
Software Tools for Ontology Design and
Maintenance

Deliverable TONES-D15

Diego Calvanese1, Bernardo Cuenca Grau 3, Enrico Franconi1, Ian Horrocks3,
Alissa Kaplunova5, Carsten Lutz4, Ralf Möller5, Baris Sertkaya4,

Sergio Tessaris1, Anni-Yasmin Turhan4

1 Free University of Bozen-Bolzano
2 Università di Roma “La Sapienza”

3 The University of Manchester
4 Technische Universität Dresden

5 Technische Universität Hamburg-Harburg

Project: FP6-7603 – Thinking ONtologiES (TONES)

Workpackage: WP3 – Tasks for Ontology Design and Maintenance

Lead Participant: TU Dresden

Reviewer: —

Document Type: Deliverable

Classification: Consortium Access Only

Distribution: TONES Consortium

Status: Final

Document file: D15 ToolsDesign.pdf

Version: 1.1

Date: March 31, 2007

Number of pages: 55

FP6-7603 – TONES Thinking ONtologiES WP3

Document Change Record

Version Date Reason for Change

v.0.1 March 1, 2007 Outline

v.1.0 March 19, 2007 First version

v.1.1 March 31, 2007 Final version

c©2007/TONES – March 31, 2007 1/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

Contents

1 Introduction 4

2 RacerPro 5

2.1 Introduction . 5
2.2 Interfaces . 6
2.3 Specific Extensions . 6
2.4 New Services for Ontology Design and Maintenance 8
2.5 Optimizations . 9

3 FaCT++ 9

3.1 Introduction . 9
3.2 FaCT++ Optimisations . 10

3.2.1 Preprocessing Optimisations . 10
3.2.2 Satisfiability Checking Optimisations 11
3.2.3 Classification Optimisations . 12

3.3 How to Use . 12
3.3.1 Installation . 13
3.3.2 Usage . 13

4 CEL 14

4.1 Introduction . 14
4.2 Optimizations . 16
4.3 How to use . 18

5 Swoop 22

5.1 Introduction . 22
5.2 Swoop Features . 22

5.2.1 Ontologies based on the Web Architecture 22
5.2.2 Editing Web Ontologies . 23
5.2.3 Adhering to OWL Specifications: Presentation and Reasoning . . . 25
5.2.4 Reasoning in OWL . 26
5.2.5 Ontology Debugging and Repair . 26

5.3 How to Use . 27

6 RacerPorter 28

6.1 Introduction . 28
6.2 Towards User-Friendly and Scalable OBITs 29
6.3 RacerPorter – How to Use . 32
6.4 Some Notes About Performance . 35
6.5 Conclusion . 35

c©2007/TONES – March 31, 2007 2/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

7 iCom 35

7.1 Introduction . 35
7.2 Optimisations . 37
7.3 How to use . 37

8 OntoExtract 39

8.1 Introduction . 39
8.2 How to use . 39

8.2.1 Input file format . 39

9 Sonic 40

9.1 Introduction . 40
9.2 Optimizations . 42
9.3 How to use . 43

10 InstExp 45

10.1 Introduction . 45
10.2 Optimizations . 45
10.3 Usage . 45

11 DL2RL 48

11.1 Introduction . 48
11.2 DL2RL – How to Use . 49
11.3 Further Work and Optimizations . 51

c©2007/TONES – March 31, 2007 3/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

1 Introduction

This document accompanies the software deliverable D15 “Software Tools for Ontology
Design and Maintenance” of the TONES project, providing an overview of the delivered
software packages along with some basic information on how to install and run them. The
delivered software tools are implementations of the techniques described in deliverable
D13 [ton07], usually enriched with optimization techniques in order to make them more
efficient. Roughly, the tools can be divided into four groups:

1. Classical reasoners: RacerPro, FaCT++, and CEL.

The main strength of these tools is in classical reasoning services for ontologies,
namely in checking consistency and computing the subsumption hierarchy of the
concepts defined in the ontology. However, they also implement a considerable
number of additional services such as error management and knowledge base query-
ing.

2. Frontends: Swoop, iCom, and RacerPorter

Swoop and iCom are user frontends for ontology design and editing. Swoop provides
an interface reminiscent of frame systems, which allows to browse the class hierarchy
and to view and edit all relevant details of the classes of an ontology. ICom focusses
on the graphical display and editing of ontologies using an extended version of UML
class diagrams. Both tools are equipped with a highly configurable API that allows
them to interact with different reasoners. RacerPorter is a tool to be used with
RacerPro. It allows to vizualize an ontology and display statistical information
about it.

3. Database-related tools: iCom and OntoExtract

The interplay between ontologies and databases is one of the focusses of the TONES
project. The iCom tool addresses this subject by providing a unifying tool for editing
ontologies and conceptual database schemas, thus facilitating the integrated design
of ontologies and databases. Complementing this approach, the OntoExtract tool
allows to automatically extract initial ontologies from existing database schemas,
which can then be manually fine-tuned.

4. Reasoners for novel reasoning services: Sonic, InstExp , and DL2RL

These tools implement reasoning services for ontologies that have only been pro-
posed recently. The Sonic tool provides a wealth of such services, addressing in
particular the automatic generation of concepts. The InstExp tool supports and
guides the semi-automatic completion of ontologies by adding either new subsump-
tion relationships or new counterexamples. The DL2RL tool allows to construct
models for ontologies that can then be inspected by the designer to check whether
the ontology under development describes the intended structures.

The central part of this deliverable is organized as follows. There is one section for each
tool, which is structured into (i) an introductory part, (ii) a discussion of optimization
techniques used in the tool, and (iii) a section describing how to use the tool. In (i),

c©2007/TONES – March 31, 2007 4/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

we give a general overview of the tool and explain which ontology design and mainte-
nance tasks it addresses. If the tool was not developed completely within the TONES
project (e.g. because its development started already before the project), we point out the
concrete contributions that have been made within TONES. For technical details of the
implemented algorithms, we refer to deliverable D13 [ton07]. In (ii), we briefly discuss
optimization techniques and heuristics that have been used to make the implemented
algorithms more efficient. We point out that for some tools which are in an early stage
of development, finding appropriate optimizations is, as of now, future work. In (iii), we
give brief instructions on how to install the tools, the system requirements, and which
additional software components are required. If possible, we also include some basic in-
formation on how to configure and use the tool. However, note that this section is not
inteded to be a full-fledged manual. Whenever available, a manual is included on the CD
as part of the software package.

We point out that many of the tools described in this document are multi-purpose,
and not limited to providing support for ontology design and maintenance, only. For
example, RacerPro comprises a sophisticated querying engine and thus can also be used
when deploying an ontology in an application. Similarly, the Swoop tool supports the
integration and interoperation of ontologies. Due to this generality, many tools included
in the current software deliverable are actually also deliverables for other workpackages.
In this document, we focus on describing the relevance of the delivered tools for ontology
design and maintenance. The contributions of the delivered tools to other workpackages
will be the subject of later documents.

We also remark that not all of the techniques reported about in deliverable D13 have
made their way into tools. The reason is that some of the techniques, such as deciding
conservative extensions, are in a rather early state of investigation in which decidability
and complexity results have been obtained, but the existing algorithms do not appear to be
well-suited for implementation. In these cases, further research into practicable algorithms
and/or optimization techniques are required before even experimental implementations
are worthwhile to pursue.

A final issue is the interplay of the presented tools. Whenever possible, we have
tried to use common interfaces and representation standards in order to facilitate a tight
coupling. For example, the TONES consortium has been one of the main driving forces
behind the advancement of the DIG standard, which describes the most common API for
ontology-processing tools, to its current version 2.0. Due to these efforts, frontends such
as Swoop and iCom can be effortlessly combined with different reasoning backends such
as RacerPro, FaCT++, CEL, and Sonic. It will be part of the final TONES demo to
practically illustrate the interplay of the tools.

2 RacerPro

2.1 Introduction

RacerPro [HM01a] is under continuous development since 1998 (commercial support
is available for two years now). The system is used for ontology design and maintenance

c©2007/TONES – March 31, 2007 5/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

(offline usage of ontologies) as well as for using ontologies in running applications that
rely on reasoning (online usage of ontologies). Since ontologies get larger and larger, and
new application fields use ontologies these days, the demands on system architecture ever
increase.

Basically, the system implements the description logic SHIQ(Dn) with TBoxes and
ABoxes (see [ton07] for details about syntax and semantic of description logics). All
standard DL inference services for ontology design and maintenance are provided by
RacerPro. In order to assist the creation of practical applications, the RacerPro

system includes several extensions the development of which has been partially supported
by TONES project (we indicate this with ∗ in the following text).

2.2 Interfaces

Several interfaces are available for RacerPro. As usual, the reasoner supports file-based
interaction as well as socket-based communication with end-user applications or graphical
interfaces for ontology development and maintenance. Input can be specified in various
syntaxes, e.g., KRSS (TCP), DIG 1.1 (HTTP), or OWL DL (HTTP). A parser for DIG 2.0
[Sea06] is in preparation. As an extension to DIG 1.1, RacerPro already supports an
XML-based interface for conjunctive queries. The specification of this interface is also
proposed as part of DIG 2.0 with some slight modifications [Ali06]. The RacerPro

implementation of DIG 2.0 will support also expressive constraints (see the subsection
about concrete domains presented below). Unparsers from the internal meta model to a
textual representation of ontologies are available for all syntaxes.

In particular, for DIG 2.0 it will be the case that not all syntactic constructs might
be implemented by a certain reasoner. For instance, DIG 2.0 includes nominals as part of
the TBox (this also holds for OWL DL). Currently, RacerPro fully supports nominals
as part of ABoxes. Nominals in the TBox are approximated by concept names. For
fully supporting the OWL 1.1. fragment of DIG 2.0, also acyclic role axioms have to be
provided by the RacerPro implementation. It is well known, however, that for some
purposes, even DIG 2.0 is not expressive enough. Further extensions are required that we
describe in the next section.

2.3 Specific Extensions

Rules applied to ABox individuals∗ Rule specifications are well known (e.g., from
the W3C SWRL specification [SWR04]), but different systems support different semantics
(for details of the RacerPro semantics for rules, see the RacerPro reference manual
[Rac]). In RacerPro, rules can be seen as a convenient specification about how to
extend the set of assertions in an ABox. In addition, rules can be used as named queries
that can be reused in other queries. Rule design is also part of ontology design. Rule
bodies can be checked for subsumption (grounded semantics). Rules in RacerPro can
be specified with a KRSS or SWRL syntax.

Concrete domains In some sense, OWL is rather inexpressive in that it does not
support constraints between attribute values of different individuals. For instance, in

c©2007/TONES – March 31, 2007 6/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

OWL it is not possible to state that Mike’s brother, called John, is ten years older than
Mike, and Mike is a car driver (and the ontology says that car drivers must be older
than 18). Does this mean that, concerning the age, John is allowed to drive a car as
well? RacerPro supports inequations about linear polynomials over the reals and over
positive integers. In addition, RacerPro allows for expressing min/max restrictions over
integers as well as (in)equalities over strings. If individuals are part of the ontology (and
OWL even supports nominals in the TBox), consistency checking is an important issue
at ontology-development time. At the time of this writing, constraints between different
individuals are still not supported by the latest proposal for the new OWL language:
OWL 1.1 [Ber06]. They are supported by DIG 2.0, however.

Support for spatial reasoning∗ As a generalization of concrete domains it is possible
to associate graph-based representation formalisms with an ABox. Individuals in the
ABox are associated with nodes in the graph in a bidirectional way. An associated graph
is called a substrate (on which abstract knowledge in the ABox is built). An example for a
substrate can be a spatial representation formalism. Nodes correspond to spatial objects,
and edges in the graph correspond to spatial relations (e.g., topological relations such as
in the RCC formalism). Depending on the semantics of the substrate, i.e., depending on
the semantics of the spatial relations, reasoning services are provided. The vocabulary
declared for denoting nodes and edges is available also in the query language for the
ABox, and the substrate reasoning services are employed for ABox query answering.
With a spatial substrate used in the query language, it is possible to find individuals that
are associated with spatial objects that satisfy certain spatial restrictions (quantitative
or qualitative) at the substrate level as well as conceptual and relational restriction at
the ABox level. The combination of spatial and ontological reasoning is provided by the
query language. Note that, for instance, the semantics of spatial relations as defined in the
Region Connection Calculus (RCC) cannot be obtained by using role axioms as offerred
in OWL 1.1 because the role axioms required do not satisfy the acyclicity condition.

Support for temporal reasoning in the context of event recognition∗ In some
applications, temporal aspects have to be handled. For instance, temporal events have to
be recognized based on ABox assertions associated with time intervals (temporal propo-
sitions). RacerPro supports rules with time intervals for the definition of event models.
In the query language, temporal as well as ontological aspects are combined. Rules with
time variables can also be used to compute all events that hold w.r.t. a given ABox and
set of temporal propositions.

In Figure 1 an example for a definition of an event together with temporal propositions
as well as an ABox and a TBox are given. For the query at the bottom the result is printed
in the editor here (for demonstration purposes). The result specifies binding for query
variables as well as intervals (lower bound and upper bound specifications) for the start
and end timepoints, respectively.

c©2007/TONES – March 31, 2007 7/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

Figure 1: Event recognition example.

2.4 New Services for Ontology Design and Maintenance

An ontology comprises knowledge about individuals (e.g., as part of the ABox). At
ontology-development time a developer might be interested in knowing whether there
exists a constellation of individuals in the ABox that satisfy certain conditions. The
conditions can be stated as a conjunctive query. If, for whatever reason, the conditions
are not satisfied, and corresponding individuals do not exist, or the conditions on the
existing individuals are not satisfied, the abduction reasoning service can be employed.
The abduction service returns proposals what could be added to the ABox in order to
satisfy the query. This service is particularly useful for bottom-up ontology construction
and can be combined with generalization inference services also investigated in the TONES
project.

c©2007/TONES – March 31, 2007 8/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

RacerPro now also supports a pinpointing inference services for computing TBox
axioms as well as Abox axioms that are culprits for an Abox unsatisfiability condition.
The integration into RacerPorter (see below) is under development.

The RacerPro reasoning engine support cancellation of requests and also considers
timeout specifications. For the interaction with other modules, for instance, graphical
interfaces such as RacerPorter, support for progress indication is in preparation.

2.5 Optimizations

For ontology design and maintenance, the following optimizations are important.

• Incremental constraint checking during tableau proof (e.g., for the string domain).

• Integration of optimizations for concrete domain reasoning for OWL datatypes (less
expressive than full concrete domains).

• Techniques for using the dependency-tracking mechanism of the reasoner to support
explanation generation (glass box approach).

• Optimizations for spatial substrates: spatial indexing, RCC reasoning.

3 FaCT++

3.1 Introduction

FaCT++ is a sound and complete DL reasoner designed as a platform for experimenting
with new tableaux algorithms and optimisation techniques.1 It incorporates most of the
standard optimisation techniques, but also employs many novel ones.

DL systems take as input a knowledge base (equivalently an ontology) consisting of a
set of axioms describing constraints on the conceptual schema (often called the TBox) and
a set of axioms describing some particular situation (often called the ABox). They are
then able to answer both “intensional” queries (e.g., regarding concept satisfiability and
subsumption) and “extensional” queries (e.g., retrieving the instances of a given concept)
w.r.t. the input knowledge base (KB). For the expressive DLs implemented in modern
systems, these reasoning tasks can all be reduced to checking KB satisfiability.

When reasoning with a KB, FaCT++ proceeds as follows. A first preprocessing stage
is applied to the KB when it is loaded into reasoner; it is normalised and transformed into
an internal representation. During this process several optimisations (that can be viewed
as a syntactic re-writings) are applied.

The reasoner then performs classification, i.e., computes and caches the subsumption
partial ordering (taxonomy) of named concepts. Several optimisations are applied here,
mainly involving choosing the order in which concepts are processed so as to reduce the
number of subsumption tests performed.

1FaCT++ is available at http://owl.man.ac.uk/factplusplus.

c©2007/TONES – March 31, 2007 9/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

The classifier uses a KB satisfiability checker in order to decide subsumption problems
for given pairs of concepts. This is the core component of the system, and the most highly
optimised one.

FaCT++ can be downloaded at the following address: http://owl.man.ac.uk/

factplusplus/. Within TONES FaCT++ has been extended with new optimization
techniques and to support SROIQ, the logic underlying OWL 1.1.

3.2 FaCT++ Optimisations

3.2.1 Preprocessing Optimisations

Lexical normalisation and simplification is a standard rewriting optimisation primarily
designed to promote early clash (inconsistency) detection, although it can also simplify
concepts and even detect relatively trivial inconsistencies. The basic idea is that all
concepts are transformed into a simplified normal form (SNF), where the only operators
allowed in SNF are negation (¬), conjunction (⊓), universal restriction (∀) and (qualified)
at-most restriction (≤). In FaCT++, the translation into SNF is performed on the fly,
during the parsing process. At the same time, some simplifications are applied to concept
expressions, including constant elimination (e.g., C ⊓ ⊥ → ⊥), expression elimination
(e.g., ¬¬C → C), and subsumer elimination (e.g., C ⊓ D → C for D a known subsumer
of C).

Absorption is a widely used rewriting optimisation that tries to eliminate General
Concept Inclusion axioms (GCIs, axioms in the form C ⊑ D, where both C and D are
complex concept expressions), as GCIs left in the TBox invariably lead to a significant
decrease in the performance of tableaux based satisfiability/subsumption testing proce-
dures . In FaCT++, GCIs are eliminated by absorbing them into either concept definition
axioms (concept absorption) or role domain axioms (role absorption). Role absorption is
particularly beneficial from the point of view of the CD-classification optimisation (see
Section 3.2.3), as it eliminates GCIs without reducing the number of concepts to which
CD-classification can be applied.

Told Cycle Elimination is a technique that we assume is used in most modern rea-
soners, although we know of no reference to it in the literature. Definitional cycles in
the TBox can lead to several problems, and in particular cause problems for algorithms
that exploit the told subsumer hierarchy (see Section 3.2.3). These cycles are, how-
ever, often quite easy to eliminate. Assume, for example, that A1 . . . An are concept
names, C1 . . . Cn are arbitrary concept expressions, and ⊲⊳ is either ⊑ or

.
=. The axioms

A1 ⊲⊳ A2⊓C2, A2 ⊲⊳ A3⊓C3, . . . , An ⊲⊳ A1⊓C1 include a definitional cycle, because the r.h.s.
of the first axiom (indirectly) refers to the name on its l.h.s. The cycle can, however, be
eliminated by transforming the axioms into A2

.
= A1, . . . , An

.
= A1, A1 ⊑ C1 ⊓C2 . . .⊓Cn.

Synonym Replacement is used to extend simplification possibilities and improve early
clash detection. If the only axiom with C on the left hand side is C

.
= D, then C is called

a synonym of D. For a set of concept names, all of which are synonymous, FaCT++ uses
a single “canonical” name in all concept expressions in the KB.

FaCT++ first translates all input concepts into SNF, with subsequent transformations
being designed to preserve this form. After simplification and absorption, FaCT++ re-

c©2007/TONES – March 31, 2007 10/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

peatedly performs cycle and synonym elimination steps until there are no further changes
to the KB.

3.2.2 Satisfiability Checking Optimisations

The FaCT++ system was designed with the intention of implementing DLs that include
inverse roles, and of investigating new optimisation techniques, including new ordering
heuristics. In order to deal more easily with inverse roles, and to allow for more flexible
ordering of the tableaux expansion, FaCT++ uses a ToDo list, instead of the usual top-
down approach, to control the application of the expansion rules. The basic idea behind
this approach is that rules may become applicable whenever a concept is added to a node
label. When this happens, the relevant node/concept pair is added to the ToDo list. The
ToDo list sorts entries according to some order, and gives access to the “first” element in
the list. The tableaux algorithm repeatedly removes and processes list entries until either
a clash occurs or the list becomes empty.

Dependency-directed backtracking (Backjumping) is a crucial and widely used opti-
misation. Each concept in a completion tree label is labelled with a dependency set
containing information about the branching decisions on which it depends. In case of
a clash, the system backtracks to the most recent branching point where an alternative
choice might eliminate the cause of the clash.

Boolean constant propagation (BCP) is another widely used optimisation. As well as
the standard tableau expansion rules, additional inference rules can be applied to the
formulae occurring in a node label, usually with the objective of simplifying them and
reducing the number of nondeterministic rule applications. BCP is probably the most
commonly used simplification, the basic idea being to apply the inference rule

¬C1, . . . ,¬Cn, C1 ⊔ . . . ⊔ Cn ⊔ C

C

to concepts in a node labels.
Semantic Branching is another rewriting optimisation, the idea being to rewrite dis-

junctions of the form C ⊔D as C ⊔ (¬C ⊓D). If choosing C leads to clash, then the ¬C
in the second disjunct (along with BCP) ensures that C will not be added to the node
label again by some other nondeterministic expansion.

Ordering Heuristics can be very effective, and have been extensively investigated in
FaCT++ [TH05]. Changing the order in which nondeterministic expansions are explored
can result in huge (up to several orders of magnitude) differences in reasoning performance.
Heuristics can be used to choose a “good” order in which to try the different possible
expansions. In practise, this usually means using heuristics to select the way in which
expansion rules are applied to the disjunctive concepts in a node label, with a heuristic
function being used to compute the relative “goodness” of each candidate expansion.

Heuristics may select an expansion-ordering based on, e.g., (ascending or descending
order of) concept size, maximum quantifier depth, or frequency of usage. In order to
reduce the cost of computing the heuristic function, FaCT++ computes and caches relevant
values for each concept as the KB is loaded. As no one heuristic performs well in all cases,
FaCT++ also selects the heuristics to be used based on an analysis of the structure of the
input KB.

c©2007/TONES – March 31, 2007 11/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

3.2.3 Classification Optimisations

As mentioned above, the focus here is on reducing the number of subsumption tests
performed during classification. In FaCT++, this is achieved by both reducing the number
of comparisons and by substituting cheaper (but incomplete) comparisons where possible.

Definitional Ordering is a well known technique that uses the syntactic structure of
TBox axioms to optimise the order in which the taxonomy is computed. E.g., given an
axiom C ⊑ D, with C a concept name, FaCT++ will delay adding C to the taxonomy
until all of the concepts occurring in D have been classified. In some cases this technique
allows the taxonomy to be computed “top down”, thereby avoiding the need to check for
subsumees of newly added concepts.

Similarly, the structure of TBox axioms can be used to avoid (potentially) expensive
subsumption tests by computing a set of (trivially obvious) told subsumers and told dis-
joints of a concept C. E.g., if the TBox contains an axiom C ⊑ D1 ⊓ D2, then FaCT++

treats both D1 and D2, as well as all their told subsumers, as told subsumers of C, and if
the TBox contains an axiom C ⊑ ¬D⊓ . . ., then D is treated as a told disjoint of C. The
classification algorithm can then exploit obvious (non-) subsumptions between concepts
an their told subsumers (disjoints).

Model Merging is a widely used technique that exploits cached partial models in order
to perform a relatively cheap but incomplete non-subsumption test. If the cached models
for D and ¬C can be merged to give a model of D ⊓ ¬C, then the subsumption C ⊑ D
clearly does not hold.

Completely Defined Concepts is a novel technique used in FaCT++ to deal more effec-
tively with wide (and shallow) taxonomies. In this case, some concepts in the taxonomy
may have very many direct subsumees, rendering classification ordering optimisations in-
effective. It is often possible, however, to identify a significant subset of concepts whose
subsumption relationships are completely defined by told subsumptions. FaCT++ com-
putes a taxonomy for these concepts without performing any subsumption tests.

Clustering is another technique that addresses the same problem [HM01b]. The idea
here is to introduce new “virtual concepts” into the taxonomy in order to produce a
deeper and more uniform structure. These concepts are asserted to be equivalent to the
union of a number of sibling concepts and are inserted in the taxonomy in between these
concepts and their common parent.

3.3 How to Use

FaCT++ currently supports the SROIQ description Logic language, which corresponds
to the OWL 1.1 ontology language. The current version is 1.1.5. This is source distribution
package so it can be used on different platforms. It was tested on Windows, Linux and
MacOS X.

FaCT++ is distributed under GNU Public License (GPL). Full text of license can be
found at http://www.gnu.org/licenses/gpl.txt.

c©2007/TONES – March 31, 2007 12/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

3.3.1 Installation

For building system you will need GNU c++ compiler and GNU make (version 3.3 and
higher were tested). Change GENERAL DEFINES macro in src/Makefile.include to make
it suitable for your computer. Then just run ”make”.

In order to compile DIG part you will also need an XML parsing library Xerces-c (freely
available at http://xml.apache.org/xerces-c/. Make sure that Xerces-c package is
installed system-wide or you have environment variable XERCESCROOT which points
to Xerces-c root directory.

In order to compile OWL-API interface (src/FaCTPlusPlusJNI/) it is necessary to
have JNI development files (jni.h) available.

3.3.2 Usage

The Models.lisp directory of this distribution contains some files that support FaCT++

reasoning as well as examples of KBs.
To use standalone reasoner user should usually perform the following steps:

• create an ontology using the FaCT++ input language;

• create a working directory (i.e. TEST) for FaCT++ using the command create-
new-test TEST ontology; where ”ontology” is the name of the file containing your
FaCT++ ontology

• inside TEST directory run “make”.

This will run FaCT++ reasoner on the newly created config-file for the given ontology.
The results of FaCT++ reasoning appear in following files:

• Taxonomy.Roles contains information about the roles taxonomy;

• Taxonomy.log contains information about the concept taxonomy (if it was re-
quested);

• dl.res contains full information about the ontology and some statistical information
about the reasoning process.

Concerning ontology creation, there are three ways of creating an ontology for
FaCT++:

• hand-made ontology. This way is not recommended for the end user;

• using OilEd (http://oiled.man.ac.uk). Load an ontology to the OilEd then
choose ExportFaCT++ lisp;

• from the OWL source using the OWL Ontology Converter; (http://phoebus.cs.
man.ac.uk:9999/OWL/Converter). Set the ontology URL to the OWL ontology,
choose FaCT++ as the output language, press Convert and then copy the resulting
ontology text to the FaCT++ ontology file.

c©2007/TONES – March 31, 2007 13/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

There are a number of options that could influence the reasoning process. All options,
their format and description are given in the config file, which is generated by the create-
new-test script.

• FaCT++ as an HTTP DIG reasoner: Run FaCT++ server with optional parameter
”-port ¡port¿”. Default value of “port” is 3490;

• FaCT++ as an HTTP OWL reasoner: Use FaCT++ as in the case of DIG. Then, con-
nect your OWL editor like Protege (http://protege.stanford.edu/) to FaCT++.

4 CEL

4.1 Introduction

The system CEL is a first step towards realizing the dream of a description logic system
that offers both sound and complete polynomial-time algorithms and expressive means
that allow its use in real-world applications. It is based on recent theoretical advances
that have shown that the description logic (DL) EL, which allows for conjunction and
existential restrictions, and some of its extensions have a polynomial-time subsumption
problem even in the presence of concept definitions and so-called general concept inclusions
(GCI) [BBL05]. The DL EL+ handled by CEL extends EL by so-called role inclusions (RI).
On the practical side, it has turned out that the expressive power of EL+ is sufficient to
express several large life science ontologies. In particular, the Systematized Nomenclature
of Medicine (Snomed) [CRP+93] employs EL with RIs and acyclic concept definitions.
The Gene Ontology (Go) [The00] can also be expressed in EL with acyclic concept
definitions and one transitive role (which is a special case of an RI). Finally, large parts of
the Galen Medical Knowledge Base (Galen) [RH97] can be expressed in EL with GCIs
and RIs.

For the complete syntax and semantics of the DL EL and relevant extensions thereof,
we refer to Section 4 of Deliverable D13. There, you will also find additional constructs
which are not implemented yet in CEL. To make this section self-contained, however, we
briefly mention the syntax elements, and illustrate their use by a small example. Like
in other DLs, EL+ concepts are inductively defined starting with the sets of concept
names NC and role names NR.2 Each concept name A is a concept, and so are the top
concept ⊤, conjunction C ⊓ D, and existential restriction ∃r.C. An EL+ ontology is a
finite set of general concept inclusions (GCI) of the form C ⊑ D for concepts C,D, and
complex role inclusions (RI) of the form r1 ◦ · · · ◦ rn ⊑ s for roles r1, . . . , rn, s. A primitive
concept definition (PCDef) A ⊑ D is a GCI with the left-hand side a concept name, while
a (non-primitive) concept definition (CDef) A ≡ D can be expressed using two GCIs.
It is worthwhile to note that RIs generalize at least three expressive means important
in bio-medical applications: role hierarchy, transitive role, and so-called right-identity
axioms [CRP+93]. One of the most prominent inference problems for DL ontologies is

2Unlike some reasoners, CEL does not presume these sets of names to be disjoint, hence name punning
in an ontology is possible.

c©2007/TONES – March 31, 2007 14/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

Endocardium ⊑ Tissue ⊓ ∃cont-in.HeartWall ⊓
∃cont-in.HeartValve

HeartWall ⊑ BodyWall ⊓ ∃part-of.Heart

HeartValve ⊑ BodyValve ⊓ ∃part-of.Heart

Endocarditis ⊑ Inflammation ⊓ ∃has- loc.Endocardium

Inflammation ⊑ Disease ⊓ ∃acts-on.Tissue

HeartDisease ≡ Disease ⊓ ∃has-loc.Heart

part-of ⊑ cont-in

has-loc ◦ cont-in ⊑ has-loc

Figure 2: An example EL+ ontology (motivated by Galen).

classification: compute the subsumption hierarchy of all concept names occ urring in the
ontology.

As an example, we consider the EL+ ontology in Fig. 2, where all capital-
ized words are concept names and all lowercase words are role names. This small
ontology contains 5 GCIs (which are indeed PCDefs), a CDef, and 2 RIs (more
precisely a role hierarchy and a right-identity axiom) expressing a piece of clini-
cal knowledge about endocarditis and related concepts and roles. It is not hard
– yet also nontrivial – to infer from this ontology that endocarditis is classified as
heart disease, i.e., Endocarditis ⊑O HeartDisease. In fact, (i) Endocarditis implies
Inflammation and thus Disease, which yields the first conjunct in the definition of
HeartDisease. Moreover, (ii) ∃has-loc.Endocardium implies ∃has-loc.∃cont-in.HeartWall

and thus ∃has-loc.∃cont-in.∃part-of.Heart, which, in the presence of both RIs, implies
∃has-loc.Heart, satisfying the second conjunct in the definition of HeartDisease.

The development of this lightweight reasoner is partially supported by TONES, as well
as by the Germany Research Foundation under grant DFG BA 1122/11-1. The design and
development of CEL has been started in the first quarter of 2005 [Sun05b, BLS05, BLS06b,
BLS06a], and gradually maintained and enhanced over time. The most remarkable new
features3 obtained during the project include the enhanced logical expressive power (A-
Box, concept disjointness constraints, domain and range restrictions on roles are now
supported), fast computation of subsumption hierarchy, support for DIG 1.1 interface
and, most notably, scalability.

The latest and prior distributions of the CEL reasoner can be downloaded from the CEL

homepage at http://lat.inf.tu-dresden.de/systems/cel/. Installation and system
requirements will be mentioned later in Subsection “How to use”. In the following, we
describe the novel algorithm used in the CEL reasoner including some related optimization
techniques.

3Another important feature not listed above is the non-standard inference for explaning logical con-
sequences (such as subsumption) by means of axiom pinpointing. The pinpointing module for CEL is
currently being developed and thus will not be available in the distribution CD. This feature should
however be ready for testing in the forthcoming deliverable.

c©2007/TONES – March 31, 2007 15/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

4.2 Optimizations

The implementation of CEL is underlain by the polytime EL++ subsumption algorithm
presented in Section 4 of Deliverable 13. Since the reasoner only supports the sublanguage
EL+, only the Completion Rules CR1 – CR4, CR11 and CR12) are relevant. For the sake of
brevity, the abstract algorithm will not be presented again. Nevertheless, it is important
to make a few remarks as follows:

• To reduce the number of new concept names introduced during normalization, we
adopt a slightly modified normal form in which n-ary conjunction of concept names
is allowed on the left-hand side of GCIs, i.e. A1 ⊓ · · · ⊓ An ⊑ B.

• CR1 and CR2 are generalized to support the new form of GCIs, and henceforth referred
to as R1 as follows:
If A1, . . . , An ∈ S(X), A1 ⊓ · · · ⊓ An ⊑ B ∈ O, and B /∈ S(X)
then S(X) := S(X) ∪ {B}

• In what follows, CR3, CR4, CR11 and CR12 are renamed to R2 – R5, respectively.

One of the main problems to be solved when implementing the rule-based algorithm
is to develop a good approach for finding the next completion rule to be applied. If this
is realized by a näıve brute-force search, then one cannot expect an acceptable runtime
behavior on large inputs. As a solution to this problem, we propose a refined version of
the algorithm, which is inspired by the linear-time algorithm for satisfiability of proposi-
tional Horn formulas proposed in [DG84]. This version uses a set of queues, one for each
concept name appearing in the input ontology, to guide the application of completion
rules. Intuitively, the queues list modifications to the data structure (i.e. to the sets S(A)
and R(r)) that still have to be carried out. The possible entries of the queues are of the
form

B1 ⊓ · · · ⊓ Bn → B′ and ∃r.B

with B1, . . . , Bn, B, and B′ concept names, r a role name, and n ≥ 0. For the case n = 0,
we simply write the queue entry B1 ⊓ · · · ⊓ Bn → B′ as B′. Intuitively,

• an entry B1 ⊓ · · · ⊓Bn → B′ in queue(A) means that B′ has to be added to S(A) if
S(A) already contains B1, . . . , Bn, and

• ∃r.B ∈ queue(A) means that (A,B) has to be added to R(r).

The fact that such an addition triggers other rules will be taken into account by appro-
priately extending the queues when the addition is performed.

To facilitate describing the manipulation of the queues, we view the (normalized) input

ontology O as a mapping Ô from concepts to sets of queue entries as follows: for each
concept name A ∈ CN⊤

O, Ô(A) is the minimal set of queue entries such that

• if A1 ⊓ · · · ⊓ An ⊑ B ∈ O and A = Ai, then

A1 ⊓ · · · ⊓ Ai−1 ⊓ Ai+1 ⊓ · · · ⊓ An → B ∈ Ô(A);

c©2007/TONES – March 31, 2007 16/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

procedure process(A, X)
begin

if X = B1, . . . , Bn → B and B /∈ S(A) then

if {B1, . . . , Bn} ⊆ S(A) then

S(A) := S(A) ∪ {B};

queue(A) := queue(A) ∪ Ô(B);
for all concept names A′ and role names r

with (A′, A) ∈ R(r) do

queue(A′) := queue(A′) ∪ Ô(∃r.B);
if X = ∃r.B and (A, B) /∈ R(r) then

process-new-edge(A, r, B)
end;

procedure process-new-edge(A, r, B)
begin

for all role names s with r ⊑∗
O s do

R(s) := R(s) ∪ {(A, B)};

queue(A) := queue(A) ∪
⋃

{B′|B′∈S(B)} Ô(∃s.B′);

for all concept names A′ and role names t, u with
t ◦ s ⊑ u ∈ O and (A′, A) ∈ R(t) and (A′, B) 6∈ R(u) do

process-new-edge(A′, u, B);
for all concept names B′ and role names t, u with

s ◦ t ⊑ u ∈ O and (B, B′) ∈ R(t) and (A, B′) 6∈ R(u) do

process-new-edge(A, u, B′);
end;

Figure 3: Processing the queue entries

• if A ⊑ ∃r.B ∈ O, then ∃r.B ∈ Ô(A).

Likewise, for each concept ∃r.A, Ô(∃r.A) is the minimal set of queue entries such that, if

∃r.A ⊑ B ∈ O, then B ∈ Ô(∃r.A).
In the modified algorithm, the queues are used as follows: since the sets S(A) are

initialized with {A,⊤}, we initialize queue(A) with Ô(A) ∪ Ô(⊤), i.e., we add to the
queues the immediate consequences of being an instance of A and ⊤. Then, we repeatedly
fetch (and thereby remove) entries from the queues and process them using the procedure
process displayed in Figure 3. To be more precise, process(A,X) is called when the queue
of A was non-empty and we fetched the queue entry X from queue(A) to be treated next.
Observe that the first if-clause of the procedure process implements R1 and (part of) R3,
and the second if-clause implements R2, (the rest of) R3, as well as R4 and R5. The procedure
process-new-edge(A, r,B) is called by process to handle the effects of adding a new pair
(A,B) to R(r). The notation ⊑∗

O used in its top-most for-loop stands for the reflexive-
transitive closure of the role hierarchy axioms in O. Queue processing is continued until
all queues are empty. Observe that the refined algorithm need not perform any search to

c©2007/TONES – March 31, 2007 17/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

check which completion rules are applicable.
This is the major and most novel optimization implemented in the CEL reasoner.

Other optimizations that have helped enhance the performance are listed below:

• Reuse of new concept names. A complex concept term may occur twice or more in an
ontology; a unique name is introduced per concept term instead of per occurrence.

• Encoding of user concept and role names. For faster internal processing, potentially
long names are encoded into fixed integers, which are decoded back to the original
names only when the user demands output.

• Optimized computation of subsumption hierarchy from the completed implication
sets. In short, we consider the implication sets as complete information about told
subsumption and adopt a simplified version of the known classification method with
told information [BFH+94].

4.3 How to use

The CEL system is available as a binary executable which can run on most Linux platforms.
The latest version is CEL v0.94 which includes all features illustrated in this system
description. The distribution bundle can be obtained from:

http://lat.inf.tu-dresden.de/systems/cel/

The package consists of the CEL executable, the user manual [Sun05a], and some toy EL+

ontologies. After extracting the bundle, the executable cel under ./bin can be started up
without need for installation. However, the following system requirements are assumed:

• Linux operating system;4

• Physical memory at least 128MB;5

• At least 8MB of available hard-disk space.6

Essentially, there are two modes of operations: stand-alone reasoner and backend
server. Backend reasoning mode has an advantage over the other mode in that the users
are insulated from technical hassles and potentially incomprehensible output messages.
Moreover, the CEL reasoner may be installed on a high-end dedicated computing server,
while the actual user computer may run an application that exploits services from CEL.
On the other hand, stand-alone mode of operation avoids unnecessary overheads, e.g.
communication and parsing, and as a result, is much more efficient and scalable.

4It has been tested successfully on RedHat, Debian, and SuSE.
5Considerably more memory may be needed for larger ontologies.
6Of course, much more disk space is required to archive classification results (either subsumer sets,

parent-child relationships or subsumption hierarchy). This could or could not be speculated from the size
of the input ontology.

c©2007/TONES – March 31, 2007 18/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

Ontology axioms DL Syntax CEL Syntax

primitive concept definition A ⊑ D (define-primitive-concept A D)

concept definition A ≡ D (define-concept A D)

general concept inclusion C ⊑ D (implies C D)

concept equivalence axiom C ≡ D (equivalent C D)

concept disjointness axiom C ⊓ D ⊑ ⊥ (disjoint C D)

role domain axiom dom(r) ⊑ C (define-primitive-role r :domain C)

role range axiom ran(r) ⊑ C (define-primitive-role r :range C)

role hierarchy axiom r ⊑ s (define-primitive-role r :parent s)

transitive role axiom r ◦ r ⊑ r (define-primitive-role r :transitive t)

right-identity axiom r ◦ s ⊑ r (define-primitive-role r :right-identity s)

left-identity axiom s ◦ r ⊑ r (define-primitive-role r :left-identity s)

complex role inclusion r1 ◦ r2 ⊑ s (role-inclusion (compose r1 r2) s)

Table 1: The CEL Syntax for EL+ ontology axioms.

CEL as a stand-alone reasoner. In order to use CEL to classify an ontology, the user
must already have the ontology formulated in EL+ in a small extension of the KRSS syntax
[PSS93], henceforth called CEL syntax. With this LISP-like syntax, it is easy to port
existing ontologies that have been used with well-known DL reasoners like RacerPro

and FaCT. For building up ontologies, the expressive means shown in Table 1 can be used,
where conventionally A,B denotes a named concept, C,D concept descriptions, and r, s
named roles. Though only implies and role-inclusion axioms can sufficiently model any
EL+ ontology, it is often very useful and also makes the ontology more comprehensible to
provide auxiliary axioms. An EL+ ontology is effectively a text file containing axioms of
the forms shown in the right column of Table 1.

As an example, the toy ontology in Figure 2 formulated in the CEL syntax can be
found in the distribution bundle under ./tbox/med.tbox. The user can either load this
ontology into the system by calling (load-ontology "med.tbox") or enter interactively
at the prompt each axiom from the ontology. The preprocess is carried out while the
ontology is being loaded, and once this is finished, (classify-ontology) can be invoked
to classify all concept names occurring in the ontology (eager subsumption approach).
Subsumption query between two concept names can be queried using (subsumes? B A).
If this is called after classification, it simply looks up in the computed subsumption
hierarchy. Otherwise, it runs a single subsumption test and answers without needing to
classify the whole ontology first (lazy subsumption approach). After having classified the
whole ontology, CEL allows the user to output the classification results in different formats:
(output-supers) to output the subsumer sets for all concept names occurring in the
ontology; (output-taxonomy) to output the Hasse diagram of the subsumption hierarchy,
i.e., parent-child relationships; and (output-hierarchy) to output the hierarchy as a
graphical indented tree. As an example, Figure 4 depicts screen shots of the results of
(output-hierarchy) and (output-taxonomy) after classifying the ontology med.tbox.

c©2007/TONES – March 31, 2007 19/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

Figure 4: CEL with its innate interactive interface

Through its command-line options, CEL can also work as a stand-alone reasoner with-
out interaction from users. For instance, the command line:

$cel -l file -c -outputHierarchy -q

can be entered to load and classify an ontology from file , and then output the hierarchy.
For a more detailed description of the CEL interface, we refer to the CEL user manual
[Sun05a].

CEL as a backend reasoner. Alternatively, the user can also exploit CEL reasoning
capabilities through the DIG interface7 and a graphical ontology editor. To do this, CEL

has to be started as a DIG reasoning server by the following command line:

$cel -digServer [port]

where port is defaulted to 8080 but can be overridden.
Once started in this mode, an ontology editor can connect to CEL and exploit its

reasoning services either locally or remotely via the Internet. The upper floating dialog in
Figure 5, “Reasoner Inspector,” displays the expressive means that can be handled by CEL

7The DIG (DL Implementation Group) interface is an XML-based standard that defines an interfacing
language for seamless communication between a DL service provider (DIG server) and a DL application
(DIG client). See http://dl.kr.org/dig/

c©2007/TONES – March 31, 2007 20/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

Figure 5: CEL as a DIG reasoner supporting the Protégé OWL editor

in terms of DIG language. The DIG interface for CEL has been tested successfully with
Protégé OWL editor.8 The main window in Figure 5 illustrates the asserted subsumption
hierarchy (input) and the inferred subsumption hierarchy (output) within the editor,
whereas the small floating dialog, “Connected to CEL 0.9,” displays an interaction log
between the DIG client and the DIG server.

8See http://protege.stanford.edu/plugins/owl/

c©2007/TONES – March 31, 2007 21/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

5 Swoop

5.1 Introduction

Swoop is built primarily as a Web Ontology Browser and Editor, i.e., it is tailored specif-
ically for OWL ontologies. Thus, it takes the standard Web browser as the UI paradigm,
believing that URIs are central to the understanding and construction of OWL Ontolo-
gies. The familiar look and feel of a browser emphasized by the address bar and history
buttons, navigation side bar, bookmarks, hypertextual navigation etc are all supported
for web ontologies, corresponding with the mental model people have of URI-based web
tools based on their current Web browsers.

All design decisions are in keeping with the OWL nature and specifications. Thus,
multiple ontologies are supported easily, various OWL presentation syntax are used to
render ontologies, open-world semantics are assumed while editing and OWL reasoners
can be integrated for consistency checking. A key point is that the hypermedia basis of
the UI is exposed in virtually every aspect of ontology engineering — easy navigation
of OWL entities, comparing and editing related entities, search and cross referencing,
multimedia support for annotation, etc. — thus allowing ontology developers to think of
OWL as just another Web format, and thereby take advantage of its Web-based features.

A diverse array of ontology related tasks can be performed in Swoop, namely9:

• Authoring concept descriptions and axioms,

• Structuring the ontology, and

• Error management.

Swoop is accessible to both, novice users interested in casual ontology building and use,
and expert users interested in robust ontology modeling and analysis. The development
of Swoop started at the University of Maryland in 2004. Within TONES, the error
management capabilities of the editor have been improved and new features concerning
ontology modularization and reuse have been implemented. Finally, Swoop has been
extended to support OWL 1.1.

Swoop can be downloaded from at the following address: http://www.mindswap.org/
2004/SWOOP

5.2 Swoop Features

In this section, we describe the features of Swoop that are in keeping with its design
rationale and goals mentioned earlier.

5.2.1 Ontologies based on the Web Architecture

The idea behind Web ontology development is different from traditional and more con-
trolled ontology engineering approaches which rely on high investment, relatively large,
heavily engineered, mostly monolithic ontologies. For OWL ontologies, which are based on

9See Deliverable D13 for a description of these tasks.

c©2007/TONES – March 31, 2007 22/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

the Web architecture (characterized as being open, distributed and scalable), the empha-
sis is more on utilizing this freeform nature of the Web to develop and share (preferably
smaller) ontology models in a relatively ad hoc manner, allowing ontological data to be
reused easily, either by linking models (using the numerous mapping properties available
in OWL) or merging them (using the owl:imports command). Thus, it becomes es-
sential for a Web ontology development tool to scale to multiple ontologies easily, and
to allow tasks such as creation, browsing, editing, search, reuse, linking, merge/split of
OWL ontology models in the context of multiple ontologies.

In order to attain this key requirement, Swoop ensures that users are free to load
multiple OWL ontologies in any manner they prefer. The easiest and most direct way
to load an OWL Ontology is by entering its physical URL (Web or local file address)
in the address bar. This action not only pulls in the requested ontology, but also loads
any imported ontologies (defined using owl:imports) into Swoop automatically. The
bookmarks feature can be used to store, categorize and reload ontologies directly (as is
the case in standard web browsers). Finally, depending on user preference, an ontology can
also be brought into Swoop rather seamlessly during browsing/editing, e.g., attempting
to view or refer to an externally referenced entity while in a particular ontology can load
the external ontology automatically.

There are certain characteristics of OWL ontologies which are presented to the user
when a new ontology is brought into Swoop. The Ontology Renderer plugins in Swoop
accomplish this, and display statistics such as (see Fig. 6):

• the logical constructs used in the ontology model which determine the OWL species
level the ontology belongs to, i.e., OWL Lite, DL or Full

• the Description Logic (DL) expressivity of the ontology - a key factor in determining
decidability of reasoning

• number of classes, properties, individuals etc. (we intend to extend the granularity
to axioms, e.g., no. of disjoint axioms, no. of nominals used etc.)

• annotations on the ontology object itself (including owl:imports)

5.2.2 Editing Web Ontologies

Consider a scenario in which a user is building an ontology for describing the adminis-
trative hierarchy (with concepts such as Department, Faculty, Staff, Student etc)
of a university. This user can make use of existing concepts in well-known upper-level
ontologies such as FOAF or Cyc (for generic concepts such as Person), or in similar on-
tologies created for other universities. Another user interested in building a finer-grained
ontology than the one above, say for describing his/her research group and can now use
the university ontology to refer to or define certain concepts. In this manner, the open
development cycle of create-link-share web ontologies ensures that a large amount of in-
terrelated semantic content is available in ontologies.

c©2007/TONES – March 31, 2007 23/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

Figure 6: Swoop Ontology Renderers: display statistical information about the on-
tology, annotations, DL expressivity and OWL species level.

In keeping with the above scenario, Swoop allows users to freely link (map between)
entities in different ontologies using a single common interface, which lists each ontology
loaded in Swoop along with its corresponding entity list (see Fig: 7) 10

However, there are additional caveats to be considered while editing in a multiple
ontology setting as described above. For starters, it is essential to provide a search feature
to help users find related ontological information. Having found such information, it then
becomes critical to compare and analyze this information in order to determine which
parts, if any, are useful (verifying relevance, accuracy etc). Finally, the user needs a
flexible reuse scheme that supports either borrowing the entire external ontology model
if desired, or a subset of it which is relevant, allowing suitable modifications if any. We
deal with each of these three caveats in detail as reflected in Swoop.

Search in Swoop essentially performs a lookup for entities (classes/ properties/ indi-
viduals) across single or multiple ontologies, among those that have been loaded. The
results are obtained as a set of hyperlinks (in keeping with the hypermedia-based UI)
allowing the user to browse the search results easily.

During an extensive search/browsing process, the user may need to set aside and
revisit interesting search results. In Swoop we have a provision to store and compare
OWL entities via a Resource Holder panel. Items can be added to this panel at
any time and they remain static there until the user decides to remove or replace them

10It is important to consider the scenario in which a user edits an external ontology present at a URL
under the control of a third party. In this case, a local version of the ontology is maintained separately and
its physical location is used for reference in an owl:import axiom that specifies importing the external
ontology.

c©2007/TONES – March 31, 2007 24/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

Figure 7: Editing in Swoop: Clicking the ‘Add’ hyperlink next to an assertion heading
(e.g., Intersection of) pops up a window to specify corresponding new information (e.g.,
the new intersection class). In this case, the user is specifying a class Researcher from
an external ontology as an intersection element

at a later stage. This common placeholder acts as an excellent platform for performing
interesting engineering tasks such as comparing differences in definitions of a set of entities;
determining semantic mappings between a specific pair of entities or simply storing entities
for reusing in another ontology.

5.2.3 Adhering to OWL Specifications: Presentation and Reasoning

Currently, various presentation syntax exist for rendering OWL ontologies such as
RDF/XML and OWL Abstract Syntax. It is important to support these different syntax
while designing an open, Semantic Web ontology engineering environment. One reason
for this is that people tend to have strong biases toward different notations and simply
prefer to work in one or another. A second is that some other tool might only consume one
particular syntax (with the RDF/XML syntax being the most typical), but that syntax
might not be an easy or natural one for a particular user. A third is that it is important
to support the “view source” effect, allowing cut and paste reuse into different tools in-
cluding text editors, markup tools, or other semantic web tools. For these reasons, Swoop
has default plugins for all three presentation syntax mentioned above. Users are free to
browse and edit ontological data, either at the level of a single entity (inline) or at the
level of the entire ontology as a whole, in any syntax as desired, switching between syntax
on a single click.

In addition to the default OWL presentation syntax, we are working on three addi-
tional renderers to help users visualize and understand OWL ontologies better. These

c©2007/TONES – March 31, 2007 25/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

include a Concise Format entity renderer, where the idea is to generate a “Web doc-
ument” that displays all information related to a particular OWL entity concisely in a
single pane; a Natural Language entity renderer that provides concise, accurate NL
paraphrases for OWL Concepts based on a variety of NLP techniques; and an OWL

Graph visualization renderer based on TouchGraph that displays concise conceptual
graphs of the ontology model. Each of these renderers provide a different view of the
model, allowing users to understand logical definitions and relationships better.

5.2.4 Reasoning in OWL

Having covered the presentation aspects of OWL ontologies, we now focus on the reasoning
support in Swoop. Note that OWL-DL is primarily based on description logic, with open-
world semantics and a non unique name assumption (UNA). Swoop strictly maintains the
latter two aspects during editing, e.g., it does not try to ‘interfere’ with creating the KB
(i.e., prevent the creation of inconsistencies) by making any additional alterations or
assumptions, and accurately reflects the users’ actions based on open world semantics.
As for the DL reasoning, Swoop allows for special-purpose reasoner plugins that provide
standard reasoner services such as satisfiability (of a single class as well as consistency
of the ontology), subsumption (between classes and between properties), and realization
(types of an instance). Additionally, reasoners can support the optional explanations
feature, which is used for sophisticated ontology debugging as explained later.

Swoop contains two additional reasoners (besides the basic Reasoner that simply uses
the asserted structure of the ontology): RDFS-like and Pellet (http://pellet.owldl.
com/). While the former is a lightweight reasoner based on RDFS semantics, the latter,
Pellet, is a powerful description logic tableaux reasoner. Pellet has a number of advan-
tages: It natively supports OWL, including a repairable subset of OWL Full; it has exten-
sive support for XML Schema datatypes; it has ABox (a.k.a., instance) support; it covers
the broadest range of OWL DL of any reasoner that we know, including both SHIN (D),
SHON (D), SHIO(D), and various subsets of their union, SHOIN (D) (a.k.a., OWL
DL); it is open source and in active, public development. The last is very important for
certain debugging strategies which require access to the internals of the reasoner as noted
later.

The above reasoners provide a tradeoff between speed and quality of inference results,
e.g., the RDFS-like reasoner, while much faster than Pellet in execution, is unsound
(results maybe inaccurate if the ontology is inconsistent) and incomplete (does not list
all possible inferences). Yet, in most cases, it provides interesting and useful results for
ontology authors, and moreover, the reasoners can be used in conjunction to analyze the
ontology quickly while editing it.

5.2.5 Ontology Debugging and Repair

DL reasoners can be used to detect inconsistencies in definitions of concepts (a.k.a. unsat-
isfiable concepts). However, typically reasoners only report that a class is unsatisfiable,
not why. Moreover, they do not report on inter-dependencies (if any) of the unsatisfi-
able classes, i.e., if a class directly depends on another for its unsatisfiability (e.g., by an
existential property restriction on an unsatisfiable class). We argue that both forms of

c©2007/TONES – March 31, 2007 26/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

explanation are essential for the purpose of debugging ontologies; while the former can
be used to understand and rectify problematic axioms / class expressions, the latter can
help prune out dependency bugs and let the modeler focus on the root (source) of the
problem alone.

We distinguish two families of reasoner-based techniques for supporting diagnosis of
the form described above: glass box and black box techniques. In glass box techniques,
information from the internals of the reasoner is extracted and presented to the user
(typically used to pinpoint the type of clash/contradiction and axioms leading to the
clash). In black box techniques, the reasoner is used as an oracle for a certain set of
questions e.g., the standard description logic inferences (subsumption, satisfiability, etc.)
and the asserted structure of the ontology is used to help isolate the source of the problems
(can be used to find dependencies between unsatisfiable classes). Swoop currently also
provides support for repairing unsatisfiable concepts (see D13 for details).

5.3 How to Use

In order to download the software, access the Swoop homepage at http://www.mindswap.
org/2004/SWOOP. After unzipping the downloaded file (SWOOP-xxxx.zip), execute
runme.bat (/ runme.sh) present inside the ”SWOOP-xxxx” directory to start the ap-
plication on a Windows (/ Mac or Unix) machine. For loading large ontologies such as
NCI, you need to allocate more memory for Swoop - use the runme-HIGH file in this case.

The application requires Java 1.4 installed on your machine. You can download the
latest version of Java from http://java.sun.com/j2se/1.4/download.html

The SWOOP application includes/uses the following API’s:

• WonderWeb OWL API (http://sourceforge.net/projects/owlapi) MODI-
FIED SOURCE (see changelog at the end of source file).

• XNGR API (http://xngr.org/)

• Jakarta Slide WebDAV API (http://jakarta.apache.org/slide/)

• QTag API(http://www.english.bham.ac.uk/staff/omason/software/qtag.
html).

• Hexidec Ekit API (http://www.hexidec.com/ekit.php) MODIFIED SOURCE
(see changelog at the end of source file) which are located in the /lib sub-directory
under SWOOP. Additional jars in the lib directory (if present) are plugin depen-
dencies.

SWOOP employs a plugin based system for easy extension. Sample plugins can be
downloaded from http://www.mindswap.org/2004/SWOOP/plugins.

c©2007/TONES – March 31, 2007 27/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

6 RacerPorter

6.1 Introduction

RacerPorter is a text-based ontology editor and the default GUI client of the Racer-

Pro description logic system (DLS). The metaphorical name RacerPorter was chosen
to stress that a “user friendly entrance” shall be provided to an otherwise “faceless” DL-
server, like a hotel porter. Although quite a number of ontology browsing and inspection
tools (called OBIT in the following) as well as authoring tools exist and numerous papers
have been written about them [KPS+05, LN05, LN06, KMR04], RacerPorter repre-
sents a different approach. We present the design principles behind RacerPorter as
well as the tool.

As already mentioned before (e.g., in [LBF+06]), ontology editors are currently the
main software tool for ontology design tasks. They provide for functionality such as
browsing and editing single ontology elements and the whole ontology structure, perform-
ing communication with background reasoners, visualization of reasoners’ feedback and
so on.

When developing RacerPorter, the aim was not only to support this basic func-
tionality but also to enhance usability and to solve certain “scalability problems”. Users
“unscrupulously” load rather large OWL files into the reasoner and expect their tax-
onomies to be visualized with the ontology design tools such as RacerPorter. We
reacted to the complaints of RacerPorter users by enhancing the performance and
usability of previous versions of RacerPorter on large KBs.

RacerPorter exclusively uses the KRSS port of RacerPro, although support for
OWL is included as well. Compared with DIG, KRSS has the advantage that it can
also be used as a shell language (DIG was designed under a different perspective). The
XML messages standardized by DIG are not on the correct level of abstraction for a shell
language (even if a non-XML serialization of DIG messages were used).

In a nutshell, RacerPorter has been designed to meet the following design charac-
teristics:

1. RacerPorter offers a KRSS shell for interactive communication with RacerPro.
Already RICE (visit http://www.ronaldcornet.nl/rice/) offered a shell.

2. Unlike tools such as OntoTrack [LN05, LN06], Swoop [KPS+05] and GrOWL [SK06],
RacerPorter is not designed to be a graphical OWL authoring tool. However,
we believe that for expert users also text-based editors are useful and these text
editing facilities have to be tightly integrated with graphical visualization tools. In
RacerPorter, we added a text editor with Emacs-styled buffer evaluation mech-
anisms which in combination with a shell allows for rapid and interactive authoring
of KRSS KBs.

3. Obviously, ontology visualization is important as well. Ontologies have different
aspects, i.e., intensional and extensional ones. One can expect that an OBIT is
able to visualize taxonomies, role hierarchies as well as ABoxes as graphs and/or
trees (of certain kind, using certain graph layout algorithms). An OBIT should thus
provides appropriate visualization facilities.

c©2007/TONES – March 31, 2007 28/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

4. Given the fact that OWL KBs tend to become bigger and bigger, appropriate nav-
igation, browsing and focusing mechanisms must be provided, since otherwise the
user gets “lost in ontology space”. An OBIT must thus provides appropriate (syn-
tactic and semantic) mechanisms.

5. OBITs (as well as the corresponding DLSs, of course) should be able to process very
large ontologies (scalability aspect).

6. Given that both shell-, gadget- as well as graph-based interactions are offered, the
question arises: How to link these interactions, and the results produced by them?
An OBIT must provide appropriate solutions.

7. An OBIT should be designed to work in a non-blocking way (asynchronously). This
is especially valuable if large ontologies are processed, and processing takes some
time.

8. It is desirable if an OBIT can maintain different connections simultaneously to
different DLS servers. While one server is busy, the user can change the active
connection and continue work with another server.

9. An OBIT should avoid opaqueness. Especially if modes are used (and the interface
is stateful), then it is necessary to appropriately visualize these modi.

10. Functionality for starting, stopping and controlling DL servers is desirable. Since
each DLS has its proprietary functions and peculiarities, it becomes clear that at
least part of the OBIT functionality must be tailored for the target DLS.

6.2 Towards User-Friendly and Scalable OBITs

A KRSS or OWL ontology represented in a DLS has many different aspects: the taxonomy
represents the subsumption relationships between concept names or OWL classes, the role
hierarchy represents the subsumption relationships between roles or OWL properties, and
the ABox represents information about the individuals and their interrelationships (the
extensional knowledge). Additional aspects may be present, e.g. queries and rules. Thus,
we can make a “shopping list” of “things” which must be accessed, managed and visualized
with a DLS OBIT: different DL servers and their connection profiles11, TBoxes, ABoxes,
concepts, roles, individuals, queries and rules, ABox assertions, etc.

In order to avoid an overloaded GUI – which would try to represent these different
aspects and aspect-specific functionality in a single window pane – in a similar way as
other graphical ontology tools, we favor tabbed interfaces in order to achieve a clean
separation of different aspects. Different tabs thus present different aspects of the ontology
together with aspect-specific commands. The term “different perspectives” also describes
the approach quite well.

Whereas many operations are directly performed on the displayed representations of
the objects on the RacerPro servers by means of mouse gestures (direct manipulation),

11The connection and server settings can be managed using the so-called connection profiles which are
familiar from networking tools such as SFTP browsers.

c©2007/TONES – March 31, 2007 29/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

we also favor push buttons to invoke commands. In many cases, push buttons will directly
invoke KRSS commands, e.g., send an abox-consistent? to the connected DL server.
Push buttons also have the neat effect to inform the user directly about commands which
are reasonable to apply or which can be applied at all in a given situation, simply by
being visible, so there is no need to search for a command in a pull-down menu, which
distracts focus. However, it should also be noted that the buttons occupy screen space,
and using buttons and menus should be kept in balance.

In many cases, some input arguments must be provided to KRSS commands. Input
arguments are provided directly by the user if direct manipulation is employed for the
interaction, but with simple push buttons this is not directly possible. Either the user
must be prompted for arguments, or a notion of “current objects” must be employed.
These current objects may have been (implicitly) selected by the user before and are from
then on automatically supplied as input arguments to KRSS functions. This results in
a stateful GUI. Sometimes, stateful GUIs are considered harmful. However, we will see
that states are unavoidable if non-trivial ontology-inspection tasks shall be performed.
Additionally, since also a DLS has a state, this state should be adequately reflected by
the GUI as well (which automatically makes it stateful). In order to avoid opaqueness
it is very important that the current state is appropriately visualized, e.g., in a status
display which is visible at any time. According to the shopping list mentioned before,
we must thus have a notion of a current DLS server, a current TBox and ABox, current
concept, individual and role, current query, etc. These current objects partially constitute
the current state of the OBIT.

The different tabs of the OBIT visualize often different objects. For example, one tab
shows the individuals in the current ABox (the individuals tab), and another tab shows
the concepts in the current TBox (the concepts tab). The information displayed in a
certain tab thus depends on the current state. Additionally, the current concept (or the
current individual) will be highlighted in the concepts tab (resp. the individuals tab), so
it can be recognized easily. Two different tabs can also present the same objects, but use
different visualizations. For example, the taxonomy tab also presents the concepts in the
current TBox, but displays them as nodes in a graph whose edges represent subsumption
relationships. Since all tabs display information according to the current state, the shown
information is interrelated.

For certain ontology inspection tasks, it is further necessary to relate the information
displayed on different tabs. One must establish a kind of information flow between dif-
ferent tabs. Let us illustrate this need for an input/output flow of information with an
example.

As described, the individuals tab presents the list of individuals in the current ABox.
If an individual is selected from that list, it automatically becomes the current individual.
In order to explore of which concepts this individual is a direct instance, it is possible to
push the “Direct Types” button which sends the direct-types KRSS command to the
DLS, using the current ABox and current individual as arguments. In many cases, further
operations shall be applied to the result concepts just returned, e.g., in order to explore
which other instances of these concepts are presented in the KB. Thus, the concepts tab
should provide a functionality which allows to refer to and highlight the just returned
concepts, so that subsequent operations can be easily applied on them.

c©2007/TONES – March 31, 2007 30/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

In order to establish this kind of information flow, we augment the notion of the current
state by also including sets of selected objects in the state. Thus, the concepts returned by
the direct-types command can become selected concepts. Selected concepts are shown
as highlighted, selected items in the tabs which present concepts. Moreover, there are
also selected individuals and selected roles. Objects can either be selected manually by
means of mouse gestures, or automatically by means of KRSS commands, no matter how
they are invoked. All what matters is the notion of selected objects. The set of selected
objects is also called the clipboard. The current objects are seen as specific selected
objects. Furthermore, all this state information is session-specific, given the fact that
the OBIT should be able to maintain several connections and thus associated sessions
simultaneously.

As said earlier, a shell tab is provided for interactive textual communication with the
DLS. We claim that only shell-based interactions can offer the required flexibility and ex-
pressivity needed for advanced ontology inspection tasks. The shell must be incorporated
into the above mentioned information flow as well. For example, if the direct-types

command is entered into the shell, then it must be possible to refer to the current ABox
as well as to the current individual which has been selected with the mouse in the indi-
viduals tab before (without having to type its name or having to use “copy & paste”).
Furthermore, after the command was executed, it must be possible to select the returned
concepts which are now shown in the shell as command output.

Focus control and navigation are two other important issues. It is well-known that
the notion of current and selected objects can be used to control the focus. For example,
the current concept can provide the root node in the taxonomy graph display. Only
the descendants of the current concept will be shown. To browse larger taxonomies, a
“depth limit” cutoff on the paths to display can be specified, and an interactive “drill
down”-like browsing style can be realized. The node gesture “select” (e.g., a left mouse
click) automatically changes the current concept and thus the graph root. If the graph
is redrawn immediately, this allows to drill down a large taxonomy interactively and
dynamically. However, this automatic graph recomputation changes the focus.

In principle, changing the focus automatically can be very distracting. In Web
browsers, the navigation buttons (back and forth) are thus of utmost importance; they
allow to reestablish the previous focus effortlessly. Thus, a focus or history navigator
should be present in an OBIT, as also found in Swoop or GrOWL [KPS+05, SK06]. How-
ever, many users are unhappy with hyperlink-like focus-destroying operations. In Web
browser, tabbed browsing has been invented to address this problem. Thus, we think that
the user should be able to determine when and how the focus is changed once a gadget is
selected.

Sometimes, it is also desirable to focus on more than one object, e.g., for ABox graphs.
We can simply use the selected objects for that as well. In case of the ABox graph, each
selected individual can specify a graph root, and unraveling (as understood in Modal
Logics) is used to establish a local perspective from that individual’s point of view (so
there is one graph per selected individual). This resolves many visual cluttering problems.
The clipboard is thus not only a structure that enables flow of information, but can also
be used to control the focus. This also implies that the focus control is now highly flexible:
Since the clipboard can be filled from results of KRSS commands, even a semantic focus

c©2007/TONES – March 31, 2007 31/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

control is possible. For example, an ad-hoc nRQL query can be typed into the shell, and,
with the push of a button, one can focus on the returned ABox individuals in the ABox
graph tab. In our terminology, this kind of focusing by invoking inference services (such
as, e.g., direct-types) is called semantic focusing. However, one also often wants to focus
on individuals simply by their names. Thus, a kind of search field is needed. Objects that
contain the search string get selected automatically. This enables a so-called syntactic
focusing. We have found that many available tools don’t offer adequate mechanisms to
achieve this kind of information flow and focus control.

Summing up, we conclude that the current state must be a vector <current

objects,selected objects,active tab,display options>. Each time a state changing
operation is performed by the user (e.g., the current objects or the clipboard is changed),
a so-called history entry is automatically created, which is just a copy of the current state
vector. History entries are inserted at the end of a queue, the so-called navigation history.
A history navigator offers the standard navigation buttons. The OBIT always reflects the
current state, no matter whether this is the latest one or a historic state from the history.
A history entry only preserves the state information of the GUI, but not the content of
the DLS at that time. Thus, a well-known problem arises here: If a historic state is
reactivated, then it may no longer be possible to actually refer to the objects referenced
by that state, since they may have been already deleted from the DLS. This problem is
well-known to WWW users which keep a browsing history. There is no practical solution
to this problem (one cannot preserve “copies” of DLS server states in history entries).

We believe that OBITs should allow for asynchronous usage. While a time-consuming
command is processed by the DLS, the GUI shouldn’t block; instead, the result should be
delivered and displayed asynchronously once available. Although the busy DLS will not
accept further commands until the current request had been fulfilled (nowadays, there are
no true multi-user DLS), in the meantime the OBIT should a) display status information
in order to inform the user what the DLS is currently doing (future versions of RacerPro

and RacerPorter will also support progress bars), and b), if possible, allow the user
to do other things, e.g., continue editing a KRSS KB, or connect to and work with a
different DLS.

6.3 RacerPorter – How to Use

RacerPorter was designed according to the design principles just explained. Each tab
has a uniform organization, which, we believe, makes the GUI consistent and compre-
hensible. With the exceptions of the log tab and the about tab, each tab has six areas.

Figure 8 shows the taxonomy tab. Let us describe the six areas of this tab.
The first area shows the available tabs: Profiles, Shell, TBoxes, ABoxes, Concepts,

Roles, Individuals, Assertions, Taxonomy, Role Hierarchy, ABox Graph, Queries, Rules,
Log, and About tab. The second area is the status display. It displays the current
objects, the current namespace, the current profile (representing the current server con-
nection), as well as the current communication status. The clipboard content is not
shown, only the cardinality of the sets of selected objects (in the small number fields).
The selected objects are highlighted once an appropriate tab is selected. The third area

shows the history navigator. The fourth area is the tab-specific main area. Tab-specific

c©2007/TONES – March 31, 2007 32/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

5

6

3

2

1

4

Figure 8: RacerPorter – The Taxonomy Tab

display options and commands are then presented in the fifth area. Finally, there is the
info display which is the sixth area. The info area is similar to the shell; however, it
only “echos” the shell interaction (accepts no input). All user-invoked KRSS commands
are put into the shell which are thus also echoed in the info display. This helps to avoid
opaqueness, and as a side effect, the user learns the correct KRSS syntax.

The taxonomy and the ABox graph tabs use graph panes for the fourth area. With
the exception of the shell, log and logo tab, the other tabs use list panes. List panes
allow single or multiple selections of items; selected items represent the selected objects
(clipboard). The last selected item specifies the current object. A search field is always
present and allows to select objects by name. Selected items will appear on the top of
the list if the “Selected First” checkbox is enabled. Some list panes display additional
information on their items in multiple columns; e.g., in case of the TBox pane, not only
the TBox name is shown, but also the number of concepts in that TBox, profile and DLS
server information is shown in the profiles list, etc.

c©2007/TONES – March 31, 2007 33/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

The graph panes are more complicated to handle since they allow to specify focus,
layout as well as update options. In case of the ABox graph pane, one can determine
which individuals and which edges are displayed. Thus, for both individuals and roles,
the focus can be set to the current objects, to the selected objects, or to all objects.
Appropriate radio buttons are provided. Additional radio buttons control whether only
told role assertions, or also inferred role assertions shall be shown. Additional buttons
allow to specify whether the graph display shall be updated automatically if the focus or
layout options changes, or whether the user determines when an update is performed. In
the latter case, the user first uses the button “Request Graph” to acquire the information
from RacerPro (phase 1). Once the graph is available, the “Display Graph” button
becomes enabled; if pushed, the graph layout is computed and displayed. Both phases can
be canceled (and different focus and layout options selected subsequently) if they should
take too long12.

Finally, let us briefly discuss some features of the shell. The shell provides automatic
command completion (simply press the tab key) as well as argument completion. The
potential commands / arguments are presented in a pop-up list. Command completion
is achieved by accumulating all results ever returned by KRSS commands. In order to
make it easy to reexecute commands, the shell maintains its own shell history (not to be
mistaken with the navigation history). Since the shell is tailored for KRSS commands in
Lisp-syntax, we provide parenthesis matching, convenient multi-line input as well as pretty
printing. Moreover, one no longer has to use full qualified names for OWL resources. To
select the objects returned by a shell command, one has to hit the appropriate button
(e.g., the “Selected Individuals := Last Result” button).

The log tab keeps a communication log which can be inspected at any time in order
to learn what the DLS is currently doing. The current communication with RacerPro

is also visualized in the request and response status fields; appropriate colors are used
to visualize the different stages of such a communication (first the request is send, then
RacerPro is busy, then the result is received over the socket, finally the result is parsed,
etc.; note that errors can occur at any time in such a processing chain).

RacerPorter includes an Emacs-compatible editor with buffer evaluation mecha-
nism (see Figure 1). Furthermore, RacerPorter will provide for visualization of expla-
nations if an inconsistency occurs. This is done in two ways: a) by highlighting of culprits
for inconsistency in the axioms and assertions tabs, and b) by highlighting of culprits in
the editor window.

In the queries tab, nRQL queries can be executed. Besides of this, next versions of
RacerPorter will also allow for sending SPARQL queries and displaying result tuples
in the special SPARQL tab.

RacerPorter also includes basic functionality to start and stop RacerPro servers;
startup and connection options can be specified with a profile editor. Finally, we want to
stress that RacerPorter is a multi-session tool; thus, the current state and history, but
also the shell content, is session or profile specific. Thus, the content of the shell must be
saved and reinstalled once the original profile or session is reactivated. As one expects,
this can be very memory-intensive, but thats the only way to do it.

12Although RacerPorter does not block in phase 1, unfortunately we have to block the GUI in phase
2 due to a restriction of the GUI framework we are currently using.

c©2007/TONES – March 31, 2007 34/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

6.4 Some Notes About Performance

We learned that a lot of effort must be put into an OBIT until it can be successfully
used on large KBs. We tested the redesigned version of RacerPorter on the OpenCyc
ontology [Ope] consisting of 25568 concepts, 9728 roles and 62469 individuals. The result
is that RacerPorter can be used to browse and visualize this ontology. Moreover, time
and memory requirements are not too bad. To achieve this, many aspects of the original
code had to be reworked thoroughly. This not only concerns the choice of appropriate
container data structures “that scale”, but also issues like communication over socket
streams. For example, in our case it was no longer possible to simply coerce sequences
of characters read from the socket connected to RacerPro to strings (although this is
a very fast operation), since these strings simply get too big to be represented in the
environment we use. For the implementation of the clipboard, we originally used lists as
data structures. However, if the clipboard contains some ten-thousand instances, one can
easily imagine that performance breaks down, since checking whether an object is selected
(and thus a member of the clipboard) or not is an operation which has to be performed
very frequently. Furthermore, in order to reduce socket communication latency, caches
must be used in order to achieve an acceptable performance. Even the design of theses
caches is demanding.

6.5 Conclusion

Summing up, we have presented design principles for OBITs and showed how they are
realized in RacerPorter. Given the abundance of visualization facilities required, an
OBIT has to link interactions and results into a coherent information flow. In Racer-

Porter, this information flow is established not only between the tabs and the system
core (like a plugin architecture as it is realized, e.g., in Protégé) but also between certain
tabs. To be user-friendly, an OBIT must come up with easy browsing and navigation
solutions even for large ontologies. Although the existing tools are already very impres-
sive, there is certainly room for enhancements, especially regarding visualization of and
navigation in large ontologies in combination with powerful text-based editing techniques.

7 iCom

7.1 Introduction

ICOM (version 3.0) is an advanced CASE tool, which allows the user to design multiple
extended ontologies. Each project can be organised into several ontologies, with the
possibility to include inter- and intra-ontology constraints. Complete logical reasoning
is employed by the tool to verify the specification, infer implicit facts, devise stricter
constraints, and manifest any inconsistency. ICOM is fully integrated with a very powerful
description logic reasoning server which acts as a background inference engine. The
intention behind ICOM is to provide a simple conceptual modelling tool that demonstrates
the use of, and stimulates interest in, the novel and powerful knowledge representation
based technologies for database and ontology design.

c©2007/TONES – March 31, 2007 35/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

The conceptual modelling language supported by ICOM can express:

• the standard Extended Entity-Relationship data model or the standard UML class
diagrams, enriched with disjoint and covering constraints and definitions attached
to classes and relations by means of view expressions over other classes and rela-
tionships in the ontology;

• inter-ontology mappings, as inclusion and equivalence statements between view ex-
pressions involving classes and relationships possibly belonging to different ontolo-
gies.

The tool allows for the creation, the editing, the managing, and the storing of several
interconnected ontologies, with a user friendly graphical interface. In particular, as anal-
ysed in the deliverables D05 and D13, ICOM provides a general framework to support
the typical tasks involved in such activities:

• Authoring of concept descriptions: in this task the author wants to add a new
concept description to the ontology or modify a concept description that was already
contained in the ontology. This may happen either in the design phase of the
ontology or during the maintenance phase. After producing a candidate description
of the concept, the author needs to understand the implicit consequences of his
modelling and the interaction of this description with the other descriptions in the
ontology.

• Generating of concept descriptions: in this task the ontology designer wants to add a
new concept to the ontology, but finds it difficult to describe it. To obtain a starting
point for the concept description, the designer wants to automatically generate an
initial description of the new concept that is based on the position of this concept
in the subsumption hierarchy.

• Structuring of the ontology: in this task the ontology designer wants to improve
the structure of an ontology by inserting inter- mediate concepts into the ontology
diagram. He needs support to decide where to add such concepts and how to describe
them.

The ICOM tool is written in standard Java 5.0, and it is being used on Linux, Mac,
and Windows machines. ICOM communicates via the DIG 1.1 protocol with a description
logic server. ICOM provides an interface for exporting ontologies in OWL-DL format, and
for importing and exporting ontologies in UML-XMI class diagrams format.

The version 3.0 of the ICOM tool is loosely based on the ICOM tool previously released
in 2001 as an Entity-Relationship editor. The foundations of the user-computer interaction
have been radically changed according to the experience of the first ICOM and the studies
of the first part of the TONES project. The system has been completely re-implemented,
using different graphic libraries.

This is the first release of the new ICOM, and it is still not intended to be announced
to the outside community. Rather, we intend to start now an experimentation phase
within the TONES consortium.

c©2007/TONES – March 31, 2007 36/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

7.2 Optimisations

The ICOM tool is intended as a very general framework for ontology design and main-
tenance, and as such it may include with its design and maintenance workflow some of
the technologies as specified in deliverable D13. In particular, the explicit support for
lightweight description logics on the one hand, and the very expressive description logics
such as OWL 1.1 and description logics with concrete domains is underway. The tool is
being currently extended to support explicitly and completely also the task of bottom-
up construction of ontologies, by exploiting the techniques for ontology extraction from
database schemas described in the deliverable D13.

7.3 How to use

A Linux, MacOSX, or Windows machine is required, with Java 5.0 compatible virtual
machine previously installed . ICOM comes as a standalone folder, to be copied anywhere
in the hard disk. A Description Logic reasoning server supporting the DIG protocol needs
to be installed as well, in order to be able to make deductions. After the installation, you
will find an executable file “ontoeditor” in the top level directory; execute it (either the
.bat or .sh extension, depending on your platform), and the system will be launched. The
“ontoeditor” file runs only the editor; it does not start the reasoning component. The
reasoner server must be independently launched before or after launching ICOM.

This is a step list for installing and running ICOM:

1. install a Java 5.0 compatible virtual machine (for example Sun JRE 5.0 at
http://java.sun.com/javase/downloads/index jdk5.jsp)

2. install a Description Logic server accepting DIG connections (for example RacerPro
at http://www.racer-systems.com/)

3. download ICOM executable files from the ICOM home page

http://www.inf.unibz.it/∼franconi/icom/ontoeditor.zip

4. unzip the file ontoeditor.zip into a new directory in the system.

5. execute the Description Logic reasoning server.

6. execute ICOM, by running either the ontoeditor.sh file on Linux and MacOS, or
the ontoeditor.sh file on Windows.

A manual on the operation in ICOM is available in the distribution.
As a quick example, let us consider the concrete example user scenario for ontology

design, as presented in deliverable D07; this is available in the ICOM distribution as
design-project.project. Let us consider the original ontology represented by the dia-
gram in Figure 6 of Section 4.1 of deliverable D07. The ontology states that mobile calls
are a kind of calls (IsA link between entities); that phone points are partitioned between
cell points and landline points (i.e., any phone point is either a cell or a landline point,
but not both: they form a covering and disjoint IsA hierarchy). Each call has at least one

c©2007/TONES – March 31, 2007 37/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

Figure 9: The ontology design scenario in ICOM.

destination phone point (mandatory participation of cell to destination), while it has
exactly one origin phone point. Mobile calls are related to cells through the mOrigin rela-
tionship. Finally, the binary relationship mOrigin is a included in the binary relationship
origin.

Which are the consequences of the above ontology? ICOM is able to automatically
complete the diagram in the way depicted in Figure 9. The added constraint (that ICOM
shows in green) states that in the above scenario it is necessarily true that each mobile
call may have an origin from at most one cell point. The reason why this happens has
been explained as follows. The mOrigin binary relationship is included in the origin

binary relationship, i.e., any pair in mOrigin is also among the pairs in origin. Since
each call participates exactly once as first argument to the origin relationship, if I take
a generic sub class of calls, such as the class of mobile calls, and a sub relationship of the
origin relationship, such as mOrigin, then we can conclude that necessarily each mobile
call participates at most once as first argument to the mOrigin relationship. Nothing can
be concluded about the minimum participation, since the mOrigin relationship may not
contain all calls in the origin relationship.

c©2007/TONES – March 31, 2007 38/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

8 OntoExtract

8.1 Introduction

The Ontology Extraction module is a demo implementation of techniques presented
in [ton07] (section 12, “Ontology Extraction from DB Schemas”). Given a relational
database, the Ontology Extraction module authors an ontology that is to be used as a
conceptual view over the data. The semantic mapping between the database schema and
its conceptualisation is captured by associating views over the data source to the elements
of the extracted conceptual model. The Ontology Extraction module takes as input an
XML file describing the relational schema together with a set of integrity constraints ex-
pressed over it. It produces as output the conceptual model described in XML format
which, for its graphical representation, is imported in ICOM - the Ontology Design tool
(see Section 7).

8.2 How to use

The tool is written on Java, so the only requirement is JRE 1.5. It should work on any
platform supporting it.

The Ontology Extraction module comes as a standalone folder, to be copied anywhere
in the hard disk. To run the module, execute the following command:

java -jar ontoextraction-jar input-file-path output-file-path

where

• ontoextraction-jar is the full path of ontoextraction.jar file,

• input-file-path is the full path of an input XML file,

• output-file-path is the full path of an output file with the .project extension, in order
to import it to ICOM tool.

For a graphical representation of the extracted schema, launch ICOM and open the project
file generated by the module. In addition to the diagram that can be explored and edited
in the main window, SQL view definitions are associated to classes and relationships as
metadata that can be viewed in the corresponding tab of the editor.

8.2.1 Input file format

The Ontology Extraction module takes as input the relational schema described in a
specific XML format. The XML DTD and Schema files describing the input format are
available in the docs folders. Moreover, an example schema, together with the resulting
ICOM project file, is available in the example folder. The readme.rtf file describes the
structure of the input file.

c©2007/TONES – March 31, 2007 39/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

9 Sonic

The name Sonic stands for “simple ontology non-standard inference component”. This
system implements a whole collection of non-standard inferences.

9.1 Introduction

In its current version Sonic implements a range of so-called non-standard inferences.
Sonic comprises basically two parts. One is the Sonic reasoner, which implements the
non-standard inferences. The other part is ontology editor component that realises a
graphical user interface to access the inferences in an easy way. We will concentrate
in this deliverable and report on those inferences that are helpful in realizing ontology
design and maintenance tasks as described in the TONES deliverable D05. In particular
the Sonic system can support naive users in assisting in the following ontology design
and maintenance tasks – as identified in the TONES deliverable D05:

Generating Concept Descriptions. The ontology designer wants to add a new concept
to the ontology, but finds it difficult to describe it. To obtain a starting point for the
concept description, the designer wants to automatically generate an initial description of
the new concept that is based on the position of this concept in the subsumption hierarchy.

Structuring the Ontology. The ontology designer wants to improve the structure of
an ontology by inserting intermediate concepts into the subsumption hierarchy. He needs
support to decide where to add such concepts and how to describe them.

Bottom-up Construct. The ontology designer wants to design the ontology bottom-
up, i.e., by proceeding from the most specific concepts to the most general ones. This
should be supported by automatically generating concept descriptions from descriptions
of typical instances of the new concept.

Ontology Customization. An ontology user wants to adapt an existing ontology to her
purposes by making simple modifications. Since she is not an expert in ontology languages,
she works with a simpler language than the one used to formulate the ontology and/or
with graphical frame-like interfaces.

Concept Inspection. The ontology designer wants to display a concept description in
a way that facilitates understanding of the concept’s meaning.

The first three of these ontology tasks can at least be partially realized by computing
the least common subsumer (lcs). This technique has been discussed in the TONES
deliverable D13 [ton07]. Sonic implements this inference for unfoldable ALEN -TBoxes
and its sub-languages. The user can load such a TBox into Protégé, classify it and then
pick a collection of concept names that she wants to introduce a new concept name for.
The lcs of the selected concepts is computed by the Sonic reasoner and displayed to the
user in the GUI part, where the user can edit the returned concept description, assign it
a concept name and add the new concept definition to the TBox.

The task of structuring the ontology is especially well supported in Sonic by another
service that is based on the lcs inference. In order to provide more information on the
choice of a collection of concepts whose lcs would introduce a new node in the concept

c©2007/TONES – March 31, 2007 40/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

hierarchy, Sonic implements the computation of a concept lattice of concept descriptions.
More precisely, it implements the hierarchy of least common subsumers of the power set
of a set of selected concepts from the ontology. Thus the concept hierarchy of these
lcs concept descriptions is displayed to the user. She can now see whether one of the
selected concept descriptions is causing a too general lcs and leave this concept out in
the computation of the lcs concept description. The method for the computation of
the hierarchy (w.r.t. subsumption) of the prospective lcs concept descriptions without
computing these concept descriptions themselves was introduced in [BM00]. The method
is based on formal concept analysis, see [GW99]. Sonic implements this method for the
DL ALEN .

Ontology customization is another ontology design and maintenance task that Sonic

facilitates. The system implements support for the customization of an expressive back-
ground ontology by a less expressive user ontology. The approach of computing non-
standard inferences w.r.t. a background ontology was introduced in [BST04]. Here the
user builds a user ontology in the user DL by extending an expressive background on-
tology T written in an expressive DL and by using the names from the signature of the
background ontology. Thus, the user DL is extended by the use of concept names that
stand for complex concept descriptions expressed in the more expressive background DL
in T . Sonic implements the relaxed notion for computing the commonalities of a collec-
tion of concept descriptions – namely different forms of good common subsumers (GCS).
A GCS is a common subsumer, but does not need to be the least one. In [BST07] dif-
ferent algorithms for computing a good common subsumer were proposed. Sonic offers
the subsumption based computation of GCS defined in [BST07], which showed a good
behaviour in practice. However, Sonic does not yet support the use of several ontologies,
but the background and user ontology have to be in the same file, in order to be used.

The third ontology design and maintenance task Sonic supports is concept inspection.
Two inference services implemented in Sonic facilitate concept inspection. One is concept
approximation, which “translates” concept descriptions written in an expressive DL into
a less expressive DL. For example to suite the display of a frame-based ontology editor
or simply to support inexperienced users when exploring a knowledge base a simpler DL
might be desirable. Concept approximation generalizes the concept description only as
little as possible. For references on this non-standard inference refer to Deliverable 13 of
the TONES project [ton07].

Since the concept description returned by approximation or also the lcs can grow very
large in practice, it is necessary to display the approximated concept description in a
succinct way. In these cases a minimal rewriting of the concept description is computed.
A minimal rewriting is a concept description equivalent to the original concept description
of smaller, more precisely of minimal concept size. These kind of rewritings (re-)introduce
concept names from the TBox for sub-concept descriptions in the concept description and
thus are more succinct. Sonic implements a heuristic for computing a small, but not in
necessarily minimal rewriting. The method was introduced for unfoldable ontologies in
ALE in [BKM00].

The development of the Sonic system started in a DFG project (Grant BA 1122/4-3).
In its first published version Sonic supported mainly the computation of the lcs in the

c©2007/TONES – March 31, 2007 41/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

DL ALEN (and its sub-languages) and concept approximation of ALC- by ALEN -concept
descriptions, see [TK04b, TK04a]. This version of SONIC was equipped with a GUI
counter part that could be used with the OilEd ontology editor [BHGS01]. In a second
phase the development of Sonic was partially supported by the Network of Excellence for
Semantic Interoperability and Data Mining in Biomedicine (NoE 507505). During that
phase Sonic was extended to the ontology editor Protégé and by the non-standard
inferences minimal rewriting and a version of the good common subsumer, see [Tur05].
Currently, Sonic supports only the ontology editor Protégé.

Recently, during the TONES project Sonic was extended by the above mentioned
computation of lcs lattices. Furthermore the older implementations were improved for
better performance, which is an on-going process. Furthermore Sonic is currently being
extended by a DIG 2.0 interface. Since Sonic needs the connection to a standard DL
reasoner, Sonic will implement a DIG 2.0 standard client, see [TBK+06]. Since Sonic

does not keep a copy of the knowledge base, it needs access to told information from the
DL reasoner and, of course, Sonic will provide an implementation of the NSI extension
of DIG. Both extensions of the core DIG 2.0 interface were also described in [TBK+06].

As most DL systems, Sonic is under development. Next, besides the improvement on
performance, we plan to implement more inferences for the customization scenario. More
information on Sonic can be obtained from the web-page http://lat.inf.tu-dresden.
de/systems/sonic.html.

9.2 Optimizations

Regarding the optimizations in Sonic one must bear in mind that the inferences imple-
mented in this system are computation problems and the output of most of the algorithms
can grow very large–in case of approximation the output can grow up to double exponen-
tial in size of the input. Thus the optimization for these kind of inferences are expedient.

The algorithm that Sonic implements operate on concept descriptions. Thus, if de-
fined w.r.t. an (unfoldable) TBox, a concept name has to be unfolded in order to apply the
inference – a process that is well-known to blow-up the concept description exponentially.
Moreover, the NSIs lcs, gcs and approximation require that the concept description is in
a certain normal form. These normal forms can again generate an exponential blow-up
of the unfolded concept descriptions. So, Sonic employs lazy unfolding and lazy nor-
malization, i.e., concepts are not unfolded and normalized completely at the beginning of
the computation, but these steps are interlaced with the generation of the result concept
description. More precisely, first only the top-role level of the concept description is un-
folded and normalized, the subsequent one is only unfolded and normalized, if necessary
during the computations.

The approximation algorithm is needed not only to support the design and mainte-
nance scenarios directly, but also to “translate” concept descriptions in order to obtain
concept descriptions for which other NSIs are available or where the application of the
NSI directly is only of limited usefulness. In case of DLs that provide disjunction the lcs
of concepts written in this DL is simply their disjunction. In such a case the user does not
learn anything about the commonalities. The idea is to first approximate a concept and
then to apply the NSI to the approximated concept. Thus we in particular implemented

c©2007/TONES – March 31, 2007 42/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

ways optimizing the computation of concept approximation. One way to do this is to
reduce the number of recursive calls generated for the computation of existential restric-
tions. During the computation of the cross-product some recursive calls can be avoided
since they will yield existential restriction more general (and thus redundant) to others.
A second, promising way implemented in Sonic to optimize approximation is to split
the approximation of a concept description at the conjunction. So, instead of computing
approx(C1⊓C2) we compute approx(C1)⊓approx(C2). Now, if C consists of two conjuncts
of size n then the approximation of C takes some ab2n

steps while the conjunct-wise ap-
proach would just take 2abn

. Unfortunately, this method does not yield correct results for
arbitrary concept descriptions. The approach is only applicable to concept descriptions
that obey certain syntactic conditions, see [TB07]. For this kind of so-called nice concept
descriptions the approach yields a considerable speed-up.

In one of the next releases of Sonic, we plan to implement caching for the inferences
in Sonic, so that results can be obtained in subsequent computations. For concept
approximation again nice concept descriptions are a prerequisite for a non-naive use of
caching. Say, we want to approximate C ⊓D, where C and D are complex ALCN -concept
descriptions. Now, if we already have cached the approximation of C and C ⊓ D is nice,
we only need to compute the approximation of D and conjoin it with the cached result.
However, we expect to improve the performance of Sonic in the near future.

9.3 How to use

The Sonic distribution contains the mainly following:

• Read-me.txt,

• install-sonic.sh for Allegro Common Lisp,

• /bin/ Sonic executables for Allegro Common Lisp,

• SonicPlugin.jar

Before installing Sonic, make sure that the following resources and software components
are installed on your system.

Requirements

We recommend a x86 i686 processor and at least 128 RAM to run Sonic. So far Sonic

can only run under Linux. Moreover Sonic requires that Java (for example Suns J2SE
1.5 Version 2.1 or higher) is installed on your system. In addition one of the supported
Lisp systems must be installed. Currently Sonic can run under: Allegro Common Lisp
(version 7.0 or 8.0). Besides installations of this LISP system and Java you need two
software components to be installed on your system to run Sonic.

RACER Sonic uses RACER as a background reasoner, thus RACER must be installed
on your system before you can run Sonic. There are two RACER system components
needed to run Sonic— the RACER server and LRacer. While the LRacer component

c©2007/TONES – March 31, 2007 43/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

comes with the Sonic distribution and is installed by the Sonic install script, the RACER

server must be down-loaded and installed by you. Sonic uses RACER server version 1-8
or higher. We recommend to use the latest available version. The RACER server can be
freely down-loaded for research purposes from www.racer-systems.com

Protégé Sonic comes with a plug-in for the ontology editor Protégé. Currently,
Sonic supports Protégé version 3.2, which can be downloaded from http://protege.

stanford.edu/download/.

Installation

Sonic comes with an installation script called install-sonic-acl.sh for Allegro Com-
mon Lisp. Under Linux operating system you can start the installation script by exe-
cuting install-sonic.sh in the shell. This script installs Sonic and LRacer. It edits
Protégé’s preferences s.t. the Sonic panels are loaded when Protégé is started.

In case the installation procedure is not successful, please refer to the file Read-me.txt
from the Sonic distribution for trouble shooting.

Getting started

Sonic consists of two parts: the one part realizes the graphical user interface as a plug-in
for Protégé and the other part implements the non-standard inferences in Lisp. In
the current implementation the reasoning component of Sonic can be started directly as
an executable. The Sonic plug-in for Protégé is loaded when Protégé is started, if
Sonic is correctly installed as described above. Moreover one has to start the RACER

server before starting Sonic. In the current version all three components, the RACER

server, Protégé and the Sonic script have to run on the same host. To sum it up the
complete start procedure for Sonic is:

1. Start RACER (with port 8080) in a shell.

2. Execute sonic

3. Start Protégé as usual, see Protégé manual.

4. Connect Protégé to the DIG reasoner RACER.

5. activate the Sonic panels via configure in the OWL Project menue.

After this the LCSPanel and the ApproxPanel are active. On the ApproxPanel you can
select a concept from your ontology and compute its approximation. Similarly, you can
select a group of concepts from your ontology on the LCSPanel and compute their least
common subsumer. From both ontologies the resulting concept descriptions can be edited
and then saved to the ontology.

c©2007/TONES – March 31, 2007 44/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

10 InstExp

10.1 Introduction

InstExp (Instance Explorer), is an interactive tool that aims to support enriching an
ontology by asking questions to a domain expert. It asks questions of the form “Is it
true that objects that have properties a,b,c also have the properties d, e, f?”. The domain
expert is expected to answer “yes” or “no”. If she answers with “no”, then she is expected
to provide a counterexample, and this counterexample is added to the ontology. If she
answers “yes”, then the ontology is updated with a new inclusion axiom. When the
process stops, the ontology is complete in a certain sense. The advantage of the method
is that it guarantees to ask the minimum number of questions to the expert in order
to acquire the missing part of the knowledge. The theoretical background of InstExp

was explained in detail in [ton07, BGSS06, BGSS07]. InstExp addresses the tasks of
structuring an ontology, which was mentioned in [ton07].

The development of InstExp was partially supported by the EU projects TONES
(IST-2005-7603 FET) and Semantic Mining (NoE 507505), and the German Research
Foundation DFG (GRK 334/3).

Some information on InstExp and the distribution can be found under http://

wwwtcs.inf.tu-dresden.de/~sertkaya/InstExp

10.2 Optimizations

InstExp implements an extension of the attribute exploration algorithm [Gan84, GW99]
developed in the field of Formal Concept Analysis. The extension of attribute exploration
for use in completion of Description Logics ontologies was described in [BGSS06, BGSS07].

The completion algorithm gurantees to ask the minimum number of questions that
have positive answer. The number of questions that have negative answers depends on the
counterexamples provided by the expert. Theoretically, there is a set of counterexamples
that lead to the minimum number of questions with negative answers. However, in a real
world application one can not always expect that the expert is able to provide this set of
counterexamples.

The completion algorithm keeps a list of implications, and often needs to compute
closure under this set of implications. For computing implicational closure, we have im-
plemented the efficient closure algorithm linclosure described in [Mai83]. For representing
sets of so called attributes, we have used bit vectors for efficient set operations.

10.3 Usage

InstExp is implemented in the Java programming language as an extension to the Swoop
[SP04] ontology editor (see also Section 5). It runs on any platform that has Java Runtime
Environment (JRE) version at least 1.5.0. JRE can be downloaded from http://java.

sun.com.
InstExp can be obtained from http://wwwtcs.inf.tu-dresden.de/~sertkaya/

InstExp/swoopInstExp.tgz. The zip package contains version v2.3 beta 3 of the Swoop

c©2007/TONES – March 31, 2007 45/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

ontology editor patched with InstExp . You can start the patched Swoop just like you
start Swoop as usual. If you are using a UNIX/Linux operating system,

1. Untar the package using the command: tar zxvf swoopInstExp.tgz. It will pro-
duce a directory with name swoopInstExp.

2. change to the swoopInstExp directory using the command: cd swoopInstExp.

3. set the execute permission of the start up script: chmod +x runme.sh

4. run the start up script: ./runme.sh &

If you are using Windows, unzip the package and execute the runme.bat file in the
swoopInstExp that will be produced.

Starting InstExp : In the Swoop window that will open, load the ontology you
want to work with, and classify it by selecting Pellet in the reasoner combo box. Now
start InstExp from the Advanced menu by selecting Instance Explorer. InstExp will
start in a seperate window. In the scroll box on the left of the window, you will see the
class hierarchy of the selected ontology. From the hierarchy, you can select the concepts
you want to include in the completion process. You can either add concepts one by one
by selecting a concept and clicking the Add button, or you can add all subconcepts of
the selected concept by clicking the Add subclasses button (If the selected concept does
not have any subconcepts, no concept will be added). When you click the Add or Add
Subclasses button, in Context tab on the right of the window, a table will occur. The
column(s) of the table consist(s) of the concept(s) you have added, and the rows consist
of the instances of the added concept(s). A “+” in row x and column y of the table
means that individual x is an instance of the concept y. Similarly, a “-” means that x is
an instance of ¬y, and a “?” means that x is neither an instance of y, nor an instance of
¬y. In case you accidentally add a concept you did not really mean to add, you can click
on the Reset button. It will remove all the concepts added until then together with their
instances, i.e., the Context table on the right will be resetted. Once you finish adding the
concepts you want to, click on the Start button in order to start the completion process.

Once you hit the Start button, the interactive completion process will start. In the
Console at the bottom of the window, InstExp will start asking you questions of the
form:

′′Is it true that the objects satisfying properties L also satisfy the properties R ?′′.

where L and R are subsets of the concept names you have added.
Confirming a question: If this is the case in your application domain, i.e., if every

individual that is an instance of all of the concepts in L is also an instance of all of the
concepts in R, then you confirm the question by clicking the Yes button in the Console
tab at the bottom of the window. In this case, the inclusion axiom ⊓L ⊑ ⊓R is going to
be added to your ontology, where ⊓L stands for ⊓{Ci | Ci ∈ L}. The updated ontology
is going to be reclassified and InstExp will come up with a new question.

Rejecting a question: In case the question does not hold in your application domain,
i.e., if there is an individual that is an instance of all of the concepts in L but is an instance

c©2007/TONES – March 31, 2007 46/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

of ¬Ci for at least one of the concepts in R, then you reject the question by clicking the
No button. In this case the Counterexample editor tab on the right, and the Messages tab
in the bottom will become active. At this moment, InstExp is waiting you to provide a
counterexample.

Providing a counterexample: In order to help you in generating a counterexample,
the Counterexample editor tab will show you the individuals in your ontology that might
potentially be turned into a counterexample to the question you have rejected. They are
individuals in your ontology that are instances of ⊓L, but that are not instances of at
least one concept appearing in R. If there are no such individuals in your ontology, the
Counterexample editor will only display an individual with name defaultName, that is an
instance of all of the concepts in ⊓L, but that is not an instance of the concepts in R.

The individuals displayed in the Counterexample editor are editable. It means, you
can click on the “?” signs and turn them into “+” “-”. As you edit an individual, the
Messages tab at the bottom will show you basic tips on how to make the selected individual
a valid counterexample. It will tell you for which concepts the selected individual should
contain a “+” and for which concepts a “-” so that the selected individual becomes a valid
counterexample. As soon as the selected individual becomes a valid counterexample, it
will be higlighted with green, and the Ready button will become active. At this point you
can hit Ready and provide your counterexample. But you can also continue editing your
counterexample to make it more specific and then hit Ready. Then your counterexample
is going to be added to the ontology and the next question will come.

While you are editing a counterexample, in case you make the selected individual
inconsistent, it will be highlighted with red, and a warning message will appear in the
Messages tab. In this case the Ready button will become inactive and you will not be
allowed to provide this inconsistent individual.

As mentioned above, in the Counterexample editor, the last individual with name
defaultName is always a new one. It is not one of the individuals already appearing in
the ontology. For the ease of use, it is already marked as instances of the classes on the
lefthand side of the question. The name of this individual is also editable. You can edit
the string defaultName and name this individual with a new name. The new name needs
to be distinct from existing individual names, otherwise you will get a warning and be
asked to provide another name.

When you are ready with preparing a valid counterexample and click the Ready button,
the counterexample you have provided is going to be added to your ontology, Context
and Console tabs will become active, and Counterexample editor and Messages tabs will
become inactive. The Context tab will now display your counterexample as well, and the
Console tab will display the new question. This will iterate until you have answered all
of the questions asked, i.e., until your ontology is complete w.r.t. the relations between
the concepts you have added at the beginning. In this case, a small window will pop up
and notify the end of completion process. You can close the InstExp window, or hit
Reset and start a new completion process. After the completion, you will notice that the
changes you have made to your ontology already appear in the Swoop window and you
can further work with Swoop on the enriched ontology. If you want to save your enriched
ontology, use the usual Save procedure of Swoop under the File menu.

Figure 10 shows a screen shot of the InstExp window waiting for the user answer

c©2007/TONES – March 31, 2007 47/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

Figure 10: InstExp window with question

the question displayed in the Console tab. At this moment the user is expexted answer
by hitting Yes, No or Stop buttons. When the Stop button is hit, the completion process
stops, but the changes made until then will NOT be discarded. You will still see the
changes in the swoop window. And if you save the ontology in the swoop window, the
changes made in the InstExp window will be saved to your ontology. Figure 11 shows
a screen shot of preparing a counterexamle. In the figure, the individual named baris
is being edited. The Messages tab says that the current description of the individual
is sufficient for being a counterexample and the Counterexample editor highlights the
edited individual with green. The ontology used in these screen shots can be found in
the distribution under the directory instexpExample with name sane cows.owl. As the
name of the file also suggests, it is an OWL ontology.

11 DL2RL

11.1 Introduction

In [ton07], we argued that modern model finding tools such as Alloy Analyzer (and his
successors) can be very useful for ontology design tasks, since they enable generating and
inspecting all (not just canonical) model structures in a systematical way.

In order to adopt a particular finite model finder for ontology design tasks, we defined
a set of translation rules for ALCN formulas into the Relational Logic underlying the
Alloy Analyzer. We tested the applicability of our approach for some use cases using the
RacerPro reasoner and Alloy Analyzer 4.0 [Jac06]. Furthermore, we showed that also
SHIQ or even SROIQ formulas can be successfully translated into Alloy.

c©2007/TONES – March 31, 2007 48/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

Figure 11: InstExp window while preparing a counterexample

The translation algorithm from ALCN into Alloy’s Relational Logic is the core of the
DL2RL translation tool being work in progress. The algorithm has been implemented us-
ing a Java library, consisting of the packages dlAST, parser, and utilities. The translation
service may be invoked with two different kinds of input:

• a pair <TBox, ABox>

• text file in .racer format

The output is first obtained as an in-memory string containing the Alloy specification,
which can then be serialized to disk or further processed. These alternatives are provided
for better supporting usage of the tool in different scenarios. For example, in case ALCN
input is available in XML format, parsing using a freely available library can be followed
by instantiating the Abstract Syntax Trees (ASTs) built for input TBox and a (possibly
empty) ABox. From there, translation may proceed. Detailed usage instructions are given
in the next section.

11.2 DL2RL – How to Use

In order to invoke the DL2RL translation algorithm taking as input a .racer file, an
java.io.InputStream is to be obtained (for an example see the following Listing and

c©2007/TONES – March 31, 2007 49/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

passed as argument to the constructor for parser.alcn, the Java class that realizes the
parser.

public static String getAlloySpecForDotRacer(String folder,

String filenameWithExtension) {

String filePath = folder + "/" + filenameWithExtension;

log("translating .racer into .als for " + filePath);

InputStream is = null;

try {

is = new FileInputStream(filePath);

}

catch (FileNotFoundException e) {

e.printStackTrace();

}

alcn parser = new alcn(is); // System.in

TBox t = null;

try {

t = parser.start();

}

catch (ParseException e) {

e.printStackTrace();

}

ABox a = t.getAbs().iterator().next();

String res = a.toAlloy3();

return res;

}

As part of parsing, syntax-directed actions instantiate the Java classes that
stand for ALCN concepts. Parsing is invoked by calling the start rule on the
parser (parser.start() in the example below). This method returns an instance
of dlAST.TBox, from which a Set<ABox> can be obtained, by invoking method
dlAST.TBox#getAbs().

In case a pair TBox and ABox has been built by other means (other than parsing a
.racer input file), the functionality of generating the Alloy specification can be accessed
by invoking method ABox#toAlloy3(). This method returns the string representation
(concrete syntax) of the corresponding Alloy specification.

Please notice that only recently the SAT engines used internally by Alloy have been
made available as separate components. Moreover, their interfaces account for direct
communication with other components (e.g., a slightly modified version of our translation
library) thus skipping the cumbersome disk serialization. Those engines are available
under following addresses (websites contain publications and documentation besides the
software packages themselves):

• Kodkod, http://web.mit.edu/emina/www/kodkod.html

• SAT4J, http://www.sat4j.org/

Another recent addition positively impacting the usability of Alloy is an Eclipse plu-
gin, http://code.google.com/p/alloy4eclipse/, also developed by the Alloy team,
with improved interactive syntax-error reporting. The team support facilities such as
structural comparison and versioning available from Eclipse, also simplify collaboration
while evolving Alloy specs .

c©2007/TONES – March 31, 2007 50/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

11.3 Further Work and Optimizations

Concluding from empirical experiments we performed with the proposed tool, modern
highly-optimized tableau-based provers far outperform model finders such as Alloy Ana-
lyzer. However, in order to improve the usefulness of tableau-based reasoners for ontology
design tasks, it may be a good idea to equip them with model generation capacities like
those provided by model finders for identifying unintended models. In the other direction,
namely for increasing performance of model finders, DL prover techniques might also be
helpful (given the expressivity of the input formulas is in the DL fragment). A tableau
prover could be used for satisfiability checking. If there exists a model, the tableau de-
scribes a canonical model, which could be further modified in order to derive all models
in the sense of model finders. If the expressivity is too high, models might be infinite,
however, so the details of this idea have to be investigated carefully.

Increasing performance of constraint-solving engines used by model finders is another
crucial requirement for integrating model finders in practical applications like ontology
design tools. Recent investigations concern development of faster SAT solvers algorithms
and systems (see, e.g., [TJ06]).

References

[Ali06] Alissa Kaplunova and Ralf Möller. DIG 2.0 Proposal for a Query
Interface. 2006. http://www.sts.tu-harburg.de/~al.kaplunova/

dig2-query-interface.html.

[BBL05] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. of the
19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), Edinburgh, UK,
2005. Morgan-Kaufmann Publishers.

[Ber06] Bernardo Cuenca Grau, Boris Motik, and Peter Patel-Schneider. OWL1.1.
2006. http://owl1_1.cs.manchester.ac.uk/xml_syntax.html.

[BFH+94] Franz Baader, Enrico Franconi, Bernhard Hollunder, Bernhard Nebel, and
Hans-Jürgen Profitlich. An empirical analysis of optimization techniques for
terminological representation systems or: Making KRIS get a move on. Applied
Artificial Intelligence. Special Issue on Knowledge Base Management, 4:109–
132, 1994.

[BGSS06] Franz Baader, Bernhard Ganter, Ulrike Sattler, and Baris Sertkaya. Complet-
ing description logic knowledge bases using formal concept analysis. LTCS-
Report LTCS-06-02, Chair for Automata Theory, Institute for Theoretical
Computer Science, Dresden University of Technology, Germany, 2006. See
http://lat.inf.tu-dresden.de/research/reports.html.

[BGSS07] Franz Baader, Bernhard Ganter, Ulrike Sattler, and Baris Sertkaya. Com-
pleting description logic knowledge bases using formal concept analysis. In
Proceedings of the Twentieth International Joint Conference on Artificial In-
telligence (IJCAI’07). AAAI Press, 2007.

c©2007/TONES – March 31, 2007 51/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

[BHGS01] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: a Reason-able
Ontology Editor for the Semantic Web. In Proc. of the Joint German/Austrian
Conf. on Artificial Intelligence (KI 2001), volume 2174 of Lecture Notes in Ar-
tificial Intelligence, pages 396–408, Vienna, Sep 2001. Springer. OilEd down-
load page http://oiled.man.ac.uk.

[BKM00] F. Baader, R. Küsters, and R. Molitor. Rewriting concepts using terminolo-
gies. In A.G. Cohn, F. Giunchiglia, and B. Selman, editors, Proc. of the
7th Int. Conf. on the Principles of Knowledge Representation and Reason-
ing (KR 2000), pages 297–308, San Francisco, CA, 2000. Morgan Kaufmann
Publishers.

[BLS05] F. Baader, C. Lutz, and B. Suntisrivaraporn. Is tractable reasoning in exten-
sions of the description logic EL useful in practice? In Proceedings of the 2005
International Workshop on Methods for Modalities (M4M-05), 2005.

[BLS06a] F. Baader, C. Lutz, and B. Suntisrivaraporn. CEL—a polynomial-time rea-
soner for life science ontologies. In U. Furbach and N. Shankar, editors, Pro-
ceedings of the 3rd International Joint Conference on Automated Reasoning
(IJCAR’06), volume 4130 of Lecture Notes in Artificial Intelligence, pages
287–291. Springer-Verlag, 2006.

[BLS06b] F. Baader, C. Lutz, and B. Suntisrivaraporn. Efficient reasoning in EL+.
In Proceedings of the 2006 International Workshop on Description Logics
(DL2006), CEUR-WS, 2006.

[BM00] F. Baader and R. Molitor. Building and structuring description logic knowl-
edge bases using least common subsumers and concept analysis. In B. Ganter
and G. Mineau, editors, Proc. of the 8th Int. Conf. on Conceptual Structures
(ICCS’00), volume 1867 of Lecture Notes in Artificial Intelligence, pages 290–
303. SV, 2000.

[BST04] F. Baader, B. Sertkaya, and A.-Y. Turhan. Computing the least common
subsumer w.r.t. a background terminology. In J.J. Alferes and J.A. Leite,
editors, Proc. of the 9th Eur. Conference on Logics in Artificial Intelligence
(JELIA 2004), volume 3229 of Lecture Notes in Computer Science, pages 400–
412, Lisbon, Portugal, 2004. Springer.

[BST07] F. Baader, B. Sertkaya, and A.-Y. Turhan. Computing the least common
subsumer w.r.t. a background terminology. J. of Applied Logic, 2007. To be
published.

[CRP+93] R. Cote, D. Rothwell, J Palotay, R. Beckett, and L. Brochu. The systematized
nomenclature of human and veterinary medicine. Technical report, SNOMED
International, Northfield, IL: College of American Pathologists, 1993.

[DG84] W. F. Dowling and J. Gallier. Linear-time algorithms for testing the satisfia-
bility of propositional horn formulae. Journal of Logic Programming, 1(3):267–
284, 1984.

c©2007/TONES – March 31, 2007 52/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

[Gan84] Bernhard Ganter. Two basic algorithms in concept analysis. Technical Report
Preprint-Nr. 831, Technische Hochschule Darmstadt, Darmstadt, Germany,
1984.

[GW99] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathematical
Foundations. Springer, Berlin, Germany, 1999.

[HM01a] V. Haarslev and R. Möller. RACER System Description. In Int. Joint Con-
ference on Automated Reasoning, 2001.

[HM01b] V. Haarslev and R. Möller. RACER system description. In Proc. of the Int.
Joint Conf. on Automated Reasoning (IJCAR 2001), 2001.

[Jac06] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The
MIT Press, 2006.

[KMR04] Holger Knublauch, Mark A. Musen, and Alan L. Rector. Editing description
logic ontologies with the protégé owl plugin. In Description Logics, 2004.

[KPS+05] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, Bernardo C. Grau, and James
Hendler. Swoop: A web ontology editing browser. Web Semantics: Science,
Services and Agents on the World Wide Web, 4(2):144–153, June 2005.

[LBF+06] C. Lutz, F. Baader, E. Franconi, D. Lembo, R. Möller, R. Rosati, U. Sat-
tler, B. Suntisrivaraporn, and S. Tessaris. Reasoning Support for Ontology
Design. In B. Cuenca Grau, P. Hitzler, C. Shankey, and E. Wallace, editors,
In Proceedings of the second international workshop OWL: Experiences and
Directions, November 2006.

[LN05] Thorsten Liebig and Olaf Noppens. OntoTrack: A semantic approach for
ontology authoring. Journal of Web Semantics, 3(2-3):116–131, October 2005.

[LN06] Thorsten Liebig and Olaf Noppens. Interactive Visualization of Large OWL
Instance Sets. In Proc. of the Third Int. Semantic Web User Interaction Work-
shop (SWUI 2006), Athens, GA, USA, November 2006.

[Mai83] David Maier. The Theory of Relational Databases. Computer Science Press,
Maryland, 1983.

[Ope] OpenCyc. http://www.opencyc.org/.

[PSS93] P. Patel-Schneider and B. Swartout. Description-logic knowledge representa-
tion system specification from the krss group of the arpa knowledge sharing
effort. Technical report, DARPA Knowledge Representation System Specifi-
cation (KRSS) Group of the Knowledge Sharing Initiative, 1993.

[Rac] RacerPro, an OWL reasoner and inference server for the Semantic Web. http:
//www.racer-systems.com/.

c©2007/TONES – March 31, 2007 53/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

[RH97] Alan Rector and Ian Horrocks. Experience building a large, re-usable medical
ontology using a description logic with transitivity and concept inclusions. In
Proceedings of the Workshop on Ontological Engineering, AAAI Spring Sym-
posium (AAAI’97), Stanford, CA, 1997. AAAI Press.

[Sea06] Sean Bechhofer. DIG 2.0: The DIG Description Logic Interface. 2006. http:
//dig.cs.manchester.ac.uk.

[SK06] Ferdinando Villa Sergey Krivov, Rich Williams. Growl, visual browser and
editor for owl ontologies. Journal of Web Semantics, 2006.

[SP04] Evren Sirin and Bijan Parsia. Pellet: An OWL DL reasoner. In Proceedings
of the 2004 International Workshop on Description Logics (DL2004), volume
104 of CEUR Workshop Proceedings. CEUR-WS.org, 2004.

[Sun05a] B. Suntisrivaraporn. CEL—the manual. Available at http://lat.inf.tu-
dresden.de/systems/cel, 2005.

[Sun05b] B. Suntisrivaraporn. Optimization and implementation of subsumption algo-
rithms for the description logic EL with cyclic TBoxes and general concept
inclusion axioms. Master thesis, TU Dresden, Germany, 2005.

[SWR04] A Semantic Web Rule Language Combining OWL and RuleML, 2004. http:
//www.w3.org/Submission/2004/SUBM-SWRL-20040521/.

[TB07] A.-Y. Turhan and Y. Bong. Speeding up approximation with nicer concepts.
In Proc. of the 2007 Description Logic Workshop (DL 2007), 2007. Submitted
to the Description Logics workshop.

[TBK+06] A.-Y. Turhan, S. Bechhofer, A. Kaplunova, T. Liebig, M. Luther, R. Möller,
O. Noppens, P. Patel-Schneider, B. Suntisrivaraporn, and T. Weithöner. DIG
2.0 – towards a flexible interface for description logic reasoners. In B. Cuenca
Grau, P. Hitzler, C. Shankey, and E. Wallace, editors, In Proceedings of the
second international workshop OWL: Experiences and Directions, November
2006.

[TH05] Dmitry Tsarkov and Ian Horrocks. Ordering heuristics for description logic
reasoning. In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJ-
CAI 2005), pages 609–614, 2005.

[The00] The Gene Ontology Consortium. Gene Ontology: Tool for the unification of
biology. Nature Genetics, 25:25–29, 2000.

[TJ06] E. Torlak and D. Jackson. The Design of a Relational Engine. Technical
Report MIT-CSAIL-TR-2006-068, MIT CSAIL, 2006.

[TK04a] A.-Y. Turhan and C. Kissig. Sonic — Non-standard inferences go OilEd.
In D. Basin and M. Rusinowitch, editors, Proc. of the 2nd Int. Joint Conf.
on Automated Reasoning (IJCAR 2004), volume 3097 of Lecture Notes in

c©2007/TONES – March 31, 2007 54/55 TONES-D15 – v.1.1

FP6-7603 – TONES Thinking ONtologiES WP3

Computer Science, pages 321–325. Springer, 2004. Sonic is available from
http://wwwtcs.inf.tu-dresden.de/~sonic/.

[TK04b] A.-Y. Turhan and C. Kissig. Sonic—System description. In V. Haarslev and
R. Möller, editors, Proc. of the 2004 Description Logic Workshop (DL 2004),
number 104 in CEUR, 2004. See http://CEUR-WS.org/Vol-104/.

[ton07] Techniques for ontology design and maintenance. Deliverable D13, TONES
EU-IST STREP FP6-7603, January 2007.

[Tur05] Anni-Yasmin Turhan. Pushing the SONIC border — SONIC 1.0. In Rein-
hold Letz, editor, Proc. of Fifth International Workshop on First-Order The-
orem Proving (FTP 2005). Technical Report University of Koblenz, 2005.
http://www.uni-koblenz.de/fb4/publikationen/gelbereihe/RR-13-2005.pdf.

c©2007/TONES – March 31, 2007 55/55 TONES-D15 – v.1.1

