

minimum and maximum packet frame sizes of network interfaces/devices.

Assuming an Ethernet interface (with non-jumbo or VLAN-tagged frames), the minimum

frame packet size is 64 bytes (including its 4-byte CRC). If an Ethernet frame is created such

that the frame length is less than 60 bytes (before its 4-byte CRC is appended), frame padding

must be appended by the network driver or the Ethernet network interface layer to the

application data area to meet Ethernet’s minimum packet size. For example, the ARP protocol

typically creates packets of 42 bytes and therefore 18 bytes of padding must be added. The

additional padding must fit within the network buffer’s data area.

Ethernet’s maximum transmit unit (MTU) size is 1500 bytes. When TCP is used as the

transport protocol, TCP and IP protocol header sizes are subtracted from Ethernet’s 1500-byte

MTU. A maximum of 1460 bytes of TCP application data may be sent in a full-sized Ethernet

frame.

µC/TCP-IP User's Manual

67Copyright 2015 Micrium Inc.

In addition, the variable size of network packet protocol headers must also be considered when

configuring buffer sizes. The following computations demonstrate how to configure network

buffer sizes to transmit and receive maximum sized network packets.

Typical Buffers Size

The following table shows how each network buffer should be configured to handle the

majority of worst cases.

Type of network buffer Size

Receive Large Buffer 1518 + Alignment

Transmit Large Buffer 1518 + Alignment

Transmit Small Buffer 64 + Alignment

Network Device Configuration

All C/TCP-IP device drivers require a configuration structure for each device that must be

compiled into your driver. You must place all device configuration structures and declarations

within a pair of files named and .net_dev_cfg.c net_dev_cfg.h

Micriµm provides sample configuration code free of charge; however, most sample code will

likely require modification depending on the combination of compiler, processor, evaluation

board, and device hardware used.

Memory Configuration

The first step in creating a device driver configuration for µC/TCP-IP begins with the memory

configuration structure. This section describes the memory configuration settings for most

device drivers, and should provide you an in-depth understanding of memory configuration.

You will also discover which settings to modify in order to enhance the performances of the

driver.

The listing below shows a sample memory configuration structure.

µC/TCP-IP User's Manual

68Copyright 2015 Micrium Inc.

1.

2.

3.

const NET_DEV_CFG NetDev_Cfg_Dev1 = {
 /* Structure member: */
 NET_IF_MEM_TYPE_MAIN, /* .RxBufPoolType */ (1)
 1518u, /* .RxBufLargeSize */ (2)
 9u, /* .RxBufLargeNbr */ (3)
 16u, /* .RxBufAlignOctets */ (4)
 0u, /* .RxBufIxOffset */ (5)

 NET_IF_MEM_TYPE_MAIN, /* .TxBufPoolType */ (6)
 1606u, /* .TxBufLargeSize */ (7)
 4u, /* .TxBufLargeNbr */ (8)
 256u, /* .TxBufSmallSize */ (9)
 2u, /* .TxBufSmallNbr */ (10)
 16u, /* .TxBufAlignOctets */ (11)
 0u, /* .TxBufIxOffset */ (12)

 0x00000000u, /* .MemAddr */ (13)
 0u, /* .MemSize */ (14)

 NET_DEV_CFG_FLAG_NONE, /* .Flag */ (15)
};

Listing - Sample memory configuration

.RxBufPoolType specifies the memory location for the receive data buffers. Buffers may

located either in main memory or in a dedicated memory region. This setting is used by

the IF layer to initialize the Rx memory pool. This field must be set to one of two

macros: or . You may want to set thisNET_IF_MEM_TYPE_MAIN NET_IF_MEM_TYPE_DEDICATED

field when DMA with dedicated memory is used. It is possible that you might have to

store descriptors within the dedicated memory if your device requires it.

.RxBufLargeSize specifies the size of all receive buffers. Specifying a value is required.

The buffer length is set to 1518 bytes which corresponds to the Maximum Transmission

Unit (MTU) of an Ethernet network. For DMA-based Ethernet controllers, you must set

the receive data buffer size to be greater or equal to the size of the largest receivable

frame. If the size of the total buffer allocation is greater than the amount of available

memory in the chosen memory region, a run-time error will be generated when the

device is initialized.

.RxBufLargeNbr specifies the number of receive buffers that will be allocated to the

device. There should be at least one receive buffer allocated, and it is recommended to

have at least ten receive buffers. The optimal number of receive buffers depends on your

application.

µC/TCP-IP User's Manual

69Copyright 2015 Micrium Inc.

4.

5.

6.

7.

8.

.RxBufAlignOctets specifies the required alignment of the receive buffers, in bytes.

Some devices require that the receive buffers be aligned to a specific byte boundary.

Additionally, some processor architectures do not allow multi-byte reads and writes

across word boundaries and therefore may require buffer alignment. In general, it is

probably a best practice to align buffers to the data bus width of the processor, which

may improve performance. For example, a 32-bit processor may benefit from having

buffers aligned on a four-byte boundary.

.RxBufIxOffset specifies the receive buffer offset in bytes. Most devices receive packets

starting at base index zero in the network buffer data areas. However, some devices may

buffer additional bytes prior to the actual received Ethernet packet. This setting

configures an offset to ignore these additional bytes. If a device does not buffer any

additional bytes ahead of the received Ethernet packet, then an offset of 0 must be

specified. However, if a device does buffer additional bytes ahead of the received

Ethernet packet, then you should configure this offset with the number of additional

bytes. Also, the receive buffer size must also be adjusted by the number of additional

bytes.

.TxBufPoolType specifies the memory placement of the transmit data buffers. Buffers

may be placed either in main memory or in a dedicated memory region. This field is

used by the IF layer, and it should be set to one of two macros: NET_IF_MEM_TYPE_MAIN

or . When DMA descriptors are used, they may be storedNET_IF_MEM_TYPE_DEDICATED

into the dedicated memory.

.TxBufLargeSize specifies the size of the large transmit buffers in bytes. This field has

no effect if the number of large transmit buffers is configured to zero. Setting the size of

the large transmit buffers below 1594 bytes may hinder the µC/TCP-IP module’s ability

to transmit full sized IP datagrams since IP transmit fragmentation is not yet supported.

We recommend setting this field between 1594 and 1614 bytes in order to accommodate

all of the maximum transmit packet sizes for C/TCP-IP’s protocols.

You can optimize the transmit buffer if you know in advance what the maximum size of

the packets the user will want to transmit through the device are.

µC/TCP-IP User's Manual

70Copyright 2015 Micrium Inc.

8.

9.

10.

11.

12.

13.

.TxBufLargeNbr specifies the number of large transmit buffers allocated to the device.

You may set this field to zero to make room for additional small transmit buffers,

however, the size of the maximum transmittable packet will then depend on the size of

the small transmit buffers.

.TxBufSmallSize specifies the small transmit buffer size. For devices with a minimal

amount of RAM, it is possible to allocate small transmit buffers as well as large transmit

buffers. In general, we recommend a 152 byte small transmit buffer size, however, you

may adjust this value according to the application requirements. This field has no effect

if the number of small transmit buffers is configured to zero.

.TxBufSmallNbr specifies the numbers of small transmit buffers. This field controls the

number of small transmit buffers allocated to the device. You may set this field to zero

to make room for additional large transmit buffers if required.

.TxBufAlignOctets specifies the transmit buffer alignment in bytes. Some devices

require that the transmit buffers be aligned to a specific byte boundary. Additionally,

some processor architectures do not allow multi-byte reads and writes across word

boundaries and therefore may require buffer alignment. In general, it's probably a best

practice to align buffers to the data bus width of the processor which may improve

performance. For example, a 32-bit processor may benefit from having buffers aligned

on a four-byte boundary.

.TxBufIxOffset specifies the transmit buffer offset in bytes. Most devices only need to

transmit the actual Ethernet packets as prepared by the higher network layers. However,

some devices may need to transmit additional bytes prior to the actual Ethernet packet.

This setting configures an offset to prepare space for these additional bytes. If a device

does not transmit any additional bytes ahead of the Ethernet packet, the default offset of

zero should be configured. However, if a device does transmit additional bytes ahead of

the Ethernet packet then configure this offset with the number of additional bytes. The

transmit buffer size must also be adjusted to include the number of additional bytes.

.MemAddr specifies the starting address of the dedicated memory region for devices with

µC/TCP-IP User's Manual

71Copyright 2015 Micrium Inc.

13.

14.

15.

this memory type. For devices with non-dedicated memory, you can initialize this field

to zero. You may use this setting to put DMA descriptors into the dedicated memory.

.MemSize specifies the size of the dedicated memory region in bytes for devices with this

memory type. For devices with non-dedicated memory, you can initialize this field to

zero. You may use this setting to put DMA descriptors into the dedicated memory.

.Flags specify the optional configuration flags. Configure (optional) device features by

logically OR’ing bit-field flags:

NET_DEV_CFG_FLAG_NONE No device configuration flags selected.

NET_DEV_CFG_FLAG_SWAP_OCTETS Swap data bytes (i.e., swap data words’

high-order bytes with data words’ low-order bytes, and vice-versa) if required by

device-to-CPU data bus wiring and/or CPU endian word order.

µC/TCP-IP User's Manual

72Copyright 2015 Micrium Inc.

1.

2.

3.

Ethernet Device Configuration

Listing - Ethernet Device Configuration shows a sample Ethernet configuration structure for

Ethernet devices.

const NET_DEV_CFG_ETHER NetDev_Cfg_Dev1_0 = {
 /* Structure member: */
 NET_IF_MEM_TYPE_MAIN, /* .RxBufPoolType */ (1)
 1518u, /* .RxBufLargeSize */
 10u, /* .RxBufLargeNbr */
 4u, /* .RxBufAlignOctets */
 0u, /* .RxBufIxOffset */

 NET_IF_MEM_TYPE_MAIN, /* .TxBufPoolType */
 1606u, /* .TxBufLargeSize */
 4u, /* .TxBufLargeNbr */
 152u, /* .TxBufSmallSize */
 4u, /* .TxBufSmallNbr */
 4u, /* .TxBufAlignOctets */
 0u, /* .TxBufIxOffset */

 0x00000000u, /* .MemAddr */
 0u, /* .MemSize */

 NET_DEV_CFG_FLAG_NONE, /* .Flag */

 6u, /* .RxDescNbr */ (2)
 6u, /* .TxDescNbr */ (3)
 0x40028000u, /* .BaseAddr */ (4)
 0u, /* .DataBusSizeNbrBits */ (5)
 "00:50:C2:25:61:00", /* .HW_AddrStr */ (6)
};

Listing - Ethernet Device Configuration

Memory configuration of the Ethernet Device. for furtherSee “Memory Configuration”

information about how to configure the memory of your Ethernet interface.

.RxDescNbr specifies the number of receive descriptors. For DMA-based devices, this

value is used by the device driver during initialization in order to allocate a fixed-size

pool of receive descriptors to be used by the device. The number of descriptors must be

less than the number of configured receive buffers. We recommend setting this value to

something within 40% and 70% of the number of receive buffers. Non-DMA based

devices may configure this value to zero. You must use this setting with DMA based

devices and at least two descriptors must be set.

https://doc.micrium.com/Memory_Configuration.xhtml#ww1015687

µC/TCP-IP User's Manual

73Copyright 2015 Micrium Inc.

3.

4.

5.

6.

1.

.TxDescNbr specifies the number of transmit descriptors. For DMA based devices, this

value is used by the device driver during initialization to allocate a fixed size pool of

transmit descriptors to be used by the device. For best performance, it’s recommended

to set the number of transmit descriptors equal to the number of small, plus the number

of large transmit buffers configured for the device. Non-DMA based devices may

configure this value to zero. You must use this setting with DMA based devices and set

at least two descriptors.

.BaseAddr specifies the base address of the device’s hardware/registers.

.DataBusSizeNbrBits specifies the size of device's data bus (in bits), if available.

.HW_AddrStr specifies the desired device hardware address; may be NULL address or

string if the device hardware address is configured or set at run-time.Depending on the

driver, if this value is kept NULL or invalid, most of the device driver will

automatically try to load and use the hardware address located in the memory of the

device.

Ethernet PHY Configuration

Listing - Ethernet PHY Configuration shows a typical Ethernet PHY configuration structure.

NET_PHY_CFG_ETHER NetPhy_Cfg_FEC_0= {
 NET_PHY_ADDR_AUTO, (1)
 NET_PHY_BUS_MODE_MII, (2)
 NET_PHY_TYPE_EXT (3)
 NET_PHY_SPD_AUTO, (4)
 NET_PHY_DUPLEX_AUTO, (5)
};

Listing - Ethernet PHY Configuration

PHY Address. This field represents the address of the PHY on the (R)MII bus. The

value configured depends on the PHY and the state of the PHY pins during power-up.

Developers may need to consult the schematics for their board to determine the

configured PHY address. Alternatively, the PHY address may be detected automatically

by specifying ; however, this will increase the initialization latencyNET_PHY_ADDR_AUTO

µC/TCP-IP User's Manual

74Copyright 2015 Micrium Inc.

1.

2.

3.

4.

5.

of µC/TCP-IP and possibly the rest of the application depending on where the

application places the call to .NetIF_Start()

PHY bus mode. This value should be set to one of the following values
depending on the hardware capabilities and schematics of the development
board. The network device BSP should configure the Phy-level hardware based on
this configuration value.

NET_PHY_BUS_MODE_MII
NET_PHY_BUS_MODE_RMII
NET_PHY_BUS_MODE_SMII

PHY bus type. This field represents the type of electrical attachment of the PHY to the

Ethernet controller. In some cases, the PHY may be internal to the network controller,

while in other cases, it may be attached via an external MII or RMII bus. It is desirable

to specify which attachment method is in use so that a device driver can initialize

additional hardware resources if an external PHY is attached to a device that also has an

internal PHY. Available settings for this field are:

NET_PHY_TYPE_INT

NET_PHY_TYPE_EXT

Initial PHY link speed. This configuration setting will force the PHY to link to the

specified link speed. Optionally, auto-negotiation may be enabled. This field must be set

to one of the following values:

NET_PHY_SPD_AUTO

 NET_PHY_SPD_10

 NET_PHY_SPD_100

 NET_PHY_SPD_1000

Initial PHY link duplex. This configuration setting will force the PHY to link using the

specified duplex. This setting must be set to one of the following values:

 NET_PHY_DUPLEX_AUTO

 NET_PHY_DUPLEX_HALF

NET_PHY_DUPLEX_FULL

µC/TCP-IP User's Manual

75Copyright 2015 Micrium Inc.

1.

2.

3.

Wireless Device Configuration

The listing below shows a sample wireless configuration structure for wireless devices.

const NET_DEV_CFG_WIFI NetDev_Cfg_WiFi_0 = {
 /* Structure member: */
 NET_IF_MEM_TYPE_MAIN, /* .RxBufPoolType */ (1)
 1518u, /* .RxBufLargeSize */
 9u, /* .RxBufLargeNbr */
 16u, /* .RxBufAlignOctets */
 0u, /* .RxBufIxOffset */

 NET_IF_MEM_TYPE_MAIN, /* .TxBufPoolType */
 1606u, /* .TxBufLargeSize */
 4u, /* .TxBufLargeNbr */
 256u, /* .TxBufSmallSize */
 2u, /* .TxBufSmallNbr */
 16u, /* .TxBufAlignOctets */
 0u, /* .TxBufIxOffset */

 0x00000000u, /* .MemAddr */
 0u, /* .MemSize */

 NET_DEV_CFG_FLAG_NONE, /* .Flag */

 NET_DEV_BAND_DUAL, /* .Band */ (2)

 25000000L, /* .SPI_ClkFreq */ (3)
 NET_DEV_SPI_CLK_POL_INACTIVE_HIGH, /* .SPI_ClkPol */ (4)
 NET_DEV_SPI_CLK_PHASE_FALLING_EDGE, /* .SPI_ClkPhase */ (5)
 NET_DEV_SPI_XFER_UNIT_LEN_8_BITS, /* .SPI_XferUnitLen */ (6)
 NET_DEV_SPI_XFER_SHIFT_DIR_FIRST_MSB, /* .SPI_XferShiftDir */ (7)

 "00:50:C2:25:60:02", /* .HW_AddrStr */ (8)
};

Listing - Wireless device memory configuration

Memory configuration of the wireless device. See µC/TCP-IP Network Interface

 for further information about how to configure the memory of yourConfiguration

wireless interface.

.Band specifies the desired wireless band enabled and used by the wireless
device. This value should be set to one of the following values depending on
the hardware capabilities and the application requirements.

NET_DEV_BAND_2_4_GHZ
NET_DEV_BAND_5_0_GHZ
NET_DEV_BAND_DUAL

.SPI_ClkFreq specifies the SPI controller’s clock frequency (in Hertz) configuration for

https://doc.micrium.com/pages/viewpage.action?pageId=10750651
https://doc.micrium.com/pages/viewpage.action?pageId=10750651

µC/TCP-IP User's Manual

76Copyright 2015 Micrium Inc.

3.

4.

5.

6.

7.

8.

writing and reading on the wireless device.

.SPI_ClkPol specifies the SPI controller’s clock polarity configuration for
writing and reading on the wireless device. The network device BSP should
configure the SPI controller’s clock polarity based on this configuration
value.
NET_DEV_SPI_CLK_POL_INACTIVE_LOW
NET_DEV_SPI_CLK_POL_INACTIVE_HIGH

.SPI_ClkPhase specifies the SPI controller’s clock phase configuration for writing and

reading on the wireless device. The network device BSP should configure the SPI

controller’s clock phase based on this configuration value.

NET_DEV_SPI_CLK_PHASE_FALLING_EDGE
NET_DEV_SPI_CLK_PHASE_RAISING_EDGE

.SPI_XferUnitLen specifies the SPI controller’s transfer unit length
configuration for writing and reading on the wireless device. The network
device BSP should configure the SPI controller’s transfer unit length based on
this configuration value.
NET_DEV_SPI_XFER_UNIT_LEN_8_BITS
NET_DEV_SPI_XFER_UNIT_LEN_16_BITS
NET_DEV_SPI_XFER_UNIT_LEN_32_BITS
NET_DEV_SPI_XFER_UNIT_LEN_64_BITS

.SPI_XferShiftDir specifies the SPI controller’s shift direction configuration for writing

and reading on the wireless device. The network device BSP should configure the SPI

controller’s transfer unit length based on this configuration value.

NET_DEV_SPI_XFER_SHIFT_DIR_FIRST_MSB
NET_DEV_SPI_XFER_SHIFT_DIR_FIRST_LSB

.HW_AddrStr specifies the desired device hardware address; may be NULL address or

string if the device hardware address is configured or set at run-time. Depending on the

driver, if this value is kept NULL or invalid, most device drivers will automatically try

to load and use the hardware address located in the memory of the device.

µC/TCP-IP User's Manual

77Copyright 2015 Micrium Inc.

1.

2.

Loopback Configuration

Configuring the loopback interface requires only a memory configuration, as described in

.µC/TCP-IP Network Interface Configuration

Listing 5-9 shows a sample configuration structure for the loopback interface.

const NET_IF_CFG_LOOPBACK NetIF_Cfg_Loopback = {

 NET_IF_MEM_TYPE_MAIN, (1)
 1518, (2)
 10, (3)
 4, (4)
 0, (5)

 NET_IF_MEM_TYPE_MAIN, (6)
 1594, (7)
 5, (8)
 134, (9)
 5, (10)
 4, (11)
 0, (12)

 0x00000000, (13)
 0, (14)

 NET_DEV_CFG_FLAG_NONE (15)
};

Listing - Sample loopback interface configuration

Receive buffer pool type. This configuration setting controls the memory placement of

the receive data buffers. Buffers may either be placed in main memory or in a dedicated,

possibly higher speed, memory region (see point #13, below). This field should be set to

one of the two macros:

 NET_IF_MEM_TYPE_MAIN

NET_IF_MEM_TYPE_DEDICATED

Receive buffer size. This field sets the size of the largest receivable packet, and can be

set to match the application’s requirements.

Note: If packets are sent from a socket bound to a non local-host address, to the local

host address (127.0.0.1), then the receive buffer size must be configured to match the

https://doc.micrium.com/pages/viewpage.action?pageId=10750651
https://doc.micrium.com/#ww1007350

µC/TCP-IP User's Manual

78Copyright 2015 Micrium Inc.

2.

3.

4.

5.

6.

7.

maximum transmit buffer size, or maximum expected data size, that could be generated

from a socket bound to any other interface.

Number of receive buffers. This setting controls the number of receive buffers that will

be allocated to the loopback interface. This value be set greater than or equal tomust

one buffer if loopback is receiving UDP. If TCP data is expected to be transferredonly

across the loopback interface, then there be a minimum of four receive buffers.must

Receive buffer alignment. This setting controls the alignment of the receive buffers in

bytes. Some processor architectures do not allow multi-byte reads and writes across

word boundaries and therefore may require buffer alignment. In general, it is probably

best practice to align buffers to the data bus width of the processor which may improve

performance. For example, a 32-bit processor may benefit from having buffers aligned

on a 4-byte boundary.

Receive buffer offset. The loopback interface receives packets starting at base index 0 in

the network buffer data areas. This setting configures an offset from the base index of 0

to receive loopback packets. The default offset of 0 be configured. However, ifshould

loopback receive packets are configured with an offset, the receive buffer size alsomust

be adjusted by the additional number of offset bytes.

Transmit buffer pool type. This configuration setting controls the memory placement of

the transmit data buffers for the loopback interface. Buffers may either be placed in

main memory or in a dedicated, possibly higher speed, memory region (see point #13,

below). This field should be set to one of two macros:

 NET_IF_MEM_TYPE_MAIN

NET_IF_MEM_TYPE_DEDICATED

Large transmit buffer size. At the time of this writing, transmit fragmentation is not

supported; therefore this field sets the size of the largest transmittable buffer for the

loopback interface when the application sends from a socket that is bound to the

local-host address.

µC/TCP-IP User's Manual

79Copyright 2015 Micrium Inc.

8.

9.

10.

11.

12.

13.

Number of large transmit buffers. This field controls the number of large transmit

buffers allocated to the loopback interface. The developer may set this field to zero to

make room for additional large transmit buffers, however, the number of large plus the

number of small transmit buffers be greater than or equal to one for UDP trafficmust

and three for TCP traffic.

Small transmit buffer size. For devices with a minimal amount of RAM, it is possible to

allocate small transmit buffers as well as large transmit buffers. In general, we

recommend 152 byte small transmit buffers, however, the developer may adjust this

value according to the application requirements. This field has no effect if the number

of small transmit buffers is configured to zero.

Number of small transmit buffers. This field controls the number of small transmit

buffers allocated to the device. The developer may set this field to zero to make room

for additional large transmit buffers, however, the number of large plus the number of

small transmit buffers be greater than or equal to one for UDP traffic and three formust

TCP traffic.

Transmit buffer alignment. This setting controls the alignment of the receive buffers in

bytes. Some processor architectures do not allow multi-byte reads and writes across

word boundaries and therefore may require buffer alignment. In general, it is probably

best practice to align buffers to the data bus width of the processor which may improve

performance. For example, a 32-bit processor may benefit from having buffers aligned

on a 4-byte boundary.

Transmit buffer offset. This setting configures an offset from the base transmit index to

prepare loopback packets. The default offset of 0 be configured. However, ifshould

loopback transmit packets are configured with an offset, the transmit buffer size must

also be adjusted by the additional number of offset bytes.

Memory address. By default, this field is configured to 0x00000000. A value of 0 tells

µC/TCP-IP to allocate buffers for the loopback interface from the µC/LIB Memory

Manager default heap. If a faster, more specialized memory is available, the loopback

µC/TCP-IP User's Manual

80Copyright 2015 Micrium Inc.

13.

14.

15.

interface buffers may be allocated into an alternate region if desired.

Memory size. By default, this field is configured to 0. A value of 0 tells µC/TCP-IP to

allocate as much memory as required from the µC/LIB Memory Manager default heap.

If an alternate memory region is specified in the ‘Memory Address’ field above, then

the maximum size of the specified memory segment must be specified.

Optional configuration flags. Configure (optional) loopback features by logically OR

’ing bit-field flags:

 No loopback configuration flags selectedNET_DEV_CFG_FLAG_NONE

Adding a Loopback Interface

Basically, to enable and add the loopback interface you only have to enable the loopback

interface within the network configuration See .Network Interfaces Configuration

Network Queues Configuration

The device configuration will directly impact the Network Task Queues Configuration.

The µC/TCP-IP stack includes two queues. The first one is the Rx queue and is used to store

the Rx buffer that have been filled and are ready to be process. The second queue is the Tx

deallocation and is used to store the Tx buffers that are ready to be deallocate.

The size of the Rx queue should reflects the total number of DMA receive descriptors

configured for all the interfaces. If the devices are not DMA-based, it should reflects the

maximum number of packets that can be acknowledged and signaled during a single receive

interrupt even for all interfaces.

The size of the Tx queue should be defined as the total number of small and large transmit

buffers declared for all interfaces.

Please refer to section for more details.Task Queue Configuration

https://doc.micrium.com/display/TCPIPDOC303/Network+Stack+Configuration#NetworkStackConfiguration-NetworkInterfacesConfiguration
https://doc.micrium.com/display/TCPIPDOC303/Network+Stack+Configuration#NetworkStackConfiguration-TaskQueueConfiguration

µC/TCP-IP User's Manual

81Copyright 2015 Micrium Inc.

1.

2.

3.

4.

5.

6.

7.

8.

LIB Memory Heap Configuration

µC/TCP-IP is using µC/LIB to allocated internal data such as OS objects (semaphore,

mutex), device driver's buffers and DMA descriptors, etc. µC/TCP-IP internal tasks stack can

be also allocated using µC/LIB. Therefore µC/LIB memory module must be configured

properly for µC/TCP-IP. If the heap size is not configured large enough, an error will be

returned during the Network Protocol Stack initialization, or during interface addition.

Since the needed heap size is related to the stack configuration () and is specific tonet_cfg.h

each device driver, it’s not possible to provide an exact formula to calculate it. Thus to

optimize the heap size, you should try different heap size until no error is returned for all

interfaces added.

Note: The memory module be initialized by the application prior to calling .must Net_Init()

We recommend initializing the memory module before calling starting the , or near theRTOS

top of the startup task.

Please refer to section for more details on the µC/LIB module and itsµC/LIB Documentation

configuration.

Heap Memory Calculation for an Interface

The µC/LIB memory heap is used for allocation of the following objects:

Transmit small buffers

Transmit large buffers

Receive large buffers

Network Buffers (Network Buffer header and pointer to data area)

DMA receive descriptors

DMA transmit descriptors

Interface data area

https://doc.micrium.com/display/libdoc

µC/TCP-IP User's Manual

82Copyright 2015 Micrium Inc.

8.

9.

10.

Device driver data area

OS objects (Semaphore, mutex, stack)

ICMP Echo request objects (note that object are only allocated when the ICMP Echo

request is sent, not at during the Network Protocol Stack initialization)

In the following example, the use of a Network Device Driver with DMA support is assumed.

DMA descriptors are included in the analysis. The size of Network Buffer Data Areas (1, 2, 3)

vary based on configuration. Refer to Chapter 9, “Buffer Management”. However, for this

example, the following object sizes in bytes are assumed:

Small transmit buffers: 60

Large transmit buffers: 1518

Large receive buffers: 1518

Size of DMA receive descriptor: 8

Size of DMA transmit descriptor: 8

Ethernet interface data area: 7

Average Ethernet device driver data area: 108

With a 4-byte alignment on all memory pool objects, it results in a worst case disposal of three

leading bytes for each object. In practice this is not usually true since the size of most objects

tend to be even multiples of four. Therefore, the alignment is preserved after having aligned

the start of the pool data area. However, this makes the case for allocating objects with size to

the next greatest multiple of four in order to prevent lost space due to misalignment.

The approximate memory heap size may be determined according to the following

expressions:

nbr buf per interface = nbr small Tx buf +
 nbr large Tx buf +

µC/TCP-IP User's Manual

83Copyright 2015 Micrium Inc.

 nbr large Rx buf

nbr net buf per interface = nbr buf per interface

nbr objects = nbr buf per interface +
 nbr net buf per interface +
 nbr Rx descriptors +
 nbr Tx descriptors +
 1 Ethernet data area +
 1 Device driver data area

interface mem = (nbr small Tx buf * 60) +
 (nbr large Tx buf * 1518) +
 (nbr large Rx buf * 1518) +
 (nbr Rx descriptors * 8) +
 (nbr Tx descriptors * 8) +
 (Ethernet IF data area * 7) +
 (Ethernet Drv data area * 108) +
 (nbr objects * 3)

total mem required = nbr interfaces * interface mem

Example

With the following configuration, the memory heap required is:

10 small transmit buffers

10 large transmit buffers

10 large receive buffers

6 receive descriptors

20 transmit descriptors

Ethernet interface (interface + device driver data area required)

nbr buf per interface = 10 + 10 + 10 = 30
 nbr net buf per interface = nbr buf per interface = 30
 nbr objects = (30 + 30 + 6 + 20 + 1 + 1) = 88
 interface mem = (10 * 60) +
 (10 * 1518) +
 (10 * 1518) +
 (6 * 8) +
 (20 * 8) +
 (1 * 7) +
 (1 * 108) +
 (88 * 3) = 31,547 bytes

 total mem required > 31,547 (+ localhost memory, if enabled)

µC/TCP-IP User's Manual

84Copyright 2015 Micrium Inc.

The localhost interface, when enabled, requires a similar amount of memory except that it does

not require Rx and Tx descriptors, an IF data area, or a device driver data area.

The value determined by these expressions is only an estimate. In some cases, it may be

possible to reduce the size of the µC/LIB memory heap by inspecting µC/LIB (see µC/LIB

) after all interfaces have been successfully initialized and any additionalDocumentation

application allocations (if applicable) have been completed.

https://doc.micrium.com/display/libdoc
https://doc.micrium.com/display/libdoc

µC/TCP-IP User's Manual

85Copyright 2015 Micrium Inc.

TCPIP Initialization Guide
This section describes the different steps to initialize the µC/TCP-IP Stack.

The last section of this guide also provides examples of TCP/IP stack initialization.

Prerequisite module initialization

Initializing Tasks and objects

Initializing Interfaces

IP Address Configuration

Initializing+Shell+commands

Sample applications

µC/TCP-IP User's Manual

86Copyright 2015 Micrium Inc.

Prerequisite module initialization

Before initializing µC/TCPIP some prerequisite modules must be initialized prior to starting

the Network Protocol stacks initialization. µC/TCPIP requires an RTOS such as µCOS-II

or µCOS-III. Before starting initializing µC/TCPIP and other prerequisite modules, the RTOS

must be started and all initialization call should be performed within an initialization task.

Please refer to the user manual of your RTOS for more information about how to initialize the

RTOS and how to initialize other modules.

µC/TCPIP is using µC/CPU, µC/LIB memory module and µC/Common Kernel Abstraction

Layer, refer to the following documentation for more information about the initialization of

these modules:

µC/LIB User's Guide

µC/CPU User's Manual

µC/Common Documentation

Listing - AppTaskStart shows an example of the application initialization task that should be

started by the RTOS. The listing shows also what prerequisite modules that must absolutely

initialized prior calling the TCP/IP function AppInit_TCPIP(), which would be responsible to

initialize the Network protocol tacks. Section Sample applications will detailed the contain of

the AppInit_TCPIP() function depending on the type of interface used.

https://doc.micrium.com/pages/viewpage.action?pageId=10753602
https://doc.micrium.com/display/cpudoc/uC-CPU+User+Manual
https://doc.micrium.com/pages/viewpage.action?pageId=10754328

µC/TCP-IP User's Manual

87Copyright 2015 Micrium Inc.

static void AppTaskStart (void *p_arg)
{
 CPU_INT32U cpu_clk_freq;
 CPU_INT32U cnts;
 OS_ERR err_os;
 KAL_ERR kal_err;
 NET_ERR net_err;

 (void)&p_arg;

 BSP_Init(); (1)
 CPU_Init();
 Mem_Init();

 AppInit_TCPIP(&net_err); (2)
 (3)

 while (1) {
 OSTimeDlyHMSM((CPU_INT16U) 0u,
 (CPU_INT16U) 0u,
 (CPU_INT16U) 0u,
 (CPU_INT16U) 100u,
 (OS_OPT) OS_OPT_TIME_HMSM_STRICT,
 (OS_ERR *)&err_os);
 }
}

Listing - AppTaskStart

, and must be called prior to the TCP-IP initialization(1) BSP_Init() CPU_Init() Mem_Init()

function .AppInit_TCPIP()

 initializes the µC/TCP-IP stack and the initial parameters to configure(2) AppInit_TCPIP()

it.

 If other IP applications are required this is where they are initialized.(3)

µC/TCP-IP User's Manual

88Copyright 2015 Micrium Inc.

Initializing Tasks and objects

After all the µC/TCP-IP prerequisite modules have been initialized (see section

), the TCP/IP stack must be initialize with the function Prerequisite Module Initialization

. This function must be called before any other network API functions.Net_Init()

This function will create the OS objects required by the TCP/IP module, initialize to their

default value all the network configurable parameters, initialize the network statistic counters,

initialize the network buffer pools, initialize all the different network layers, etc.

This function also takes as arguments the three Network Task configurations defined in the

 (see section) file as shown in the function prototypenet_cfg.c Network Stack Configuration

below.

NET_ERR Net_Init(NET_TASK_CFG *p_rx_task_cfg,
 NET_TASK_CFG *p_tx_task_cfg,
 NET_TASK_CFG *p_tmr_task_cfg);

For more details on the function refer to API functions section .Net_Init() here

The section also gives examples of TCP/IP application initializationSample Applications

functions.

https://doc.micrium.com/display/TCPIPDOC303/Net_Init

µC/TCP-IP User's Manual

89Copyright 2015 Micrium Inc.

1.

Initializing Interfaces

Initialize an Interface

Adding an Interface

Interfaces may be added to the stack by calling . Each new interface requiresNetIF_Add()

additional BSP. The order of addition is critical to ensure that the interface number assigned to

the new interface matches the code defined within . See section net_bsp.c Network Interface

 for more information on configuring interfaces.Configuration

Starting an Interface

Interfaces may be started by calling . See sectionNetIF_Start() Starting and Stopping Network

 for more information on starting interfaces.Interfaces

Initialize an Ethernet Interface

Once µC/TCP-IP is initialized, each network interface must be added to the stack via

 function. validates the network interface arguments, initializes theNetIF_Add() NetIF_Add()

interface, and adds it to the interface list of the TCP/IP stack. µC/TCP-IP uses a structure that

contains pointers to API functions which are used to access the interface layer, and

configuration structures are used to initialize resources needed by the network interface. You

must pass the following arguments to the function:NetIF_Add()

NET_IF_NBR NetIF_Add (void *if_api, (1)
 void *dev_api, (2)
 void *dev_bsp, (3)
 void *dev_cfg, (4)
 void *ext_api, (5)
 void *ext_cfg, (6)
 NET_ERR *perr) (7)

Listing - NetIF_Add() arguments

The first argument specifies the link layer API pointers structure that will receive data

from the hardware device. For an Ethernet interface, this value will always be defined as

. This symbol is defined by µC/TCP-IP and it can be used to add asNetIF_API_Ether

many Ethernet network interface’s as necessary. This API should always be provided

https://doc.micrium.com/display/TCPIPDOC303/Starting+and+Stopping+Network+Interfaces
https://doc.micrium.com/display/TCPIPDOC303/Starting+and+Stopping+Network+Interfaces

µC/TCP-IP User's Manual

90Copyright 2015 Micrium Inc.

1.

2.

3.

4.

5.

with the TCP-IP stack which can be found under the interface folder (

)./IF/net_if_ether.*

The second argument represents the hardware device driver API pointers structure

which is defined as a fixed structure of function pointers of the type specified by

Micriµm for use with µC/TCP-IP. If Micriµm supplies the device driver, the symbol

name of the device API will be defined within the device driver at the top of the device

driver source code file. You can find the device driver under the device folder (

). Otherwise, the driver developer is responsible for creating/Dev/Ether/<controller>

the device driver and the API structure should start from the device driver template

which can be found under the device folder ()./Dev/Ether/Template

The third argument specifies the specific device’s board-specific (BSP) interface

functions which is defined as a fixed structure of function pointers. The application

developer must define both the BSP interface structure of function pointers and the

actual BSP functions referenced by the BSP interface structure and should start from the

BSP template provided with the stack which you can find under the BSP folder (

). Micriµm may be able to supply example BSP interface structures and/BSP/Template

functions for certain evaluation boards. For more information about declaring BSP

interface structures and BSP functions device, see section Network Board Support

 for further information about the BSP API.Package

The fourth argument specifies the device driver configuration structure that will be used

to configure the device hardware for the interface being added. The device configuration

structure format has been specified by Micriµm and must be provided by the application

developer since it is specific to the selection of device hardware and design of the

evaluation board. Micriµm may be able to supply example device configuration

structures for certain evaluation boards. For more information about declaring a device

configuration structure, see section section.Ethernet Device Configuration

The fifth argument represents the physical layer hardware device API. In most cases,

when Ethernet is the link layer API specified in the first argument, the physical layer

API may be defined as . This symbol has been defined by theNetPHY_API_Generic

generic Ethernet physical layer device driver which can be supplied by Micriµm. If a

https://doc.micrium.com/display/TCPIPDOC303/Network+Interface+Configuration#NetworkInterfaceConfiguration-EthernetDeviceConfiguration

µC/TCP-IP User's Manual

91Copyright 2015 Micrium Inc.

5.

6.

7.

custom physical layer device driver is required, then the developer would be responsible

for creating the API structure. Often Ethernet devices have built-in physical layer

devices which are (R)MII compliant. In this circumstance, the physical layer devicenot

driver API field may be left NULL and the Ethernet device driver may implement

routines for the built-in PHY.

The sixth argument represents the physical layer hardware device configuration

structure. This structure is specified by the application developer and contains such

information as the physical device connection type, address, and desired link state upon

initialization. For devices with built in non (R)MII compliant physical layer devices,

this field may be left . However, it may be convenient to declare a physical layerNULL

device configuration structure and use some of the members for physical layer device

initialization from within the Ethernet device driver. For more information about

declaring a physical layer hardware configuration structure, see section Ethernet PHY

.Configuration

The last argument is a pointer to a variable that contains the return error codeNET_ERR

for . This variable should be checked by the application to ensure that noNetIF_Add()

errors have occurred during network interface addition. Upon success, the return error

code will be .NET_IF_ERR_NONE

Note: If an error occurs during the call to , the application attempt to call NetIF_Add() may

 a second time for the same interface but unless a temporary hardware faultNetIF_Add()

occured, the application developer should observe the error code, determine and resolve the

cause of the error, rebuild the application and try again. If a hardware failure occurred, the

application may attempt to add an interface as many times as necessary, but a common

problem to watch for is a µC/LIB Memory Manager heap out-of-memory condition. This may

occur when adding network interfaces if there is insufficient memory to complete the

operation. If this error occurs, the configured size of the µC/LIB heap within mustlib_cfg.h

be increased.

Once an interface is added successfully, the next step is to configure the interface with one or

more network layer protocol addresses.

For a thorough description of the µC/TCP-IP files and directory structure, see section

.Directories and Files

https://doc.micrium.com/display/TCPIPDOC303/Network+Interface+Configuration#NetworkInterfaceConfiguration-EthernetPHYConfiguration
https://doc.micrium.com/display/TCPIPDOC303/Network+Interface+Configuration#NetworkInterfaceConfiguration-EthernetPHYConfiguration

µC/TCP-IP User's Manual

92Copyright 2015 Micrium Inc.

When the network interface is added without error, it must be started via the NetIF_Start()

 function to be available and be used by the µC/TCP-IP. The following code example shows

how to initialize µC/TCP-IP, add an interface, configure the IP address and start it:

#include <Source/net.h>
#include <net_dev_dev1.h>
#include <net_bsp.h>
#include <net_phy.h>
CPU_BOOLEAN App_InitTCPIP (void)
{
 NET_IF_NBR if_nbr;
 NET_ERR err;

 err = Net_Init(p_rx_task_cfg,
 p_tx_task_cfg,
 p_tmr_task_cfg);
 if (err != NET_ERR_NONE) {
 return (DEF_FAIL);
 }
 if_nbr = NetIF_Add((void *)&NetIF_API_Ether
 (void *)&NetDev_API_Etherxxx,
 (void *)&NetDev_BSP_API,
 (void *)&NetDev_Cfg_Ether_0,
 (void *)&NetPhy_API_Generic,
 (void *)&NetPhy_Cfg_0,
 (NET_ERR *)&err);
 if (err != NET_IF_ERR_NONE) {
 return (DEF_FAIL);
 }

 NetIF_Start(if_nbr, &err);
 if (err != NET_IF_ERR_NONE) {
 return (DEF_FAIL);
 }

 return (DEF_OK);
}

Listing - Ethernet interface initialization example

Initialize an Wireless Interface

Once µC/TCP-IP is initialized each network interface must be added to the stack via the

 function which validates the network interface arguments, initializes the interfaceNetIF_Add()

and adds it to the interface list. µC/TCP-IP uses a structure that contains pointers to API

functions which are used to access the interface layer and configuration structures are used to

initialize resources needed by the network interface. You must pass the following arguments to

the function:NetIF_Add()

µC/TCP-IP User's Manual

93Copyright 2015 Micrium Inc.

1.

2.

3.

4.

NET_IF_NBR NetIF_Add (void *if_api, (1)
 void *dev_api, (2)
 void *dev_bsp, (3)
 void *dev_cfg, (4)
 void *ext_api, (5)
 void *ext_cfg, (6)
 NET_ERR *perr) (7)

Listing - NetIF_Add() arguments

The first argument specifies the link layer API pointers structure that will receive data

from the hardware device. For a wireless interface, this value will always be defined as

. This symbol is defined by µC/TCP-IP and it can be used to add asNetIF_API_WiFi

many wireless network interfaces as necessary. This API should always be provided

with the TCP-IP stack which can be found under the interface folder (/IF/net_if_wifi.*

).

The second argument represents the hardware device driver API which is defined as a

fixed structure of function pointers of the type specified by Micriµm for use with

µC/TCP-IP. If Micriµm supplies the device driver, the symbol name of the device API

will be defined within the device driver at the top of the device driver source code file.

You can find the device driver under the device folder ()./Dev/WiFi/<device>

Otherwise, the driver developer is responsible for creating the device driver and the API

structure should start from the device driver template which can be found under the

device folder ()./Dev/WiFi/Template

The third argument specifies the specific device’s board-specific (BSP) interface

functions which are defined as a fixed structure of function pointers. The application

developer must define both the BSP interface structure of function pointers and the

actual BSP functions referenced by the BSP interface structure and should start from the

BSP template provided with the stack which you can find under the BSP folder (

). Micrium may be able to supply example BSP interface structures and/BSP/Template

functions for certain evaluation boards. For more information about declaring BSP

interface structures and the BSP functions device, see Network Board Support Package

for further information about the BSP API.

The fourth argument specifies the device driver configuration structure that will be used

µC/TCP-IP User's Manual

94Copyright 2015 Micrium Inc.

4.

5.

6.

7.

to configure the device hardware for the interface being added. The device configuration

structure format has been specified by Micriµm and must be provided by the application

developer since it is specific to the selection of device hardware and design of the

evaluation board. Micriµm may be able to supply example device configuration

structures for certain evaluation boards. For more information about declaring a device

configuration structure, see . Wireless Device Configuration

The fifth argument represents the extension layer device API. In most cases, when

wireless is the Wireless Manager layer API specified in the first argument, the Wireless

Manager layer API may be defined as . This symbol has beenNetWiFiMgr_API_Generic

defined by the generic Wireless Manager layer which can be supplied by Micriµm. If a

custom Wireless Manager layer is required, then the developer would be responsible for

creating the API structure.

The sixth argument represents the extension layer configuration structure. This structure

is specified by the application developer. For devices which use the generic Wireless

Manager this field should be left . However, it may be convenient to declare aNULL

Wireless Manager layer device configuration structure and use some of the members for

Wireless Manager layer initialization from within the wireless device driver or a custom

Wireless Manager.

The last argument is a pointer to a variable that contains the return error codeNET_ERR

for . This variable be checked by the application to ensure that noNetIF_Add() should

errors have occurred during network interface addition. Upon success, the return error

code will be .NET_IF_ERR_NONE

Note: If an error occurs during the call to , the application attempt to call NetIF_Add() may

 a second time for the same interface but unless a temporary hardware faultNetIF_Add()

occurred, the application developer should observe the error code, determine and resolve the

cause of the error, rebuild the application and try again. If a hardware failure occurred, the

application may attempt to add an interface as many times as necessary, but a common

problem to watch for is a µC/LIB Memory Manager heap out-of-memory condition. This may

occur when adding network interfaces if there is insufficient memory to complete the

operation. If this error occurs, the configured size of the µC/LIB heap within mustapp_cfg.h

be increased.

https://doc.micrium.com/display/CTCPIP/Wireless+Device+Configuration

µC/TCP-IP User's Manual

95Copyright 2015 Micrium Inc.

Once an interface is added successfully, the next step is to configure the interface with one or

more network layer protocol addresses.

For a thorough description of the µC/TCP-IP files and directory structure, see Directories and

.Files

Once a network interface is added without error, it must be started via the NetIF_Start()

 function to be seen as available and to be used by µC/TCP-IP. The following code example

shows how to initialize µC/TCP-IP, add an interface, add an IP address and start the interface:

#include <net.h>
#include <net_dev_rs9110n2x.h>
#include <net_bsp.h>
#include <net_phy.h>
CPU_BOOLEAN App_InitTCPIP (void)
{
 NET_IF_NBR if_nbr;
 NET_ERR err;

 err = Net_Init();
 if (err != NET_ERR_NONE) {
 return (DEF_FAIL);
 }
 if_nbr = NetIF_Add((void *)&NetIF_API_WiFi
 (void *)&NetDev_API_RS9110N2x,
 (void *)&NetDev_BSP_SPI_API,
 (void *)&NetDev_Cfg_WiFi_0,
 (void *)&NetWiFiMgr_API_Generic,
 (void *) 0,
 (NET_ERR *)&err);
 if (err != NET_IF_ERR_NONE) {
 return (DEF_FAIL);
 }

 NetIF_Start(if_nbr, &err);
 if (err != NET_IF_ERR_NONE) {
 return (DEF_FAIL);
 }

 return (DEF_OK);
}

Listing - Wireless interface initialization example

https://doc.micrium.com/display/cpudoc/Directories+and+Files
https://doc.micrium.com/display/cpudoc/Directories+and+Files

µC/TCP-IP User's Manual

96Copyright 2015 Micrium Inc.

IP Address Configuration

The following sections provide sample code describing how to configure IP address (IPv4 and

IPv6).

For a complete guide on IP addressing, refer to section .IP Address Programming

Configuring an IP Address on an Interface

Each network interface must be configured with at least one IP address. It could be an IPv4 or

an IPv6 address or both depending on which modules the TCP-IP stack has enabled.

IPv4

For IPv4, the address configuration may be performed using µC/DHCPc or manually during

run-time. If run-time configuration is chosen, the following functions may be utilized to set the

IPv4, network mask, and gateway addresses for a specific interface.

NetASCII_Str_to_IP

NetIPv4_CfgAddrAdd

More than one set of IPv4 addresses may be configured for a specific network interface by

calling the functions above. The constant NET_IPv4_CFG_IF_MAX_NBR_ADDR specified in

net_cfg.h determines the maximum number of IPv4 addresses that may be assigned to an

interface.

Note that on the default interface, the first IPv4 address added will be the default address used

for all default IPv4 communication.

The first function aids the developer by converting a string format IPv4 address such as

“192.168.1.2” to its hexadecimal equivalent. The second function is used to configure an

interface with the specified IPv4, network mask and gateway addresses. An example is shown

in listing .Listing - IPv4 Address Configuration Example

https://doc.micrium.com/display/TCPIPDOC303/IP+Address+Programming
https://doc.micrium.com/display/TCPIPDOC303/NetASCII_Str_to_IP
https://doc.micrium.com/display/TCPIPDOC303/NetIPv4_CfgAddrAdd

µC/TCP-IP User's Manual

97Copyright 2015 Micrium Inc.

1.

2.

3.

4.

5.

6.

CPU_BOOLEAN cfg_success;
NET_IPv4_ADDR ipv4_addr;
NET_IPv4_ADDR ipv4_msk;
NET_IPv4_ADDR ipv4_gateway;
NET_ERR err;

(void)NetASCII_Str_to_IP((CPU_CHAR*)”192.168.1.2”, &ipv4_addr, NET_IPv4_ADDR_SIZE, &err); /* See
Note #1 */
(void)NetASCII_Str_to_IP((CPU_CHAR*)”255.255.255.0”, &ipv4_msk, NET_IPv4_ADDR_SIZE, &err);
(void)NetASCII_Str_to_IP((CPU_CHAR*)”192.168.1.1”, &ipv4_gateway, NET_IPv4_ADDR_SIZE, &err);

cfg_success = NetIPv4_CfgAddrAdd(if_nbr, /* See Note #2 */
 ipv4_addr, /* See Note #3 */
 ipv4_msk, /* See Note #4 */
 ipv4_gateway, /* See Note #5 */
 &err); /* See Note #6 */

Listing - IPv4 Address Configuration Example

NetASCII_Str_to_IP() requires four arguments. The first function argument is a string

representing a valid IP address. The second argument is a pointer to the IP address

object that will received the conversion result. The third argument is the size of the

address object and the last argument is a pointer to a to contain the return errorNET_ERR

code. Upon successful conversion, the return error will contain the value

 and the function will return a variable of type NET_ASCII_ERR_NONE NET_IP_ADDR_FAMILY

containing the family type (IPv4 or IPv6) of the address converted.

The first argument is the number representing the network interface that is to be

configured. This value is obtained as the result of a successful call to NetIF_Add().

The second argument is the value representing the IPv4 address to beNET_IPv4_ADDR

configured.

The third argument is the value representing the subnet mask addressNET_IPv4_ADDR

that is to be configured.

The fourth argument is the value representing the default gateway IPv4NET_IPv4_ADDR

address that is to be configured.

The fifth argument is a pointer to a variable containing the return error code forNET_ERR

the function. If the interface address information is configured successfully, then the

return error code will contain the value . Additionally, functionNET_IPv4_ERR_NONE

µC/TCP-IP User's Manual

98Copyright 2015 Micrium Inc.

6.

returns a Boolean value of or depending on the result. Either the returnDEF_OK DEF_FAIL

value or the variable may be checked for return status; however, the NET_ERR NET_ERR

contains more detailed information and should therefore be the preferred check.

IPv6

Currently, the µC/TCP-IP stack only support manual static IPv6 address configuration and

IPv6 Stateless Address Auto-Configuration. Dynamic address configuration with DHCPv6 is

not yet supported.

Manual Static Address Configuration

the following functions may be utilized to set the IPv6 address for a specific interface:

NetASCII_Str_to_IP
NetIPv6_CfgAddrAdd
NetIPv6_CfgAddrHookSet

More than one set of IPv6 addresses may be configured for a specific network interface by

calling the functions above. The constant specified in NET_IPv6_CFG_IF_MAX_NBR_ADDR

 determines the maximum number of IPv6 addresses that may be assigned to annet_cfg.h

interface.

Note that on the default interface, the first IPv6 address added will be the default address used

for all default IPv6 communication.

The first function aids the developer by converting a string format IPv6 address such as

“fe80::1111:1111” to its network equivalent. The second function is used to configure an

interface with the specified IPv6 address. An example is shown in listing Listing - IPv6

.Address Configuration Example

https://doc.micrium.com/display/TCPIPDOC303/NetASCII_Str_to_IP
https://doc.micrium.com/display/TCPIPDOC303/NetIPv6_CfgAddrAdd
https://doc.micrium.com/display/TCPIPDOC303/NetIPv6_CfgAddrHookSet

µC/TCP-IP User's Manual

99Copyright 2015 Micrium Inc.

1.

2.

3.

4.

5.

6.

7.

8.

CPU_BOOLEAN cfg_success;
NET_IPv6_ADDR ipv6_addr;
NET_FLAGS ipv6_flags;
NET_ERR err;

(void)NetASCII_Str_to_IP((CPU_CHAR *)”fe80::1111:1111”, /* See Note #1 */
 &ipv6_addr,
 NET_IPv6_ADDR_SIZE,
 &err);

ipv6_flags = 0;
DEF_BIT_SET(ipv6_flags, NET_IPv6_FLAG_BLOCK_EN); /* See Note #2 */
DEF_BIT_SET(ipv6_flags, NET_IPv6_FLAG_DAD_EN); /* See Note #3 */

cfg_success = NetIPv6_CfgAddrAdd(if_nbr, /* See Note #4 */
 &ipv6_addr, /* See Note #5 */
 64, /* See Note #6 */
 ipv6_flags, /* See Note #7 */
 &err); /* See Note #8 */

Listing - IPv6 Address Configuration Example

See for more details.NetASCII_Str_to_IP

Set Address Configuration as blocking.

Enable DAD with Address Configuration.

The first argument is the number representing the network interface that is to be

configured. This value is obtained as the result of a successful call to .NetIF_Add()

The second argument is the pointer to the value representing the IPv6NET_IPv6_ADDR

address to be configured.

The third argument is the IPv6 prefix length of the addresss to configured.

The fourth argument is a set of network flags holding options specific to the address

configuration process.

The fifth argument is a pointer to a variable containing the return error code forNET_ERR

the function. If the interface address information is configured successfully, then the

return error code will contain the value . Additionally, functionNET_IPv6_ERR_NONE

returns a Boolean value of or depending on the result. Either the returnDEF_OK DEF_FAIL

value or the variable may be checked for return status; however, the NET_ERR NET_ERR

contains more detailed information and should therefore be the preferred check.

https://doc.micrium.com/display/TCPIPDOC303/NetASCII_Str_to_IP

µC/TCP-IP User's Manual

100Copyright 2015 Micrium Inc.

As shown in , the NetIPv6_CfgAddrAdd()Listing - IPv6 Address Configuration Example

function can take as argument a set of network flags. The following options are available :

Flags Description

NET_IPv6_FLAG_BLOCK_EN Enables blocking mode.

NET_IPv6_FLAG_DAD_EN Enables Duplication Address Detection (DAD) with the address configuration
process.

It is therefore possible to make the function blocking or not, or to enable Duplication Address

Detection with the address configuration.

If the function is made none blocking, it is possible to set a hook function to advertise the

application when the address configuration process has finished. The API function

 can be used to set the hook function. Refer to section NetIPv6_CfgAddrHookSet IPv6 Static

 for all the details on the hook function format andAddress Configuration Hook Function

usage. in the Listing - Non-Blocking IPv6 Address Configuration Example IP Address

 page shows an example of a non-blocking IPv6 static address configuration.Configuration

https://doc.micrium.com/display/TCPIPDOC303/NetIPv6_CfgAddrHookSet
https://doc.micrium.com/display/TCPIPDOC303/IPv6+Static+Address+Configuration+Hook+Function
https://doc.micrium.com/display/TCPIPDOC303/IPv6+Static+Address+Configuration+Hook+Function

µC/TCP-IP User's Manual

101Copyright 2015 Micrium Inc.

CPU_BOOLEAN cfg_success;
NET_IPv6_ADDR ipv6_addr;
NET_FLAGS ipv6_flags;
NET_ERR err;

(void)NetASCII_Str_to_IP((CPU_CHAR *)”fe80::1111:1111”, /* Convert IPv6 string address to 128 bit
address. */
 &ipv6_addr,
 NET_IPv6_ADDR_SIZE,
 &err);

NetIPv6_SetAddrCfgHookFnct(if_nbr, /* Set hook function to received addr cfg
result. */
 &App_AddrCfgResult, /* TODO update pointer to hook fnct implemented in App.
*/
 &err_net);

ipv6_flags = 0;
DEF_BIT_CLR(ipv6_flags, NET_IPv6_FLAG_BLOCK_EN); /* Set Address Configuration as
non-blocking. */
DEF_BIT_SET(ipv6_flags, NET_IPv6_FLAG_DAD_EN); /* Enable DAD with Address Configuration.
*/

cfg_success = NetIPv6_CfgAddrAdd(if_nbr, /* Add a statically-configured IPv6 host address to
... */
 &ipv6_addr, /* ... the interface.
*/
 64,
 ipv6_flags,
 &err);

Listing - Non-Blocking IPv6 Address Configuration Example

Stateless Address Auto-Configuration

The IPv6 protocol defines an address Auto-Configuration procedure allowing a network

interface to set itself an IPv6 Link-Local address based on its Interface ID. The

Auto-Configuration process will also query the local network to found an IPv6 router that

could send prefix information to set an IPv6 global address.

The µC/TCP-IP stack supports only the EUI-64 format for interface ID. This format creates a

64 bits ID based on the 48 bits MAC address of the interface. Those 64 bits will become the 64

least significant bits of the IPv6 addresses configured with the Stateless Auto-Configuration

process.

The following functions may be used to configure the IPv6 Stateless Auto-Configuration

process:

NetIPv6_AddrAutoCfgEn

https://doc.micrium.com/display/TCPIPDOC303/NetIPv6_AddrAutoCfgEn

µC/TCP-IP User's Manual

102Copyright 2015 Micrium Inc.

NetIPv6_AddrAutoCfgDis

NetIPv6_AddrAutoCfgHookSet

The IPv6 Auto-Configuration procedure inside the µC/TCP-IP stack is a non-blocking process.

To recover the result of the Auto-Configuration, a hook function can be configured that will be

called by the TCP/IP stack when the Auto-Configuration has finished. The API function used

to set the hook function is . Refer to section NetIPv6_AddrAutoCfgHookSet IPv6 Stateless

 for all the details on the Auto-Configuration hookAddress Auto-Configuration Hook Function

function format and usage and refer to section for examples ofSample applications

Auto-Configuration.

https://doc.micrium.com/display/TCPIPDOC303/NetIPv6_AddrAutoCfgDis
https://doc.micrium.com/display/TCPIPDOC303/NetIPv6_AddrAutoCfgHookSet
https://doc.micrium.com/display/TCPIPDOC303/NetIPv6_AddrAutoCfgHookSet
https://doc.micrium.com/display/TCPIPDOC303/IPv6+Stateless+Address+Auto-Configuration+Hook+Function
https://doc.micrium.com/display/TCPIPDOC303/IPv6+Stateless+Address+Auto-Configuration+Hook+Function

µC/TCP-IP User's Manual

103Copyright 2015 Micrium Inc.

1.

2.

Initializing+Shell+commands

The command line interface is a traditional method for accessing the network functionality on

a remote system (telnet), or in a device with a serial port (be that RS-232 or USB). A group of

shell commands are available for µC/TCPIP. These may simply expedite evaluation of the

network suite, or become part a primary method of access (or gathering debug information) in

your final product.

Using the Shell Commands

To use shell commands some file, in addition to the generic µC/TCPIP files, must be included

in the build:

See Directories and Files - Shell Commands

Using Network Interface Programming API

The following files must be included in any application or header files initialize µC/Shell or

handle shell commands.

Include file Description

Cmd/net_cmd.h Contains the initialization function API

API Reference

All Interface APIs are presented in the section

Function Name Description

NetCmd_Init() Add Network Shell commands to µC/Shell

Initialization order

Modules must be initialized in the following order:

µC/Shell

https://doc.micrium.com/pages/viewpage.action?pageId=16877557
https://doc.micrium.com/pages/viewpage.action?pageId=10753210

µC/TCP-IP User's Manual

104Copyright 2015 Micrium Inc.

2.

3.

Network suite (see)Initializing Tasks and objects

Network Shell Command

#include <Source/net.h>
#include <net_dev_rs9110n2x.h>
#include <net_bsp.h>
#include <net_phy.h>
#include <Cmd/net_cmd.h>
CPU_BOOLEAN App_InitTCPIP (void)
{
 NET_IF_NBR if_nbr;
 NET_ERR err;
 NET_CMD_ERR err_cmd;

 err = Net_Init();
 if (err != NET_ERR_NONE) {
 return (DEF_FAIL);
 }
 if_nbr = NetIF_Add((void *)&NetIF_API_WiFi
 (void *)&NetDev_API_RS9110N2x,
 (void *)&NetDev_BSP_SPI_API,
 (void *)&NetDev_Cfg_WiFi_0,
 (void *)&NetWiFiMgr_API_Generic,
 (void *) 0,
 (NET_ERR *)&err);
 if (err != NET_IF_ERR_NONE) {
 return (DEF_FAIL);
 }

 NetIF_Start(if_nbr, &err);
 if (err != NET_IF_ERR_NONE) {
 return (DEF_FAIL);
 }

 /*uC-Shell must has been initialized before initializing Network Shell Command */
 NetCmd_Init(&err_cmd);
 if (err != NET_CMD_ERR_NONE) {
 return (DEF_FAIL);
 }

 return (DEF_OK);
}

https://doc.micrium.com/display/TCPIPDOC30000/Initializing+Tasks+and+objects

µC/TCP-IP User's Manual

105Copyright 2015 Micrium Inc.

Sample applications

This section presents distinct examples of TCP/IP application initialization functions for the

different type of network Interface (Ethernet and WiFi):

Ethernet Sample Application

WiFi Sample Application

Multiple Interfaces Sample Application

Ethernet Sample Application

µC/TCP-IP User's Manual

106Copyright 2015 Micrium Inc.

1.

a.

b.

c.

d.

Ethernet Sample Application

This example show how to initialize µC/TCP-IP:

Initialize Stack tasks and objects

Initialize an Ethernet Interface

Start that Ethernet Interface

Configure IP addresses of that Interface

This example is based on template files so some modifications will be required, insert

the appropriate project/board specific code to perform the stated actions. Note that the file

init_ether.c, located in the folder , contains this$/Micrium/Software/uC-TCPIP/Examples/Init

sample application:

µC/TCP-IP User's Manual

107Copyright 2015 Micrium Inc.

#include <cpu_core.h>
#include <lib_mem.h>
#include <Source/net.h>
#include <Source/net_ascii.h>
#include <IF/net_if.h>
#include <IF/net_if_ether.h>
#ifdef NET_IPv4_MODULE_EN
#include <IP/IPv4/net_ipv4.h>
#endif
#ifdef NET_IPv6_MODULE_EN
#include <IP/IPv6/net_ipv6.h>
#endif
#include <Cfg/Template/net_dev_cfg.h> /* See Note #1. */
#include <Dev/Ether/Template/net_dev_ether_template_dma.h> /* See Note #2. */
#include <Dev/Ether/PHY/Generic/net_phy.h> /* See Note #3. */
#include <BSP/Template/net_bsp_ether.h> /* See Note #4. */

CPU_BOOLEAN AppInit_TCPIP (void)
{
 NET_IF_NBR if_nbr;
 NET_ERR err_net;
#ifdef NET_IPv4_MODULE_EN
 NET_IPv4_ADDR addr_ipv4;
 NET_IPv4_ADDR msk_ipv4;
 NET_IPv4_ADDR gateway_ipv4;
#endif
#ifdef NET_IPv6_MODULE_EN
 CPU_BOOLEAN cfg_result;
#if (NET_IPv6_CFG_ADDR_AUTO_CFG_EN == DEF_DISABLED)
 NET_FLAGS ipv6_flags;
 NET_IPv6_ADDR ipv6_addr;
#endif
#endif
 /* ------- PREREQUISITES MODULE INIT -------- */
 CPU_Init(); /* See Note #5. */
 Mem_Init();
 /* ------ INIT NETWORK TASKS & OBJECTS ------ */
 err_net = Net_Init(&NetRxTaskCfg, /* See Note #6. */
 &NetTxDeallocTaskCfg,
 &NetTmrTaskCfg);
 if (err_net != NET_ERR_NONE) {
 return (DEF_FAIL);
 }
 /* --------- ADD ETHERNET INTERFACE --------- */
 /* See Note #7. */
 if_nbr = NetIF_Add(&NetIF_API_Ether, /* See Note #7b. */
 &NetDev_API_TemplateEtherDMA, /* Device driver API, See Note #7c. */
 &NetDev_BSP_BoardDev_Nbr, /* BSP API, See Note #7d. */
 &NetDev_Cfg_Ether_1, /* Device configuration, See Note #7e. */
 &NetPhy_API_Generic, /* PHY driver API, See Note #7f. */
 &NetPhy_Cfg_Ether_1, /* PHY configuration, See Note #7g. */
 &err_net);
 if (err_net != NET_IF_ERR_NONE) {
 return (DEF_FAIL);
 }
 /* -------- START ETHERNET INTERFACE -------- */
 NetIF_Start(if_nbr, &err_net); /* See Note #8. */
 if (err_net != NET_IF_ERR_NONE) {
 return (DEF_FAIL);
 }
#ifdef NET_IPv4_MODULE_EN
 /* ------- CONFIGURE IPV4 STATIC ADDR ------- */
 /* See Note #9 */
 NetASCII_Str_to_IP("10.10.10.64", /* Convert IPv4 string addr to 32 bits addr. */
 &addr_ipv4,
 NET_IPv4_ADDR_SIZE,

µC/TCP-IP User's Manual

108Copyright 2015 Micrium Inc.

1.

2.

 &err_net);
 NetASCII_Str_to_IP("255.255.255.0", /* Convert IPv4 mask string to 32 bits addr. */
 &msk_ipv4,
 NET_IPv4_ADDR_SIZE,
 &err_net);
 NetASCII_Str_to_IP("10.10.10.1", /* Convert Gateway string to 32 bits addr. */
 &gateway_ipv4,
 NET_IPv4_ADDR_SIZE,
 &err_net);
 NetIPv4_CfgAddrAdd(if_nbr, /* Add a statically-configured IPv4 host ... */
 addr_ipv4, /* ... addr, subnet mask, & default ... */
 msk_ipv4, /* ... gateway to the interface. See Note #10.*/
 gateway_ipv4,
 &err_net);
 if (err_net != NET_IPv4_ERR_NONE) {
 return (DEF_FAIL);
 }
#endif
#ifdef NET_IPv6_MODULE_EN
#if (NET_IPv6_CFG_ADDR_AUTO_CFG_EN == DEF_ENABLED)
 /* ---- START IPV6 STATELESS AUTO-CONFI ----- */
 /* See Note #12. */
 NetIPv6_AddrAutoCfgHookSet(if_nbr, /* Set hook to received Auto-Cfg result. */
 &App_AutoCfgResult, /* TODO update pointer to hook defined in App.*/
 &err_net);

 /* See Note #13. */
 cfg_result = NetIPv6_AddrAutoCfgEn(if_nbr, /* Enable and Start Auto-Config process. */
 DEF_YES,
 &err_net);
 if (cfg_result == DEF_FAIL) {
 return (DEF_FAIL);
 }

Listing - AppInit_TCPIP()

The device configuration template file should be copied to your application folder and

modified to follow your requirements. Refer to the User's Manual for more information

about how to configure your device.

We recommend starting with a working configuration from an example project for your

MCU. Micriµm might have some projects available only for internal usage, so if no

working project are found online, please ask at for asupport@micrium.com

configuration file example.

Most of the time Micriµm provides an Ethernet Network device driver which can be

found under the following folder:

$/Micrium/Software/uC-TCPIP/Dev/Ether/<Controller>/net_dev_<controller>.h

If Micrium does not support your network device driver, you will have to write your

own device driver starting from the Ethernet Device driver template. Before starting to

µC/TCP-IP User's Manual

109Copyright 2015 Micrium Inc.

2.

3.

4.

5.

a.

b.

6.

a.

write your own driver, make sure that the driver is not already available. isNet_Init()

the Network Protocol stack initialization function. This function takes the three TCP-IP

internal tasks configurations (defined in) as argument.net_cfg.c

The PHY driver should be provided by Micriµm and located under the following folder:

$/Micrium/Software/uC-TCPIP/Dev/Ether/PHY/<phy part number>/net_phy_<phy part
number>.h

Most of the time for MII, RMII or GMII PHY, the generic PHY works correctly. If your

PHY is not available and the generic is not working you will have to write you own

PHY driver. Normally for a single connector PHY, some minor changes to the generic

driver are required.

The board support package (BSP) template file should be copied to your application

folder and modified for your specific board. Refer to the User's Manual for more

information about how to write a BSP ().Ethernet BSP Layer

However we recommend, starting with a working configuration from an example

project for your MCU. Micriµm might have some projects available only for internal

usage, so if no working project are found online, please ask at support@micrium.com

for a BSP file example specific for your MCU.

 Some prerequisite module initializations are required. The following modules must be

initialized prior to starting the Network Protocol stacks initialization:

uC/CPU

uC/LIB Memory module

Net_Init() is the Network Protocol stack's initialization function. It must only be called

once and before any other Network functions.

This function takes the three TCP-IP internal task configuration structures as arguments

(such as priority, stack size, etc.). By default these configuration structures are defined

µC/TCP-IP User's Manual

110Copyright 2015 Micrium Inc.

6.

a.

b.

7.

a.

b.

c.

in :net_cfg.c

NetRxTaskCfg RX task configuration
NetTxDeallocTaskCfg TX task configuration
NetTmrTaskCfg Timer task configuration

We recommend you configure the Network Protocol Stack task priorities & Network

application (such as a Web server) task priorities as follows:

NetTxDeallocTaskCfg (highest priority)

Network applications (HTTPs, FTP, DNS, etc.)

NetTmrTaskCfg
NetRxTaskCfg (lowest priority)

We recommend that the uC/TCP-IP Timer task and network interface Receive task be

lower priority than almost all other application tasks; but we recommend that the

network interface Transmit De-allocation task be higher priority than all application

tasks that use uC/TCP-IP network services.

However, better performance can be observed when the Network applications are set

with the lowest priority. Some experimentation could be required to identify the best

task priority configuration.

NetIF_Add() is a network interface function responsible for initializing a Network

Device driver.

NetIF_Add() returns the interface index number. The interface index number should

start at '1', since the interface '0' is reserved for the loopback interface. The interface

index number must be used when you want to access the interface using any Network

interface API.

The first parameter is the address of the Network interface API. These API are

provided by Micriµm and are defined in file 'net_if_<type>.h'. It should be either:

NetIF_API_Ether Ethernet interface
NetIF_API_WiFi Wireless interface

µC/TCP-IP User's Manual

111Copyright 2015 Micrium Inc.

7.

c.

d.

e.

f.

g.

8.

9.

10.

The second parameter is the address of the device API function. The API should be

defined in the Device driver header:

 $/uC-TCPIP/Dev/<if_type>/<controller>/net_dev_<controller>.h

 The third parameter is the address of the device BSP data structure. See 'Note #4' for

more details.

 The fourth parameter is the address of the device configuration data structure. See

'Note #1' for more details.

The fifth parameter is the address of the PHY API function. See Note #3' for more

details.

The sixth and last parameter is the address of the PHY configuration data structure. The

PHY configuration should be located in net_dev_cfg.c/h.

NetIF_Start() makes the network interface ready to receive and transmit. Once this

function returns without an error the device should be able to receive packet, an

interrupt should then be generated from the Ethernet controller (at least for each packets

present on the cable).

NetASCII_Str_to_IP() converts the human readable address into a format required by

the protocol stack.

In this example the IP address used, 10.10.10.64, addresses out of the 10.10.10.1

network with a subnet mask of 255.255.255.0. To match different networks, the IP

address, the subnet mask and the default gateway's IP address have to be customized.

NetIPv4_CfgAddrAdd() configures the network IPv4 static parameters (IPv4 address,

subnet mask and default gateway) required for the interface. More than one set of

network parameters can be configured per interface. can beNetIPv4_CfgAddrAdd()

repeated for as many network parameter sets as need configuring for an interface.

IPv4 parameters can be added whenever as long as the interface was added (initialized)

even if the interface is started or not.

For Dynamic IPv4 configuration, µC/DHCPc is required

µC/TCP-IP User's Manual

112Copyright 2015 Micrium Inc.

10.

11.

12.

a.

b.

13.

a.

b.

NetIPv6_CfgAddrAdd() configures the network IPv6 static parameters (IPv6 address and

prefix length) required for the interface. More than one set of network parameters can be

configured per interface. can be repeated for as many network NetIPv6_CfgAddrAdd()

parameter sets as need configuring for an interface.

IPv6 parameters can be added whenever as long as the interface is added (initialized)

even if the interface is started or not.

For the moment dynamic IPv6 is not yet supported either by IPv6 Autoconfig or

DHCPv6c.

NetIPv6_AddrAutoCfgHookSet() is used to set the IPv6 Auto-Configuration hook

function that will received the result of the Auto-Configuration process.

The first argument is the Network interface number on which the Auto-Configuration

will take place.

The second argument is the pointer to the hook function the application needs to

implement. Refer to section IPv6 Stateless Address Auto-Configuration Hook Function

for an example.

NetIPv6_AddrAutoCfgEn() enables the interface to the IPv6 Address Auto-Configuration

process. If the interface link state is already UP, the Auto-Configuration process will

started immediately, else it will start after the interface link state becomes UP.

The first argument is the Network interface number on which the Auto-Configuration

will take place.

The second argument enables or disables the Duplication Address Detection (DAD)

during the Auto-Configuration process.

WiFi Sample Application

https://doc.micrium.com/display/TCPIPDOC303/IPv6+Stateless+Address+Auto-Configuration+Hook+Function

µC/TCP-IP User's Manual

113Copyright 2015 Micrium Inc.

1.

a.

b.

c.

d.

e.

f.

g.

WiFi Sample Application

This example show how to initialize µC/TCP-IP:

Initialize Stack tasks and objects

Initialize a Wireless Interface

Start that Wireless Interface

Scan for Wireless network available

Analyze scan results

Join a Wireless network

Configure IP addresses of that Interface

This example is based on template files so some modifications will be required, insert

the appropriate project/board specific code to perform the stated actions. Note that the file

, located in the folder , contains thisinit_wifi.c $/Micrium/Software/uC-TCPIP/Examples/Init

sample application:

µC/TCP-IP User's Manual

114Copyright 2015 Micrium Inc.

#include <cpu_core.h>
#include <lib_mem.h>
#include <Source/net.h>
#include <Source/net_ascii.h>
#include <IF/net_if.h>
#include <IF/net_if_wifi.h>
#ifdef NET_IPv4_MODULE_EN
#include <IP/IPv4/net_ipv4.h>
#endif
#ifdef NET_IPv6_MODULE_EN
#include <IP/IPv6/net_ipv6.h>
#endif
#include <Cfg/Template/net_dev_cfg.h> /* See Note #1. */
#include <Dev/WiFi/Template/net_dev_wifi_template_spi.h> /* See Note #2. */
#include <Dev/WiFi/Manager/Generic/net_wifi_mgr.h>
#include <BSP/Template/net_bsp_wifi.h> /* See Note #3. */

CPU_BOOLEAN AppInit_TCPIP_WiFi (void)
{
#ifdef NET_IPv4_MODULE_EN
 NET_IPv4_ADDR addr_ipv4;
 NET_IPv4_ADDR msk_ipv4;
 NET_IPv4_ADDR gateway_ipv4;
#endif
#ifdef NET_IPv6_MODULE_EN
 CPU_BOOLEAN cfg_result;
#if (NET_IPv6_CFG_ADDR_AUTO_CFG_EN == DEF_DISABLED)
 NET_FLAGS ipv6_flags;
 NET_IPv6_ADDR addr_ipv6;
#endif
#endif
 NET_IF_NBR if_nbr;
 NET_IF_WIFI_AP ap[10];
 NET_IF_WIFI_SSID *p_ssid;
 NET_IF_WIFI_SSID ssid;
 NET_IF_WIFI_PSK psk;
 CPU_INT16U ctn;
 CPU_INT16U i;
 CPU_INT16S result;
 CPU_BOOLEAN found;
 NET_ERR err_net;

 /* ------- PREREQUISITES MODULE INIT -------- */
 CPU_Init(); /* See Note #4. */
 Mem_Init();
 /* ------ INIT NETWORK TASKS & OBJECTS ------ */
 err_net = Net_Init(&NetRxTaskCfg, /* See Note #5. */
 &NetTxDeallocTaskCfg,
 &NetTmrTaskCfg);
 if (err_net != NET_ERR_NONE) {
 return (DEF_FAIL);
 }
 /* --------- ADD WIRELESS INTERFACE --------- */
 /* See Note #6. */
 if_nbr = NetIF_Add(&NetIF_API_WiFi, /* See Note #6b. */
 &NetDev_API_TemplateWiFiSpi, /* BSP API, See Note #6d. */
 &NetDev_BSP_WiFi, /* Device configuration, See Note #6e. */
 &NetDev_Cfg_WiFi_1, /* PHY driver API, See Note #6f. */
 &NetWiFiMgr_API_Generic, /* PHY configuration, See Note #6g. */
 DEF_NULL,
 &err_net);
 if (err_net != NET_IF_ERR_NONE) {
 return (DEF_FAIL);
 }
 /* -------- START WIRELESS INTERFACE -------- */
 /* See Note #7. */
 NetIF_Start(if_nbr, &err_net); /* Makes the IF ready to RX and TX. */

µC/TCP-IP User's Manual

115Copyright 2015 Micrium Inc.

 if (err_net != NET_IF_ERR_NONE) {
 return (DEF_FAIL);
 }
 /* ------- SCAN FOR WIRELESS NETWORKS ------- */
 ctn = NetIF_WiFi_Scan(if_nbr, /* See Note #11. */
 ap, /* Access point table See Note #11a. */
 10, /* Access point table size. */
 DEF_NULL, /* Hidden SSID See Note #11b. */
 NET_IF_WIFI_CH_ALL, /* Channel to scan See Note #11c. */
 &err_net);
 if (err_net != NET_IF_WIFI_ERR_NONE) {
 return (DEF_FAIL);
 }
 /* ------ ANALYSE WIFI NETWORKS FOUND ------- */
 found = DEF_NO;
 for (i = 0; i < ctn - 1; i++) { /* Browse table of access point found. */
 p_ssid = &ap[i].SSID;
 result = Str_Cmp_N(p_ssid, /* Search for a specific WiFi Network SSID. */
 "Wifi_AP_SSID", /* WiFi Network SSID. */
 NET_IF_WIFI_STR_LEN_MAX_SSID);
 if (result == 0) {
 found = DEF_YES;
 break;
 }
 }
 if (found == DEF_NO) {
 return (DEF_FAIL);
 }
 /* -------- JOIN A WIRELESS NETWORK --------- */
 Mem_Clr(&ssid, sizeof(ssid));
 Mem_Clr(&psk, sizeof(psk));
 Str_Copy_N((CPU_CHAR *)&ssid,
 "Wifi_AP_SSID", /* WiFi Network SSID. */
 12); /* SSID string length. */
 Str_Copy_N((CPU_CHAR *)&psk,
 "Password", /* Pre shared Key (PSK), Wifi password. */
 8); /* PSK string length. */
 NetIF_WiFi_Join(if_nbr, /* See Note #12. */
 ap[i].NetType, /* See Note #12a. */
 NET_IF_WIFI_DATA_RATE_AUTO, /* See Note #12b. */
 ap[i].SecurityType, /* See Note #12c. */
 NET_IF_WIFI_PWR_LEVEL_HI, /* See Note #12d. */
 ssid, /* See Note #12e. */
 psk, /* See Note #12f. */
 &err_net);
 if (err_net != NET_IF_WIFI_ERR_NONE) {
 return (DEF_FAIL);
 }

#ifdef NET_IPv4_MODULE_EN
 /* ------ CONFIGURE IPV4 STATIC ADDR -------- */
 /* For Dynamic IPv4 cfg, µC/DHCPc is required */
 /* TODO Update IPv4 Addr following your ... */
 /* ... network requirements. */
 /* See Note #10. */
 NetASCII_Str_to_IP("10.10.10.64", /* Convert Host IPv4 string to 32 bit addr. */
 &addr_ipv4,
 NET_IPv4_ADDR_SIZE,
 &err_net);
 NetASCII_Str_to_IP("255.255.255.0", /* Convert IPv4 mask string to 32 bit addr. */
 &msk_ipv4,
 NET_IPv4_ADDR_SIZE,
 &err_net);
 NetASCII_Str_to_IP("10.10.10.1", /* Convert Gateway string to 32 bit addr. */
 &gateway_ipv4,
 NET_IPv4_ADDR_SIZE,
 &err_net);
 NetIPv4_CfgAddrAdd(if_nbr, /* Add a statically-configured IPv4 host ... */

µC/TCP-IP User's Manual

116Copyright 2015 Micrium Inc.

1.

 addr_ipv4, /* ... addr, subnet mask, & default ... */
 msk_ipv4, /* ... gateway to the interface. See Note #11.*/
 gateway_ipv4,
 &err_net);
 if (err_net != NET_IPv4_ERR_NONE) {
 return (DEF_FAIL);
 }
#endif
#ifdef NET_IPv6_MODULE_EN
#if (NET_IPv6_CFG_ADDR_AUTO_CFG_EN == DEF_ENABLED)
 /* ---- START IPV6 STATELESS AUTO-CONFIG ---- */
 /* See Note #13. */
 NetIPv6_AddrAutoCfgHookSet(if_nbr, /* Set hook to received Auto-Cfg result. */
 &App_AutoCfgResult, /* TODO update pointer to hook defined in App.*/
 &err_net);

 /* See Note #14. */
 cfg_result = NetIPv6_AddrAutoCfgEn(if_nbr, /* Enable and Start Auto-Config process. */
 DEF_YES,
 &err_net);
 if (cfg_result == DEF_FAIL) {
 return (DEF_FAIL);
 }

#else
 /* ----- CFG IPV6 STATIC LINK LOCAL ADDR ---- */
 /* DHCPv6c is not yet available. */

 ipv6_flags = 0;
 DEF_BIT_SET(ipv6_flags, NET_IPv6_FLAG_BLOCK_EN); /* Set Address Configuration as blocking. */
 DEF_BIT_SET(ipv6_flags, NET_IPv6_FLAG_DAD_EN); /* Enable DAD with Address Configuration. */
 /* TODO Update IPv6 Addr following your ... */
 /* ... network requirements. */
 /* See Note #10. */
 NetASCII_Str_to_IP("fe80::1111:1111", /* Convert IPv6 string addr to 128 bit addr. */
 &addr_ipv6,
 NET_IPv6_ADDR_SIZE,
 &err_net);
 cfg_result = NetIPv6_CfgAddrAdd(if_nbr, /* Add a statically-configured IPv6 host ... */
 &addr_ipv6, /* ... addr to the interface. See Note #12. */
 64,
 ipv6_flags,
 &err_net);
 if (cfg_result == DEF_FAIL) {
 return (DEF_FAIL);
 }
#endif
#endif
 return (DEF_OK);
}

Listing - AppInit_TCPIP()

The device configuration template file should be copied to your application folder and

modified to follow your requirements. Refer to the User's Manual for more information

about how to configure your device.

We recommend starting with a working configuration from an example project for your

wireless module. Micriµm might have some projects available only for internal usage,

µC/TCP-IP User's Manual

117Copyright 2015 Micrium Inc.

1.

2.

3.

4.

a.

b.

5.

a.

so if no working project are found online, please ask at for asupport@micrium.com

configuration file example.

Most of the time Micriµm provides a Wireless device driver which can be found under

the following folder:

$/Micrium/Software/uC-TCPIP/Dev/WiFi/<module>/net_dev_<module>.h

If Micrium does not support your network wireless device driver, you will have to write

your own device driver starting from the Wireless Device driver template. Before

starting to write your own driver, make sure that the driver is not already available.

The board support package (BSP) template file should be copied to your application

folder and modified for your specific board. Refer to the User's Manual for more

information about how to write a BSP.

However we recommend, starting with a working configuration from an example

project for your Wireless module. Micriµm might have some projects available only for

internal usage, so if no working project are found online, please ask at

 for a BSP file example specific for your MCU and yoursupport@micrium.com

Wireless Module.

Some prerequisite module initializations are required. The following modules must be

initialized prior to starting the Network Protocol stacks initialization:

uC/CPU

uC/LIB Memory module

Net_Init() is the Network Protocol stack's initialization function. It must only be called

once and before any other Network functions.

This function takes the three TCP-IP internal task configuration structures as arguments

(such as priority, stack size, etc.). By default these configuration structures are defined

µC/TCP-IP User's Manual

118Copyright 2015 Micrium Inc.

5.

a.

b.

6.

a.

b.

in net_cfg.c :

NetRxTaskCfg RX task configuration
NetTxDeallocTaskCfg TX task configuration
NetTmrTaskCfg Timer task configuration

We recommend you configure the Network Protocol Stack task priorities & Network

application (such as a Web server) task priorities as follows:

NetTxDeallocTaskCfg (highest priority)

Network applications (HTTPs, FTP, DNS, etc.)

NetTmrTaskCfg
NetRxTaskCfg (lowest priority)

We recommend that the uC/TCP-IP Timer task and network interface Receive task be

lower priority than almost all other application tasks; but we recommend that the

network interface Transmit De-allocation task be higher priority than all application

tasks that use uC/TCP-IP network services.

However, better performance can be observed when the Network applications are set

with the lowest priority. Some experimentation could be required to identify the best

task priority configuration.

NetIF_Add() is a network interface function responsible for initializing a Network

Device driver.

NetIF_Add() returns the interface index number. The interface index number should

start at '1', since the interface '0' is reserved for the loopback interface. The interface

index number must be used when you want to access the interface using any Network

interface API.

The first parameter is the address of the Network interface API. These API are

provided by Micriµm and are defined in file . It should be either:net_if_<type>.h

NetIF_API_Ether Ethernet interface

µC/TCP-IP User's Manual

119Copyright 2015 Micrium Inc.

6.

b.

c.

d.

e.

f.

g.

7.

8.

a.

NetIF_API_WiFi Wireless interface

The second parameter is the address of the device API function. The API should be

defined in the Device driver header:

$/uC-TCPIP/Dev/<if_type>/<controller>/net_dev_<controller>.h

 The third parameter is the address of the device BSP data structure. See Note #3 for

more details.

The fourth parameter is the address of the device configuration data structure. See Note

#1 for more details.

The fifth parameter is the address of the WiFi Manager API function. This API is

provided by Micriµm and it's located in:

$/uC-TCPIP/Dev/WiFi/Manager/Generic/net_wifi_mgr.h

The sixth and last parameter is the address of the WiFi manager configuration data

structure. Actually there are no configuration require with the generic WiFi manager.

So this parameters can be kept as null.

NetIF_Start() makes the network interface scan, join or create adhoc wireless network.

This function must interact with the wireless module thus some interrupt should be

generated from the wireless's interrupt pin when calling this function.

NetIF_WiFi_Scan() is used to scan for available Wireless Network available in the

range.

The second parameter is a table of access point that will be receive access points found

in the range. Obviously, the maximum number of access point that the table can store

must be past to the function.

µC/TCP-IP User's Manual

120Copyright 2015 Micrium Inc.

8.

a.

b.

c.

9.

a.

b.

It's possible to scan for a specific hidden network by passing a string that contains the

SSID of the hidden network. If the scan request is for all access point, you only have to

pass a null pointer.

The fourth parameter is the wireless channel to scan on, it can be:

NET_IF_WIFI_CH_ALL
NET_IF_WIFI_CH_1
NET_IF_WIFI_CH_2
NET_IF_WIFI_CH_3
NET_IF_WIFI_CH_4
NET_IF_WIFI_CH_5
NET_IF_WIFI_CH_6
NET_IF_WIFI_CH_7
NET_IF_WIFI_CH_8
NET_IF_WIFI_CH_9
NET_IF_WIFI_CH_10
NET_IF_WIFI_CH_11
NET_IF_WIFI_CH_12
NET_IF_WIFI_CH_13
NET_IF_WIFI_CH_14

NetIF_WiFi_Join() is used to join a wireless network. Note that the network must has

been found during a scan previously. Once the wireless access point is join, it is possible

to receive and transmit packet on the network.

The second parameter is the Network type it can be either:

NET_IF_WIFI_NET_TYPE_INFRASTRUCTURE
NET_IF_WIFI_NET_TYPE_ADHOC

The scan function should return the network type as well.

The third parameter is the wireless date rate to configure:

NET_IF_WIFI_DATA_RATE_AUTO
NET_IF_WIFI_DATA_RATE_1_MBPS
NET_IF_WIFI_DATA_RATE_2_MBPS

µC/TCP-IP User's Manual

121Copyright 2015 Micrium Inc.

9.

b.

c.

d.

e.

f.

10.

NET_IF_WIFI_DATA_RATE_5_5_MBPS
NET_IF_WIFI_DATA_RATE_6_MBPS
NET_IF_WIFI_DATA_RATE_9_MBPS
NET_IF_WIFI_DATA_RATE_11_MBPS
NET_IF_WIFI_DATA_RATE_12_MBPS
NET_IF_WIFI_DATA_RATE_18_MBPS
NET_IF_WIFI_DATA_RATE_24_MBPS
NET_IF_WIFI_DATA_RATE_36_MBPS
NET_IF_WIFI_DATA_RATE_48_MBPS
NET_IF_WIFI_DATA_RATE_54_MBPS
NET_IF_WIFI_DATA_RATE_MCS0
NET_IF_WIFI_DATA_RATE_MCS1
NET_IF_WIFI_DATA_RATE_MCS2
NET_IF_WIFI_DATA_RATE_MCS3
NET_IF_WIFI_DATA_RATE_MCS4
NET_IF_WIFI_DATA_RATE_MCS5
NET_IF_WIFI_DATA_RATE_MCS6
NET_IF_WIFI_DATA_RATE_MCS7
NET_IF_WIFI_DATA_RATE_MCS8
NET_IF_WIFI_DATA_RATE_MCS9
NET_IF_WIFI_DATA_RATE_MCS10
NET_IF_WIFI_DATA_RATE_MCS11
NET_IF_WIFI_DATA_RATE_MCS12
NET_IF_WIFI_DATA_RATE_MCS13
NET_IF_WIFI_DATA_RATE_MCS14
NET_IF_WIFI_DATA_RATE_MCS15

The fourth parameter is the wireless network's security type. It can be:
 NET_IF_WIFI_SECURITY_OPEN
 NET_IF_WIFI_SECURITY_WEP
 NET_IF_WIFI_SECURITY_WPA
 NET_IF_WIFI_SECURITY_WPA2

The scan function should return the network security type as well.

The fifth parameter is the wireless radio's power level. It can be:
 NET_IF_WIFI_PWR_LEVEL_LO
 NET_IF_WIFI_PWR_LEVEL_MED
 NET_IF_WIFI_PWR_LEVEL_HI

The sixth parameter is the access point's SSID to join.

The seventh parameter is the Pre shared key (PSK) of the access point's. If the security

type of the access point is open, the PSK can set to null.

NetASCII_Str_to_IP() converts the human readable address into a format required by

the protocol stack.

µC/TCP-IP User's Manual

122Copyright 2015 Micrium Inc.

10.

11.

12.

13.

a.

b.

In this example the IP address used, 10.10.10.64, addresses out of the 10.10.10.1

network with a subnet mask of 255.255.255.0. To match different networks, the IP

address, the subnet mask and the default gateway's IP address have to be customized.

NetIPv4_CfgAddrAdd() configures the network IPv4 static parameters (IPv4 address,

subnet mask and default gateway) required for the interface. More than one set of

network parameters can be configured per interface. can beNetIPv4_CfgAddrAdd()

repeated for as many network parameter sets as need configuring for an interface.

IPv4 parameters can be added whenever as long as the interface was added (initialized)

even if the interface is started or not.

For Dynamic IPv4 configuration, µC/DHCPc is required

NetIPv6_CfgAddrAdd() configures the network IPv6 static parameters (IPv6 address and

prefix length) required for the interface. More than one set of network parameters can be

configured per interface. can be repeated for as many networkNetIPv6_CfgAddrAdd()

parameter sets as need configuring for an interface.

IPv6 parameters can be added whenever as long as the interface is added (initialized)

even if the interface is started or not.

For the moment dynamic IPv6 is not yet supported either by IPv6 Autoconfig or

DHCPv6c.

NetIPv6_AddrAutoCfgHookSet() is used to set the IPv6 Auto-Configuration hook

function that will received the result of the Auto-Configuration process.

The first argument is the Network interface number on which the Auto-Configuration

will take place.

The second argument is the pointer to the hook function the application needs to

implement. Refer to section IPv6 Stateless Address Auto-Configuration Hook Function

https://doc.micrium.com/display/TCPIPDOC303/IPv6+Stateless+Address+Auto-Configuration+Hook+Function

µC/TCP-IP User's Manual

123Copyright 2015 Micrium Inc.

13.

b.

14.

a.

b.

for an example.

NetIPv6_AddrAutoCfgEn() enables the interface to the IPv6 Address Auto-Configuration

process. If the interface link state is already UP, the Auto-Configuration process will

started immediately, else it will start after the interface link state becomes UP.

The first argument is the Network interface number on which the Auto-Configuration

will take place.

The second argument enables or disables the Duplication Address Detection (DAD)

during the Auto-Configuration process.

Multiple Interfaces Sample Application

µC/TCP-IP User's Manual

124Copyright 2015 Micrium Inc.

1.

a.

b.

c.

d.

e.

f.

g.

h.

i.

j.

Multiple Interfaces Sample Application

This example show how to initialize µC/TCP-IP with multiple interface:

Initialize Stack tasks and objects

Initialize an Ethernet Interface

Start that Ethernet Interface

Configure IP addresses of the Ethernet Interface

Initialize an Wireless Interface

Start that Wireless Interface

Scan for Wireless networks available

Analyze scan result

Join a Wireless network

Configure IP addresses of that Wireless Interface

This example is based on template files so some modifications will be required, insert

the appropriate project/board specific code to perform the stated actions. Note that the file

, located in the folder init_multiple_if.c $/Micrium/Software/uC-TCPIP/Examples/Init

, contains this sample application:

#include <cpu_core.h>
#include <lib_mem.h>
#include <Source/net.h>
#include <Source/net_ascii.h>
#include <IF/net_if.h>
#include <IF/net_if_wifi.h>
#ifdef NET_IPv4_MODULE_EN
#include <IP/IPv4/net_ipv4.h>
#endif
#ifdef NET_IPv6_MODULE_EN
#include <IP/IPv6/net_ipv6.h>
#endif
#include <Cfg/Template/net_dev_cfg.h> /* Device configuration header. */
#include <Dev/Ether/Template/net_dev_ether_template_dma.h> /* Device driver header. */
#include <Dev/WiFi/Template/net_dev_wifi_template_spi.h> /* Device driver header. */
#include <Dev/Ether/PHY/Generic/net_phy.h> /* PHY driver header. */

#include <Dev/WiFi/Manager/Generic/net_wifi_mgr.h>

µC/TCP-IP User's Manual

125Copyright 2015 Micrium Inc.

#include <Dev/WiFi/Manager/Generic/net_wifi_mgr.h>
#include <BSP/Template/net_bsp_ether.h> /* BSP header. */
#include <BSP/Template/net_bsp_wifi.h> /* BSP header. */

CPU_BOOLEAN AppInit_TCPIP_MultipleIF (void)
{
#ifdef NET_IPv4_MODULE_EN
 NET_IPv4_ADDR addr_ipv4;
 NET_IPv4_ADDR msk_ipv4;
 NET_IPv4_ADDR gateway_ipv4;
#endif
#ifdef NET_IPv6_MODULE_EN
 CPU_BOOLEAN cfg_result;
#if (NET_IPv6_CFG_ADDR_AUTO_CFG_EN == DEF_DISABLED)
 NET_FLAGS ipv6_flags;
 NET_IPv6_ADDR addr_ipv6;
#endif
#endif
 NET_IF_NBR if_nbr_ether;
 NET_IF_NBR if_nbr_wifi;
 NET_IF_WIFI_AP ap[10];
 NET_IF_WIFI_SSID *p_ssid;
 NET_IF_WIFI_SSID ssid;
 NET_IF_WIFI_PSK psk;
 CPU_INT16U ctn;
 CPU_INT16U i;
 CPU_INT16S result;
 CPU_BOOLEAN found;
 NET_ERR err_net;
 /* ---- INIT NETWORK TASKS & OBJECTS ---- */
 err_net = Net_Init(&NetRxTaskCfg,
 &NetTxDeallocTaskCfg,
 &NetTmrTaskCfg);
 if (err_net != NET_ERR_NONE) {
 return (DEF_FAIL);
 }
 /* ------- ADD ETHERNET INTERFACE ------- */
 if_nbr_ether = NetIF_Add(&NetIF_API_Ether,
 &NetDev_API_TemplateEtherDMA, /* Device driver API */
 &NetDev_BSP_BoardDev_Nbr, /* BSP API */
 &NetDev_Cfg_Ether_1, /* Device configuration */
 &NetPhy_API_Generic, /* PHY driver API */
 &NetPhy_Cfg_Ether_1, /* PHY configuration */
 &err_net);
 if (err_net != NET_IF_ERR_NONE) {
 return (DEF_FAIL);
 }
 /* ------ START ETHERNET INTERFACE ------ */
 NetIF_Start(if_nbr_ether, &err_net); /* Makes the IF ready to RX and TX. */
 if (err_net != NET_IF_ERR_NONE) {
 return (DEF_FAIL);
 }
#ifdef NET_IPv4_MODULE_EN
 /* ------- CFG IPV4 STATIC ADDR --------- */
 /* For Dynamic IPv4 cfg, DHCPc is required*/
 /* Update IPv4 Addr following your ... */
 /* ... network requirements. */
 NetASCII_Str_to_IP("10.10.10.64", /* Convert IPv4 string addr to 32 bit addr*/
 &addr_ipv4,
 NET_IPv4_ADDR_SIZE,
 &err_net);
 NetASCII_Str_to_IP("255.255.255.0", /* Convert IPv4 mask to 32 bit addr. */
 &msk_ipv4,
 NET_IPv4_ADDR_SIZE,
 &err_net);
 NetASCII_Str_to_IP("10.10.10.1", /* Convert Gateway string to 32 bit addr. */
 &gateway_ipv4,

µC/TCP-IP User's Manual

126Copyright 2015 Micrium Inc.

 NET_IPv4_ADDR_SIZE,
 &err_net);
 NetIPv4_CfgAddrAdd(if_nbr_ether, /* Add a statically-configured IPv4 ... */
 addr_ipv4, /* ... host addr, subnet mask, & ... */
 msk_ipv4, /* ... default gateway to the IF. */
 gateway_ipv4,
 &err_net);
 if (err_net != NET_IPv4_ERR_NONE) {
 return (DEF_FAIL);
 }
#endif
#ifdef NET_IPv6_MODULE_EN
#if (NET_IPv6_CFG_ADDR_AUTO_CFG_EN == DEF_ENABLED)
 /* --- START IPV6 STATELESS AUTO-CFG ---- */
 NetIPv6_AddrAutoCfgHookSet(if_nbr_ether, /* Set Hook to received Auto-Cfg result. */
 &App_AutoCfgResult,
 &err_net);

 cfg_result = NetIPv6_AddrAutoCfgEn(if_nbr_ether, /* Enable and Start Auto-Cfg process. */
 DEF_YES,
 &err_net);
 if (cfg_result == DEF_FAIL) {
 return (DEF_FAIL);
 }

#else
 /* --- CFG IPV6 STATIC LINK LOCAL ADDR -- */
 /* DHCPv6c is not yet available. */
 /* TODO Update IPv6 Addr following your...*/
 /* ... network requirements. */
 NetASCII_Str_to_IP("fe80::1111:1111", /* Convert IPv6 string to 128 bit addr. */
 &addr_ipv6,
 NET_IPv6_ADDR_SIZE,
 &err_net);

 ipv6_flags = 0;
 DEF_BIT_SET(ipv6_flags, NET_IPv6_FLAG_BLOCK_EN); /* Set Addr Cfg as blocking. */
 DEF_BIT_SET(ipv6_flags, NET_IPv6_FLAG_DAD_EN); /* Enable DAD with Addr Configuration. */

 cfg_result = NetIPv6_CfgAddrAdd(if_nbr_ether, /* Add a statically-configured IPv6 ... */
 &addr_ipv6, /* ... host address to the interface. */
 64,
 ipv6_flags,
 &err_net);
 if (cfg_result == DEF_FAIL) {
 return (DEF_FAIL);
 }
#endif
#endif
 /* ------- ADD WIRELESS INTERFACE ------- */
 if_nbr_wifi = NetIF_Add(&NetIF_API_WiFi,
 &NetDev_API_TemplateWiFiSpi, /* Change following your Device driver API*/
 &NetDev_BSP_WiFi, /* Change for your BSP API. */
 &NetDev_Cfg_WiFi_1, /* Change for Device configuration. */
 &NetWiFiMgr_API_Generic,
 DEF_NULL,
 &err_net);
 if (err_net != NET_IF_ERR_NONE) {
 return (DEF_FAIL);
 }
 /* ------ START WIRELESS INTERFACE ------ */
 NetIF_Start(if_nbr_wifi, &err_net); /* Makes the IF ready to RX and TX. */
 if (err_net != NET_IF_ERR_NONE) {
 return (DEF_FAIL);
 }
 /* ----- SCAN FOR WIRELESS NETWORKS ----- */
 ctn = NetIF_WiFi_Scan(if_nbr_wifi,
 ap, /* Access point table. */

µC/TCP-IP User's Manual

127Copyright 2015 Micrium Inc.

 10, /* Access point table size. */
 DEF_NULL, /* Hidden SSID. */
 NET_IF_WIFI_CH_ALL, /* Channel to scan. */
 &err_net);
 if (err_net != NET_IF_WIFI_ERR_NONE) {
 return (DEF_FAIL);
 }
 /* --- ANALYSE WIRELESS NETWORKS FOUND -- */
 found = DEF_NO;
 for (i = 0; i < ctn - 1; i++) { /* Browse table of access point found. */
 p_ssid = &ap[i].SSID;
 result = Str_Cmp_N((CPU_CHAR *)p_ssid, /* Search for a specific WiFi Network SSID*/
 "Wifi_AP_SSID", /* Change for your WiFi Network SSID. */
 NET_IF_WIFI_STR_LEN_MAX_SSID);
 if (result == 0) {
 found = DEF_YES;
 break;
 }
 }
 if (found == DEF_NO) {
 return (DEF_FAIL);
 }
 /* ------ JOIN A WIRELESS NETWORK ------- */
 Mem_Clr(&ssid, sizeof(ssid));
 Mem_Clr(&psk, sizeof(psk));
 Str_Copy_N((CPU_CHAR *)&ssid,
 "Wifi_AP_SSID", /* Change for your WiFi Network SSID. */
 12); /* SSID string length. */
 Str_Copy_N((CPU_CHAR *)&psk,
 "Password", /* Change for your WiFi Network Password. */
 8); /* PSK string length. */
 NetIF_WiFi_Join(if_nbr_wifi,
 ap[i].NetType, /* WiFi Network type. */
 NET_IF_WIFI_DATA_RATE_AUTO, /* Data rate. */
 ap[i].SecurityType, /* WiFi Network security type. */
 NET_IF_WIFI_PWR_LEVEL_HI, /* Power level. */
 ssid, /* WiFi Network SSID. */
 psk, /* WiFi Network PSK. */
 &err_net);
 if (err_net != NET_IF_WIFI_ERR_NONE) {
 return (DEF_FAIL);
 }
#ifdef NET_IPv4_MODULE_EN
 /* -------- CFG IPV4 STATIC ADDR -------- */
 /* For Dynamic IPv4 cfg, DHCPc is required*/
 /* Update IPv4 Addr following your ... */
 /* ... network requirements. */
 NetASCII_Str_to_IP("192.168.1.10", /* Convert IPv4 string addr to 32 bit addr*/
 &addr_ipv4,
 NET_IPv4_ADDR_SIZE,
 &err_net);
 NetASCII_Str_to_IP("255.255.255.0", /* Convert Mask string to 32 bit addr. */
 &msk_ipv4,
 NET_IPv4_ADDR_SIZE,
 &err_net);
 NetASCII_Str_to_IP("192.168.1.1", /* Convert Gateway string to 32 bit addr. */
 &gateway_ipv4,
 NET_IPv4_ADDR_SIZE,
 &err_net);
 NetIPv4_CfgAddrAdd(if_nbr_wifi, /* Add a statically-configured IPv4 ... */
 addr_ipv4, /* ... host addr, subnet mask, & ... */
 msk_ipv4, /* ... default gateway to the IF. */
 gateway_ipv4,
 &err_net);
 if (err_net != NET_IPv4_ERR_NONE) {
 return (DEF_FAIL);
 }
#endif

µC/TCP-IP User's Manual

128Copyright 2015 Micrium Inc.

#ifdef NET_IPv6_MODULE_EN
#if (NET_IPv6_CFG_ADDR_AUTO_CFG_EN == DEF_ENABLED)
 /* ---- START IPV6 STATELESS AUTO-CFG --- */
 NetIPv6_AddrAutoCfgHookSet(if_nbr_wifi, /* Set hook to received Auto-Cfg result. */
 &App_AutoCfgResult, /* TODO update ptr to hook defined in
App.*/
 &err_net);

 cfg_result = NetIPv6_AddrAutoCfgEn(if_nbr_wifi, /* Enable and Start Auto-Cfg process. */
 DEF_YES,
 &err_net);
 if (cfg_result == DEF_FAIL) {
 return (DEF_FAIL);
 }

#else
 /* --- CFG IPV6 STATIC LINK LOCAL ADDR -- */
 /* DHCPv6c is not yet available. */
 /* Update IPv6 Addr following your ... */
 /* ... network requirements. */

 NetASCII_Str_to_IP("fe80::4444:1111", /* Convert IPv6 string to 128 bit addr. */
 &addr_ipv6,
 NET_IPv6_ADDR_SIZE,
 &err_net);

 ipv6_flags = 0;
 DEF_BIT_SET(ipv6_flags, NET_IPv6_FLAG_BLOCK_EN); /* Set Address Configuration as blocking. */
 DEF_BIT_SET(ipv6_flags, NET_IPv6_FLAG_DAD_EN); /* Enable DAD with Address Configuration. */

 cfg_result = NetIPv6_CfgAddrAdd(if_nbr_wifi, /* Add a statically-configured IPv6 ... */
 &addr_ipv6, /* ... host address to the interface. */
 64,
 ipv6_flags,
 &err_net);
 if (cfg_result == DEF_FAIL) {
 return (DEF_FAIL);
 }
#endif
 return (DEF_OK);
}

Refer to the sample codes in section and Ethernet Sample Application WiFi

 for more details on the diverse function calls.Sample Application

µC/TCP-IP User's Manual

129Copyright 2015 Micrium Inc.

Network Board Support Package
This chapter describes all board-specific functions that you may need to implement.

In order for a device driver to be platform independent, it is necessary to provide a layer of

code that abstracts details such as configuring clocks, interrupt controllers, general-purpose

input/ouput (GPIO) pins, direct-memory access (DMA) modules, and other such hardware

modules. The board support package (BSP) code layer enables you to implement certain

high-level functionality in µC/TCP-IP that is independent of any specific hardware. It also

allows you to reuse device drivers from various architectures and bus configurations without

having to customize µC/TCP-IP or the device driver source code for each architecture or

hardware platform.

To understand the concepts discussed in this guide, you should be familiar with networking

principles, the TCP/IP stack, real-time operating systems, microcontrollers and processors.

Micrium provides template BSP files (net_bsp_ether.c/h and net_bsp_wifi.c/h), which should

be copied to your project and modified depending on the combination of compiler, processor,

board and device hardware used. However, Micrium might have BSP available for some

specific Evaluation board which are not delivered. So before starting to write your own BSP,

you can ask Micrium for a working sample code for a MCU, if a sample code is available you

could just apply minor modification to be compatible with your compiler and board.

Ethernet BSP Layer

Wireless BSP Layer

Specifying the Interface Number of the Device ISR

µC/TCP-IP User's Manual

130Copyright 2015 Micrium Inc.

Ethernet BSP Layer

Description of the Ethernet BSP API

This section describes the BSP API functions that you should implement during the integration

of an Ethernet interface for µC/TCP-IP.

For each Ethernet interface/device, an application must implement in , anet_bsp_ether.c

unique device-specific implementation of each of the following BSP functions:

void NetDev_CfgClk (NET_IF *p_if,
 NET_ERR *p_err);
void NetDev_CfgIntCtrl (NET_IF *p_if,
 NET_ERR *p_err);
void NetDev_CfgGPIO (NET_IF *p_if,
 NET_ERR *p_err);
CPU_INT32U NetDev_ClkFreqGet(NET_IF *p_if,
 NET_ERR *p_err);

Since each of these functions is called from a unique instantiation of its corresponding device

driver, a pointer to the corresponding network interface () is passed in order to access thep_if

specific interface’s device configuration or data.

Network device driver BSP functions may be arbitrarily named but since development boards

with multiple devices require unique BSP functions for each device, it is recommended that

each device’s BSP functions be named using the following convention:

NetDev_[Device]<Function>[Number]()

[Device]

Network device name or type. For example, MACB. (Optional if the development

board does not support multiple devices.)

<Function>

Network device BSP function. For example, CfgClk.

[Number]

µC/TCP-IP User's Manual

131Copyright 2015 Micrium Inc.

Network device number for each specific instance of device (optional if the

development board does not support multiple instances of the specific device)

For example, the function for the #2 MACB Ethernet controller on an AtmelNetDev_CfgClk()

AT91SAM9263-EK should be named , or NetDev_MACB_CfgClk2() NetDev_MACB_CfgClk_2()

with additional underscore optional.

Similarly, network devices’ BSP-level interrupt service routine (ISR) handlers should be

named using the following convention:

NetDev_[Device]ISR_Handler[Type][Number]()

[Device]

Network device name or type. For example, MACB. (Optional if the development

board does not support multiple devices.)

[Type]

Network device interrupt type. For example, receive interrupt. (Optional if interrupt

type is generic or unknown.)

[Number]

Network device number for each specific instance of device (optional if the

development board does not support multiple instances of a specific device).

For example, the receive ISR handler for the #2 MACB Ethernet controller on an Atmel

AT91SAM9263-EK should be named , or NetDev_MACB_ISR_HandlerRx2()

, with additional underscore optional.NetDev_MACB_ISR_HandlerRx_2()

Next, the BSP functions for each device/interface must be organized into an interface structure.

This structure is used by the device driver to call specific devices’ BSP functions via function

pointer instead of by name. It allows applications to add, initialize, and configure any number

of instances of various devices and drivers by creating similar but unique BSP functions and

interface structures for each network device/interface. (See section forInterface Programming

details on how applications add interfaces to µC/TCP-IP.)

https://doc.micrium.com/display/TCPIPDOC303/Interface+Programming

µC/TCP-IP User's Manual

132Copyright 2015 Micrium Inc.

The BSP for each device or interface must be declared in the BSP source file () fornet_bsp.c

each application or development board. The BSP must also be externally declared in the

network BSP header file () with exactly the same name and type as declared in net_bsp.h

. These BSP interface structures and their corresponding functions must have uniquenet_bsp.c

names, and should clearly identify the development board, device name, function name, and

possibly the specific device number (assuming the development board supports multiple

instances of any given device). BSP interface structures may be given arbitrary names, but it is

recommended that they be named using the following convention:

NetDev_BSP_<Board><Device>[Number]{}

<Board>

Development board name. For example, Atmel AT91SAM9263-EK).

<Device>

Network device name or type. For example, MACB.

[Number]

Network device number for each specific instance of the device (optional if the

development board does not support multiple instances of the device).

For example, a BSP interface structure for the #2 MACB Ethernet controller on an Atmel

AT91SAM9263-EK board should be named andNetDev_BSP_AT91SAM9263-EK_MACB_2{}

declared in the AT91SAM9263-EK board’s :net_bsp.c

/* AT91SAM9263-EK MACB #2's BSP fnct ptrs : */
const NET_DEV_BSP_ETHER NetDev_BSP_AT91SAM9263-EK_MACB_2 = {
 NetDev_MACB_CfgClk_2, /* Cfg
MACB #2's clk(s) */
 NetDev_MACB_CfgIntCtrl_2, /* Cfg
MACB #2's int ctrl(s) */
 NetDev_MACB_CfgGPIO_2, /* Cfg
MACB #2's GPIO */
 NetDev_MACB_ClkFreqGet_2 /* Get
MACB #2's clk freq */
 };

In order for the application to configure an interface with this BSP interface structure, the

structure must also be externally declared in the AT91SAM9263-EK board’s :net_bsp.h

µC/TCP-IP User's Manual

133Copyright 2015 Micrium Inc.

extern const NET_DEV_BSP_ETHER NetDev_BSP_AT91SAM9263-EK_MACB_2;

Lastly, the AT91SAM9263-EK board’s MACB #2 BSP functions must also be declared in

:net_bsp.c

static void NetDev_MACB_CfgClk_2 (NET_IF *p_if,
 NET_ERR *p_err);
static void NetDev_MACB_CfgIntCtrl_2 (NET_IF *p_if,
 NET_ERR *p_err);
static void NetDev_MACB_CfgGPIO_2 (NET_IF *p_if,
 NET_ERR *p_err);
static CPU_INT32U NetDev_MACB_ClkFreqGet_2(NET_IF *p_if,
 NET_ERR *p_err);

Note that since all network device BSP functions are accessed only by function pointer via

their corresponding BSP interface structure, they don’t need to be globally available and

should therefore be declared as .static

Also note that although certain device drivers may not need to implement or call all of the

above network device BSP functions, we recommend that each device’s BSP interface

structure define all device BSP functions, and not assign any of its function pointers to .NULL

Instead, for any device’s unused BSP functions, create empty functions that return

. This way, if the device driver is ever modified to start using a previouslyNET_DEV_ERR_NONE

unused BSP function, there will at least be an empty function for the BSP function pointer to

execute.

Details for these functions may be found in their respective sections in Ethernet Device BSP

 and templates for network device BSP functions and BSP interface structures areFunctions

available in the directories.\Micrium\Software\uC-TCPIP\BSP\Template\

Configuring Clocks for an Ethernet Device

NetDev_CfgClk() sets a specific network device’s clocks to a specific interface.

Each network device’s should configure and enable all required clocks for theNetDev_CfgClk()

specified network device. For example, on some devices it may be necessary to enable clock

gating for an embedded Ethernet MAC, as well as various GPIO modules in order to configure

Ethernet PHY pins for (R)MII mode and interrupts. See function for moreNetDev_CfgClk

information.

https://doc.micrium.com/display/TCPIPDOC303/Ethernet+Device+BSP+Functions
https://doc.micrium.com/display/TCPIPDOC303/Ethernet+Device+BSP+Functions
https://doc.micrium.com/display/TCPIPDOC303/NetDev_CfgClk

µC/TCP-IP User's Manual

134Copyright 2015 Micrium Inc.

1.

2.

Configuring General I/O for an Ethernet Device

NetDev_CfgGPIO() configures a specific network device’s general-purpose input/output (GPIO)

on a specific interface. This function is called by a device driver’s .NetDev_Init()

Each network device’s should configure all required GPIO pins for theNetDev_CfgGPIO()

network device. For Ethernet devices, this function is necessary to configure the (R)MII bus

pins, depending on whether the user has configured an Ethernet interface to operate in the

RMII or MII mode, and optionally the Ethernet PHY interrupt pin.

See function for more information.NetDev_CfgGPIO

Configuring the Interrupt Controller for an Ethernet Device

NetDev_CfgIntCtrl() is called by a device driver’s to configure a specificNetDev_Init()

network device’s interrupts and/or interrupt controller on a specific interface.

Each network device’s function must configure and enable all requiredNetDev_CfgIntCtrl()

interrupt sources for the network device. This means it must configure the interrupt vector

address of each corresponding network device BSP interrupt service routine (ISR) handler and

enable its corresponding interrupt source.

For , the following actions should be performed:NetDev_CfgIntCtrl()

Configure/store each device’s network interface number to be available for all necessary

 functions (see section NetDev_ISR_Handler() Specifying the Interface Number of the

 for more information). Even though devices are added dynamically, theDevice ISR

device’s interface number must be saved in order for each device’s ISR handlers to call

 with the device’s network interface number.NetIF_ISR_Handler()

Configure each of the device’s interrupts on an interrupt controller (either an external or

CPU-integrated interrupt controller). However, vectored interrupt controllers may not

require higher-level interrupt controller sources to be explicitly configured and enabled.

In this case, you may need to configure the system’s interrupt vector table with the

name of the ISR handler functions declared in .net_bsp.c

NetDev_CfgIntCtrl() should enable only each devices’ interrupt sources, but not the local

https://doc.micrium.com/display/TCPIPDOC303/NetDev_CfgGPIO

µC/TCP-IP User's Manual

135Copyright 2015 Micrium Inc.

device-level interrupts themselves, which are enabled by the device driver only after the

device has been fully configured and started.

See function for more information.NetDev_CfgIntCtrl

Getting a Device Clock Frequency

NetDev_ClkFreqGet() returns a specific network device’s clock frequency for a specific

interface. This function is called by a device driver’s .NetDev_Init()

Each network device’s should return the device’s clock frequency (inNetDev_ClkFreqGet()

Hz). For Ethernet devices, this is the clock frequency of the device’s (R)MII bus. The device

driver’s uses the returned clock frequency to configure an appropriate busNetDev_Init()

divider to ensure that the (R)MII bus logic operates within an allowable range. In general, the

device driver should not configure the divider such that the (R)MII bus operates faster than

2.5MHz.

See function for more information.NetDev_ClkGetFreq

https://doc.micrium.com/display/TCPIPDOC303/NetDev_CfgIntCtrl
https://doc.micrium.com/display/TCPIPDOC303/NetDev_ClkGetFreq

µC/TCP-IP User's Manual

136Copyright 2015 Micrium Inc.

Wireless BSP Layer

Description of the Wireless BSP API

This section describes the BSP API functions that you should implement during the integration

of a wireless interface for µC/TCP-IP.

For each wireless interface/device, an application must implement (in) anet_bsp_wifi.c

unique device-specific implementation of each of the following BSP functions:

void NetDev_WiFi_Start (NET_IF *p_if,
 NET_ERR *p_err);

void NetDev_WiFi_Stop (NET_IF *p_if,
 NET_ERR *p_err);

void NetDev_WiFi_CfgGPIO (NET_IF *p_if,
 NET_ERR *p_err);

void NetDev_WiFi_CfgIntCtrl (NET_IF *p_if,
 NET_ERR *p_err);

void NetDev_WiFi_IntCtrl (NET_IF *p_if,
 CPU_BOOLEAN en,
 NET_ERR *p_err);

void NetDev_WiFi_SPI_Init (NET_IF *p_if,
 NET_ERR *p_err);

void NetDev_WiFi_SPI_Lock (NET_IF *p_if,
 NET_ERR *p_err);

void NetDev_WiFi_SPI_Unlock (NET_IF *p_if);

void NetDev_WiFi_SPI_WrRd (NET_IF *p_if,
 CPU_INT08U *p_buf_wr,
 CPU_INT08U *p_buf_rd,
 CPU_INT16U len,
 NET_ERR *p_err);

void NetDev_WiFi_SPI_ChipSelEn (NET_IF *p_if,
 NET_ERR *p_err);

void NetDev_WiFi_SPI_ChipSelDis(NET_IF *p_if);

void NetDev_WiFi_SPI_Cfg (NET_IF *p_if,
 NET_DEV_CFG_SPI_CLK_FREQ freq,
 NET_DEV_CFG_SPI_CLK_POL pol,
 NET_DEV_CFG_SPI_CLK_PHASE phase,
 NET_DEV_CFG_SPI_XFER_UNIT_LEN xfer_unit_len,
 NET_DEV_CFG_SPI_XFER_SHIFT_DIR xfer_shift_dir,
 NET_ERR *p_err);

Since each of these functions is called from a unique instantiation of its corresponding device

µC/TCP-IP User's Manual

137Copyright 2015 Micrium Inc.

driver, a pointer to the corresponding network interface (p_if) is passed in order to access the

specific interface's device configuration or data.

Network device driver BSP functions may be arbitrarily named but since development boards

with multiple devices require unique BSP functions for each device, it is recommended that

each device’s BSP functions be named using the following convention:

NetDev_[Device]<Function>[Number]()

[Device]

Network device name or type. For example, MACB (optional if the development

board does not support multiple devices).

<Function>

Network device BSP function. For example, CfgClk

[Number]

Network device number for each specific instance of device (optional if the

development board does not support multiple instances of a specific device)

For example, the function for the #2 RS9110-N-21 wireless module on anNetDev_CfgGPIO()

Atmel AT91SAM9263-EK should be named , or NetDev_RS9110N21_CfgGPIO2()

 with additional underscore optional.NetDev_RS9110N21_CfgGPIO_2()

Similarly, network devices’ BSP-level interrupt service routine (ISR) handlers should be

named using the following convention:

NetDev_[Device]ISR_Handler[Type][Number]()

[Device]

Network device name or type. For example, MACB. (Optional if the development

board does not support multiple devices.)

[Type]

µC/TCP-IP User's Manual

138Copyright 2015 Micrium Inc.

Network device interrupt type. For example, receive interrupt. (Optional if interrupt

type is generic or unknown.)

[Number]

Network device number for each specific instance of device (optional if the

development board does not support multiple instances of a specific device).

For example, the receive ISR handler for the #2 RS9110-N-21 wireless module on an

Atmel AT91SAM9263-EK should be named , or NetDev_RS9110N21_ISR_HandlerRx2()

 with additional underscore optional.NetDev_RS9110N21_ISR_HandlerRx_2()

Next, each device’s/interface’s BSP functions must be organized into an interface structure

used by the device driver to call specific devices’ BSP functions via function pointer instead of

by name. This allows applications to add, initialize, and configure any number of instances of

various devices and drivers by creating similar but unique BSP functions and interface

structures for each network device/interface. (See section for details onInterface Programming

how applications add interfaces to µC/TCP-IP.)

Each device’s/interface’s BSP interface structure must be declared in the application’s/

development board’s network BSP source file, , as well as externally declared in thenet_bsp.c

network BSP header file, , with the exact same name and type as declared in net_bsp.h

. These BSP interface structures and their corresponding functions must be uniquelynet_bsp.c

named and should clearly identify the development board, device name, function name, and

possibly the specific device number (assuming the development board supports multiple

instances of any given device). BSP interface structures may be arbitrarily named but it is

recommended that they be named using the following convention:

NetDev_BSP_<Board><Device>[Number]{}

<Board>

Development board name. For example, Atmel AT91SAM9263-EK.

<Device>

Network device name (or type). For example, RS9110-N-21.

https://doc.micrium.com/display/TCPIPDOC303/Interface+Programming

µC/TCP-IP User's Manual

139Copyright 2015 Micrium Inc.

[Number]

Network device number for each specific instance of the device (optional if the

development board does not support multiple instances of the device).

For example, a BSP interface structure for the #2 RS9110-N21 wireless module on an Atmel

AT91SAM9263-EK board should be named andNetDev_BSP_AT91SAM9263-EK_RS9110N21_2{}

declared in the AT91SAM9263-EK board’s :net_bsp.c

/* AT91SAM9263-EK RS9110-N21 #2's BSP fnct ptrs : */
const NET_DEV_BSP_WIFI_SPI NetDev_BSP_AT91SAM9263-EK_RS9110N21_2 = {
 NetDev_RS9110N21_Start_2
 NetDev_RS9110N21_Stop_2,
 NetDev_RS9110N21_CfgGPIO_2,
 NetDev_RS9110N21_CfgExtIntCtrl_2
 NetDev_RS9110N21_ExtIntCtrl_2,
 NetDev_RS9110N21_SPI_Cfg_2,
 NetDev_RS9110N21_SPI_Lock_2,
 NetDev_RS9110N21_SPI_Unlock_2,
 NetDev_RS9110N21_SPI_WrRd_2,
 NetDev_RS9110N21_SPI_ChipSelEn_2,
 NetDev_RS9110N21_SPI_ChipSelDis_2,
 NetDev_RS9110N21_SetCfg_2
 };

And in order for the application to configure an interface with this BSP interface structure, the

structure must be externally declared in the AT91SAM9263-EK board’s net_bsp.h :

extern const NET_DEV_BSP_WIFI_SPI NetDev_BSP_AT91SAM9263-EK_RS9110N21_2;

Lastly, the board’s RS9110-N-21 #2 BSP functions must also be declared in :net_bsp.c

static void NetDev_RS9110N21_Start_2 (NET_IF *p_if,
 NET_ERR *p_err);

static void NetDev_RS9110N21_Stop_2 (NET_IF *p_if,
 NET_ERR *p_err);

static void NetDev_RS9110N21_CfgGPIO_2 (NET_IF *p_if,
 NET_ERR *p_err);

static void NetDev_RS9110N21_CfgIntCtrl_2 (NET_IF *p_if,
 NET_ERR *p_err);

static void NetDev_RS9110N21_IntCtrl_2 (NET_IF *p_if,
 CPU_BOOLEAN en,
 NET_ERR *p_err);

static void NetDev_RS9110N21_SPI_Init_2 (NET_IF *p_if,
 NET_ERR *p_err);

static void NetDev_RS9110N21_SPI_Lock_2 (NET_IF *p_if,

µC/TCP-IP User's Manual

140Copyright 2015 Micrium Inc.

 NET_ERR *p_err);

static void NetDev_RS9110N21_SPI_Unlock_2 (NET_IF *p_if);

static void NetDev_RS9110N21_SPI_WrRd_2 (NET_IF *p_if,
 CPU_INT08U *p_buf_wr,
 CPU_INT08U *p_buf_rd,
 CPU_INT16U len,
 NET_ERR *p_err);

static void NetDev_RS9110N21_SPI_ChipSelEn_2 (NET_IF *p_if,
 NET_ERR *p_err);

static void NetDev_RS9110N21_SPI_ChipSelDis_2(NET_IF *p_if);

static void NetDev_RS9110N21_SPI_Cfg_2 (NET_IF *p_if,
 NET_DEV_CFG_SPI_CLK_FREQ freq,
 NET_DEV_CFG_SPI_CLK_POL pol,
 NET_DEV_CFG_SPI_CLK_PHASE phase,
 NET_DEV_CFG_SPI_XFER_UNIT_LEN xfer_unit_len,
 NET_DEV_CFG_SPI_XFER_SHIFT_DIR xfer_shift_dir,
 NET_ERR *p_err);

Note that since all network device BSP functions are accessed only by function pointer via

their corresponding BSP interface structure, they don’t need to be globally available and

should therefore be declared as static .

Also note that although certain device drivers may not need to implement or call all of the

above network device BSP function, we recommend that each device’s BSP interface structure

define all device BSP functions and not assign any of its function pointers to . Instead, forNULL

any device’s unused BSP functions, create empty functions that return . ThisNET_DEV_ERR_NONE

way, if the device driver is ever modified to start using a previously unused BSP function,

there will at least be an empty function for the BSP function pointer to execute.

Details for these functions may be found in their respective sections in Wireless Device BSP

. Templates for network device BSP functions and BSP interface structures can beFunctions

found in the directory .\Micrium\Software\uC-TCPIP-V2\BSP\Template\

Configuring General-Purpose I/O for a Wireless Device

NetDev_WiFi_CfgGPIO() configures a specific network device's general-purpose input/ouput

(GPIO) on a specific interface. This function is called by a device driver's .NetDev_Init()

Each network device's should configure all required GPIO pins for theNetDev_WiFi_CfgGPIO()

network device. For wireless devices, this function is necessary to configure the power, reset

and interrupt pins.

https://doc.micrium.com/display/TCPIPDOC303/Wireless+Device+BSP+Functions
https://doc.micrium.com/display/TCPIPDOC303/Wireless+Device+BSP+Functions

µC/TCP-IP User's Manual

141Copyright 2015 Micrium Inc.

1.

See function for more information.NetDev_WiFi_CfgGPIO

Starting a Wireless Device

NetDev_WiFi_Start() is used to power up the wireless chip. This function is called by a device

driver’s each time the interface is started.NetDev_WiFi_Start()

Each network device’s must set GPIO pins to power up and reset theNetDev_WiFi_Start()

wireless device. For wireless devices, this function is necessary to configure the power pin and

other required pins to power up the wireless chip. Note that a wireless device could require the

toggle on the Reset pin to be started or restarted correctly.

See function for more information.NetDev_WiFi_Start

Stopping a Wireless Device

NetDev_WiFi_Stop() is used to power down a wireless chip. This function is called by a device

driver's each time the interface is stopped. NetDev_WiFi_Stop()

Each network device's must set GPIO pins to power down the wirelessNetDev_WiFi_Start()

chip to reduce the power consumption. For wireless devices, this function is necessary to

configure the power pin and other required pins to power down the wireless chip.

See funciton for more information.NetDev_WiFi_Stop

Configuring the Interrupt Controller for a Wireless Device

NetDev_WiFi_CfgIntCtrl() is called by a device driver’s to configure aNetDev_WiFi_Init()

specific wireless device’s external interrupts for a specific wireless interface.

Each network device’s function must configure without enablingNetDev_WiFi_CfgIntCtrl()

all required interrupt sources for the network device. This means it must configure the interrupt

vector address of each corresponding network device BSP interrupt service routine (ISR)

handler and disable its corresponding interrupt source. For , theNetDev_WiFi_CfgIntCtrl()

following actions should be performed:

Configure/store each device’s network interface number to be available for all necessary

 functions (see section NetDev_WiFi_ISR_Handler() Specifying the Interface Number of

https://doc.micrium.com/display/TCPIPDOC303/NetDev_WiFi_CfgGPIO
https://doc.micrium.com/display/TCPIPDOC303/NetDev_WiFi_Start
https://doc.micrium.com/display/TCPIPDOC303/NetDev_WiFi_Stop

µC/TCP-IP User's Manual

142Copyright 2015 Micrium Inc.

1.

2.

 for more information). Even though devices are added dynamically, thethe Device ISR

device’s interface number must be saved in order for each device’s ISR handlers to call

 with the device’s network interface number.NetIF_WiFi_ISR_Handler()

Configure each of the device’s interrupts on an interrupt controller (either an external or

CPU-integrated interrupt controller). However, vectored interrupt controllers may not

require higher-level interrupt controller sources to be explicitly configured and enabled.

In this case, you may need to configure the system’s interrupt vector table with the

name of the ISR handler functions declared in .net_bsp.c

NetDev_WiFi_CfgIntCtrl() should disable only each devices’ interrupt sources. See function

 for more information.NetDev_WiFi_CfgIntCtrl

Enabling and Disabling Wireless Interrupt

Each network device’s function must enable or disable all externalNetDev_WiFi_IntCtrl()

required interrupt sources for the wireless device. This means enable or disable its

corresponding interrupt source following the enable argument received.

See function for more information.NetDev_WiFi_IntCtrl

Configuring the SPI Interface

NetDev_WiFi_SPI_Init() initializes a specific network device’s SPI controller. This function

will be called by a device driver’s when the interface is added.NetDev_WiFi_SPI_Init()

Each network device’s should configure all required SPI controllersNetDev_WiFi_SPI_Init()

registers for the network device. Since more than one device may share the same SPI bus, this

function could be empty if the SPI controller is already configured.

If the SPI bus is not shared with other devices, it is recommended that NetDev_WiFi_SPI_Init()

configures the SPI controller following the SPI device’s communication settings and keep

 empty.NetDev_WiFi_SPI_Cfg()

See for more information.NetDev_WiFi_SPI_Cfg

https://doc.micrium.com/display/TCPIPDOC303/NetDev_WiFi_CfgIntCtrl
https://doc.micrium.com/display/TCPIPDOC303/NetDev_WiFi_IntCtrl
https://doc.micrium.com/display/TCPIPDOC303/NetDev_WiFi_SPI_Cfg

µC/TCP-IP User's Manual

143Copyright 2015 Micrium Inc.

Setting SPI Controller for a Wireless device

NetDev_WiFi_SPI_Cfg() configures a specific network device’s SPI communication settings.

This function is called by a device driver after the SPI’s bus lock has been acquired and before

starting to write and read to the SPI bus.

Each network device’s should configure all required SPI controllersNetDev_WiFi_SPI_Cfg()

registers for the SPI’s communication setting of the network wireless device. Several aspects

of SPI communication may need to be configured, including:

Clock frequency

Clock polarity

Clock phase

Transfer unit length

Shift direction

Since more than one device with different SPI communication settings may share the same SPI

bus, this function must reconfigure the SPI controller following the device’s SPI

communication setting each time the device driver must access the SPI bus. If the SPI bus is

not shared with other devices, it’s recommended that configures the SPINetDev_SPI_Cfg()

controller following the SPI’s communication setting of the wireless device and to keep this

function empty.

See NetDev_WiFi_SPI_Cfg for more information.

Locking and Unlocking SPI Bus

NetDev_WiFi_SPI_Lock() acquires a specific network device's SPI bus access. This function

will be called before the device driver begins to access the SPI. The application should not use

the same bus to access another device until the matching call to hasNetDev_WiFI_SPI_Unlock()

been made. If no other SPI device shares the same SPI bus, it's recommended to keep this

function empty.

https://doc.micrium.com/display/TCPIPDOC303/NetDev_WiFi_SPI_Cfg

µC/TCP-IP User's Manual

144Copyright 2015 Micrium Inc.

See function for more information.NetDev_WiFi_SPI_Lock

Enabling and Disabling SPI Chip select

NetDev_WiFi_SPI_ChipSelEn() enables the chip select pin of the wireless device. This function

is called before the device driver begins to access the SPI. The chip select pin should stay

enabled until the matching call to has been made. The chipNetDev_WiFi_SPI_ChipSelDis()

select pin is typically “active low.” To enable the device, the chip select pin should be cleared;

to disable the device, the chip select pin should be set.

See function for more information.NetDev_WiFi_SPI_ChipSelEn

Writing and Reading to the SPI Bus

NetDev_WiFi_SPI_WrRd() writes and reads data to and from the SPI bus. This function is called

each time the device driver accesses the SPI bus. must not return untilNetDev_WiFi_SPI_WrRd()

the write/read operation is complete. Writing and reading to the SPI bus by using DMA is

possible, but the BSP layer must implement a notification mechanism to return from this

function only when the write and read operations are entirely completed. See function

 for more information.NetDev_WiFi_SPI_WrRd

https://doc.micrium.com/display/TCPIPDOC303/NetDev_WiFi_SPI_Lock
https://doc.micrium.com/display/TCPIPDOC303/NetDev_WiFi_SPI_ChipSelEn
https://doc.micrium.com/display/TCPIPDOC303/NetDev_WiFi_SPI_WrRd

µC/TCP-IP User's Manual

145Copyright 2015 Micrium Inc.

1.

2.

Specifying the Interface Number of the Device
ISR

NetDev_ISR_Handler() handles a network device’s interrupts on a specific interface.

Each network device’s interrupt, or set of device interrupts, must be handled by a unique

BSP-level interrupt service routine (ISR) handler, , which maps eachNetDev_ISR_Handler()

specific device interrupt to its corresponding network interface ISR handler,

. For some CPUs, this may be a first- or second-level interrupt handler.NetIF_ISR_Handler()

The application must configure the interrupt controller to call every network device’s unique

 when the device’s interrupt occurs (see). EveryNetDev_ISR_Handler() NetDev_CfgIntCtrl

unique must then perform the following actions:NetDev_ISR_Handler()

Call with the device’s unique network interface number andNetIF_ISR_Handler()

appropriate interrupt type. The network interface number should be available in the

device’s function after configuration (see). NetDev_CfgIntCtrl() NetDev_CfgIntCtrl

 in turn calls the appropriate device driver’s interrupt handler.NetIF_ISR_Handler()

In most cases, each device requires only a single . This is possibleNetDev_ISR_Handler()

when the device’s driver is able to determine the device’s interrupt type via internal

device registers or the interrupt controller. In this case, calls NetDev_ISR_Handler()

 with interrupt type code .NetIF_ISR_Handler() NET_DEV_ISR_TYPE_UNKNOWN

However, some devices cannot determine the interrupt type when an interrupt occurs

and may therefore require multiple, unique ’s, each of which callsNetDev_ISR_Handler()

 with the appropriate interrupt type code.NetIF_ISR_Handler()

Ethernet physical layer (PHY) interrupts should call with interruptNetIF_ISR_Handler()

type code .NET_DEV_ISR_TYPE_PHY

Clear the device’s interrupt source, possibly via an external or CPU-integrated interrupt

controller source.

See for more information.NetDev_WiFi_ISR_Handler

https://doc.micrium.com/display/TCPIPDOC303/NetDev_CfgIntCtrl
https://doc.micrium.com/display/TCPIPDOC303/NetDev_CfgIntCtrl
https://doc.micrium.com/display/TCPIPDOC303/NetDev_WiFi_ISR_Handler

µC/TCP-IP User's Manual

146Copyright 2015 Micrium Inc.

Troubleshooting Guide
This section covers multiple topics to help debug or enhance the performance of a TCP-IP

application.

The first three sections introduce common issues you may encounter while using the

µC/TCP-IP stack in the initialization process, in your socket application or with your

application performance.

The fourth section presents the statistic structures inside the µC/TCPIP stack that could help

you debug your application.

The last section shows the µC/TCP-IP stack internal architecture in details.

Initialization Issues

Application Issues

Performance Issues

Statistics and Error Counters

Architecture

µC/TCP-IP User's Manual

147Copyright 2015 Micrium Inc.

Initialization Issues

Is your Network Application Compiling?

File Missing Errors

If your compiler return missing file error, refer to section Building and Running the Sample

 to include all µC/TCP-IP stack necessary files to your project and also files fromApplication

the prerequisite modules. You will also need to add the corresponding paths to your C

compiler settings.

Configuration Errors

If you encounter a compiler error of the type ' ' or 'not #define'd in ... NET_CFG_XXX MUST be

', you have a missing configuration macro or one that is not defined correctly (Seeset to ...

section).Network Stack Configuration

Memory Errors

If your compiler returns a memory related error, verify that your MCU memory map is

adequate, that your MCU as enough ROM to support the addition of the µC/TCP-IP stack code

and also that you have enough RAM to run your Network application. µC/TCP-IP stack can be

much RAM-costly depending on the number network buffers your application needs, the

number of network interface you have to configured, the network tasks' stack size you

configured, etc.

Refer to section for more details on memory heapLIB Memory Heap Configuration

allocation necessary for µC/TCP-IP stack.

Refer to section for more details on the required network tasksNetwork Tasks Configuration

configuration.

Port Errors

µC/TCP-IP User's Manual

148Copyright 2015 Micrium Inc.

1.

2.

1.

2.

Is the µC/TCP-IP Stack Initialized Successfully?

RTOS working properly

µC/TCP-IP stack is made to run over a RTOS. Before adding the TCP/IP stack to your project,

be sure that your project has correctly initialized the OS, created a starting task and started the

OS.

If your OS doesn't tick, the issue is probably with your BSP.

Initialization of prerequisite modules

Your Board Support Package module must be initialize prior to the TCP/IP stack. Refer to

function in your BSP files for more details.BSP_Init()

The CPU and Memory modules must also be initialize before the TCP/IP stack. Refer to

functions and for more details. CPU_Init() Mem_Init()

Calling Net_Init() Function

If the target crashes after calling , your start task stack size is probably Net_Init

insufficient and must be increase.

If the function exits with an error, the problem could be related to the OS configuration

or OS objects initialization or Memory configuration (Heap size). The error code return

should help you narrowed down the issue. Refer also to section Network Tasks

 for more details on the network tasks configuration.Configuration

Calling NetIF_Add() Function

If the function doesn't return

Verify that your driver Base Address is correct (see section Network Interface

).Configuration

Could also be a problem with your BSP Clock or GPIO configuration (see section

).Network Board Support Package

https://doc.micrium.com/display/TCPIPDOC303/Net_Init

µC/TCP-IP User's Manual

149Copyright 2015 Micrium Inc.

1.

2.

3.

If the target crashes before returning

Verify that your driver Base Address is correct (the target should crash in

if the Base Address is incorrect).NetDev_Init()

Could be a problem in your BSP (the target should crash in after a BSPNetDev_Init()

call).

Your start task stack size could be insufficient.

If the function returns an error

Memory related error

Increase µC/LIB HEAP size (see section).LIB Memory Heap Configuration

Or reduce the number of network buffers (see section Network Interface

).Configuration

Queue size related error

Increase Rx and Tx queue size in (see section net_cfg.h Network Stack

).Configuration

Driver Configuration error

Invalid configuration, arguments or size in the device configuration (see section

).Network Interface Configuration

PHY mode not supported by the board.

Driver Initialization error

Invalid configuration, arguments or size in the device configuration (see section

).Network Interface Configuration

PHY Invalid Configuration error

µC/TCP-IP User's Manual

150Copyright 2015 Micrium Inc.

Invalid speed, duplex mode or address (see section Network Interface

).Configuration

PHY Initialization error

If the stack is not able to read and write PHY register, the BSP GPIO

configuration must be incorrect (see section). Network Board Support Package

Bad PHY driver.

Other error

Refer to for the error code details.net_err.h

Calling NetIF_Start() Function

If the function returns an error

Refer to net_err.h for the error code details.

If the target crashes before returning

Is the BSP ISR Handler reached? If the ISR Handler crashes before completed: Y our ISR

handler could perform an invalid operation. You have a CPU, Compiler or Linker

configuration issue. Check interrupt vector table location and interrupt configuration.

Is reached? Net_DevRx()

If reached : Increase the Rx Task stack size.

If not reached : There is an issue with the OS task switch.

Does it crash when a context switch occurs?

A probable stack overflow occurs. Increase the network tasks stack sizes (see section

).Network Tasks Configuration

µC/TCP-IP User's Manual

151Copyright 2015 Micrium Inc.

1.

2.

a.

3.

1.

2.

3.

a.

Adding a Static Address to the Configured Interface

Make sure that the IP address is not used by another host on the network by pinging the

address before power up the target.

Make sure that the MAC address you configured in your device configuration is not

used by another device on the network.

You can use the folloing command on window command line to show the ARP

cache: " "arp -a

If function or returned an error refer toNetIPv4_CfgAddrAdd NetIPv6_CfgAddrAdd

the error code and net_err.h for more details on the error type.

Are you able to ping your board?

Once the TCP/IP initialization is done and returned without error, a good first test is to ping

your board to validate that the TCP/IP stack is working correctly.

If your target answer back to the ping request, you are ready to add your network application to

your project.

In the case that your board does not answer back to ping requests:

Be sure that your network setup is correct: The PC used to ping and the target board

must be on the same network.

Make sure that the ARP request (or NDP in case of IPv6) sent prior to the ICMP echo

request is sent out by the PC. Since there is a timeout on the ARP cache, if your PC

sends a ARP request that fails to be answered, the PC will assume, for the duration of

this timeout, that the remote host is unreachable. Therefore, if you send a ping request to

that host during that time, the PC will not send anything and return a fail status. In short,

be sure that an ARP (or NDP) request is sent prior to the echo request. is aWireshark

good tool to visually the network traffic on an interface.

Is the BSP ISR Handler reached?

In the case it's not reached, there is an issue with your CPU/BSP interrupt

configuration.

https://doc.micrium.com/display/TCPIPDOC303/NetIPv4_CfgAddrAdd
https://doc.micrium.com/display/TCPIPDOC303/NetIPv6_CfgAddrAdd
http://www.wireshark.org/download.html

µC/TCP-IP User's Manual

152Copyright 2015 Micrium Inc.

4.

a.

i.

ii.

b.

i.

ii.

c.

i.

5.

a.

b.

c.

d.

Is reached?NetDev_Rx()

In the case the function is not reached:

and the target crashed, try to increase the Rx Task stack size.

be sure that no task blocks other tasks to run. It could be a OS task

switching issue.

In the case the target crashes before reaching :NetDev_Tx()

Increase the Rx task stack size.

Or it maybe an OS task switching issue.

In the case that NetDev_Tx() is not reached but the device does not crashed:

the ARP packet could be discarded because of corruption.

If reached:NetDev_Tx()

Make sure the data contained in the buffer is not corrupted.

Make sure the data is sent out from the target. If not, it's probably a issue with the

network driver.

Make sure and functionsNetIF_DevTxRdySignal() NetIF_TxDeallocTaskPost()

are reached.

If you get errors in the driver for Rx or Tx regarding overflow or underflow,

verify your BSP clock configuration.

µC/TCP-IP User's Manual

153Copyright 2015 Micrium Inc.

Application Issues

Determine Received UDP Datagram's Interface

If a UDP socket server is bound to the “any” address, then it is not currently possible to know

which interface received the UDP datagram. This is a limitation in the BSD socket API. As a

solution, the function has been implemented in the µC/TCP-IP socket API.NetSock_CfgIF

With this function, it is possible to associate a socket to a specific interface so that all

communications with this socket pass through the specified interface.

An other way to guarantee which interface a UDP packet was received on, is to bind the socket

server to a specific interface address.

If no interface is linked to a socket (using) and if a UDP datagram is receivedNetSock_CfgIF

on this listening socket bound to the “any” address and the application transmits a response

back to the peer using the same socket, then the newly transmitted UDP datagram will be

transmitted from the default interface. The default interface may or may not be the interface in

which the UDP datagram originated.

Detecting if a Socket is Still Connected to a Peer

Applications may call to determine if a socket is (still) connected to aNetSock_IsConn()

remote socket (see function).NetSock_IsConn()

Alternatively, applications may make a non-blocking call to , , or recv() NetSock_RxData()

 and inspect the return value. If data or a non-fatal, transitory error isNetSock_RxDataFrom()

returned, then the socket is still connected; otherwise, if ‘0’ or a fatal error is returned, then the

socket is disconnected or closed.

Receiving -1 Instead of 0 When Calling recv() for a Closed Socket

When a remote peer closes a socket and the target application calls one of the receive socket

functions, µC/TCP-IP will first report that the receive queue is empty and return a -1 for both

BSD and µC/TCP-IP socket API functions. The next call to receive will indicate that the socket

has been closed by the remote peer.

This is a known issue and will be corrected in subsequent versions of µC/TCP-IP.

https://doc.micrium.com/display/TCPIPDOC303/NetSock_CfgIF
https://doc.micrium.com/display/TCPIPDOC303/NetSock_CfgIF
https://doc.micrium.com/display/TCPIPDOC303/NetSock_IsConn

µC/TCP-IP User's Manual

154Copyright 2015 Micrium Inc.

The Application Receives Socket Errors Immediately After Reboot

Immediately after a network interface is added, the physical layer device is reset and network

interface and device initialization begins. However, it may take up to three seconds for the

average Ethernet physical layer device to complete auto-negotiation. During this time, the

socket layer will return for sockets that are bound to the interface inNET_SOCK_ERR_LINK_DOWN

question.

The application should attempt to retry the socket operation with a short delay between

attempts until network link has been established.

Please refer to section for the detailed information on how to getNetwork Interface Link State

the link state of an inteface.

https://doc.micrium.com/display/TCPIPDOC303/Network+Interface+Link+State

µC/TCP-IP User's Manual

155Copyright 2015 Micrium Inc.

1.

2.

3.

4.

5.

6.

7.

8.

Performance Issues

Network and Device Configuration

Number of RX & TX Buffers to Configure

The number of large receive, small transmit and large transmit buffers configured for a specific

interface depend on several factors.

Desired level of performance.

Amount of data to be either transmitted or received.

Ability of the target application to either produce or consume transmitted or received

data.

Average CPU utilization.

Average network utilization.

Type of connection (UDP or TCP)

Number of simultaneous connection.

Application/connection priorities

The discussion on the bandwidth-delay product is always valid. In general, the more buffers

the better. However, the number of buffers can be tailored based on the application. For

example, if an application receives a lot of data but transmits very little, then it may be

sufficient to define a number of small transmit buffers for operations such as TCP

acknowledgements and allocate the remaining memory to large receive buffers. Similarly, if an

application transmits and receives little, then the buffer allocation emphasis should be on

defining more transmit buffers. However, there is a caveat:

If the application is written such that the task that consumes receive data runs infrequently or

the CPU utilization is high and the receiving application task(s) becomes starved for CPU time,

then more receive buffers will be required.

µC/TCP-IP User's Manual

156Copyright 2015 Micrium Inc.

To ensure the highest level of performance possible, it makes sense to define as many buffers

as possible and use the interface and pool statistics data in order to refine the number after

having run the application for a while. A busy network will require more receive buffers in

order to handle the additional broadcast messages that will be received.

In general, at least two large and two small transmit buffers should be configured. This

assumes that neither the network or CPU are very busy.

Many applications will receive properly with four or more large receive buffers. However, for

TCP applications that move a lot of data between the target and the peer, this number may

need to be higher.

Specifying too few transmit or receive buffers may lead to stalls in communication and

possibly even dead-lock. Care should be taken when configuring the number of buffers.

µC/TCP-IP is often tested with configurations of 10 or more small transmit, large transmit, and

large receive buffers.

Number of DMA Descriptors to Configure

If the hardware device is an Ethernet MAC that supports DMA, then the number of configured

receive descriptors will play an important role in determining overall performance for the

configured interface.

For applications with 10 or less large receive buffers, it is desirable to configure the number of

receive descriptors to that of 60% to 70% of the number of configured receive buffers.

In this example, 60% of 10 receive buffers allows for four receive buffers to be available to the

stack waiting to be processed by application tasks. While the application is processing data, the

hardware may continue to receive additional frames up to the number of configured receive

descriptors.

There is, however, a point in which configuring additional receive descriptors no longer greatly

impacts performance. For applications with 20 or more buffers, the number of descriptors can

be configured to 50% of the number of configured receive buffers. After this point, only the

number of buffers remains a significant factor; especially for slower or busy CPUs and

networks with higher utilization.

In general, if the CPU is not busy and the µC/TCP-IP Receive task has the opportunity to run

µC/TCP-IP User's Manual

157Copyright 2015 Micrium Inc.

often, the ratio of receive descriptors to receive buffers may be reduced further for very high

numbers of available receive buffers (e.g., 50 or more).

The number of transmit descriptors should be configured such that it is equal to the number of

small plus the number of large transmit buffers.

These numbers only serve as a starting point. The application and the environment that the

device will be attached to will ultimately dictate the number of required transmit and receive

descriptors necessary for achieving maximum performance.

Specifying too few descriptors can cause communication delays. See forListing F-2

descriptors configuration.

LF-2(7) Number of receive descriptors. For DMA-based devices, this value is utilized by the

device driver during initialization in order to allocate a fixed-size pool of receive descriptors to

be used by the device. The number of descriptors be less than the number of configuredmust

receive buffers. Micrium recommends setting this value to approximately 60% to 70%f of the

number of receive buffers. Non DMA based devices may configure this value to zero.

LF-2(8) Number of transmit descriptors. For DMA-based devices, this value is utilized by the

device driver during initialization in order to allocate a fixed-size pool of transmit descriptors

to be used by the device. For best performance, the number of transmit descriptors should be

equal to the number of small, plus the number of large transmit buffers configured for the

device. Non DMA based devices may configure this value to zero.

Configuring Window Sizes

Receive and transmit queue size must be properly configured to optimize performance. It

represents the number of bytes that can be queued by one socket. It's important that all socket

are not able to queue more data than what the device can hold in its buffers. The size should be

also a multiple of the maximum segment size (MSS) to optimize performance. UDP MSS is

1470 and TCP MSS is 1460.

RX and TX maximum queue size is configured using #define in , see net_cfg.h Socket Layer

.Configuration

RX and TX queue size can be reduce at run time using socket option API (

 and).NetTCP_ConnCfgRxWinSize NetTCP_ConnCfgTxWinSize

https://doc.micrium.com/display/TCPIPDOC303/Network+Stack+Configuration#NetworkStackConfiguration-SocketLayerConfiguration
https://doc.micrium.com/display/TCPIPDOC303/Network+Stack+Configuration#NetworkStackConfiguration-SocketLayerConfiguration
https://doc.micrium.com/display/TCPIPDOC303/NetTCP_ConnCfgRxWinSize
https://doc.micrium.com/display/TCPIPDOC303/NetTCP_ConnCfgTxWinSize

µC/TCP-IP User's Manual

158Copyright 2015 Micrium Inc.

the following listing shows a calculation example:

Number of TCP connection : 2
 Number of UDP connection : 0
 Number of RX large buffer : 10
 Number of TX Large buffer : 6
 Number of TX small buffer : 2
 Size of RX large buffer : 1518
 Size of TX large buffer : 1518
 Size of TX small buffer : 60

 TCP MSS RX = 1460
 TCP MSS TX large buffer = 1460
 TCP MSS TX small buffer = 0

 Maximum receive window = (10 * 1460) = 14600 bytes
 Maximum transmit window = (6 * 1460) + (2 * 0) = 8760 bytes

 RX window size per socket = (14600 / 2) = 7300 bytes
 TX window size per socket = (8760 / 2) = 4380 bytes

Reducing the Number of Transitory Errors (NET_ERR_TX)

The number of transmit buffer should be increased. Additionally, it may be helpful to add a

short delay between successive calls to socket transmit functions.

µC/TCP-IP User's Manual

159Copyright 2015 Micrium Inc.

Statistics and Error Counters

µC/TCP-IP maintains counters and statistics for a variety of expected or unexpected error

conditions. Some of these statistics are optional since they require additional code and

memory when enabled, see for further information about howNetwork Counters Configuration

to enable and disabled it.

Statistics

µC/TCP-IP maintains run-time statistics on interfaces and most µC/TCP-IP object pools. If

desired, an application can query µC/TCP-IP to find out how many frames have been

processed on a particular interface, transmit/receive performance metrics, buffer utilization and

more. An application can also reset the statistic pools back to their initial values via

appropriate API.

Applications may choose to monitor statistics for various reasons. For example, examining

buffer statistics allows you to better manage the memory usage. Typically, more buffers can be

allocated than necessary and, by examining buffer usage statistics, adjustments can be made to

reduce their number.

Network protocol and interface statistics are kept in an instance of a data structure named

. This variable may be viewed within a debugger or referenced externally by theNet_StatCtrs

application for run-time analysis.

Unlike network protocol statistics, object pool statistics have functions to get a copy of the

specified statistic pool and functions for resetting the pools to their default values. These

statistics are kept in a data structure called which can be declared by theNET_STAT_POOL

application and used as a return variable from the statistics API functions.

The data structure is shown below:

https://doc.micrium.com/display/TCPIPDOC303/Network+Stack+Configuration#NetworkStackConfiguration-CountersConfiguration

µC/TCP-IP User's Manual

160Copyright 2015 Micrium Inc.

typedef struct net_stat_pool {
 NET_TYPE Type;
 NET_STAT_POOL_QTY EntriesInit;
 NET_STAT_POOL_QTY EntriesTotal;
 NET_STAT_POOL_QTY EntriesAvail;
 NET_STAT_POOL_QTY EntriesUsed;
 NET_STAT_POOL_QTY EntriesUsedMax;
 NET_STAT_POOL_QTY EntriesLostCur;
 NET_STAT_POOL_QTY EntriesLostTotal;
 CPU_INT32U EntriesAllocatedCtr;
 CPU_INT32U EntriesDeallocatedCtr;
} NET_STAT_POOL;

Listing - Object pool statistics data structure

NET_STAT_POOL_QTY is a data type currently set to and thus contains a maximumCPU_INT16U

count of 65535.

Access to buffer statistics is obtained via interface functions that the application can call

(described in the next sections). Most likely, only the following variables in NET_STAT_POOL

 need to be examined, because the member is configured at initialization time as .Type

:NET_STAT_TYPE_POOL

.EntriesAvail

This variable indicates how many buffers are available in the pool.

.EntriesUsed

This variable indicates how many buffers are currently used by the TCP/IP stack.

.EntriesUsedMax

This variable indicates the maximum number of buffers used since it was last reset.

.EntriesAllocatedCtr

This variable indicates the total number of times buffers were allocated (i.e., used by the

TCP/IP stack).

.EntriesDeallocatedCtr

µC/TCP-IP User's Manual

161Copyright 2015 Micrium Inc.

This variable indicates the total number of times buffers were returned back to the buffer

pool.

In order to enable run-time statistics, must be enabled, see .Network Counters Configuration

Module pool statistics

You can query the following module to get usage statistics. It can help reduce memory usage

and debugging issues regarding resources.

Module Description Function API or Variables

ARP ARP Cache usage NetARP_CachePoolStatGet

IGMP IPv4 Multicast group statistics NetIGMP_HostGrpPoolStat

NDP NDP Caches usage NetCache_AddrNDP_PoolStat
NetNDP_DestPoolStat
NetNDP_PrefixPoolStat
NetNDP_RouterPoolStat

Buffer Interface's buffer usage NetBuf_PoolStatGet
NetBuf_RxLargePoolStatGet
NetBuf_TxLargePoolStatGet
NetBuf_TxSmallPoolStatGet

IP connections IP connections pool usage NetConn_PoolStatGet

Socket Sockets usage NetSock_PoolStatGet

TCP TCP connections usage NetTCP_ConnPoolStatGet

Timer Timer usage NetTmr_PoolStatGet()

Error Counters

µC/TCP-IP maintains run-time counters for tracking error conditions within the Network

Protocol Stack. If desired, the application may view the error counters in order to debug

run-time problems such as low memory conditions, slow performance, packet loss, etc.

Network protocol error counters are kept in an instance of a data structure named .Net_ErrCtrs

This variable may be viewed within a debugger or referenced externally by the application for

run-time analysis (see).net_ctr.h

In order to enable run-time error counters, must be enabled, see Network Counters

.Configuration

https://doc.micrium.com/display/TCPIPDOC303/Network+Stack+Configuration#NetworkStackConfiguration-CountersConfiguration
https://doc.micrium.com/display/TCPIPDOC303/NetARP_CachePoolStatGet
https://doc.micrium.com/display/TCPIPDOC303/NetBuf_PoolStatGet
https://doc.micrium.com/display/TCPIPDOC303/NetBuf_PoolStatGet
https://doc.micrium.com/display/TCPIPDOC303/NetBuf_RxLargePoolStatGet
https://doc.micrium.com/display/TCPIPDOC303/NetBuf_RxLargePoolStatGet
https://doc.micrium.com/display/TCPIPDOC303/NetBuf_TxLargePoolStatGet
https://doc.micrium.com/display/TCPIPDOC303/NetBuf_TxLargePoolStatGet
https://doc.micrium.com/display/TCPIPDOC303/NetBuf_TxSmallPoolStatGet
https://doc.micrium.com/display/TCPIPDOC303/NetConn_PoolStatGet
https://doc.micrium.com/display/TCPIPDOC303/NetSock_PoolStatGet
https://doc.micrium.com/display/TCPIPDOC303/NetTCP_ConnPoolStatGet
https://doc.micrium.com/display/TCPIPDOC303/NetTmr_PoolStatGet
https://doc.micrium.com/display/TCPIPDOC303/Network+Stack+Configuration#NetworkStackConfiguration-CountersConfiguration
https://doc.micrium.com/display/TCPIPDOC303/Network+Stack+Configuration#NetworkStackConfiguration-CountersConfiguration

µC/TCP-IP User's Manual

162Copyright 2015 Micrium Inc.

Architecture

µC/TCP-IP was written to be modular and easy to adapt to a variety of Central Processing

Units (CPUs), Real-Time Operating Systems (RTOSs), network devices, and compilers. The

figure below shows a simplified block diagram of µC/TCP-IP modules and their relationships.

Notice that all µC/TCP-IP files start with ‘ ’. This convention allows us to quickly identifynet_

which files belong to µC/TCP-IP. Also note that all functions and global variables start with ‘

’, and all macros and start with ‘ ’.Net #defines net_

µC/TCP-IP User's Manual

163Copyright 2015 Micrium Inc.

Figure - Module Relationships

Module Relationships

µC/TCP-IP User's Manual

164Copyright 2015 Micrium Inc.

Module Relationships

Application

Your application layer needs to provide configuration information to µC/TCP-IP in the form of

several C files: , and :net_dev_cfg.c, net_cfg.h net_dev_cfg.c net_dev_cfg.h

Configuration data in consists of specifying tasks configuration, the number ofnet_cfg.c/h

timers to allocate to the stack, whether or not statistic counters will be maintained, the

number of ARP cache entries, how UDP checksums are computed, and more. One of the

most important configurations necessary is the size of the TCP Receive Window. In all,

there are approximately 50 to set. However, most of the constants can be#define #define

set to their recommended default value.

net_dev_cfg.c consists of device-specific configuration requirements such as the number

of buffers allocated to a device, the MAC address for that device, and necessary physical

layer device configuration including physical layer device bus address and link

characteristics. Each µC/TCP-IP-compatible device requires that its configuration be

specified within .net_dev_cfg.c

µC/LIB Libraries

Given that µC/TCP-IP is designed for use in safety critical applications, all “standard” library

functions such as , , have been rewritten to conform to the same qualitystrcpy() memset() etc.

as the rest as the protocol stack. All these standard functions are part of a separate Micrium

product called µC/LIB. µC/TCP-IP depends on this product. In addition, some data objects in

the µC/TCP-IP stack are created at run-time which implies the use of memory allocation from

the heap function .Mem_DynPoolAlloc()

BSD Socket API Layer

The application will interface with µC/TCP-IP using the BSD socket Application Programming

Interface (API). The software developer can either write their own TCP/IP applications using

the BSD socket API or, purchase a number of off-the-shelf TCP/IP components (Telnet, Web

server, FTP server, etc.),for use with the BSD socket interface. Note that the BSD socket layer

is shown as a separate module but is actually part of µC/TCP-IP.

µC/TCP-IP User's Manual

165Copyright 2015 Micrium Inc.

1.

a.

b.

c.

2.

Alternatively, the software developer can use µC/TCP-IP’s own socket interface functions (

). is a layer of software that converts BSD socket calls to µC/TCP-IPnet_sock.* net_bsd.*

socket calls. Of course, a slight performance gain is achieved by interfacing directly to

 functions. Micrium network products use µC/TCP-IP socket interface functions.net_sock.*

TCP/IP Layer

The TCP/IP layer contains most of the CPU, RTOS and compiler-independent code for

µC/TCP-IP. There are three categories of files in this section:

TCP/IP protocol specific files include:

Generic files:

ICMP (net_icmp.*)

IP (net_ip.*)

TCP (net_tcp.*)

UDP (net_udp.*)

Files specific to IPv4:

ARP ()net_arp.*

IPv4 ()net_ipv4.*

ICMPv4 ()net_icmpv4.*

IGMP ()net_igmp.*

Files specific to IPv6:

NDP ()net_ndp.*

IPv6 ()net_ipv6.*

ICMPv6 ()net_icmpv6.*

MLDP ()net_mldp.*

Support files are:

ASCII conversions ()net_ascii.*

Buffer management ()net_buf.*

TCP/UDP connection management ()net_conn.*

Counter management ()net_ctr.*

Statistics ()net_stat.*

Timer Management ()net_tmr.*

Other utilities ().net_util.*

µC/TCP-IP User's Manual

166Copyright 2015 Micrium Inc.

3. Miscellaneous header files include:

Master µC/TCP-IP header file ()net.h

File containing error codes ()net_err.h

Miscellaneous µC/TCP-IP data types ()net_type.h

Miscellaneous definitions ()net_def.h

Debug ()net_dbg.h

Configuration definitions ()net_cfg_net.h

Network Interface (IF) Layer

The IF Layer involves several types of network interfaces (Ethernet, Token Ring, etc.).

However, the current version of µC/TCP-IP only supports Ethernet interfaces, wired and

wireless. The IF layer is split into two sub-layers.

net_if.* is the interface between higher Network Protocol Suite layers and the link layer

protocols. This layer also provides network device management routines to the application.

net_if_*.* contains the link layer protocol specifics independent of the actual device (i.e.,

hardware). In the case of Ethernet, understands Ethernet frames, MACnet_if_ether.*

addresses, frame de-multiplexing, and so on, but assumes nothing regarding actual Ethernet

hardware.

Network Device Driver Layer

As previously stated, µC/TCP-IP works with just nearly any network device. This layer

handles the specifics of the hardware, e.g., how to initialize the device, how to enable and

disable interrupts from the device, how to find the size of a received packet, how to read a

packet out of the frame buffer, and how to write a packet to the device, etc.

In order for device drivers to have independent configuration for clock gating, interrupt

controller, and general purpose I/O, an additional file, , encapsulates such details.net_bsp.c

net_bsp.c contains code for the configuration of clock gating to the device, an internal or

external interrupt controller, necessary IO pins, as well as time delays, getting a time stamp

from the environment, and so on. This file is assumed to reside in the user application.

µC/TCP-IP User's Manual

167Copyright 2015 Micrium Inc.

1.

Network Physical (PHY) Layer

Often, devices interface to external physical layer devices, which may need to be initialized

and controlled. This layer is shown in asa “dotted” area indicating that it is notFigure 2-1

present with all devices. In fact, some devices have PHY control built-in. Micrium provides a

generic PHY driver which controls most external (R)MII compliant Ethernet physical layer

devices.

Network Wireless Manager

Often, wireless device may need to initialize a command and wait to receive the result (i.e.

Scan). This layer manages specific wireless management commands. Micrium provides a

generic Wireless Manager which should be able to controls most wireless module.

CPU Layer

µC/TCP-IP can work with either an 8, 16, 32 or even 64-bit CPU, but it must have information

about the CPU used. The CPU layer defines such information as the C data type corresponding

to 16-bit and 32-bit variables, whether the CPU is little or big endian, and how interrupts are

disabled and enabled on the CPU.

CPU-specific files are found in the directory and are used to adapt µC/TCP-IP to a...\uC-CPU

different CPU, modify either the files or, create new ones based on the ones supplied incpu*.*

the uC-CPU directory. In general, it is much easier to modify existing files.

Real-Time Operating System (RTOS) Layer

µC/TCP-IP assumes the presence of an RTOS. An RTOS abstraction layer is also needed

allowing µC/TCP-IP to be independent of a specific RTOS (See KAL Layer). µC/TCP-IP

consists of three tasks. One task is responsible for handling packet reception, another task for

asynchronous transmit buffer de-allocation, and the last task for managing timers. Depending

on the configuration, a fourth task may be present to handle loopback operation.

As a minimum, the RTOS:

Must be able to create at least three tasks (a Receive task, a Transmit De-allocation task,

and a Timer task).

https://doc.micrium.com/�C_2fTCP-IP_Architecture.xhtml#ww1041166

µC/TCP-IP User's Manual

168Copyright 2015 Micrium Inc.

2.

3.

Provide semaphore management (or the equivalent) and the µC/TCP-IP needs to be able

to create at least two semaphores for each socket and an additional four semaphores for

internal use.

Provides queuing services.

Kernel Abstraction Layer (KAL)

KAL is a kernel abstraction layer employed by Micrium products to interact with the RTOS

used. It can be found in the µC/Common directory. The KAL API is presented in the kal.h file.

KAL comes with µC/OS-II and µC/OS-III ports. If a different RTOS is used, a new kal.c file

must be develop to match the generic KAL API to the corresponding RTOS functionalities.

Network Buffer Architecture

µC/TCP-IP User's Manual

169Copyright 2015 Micrium Inc.

Network Buffer Architecture

µC/TCP-IP uses both small and large network buffers:

Network buffers

Small transmit buffers

Large transmit buffers

Large receive buffers

A single network buffer is allocated for each small transmit, large transmit and large receive

buffer. Network buffers contain the control information for the network packet data in the

network buffer data area. Currently, network buffers consume approximately 200 bytes each.

The network buffers’ data areas are used to buffer the actual transmit and receive packet data.

Each network buffer is connected to the data area via a pointer to the network buffer data area,

and both move through the network protocol stack layers as a single entity. When the data area

is no longer required, both the network buffer and the data area are freed. The figure

below depicts the network buffer and data area objects.

Figure - Network Buffer Architecture

µC/TCP-IP User's Manual

170Copyright 2015 Micrium Inc.

Network Buffer Sizes

The following table shows how each network buffer should be configured to handle the

majority of worst cases.

Type of network buffer Size

Receive Large Buffer 1518 + Alignment

Transmit Large Buffer 1518 + Alignment

Transmit Small Buffer 64 + Alignment

TCPIP Tasks and Priorities

µC/TCP-IP User's Manual

171Copyright 2015 Micrium Inc.

TCPIP Tasks and Priorities

The user application interfaces to µC/TCP-IP via a well known API called BSD sockets (or

µC/TCP-IP’s internal socket interface). The application can send and receive data to/from other

hosts on the network via this interface.

The BSD socket API interfaces to internal structures and variables (i.e., data) that are

maintained by µC/TCP-IP. A binary semaphore (the global lock in the figure µC/TCP-IP Task

) is used to guard access to this data to ensure exclusive access. In order to read or writemodel

to this data, a task needs to acquire the binary semaphore before it can access the data and

release it when finished. Of course, the application tasks do not have to know anything about

this semaphore nor the data since its use is encapsulated by functions within µC/TCP-IP.

The figure shows a simplified task model of µC/TCP-IP along withµC/TCP-IP Task model

application tasks.

µC/TCP-IP defines three internal tasks: a Receive task, a Transmit De-allocation task, and a

Timer task. The Receive task is responsible for processing received packets from all devices.

The Transmit De-allocation task frees transmit buffer resources when they are no longer

required. The Timer task is responsible for handling all timeouts related to TCP/IP protocols

and network interface management.

When setting up task priorities, we generally recommend that tasks that use µC/TCP-IP’s

services be configured with higher priorities than µC/TCP-IP’s internal tasks. However,

application tasks that use µC/TCP-IP should voluntarily relinquish the CPU on a regular basis.

For example, they can delay or suspend the tasks or wait on µC/TCP-IP services. This is to

reduce starvation issues when an application task sends a substantial amount of data.

We recommend that you configure the network interface Transmit De-allocation task with a

higher priority than all application tasks that use µC/TCP-IP network services; but configure

the Timer task and network interface Receive task with lower priorities than almost other

application tasks.

See also .Operating System Configuration

https://doc.micrium.com/display/CTCPIP/Operating+System+Configuration

µC/TCP-IP User's Manual

172Copyright 2015 Micrium Inc.

Figure - µC/TCP-IP Task model

Receiving a Packet

µC/TCP-IP User's Manual

173Copyright 2015 Micrium Inc.

1.

Receiving a Packet

This figure shows a simplified task model of µC/TCP-IP when packets are received from the

device.

Figure - µC/TCP-IP Receiving a Packet

A packet is sent on the network and the device recognizes its address as the destination

for the packet. The device then generates an interrupt and the BSP global ISR handler is

called for non-vectored interrupt controllers. Either the global ISR handler or the

vectored interrupt controller calls the Net BSP device specific ISR handler, which in

µC/TCP-IP User's Manual

174Copyright 2015 Micrium Inc.

1.

2.

3.

4.

5.

6.

7.

turn indirectly calls the device ISR handler using a predefined Net IF function call. The

device ISR handler determines that the interrupt comes from a packet reception (as

opposed to the completion of a transmission).

Instead of processing the received packet directly from the ISR, it was decided to pass

the responsibility to a task. The Rx ISR therefore simply “signals” the Receive task by

posting the interface number to the Receive task queue. Note that further Rx interrupts

are generally disabled while processing the interrupt within the device ISR handler.

The Receive task does nothing until a signal is received from the .Rx ISR

When a signal is received from an Ethernet device, the Receive task wakes up and

extracts the packet from the hardware and places it in a receive buffer. For DMA based

devices, the receive descriptor buffer pointer is updated to point to a new data area and

the pointer to the receive packet is passed to higher layers for processing.

µC/TCP-IP maintains three types of device buffers: small transmit, large transmit, and

large receive. For a common Ethernet configuration, a small transmit buffer typically

holds up to 256 bytes of data, a large transmit buffer up to 1500 bytes of data, and a

large receive buffer 1500 bytes of data. Note that the large transmit buffer size is

generally specified within the device configuration as 1594 or 1614 bytes (see

Chapter 9, “Buffer Management” for a precise definition). The additional space is used

to hold additional protocol header data. These sizes as well as the quantity of these

buffers are configurable for each interface during either compile time or run time.

Buffers are shared resources and any access to those or any other µC/TCP-IP data

structures is guarded by the binary semaphore that guards the data. This means that the

Receive task will need to acquire the semaphore before it can receive a buffer from the

pool.

The Receive task gets a buffer from the buffer pool. The packet is removed from the

device and placed in the buffer for further processing. For DMA, the acquired buffer

pointer replaces the descriptor buffer pointer that received the current frame. The

pointer to the received frame is passed to higher layers for further processing.

The Receive task examines received data via the appropriate link layer protocol and

determines whether the packet is destined for the ARP or IP layer, and passes the buffer

to the appropriate layer for further processing. Note that the Receive task brings the data

µC/TCP-IP User's Manual

175Copyright 2015 Micrium Inc.

7.

8.

all the way up to the application layer and therefore the appropriate µC/TCP-IP

functions operate within the context of the Receive task.

When the packet is processed, the lock is released and the Receive task waits for the

next packet to be received.

Transmitting a Packet

µC/TCP-IP User's Manual

176Copyright 2015 Micrium Inc.

1.

2.

Transmitting a Packet

This figure shows a simplified task model of µC/TCP-IP when packets are transmitted through

the device.

Figure - µC/TCP-IP Sending a Packet

A task (assuming an application task) that wants to send data interfaces to µC/TCP-IP

through the BSD socket API.

A function within µC/TCP-IP acquires the binary semaphore (i.e., the global lock) in

order to place the data to send into µC/TCP-IP’s data structures.

µC/TCP-IP User's Manual

177Copyright 2015 Micrium Inc.

3.

4.

5.

6.

7.

8.

9.

10.

11.

The appropriate µC/TCP-IP layer processes the data, preparing it for transmission.

The task (via the IF layer) then waits on a counting semaphore, which is used to indicate

that the transmitter in the device is available to send a packet. If the device is not able to

send the packet, the task blocks until the semaphore is signaled by the device. Note that

during device initialization, the semaphore is initialized with a value corresponding to

the number of packets that can be sent at one time through the device. If the device has

sufficient buffer space to be able to queue up four packets, then the counting semaphore

is initialized with a count of 4. For DMA-based devices, the value of the semaphore is

initialized to the number of available transmit descriptors.

When the device is ready, the driver either copies the data to the device internal memory

space or configures the DMA transmit descriptor. When the device is fully configured,

the device driver issues a transmit command.

After placing the packet into the device, the task releases the global data lock and

continues execution.

When the device finishes sending the data, the device generates an interrupt.

The Tx ISR signals the Tx Available semaphore indicating that the device is able to

send another packet. Additionally, the Tx ISR handler passes the address of the buffer

that completed transmission to the Transmit De-allocation task via a queue which is

encapsulated by an OS port function call.

The Transmit De-allocation task wakes up when a device driver posts a transmit buffer

address to its queue.

The global data lock is acquired. If the global data lock is held by another task, the

Transmit De-allocation task must wait to acquire the global data lock. Since it is

recommended that the Transmit De-allocation task be configured as the highest priority

µC/TCP-IP task, it will run following the release of the global data lock, assuming the

queue has at least one entry present.

The lock is released when transmit buffer de-allocation is finished. Further transmission

and reception of additional data by application and µC/TCP-IP tasks may resume.

Timer Management

µC/TCP-IP User's Manual

178Copyright 2015 Micrium Inc.

Timer Management

µC/TCP-IP manages software timers used to keep track of various network-related timeouts.

Timer management functions are found in . Timers are required for:net_tmr.*

Network interface/device driver link-layer monitor 1 total

Network interface performance statistics 1 total

ARP cache management 1 per ARP cache entry

IP fragment reassembly 1 per fragment chain

Various TCP connection timeouts Up to 7 per TCP connection

Performance monitor task 1 total

Of the three mandatory µC/TCP-IP tasks, one of them, the timer task, is used to manage and

update timers. The timer task updates timers periodically. determinesNET_TMR_CFG_TASK_FREQ

how often (in Hz) network timers are to be updated. This value be configured as amust not

floating-point number. This value is typically set to .10 Hz

NET_TMR_CFG_NBR_TMR determines the number of timers that µC/TCP-IP will be managing. Of

course, the number of timers affect the amount of RAM required by µC/TCP-IP. Each timer

requires 12 bytes plus 4 pointers.

It is recommended to set with at least timers, but a better starting pointNET_TMR_CFG_NBR_TMR 12

may be to allocate the maximum number of timers for all resources.

For instance, if 10 ARP caches are configured (), 10 NDP cachesNET_ARP_CFG_CACHE_NBR = 10

are configured () and 10 TCP connections are configured (NET_NDP_CFG_CACHE_NBR= 10

); the maximum number of timers for these resources is 1 for theNET_TCP_CFG_NBR_CONN = 10

Network Performance Monitor, 1 for the Link State Handler, (1) for the ARP caches, (10 * 1 0

) for the NDP caches and () for TCP connections:* 1 10 * 7

Timers = 1 + 1 + (10 * 1) + (10 * 1) + (10 * 7) = 92

µC/TCP-IP User's Manual

179Copyright 2015 Micrium Inc.

1.

2.

3.

Figure - Timer List

Timer types are either NONE or TMR , meaning unused or used. This field is defined as

ASCII representations of network timer types. Memory displays of network timers will

display the timer TYPEs with their chosen ASCII name.

To manage the timers, the head of the timer list is identified by , aNetTmr_TaskListHead

pointer to the head of the Timer List.

PrevPtr and doubly link each timer to form the Timer List.NextPtr

The flags field is currently unused.

Network timers are managed by the Timer task in a doubly-linked Timer List. The function

that executes these operation is the function. This function is anNetTmr_TaskHandler()

operating system (OS) function and be called only by appropriate network-operatingshould

system port function(s). is blocked until network initializationNetTmr_TaskHandler()

completes.

NetTmr_TaskHandler() handles the network timers in the Timer List by acquiring the global

network lock first. This function blocks all other network protocol tasks by pending on and

acquiring the global network lock. Then it handles every network timer in Timer List by

decrementing the network timer(s) and for any timer that expires, execute the timer's callback

function and free the timer from Timer List. When a network timer expires, the timer is be

freed to executing the timer callback function. This ensures that at least one timer isprior

µC/TCP-IP User's Manual

180Copyright 2015 Micrium Inc.

available if the timer callback function requires a timer. Finally, NetTmr_TaskHandler()

releases the global network lock.

New timers are added at the head of the Timer List. As timers are added into the list, older

timers migrate to the tail of the Timer List. Once a timer expires or is discarded, it is removed.

NetTmr_TaskHandler() handles of all the valid timers in the Timer List, up to the first corrupted

timer. If a corrupted timer is detected, the timer is discarded/unlinked from the List.

Consequently, any remaining valid timers are unlinked from Timer List and are not handled.

Finally, the Timer task is aborted.

Since is asynchronous to ANY timer Get/Set, one additional tick isNetTmr_TaskHandler()

added to each timer's count-down so that the requested timeout is satisfied. Thisalways

additional tick is added by NOT checking for zero ticks after decrementing; any timer that

expires is recognized at the next tick.

A timer value of 0 ticks/seconds is allowed. The next tick will expire the timer.

The functions are internal functions and should not be called by applicationNetTmr_***()

functions. This is the reason they are not described here or in . ForTCPIP API Reference Core

more details on these functions, please refer to the files.net_tmr.*

https://doc.micrium.com/display/TCPIPDOC303/TCPIP+API+Reference+Core

	µC/TCP-IP User's Manual
	About
	Getting Started
	Installing
	Building and Running the Sample Application
	Wired Ethernet Interface Setup
	WiFi Interface Setup

	Directories and Files
	TCPIP Network Devices
	TCPIP Network Interface
	TCPIP Network File System Abstraction Layer
	TCPIP Network CPU Specific Code
	TCPIP Network CPU Independent Source Code
	TCPIP Network Security Manager CPU Independent Source Code
	TCPIP Network Examples Code

	Configuration
	Network Stack Configuration
	Network Tasks Configuration
	Network Interface Configuration
	LIB Memory Heap Configuration

	TCPIP Initialization Guide
	Prerequisite module initialization
	Initializing Tasks and objects
	Initializing Interfaces
	IP Address Configuration
	Initializing+Shell+commands
	Sample applications
	Ethernet Sample Application
	WiFi Sample Application
	Multiple Interfaces Sample Application

	Network Board Support Package
	Ethernet BSP Layer
	Wireless BSP Layer
	Specifying the Interface Number of the Device ISR

	Troubleshooting Guide
	Initialization Issues
	Application Issues
	Performance Issues
	Statistics and Error Counters
	Architecture
	Module Relationships
	Network Buffer Architecture
	TCPIP Tasks and Priorities
	Receiving a Packet
	Transmitting a Packet
	Timer Management

