
A Location Based Shopping List

Michael Mc Donnell

Kongens Lyngby 2009
IMM-B.Eng-2009-04

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

Abstract

ii Abstract

People have always needed reminders, from tying a knot around the finger
to writing a to-do list. The types of reminders have changed with the addition
of modern technology, but the need is still the same. Technologies that use
temporal events can be seen in many places, such as electronic calendars that
remind users to go to a meeting a few minutes in advance.

With the recent release of Google’s Android platform, developers now have
the opportunity to create applications that use spatial events, such as loca-
tion reminders. This thesis explores how location reminders can be used, by
implementing a location based shopping list for the Android platform.

The primary and secondary use cases for a location based shopping list were
identified, and the primary use cases were thouroughly described by studying
how a paper shopping list works. Several user interface designs were described,
and the best design was chosen by comparing the different designs’ strengths
and weaknesses.

A prototype that implemented the primary use cases was implemented and
tested on an HTC G1 smart phone. The tests included an acceptance test, unit
tests, a usability test, and a field test.

The results of the usability tests suggested that the prototype was easy to
use and user friendly, but inconclusive in whether the implemented prototype
was as fast to use as a paper shopping list.

Field testing showed that location reminders only worked well using GPS
and not with Cell-ID positioning on the G1 smart phone. The smart phone,
however, became unusable because the GPS used too much power.

The work done demonstrated that it is possible to implement applications that
use location reminders for the Android platform, but the G1 hardware is still
not capable to support location based applications.

Resumé

Mennesket har altid haft brug for p̊amindelser, lige fra at binde en sløjfe omkring
en finger til at skrive huskelister. Typen af p̊amindelser har ændret sig i takt
med introduktion af moderne teknik, men behovet er stadigvæk det samme.
Teknologier som udnytter tidsafhængige hændelser kan ses mange steder, s̊a
som i elektroniske kalendere som kan give p̊amindelser om møder kort inden et
møde finder sted.

Google har for nyligt frigivet Android platformen, som bl.a. nu har muligtgjort
at udvikle programmer til mobiltelefoner som bruger stedafhængige hændelser.
Dvs. at det nu er muligt for programmer p̊a mobiltelefoner at give p̊amindelser
n̊ar man ankommer til eller forlader en lokalitet. Dette eksamensprojekt ud-
forsker muligheden for at bruge lokalitetsp̊amindelser ved at implementerer en
lokalitetsbaseret indkøbsliste til Android platformen.

De primære og sekundære use cases der indg̊ar i en lokalitetsbaseret indkøbsliste
blev identificeret, og de primære use cases blev grundigt beskrevet ved at un-
dersøge, hvordan en normal indkøbsliste bliver anvendt.

Der blev beskrevet tre mulige brugergrænseflade designs, og det bedste de-
sign blev valgt ved at sammenligne de forskellige designs styrker og svagheder.

En prototype blev implementeret der opfylder kravene der blev beskrevet i de
primære use cases. Prototypen udviklet til og testet p̊a en HTC G1 mobiltelefon.
Der blev udført en sluttest, en brugervenlighedstest, unit tests og en marktest.
Brugervenlighedstesten viste at prototypen var nem at lære, og use casesene
kunne udføres hurtigt. Den gav dog ikke noget definitivt svar p̊a hvorvidt pro-
totypen er hurtigere og bedre end en normal indkøbsliste.

Testen i marken med prototypen p̊a G1 mobiltelefonen viste at lokalitetsp̊amind-

iv

elserne virkede godt ved brug af GPS, men var for up̊alidelige ved brug af Celle-
ID positionering. GPS delen p̊a G1 mobiltelefonen brugte dog s̊a meget strøm
at mobiltelefonen blev ubrugelig, da den ikke engang kunne holde til en hel dags
brug.

Eksamensprojektet viste at selv om det er muligt at bruge lokalitetsp̊amindelser
i programmer til Android platformen, s̊a er de endnu ikke klar til udbredt an-
vendelse p̊a den anvendte mobiltelefon pga. problemer med strømforbruget.

Acknowledgments

I would like to acknowledge the following persons for their contributions:

Ole Tange who briefly presented the idea of a location based shopping list at
a local Linux user group meeting1, where he gave a talk on the Openmoko
project2.

Teodor Filimon who is the author of the Tag ToDo application [4]. His to-do
list provided inspiration in the user interface design.

The authors of the OI Shopping List[1]. Their shopping list provided inspiration
in the user interface design.

Andrea Libelo for her support and help editing my thesis.

Jakob Eg Larsen my advisor at The Technical University of Denmark. Our
regular meetings were a great motivator, and his comments and suggestions
were invaluable.

1See http://www.sslug.dk/emailarkiv/announce/2008_04/msg00001.html
2See http://www.openmoko.com/

http://www.sslug.dk/emailarkiv/announce/2008_04/msg00001.html
http://www.openmoko.com/

vi

Contents

Abstract i

Resumé iii

Acknowledgments v

1 Introduction 1

2 Analysis 5
2.1 Replacing the Paper Shopping List 6
2.2 Paper Shopping List Scenarios 6
2.3 Vision . 10
2.4 Use Case Analysis . 12
2.5 Use Case Frequency Analysis . 16
2.6 Fully Dressed Use Case Descriptions 17

3 User Interface Design 21
3.1 Chosen Platform . 22
3.2 Separate Screens Design . 23
3.3 Alternative Grid Design . 38
3.4 Combined List-Centered Design 39
3.5 Choice of UI Design . 41

4 Design 43
4.1 The Android Platform . 44
4.2 The Main Architecture . 44
4.3 The Model-View-Control and the Observer Pattern 47
4.4 The Data Layer . 50
4.5 Location Reminders . 52

viii CONTENTS

5 Implementation 55
5.1 The Shopping List Adapter . 55
5.2 Item Autocompletion . 58
5.3 The Map View . 60

6 Testing 63
6.1 Acceptance Test Results and Conclusion 63
6.2 Location Reminder Field Testing 64
6.3 Usability Test . 66
6.4 Unit Tests . 69

7 Further Work 71

8 Conclusion 75

A Field Testing 77
A.1 Preliminary Field Test . 77
A.2 Location Reminder Field Testing Results 79

B Acceptance Test 81

C Interview Usability Test 87
C.1 Tasks for the Interview Usability Test 87
C.2 Results From the Interview Usability Test 89

D Setting Up the Software 93

Bibliography 95

Chapter 1

Introduction

2 Introduction

People have always needed reminders, from tying a knot around the finger
to writing a to-do list. The types of reminders have changed with the addition
of modern technology, but the need is still the same.

According to Malone [10] and Barreau et al. [2] computer users utilize vi-
sual reminders to organize their work. Placing both physical and virtual files
currently used files where they would automatically stumble across them, e.g.
on the desktop. This which suggests that the need for some form of reminder is
inherentl within us.

Technologies that help remind people of certain events have become more
widespread. For example Microsoft Outlook’s calendar provides appointment
reminders in the for of pop-up windows. Smart phones with built in calendars
have appeared1. These can be synchronized with calendar systems like Outlook
and online calendars such as Google Calendar2.

PC programs and smart phone calendars are examples of de-centralized tem-
poral3 reminders. Centralized temporal reminder services such as NemSMS 4

have also appeared in Denmark. This is a service for public institutions to send
reminders to mobile phones via SMS text messages. For example doctors can
send appointment reminders to patients.

Location reminders are a second type of reminder that uses spatial events. These
can remind people when they enter a location, leave a location, or are a certain
distance away from a location. The Google Android platform has recently given
developers the tools neccessary to build powerful location based applications for
smart phones. This has been used in applications such as Locale [12]. Naone
[11] gave the following description of Locale:

“The students’ application, Locale, allows a user to program his or
her phone to change its settings automatically depending on its loca-
tion. For example, a phone might be set to change its ring to vibrate
at the office but play a pop song when the user is at a favorite hang-
out.”

The Locale application can be programmed to trigger many of the smart phones
functions, such as displaying a reminder or sending an SMS text message when
the user enters a location.

This thesis describes a location based shopping list application prototype for the
Google Android platform. The shopping list uses spatial reminders to remind
people to buy items from their shopping list, when they arrive at the supermar-
ket or other stores. The goal of the thesis is not only to make a shopping list

1E.g. the HTC Touch HD http://www.htc.com/www/faqs.aspx?p_id=179&cat=0&id=85802
2See HTC Dream features at http://www.htc.com/www/product/dream/product-tour.

html
3Temporal events are time-triggered, e.g. one day left before an appointment
4See http://oes.dk/sw52264.asp

http://www.htc.com/www/faqs.aspx?p_id=179&cat=0&id=85802
http://www.htc.com/www/product/dream/product-tour.html
http://www.htc.com/www/product/dream/product-tour.html
http://oes.dk/sw52264.asp

3

application prototype that uses location reminders, but one that is also fast and
easy to use.

4 Introduction

Chapter 2

Analysis

6 Analysis

2.1 Replacing the Paper Shopping List

We use shopping lists as spatial reminders, allowing us to record items in our
environment and access that information in another. But the conventional paper
shopping list has the following drawbacks:

• You can forget to bring it to the store.

• You can easily lose it.

• You can forget to use it out once you are in the store.

So how can we solve the problems with a paper shopping list? One option is
a location based shopping list application running on a smart phone. It solves
the main problems of paper based lists, because:

• You will not forget to bring your shopping list, as long as you carry your
smart phone.

• It is harder to lose a smart phone than it is to lose a piece of paper.

• An alert reminds you to use it when you enter the store.

In this way, a location based shopping list is preferable.

A paper shopping list does have a few advantages, however, that are important
to address when creating a shopping list for a smart phone:

• It is easy to write a list on paper.

• It is easy to share it with another person.

• It can display all items at once, because it is not limited to a small screen.

The application must be able to compete with the advantages of the paper based
shopping list if it is to be successful.

2.2 Paper Shopping List Scenarios

This section demonstrates how a regular pen and paper shopping list work
using informal scenario descriptions. The scenario descriptions only describe
the success cases. Failure scenarios are all described in Subsection 2.2.4.

To help describe the use of shopping lists we have created a persona called
Andy. Andy is a geek who loves electronics and owns an advanced smart phone.
He is a bit absent minded and often forgets appointments. He uses his smart
phone’s calendar to organize appointments and receive reminders. Andy lives
alone, so he has not have anyone to help him with his shopping.

2.2 Paper Shopping List Scenarios 7

2.2.1 Scenario: Write a Paper Shopping List

Andy uses the last of the milk and wants to remember to buy more. He decides
to write a shopping list. Andy does the following:

1. Finds a pen.

2. Finds a piece of paper.

3. Writes the title “Grocery”.

4. Writes “Milk”.

5. Places the shopping list where he can find it again, such as the side of the
refrigerator.

When Andy later wants to add cornflakes to his shopping list, he must:

1. Find a pen.

2. Find his old shopping list.

3. Add ”‘Cornflakes”’.

4. Place the shopping list where he can find it again.

Andy adds several more items over the course of a few days. His list ends up
containing the following items:

• Milk

• Cornflakes

• Apples

• Cheese

Andy tries to keep his shopping list stuck to his refrigerator, so that he will not
lose it.

When it comes time to go to the store, Andy sometimes adds many items at
once to the list before leaving. In this way Andy can quickly and easily make a
shopping list with all the things he needs.

8 Analysis

2.2.2 Scenario: Shopping With a Paper Shopping List

Andy wants to go shopping. He does not want to forget anything, so he brings
a pen and the shopping list he stuck on his refrigerator. In the supermarket he
looks at his list. He walks through the fruit section first, so he needs to find out
what he has on his list from that section. He sees that he has apples on his list.
He puts some apples into his shopping cart and crosses apples off the list.

He continues moving from section to section in the supermarket until he
has found everything on his list. Andy walks to the cash register when he has
checked off all the items on his list. He throws out his shopping list after leaving
the supermarket.

2.2.3 Scenario: Writing multiple paper shopping lists

Andy already has a shopping list with his grocery items. He also needs to go
to the hardware store to buy materials for a home improvement project. He
does not want to write this on his grocery shopping list, as he might acciden-
tally throw it away after leaving the supermarket. Also, he wants to keep the
hardware shopping list in his garage instead of in his kitchen.

Andy does the following:

1. Finds a pen.

2. Finds another piece of paper.

3. Writes the title “Hardware”.

4. Writes “Screwdriver” and “Screws” below the title.

5. Places the shopping list in his garage.

Andy can easily add more items, as he put his shopping list in his garage.

2.2.4 Failure scenarios

Things do not always work out for Andy as described in the scenarios. Andy
does not always remember to stick his shopping list back onto his fridge. He
sometimes leaves it where he placed it when he added something to it. This
makes it difficult to find it again later.

Andy often has trouble finding a pen when he needs to add something to his
shopping list. He then wastes time looking for one, or gives up and forgets to
write the item on his shopping list.

Andy sometimes goes shopping directly on his way home from work, but he
sometimes forgets to bring his shopping list to work. He also frequently loses

2.2 Paper Shopping List Scenarios 9

it among his papers on his desk. Also, he often forgets to bring a pen to the
supermarket. This annoys him because he cannot cross off items he has already
found, making it harder to scan the list for the next item.

Andy keeps multiple shopping lists, one on his refrigerator and one in his garage.
This makes it easier to remember where they are and more accessible for adding
items. This, however also makes it harder to remember to bring both of them.
He rarely uses his garage and often forgets he has a hardware shopping list.

10 Analysis

2.3 Vision

The vision described here defines the aim of the application to be implemented.
The application could be extended further which is described in Section 7.

Imagine a shopping list applicatio running on Andy’s smart phone, where
he can enter which items he needs to buy. He always has his smart phone with
him. When he remembers an item to record, he no longer needs a pen and
he does not have to walk to the room to find the shopping list, and he never
forgets to bring it with him. The application can even alert him to buy items,
when he enters the store, by sensing his location (via GPS or other means of
positioning).

Andy can add which items to get and where to buy them without an ad-
ditional pen and paper. The application can have multiple shopping lists, and
each shopping list can have multiple store locations attached to it. He can re-
ceive alerts to buy items whether he is in Whole Foods Market or Costco. The
application displays a reminder, and the correct shopping list opens when he
acknowledges the reminder.

The application sorts the shopping list by item category, e.g. ”‘milk”’ is placed
under ”‘dairy”’. The application displays a category on the shopping list only if
there have been added items belonging to that category. An early prototype test
demonstrates the importance of this feature1. The small screen on the mobile
device makes it hard to find which items are needed in a given section. Andy
would need to scroll or otherwise shuffle through all the items on the list. This
would be time-consuming and could cause Andy to revisit aisles at the store.

The application comes pre-loaded with the most common items and cate-
gories. For example the application automatically places ”‘milk”’ in the ”‘dairy”’
category when it is added. It can sort the categories based on standard stores
layouts. This way Andy sees the correct categories as he passes through each
section of the store. Andy can also add items that the application does not
recognize. The application then lears to place that item in that category on
subsequent uses. Andy can similarly add new categories to the application and
choose where to display them on the shopping list. For example, he adds the
category ”‘flowers”’ to the system. At his local supermarket, the flower section
is the first section he passes as he enters so he places this new category at the
top of his list.

Andy can view the shopping list and tick off items as he puts them in the
shopping cart. He can this way keep track of which items he has already gotten,
and which ones he needs to get next. He can clear the list of the items he has
already gotten, when he is almost done shopping, so he can see if he missed
something. He does not need to delete his list, as the list will become empty,

1See section A.1 in the Appendix about the impact of having a small screen.

2.3 Vision 11

when cleared.

12 Analysis

2.4 Use Case Analysis

Add Item

Create Shopping

List

Tick Off Item

Throw Out Shopping

List

Paper

shopping list

Andy

View Shopping List

Figure 2.1: Basic use cases derived from the paper shopping list scenarios.

Based on the paper shopping list scenarios described in Section 2.2, the following
basic use cases can be identified as shown in Figure 2.1. The basic use cases
represent the tasks performed when using a paper shopping list. These basic
use cases are not enough if you want to create a shopping list for a smart phone.
The primary use cases were extracted from the vision statement and can be
seen on Figure 2.2 with short descriptions in Table 2.1. Finally a description
of the secondary use cases can be found in Table 2.2. The primary use cases
describe the core functionality of the application and should be implemented
in the prototype, whereas the the secondary use cases can be left out of the
prototype.

2.4 Use Case Analysis 13

Add Item

Tick Off Item

View Location

Reminders

Primary Use Cases

Andy

View Shopping List

Add Unkown Item 1

<<extends>>

Add Location

Reminder

Display Location

Reminder

Acknowledge

Location Reminder

Figure 2.2: The primary use cases that should be implemented in the prototype.

14 Analysis

Table 2.1: An overview of the primary use cases

Use Case Short Description

Add Item Andy wants to add an item, e.g. milk, to his
shopping list.

Add Unknown Item 1 Andy wants to add an item to the system,
which it does not recognize, but for which the
category is known.

View shopping list Andy is going shopping and wants to view his
shopping list.

Tick Off Item Andy bought an item and wants to tick it off
from his shopping list.

Clear Ticked Items Andy is done shopping and wants to remove
all bought items from his shopping list.

View Location Reminders Andy wants to see at which store locations he
will receive reminders about items he needs to
buy.

Add Location Reminder Andy wants to receive location reminders
when arriving at a particular store.

Display Location Reminder The system discovers that Andy has arrived at
a store where he needs to buy items, and alert
him.

Acknowledge Location Re-
minder

Having been reminded, Andy wants to open
the shopping list.

2.4 Use Case Analysis 15

Table 2.2: An overview of the secondary use cases

Use Case Short Description

Add Shopping List Andy wants to add another shopping list to
the system.

Delete Shopping List Andy wants to remove a shopping list from the
system.

Add Unknown Item 2 Andy wants to add an item to the system,
which it does not recognize the item and for
which the category is unknown.

Delete Item Andy added an item that he did not need and
wants to remove it from his shopping list.

Rename Item Andy misspelled an item and wants to correct
it.

Delete Category Andy added a category that he no longer
wants and wants to delete it from the system.

Rename Category Andy added a category that he misspelled and
wants to rename it.

Sort Categories Andy added a category and wants to change
where it appears on the shopping list in rela-
tion to the other categories.

Delete Location Reminder Andy does not want to receive reminders any-
more when he arrives at a particular store.

Edit Location Reminder Andy wants to change the name or position of
a location reminder.

16 Analysis

2.5 Use Case Frequency Analysis

In the user interface design, the most frequently occuring use cases should be
automated and accessible as much as possible, in order to increase the efficiency2.

The best approach is to study the shopping list habits of several individu-
als, but this was not possible because of time and resource constraints. This
frequency analysis is instead based on estimates of the developers own habits,
despite of the limitations of this method.

I typically go shopping twice a week and purchase 8-12 items each time and
use a paper shopping list. I usually buy:

• Bread

• Milk

• Cheese

• Fruit

• Meat

• Three kinds of vegetables

Items I buy less frequently:

• Cereals

• Household cleaning supplies

• Personal hygiene products

• Beverages

This means that I will have to add and tick off between 16-24 items each week.
As Andy does, I enter items on my shopping list over the course of the week

rather than all at once. This means I use the shopping list several times a week.
I only go shopping about twice a week, so I only strictly speaking need to view
it twice a week.

I throw out the paper shopping list after each trip. This action is mapped to
the use case Clear Ticked Items, which is used much as View Shopping
List. It would however be useful to remove all ticked items from the list during
a final check before going to the cash register, so I can be sure I have picked up
every item. This means that the use case will be repeated about four times a
week, because shop twice a week.

2A case of the classic 80-20 rule, where 80 percent of the time is often spent on 20 percent
of the things you need to do.

2.6 Fully Dressed Use Case Descriptions 17

Finally, each time I enter the store I will receive a location reminder, so the
use case Acknowledge Location Reminder is performed twice a week.

The rest of the use cases and the secondary use case are rarely used. Some
of them concern configuration of the system, and others are used for correct-
ing mistakes. Their frequencies are difficult to estimate as they are performed
irregularly.

The results of the use case frequency analysis is shown in Table 2.3. The fre-
quency is estimated in uses per week. This does not take into account the
duration of a particular use case. For example, a lot of time is spent viewing
the shopping list, so this should receive more focus than the frequency of this
use case might suggest. Therefor a use case frequency analysis is an incomplete
meassure of the importanceof a use case.

Use case Frequency (Uses per week)

Add Item 16-24

Tick Off Item 16-24

Clear Ticked Items 2-4

View Shopping List 2

Acknowledge Location Reminder 2

Add Location Reminder Irregular

View Locations Irregular

Secondary Irregular

Table 2.3: An estimate of the frequency of the use cases.

2.6 Fully Dressed Use Case Descriptions

This section contains fully dressed use case descriptions. They describe the use
cases in a formal manner with preconditions, postconditions(successful result),
and what the user and system does. The fully dressed use case makes it easier
to develop a prototype, as it is clear what happens. It also makes it easier to
construct an acceptance test, as it should at least contain the steps described
here.

18 Analysis

2.6.1 Add Item

Precondition At least one shopping list has been created. The system
knows which category the item, that is being added, be-
longs to.

Postcondition An item has been added to the chosen shopping list under
a category.

1. The user selects which shopping list to add the item to.
2. The user enters the item.
3. The system adds the item to the selected list.

2.6.2 Add Unknown Item 1

Precondition At least one shopping list has been created. The system
does not recognize the item of the category to which it
belongs.

Postcondition An item has been added to the chosen shopping list under
a category. The system will not ask the user which cate-
gory the item belongs to if the item is re-entered again.

1. The user selects the shopping list to which he will add the item.
2. The user enters the item.
3. The system responds that it does not know to which category the item

belongs.
4. The user selects the correct category.
5. The system registers the item as belonging to this category.
6. The system adds the item to the selected shopping list.

2.6.3 Tick Off Item

Precondition One or more items have been added to the selected shop-
ping list.

Postcondition The system remembers that the item has been bought.

1. The user selects the bought item.
2. The system registers that the item has been bought.
3. The system responds that the item has been bought.

2.6 Fully Dressed Use Case Descriptions 19

2.6.4 Clear Ticked Items

Precondition One or more items have been added to the selected shop-
ping list, and one or more items have been ticked off.

Postcondition The selected shopping list only contains non-ticked items.

1. The user selects Clear Ticked Items.
2. The system removes all ticked items from the selected shopping list.

2.6.5 View Shopping List

Precondition At least one shopping list has been created.

1. The user selects the shopping list he wishes to view.
2. The system displays the shopping list.

2.6.6 Add Location Reminder

Precondition At least one shopping list has been created.

Postcondition The user is reminded if he enters the location.

1. The user selects Add Location.
2. The user types in the location name.
3. The user specifies the location coordinates.
4. The system adds the location reminder to the system.

2.6.7 View Locations

Precondition At least one shopping list has been created.

1. The user selects View Location.
2. The system displays the store locations that have been added and which

shopping list they belong to.

2.6.8 Display Location Reminder

Precondition A location has been added to a shopping list. The shop-
ping list has one or more items that needs to be bought.

Postcondition The user is reminded that he needs to buy items at the
location.

1. The user moves close to the store where he need to buy items.
2. The system displays a reminder.

20 Analysis

2.6.9 Acknowledge Reminder

Precondition The system has displayed a location reminder.

1. The user accepts the displayed reminder.
2. The system displays the shopping list where items needs to be bought.

Chapter 3

User Interface Design

22 User Interface Design

The following section describes the chosen platform. Three user interface
designs are described in the next sections:

• Separating each use case into separate screens.

• Using an alternative grid layout.

• Combining the use cases in list-centered design.

The platform is first chosen. It’s Each design has advantages that must be
addressed, such as:

• Ease of navigation.

• Screen real estate.

• Input speed.

The design is chosen at the end of the chapter based on these criterias.

3.1 Chosen Platform

Before a user interface can be designed the platform must be defined. Each
platform has a number of common idioms that should be followed, for example
a long press on an item on the Android platform brings up more options related
to the item. Mobile devices have different ways of interacting with them, some
have touch screens other do not. Some have full qwerty keyboards others on-
screen keyboard, while some only have the basic numerical keyboard. The size
of the screen is also very important as it limits how much you can display at
once. This section describe the chosen platform.

The smart phone must have the following features:

• GPS or other means of positioning.

• Background processes that can continually monitor the user’s position.

These features are essential for making a location based shopping list because
the application cannot alert the user when he is in the right location, if it cannot
continually monitor his position.

The HTC G1 had all of these capabilities. It runs Google’s Android platform
was released at the time when this thesis was first envisioned.

Some of the specifications that HTC lists for the G1 are:1

1Specifications taken from http://www.htc.com/www/product/g1/specification.html

http://www.htc.com/www/product/g1/specification.html

3.2 Separate Screens Design 23

• “3.2-inch TFT-LCD touch-sensitive screen with 320 x 480 (HVGA) reso-
lution.”

• “Slide-out 5-row QWERTY keyboard.”

• “GPS navigation capability with Google Maps.”

It also has other features such as a SQLite database, WiFi, 3G, Bluetooth and
a Camera.

There are many user interaction methods for the G1. Some notable methods
are:

• Touch driven user interfaces.

• Large icons and widgets that are easy to touch.

• Long press brings up more actions related to the touched widget.

• The menu button on the phone brings up a pop-up menu at the bottom
of the screen with more possible actions.

• The back button on the phone is used to return to the previous screen.

These means of interaction should be kept in mind when designing the applica-
tion, to improve the ease of interaction for the user who is already familiar with
the platform.

3.2 Separate Screens Design

This design separates each use case into a separate screen.

3.2.1 Add Item

One use case screen is shown on Figure 3.1. To add an item to a shopping list
the user must enter the following:

• The item.

• The category to which the item belong.

• The name of the shopping list.

The design has three text fields and thus requires a lot of typing, but there are
ways to reduce the need for typing. The application could remember what the
user has previously typed and can make suggestions and auto-fill known fields.

24 User Interface Design

Figure 3.1: Adding an item to the shopping list.

Figure 3.2 on page 25 shows how the system suggests previously entered
items when adding an item. The suggested items are shown in a list beneath
the active text field. The user can select an item by touching the item on the
suggestion list.

The list of suggestions becomes shorter as the user types more characters.
For example the user types “m” and the application suggests several items
starting with the letter “m”. The user then types “i” and the suggestion list is
reduced to the items starting with “mi”.

Adding suggestions reduces the need to fully type longer words. However, it
is not as helpful with short words, because it may be easier to continue typing
instead.

3.2 Separate Screens Design 25

Figure 3.2: Previously added items are suggested to the user.

Figure 3.3 26 shows how the application can automatically fill text fields if
a known item is entered in the item text field. It remembers which category
an item belongs to and where it was last purchased. The user does not need
to retype that information. The application then moves the focus to the “Add
Item” button. This effectively cuts the needed user input to a third.

26 User Interface Design

Figure 3.3: The form is auto filled if a previously added item is chosen.

3.2.2 View Shopping List

A shopping list, such as that in Figure 3.4 lists each item under its category,
e.g. milk and cheese are listed under the dairy category. There is a tick box
next to each item on the list. The user ticks these boxes as he puts each item
on his list in his shopping cart, by pressing anywhere on the row containing the
tick box and item name. This reduces mistakes by allowing the user a greater
surface area on which to press.

The user can scroll through the list allowing him to see more items. He can
change between different shopping lists by selecting them from the dropdown
box in the top of the screen.

Figure 3.5 on page 27 shows a different way of switching between shopping
lists, in which two screens are used. The first allows the user to select the
shopping list, while the number next to each shopping list represents the number
of items on that list. When the user selects a screen by pressing the appropriate
row, the second screen displays the shopping list that was selected. The user
can use the back button to return to the shopping list selection screen.

Both methods for switching between shopping lists carry advantages and
disadvantages. The first method sacrifices some of screen real estate but also
makes the switching more obvious. The second method allows more items to be
viewed at a time and looks cleaner, but it also complicates navigation.

This method of displaying the shopping lists wastes screen real-estate as
shown on Figure 3.6. This waste could be reduced by displaying the items in a
grid like that in Figure 3.7. This, however, increases visual noise and can make
finding an item more difficult.

3.2 Separate Screens Design 27

Figure 3.4: The shopping list where switching is done via a drop down list.

Figure 3.5: The shopping list where switching is done via nested lists.

28 User Interface Design

Figure 3.6: Screen real estate wasted to the right of each item.

Arranging the items in a grid also reduces the horizontal for space each item.
Due to this loss of space, the text must be truncated and is harder to read.

3.2 Separate Screens Design 29

Figure 3.7: Items arranged in a grid.

30 User Interface Design

3.2.3 Add Location

Users can add location reminders to a shopping list as shown in Figure 3.8. The
described form can also be used for editing a location. The user types in the
name of the location and chooses the shopping list. The user then presses the
“Set Store Location on Map” button which searches for the location name on a
map.

The user can move the pin to the desired location on the screen and extend by
dragging it with his finger. He can also extend or reduce the radius by dragging
the ring around the pin with his finger. The user will receive a location reminder
when he enters the radius.

The zoom controls on the bottom zooms in and out of the map when touched.

The search box at the top of the screen can be used to search for a store.
Search results are shown with small pins(not shown on the figure). The map
pin that decides the location is automatically moved to one of the small pins
when touched.

The OK button remains disabled until the user has entered the location name
and chosen the location on the map. The user can alternatively press cancel if
he decides not to add the location.

Figure 3.8: Adding a location and setting the store location on a map.

3.2 Separate Screens Design 31

3.2.4 Clear Ticked Items

The user can remove ticked off items from the list as shown on Figure 3.9. The
ticked items will not be deleted entirely from the system, but only removed from
the selected shopping list. The menu pops up at the bottom of the screen when
the user presses the menu button.

Figure 3.9: It is possible to remove all ticked items from the shopping list using
the pop-up menu when viewing the shopping list, by pressing Clear Ticked.

32 User Interface Design

3.2.5 Edit Category

Categories can be edited as shown on Figure 3.10. The edit actions are:

• Category deletion

• Category renaming.

• Category sorting.

A dialog with edit options appears when the user touches and holds a category
New dialogs and screens are shown depending on which option he chooses.

Figure 3.10: A long press on a category brings up a dialog with category options.

3.2.6 Edit Item

Te user can edit an item on a shopping list as shown on Figure 3.11. Similar
to editing categories, the user touches the item and holds the item. A dialog
appears where the user can choose to delete or rename the item. These options
will lead to further dialogs and screens.

3.2 Separate Screens Design 33

Figure 3.11: A long press on an item on the shopping list brings up a dialog
where it is possible to delete and rename an item.

3.2.7 Sorting Categories

Categories are sorted by small up and down buttons on each side of the categories
as shown on Figure 3.12. The user can move a category to its desired location
by pressing the up button next to the category. The user can likewise move a
category down by pressing the down button. The category moves up or down
one row with each press.

Although successful, this method is tedious. The user must reposition his
finger each time he wants to move a category another step, and multiple presses
take time. A more efficient method allows the user to grab the category and
place it directly in the correct place on the list. Figure 3.13 shows this alternative
method. The user presses and holds a category to detach it from the list. He
can then move it up or down the list by dragging it to the desired position and
releasing his finger. In addition to its speed, this method is more spatial as
people sort real-world objects in a similar manner, by picking them up to move
them to a new location.

34 User Interface Design

Figure 3.12: Move categories up on a list by pressing green arrow, and down on
a list by pressing the red arrow.

Figure 3.13: Move a category up or down by first doing a long press and then
moving it up and down, releasing it at the desired position.

3.2 Separate Screens Design 35

3.2.8 Navigating Between Screens

Figure 3.14 shows a method of navigating among the screens via a home list.
The user, for example, presses the “Add Item” button to go the the screen
where he can add items to the shopping list. The back button returns user to
the home list screen.

The disadvantage of this method is that the user will spend time navigating
between use cases. The advantage is that each screen has ample screen real
estate to itself because none of it is used by navigation.

Figure 3.14: Navigating between the main use cases using a home list on the
main screen.

Figure 3.15 shows a second method of navigating among screens. The user
switches among screens that allow him to add items, view the shopping list and
manage locations by pressing the corresponding tab. The user, for example,
presses the “Add Item” tab to go the the screen where he can add items to the
shopping list. The last used use case will be the default screen on start-up. The
way of navigating is modeled after the built-in contact book and dialer for the
Android platform.

The disadvantage of this method is that the navigation takes up screen
real estate. The top part of the screen always contains navigation tabs. The
advantage is that it is fast and easy to switch between uses cases. The user most
often adds items to the list, so this will often2 be the first screen on start-up
because it shows the last used screen.

2The user only views the shopping list when he goes shopping.

36 User Interface Design

Figure 3.15: The last used use case is the main screen and navigation is done
via tabs. Note that the tabs use a higher percentage of screen real estate in
horizontal mode.

A third method of navigating between the use cases is shown on Figure 3.16.
The user navigates by pressing options in a menu at the bottom of the screen.
He can bring up the menu by pressing the menu button on the phone itself.
The advantage of this method is that little space is wasted on navigation. The
disadvantage is that it takes two presses to go to the most frequently used use
case, Add Item. First the user must bring up the menu and then select “Add
Item”.

3.2 Separate Screens Design 37

Figure 3.16: The shopping list is the main screen and navigation to other use
cases is done via a pop-up menu.

38 User Interface Design

3.3 Alternative Grid Design

The grid-based design was suggested by my advisor Jakob Eg Larsen. It displays
small buttons as shown on Figure 3.17 representing each item, and arranges them
in a grid a shown on Figure 3.18. The quantity can be increased by pressing
the left side or decreased by pressing right side of the button. The button has a
label with the item name and the quantity. Unselected items remain grey while
items added to the shopping list turn white.

The alternative grid layout described has a few disadvantages. Adding items
to the shopping from the long list is efficient than just typing them. The user
must scroll through a long list of items to find what he needs. He must then
press on the button once or multiple times.

There is more wasted space in this alternative layout than the other proposed
layouts. The items that are not added to the list remain visible even if they are
not needed.

Alternatively the proposed method could be used only for adding items to
the list and then the list can be displayed in a separate screen as described in
the previous section. Although this would improve screen real estate, it would
not speed up the item searching.

One could speed up the the alternatively grid design by showing the most
used items at the top. The user would then only need to scroll a long list if they
wanted to add an uncommon item.

Figure 3.17: The button representing an item.

3.4 Combined List-Centered Design 39

Figure 3.18: Items arranged in a grid.

3.4 Combined List-Centered Design

The design described in Section 3.2.8, sacrificed screen real-estate for navigation.
This space could be used to complete a use case instead. Figure 3.19 shows this
possibility. The list has a text entry at the bottom of the screen where the user
can add items. If the application does not recognize an item, a dialog is displayed
where the user can enter the category. The item is added to “Uncategorized”
if the user presses cancel. The number of inputs required to add an item to the
shopping list is reduced by showing a pop-up list with suggestions as explained in
Section 3.2.1. The application adds the item to the currently selected shopping
list and remembers to which category the item belongs. This reduces the number
of text entries needed compared to the method described on figure 3.1 on page
24.

Figure 3.20 shows the pop-up menu that appears with a press of the menu
button. The menu contains options to:

• Remove the ticked items from the list.

• View and add location reminders.

• Add a new shopping list.

• Delete the currently selected shopping list

A long press on the category names allows the user to delete categories,
rename categories, and sort categories as seen on Figure 3.10. It is also possible
to delete and rename an item by a long press on that item.

40 User Interface Design

Figure 3.19: Items are added while viewing the shopping list.

Figure 3.20: More actions are accessible through a context menu.

3.5 Choice of UI Design 41

This design is efficient for adding new items to the list because it can be accom-
plished from the main screen. The most frequently used use cases (Add Item
and Tick Off Item) are always accessible on the main screen. It is easy to
switch between shopping lists because this is also done on the main screen. Less
frequently used use cases have been reached by pressing the menu button, and
the least frequently used use cases are accessible by long presses. This provides
a good balance between how often a use case is used and how accessible it is.

3.5 Choice of UI Design

Creating a good user interface is not an exact science but a subjective process.
Conducting usability tests that compare competing designs can help making
the process more objective, but due to time and resource constraints, this was
not feasible. Instead each design is rated by assigning point values to chosen
criterias. The point values range from one to three, three representing the best
possible performance. The rating system corresponds to: 1 for poor, 2 for
satisfactory, and 3 for good. The following criteria where chosen:

• Ease of navigation.

• Screen real-estate usage.

• Input speed.

Table 3.1 shows the result of the evaluation of the designs described in Sections
3.2, 3.3, and 3.4.

The navigation used in the separate-screen design is clear, but it was slower
than the combined list centered design, because it requires more button presses
and screen changes. The combined list-centered design navigation is fast and re-
quires fewer screen changes. Therefor the combined list-centered design received
a higher navigation rating than the separate screens design. The alternative grid
design was given the lowest score, because it wastes significant time scrolling.

The separate screen design was given a low score in screen usage because it
wastes screen real estate. Each use case takes up an entire screen; the use
case Add Item, for example, has three text entry fields and two buttons.The
combined list-centered design is an improvement with only one text entry field
and one button. The best, however, is the alternative grid design, which does
not require any fields at all, and which can show more items at one time by the
nature of the grid.

The input speed for all three designs is reasonably fast. However the com-
bined list-centered design was rated as having the highest input speed because
it required the least number of inputs of the designs.

42 User Interface Design

The combined list-centered design received the highest overall score and was ul-
timately chosen as the design for implementation in a prototype of the shopping
list application.

UI Design N
av

ig
at

io
n

Sc
re

en
us

ag
e

In
pu

t

Sc
or

e

Separate-Screens 2 1 2 5

Alternative Grid Design 1 3 2 6

Combined List-Centered 3 2 3 8

Table 3.1: Rating of the proposed user interface designs.

Chapter 4

Design

44 Design

4.1 The Android Platform

Applications for the Android platform must follow a few design rules, which will
be covered in this section. An application can contain four different kinds of
components1

• Activities

• Services

• Broadcast receivers

• Content providers

An application is divided into a number of screens, for example one showing
the shopping list and one showing a map. Each of these screens must inherit
from Activity, which is a requirement in the Android platform. Each activity
can be started by sending an Intent, which is a built-in message passing class.
This reduces coupling as each activity does not have to know anything about
the other activities, but has to send the right intent. Activities can, this way,
easily be substituted as long as the replacement responds to the same intent.
This also has the benefit that each activity can be tested separately.

Services are a way to keep a part of the application running that does not have
any graphical representation. It can carry out operations in the background for
an application. Activities can connect to services and have them do work for
them.

Broadcast receivers can listen to broadcasted intents just like activities, but they
do not have any graphical representation like the services.

Content providers provide a way to interface with databases or other files via
URLs. They enable data to be shared across applications and activities in a
uniform way. They support the Observer pattern2 so the views are automatically
updated when the underlying data source changes.

4.2 The Main Architecture

This sections describes the main architecture of the application. Figure 4.1
shows the main classes in the application. The application is divided into many
separate screens, which all inherit from Activity. There is a service, Loca-
tionService, which inherits from Service, and there are two broadcast re-
ceivers, OnBootServiceStarter and NotificationSpawner, that inherit from

1See Application Fundamentals [7]
2See [9] page 210 for more information on the Observer pattern.

4.2 The Main Architecture 45

BroadcastReceiver. All of these classes’ responsibilities will be described in
this section.

LocationService

Activity

OnBootServiceStarter

NotificationSpawner

AddCategory

AddLocation

ViewLocations

ViewMap

AndyList
Service

BroadcastReceiver

Figure 4.1: A simplified class diagram showing inheritance of classes.

The class AndyList is the main activity and the application starts in this activ-
ity. It shows the shopping list and starts other activies such as ViewLocations.
It does not contain any functionality itself but is responsible of creating various
objects and tying them together.

The classes AddCategory, AddLocation, ViewLocations and ViewMap
are activities that each do what their name implies. The activity AddCategory
is shown when the user needs to add to which category an item belongs. The
activity ViewLocations displays all the location reminders and the shopping
lists they are related to, but it can also spawn the AddLocation activity. The
AddLocation activity in turn spawns the ViewMap activity when the user
adds a new location reminder to the system.

The service LocationSerivce responsibilities are to insert, remove and update
location reminders. It registers location reminders with the system service Lo-
cationManager. The LocationService is started on boot by the OnBoot-

46 Design

ServiceStarter broadcast receiver. This is because services cannot listen to
intents, so OnBootServiceStarter starts when booting has completed and
then starts the service. The OnBootServiceStarter broadcast receiver is,
therefor, only a workaround for the design limitations in the Android platform.

4.3 The Model-View-Control and the Observer Pattern 47

4.3 The Model-View-Control and the Observer
Pattern

The Android platform uses several well known patterns such as Model-View-
Control (MVC) and the Observer pattern. These patterns are built-in to the
widgets and classes that come with the platform, so they were utilized in the
design.

Figure 4.2 shows how these patterns are used in the application. The simpli-
fied class diagram shows five classes. These classes, except for the Database-
Helper, class are not literal classes. They are generalizations of the types of
classes that appear most often. The diagram shows how these classes interact.

The views are the classes that present information to the user, e.g. the shopping
list with items. Each view displays data from a model that it observes. The
view adapter is the model that the view observes. The view adapter provides
a transformation of the data from the database adapters, so the real model is
the database adapters. The view adapter, therefor, has to observe the database
adapters so it can forward the change notifications to the view.

The use of the observer pattern makes the model inform its observers when-
ever it is manipulated. That means the views’ display of the data is updated
automatically, which reduces the chances of errors, as one does not have to
manually update every view whenever the model is manipulated.

Listeners

ViewAdapters

Views DbAdapters DbHelper

notifies

observes

notifies

modifies

observes

All objects are created by

the AndyList class, and all

relationships are injected.

1

1..**

*

1..*
*

1

notifies

Figure 4.2: A simplified class diagram showing how MVC and the Observer
pattern is used in the application.

The listeners3 are what controls the program flow. They can read and write
3Also known as event handlers.

48 Design

the state of a view and the model. The listeners contain the knowledge of
what should be changed in the views and the models. For example, when the
user clicks the add item button, the listener gets informed that the button was
clicked. The listener reads the name of the item in the text entry view, clears
the the text entry view, and then inserts the item in the shopping list model.

The use of MVC divides the responsibilities of the classes. This makes it easier
to change to the implementation, as it is more obvious where the changes need
to occur. It also makes it easier to test the implementation, because it is well
defined what a class should be able to do.

It was mentioned in the previous section that the class AndyList was the
main activity. Its responsibility is to instantiate all the needed objects and bind
them together, which can be seen on Figure 4.3. This is how all the objects in
the MVC pattern come to known about each other.

4.3 The Model-View-Control and the Observer Pattern 49

s
e

tL
is

te
n

e
r(

l)

l:
L

is
te

n
e

rs

v
a
:V

ie
w

A
d

a
p

te
rs

v
ie

w
:V

ie
w

s

d
b

A
:D

b
A

d
a

p
te

rs

A
n

d
y

L
is

t

c
re

a
te

c
re

a
te

c
re

a
te

c
re

a
te

s
e

tA
d

a
p

te
r(

v
a

)

s
e

tM
o

d
e

l(
d

b
A

)

s
e

tV
ie

w
(v

ie
w

)

s
e

tM
o

d
e

l(
d

b
A

)

F
ig

ur
e

4.
3:

A
se

qu
en

ce
di

ag
ra

m
sh

ow
in

g
ho

w
th

e
ob

je
ct

s
ar

e
in

st
an

ti
at

ed
an

d
ti

ed
to

ge
th

er
.

50 Design

4.4 The Data Layer

The Android platform comes with SQLite, which is a small embedded SQL
server4. SQLite is a fast, memory efficient and reliable solution, and it is being
used in many embedded products, such as the Apple iPhone. Using the embed-
ded database makes it easier to develop a data-heavy application. If one used
custom XML-documents instead, then one would have to write a parser and
functions to manipulate the documents. This would be error prone and create
extra work, so SQLite is a good solution for persisting data.

_id : int <<PK>>

category_id : int <<FK>>

name : string

Item

_id : int <<PK>>

name : string

sort_no : int

Category

_id : int <<PK>>

item_id : int

shopping_list_id : int

is_ticked_off : bool

ShoppingListItems

_id : int <<PK>>

name : string

ShoppingList

_id : int <<PK>>

name : string

shopping_list_id : int

latitude : double

longtitude : double

last_reminded : int

Location

} <<uniq>>

Figure 4.4: The database schema.

The database schema on Figure 4.4 describes what data is saved and how it is
stored in the database. The items that go onto the shopping list have been split
into two entities, Item and ShoppingListItem. This has been done so that it
is possible to save and later retrieve the names of the items and which category
they belong to, without them being on a shopping list.

The entity Category has also been split out from Item so that it is possible
to have categories with out them necessarily being associated with any items.

Access to each table in the database is provided through database adapters as
shown on Figure 4.5. As mentioned before, the database adapters are a part of
the model. They contain methods to read and write data in the database. The

4Read more at http://www.sqlite.org/

4.4 The Data Layer 51

methods are only shown for the ItemDbAdapter to make the diagram easier
to read. All of the database adapters contain similar methods to read and write
data in their associated table.

The database adapters are a light weight alternative to data mappers. The
data mapper in a Data Mapper Pattern5 can retrieve data from the database
and use it to instantiate domain objects. It also persists domain objects to the
database. The database adapters only work on database cursors so they do not
waste memory or processing power on creating new objects. Google encourages
developers to avoid unnecessary object creation 6 and uses database adapters
in its own application examples.

CategoryDbAdapter

LocationDbAdapter

+open()

+close()

+createItem(in name : string, in categoryId : long) : long

+deleteItem(in id : long) : bool

+fetchAllItems() : Cursor

+fetchItem(in id : long) : Cursor

+updateItem(in name : string, in categoryId : long) : bool

+fetchItemsByName(in name : string) : Cursor

+fetchItemsByGlob(in name : string) : Cursor

ItemDbAdapter

ShoppingListItemDbAdapter

ShoppingListDbAdapter

DatabaseHelper

Figure 4.5: A class diagram showing the database adapter classes. The methods
are shown for the ItemDbAdapter class, but have been omitted for the others.

The database adapters could have been wrapped in content providers. There
is not any interaction of the data between applications, so it was decided not to
use content providers in order to save time on the implementation.

5See page 628 in [9]
6See the section Designing for Performance in [7]

52 Design

4.5 Location Reminders

This sections describe how location reminders are enabled via proximity alerts.
The LocationService is responsible for inserting, removing and updating loca-
tion reminders. Figure 4.6 shows how the LocationService registers location
reminders via proximity alerts in the system. It creates pending intents, those
that can be fired at a later stage, that contain data about when it should be
triggered and who should receive the intent. The LocationService registers
the broadcast receiver NotificationSpawner to be started when the phone
enters a radius of the desired position.

LocationService

pi:PendingIntent

<<system service>>

LocationManager

setActivity(NotificationSpawner)

addProximityAlert(pi)

create

While more locations

setLongitude(longitude)

setLatitude(latitude)

setRadius(radius)

Figure 4.6: A sequence diagram showing how the service LocationService
adds location reminders.

Figure 4.7 shows how the system service LocationManager reads the position
off the phones hardware. If it is near the location that the pending intent was
registered with, it sends out the broadcast associated with a pending intent.
This would send out a proximity alert event that is picked up by the Noti-
ficationSpawner. The NotificationSpawner in turn shows a notification
by registering a pending intent with the system service NotificationManager
(not shown on the figure). This will make the system open the application when
the user acknowledges the location reminder.

4.5 Location Reminders 53

PositioningHW
<<system service>>

LocationManager

NotificationSpawner

read()

position

While not on location

create

While true

showNotification()

Figure 4.7: A sequence diagram showing how the system service Location-
Manager handles changes to the location.

54 Design

Chapter 5

Implementation

This section describes some of the implementation details concerning the im-
plemented prototype application. More than 32 classes and 3500 lines of source
code were implemented, so it is not possible to describe all of them within the
scope of this thesis. I have decided to describe only those features that were
most difficult to implement and that exposed bugs in the Android platform. The
rest of the implementation is best understood by loading the source code in the
Eclipse editor1 that is used in the Android SDK, and running the application
with the debugger enabled.

All of the primary use cases described in Section 2.4 were implemented in the
prototype application. The acceptance test in Section 6.1 confirms that these
use cases were implemented.

5.1 The Shopping List Adapter

The user interface mock up sketch on Figure 3.4 shows a list separated by
categories. There was no titled list widget in the Android platform, so I chose
to use the closest thing, an expandable list, because it can separate items by
categories. This means if it was decided to later implement a flat titled list, one
would be able to use the same view adapter.

The class SLExpandableListAdapter adapts the data from the database
so that it can be used by the expandable list. It uses one database cursor to

1See Appendix D

56 Implementation

retrieve all the categories and another for each category to fetch the associated
items. It fetches the cursor containing all the items of a category, when a
category is expanded. Listing 5.1 shows an excerpt of how the items are retrieved
from the database when a category is expanded.� �

1 public Object getChild(int groupPosition, int childPosition)
2 {
3 long categoryId = getGroupId(groupPosition);
4 Cursor c = mSLIDb.fetchItems(mShoppingListId, categoryId);
5 if (c.getCount() == 0)
6 return null;
7

8 c.moveToPosition(childPosition);
9

10 return c;
11 }� �

Listing 5.1: An excerpt of the code that implements how items are retrieve for
the shopping list.

During the implementation of the shopping list adapter I found out that the
existing classes used for expandable lists2 were inflexible. One was unable to
control which widgets were displayed in each group. That meant that it was
impossible to put check boxes with items under each category. I extended a base
class called BaseExpandableListAdapter to change the displayed widgets.
This undocumented so I had to look into the source code of the Android platform
in order to find out how to extend this class.

The implementation of the expandable list adapter exposed a bug in the Android
platform. I found out that if a group (category) was expanded and the shopping
list switched to one with fewer categories, the application would crash. I found
that it was because the expandable list in the Android platform did not forget
which group had been expanded, eventhough it was notified that the underlying
data had changed. When it tried to expand all the previously expanded groups,
it would try to expand a group that did not exist. This bug was found and a
solution created by studying the Android platform’s source code. The created
fix was simple, one needed to return ”‘-1”’ if the call to getGroupId was out
of bounds, but this undocumented. The code and the fix can be seen in listing
5.2.

2The view adapter SimpleCursorTreeAdapter in [5] provides an easy way to use ex-
pandable lists.

5.1 The Shopping List Adapter 57

The bug has not been reported yet because of time constraints. It is unclear if
the expandable list widget should completely forget which groups were expanded
when the underlying data changes. It is good that the list keeps being expanded
if there are minor changes so the user does not have to re-expand the groups.
It, however, becomes problematic when the underlying data changes completely
because it then tries to expand something that does not exist.

The Android developers should decide if this behavior is really wanted and make
sure to document it. If they decide to keep the behavior they should make a
notice in the documentation that the method getGroupId should return ”‘-
1”’. They could alternatively make the expandable list widget robust so that it
checks that a group exists before trying to expand it.� �

1 public long getGroupId(int groupPosition)
2 {
3 if (getGroupCount() > groupPosition)
4 {
5 mGroupCursor.moveToPosition(groupPosition);
6 return mGroupCursor.getLong(mGroupIdIndex);
7 }
8 else
9 {

10 return −1;
11 }
12 }� �

Listing 5.2: A fix for the expandable list bug. Code comments have been
removed.

58 Implementation

5.2 Item Autocompletion

The autocompletion described in Section 3.2.1 was implemented. The appli-
cation comes pre-loaded with some common items and categories. These are
inserted in the database by the class DatabaseHelper when the application is
first installed.

The autocompletion is performed by a standard AutoCompleteTextView
widget that uses a custom view adapter called ItemAutoCompleteAdapter.
The view adapter instantiates views for the AutoCompleteTextView widget
and binds the data from the database. The item names are fetched from the
database using the database adapter ItemDbAdapter. Listing 5.3 shows how
the item names are retrieved from the database. The called method, fetchItem-
NamesByGlob, returns a list of items where the item names match the first
few characters the user has typed in the AutoCompleteTextView widget.� �

1 @Override
2 public Cursor runQueryOnBackgroundThread(CharSequence constraint) {
3 if (constraint == null)
4 {
5 Log.d(TAG, ”runQueryOnBackgroundThread constraint is null!”);
6 return mCursor;
7 }
8

9 return mItemDb.fetchItemNamesByGlob(constraint.toString());
10 }� �

Listing 5.3: The item names are retrieved by the ItemAutoComplete-
Adapter in the background.

The implementation of the autocompletion feature exposed another bug in the
Android platform. Figure 5.1a shows the autocompletion feature, where the
user has typed the letter ”‘M”’. The user is given a list of items starting with
the letter ”‘M”’ from which to choose. This looks fine until the user then types
in another letter. The choices that no longer matche the typed letters are
removed, but the list now floats in mid air instead of being flush with the text
entry box as seen on figure 5.1b. I reported the bug to the Android developer
team as ”‘Issue 2296 in android: AutoCompleTextView ”drop up” gap”’ 3. The
developers responded that the bug had already been fixed and was scheduled to
be included in a future release.

3See the bug report at http://code.google.com/p/android/issues/detail?id=2296

5.2 Item Autocompletion 59

(a) Small (b) Bigger

Figure 5.1: Normal autocompletion behavior, and the bug that appears after
typing more letters. Notice how the autocompletion list hovers in mid air.

60 Implementation

5.3 The Map View

Figure 3.8 on page 30 describes how the user can add a location reminder by
choosing a location on a map. The default map widget in the Android platform
was used to implement it. The default map view did not, however, have map
pins that could be moved. This was implemented by doing custom hit testing on
the map pin picture and then looking at the type of the received event. Figure
5.2 shows the implemented map view. The search feature was not implemented
because of time constraints, but was kept in the user interface design, in or-
der to give an impression of how it would have worked. The OK and Cancel
buttons at the bottom of the screen were also not implemented. There was a
bug in the Android platform that made any widgets placed under the map view
disappear. The bug was trivial to reproduce, but was not reported because of
time constraints.

Figure 5.2: Map view with the custom map pin.

Figure 5.3 shows an activity diagram describing how the dragging of map pins
was implemented. A custom ItemizedOverlay named MapMarkerOverlay
was implemented. It is placed on the map view and receives events. It goes to a
dragging state when it receives a down event, that is when the user touches the
screen, and if the user has hit the map pin. When the MapMarkerOverlay
is in the dragging state it will move the map pin picture to the new location if
it receives a move event.

5.3 The Map View 61

Stopped

Is dragging

Event move

Event down

[true]

Hit?

[false]

Event up

Figure 5.3: The activity diagram describes how the dragging of map pins was
implemented.

I was surprised that Google did not include draggable map pins. There are
no draggable pins in the default map application that comes with the Android
platform, so I guess that was the reason the feature not being present. Extract-
ing the feature from this application and including it in the Android platform
would allow developers to create more kinds of applications that use the map
view without having to re-implement the feature.

62 Implementation

Chapter 6

Testing

6.1 Acceptance Test Results and Conclusion

This section describes the results from the acceptance test, which can be found
in Appendix B. The acceptance test is used to verify that the system functions
as expected. It provides step-by-step instructions on what a user is supposed to
do and what the result should be, allowing a third party to replicate the results.
A manual acceptance test was chosen because there were many interface changes
during the development, and the development cycle was so short it would have
been costly to produce an automatic acceptance test. One good side effect of
this is that it describes how to use the system, so although it is not a user
manual, one can easily deduce how to use the system by going through it. This
would make writing a user manual easier.

It is important to note that this acceptance test does not test for various
error cases. It only tests that it is possible to complete the implemented use
cases. A finished product should also test for various error cases. It should also
be subjected to a period of real-life usage by testers in order to uncover and
weed out the worst bugs.

Table 6.1 contains a list of tests done in the acceptance test. Each row in
the table states which use case was tested and whether the test passed or not. A
detailed description of each step performed in the test can be found in Appendix
B. It can be concluded that it is possible to perform all the use cases that were
implemented. However, it does not mean that the system is bug free or that the
system is feature complete.

64 Testing

Table 6.1: Short descriptions and results of the acceptance test.

Use Case Passed

Add Item X

Add Unknown Item 1 X

Tick Off Item X

Clear Ticked Items X

View Shopping List X

View Location Reminders X

Add Location Reminder X

Display Location Reminder X

Acknowledge Location Reminder X

6.2 Location Reminder Field Testing

This section contains a field test of the location based shopping list. It was
already shown by the acceptance test that it was able to give location reminders
using the emulator. However, would be preferable to field test it using real
hardware because hardware does not always behave optimally.

The G1 phone is able to use three kinds of positioning: Cell-ID, WiFi and
GPS1. The Android platform automatically uses both Cell-ID and WiFi if you
choose a coarse positioning resolution. Carr [3] gives a good introduction to
these technologies, on which the following explanation is based.

Cell-ID positioning is a method where the cell phone uses the information
from the tower to which it is connected. It looks up the tower’s position using
its Cell-ID and learns that the cell phone is close to that tower. The precision is
low, about 100-5000 meters, but the method is fast and does not drain power.

WiFi positioning works like Cell-ID positioning, but uses WiFi access points
(AP) instead. The range of the APs are low, which means that you have to be
close to see it. Therefor, the precision is better and Carr rates it to be 100-200
meters or less. However, it requires that there be a database of where the AP

1http://developer.android.com/reference/android/location/LocationManager.html

6.2 Location Reminder Field Testing 65

locations. It also requires a high density of APs in order to cover an area. This
means that it is less reliable than Cell-ID or GPS.

GPS works by receiving signals from satellites orbiting earth and triangu-
lating the position. This method is precise, it is typically 5-20 meters or less
depending on the equipment. However, this requires a view of the sky to obtain
signals.

The location reminders were tested in two different locations using both the
coarse (Cell-ID and WiFi) and the fine (GPS) location methods. I tested the
location reminder functionality with the following two stores:

• Døgnnetto Emdrupvej 107, København Nv 2400.

• Netto Lygten Lygten 53, København Nv 2400.

My home is about 200 meters from Døgnnetto, meaning it is close to the limit of
precision of the coarse location method. Netto at Lygten is at least 1.5 km away
from my home, making it more likely to work with the coarse location method.
I tested the location reminders by placing the phone in my pocket when going
to the stores. I traveled by foot when going to Døgnnetto and on my bicycle
when going to Netto. Both methods of positioning were repeated three times
and the results were noted in Table A.1 and Table A.2 in Appendix A.2.

GPS Cell-ID

Successes 6 0

Failures 0 6

Table 6.2: Condensed results from the location reminder field test.

Too few sample point were gathered to draw any statistically significant conclu-
sion about the reliability of the location reminders. We can, however, see a clear
pattern emerge in Table 6.2, which contains a condensed version of the results.
The Cell-ID positioning was unreliable. It was unable to display a reminder
before entering a store on any occasion, nor did it display any reminder inside
the store. I did receive reminders after leaving the store, but this was too late
to be of any use.

The GPS performed better and sent a reminder every time it was used. It
worked well, but Google recommends to turn it off to conserve power. The GPS
should be turned off, because HTC G1 battery did not even last a day with it
turned on.

The test also showed that the user can receive multiple reminders. I received

66 Testing

a new reminder when the phone lost its GPS signal and found a new one, for
example when leaving the store. This was annoying and should be corrected
in the final product. The functionality for suppressing multiple reminders was
implemented. However, activating the feature caused more bugs so it was chosen
not to activate it in the prototype.

It can be concluded that location reminders via GPS would have been viable
were it not for the problem with the battery life.

6.3 Usability Test

This section describes the conducted usability test. Jones et al. [8] outlines
some of the methods that should be used in designing usability tests 2. The
first thing is to decide what needs to be measured, and then followed a method
chosen.

So which metrics could be measured? We could compare the speed of using
application compared to using a paper based shopping list. This test would,
however, be difficult to design, because we would not know which factors to
include. For example, should the time to find a pen and a piece of paper be
included in the time to use a paper based shopping list? Can we even decide
how much time it takes to find a pen and a piece of paper? The conclusion
would vary greatly depending on the estimate of this single factor. The input
speed would also vary greatly depending on the users’ experience with the G1’s
keyboard, which could skew the result greatly. My own informal tests clocked
the time to write a shopping list with a title and the same items as in Task 1 in
Appendix C.1 to 18 seconds. This, however, does not include the time to find a
pen and paper.

Another possible metric is to measure the number of inputs, e.g. clicks and
key presses, but this kind of testing is best suited for comparing two different
solutions.

Although useful, these quantitative tests are not the most realistic for use in
this situation. Jones et al. [8] describes an interview based qualitative test3.
The purpose of such a test is to identify things that might confuse the user.
Are buttons labeled correctly? Is the navigation logical? These kinds of ques-
tions cannot be definitively answered, but one can get a good idea about it by
observing test persons using the prototype.

I will now give a short description of the interview test. The interviewer sits
down with a test subject, the prototype, and a list of tasks to complete. Each

2See Chapter 7 in [8].
3See Section 7.5 in [8]

6.3 Usability Test 67

task should represent some use case that the test person should try to complete.
The test subject must “think-aloud” or explain what they are seeing on the
screen, and how they think they are supposed to complete the given task. The
interviewer records whenever he observes that the test subject has problems or
misunderstood something. The interviewer may ask what the subject is doing,
but should be careful not to bias the test with his questions. The interviewer
must ask the test person what they found difficult or confusing after the com-
pletion of each task. The tasks can be seen in Appendix C.1. The time the
subject took to complete each task were recorded beginning from the moment
he had finishing reading the task description.

The interview tests should normally be recorded by a video camera or an
audio recorder, so it is possible to refer back for further analysis. There were
not enough time to set up equipment or go back and do further analysis so this
was skipped in the testing process.

One can end up with useless results because the user is confused by the
interaction style of the smart phone. They then find the prototype they are
testing confusing, not because there is something wrong with the prototype
itself, but because they simply find the smart phone platform itself confusing.
The G1 smart phone is different from conventional mobile phones. It has a touch
screen and a slide out keyboard. It also has new idioms, such as ”‘long pressing”’.
and item on the screen brings up new options to choose from. To familiarize the
subject with the phone, he should be shown the default applications that come
with the smart phone.

Three subjects were asked to perform the given tasks and the results were
recorded in Appendix C.2. The results showed that the time to write a shopping
list varied greatly from test person to test person. The slowest used 1 minute
and 36 seconds, while the fastest test person used only 22 seconds. The slowest
subject took his time and made many comments during the tasks. The fastest
subject used almost the same time as I did writing a paper based shopping list.
It would have been interesting to see how fast they could have completed the
task if they had been told to hurry. For comparisonm, it would also have been
interesting to see how much time the subjects would have used writing a paper
based shopping list, but this was an afterthought.

The subject seemed to generally like the user interface and had no problems
completing the tasks, except for trying to return from the map view in the last
task. They were all looking for an OK button, but could not find one. The OK
button had been left out because of a bug in the Android platform, which made
widgets under a map view disappear. I tried using the back button instead, but
this was not well received. Therefor, the OK button should be re-introduced in
the map view, as soon as Google fixes the bug.

All of the subjects also had trouble hitting the tick boxes. They did manage
to tick the items, but they had to touch some of the items more than once. The

68 Testing

tick boxes were at the edge of the screen, where the screen is less sensitive, so
the touches were not picked up. They did not know that they could have hit
the whole row, instead of just the tick box itself. It is normal on the Android
platform to hit a whole row, so they probably would not have had the problem
if I had showed them this before the test. Another solution could be to simply
move the tick boxes further away from the sceen edge so the G1 can more easily
register the touches.

All of the test persons found a few labels where they thought the text should
be changed for clarity, but they had no problems understanding the text.

The interview test showed that the application was efficient and user friendly
except for the problems encountered with the map view. All of the subjects
quickly learned how to complete each task on their own, as Jerôme Baltzersen
put it:

“I did not have to spend much time figuring out the interface as it
seemed very intuitive.”

The time to write a shopping list varied too greatly between the subjects to
determine if it is faster than a paper based shopping list in the long run. The
best way to meassure this would be to equip a larger number of people with the
application and the phone and see if they would continue to prefer using the
application over the paper shopping list.

6.4 Unit Tests 69

6.4 Unit Tests

A series of unit tests were implemented in order to test the data layer. They
were implemented so I could be confident that the data layer functioned as
expected. The tests can be run with the adb tool that comes with the Android
SDK. The application must first be installed in either the simulator or on the
phone4. All of the tests can then be run by executing the following command
on a command line:

$ adb shell am instrument -w dk.mcdonnell.andylist/ ←↩
android.test.InstrumentationTestRunner

This runs all the implemented unit tests. There are five unit tests in total and
each of them contains five to seven test cases. It takes time to run all unit tests,
so they can also be run separately by executing the following command:

$ adb shell am instrument -e class dk.mcdonnell. ←↩
andylist.tests.TheNameOfTheTest -w dk.mcdonnell. ←↩
andylist/android.test.InstrumentationTestRunner

Where TheNameOfTheTest must be replaced with one of the unit test names
from Table 6.3.

Unit test name

CategoryDbAdapterTest

ItemDbAdapterTest

LocationDbAdapterTest

ShoppingListDbAdapterTest

ShoppingListItemDbAdapterTest

Table 6.3: The implemented unit tests that each contains about five to seven
test cases.

All of the unit tests ran successfully, but they also only tested expected
behavior. They should be extended to also test for error cases.

4See Appendix D on how to install the application.

70 Testing

Chapter 7

Further Work

72 Further Work

This section further explores possibilities for work improvements of the lo-
cation based shopping list. Three main areas of possible improvement are iden-
tified:

• Finish the prototype.

• Implement competing user interface designs.

• Additional interesting features.

The current prototype application does not include all the functionality a shop-
ping list for a smart phone should contain. It lacks such features as adding,
sorting, deleting and renaming of categories. These features are relatively easy
to implement because much of the underlying functionality has already been
implemented, as evidenced in the unit tests. Another important feature that
was not implemented was the ability to limit the number of reminders received
after entering a store. Field testing showed that it is possible to receive multiple
repeat location reminders on one trip. This would be annoying. The functional-
ity of this feature was implemented, but it was not enabled. Enabling it would
have required changes to other parts of the application, that would have made
the rest break1. More time is necessary to find solutions to he quirks of the
Android platfrom in order to enable this feature.

The prototype came with a limited number of items and categories already
known by the application. More items and categories available from the start
would be useful.

There was not enough time to implement more than one prototype. So no tests
were conducted to determine which user interface design was best. It would be
ideal to implement all of the user interface designs and compare them in usability
tests. It should be possible to re-use most of the implemented source code to
implement prototypes with other user interfaces, as the code was separated into
distinct layers.

With more time and resources, many additionally features could be imple-
mented, and the application could be generally improved. The application could
be tied to an online service, enabling synchronization of shopping lists between
multiple devices, e.g. between partners. If this were tied to an online Google
service, Google would know what you wanted to buy and in which area you
shop. This kind of information would be valuable for potential advertisers, as
they would be able to direct special offers for what users want to buy. This is
much more effective than trying to show several different kinds of ads that the
user may or may not be interested in.

1It would have required that the NotificationSpawner was made an activity instead of
a BroadcastReceiver, but that made it steal the top level graphics.

73

It would also be possible to implement a delivery service by having the user
enter what he wants to buy, the quantity and where to buy it.

Though the thesis was successful in reaching its goals, there is still a lot left to
be explored.

74 Further Work

Chapter 8

Conclusion

76 Conclusion

The implementation of the prototype application took longer than first ex-
pected. I managed to find three bugs in the Android platform, which halted
the development on more than one occasion. It was apparent that the Android
platform is not yet mature or fully tested. Four versions of the Android platform
were released after the idea for the thesis was hatched.

The primary use cases for shopping list for a smart phone were identified and
implemented in a prototype application, and found to be functional based on
the results of the acceptance test. The secondary use cases were also identified,
but not implemented. Most of the underlying functionality was implemented,
but not integrated into the user interface.

Several user interface designs were described and evaluated according to a set of
criteria. The design with the highest overall score was chosen for the implemen-
tation. The rating system for the competing designs was not entirely objective.
A more objective usability test may have been more useful.

A usability test was conducted to see if the implemented application was bet-
ter than a paper based shopping list, but was inconclusively. It did however
show that the implemented prototype was efficient and user friendly. The test
subjects did not uncover any major usability problems, but the sample size was
small limiting the power of the results. The users generally enjoyed using the
application, but a long-running real-world test with a larger sample size would
be needed to determine the applications long term use potential.

Field testing showed that location reminders did not work reliably with Cell-ID
positioning, but were successful using GPS. However the GPS used so much
power that the phone became unusable.

The thesis showed that it is possible to create applications that use location
reminders. They will, however, in the case of the HTC G1 smart phone, drain
the battery too quickly. The Android platform is new and the HTC G1 was
the only Android phone on the market at the time the thesis was written.
Several new Android phones have been scheduled for release in 2009. It would
be interesting to see if location reminders will be feasible on those devices.

Appendix A

Field Testing

A.1 Preliminary Field Test

This field test was done using the Tag ToDo program for the HTC G1. It was
done at the start of the project, long before a prototype was ready. The goal
was to try and identify any problems with a shopping list for a phone. The Tag
ToDo program is a lot like a shopping list. It has multiple lists. You add things
you need done to the list and tick them off as you complete them. This is very
similar to a shopping list where you add things you need to buy to a list and
tick them off as you buy them.

I wrote a shopping list in the Tag ToDo program with the following items:

• Shake-a-cake

• Chips

• Olives

• Red peppers

• Oregano

• Minced beef

• Shaving cream

• Toothpaste

78 Field Testing

• Cheese for pizza

• Chorizo

• Yeast

• Flour

The list was so long that it scrolled off the screen. The list was in the above
order, which turned out to be a problem. I ended up walking a lot between the
different sections, because I did not get everything in the section I was in. I
could not keep track of all the items I needed in that section because I had to
scroll to find them.

This early field test exposed a need for sorting the items by the section they
are in, in order to avoid wasting time walking between the sections.

A.2 Location Reminder Field Testing Results 79

A.2 Location Reminder Field Testing Results

This section contains the results from the location reminder field test described
in section 6.2.

Location Døgnnetto Emdrupvej 107, København Nv 2400

Coarse 1 No reminder.

Coarse 2 Got a reminder half way home.

Coarse 3 No reminder.

Fine 1 Got a reminder a few meters outside the store and got
multiple reminders while walking near the window in the
store. Got a reminder when leaving the store.

Fine 2 Got a reminder a few meters outside the store. Did not
go into the store.

Fine 3 Got a reminder 25 meters outside the store. Got another
reminder when leaving the store.

Table A.1: Test results for Døgnnetto when using coarse and fine location meth-
ods.

80 Field Testing

Location Netto Lygten 53, København Nv 2400

Coarse 1 Got a reminder reminder upon leaving the store and cross-
ing the street.

Coarse 2 No reminder.

Coarse 3 No reminder.

Fine 1 Got a reminder on outside the store. Did not enter the
store.

Fine 2 Got a reminder about 10 meters away from the store. Did
not enter the store.

Fine 3 Got a reminder about 10 meters away from the store. Got
a reminder inside the store when standing in front of the
register. Also got a reminder after exiting the store.

Table A.2: Test results for Netto when using coarse and fine location methods.

Appendix B

Acceptance Test

This chapter contains a detailed step-by-step description of how to test the
program. The results of the test is discussed in Section 6.1. All the test where
run in the simulator that was shipped with the Android Platform. See Appendix
??? on how to set up the system for testing. All tests assume that the default
test data has been loaded1, and that none of it has been modified.

Test 1: Add item

In this test we will enter an item that is already known by the system. The item
Pears has already been added to the system, and should be suggested when the
user starts to type it. The system should also automatically add the item under
the correct category on the shopping list.

1. Type the character p on the keyboard.

2. The system displays a pop-up list.

3. Choose Pears from the pop-up list.

4. Press enter twice.

5. The system adds Pears to the shopping list under Fruit.

6. Touch Fruit on the shopping list to expand it.
1The default source code loads the test data by default.

82 Acceptance Test

The item Pears should now be appear under the category Fruit on the shopping
list.

Test 2: Add unknown item 1

In this test we will enter an item that is not known by the system, i.e. one that
has not been entered before, or does not come as part of the standard items.
The system should ask which category the unknown item belongs to and add it
to the shopping list under the correct category.

1. Enter ham on the keyboard.

2. Press enter twice.

3. The system displays a dialog.

4. Touch the spinner in the dialog.

5. The system displays a list of categories.

6. Choose Meat.

7. Touch the OK button.

8. The system adds the category Meat to the shopping list.

9. Touch Meat on the shopping list to expand it.

The item Ham should be under the Meat category. The system should now
be able to suggest Ham, if it is typed in again. Test this by:

10. Enter the character h on the keyboard

11. They system displays a pop-up list containing Ham.

Test 3: Tick off item

We want to make sure that the system remembers which items that got ticked
off.

1. Touch the category Fruit to expand it.

2. Tick off Apples under Fruit.

3. Touch the category Vegetables to expand it.

4. Tick off Potatoes under Vegetables.

83

5. Press the back button on the phone.

6. The phone closes the application.

7. Touch and hold the application drawer on the bottom of the screen.

8. Touch the AndyList icon to start the program.

9. Touch the category Fruit to expand it.

10. Touch the category Vegetables to expand it.

The items Apples and Potatoes should both still be ticked off

Test 4: Clear ticked items

We want to remove all the ticked items on the list. This test should be per-
formed with a random number of items ticked, to make sure that it functions
as expected.

1. Tick off a few items by touching them.

2. Press the menu key on the phone.

3. The system displays a menu.

4. Touch the menu item Delete Ticked.

All the ticked off items should disappear from the shopping list. Categories with
no items left should also disappear.

Test 5: View shopping list

We will change the shopping list that is currently shown from the default to
another shopping list in the system. The system displays the Grocery shopping
list per default.

1. Touch the spinner at the top of the screen.

2. The system displays a list of shopping lists.

3. Choose Butcher from the list of shopping lists.

4. The system displays the Butcher shopping list.

84 Acceptance Test

The Butcher shopping list should contain one item(Minced meat) with the
default test data.

Test 6: View location reminders

We want to see which location reminders are present in the system, and which
shopping lists they are associated with.

1. Press the menu button on the phone.

2. The system displays a menu.

3. Touch the menu item Location Reminders.

4. The system displays a list of locations reminders.

The displayed list should look like the shopping list, where each location is
sorted by which shopping list it is associated with.

Test 7: Add location reminder

We want to add a location reminder to a shopping list.

1. Press the menu button on the phone.

2. The system displays a menu.

3. Touch the menu item Location Reminders.

4. The system displays a list of locations reminders.

5. Touch the button Add store location.

6. The system displays a form.

7. Enter My butcher in Copenhagen in the Store, location field.

8. Touch the spinner.

9. The system displays a list of shopping lists.

10. Choose the shopping list Butcher.

11. Touch the button Set store location.

12. The system displays a map with a pin.

13. Drag the map pin to where the streets Frederiksborggade and Kul-
torvet in Copenhagen cross each other.

85

14. Press the back button on the phone.

15. Touch the OK button.

The new location reminder should now appear under the shopping list Butcher.
We have however not tested whether it is working as expected. This requires
the use the built-in debugging tools in Eclipse.

16. Press back on the phone twice to stop the application.

17. Open the Emulator Control view in Eclipse.

18. Scroll down to Location Controls.

19. Choose the tab Manual and choose Decimal

20. Enter 12.573536 in the field Longitude.

21. Enter 55.682742 in the field Latitude.

22. Press the Send button.

The system should now show a notification in the notification bar on the phone.
Acknowledging the reminder should open up the shopping list Butcher which
did not previously have a reminder associated with it.

Test 8: Get a location reminder

We want to test that it is possible to receive a location reminder, once you
arrive at a store. The chosen location was my local super market Døgnnetto at
Emdrupvej, Copenhagen, Denmark.

1. Press back on the phone twice to stop the application.

2. Open the Emulator Control view in Eclipse.

3. Scroll down to Location Controls.

4. Choose the tab Manual and choose Decimal

5. Enter 12.541601 in the field Longitude.

6. Enter 55.722502 in the field Latitude.

7. Press the Send button.

86 Acceptance Test

The system should now show a notification in the notification bar on the phone.
Acknowledging the reminder should open up the shopping list Grocery.

Test 9: Acknowledge location reminder

We want to acknowledge a location reminder that has appeared in the status
bar2.

1. Drag down the notification bar.

2. Touch the reminder (A little AndyList icon).

3. The system should open the shopping list associated with the reminder.

2See Test 8 on how to get a location reminder.

Appendix C

Interview Usability Test

C.1 Tasks for the Interview Usability Test

This section contains tasks for the usability test. Please read the following
instructions for the usability test:

1. You have four minutes to complete each task.

2. Try to “think out loud” when you are performing the task. For example,
try to explain what you think you have to do, e.g. which buttons you have
to click.

3. Explain why something is confusing you if you get confused.

4. Please stop after completing each task, so that the supervisor will have
time to write down your comments.

There are seven tasks in total, so the test should not take much more than 40
minutes.

Task 1: Add items to the shopping list

Add the following items to the grocery shopping list:

• Milk

• Apples

88 Interview Usability Test

• Potatoes

• Cheese

Task 2: Add items to the shopping list (Advanced)

Add Brocolli to the grocery shopping list.

Task 3: Switch shopping list

Switch to the Butcher shopping list.

Task 4: Tick off items

You are out shopping and you have gotten the following items:

• Milk

• Apples

• Potatoes

• Cheese

Please tick them off your shopping list.

Task 5: Clear ticked off items

You have finished shopping and you want to remove all the bought items from
the shopping list. Please remove all the bought items from the shopping list.

Task 6: View location reminders

Please find out at which stores you will receive location reminders for the grocery
shopping list.

Task 7: Add a location reminder

Please add a location reminder for the Butcher shopping list. You can choose
yourself where to place the location reminder on the map.

C.2 Results From the Interview Usability Test 89

C.2 Results From the Interview Usability Test

This section contains the results from the interview usability test described in
Section 6.3. Three males used the cell phone to perform a set of tasks described
in Appendix C.1. The observations were written down in Table C.1, C.2 and
C.3.

Table C.1: Results from the first interview.

Name: Thomas Dixen Axel

Sex: Male

Age: 25

Cell phone: Nokia E51, E50, 6282

Task 1 1 min. 36 sec. to complete. No problems. Discovered the
autocompletion feature after typing just one letter.

Task 2 58 sec. to complete. Was wondering if he had made a
spelling error, because the item did not show up in the
suggestions. Had no problem assigning the new item a
category, but thought the label should say that the item
was unknown.

Task 3 15 sec. to complete. He thought it would be nice if the
list of shopping lists also said how many items you need
to buy for each shopping list.

Task 4 33 sec. to complete. He had problems hitting the small
tickbox. He did not know that he could hit the whole
line instead. He wanted more response than the box just
getting ticked, it could for example blink item text.

Task 5 1 min. 9 sec. to complete. Tried long pressing to delete
an item. Tried to delete the whole list using the menu.
Discovered the correct menu item and slapped himself on
the head, because he meant it was pretty obvious, but had
missed the menu item anyway.

Task 6 18 sec. to complete. He remembered which menu item to
use from the previous task. He had no problem expanding
the grocery list item to see which locations were associated
with the grocery list.

Continued on next page

90 Interview Usability Test

Continued from previous page

Task 7 3 min. 50 sec. He could not figure out how to move the
map pin. He tried tapping the map and expected the pin
to move there. He also tried to long press the map and
expected the map pin to move there. He tried to use the
search feature, but found out it was not implemented. He
finally asked for a hint and was given the following ”‘Try
moving the pin”’, which immediately made him figure out
what to do. He did not like the method of moving the
map pin, because you could lose it if you scrolled it out
of the view. He also did not like to hit the back button,
which he said felt like canceling the operation. He also
missed that there was not any response about that the
location had been set when he returned from the map
view. He found out that he needed to give the location
a name when it would not let him press the OK button
until he had entered a name. He did not like the labels,
and thought that ”‘Set store location”’ should say ”‘Find
store location on map”’ or similar. He also discovered that
label ”‘Add store location”’ should have said ”‘Add store
location reminder”’.

Table C.2: Results from the second interview.

Name: Kasper Lindberg

Sex: Male

Age: 23

Cell phone: Nokia N6131

Task 1 33 sec. to complete. Immediately discovered the auto-
completion feature. No problems or comments.

Task 2 25 sec. to complete. No problem figuring out how to enter
the category, but thought the text should be changed to
reflect that the item was unknown by the system.

Task 3 9 sec. to complete. No problems. He said it was “Very
easy to figure out”.

Continued on next page

C.2 Results From the Interview Usability Test 91

Continued from previous page

Task 4 35 sec. to complete. Got annoyed by having to expand
each category. Tried to touch tickbox, and the system had
trouble recognizing the touch. He did not try to touch the
whole item line. He suggested that the tickboxes should be
moved further from the edge of the screen. Also wanted to
be able to get an alphabetical listing of the items, although
he liked that the items were sorted after where he would
have been in the store.

Task 5 36 sec. to complete. Tried to long press item and then
tried to long press shopping list drop down. Then discov-
ered that he had to use menu and was finally able to clear
the list. He thought it was strange that he could not long
press the shopping list title in the drop down.

Task 6 20 sec. No problems or comments.

Task 7 4 min. and 30 sec. to complete. Filled in the name of
the location first and then continued on to set the store
location. He had no problems figuring out that he had to
drag the map pin to the desired location, but he had prob-
lems placing it exactly where he wanted it, and did not
figure out he could zoom in for more precise control. He
was almost done after 30 seconds or so, but then got stuck
when he wanted to go back. He desperately tried to use
the search feature, but saw that it was not implemented. I
finally had to give the hint “How do you normally go back
on this device?” after the time was up. He then figured
out to hit the back button and complete the task, but he
said that “It felt wrong to hit the back button because it felt
like a cancel button.”. He also noticed that there was no
indication that the location had been set, after using the
back button. He said “It should display the coordinates or
the address.”.

Table C.3: Results from the third interview.

Name: Jerôme Baltzersen

Sex: Male

Continued on next page

92 Interview Usability Test

Continued from previous page

Age: 23

Cell phone: Nokia E65

Task 1 21 sec. to complete. Used autocompletion immediately.
He said he “I did not notice the add button at first, but
discovered it as soon as I started typing.”.

Task 2 15 sec. to complete. He had no problems and said “I
assumed it did not know the item when I did not show an
autocompletion, so it was logical that I had to specify the
category.”.

Task 3 5 sec. to complete. He said “It was obvious that the drop
down list changed the shopping list because it already said
grocery.”.

Task 4 21 sec. to complete. He had trouble hitting the tickboxes
as he only tried to hit the box itself instead of the whole
item line.

Task 5 10 sec. to complete. He went directly for the menu item,
eventhough he had not seen it before. He said “I used the
process of elimination, and I could not see where else it
would have been.”.

Task 6 9 sec. to complete. No problems and no comments.

Task 7 1 min. and 4 sec. to complete. Tried using the search fea-
ture but discovered it was not implemented. Then moved
the map pin by dragging it. It took him a while to figure
out how to go back and he said “How do I confirm it?”.
He managed to figure out to use the back button with
out any hint by simply trying different buttons. He also
figured out that he had forgotten to give location a name
when he could not click the disabled OK button.

Other comments He said “I did not have to spend much time figuring out
the interface as it seemed very intuitive.”

Appendix D

Setting Up the Software

This sections describes how to get started using the prototype application. First
install Eclipse and the Android SDK:

1. Install Eclipse by following the instructions at http://www.eclipse.org/

2. Install the Android SDK by following the instructions at
http://developer.android.com/sdk/1.5_r1/installing.html

Then import the source code from the accompanying CD-ROM into Eclipse by
doing the following:

3. Open Eclipse.

4. Select File→Import from the menu.

5. A new window with import options appears.

6. Choose General→Existing Projects into Workspace.

7. A new window appears.

8. Browse and choose the directory called AndyList on the CD-ROM.

9. Press Finish.

You can now start the emulator and the prototype application by right clicking
the project called AndyList and selecting Run As→Android Application.

http://www.eclipse.org/
http://developer.android.com/sdk/1.5_r1/installing.html

94 Setting Up the Software

Bibliography

[1] OI Shopping List - OpenIntents. http://www.openintents.org/en/node/
19, Accessed April 2009.

[2] Deborah Barreau and Bonnie A. Nardi. Finding and reminding: file orga-
nization from the desktop. SIGCHI Bull., 27(3):39–43, 1995.

[3] Eric Carr. Location Technologies Primer. http://www.techcrunch.com/
2008/06/04/location-technologies-primer/, Accessed April 2009.

[4] Teodor Filimon. Tag ToDo List - An app for the Android mobile platform.
http://teodorfilimon.com/android/Tag-ToDo-List/index.html, Ac-
cessed April 2009.

[5] Google Inc. Android 1.1 SDK, Release 1. http://developer.android.
com/index.html, 2009.

[6] Google Inc. Android 1.1 SDK, Release 1, Sample Code. http://
developer.android.com/guide/samples/index.html, 2009.

[7] Google Inc. The Developer’s Guide. http://developer.android.com/
guide/index.html, 2009.

[8] Matt Jones and Gary Marsden. Mobile Interaction Design. John Wiley &
Sons, February 2006.

[9] Craig Larman. Applying UML and Patterns : An Introduction to Object-
Oriented Analysis and Design and Iterative Development (3rd Edition).
Prentice Hall PTR, October 2004.

[10] Thomas W. Malone. How do people organize their desks?: Implications for
the design of office information systems. ACM Trans. Inf. Syst., 1(1):99–
112, 1983.

http://www.openintents.org/en/node/19
http://www.openintents.org/en/node/19
http://www.techcrunch.com/2008/06/04/location-technologies-primer/
http://www.techcrunch.com/2008/06/04/location-technologies-primer/
http://teodorfilimon.com/android/Tag-ToDo-List/index.html
http://developer.android.com/index.html
http://developer.android.com/index.html
http://developer.android.com/guide/samples/index.html
http://developer.android.com/guide/samples/index.html
http://developer.android.com/guide/index.html
http://developer.android.com/guide/index.html

96 BIBLIOGRAPHY

[11] Erica Naone. App Class: An MIT team wins $300,000 in Google’s Android
Developer Challenge . http://www.technologyreview.com/article/
21844/, January/February 2008.

[12] Two forty four a.m. LLC. Locale. http://www.localeandroid.com/
index.html, 2009.

http://www.technologyreview.com/article/21844/
http://www.technologyreview.com/article/21844/
http://www.localeandroid.com/index.html
http://www.localeandroid.com/index.html

	Abstract
	Resumé
	Acknowledgments
	1 Introduction
	2 Analysis
	2.1 Replacing the Paper Shopping List
	2.2 Paper Shopping List Scenarios
	2.3 Vision
	2.4 Use Case Analysis
	2.5 Use Case Frequency Analysis
	2.6 Fully Dressed Use Case Descriptions

	3 User Interface Design
	3.1 Chosen Platform
	3.2 Separate Screens Design
	3.3 Alternative Grid Design
	3.4 Combined List-Centered Design
	3.5 Choice of UI Design

	4 Design
	4.1 The Android Platform
	4.2 The Main Architecture
	4.3 The Model-View-Control and the Observer Pattern
	4.4 The Data Layer
	4.5 Location Reminders

	5 Implementation
	5.1 The Shopping List Adapter
	5.2 Item Autocompletion
	5.3 The Map View

	6 Testing
	6.1 Acceptance Test Results and Conclusion
	6.2 Location Reminder Field Testing
	6.3 Usability Test
	6.4 Unit Tests

	7 Further Work
	8 Conclusion
	A Field Testing
	A.1 Preliminary Field Test
	A.2 Location Reminder Field Testing Results

	B Acceptance Test
	C Interview Usability Test
	C.1 Tasks for the Interview Usability Test
	C.2 Results From the Interview Usability Test

	D Setting Up the Software
	Bibliography

