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Abstract

Name: Dan Kolb
Supervisor: Chris Clack
Project Title: An investigation into the fragmentation performance of

the Symbian Operating System memory allocator, and
a critical assessment of the extensibility of the allocator
framework

This report initially presents an investigation into the performance of the
memory allocator on the Symbian Operating System, which is a first-fit se-
quential fit allocator that uses coalescing. Traces are obtained from various
smartphone applications, and are presented in a style that is consistent with
Johnstone and Wilson[8].

Profiles of the distribution of allocated objects in each application are
also presented in a style that is consistent with an investigation by Bohra
and Gabber[1] into memory fragmentation issues.

Finally an assessment of the extensibility of the Symbian OS allocator is
given. The new Operating System that is currently in development contains
facilities to implement a new memory allocator, overriding their implemen-
tation – this framework is given a critical assessment with an attempt to
implement a segregated free list allocator.
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Chapter 1

Introduction

This section gives an overview of memory management and fragmentation
issues arising from dynamic allocation of memory, and why memory manage-
ment on low-memory devices such as smartphones is important. Aims and
objectives of the project will also be described, and a brief overview of the
structure of the report will be given.

1.1 Setting the scene

Memory management is often thought of as a solved problem – with expo-
nential growth of memory sizes in the last few years, attempts at optimising
to save a few kilobytes (or even a couple of megabytes) seem futile; in most
interactive devices memory can easily be upgraded if necessary. However,
memory is still a limited resource, and therefore requires some careful con-
servation and recycling. This recycling of unused memory in an area known
as the ‘heap’ forms the basis of dynamic memory management.

In C and C++, the programmer must specify when to allocate and free
dynamic memory, while in other languages such as Java, the new operator
allocates memory for an object, and when the object is not in use any more, it
gets garbage collected – the garbage collector automatically reclaims memory
that is deemed to be unused without the programmer needing to explicitly
free the the memory. An indication as to how efficiently this heap is being
managed is given by the amount of memory fragmentation that occurs.

The phenomenon of memory fragmentation occurs in two forms, external
and interal. External fragmentation arises when a memory request from the
program cannot be fulfilled, even though sufficient free memory exits. This is
due to the free memory being scattered over the heap in small blocks, rather
than in one contigous block (which is what is needed to satisfy a memory
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CHAPTER 1. INTRODUCTION 5

request). Conversely, internal fragmentation occurs in the situation where the
program is returned a block of memory that is greater than that specified
by the request. This results in a portion of the allocated memory being
left unsued, which forms the basis for internal fragmentation. Both forms
of fragmentation arise through (repeated) inefficient memory allocation and
deallocation. To some extent, fragmentation is unavoidable in a dynamic
memory system; however, it can be kept to a minimum by using a good
memory allocator.

One of the results of fragmentation is that more memory is used than is
necessary, which is wasteful of a limited resource. In extreme circumstances,
a program may terminate because all the memory is used up by inefficiencies
in the memory allocator, even though the program itself is only actually
using a small amount of memory. It was this issue that prompted a study
by Bohra and Gabber [1] into memory fragmentation issues.

There are a number of different allocation policies that can be used, which
are described in section 2.2. Some of these give extremely fast allocation at
the expense of poor storage utilisation (high fragmentation), whereas others
are optimised for storage utilisation at the expense of having slower allocation
times.

1.1.1 Low memory devices

An area where efficient use of memory is essential is in low-memory devices,
such as smartphones. These tend to have between 8MB and 64MB of RAM,
and hence using memory efficiently is crucial to the performance and func-
tionality of these devices; it would be unacceptable to have, for example, a
heap size that is 4 or 5 times the size of the maximal live memory usage
(as has been found in some allocators tested in [8]). Additionally, due to
slower processors in these devices, memory allocation and deallocation ought
to be as fast as possible to give a more responsive feel to the applications –
i.e. the OS does not spend a long time allocating memory (this, however, is
becoming less of an issue as smartphone memory access speeds increase, so
the CPU is able to access memory faster and is therefore not kept waiting).

1.2 Aims and objectives

This report has two main aims – one is an investigation into the fragmentation
performance of the Symbian memory allocator, and the other is an assessment
of the extensibility of the allocator framework.

The investigation into the fragmentation performance involved obtaining



CHAPTER 1. INTRODUCTION 6

traces of the allocation, free and reallocation operations from running various
smartphone applications under the Symbian OS. This appears to be the
first study to obtain memory traces from smartphone applications – other
studies have typically focused on applications running on workstations or
servers. Results of the performance are to be presented in a style similar to
[8]; this will allow for a comparison between the fragmentation of the Symbian
allocator and fragmentation results obtained by [8] for a similar allocator. A
subsidiary aim of the tracing is to be able to map out the frequency of object
sizes (i.e. how many times an object of a particular size is allocated); this is
presented in a style similar to some characterisation of applications found in
[1].

The assessment of the extensibility of the allocator involved attempting
to implement a new allocator and use it within the extensibility framework
provided by the Symbian allocator. This is intended to provide a starting
base for anyone interested in developing their own memory manager in place
of the existing Symbian OS manager, and also to provide Symbian with an
assessment of their own framework from the point of view of an external
developer, thus giving an indication of how the framework may be improved.

1.3 Report structure

Chapter 2 gives an introduction to memory allocation from a programmer’s
perspective, and follows with a description of some of the most common
memory allocation policies currently in use. An introduction to the Symbian
Operating System as well as coding conventions and compilation methods is
given – this is most useful in assisting with understanding some of the code
given in chapters 4 and 6. Finally two papers, by Johnstone and Wilson [8]
and Bohra and Gabber [1] are summarised. These papers were central to the
investigation, being used as a reference for the assessment of the Symbian
memory allocator, and the characterisation of the applications.

A review of the Symbian OS framework is given in chapter 3. This covers
the operation of executable files (and libraries) in the Symbian OS, provides
a description of their implementation of a memory manager, and goes on to
describe the framework in place to be able to extend the memory manager.

Chapter 4 describes the design and implementation of a set of tracing
extensions to the Symbian allocator to generate performance statistics, cov-
ering the method of processing the traces and any issues that occurred during
the implementation. The results from the traces are presented in chapter 5.

A critical assessment of the Symbian OS framework for extensibility by at-
tempting to implement a segregated free list allocator is presented in chapter
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6. This includes design considerations and a description of the implementa-
tion of the allocator, and also describes any issues that occurred.

A summary of the work performed is given in chapter 7. This is followed
by suggestions for further work, and a conclusion, which includes some per-
sonal comments about the work.



Chapter 2

Background

This chapter gives an introduction into how memory allocation and dealloca-
tion works from a user perspective (the functions used to allocate and deal-
locate memory) and goes on to describe various common algorithms used in
the allocation process. An introduction to the Symbian OS and smartphones
is given, including topics such as naming conventions, and an introduction
to program compilation (both of which will assist in understanding some of
the implementation, given in chapter 4). Summaries of the Johnstone and
Wilson[8] and Bohra and Gabber[1] papers are also given. The John-
stone and Wilson paper is widely regarded as a canonical investigation into
the fragmentation performance of various memory allocators when running a
number of ‘real and varied’ programs; Bohra and Gabber continue to inves-
tigate memory fragmentation using two more specialised programs, as well
as providing some characteristics of the objects allocated by the applications
themselves.

Sections 2.1 here to 2.1.2 are taken and paraphrased from [9].

2.1 Memory allocation procedures

Most programs need to dynamically allocate and deallocate storage during
the course of their execution, in addition to the static storage reserved by
the compiler at run-time. This is normally implemented with a mixture of
using a stack and a heap.

8
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increasing addresses

text data bss heap stack

Figure 2.1: Schematic map of a process address space

2.1.1 Stack

A stack is usually placed at the top of the address space, from where it
grows down (see figure 2.1). There tends to not be any kernel interface to
the stack – growing and shrinking is handled automatically as the stack
is accessed. If the stack fails to be extended for some reason, then the
process requesting stack space is normally terminated [9]. However, what
often occurs (unless the stack has its own memory segment) is that stack
overrun happens long before the stack fails to be extended. Overrun often
causes data to be corrupted, and, eventually, the executable code in memory
is also corrupted.

The C programming language does have an interface to explicitly allocate
space on the stack, alloca(3), but its use is discouraged1, as the function is
machine and compiler dependent, and on many systems the implementation
is buggy2. The function is not an interface to the kernel, but an adjustment
done to the stack pointer such that space will be available and unharmed by
any further subroutine calls. When the current function returns, the space is
automatically returned when the stack frame is dismantled. This asymmetry
can cause problems, and is one of the reasons that alloca(3) is not widely
used[9].

2.1.2 Heap

The heap extends the data segment of the process, starting at the end of
the bss3 section4, and extending upwards. The storage is explicitly allocated
with the brk(2) and sbrk(2) system calls under Unix; under the Symbian
OS, a similar system call, named SetBrk is used. The SetBrk and brk(2)

functions take one argument, which is a pointer to where the process wants

1the function is not in the POSIX specification
2read the BUGS section in the manual page for alloca(3)
3block started by symbol
4this section contains uninitialised variables, and stems from a PDP/11 assembler

mnemonic
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the heap to end[9]. These are not particularly convenient interfaces to deal
with – it is easy enough to allocate memory with it, but freeing up blocks can
only occur in a LIFO order. For this reason, the malloc(3), realloc(3),
and free(3) interfaces (or their equivalents in other programming languages
and operating systems) are preferred for use, unless the program in question
implements its own memory management facilities. The particular functions
used in the Symbian OS are given in section 2.3.1.

2.1.3 malloc

The malloc function allocates a block of memory of a requested size. The C
definition (as defined in stdlib.h), is:

void * malloc(size_t size);

This will allocate a block of at least size size bytes, if it can. If the call is
successful, it will return a pointer to the start of the data area. If not, it
will attempt to ask for more memory through the kernel, then allocate that;
if that fails it will return NULL, which has to be explicitly checked for in the
calling procedure. C and C++ do not have any built-in bounds checking, so
if any memory is read from, or written to, past the end of the requested area,
unpredictable results may occus, including the program terminating with a
Segmentation Fault (core dumped).

2.1.4 free

The free function frees up allocated memory. The C definition for this
function is:

void free(void *ptr);

This will mark a block as being free, thus enabling its reuse. The pointer ptr
needs to be an address that has previously been returned by a call to malloc

(and not previously freed), otherwise problems may occur (behaviour in this
case is undefined).

2.1.5 realloc

This function reallocates memory, and normally makes an attempt to not
move the block. The definition of this function is:

void * realloc(void *ptr, size_t newsize);
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If the ptr argument is NULL, then the function works like malloc(3). If
the requested size, newsize bytes, is smaller than the current length of the
block, then the block is shrunk, with a new block being (if possible) created
from the memory size difference between the old and new sizes and added to
the list of free blocks, and hence the pointer is unchanged. If the requested
size is larger, then (usually) an attempt is made to grow the block in-place.
If this is not possible, then a new section of memory is allocated, the data
copied across, and the current block is freed up; a pointer to the new data
area is then returned. If, however, the extra allocation fails, then the pointer
returned is NULL, but the old data area remains intact. It is therefore neces-
sary to be careful to not assume that an extending realloc operation will
succeed by immediately by using code such as (taken from the manual page
for realloc(3) in OpenBSD):

size += 50;

if ((p = realloc(p, size)) == NULL)

return NULL;

This would cause a memory leak as the pointer to the data area that p

pointed to has been lost, and hence that memory can never be freed up.
Additionally, aberrant behaviour may occur if size is being used to track
the total memory used.

2.2 Allocator Implementations

There are a number of different implementations of allocators, which roughly
fall into the categories: sequential fit, segregated fits, and buddy systems.
Johnstone and Wilson[8] give an excellent explanation of these imple-
mentations, which is repeated and paraphrased below in sections 2.2.1 to
2.2.3.

2.2.1 Sequential fit algorithms

These are the simplest of all allocators – all the free blocks are held on a single
linked list. In fact, an even simpler one is described in [10], where allocations
take place sequentially from an area of memory (actually an array), and
deallocations can only take place in reverse order.

free(3) either places feed blocks on the front of the linked list (the “free
list”), or places them in the free list such that all free blocks are held in
address order (either increasing or decreasing). malloc(3) searches for an
appropriate free block either from the front (LIFO) or from the end (FIFO)
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of an unordered list, or from the front (address ordered – AO) of an address-
ordered free list. These allocations can be performed as first-fit, next-fit,
best-fit and worst-fit (see below). Extra optimisations can be applied to
the basic algorithm[9], such as coalescing adjacent free blocks (to minimise
fragmentation), and, if the freed block is on the top of the heap, then that
chunk can be returned to the kernel, thus keeping heap (and hence total
memory) usage as low as possible.

First-fit

The first fit mechanism searches through a free list from the start of the list
until a block that is large enough to satisfy the allocation request can be
found. When this happens, then, if there is enough excess space to create a
new free block, one is created and added to the free list, and a pointer to the
data area of the just-allocated block is returned. If there is no block large
enough, then more memory is requested from the kernel, and the allocation
retried.5

Next-fit

This mechanism is identical to operation to the first fit algorithm, with the
exception that it uses a roving pointer for allocation [13]. The pointer records
the point where the last search was satisfied, and the next search begins from
there. If the pointer wraps around the free list, and the request was not able
to be satisfied, then more memory is requested. This allocator is the one
described in [11]. In theory, this allocation method should result in having
fewer small unusable blocks at the start of the list[13]; however, practically,
it has been found[8] to actually increase fragmentation.

Best-fit

A best-fit allocator searches through the entire free list for the smallest block
that is able to satisfy a request. This helps ensure that fragments are as
small possible. Knuth[14] thought that best-fit would create too many small
fragments, and worst fit (see below) would provide better fragmentation per-
formance; however practical results in [8] have shown that this policy tends
to be best with regards to fragmentation. However, due to needing to search
the free list, it can be slow if there are many items on the list, and hence a
sequential best-fit policy is very rarely used.

5This is the usual behaviour. Some implementations may only work with a fixed size
heap, and simply return an out of memory error, instead of requesting more memory.
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Worst-fit

A worst-fit allocator searches the entire free list for the largest block possible,
if an exact size block cannot be found (depending on implementation – some
implementations will not check for an exact fit first). The reasoning is that
if large blocks are split off, the remaining amount is more likely to be able
to still satisfy a request.

2.2.2 Segregated free lists

A segregated free list allocater uses a set of free lists, where each list holds
blocks of a particular size. When a request is made, the appropriate free list
is used to satisfy the request. When a block of memory is freed, it as added
to the free list for that particular block size. The use of multiple free lists
makes the implementation faster than searching a single linked list. However,
what is often not appreciated when discussing merits of segregated lists[8] is
that policy is also affected in an important way – using the segregated lists
means that good fits are usually found, so policy tends to be good-fit or even
best-fit strategy, despite often being described as first-fit.

There are a few important variations on segregated free lists:

Segregated free lists

In this variant, each set of free lists holds a range of free blocks ranging from
the particular class size up to the next larger size. In each particular list, a
first-fit or next-fit policy tends to be used.

Exact-fit segregated free lists

This imposes an extra constraint on the standard segregated free list – each
free list is constrained to holding blocks of only one size. This would be more
likely to provide an exact-fit for a requested size compared to a standard
segregated free list; however, memory overhead is increased as there need to
be a larger number of free lists in memory, of which a number are likely to
be empty.

Simple Segregated Storage

In this variant, larger free blocks are not split to satisfy requests for smaller
sizes, and smaller free blocks are not coalesced to satisfy requests for larger
sizes. If a request comes in for a particular size, and the size class is empty,
more storage is requested from the operating system. Typically, one or two
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virtual memory pages are requested at a time, and split into same-sized
blocks which are then put on the free list. Since each page contains only one
size of block, this method is called simple segregated storage.

2.2.3 Buddy systems

Buddy systems [12][15] are a variant of segregated free lists, supporting a
limited, but efficient, kind of splitting and coalescing. In simple schemes,
the entire heap is conceptually split into two large areas which are called
buddies. These areas are repeatedly split into two smaller buddies until a
sufficiently small chunk is achieved. This hierarchical division of memory is
used to constrain where objects are allocated and how they may be coalesced
into larger free areas. A free area may only be merged with its buddy,
the corresponding block at the same level in the hierarchical division. The
resulting free block is therefore always one of the free areas at the next higher
level in the memory-division hierarchy. At any level, only buddy pairs may
be merged. The purpose of this constraint on coalescing ensures that when a
block is freed, its buddy can always be found by simple address computation,
and the buddy will always be entirely free or unavailable (an unavailable
chunk may have been split and have some of its sub-parts allocated, but not
others).

Two significant variations on the buddy systems are outlined below.

Binary Buddy

This is the simplest and best-known of the buddy systems [12]. All buddy
sizes are a power of two, and each size is divided into two equal parts. This
makes address computations simple, as all buddies are aligned on a power-
of-two boundary offset from the beginning of the heap area, and each bit in
the offset of a block represents one level on the buddy system’s hierarchical
splitting of memory – if the bit is 0, it is the first of a pair of buddies; if the
bit is 1, it is the second. These computations can therefore be implemented
very efficiently with bitwise logical operations.

However, due to the requirements that any object size needs to be rounded
up to the next power of two, internal fragmentation can be quite high (around
25%[8]).

Double buddy

A double buddy system uses two different buddy systems with staggered
sizes. For example, one system may use power-of-two sizes (2, 4, 8, etc.),
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while the other uses power-of-two spacing starting at a different size, such
as 3, resulting in sizes 3, 6, 12, 24, etc. Request sizes are rounded up to the
nearest size class in either series. This reduces the internal fragmentation by
about half, but means that a block of a given size can only be coalesced with
blocks in the same size series.

2.3 Symbian OS and smartphones

Symbian, established in 1998, is a software licencing company that develops
and supplies their own operating system for data-enabled mobile phones
(smartphones). As of December 2003, 18 phones from five manufacturers are
using this OS6.

The term “smartphone” is used to describe a mobile telephone device
which is becoming more capable as a computing device; they tend to en-
compass the functionality of PDAs, personal organisers, address books and
telephony. These are still, however, low-memory devices (typically varying
between 8MB and 64MB of RAM), and hence using memory efficiently is
essential to the performance of these devices (see chapter 1).

2.3.1 Symbian OS background

The Symbian OS, in its current form, has been around for a few years. A new
operating system (named EKA2) is in current development, and is regarded
as a real-time OS, thus making it considerable more suitable for modern and
future smartphones that require some guaranteed response time from the ker-
nel (for applications such as video streaming); this is currently not scheduled
for release for approximately another year from time of writing. Neverthe-
less, for the purposes of this project it provides some useful features above
the old OS (named EKA1), such as extensibility of the memory manager (see
section 3.4), the testing of which is one of the aims of this project.

As previously mentioned, the Symbian OS runs on various phones, which
fall into roughly three categories[2] (see below). The text below, until section
2.4 (not inclusive) is taken and (partially) paraphrased from [2], [3] and [4].

Mobile phones with a numeric keypad

These phones are designed for one-handed use and require a flexible user
interface (UI) that is simple to navigate with a joystick, jogdial, or similar

6http://www.symbian.com/about/about.html
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input method. The best example is the Series 60 platform from Nokia, which
forms the basis of phones such as the Nokia 7650, 3650 and N-Gage.

Mobile phones with touch screens

These tend to have larger screens than the first category, and dispense with
the numeric keypad. The larger screen is ideal for working on the move
and uses pen-based interaction with the user. The best current example of
this form factor is UIQ, which is the platform for the Sony Ericsson P800.
(The P800 actually provides a detachable numeric keypad which sits over the
bottom part of the screen and allows the phone to be used in a ‘traditional’
way).

Mobile phones with a full keyboard

These mobile phones have the largest screens of all Symbian OS phones,
have a full keyboard and could also include a touch screen (so the devices is
more like a PDA than a proper phone). This best example is the Series 80
platform from Nokia; this UI is the basis of the Nokia 9200 series, which has
been used in the 9210 and 9210i.

2.3.2 Symbian OS naming conventions

Like any system, the Symbian OS has its own naming conventions to indicate
what is important. A complete list and description may be found in [3], but
the conventions that are relevant to this project are given below.

Fundamental types

The Symbian OS defines a few definitions for 8-, 16- and 32-bit integers
and some other basic types that map onto underlying C++ types such as
unsigned int, and which are guaranteed to be the same regardless of C++
implementation (which is important given that the OS runs on multiple ar-
chitectures, and can use different compilers). Some of the definitions include:

• TInt16 and TUint16 – signed and unsigned 16-bit integers

• TInt32 and TUint32 – signed and unsigned 32-bit integers

• TInt and TUint – signed and unsigned integers: in practice, this means
a 32-bit integer
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• TBool – Boolean; actually equated to int due to the early compilers
that were used

• TAny – equated to void, and usually used as TAny* (a ‘pointer to any-
thing’)

Class names

Classes use an initial letter to indicate the basic properties of the class.
Relevant ones for this project are:

• T classes, types (e.g. TDesC) – T classes don’t have a destructor. They
act like built-in types, which is why the typedefs for all built-in types
begin with T. T classes can be allocated as automatics (if they’re not
too big), as members of other classes, or on the heap.

• C classes – Any class derived from CBase. C classes are always allocated
on the default heap. The new operator initialises all member data
to zero when an object is allocated. CBase also includes a virtual
destructor, so that by calling delete on a CBase* pointer, any C object
it points to is properly destroyed.

• R classes (e.g. RHeap) – Any class that owns resources other than on
the default heap. Usually allocated as member variables or automatics;
in a few cases, can be allocated on the default heap.

• Static classes (e.g. User) – A class consisting purely of static functions
that can’t be instantiated into an object.

• Structs – A C-style struct, without any member functions.

Data (variable and constant) names

As with class names, these also use an initial letter to identify the type:

• Enumerated constant (e.g. EFalse, ETrue) – constants in an enumer-
ation (a logical set)

• Constant (e.g. KMaxFileName) – constants of the #define or const

TInt type. KMax-type constants tend to be associated with length or
size limits

• Member variable (e.g. iTopMostCell) – any nonstatic member vari-
able. The i prefix refers to an ‘instance’ of a class
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• Arguments (e.g. aSize, aCell) – any variable declared as an argument
(the a stands for ‘argument’)

• Automatics (e.g. x, i) – any variable declared as an automatic

Function names

Here, the final letter marks the type of function:

• Non-leaving function (e.g. Alloc(), Free()) – Use an initial capital

• Leaving function (e.g. CommitL()) – Use final L

A leaving function may need to allocate memory, open a file, and so on –
generally, to do some operation that might fail because there are insufficient
resources of for other environment-related conditions (not programmer er-
rors). When a leaving function is called, consideration must always be given
to what happens when it succeeds and when it leaves. Both cases must be
handled (Symbian OS’s cleanup framework is designed to allow this to be
done). This is the Symbian OS’s most important naming convention.

Leaving functions are basically a lighter-weight version of C++ excep-
tions. They provide a way to unwind a call stack to a known good state, and
with the help of the cleanup stack, cleaning up allocations on the way. The
cleanup stack addresses the problem of cleaning up objects that have been
allocated on the heap, but to which the only pointer is an automatic variable.
If the function that has allocated the objects leaves, the objects need to be
cleaned up. Since Symbian OS does not use C++ exceptions, the cleanup
stack is its own mechanism to ensure that this cleanup happens. For further
details on the cleanup stack, refer to [5].

2.3.3 Compilation for Symbian executables

Project specification file

Building an executable for the Symbian OS requires a number of steps. Ini-
tially, each set of source code needs to have a project specification file, which
is then translated by the supplied tools into the makefiles or project files for
one or more of the possible build environments. Project specification files
have a .mmp extension (which stands for ‘makmake project’). An example,
taken from [4] is:

// hellotext.mmp

TARGET HelloText.exe
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TARGETTYPE exe

SOURCEPATH .

UID 0

SOURCE hellotext.cpp

USERINCLUDE .

SYSTEMINCLUDE \epoc32\include

LIBRARY euser.lib

The TARGET specifies the executable to be generated, and the TARGETTYPE,
in this case, confirms it is an .exe. The UID is irrelevant for .exe files;
however, it is necessary when building DLLs7. SOURCEPATH, USERINCLUDE
and SYSTEMINCLUDE all specify directories to be searched for source files,
user include files (specified on a #include directive with quotes), and system
include files (specified with angle brackets on a #include directive). All
Symbian OS projects should specify, at the least, \epoc32\include for their
SYSTEMINCLUDE path. The LIBRARY directive specifies libraries to link to –
these are the library files corresponding to the shared library DLLs whose
functions are called at runtime.

Component defition file

The Symbian OS build tools require a component definition files to be present.
This file always has the name bld.inf and contains a list of all the project
definition files that make up the component. An example, again taken from
[4] is:

// BLD.INF

PRJ_MMPFILES

hellotext.mmp

Compilation from the command line

Once the project specification and component definition files have been in-
stalled, it should be possible to build an application on the command line.
Opening up a command prompt and changing to the directory containing
the build files, the first command that needs to be run is:

bldmake bldfiles

7A set of unique UIDs is normally allocated to the programmer by Symbian. This
is most important if the finished programs are released; uniqueness does not need to be
guaranteed for internal-only development
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This command should return without displaying anything – it creates a file
called abld.bat which is used to drive the remainder of the build process.

abld.bat provides a number of important targets that are used in the
whole build process. These are run with abld <target>, where the targets
are outlined below:

• build – this builds the source code into a binary, and places the binary
file into its appropriate place (when using the emulator)

• clean – this cleans out object code and temporary files

• reallyclean – this cleans out object code, temporary files, and also
the binaries that were created (so essentially restores the system to a
state before any compilation has taken place)

• freeze – this assigns ordinal values to any exported functions (see
section 3.2) and creates a .def file containing the exported functions’
ordinal values.

All of these targets can optionally be followed by a target architecture
and build type – e.g. abld build winscw udeb will build the code for the
emulator (using the CodeWarrior compiler), using only the debug build udeb

(the u means the build uses a Unicode character set). If the build type is
not specified (e.g. just abld build winscw), then the code will be built for
both the debug build and a release build (specified with urel).

More on the command-line build process is found in [4].

Compilation under CodeWarrior

To compile under CodeWarrior IDE (one of the standard build environments
at Symbian), the project first needs to be imported into the IDE. This is
achieved by selecting File | Import Project from .mmp File from within
the IDE, selecting the appropriate SDK and then selecting the appropriate
.mmp file to import. Compilation of the source code is achieved by select-
ing Project | Make or pressing F7 – the default target is winscw udeb.
The Symbian OS emulator can be launched by selecting Project | Run or
pressing Ctrl-F5, or the code can be run through the debugger by selecting
Project | Debug or pressing F5.

2.4 Johnstone and Wilson paper

This paper[8] presents a simulation study on various memory allocation poli-
cies, using memory allocation traces from real programs. A goal of the re-
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search was to measure the true fragmentation costs of particular memory
allocation policies independently of their implementations. This paper is
widely regarded as a canonical study of memory allocator implementations
when running with a range of real-world applications, and has a large number
of citations from subsequent memory allocator studies.

2.4.1 Experimental design

The test programs were linked into a malloc trace-gathering library, and a
trace for each program was generated. The trace contained information about
the type of operation performed (i.e. malloc, free or realloc), as well as the
locations of the cells where these operations were being performed, and the
number of bytes requested in each malloc or realloc. For a realloc operation,
the relocation address was also recorded, so a reallocated cell could be kept
track of where it had moved from and to.

Having obtained traces files for the memory request patterns of the test
programs, these traces were then used as an input to test each allocation
policy. The processing involved reading an operation from the trace file, and
calling the appropriate procedure in the particular allocator implementation
that was being investigated at that time. Additionally, the amount of mem-
ory allocated and freed by each allocator was also recorded after processing
each operation in the trace file, as well as the number of bytes requested from
the operating system by the allocator to be able to service the request. This
data would be used in measuring fragmentation.

2.4.2 Measuring fragmentation

All the allocation policies investigated by [8] used the technique of splitting
to always return a cell of exact size as requested, and so produced zero
internal fragmentation (see chapter 1 for discussion on internal and external
fragmentation), hence the only form of fragmentation that could occur in the
experiments was external fragmentation.

To measure this fragmentation, two values were kept track of when pro-
cessing the trace file – the amount of live memory requested by the program
and the amount of memory used by the allocator to satisfy the program’s
memory requests. From these, a measure of the amount of fragmentation
occurring could be calculated. Figure 2.2 shows how these values vary when
using a simple segregated storage allocation policy for a particular program.

The paper describes how fragmentation could be measured in any one of
four different ways; the two methods that they actually chose to use were as
follows:
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Figure 2.2: Measurements of fragmentation for a gcc test program trace using
a simple segregated storage allocation policy; figure taken from [8]

Fragmentation measurement: method 1

The maximum amount of memory used by the allocator relative to the
amount of memory requested by the program at the point of maximal mem-
ory usage. In figure 2.2 this corresponds to the amount of memory at point
3 relative to the amount of memory at point 4.

The report states that the problem with this measure of fragmentation
is that it will tend to report high fragmentation for programs that use only
slightly more memory than they request if the extra memory is used at a
point where only a minimal amount of memory is still live.

Fragmentation measurement: method 2

The maximum amount of memory used by the allocator relative to the max-
imum amount of live memory. In figure 2.2 this corresponds to the amount
of memory at point 3 relative to the amount of memory at point 2.

The report states that the problem with this measure of fragmentation
is that it can give a number that is too low if the point of maximal memory
usage is a point with a small amount of live memory, and is also the point
where the amount of memory used becomes problematic.
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2.4.3 The results

Eight test programs were used and trace files of their memory request pat-
terns generated. These trace files were then processed in turn with various
different allocation policies and the fragmentation results averaged across all
the programs. Figure 2.3 shows the final results from the study.

Figure 2.3: Percentage fragmentation for various allocators averaged across
all programs. The second column is the fragmentation measure using method
1 (section 2.4.2). The third column is the fragmentation measure using
method 2 (section 2.4.2). Figure obtained from [8]

It can be seen that the two best allocation policies, first-fit address-
ordered free list, and best-fit address ordered free lists, both using 8K memory
requests from the operating system (instead of the standard 4K), have, on
average, less than 1% actual fragmentation, using both measures of fragmen-
tation8. Conversely, the allocation policies that did not coalesce all possible
blocks produced higher fragmentation measures. With an 8K memory re-
quest, any extension to the heap requested by the allocator to the operating
system (using the sbrk(2) system call) is rounded up to the next multiple of
8 kilobytes. A 4K request (which is usual in most allocator implementations,
as this tends to be the size of one memory page) only rounds the request to
the next multiple of 4 kilobytes.

8In fact, within the bounds of experimental error, the best performing allocators have
about the same level of fragmentation
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The paper concludes with a statement that, for a large class of programs,
the fragmentation “problem” is really a problem of poor allocator implemen-
tations, and for these programs, well-known policies suffer almost no true
fragmentation.

2.5 Bohra and Gabber paper

This paper[1] presents a study of the dynamic memory activity pattern of
Hummingbird9 and GNU emacs10. It compares the behaviour of nine differ-
ent malloc implementations when used with the dynamic memory activity
traces. The main goal was to measure the fragmentation of the different
implementations; however a secondary goal was to produce statistics of allo-
cated object sizes, such as the relation between number of objects and size
of objects allocated.

2.5.1 Experimental design

Both Hummingbird and GNU emacs were instrumented to generate a trace
of their dynamic memory activities. The trace itself was a text file, in which
each line corresponded to either a memory allocation or deallocation oper-
ation, with each line additionally having a tag, so it would be possible to
match allocation and free operations (so the correct pointer would be fed to
the free routine when running the data against real mallocs.

The Hummingbird trace corresponded to the processing of an HTTP
proxy log of four days. The trace contained about 58 million events, which
corresponded to the dynamic memory activity of Hummingbird when it was
processing 4.8 million HTTP requests. The requests contained 14.3GB of
unique data, and 27.6GB total data.

The emacs trace was obtained when running an emacs macro that listed
the contents of /usr/src/ using the dired directory editing mode, visited
all the .c and .h files found, and changed the string int to uint32 in all
files. The files were all edited sequentially by emacs. The particular directory
used contained a large number of Linux kernel source trees, with 73,212 .c

and .h files, totalling 2.7GB. The dynamic memory activity trace contained
about 20 million memory allocations and deallocations.

9Hummingbird is a light-weight file system for caching web proxies, which was designed
specifically to improve the access time of caching web proxies to cached objects stored on
the disk, specially when compared to the standard Unix file system which is not very well
suited to this application

10This was picked due to its wide use, and emacs sessions tend to be run for an extended
period of time as a main working environment
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Having obtained the traces, a simple driver program was written which
read the trace and called the corresponding malloc or free based on the
current trace file entry.

2.5.2 Measurements

The heap sizes of nine mallocs were measured when using the same Hum-
mingbird and emacs dynamic memory access traces; most of the mallocs
that were used were open source packages, two of them were implementa-
tions used in Solaris. Fragmentation percentage was computed by using

100 ×
(

heapsize
live memory − 1

)

(where heapsize and live memory are the max-

imum heap size and maximum live memory respectively). In addition to
fragmentation, the distribution of object sizes was also recorded.

2.5.3 Results

Figure 2.4: Comparison of the heap size of nine mallocs when used with the
Hummingbird dynamic memory activity trace. The Live memory line shows
the actual amount of live memory. Figure obtained from [1]

Figure 2.4 shows the heap size when running the Hummingbird trace.
The best allocator (least fragmentation) turned out to be one written by
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Figure 2.5: Comparison of the heap size of nine mallocs when used with
the emacs dynamic memory activity trace. The Live memory line shows the
actual amount of live memory. Figure obtained from [1]

Poul-Henning Kamp and used in the BSD operating systems11 with 30.5%
fragmentation, whereas the worst allocator was a “space efficient” allocator
distributed with SunOS 5.8, which caused a heap overflow.

When running the emacs trace (figure 2.5), the best allocator turned
out to be one written by Doug Lea12 with 2.69% fragmentation. The worst
allocator, again, turned out to be the “space efficient” allocator with 101.48%
fragmentation.

Comparing the distribution of object sizes shows two completely different
patterns between Hummingbird and emacs – the distribution of emacs object
sizes is fairly random (figure 2.6), whereas the distribution of Hummingbird
object sizes (figure 2.7) is, for objects larger than 128 bytes, almost a straight
line on the log-log scale.

The paper concludes by stating that the results obtained should hopefully
renew interest in dynamic memory allocation, and lead to better understand-
ing why particular dynamic memory allocation schemes work better for the
kind of dynamic memory activity described in the paper. Also, future malloc
implementers should consider dynamic memory activity patterns similar to

11Source code is available from
ftp://ftp.freebsd.org/pub/FreeBSD/src/lib/libc/stdlib/malloc.c

12Source code is available from
http://gee.cs.oswego.edu/pub/misc/malloc.c
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Figure 2.6: Distribution of emacs object sizes

Figure 2.7: Distribution of Hummingbird object sizes
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Hummingbird’s when updating their code and, at the minimum, application
developers should become aware of excessive memory fragmentation prob-
lems, and, if they occur, should attempt to alleviate it by picking a different
malloc package.



Chapter 3

Review of Symbian OS
framework

Section 3.1 and section 3.2 are taken and paraphrased from [6], and given as
background information to Symbian OS framework. Sections 3.3 onwards are
part of the investigation into the operation and extensibility of the Symbian
allocator, and contain some details previously undocumented.

3.1 Extensibility with DLLs

A Symbian OS DLL1 is a library of program code with potentially many
entry points, which separates it from a Symbian OS .exe file, which has a
single main entry point, E32Main().[6] When the Symbian OS launches a
new .exe, it first creates a new process, and then calls the entry point in the
context of the main thread of that process. A DLL, on the other hand, is
loaded into the context of an existing thread.

There are two important types of DLLs – a shared library DLL, and a
polymorphic DLL. A shared library provides a fixed API that can be used
by one or more programs. Executables are marked with the shared libraries
that they require, and the system loads the shared libraries along with the
executable at run-time automatically. Shared libraries are loaded recursively,
so if a particular loaded library requires others to be loaded, those will also
be loaded, until everything required by the executable is ready.

A polymorphic DLL is more useful for extending the operating system
itself – it implements an abstract API such as a printer driver, sockets pro-
tocol, or an application.2 Polymorphic DLLs usually have a single entry

1Dynamic Link Library
2In the Symbian OS, such DLLs typically use an extension other than .dll

29
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point, which allocates and constructs a derived class of some base class as-
sociated with the DLL. Polymorphic DLLs are usually loaded explicitly by
the program that requires them.

3.2 DLL and executable operation in the Sym-

bian OS

If an executable is run from ROM (i.e. it is built into the system and appears
as drive Z: in the OS), then it is executed in-place – it does not get copied into
RAM. Executables that are on the system flash RAM drive (C:) or removable
media, however, are first copied into RAM before being executed.

A .exe file in Symbian is not shared – if it is loaded into RAM, it has
its own areas for code, read-only data and read/write data.3 If a second
version of the same .exe is launched, a new area of memory will be allocated.
As a small optimisation, ROM-based .exes allocate a RAM area only for
read/write data – the rest of the binary data is read directly from ROM.

DLLs, however, are shared – when a DLL is first loaded, it is relocated to
a particular address. When another thread requires the same DLL, it merely
attaches the copy already there, so it will still appear at the same address to
all threads that use it. The OS maintains reference counts so that the DLL
is only unloaded when no more threads are attached to it. ROM-based DLLs
are never loaded into RAM – they are simply used in-place, like ROM-based
.exe files.

The OS also optimises the formats used for DLLs in order to make them
as compact as possible: most systems supporting DLLs offer two options
for identifying the entry points in them – one is to identify the entry points
by name, the other is by ordinal number (each entry point is identified by a
particular number). Names are potentially long (and hence wasteful of mem-
ory), so the Symbian OS only uses link-by-ordinal exclusively. However, this
means that if the exported functions are moved in the file4, any executables
linking to that DLL will need to be recompiled to fit with the new ordinal
scheme, and the exported functions will need to be frozen (this gives each
function its particular ordinal number, see also section 4.2.2).

Loading a DLL into RAM involves locating the executable at an address
that is not determined until load time, which means that relocation informa-
tion must be included in the executable format. However, for a file in ROM,

3All executables contain program code, read-only static data and read/write static data
under Symbian

4If any DLLs are released to third-parties to use, then it is fairly essential that future
releases use the same ordinals as previous releases
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which is executed in place, the address is always known, and hence the Sym-
bian OS ROM-building tools automatically place the DLL in a known place,
and strip out the relocation information to make them still smaller.

3.3 Operation of the memory allocator

The Symbian memory allocator implementation is contained in a class called
RHeap. However, the interface to the allocator is provided by a static class
called User5, specifically the methods User::Alloc(), which behaves like C’s
malloc(); User::Free(), which behaves like C’s free(); and User::Realloc(),
which behaves like realloc(). Leaving variants (see section 2.3.2), such as
User::AllocL(), are also provided.

Heaps for processes are created in Chunks. A Chunk is an area of memory
(the same size as the maximum heap size) which may be local or global.
A local chunk is private to the process creating it and is not intended for
access by other user processes. A global chunk is one which is visible to all
processes. To create a heap, a function named UserHeap::ChunkHeap needs
to be called – this creates a local or global chunk (if a named Chunk is given
as a parameter to the function, a global chunk is created; if that parameter
is NULL, then a local chunk is created), and creates a heap inside that chunk
(the minimum and maximum sizes of the heap are also given as parameters
to the ChunkHeap function; the size of the chunk is set to the maximum size
of the heap).

The RHeap code implements a first-fit sequential memory allocator with
coalescing, maintaining the free list in address order. An overview of the
allocation, freeing and reallocation procedures follow:

3.3.1 Allocation

When a block of a particular size is requested, it is initially rounded to
the maximum value of either the minimum block size, or the requested size
plus the size of the header of an allocated block, at which point an attempt is
made to allocate it. If this allocation fails, then an attempt is made to extend
the heap, and allocate again. If this then fails, a NULL pointer is returned.
If the allocation succeeds then a pointer to the start of the data segment
of the block is returned; this ensures that the block header which contains
important information such as the size of the block will not be overwritten.

5This class provides more than 70 functions in various categories; more information is
found in the Symbian API reference, provided with development kits



CHAPTER 3. REVIEW OF SYMBIAN OS FRAMEWORK 32

When actually allocating a block on the heap, the allocator scans down
the free list until it finds a block that is large enough to hold the requested
size. If the difference between this block size and the requested size is greater
than or equal to the minimum allocatable block size, the excess is split off,
and the new block created from this splitting is added in the free list in the
same place where the just-allocated block was. If the difference is smaller
than the minimum block size, the entire block is used for the allocation. If the
end of the free list is reached (no allocation was possible), then a NULL pointer
is returned, otherwise a pointer to do newly allocated block is returned.

3.3.2 Freeing

If a NULL pointer is passed into this function, then the function does nothing;
otherwise, it places a previously allocated block back on the heap. No check
is made that the block has not been prevoiusly freed (undefined results may
happen if this occurs). When placing a block back on the heap, the linked
list is first scanned down to find if there is a free block in the heap directly
following the to-be-freed block. If there is, then the new block is coalesced
with the next block. The preceeding free block is then checked to see if
it is adjacent in the heap to the new block; if it is, then the new block is
additionally coalesced with it. If the coalescing cannot be done, then the new
block is inserted into the free list in between the block with a lower address
and the one with a higher address, thus the free list is always maintained in
address order.

If the freed block (after any coalescing) is at the end of the heap, and its
length is greater or equal to twice the minimum amount of memory requested
by the allocator when growing the heap (by default 4 kilobytes), then an
attempt is made to reduce the heap size (returning memory to the kernel to
be able to be used by other applications).

3.3.3 Reallocation

The requested size of the block to be reallocated is firstly rounded to the
maximum value of either the minimum block size, or the requested size plus
the size of the header of an allocated block. If this size is greater than the
current length of the block, then initially an attempt is made to grow the
block in place (i.e. not moving it). If this is successful, then a pointer to
the current block is returned. If not, then a new block is allocated (if this
allocation fails, then a NULL pointer is returned), the data copied from the old
block to the new block, up to the length of the old block: the extra memory
can hold any arbitrary value (i.e. should not be assumed to hold zeros (null
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values)), and the old block is then freed up. A pointer to the new data block
is returned.

If the requested size (after rounding) is smaller than the current block size
then, if this size difference is greater than or equal to the minimum block
size, a new block is created and linked into the free list. The pointer returned
from the reallocation procedure then still points to the same memory block
(i.e. a reduced-size block is never moved).

3.4 Extensibility of the memory allocator

The Symbian RHeap class extends a class called RAllocator, which in turn
extends a base class called MAllocator. This class contains declarations of
the allocator methods (Alloc, Free, etc.) which are marked with the C++
keyword virtual. This keyword indicates that any methods with those
names in an inherited class will override the methods in the class that is
inherited from.

The RAllocator class itself does not define any allocator methods: this
is left to the RHeap class, whose definitions of the allocator methods are also
virtual. This is used when implementing the allocator tracing (see chapter
4) as a derived class from RHeap, as the tracing functions override the RHeap

methods in a heap created from this derived class.
Additionally, the OS provides methods to switch to different heaps or allo-

cators, accessed from the User class. One method is User::SwitchHeap(),
which takes as its parameter an RHeap object (i.e. heap), or one inher-
ited from RHeap, and returns a pointer to the old heap. The other method
provided is User::SwitchAllocator(), which takes as its parameter an
RAllocator derived object (i.e. heap), and returns a pointer to the old
heap.

Both of these methods allow use of different allocator implementations to
the standard Symbian implementation; the extent of how well this extensi-
bility works is investigated in chapter 6.



Chapter 4

Design and Implementation

This chapter will give the design and implementation of extensions to the
Symbian allocator to enable trace file generation (the implementation will
discuss important aspects of the code). It will also give some details as to
how the trace files were processed. Issues encountered will also be discussed.

4.1 Design

4.1.1 Objectives

Characterising smartphone applications

Characteristics of the smartphone applications themselves are obtained by
measuring the number of objects of a particular size across the whole run of
a program. This parallels one of the sets of application characteristics given
in [1].

Assessing the existing Symbian allocator

Assessment of the existing Symbian allocator is done by giving a measure
of external memory fragmentation, paralleling the study of [8]. Given that
there are multiple ways of measuring fragmentation, the methods chosen will
also parallel [8] (see section 2.4.2).

4.1.2 Emulator

Most Symbian development is initially done using an emulator[7]. The emu-
lator includes a number of applications and mimics a real Symbian OS phone
very closely. The particular emulator interface that was used in the running

34
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of applications is the interface used in the Series 80 platform for Nokia (see
also section 2.3.1). Using the emulator for developing the allocator exten-
sions allows for faster development compared to running on real hardware –
the use of a built-in debugger in the development environment, for example.

4.1.3 Experimental Design

The benchmark applications

The applications selected are a range of smartphone applications that would
be used in day-to-day smartphone use, such as an Agenda, Alarm, Address
book and Communications program. The latter is used to send emails and
text messages; unfortunately the functionality to actually send and receive
data was not present on the system (requiring a modem), so any messages
had to be saved on the local machine without being sent.

Trace information to be gathered

For the purposes of analysing the performance of the Symbian memory allo-
cator, and to measure overheads, the following traces need to be obtained:

• Operation (whether the operation is an Alloc, Free or ReAlloc opera-
tion)

• Number of bytes requested

• Number of bytes allocated

• Address of the allocated memory (this can then be used to match a
Free operation to its conjugate Alloc operation)

• Start time of the operation

• End time of the operation

• Heap size at the end of the operation

Do to the operation of the Symbian allocator when performing realloca-
tions (see section 3.3.3), a reallocation operation is only recorded if the block
of memory that is being reallocation does not move in the heap. If the block
is moved, this is recorded as an allocation followed by a free operation.

The timing information is there to be able to compare the speed of per-
forming the operations (specifically the time taken for each operation) under
the Symbian allocator, with the same operations under a different allocator
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(see section 6.1). The output of bytes allocated and bytes requested give
a measure of how much space is wasted due to over-allocation of cells, and
outputting the heap size will give a measure of memory fragmentation, when
compared to the live data used; this then can be used to assess the allocator.
The total live data can be calculated from the traces when processing the
data, and hence does not need to be recorded.

To characterise the smartphone applications, a record of the number of
allocations of an object of each particular size can be used (thus obtaining
a frequency distribution of object sizes). The number of objects can be
calculated when processing the data, hence no record of this needs to be
kept as part of the tracer, only the size of the object.

Method

Due to the extensible nature of the Symbian OS, the tracing was implemented
as a class called MyHeap that extended the existing Symbian allocator. The
new class was compiled as a polymorphic DLL file (see section 3.1), so the
Symbian OS would pick it up and automatically use it instead of using the
built-in allocator (RHeap).

Each particular procedure (Alloc, ReAlloc and Free) needs to be overrid-
den with an equivalent procedure that includes tracing.Constructors need to
be specified, so initialisation is done correctly (calling through to the parent
class). Additionally, all the methods that are used to create a ChunkHeap
(see section 3.3) need to be re-implemented to use MyHeap instead of the
Symbian RHeap.

To avoid having issues with the recording of the traces interfering with the
allocation/deallocation of memory (by causing extra allocations), the records
were stored as a large array of structs, where each struct contained enough
information to be able to obtain an allocation profile (see section 4.1.3). This
way, a non-heap area of memory is set aside for the traces.

Once the traces have been collected, it is necessary to have them written
out to a file. For this, an extra function was used to go through the parts of
the array that had been used to store traces, and write the structs out to a
file (see section 4.2.3). Given that the Symbian OS has its own file system,
it would be easiest to write the traces to a files in this filing system, which is
also then accessible by the host system if running the emulator (see section
4.1.2). Additionally, unique names should be given to the trace files so they
can be easily identified, and so that multiple programs (and hence traces)
can be obtained in each session.

Due to the possibility of switching memory allocators in the Symbian OS
(see section 3.4), each application should, in its startup code, switch to using
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MyHeap, and, on shutdown, write out the traces and switch back to using the
Symbian allocator. The startup routine that is executed when an application
starts is NewApplication()[6], so the allocator switching should be imple-
mented in this routine. This, of course, requires the modified application to
be recompiled. Producing the traces would then be a matter of running the
program and exiting it to obtain an allocator trace.

Processing of the trace files is to be done with an external program which
reads in the trace files, and can then output statistics such as fragmentation
measures, and values suitable for generating graphs of object size frequencies
or memory sizes, when fed into a suitable graphing program.

Repeatability

It is necessary to be able to repeat the steps taken to obtain the traces so a
fair comparison can be made between the results obtained here, and a future
study. Due to the nature of the system being interactive in its use, it is not
possible to generate a file or a script to be used as the input to a particular
program; hence it was decided to record the steps taken when running the
system, so this could be replayed and re-run.

Analysis of data

Once the data has been collected, it then needs to be analysed to be able to
produce some meaningful information. For the purposes of this investigation,
a measure of fragmentation (both internal and external) is required, as is a
frequency distribution of object sizes.

4.2 Implementation

4.2.1 Project environment

Project specification file

To be able to compile the MyHeap code as a DLL file, the MMP (project
specification, see section 2.3.3) file needed to be set up for building to a DLL
target. This was done by setting the TARGETTYPE parameter to DLL. The
SOURCE parameter only needed to contain one source code file, myheap.cpp.
The full MMP file is given with other code at the end of the report.

Additionally, the component description file bld.inf needed to contain
the following lines:

PRJ_MMPFILES
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myheap.mmp

CodeWarrior

To build the extensions to the allocator, Metrowerks’ CodeWarrior for Sym-
bian OS was used, as this is one of the standard environments for Symbian
development, and interacts with the emulator to provide full debugging capa-
bilities, as well as placing the binary files in the correct place for the emulator
to pick them up and use them.

vnc2swf

To have a record of how the applications were run, to ensure repeatable
operations, a program called vnc2swf1 was used. This captures a VNC2

session to a Macromedia Flash3 file. Unfortunately this doesn’t allow for
automatic replay of the actions taken – this still has to be done manually,
repeating the actions as they are viewed from the Flash file.

The file generated from recording the traces is available on the CD in-
cluded with the project as the file \symbian.swf. The file \symbian.html
allows the file to be viewed from within a web browser.

4.2.2 The polymorphic DLL

Generating

The DLL itself is generated and put in place when compiling the code – the
MMP file having specified that the target for compilation is a DLL file (see
section 4.2.1).

Freezing, cleaning and rebuilding

Due to the way the Symbian OS handles DLLs, identifying entry points by
ordinal, the exported functions need to be frozen (see section 3.2) before
compilation can succeed. This is achieved by running the command abld

freeze on the command line in the directory containing the source files (see
section 2.3.3 and the system manual in appendix A). However, due to an
apparent issue with the build system not picking up re-frozen exports, the
entire source tree needs to be cleaned, re-frozen and rebuilt (this is covered
in the system manual).

1http://mail.unixuser.org/~euske/vnc2swf/
2Virtual Network Computer, http://www.realvnc.com
3http://www.macromedia.com/software/flashplayer/
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4.2.3 Code modifications to generate traces

This section will give an overview of the code used to implement the tracing.
The entire code itself (which also includes code described in section 6.2) is
given at the end of the report.

Overview

Given that the Symbian OS is written in C++, and the tracing is imple-
mented as an extension to their allocator, the MyHeap code is also written
in C++ (and is also hence split into a header file, and a file containing the
main body of the source code).

To declare whether or not tracing should be used in a particular build
of MyHeap, a C pre-processor defintion is used in the MyHeap header file – if
tracing is required, then the line

#define tracing

is used; if tracing is not required, then this line is commented out.
A few useful macro definitions are also given, for example:

#define GETLENGTH(s) ((s)->len)

#define SETLENGTH(s,l) ((s)->len=l)

#define HEAPSIZE ((TInt32)(iTop - iBase))

Although this is not strictly necessary here, using the macros rather than
their definitions helps greatly with the implementation of a different memory
allocator (see section 6.2). HEAPSIZE gives the size of the heap – iTop is the
pointer to (i.e. address of) the top of the heap, and iBase is the pointer to
the base of the heap.

The tracing information

To hold the traces, an array of structs need to be set up. The code used is:

#define MAXTRACES 1000000

struct traceinfo

{

TChar op; // Operation - alloc, free, etc.

TInt32 request; // Number of bytes requested

TInt32 alloced; // Number of bytes allocated

TAny* address; // Address of operation

TInt32 starttick; // System time at start (us)
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TInt32 endtick; // System time at end (us)

TInt32 heapsize; // Heap size at end of operation

};

struct traceinfo trace[MAXTRACES];

TUint traceposition;

TInt32 minCellSize;

MAXTRACES represents the maximum number of traces that can be ob-
tained – due to using an array, it needs to be given a particular size so that
memory for it is pre-allocated and hence does not interfere with the trace
gathering. minCellSize gives the value of the minimum allocatable cell size.

The variable traceposition is used to keep a record of the current po-
sition in the trace array – it is incremented each time an allocation, free or
reallocation operation occurs.

MyHeap

Following the struct definition and the array in the header file is the class
definition for MyHeap – this defines the public interfaces of the class (i.e.
which need to be frozen), and the protected methods.

Given that MyHeap is an extension of the Symbian RHeap class, there is
not a great deal in the main source code – simply the constructors for the
class, and the routines outlined in the following sections.

The constructors call up to the RHeap constructors with the parameters
that have been passed in, and then set the variable minCellSize to the
smallest allocatable cell size. The operator new routine, which is called
when a heap is created, performs a sanity check that the requested heap size
is not smaller than the size of a heap class and sets up two of the instance
variables of the heap class:

UEXPORT_C TAny* MyHeap::operator new(TUint aSize,

TAny* aBase) __NO_THROW

/**

@internalComponent

*/

{

__ASSERT_ALWAYS(aSize>=sizeof(MyHeap),

HEAP_PANIC(ETHeapNewBadSize));

MyHeap* h = (MyHeap*)aBase;

h->iAlign = 0x80000000; // garbage value

h->iBase = ((TUint8*)aBase) + aSize;
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return aBase;

}

(This code was taken from the Symbian RHeap implementation, but refer-
ences to RHeap were changed to MyHeap)

Alloc and Free

These routines write some trace information, and then call up to the Symbian
implementations to perform the actual allocation or deallocation, and then
write the rest of the trace information and increment the traceposition

counter (assuming it hasn’t reached MAXTRACES). The code for the Alloc
routine is:

UEXPORT_C TAny* MyHeap::Alloc(TInt aSize)

{

#ifdef tracing

trace[traceposition].op=’A’;

trace[traceposition].request=aSize;

trace[traceposition].starttick=getTick();

#endif

TAny* r = RHeap::Alloc(aSize); // Call Symbian allocator

#ifdef tracing

trace[traceposition].endtick=getTick();

trace[traceposition].alloced=GETCELLLENGTH((SCell*)r);

trace[traceposition].heapsize=HEAPSIZE;

trace[traceposition].address=r;

if (traceposition<MAXTRACES)traceposition++;

#endif

return r;

}

The UEXPORT C marks the procedure as one of the DLL entry points. As
can be seen, the operation, the requested size and the time at the start is
recorded, then the Symbian allocator is called. On return, the rest of the
trace is recorded, before the procedure exits. It is worth noting that the
address that is recorded is not the start of the cell in the heap, but the start
of the usable data area, as returned to the calling procedure.

The Free routine is very similar, except for recording ’F’ as the operation
instead of ’A’, and using -1 for the request size and amount allocated.
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ReAlloc

The ReAlloc procedure is slightly more interesting – it may move the cell,
or it may keep the cell in the same location, only changing its size. If the cell
gets moved, then (as part of the Symbian implementation), a new cell gets
allocated, and the old one gets freed up; the tracing for this is then taken
care of by the Alloc/Free tracers. If the cell is not moved, however, then a
record must be made of the ReAlloc operation. Note that this means the
trace files lose some information about the pattern of reallocation operations,
since these are often translated to an Alloc and a Free operation. Hence the
code is slightly different to that in the section above:

UEXPORT_C TAny* MyHeap::ReAlloc(TAny* aCell, TInt aSize,

TInt aMode)

{

#ifdef tracing

trace[traceposition].starttick=getTick();

#endif

TAny* r=RHeap::ReAlloc(aCell, aSize, aMode);

#ifdef tracing

if (r==aCell)

{

// Cell hasn’t been moved

trace[traceposition].endtick=getTick();

trace[traceposition].op=’R’;

trace[traceposition].request=aSize;

trace[traceposition].alloced=GETCELLLENGTH((SCell*)r);

trace[traceposition].address=r;

trace[traceposition].heapsize=HEAPSIZE;

if (traceposition<MAXTRACES) traceposition++;

}

#endif

return r;

}

DumpTrace

This procedure writes out the stored traces to a file, which can then be
processed externally to generate useful results. The code for this is:

EXPORT_C void MyHeap::DumpTrace()

{
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#ifdef tracing

TUint i=0;

RThread thread;

TName threadName = thread.Name();

TName name;

name.Num(thread.Id());

name.Insert(0,_L("_"));

name.Insert(0,threadName);

name.Insert(0,_L("C:\\traces\\"));

name.Append(_L(".trace"));

RFs file;

RFileWriteStream tracefile;

file.Connect();

TInt err = tracefile.Create(file,name,EFileWrite);

tracefile.WriteInt16L((TInt16)sizeof(SCell));

tracefile.WriteInt32L(minCellSize);

for (i=0; i<traceposition; i++)

{

tracefile.WriteUint32L((TUint32)trace[i].op);

tracefile.WriteInt32L(trace[i].request);

tracefile.WriteInt32L(trace[i].alloced);

tracefile.WriteUint32L((TUint32)trace[i].address);

tracefile.WriteInt32L(trace[i].starttick);

tracefile.WriteInt32L(trace[i].endtick);

tracefile.WriteInt32L(trace[i].heapsize);

}

tracefile.CommitL();

tracefile.Close();

file.Close();

#endif

}

The EXPORT C marks the procedure as one of the DLL entry points (it is
equivalent to UEXPORT C). The L macro creates a text literal from a given
string (basically converting each character to its Unicode equivalent, as the
Symbian OS uses Unicode internally).
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Initially, the name of the trace file is constructed by obtaining the thread
name and (numeric) process ID, prepending the directory to store the traces
(C:\traces), and appending the extension .trace. Thus a complete trace
filename would be C:\traces\appname pid.trace. This naming was chosen
to be able to generate filenames that were unique each time the emulator was
run; additionally, this has the benefit of being able to see which application
program has produced a particular trace file.

RFs file creates a new file server, which the Symbian OS uses to com-
municate with the file system; the connection is made using the Connect()

method. tracefile is a streamed file writer (RFileWriteStream). When
the file is created for output (using the Create() method), its mode is set to
EFileWrite, which open the file for writing only, and causes an error if the
named file already exists (this then prevents already-generated traces from
being overwritten).

All the elements of the array storing the traces that have been written in
are then written out to the file as a set of 32-bit integers (as to why these are
all 32-bit integers being written, see section 4.5.4). Once this has been done,
the file stream buffer is flushed (with the CommitL() function), and the file
and file server are closed.

Application startup code

In the application’s NewApplication() function (which gets called when a
new application is created), a new ChunkHeap (see section 3.3) that uses the
tracing allocator needs to be created, and this heap needs to be set to being
the active heap. This is done with the following code:

TInt heapCount=0;

TName n;

n.Format(_L("TESTHEAP%d"),heapCount++);

MyHeap* mh=(MyHeap*)User::ChunkHeap(&n,0x1000,0x100000);

User::SwitchHeap(mh);

The MyHeap header file also needs to be included at the start of the file
containing the NewApplication() routine.

After the modification, the application needs to be compiled and then
run through the emulator.

4.3 Processing trace files

Having obtained the trace files, they then need to be post-processed to be
able to obtain meaningful results. This was done by writing a C program
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to read in the trace files (the code itself contains the same struct as the
MyHeap tracing struct), and then output a set of numbers which could then
be fed into some graphing software to generate interesting graphs.

The code also kept a running total of the memory allocated (to produce
a “time in bytes”), the amount of live memory used, the total amount of
memory that would have been used given no internal fragmentation (i.e.
if the memory really allocated was the same as the memory requested), the
number of objects allocated of a particular size, the maximum heap size, with
the live memory usage at that point, the maximum amount of live memory
(these were to be able to get a measure of fragmentation comparable to [8];
see section 2.4.2), and a running total of the internal fragmentation (this was
taken as the ratio of the bytes allocated to the bytes requested), which was
then divided by the number of allocation operations to obtain an idea as to
an average amount of internal fragmentation.

To keep track of the locations where allocations were taking place, so they
could be matched with their conjugate free operations, a linked list containing
addresses and sizes was used4. Each time an allocation was recorded, a new
element was added to the start of the linked list, containing the address and
size of the object allocated. This was then added to the running total of
live memory used and total memory allocated. For a free operation, the
element of the linked list containing that particular address was found and
removed from the list; the size recorded was then subtracted from the total
live memory. During a reallocation operation (i.e. the cell had not moved),
the element of the linked list containing the particular address was found,
and the size recorded was updated, along with the live memory; if the new
size was larger than the old size, then the running total was incremented by
the difference in sizes.

To keep track of the number of objects allocated of a particular size,
an array of integers was set up for objects ranging between a certain range
of sizes (defined by the macros MINSIZE and MAXSIZE at the start of the
source code). Each time an object of a particular size was allocated, the
corresponding location in the array was incremented. For any objects smaller
than MINSIZE or larger than MAXSIZE, a linked list was used, each element
containing the size of object and number of objects stored. If an object with
a new size had been allocated, then a new entry was created in the list,
making sure that the object sizes were kept in ascending numerical order as
the list was chained down.

When compiled, the executable took two command-line parameters (see

4If this was implemented as a hash table it would have been faster to look up; however
it would have added extra complexity to the code
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Appendix B) – the first a single character denoting the type of output re-
quired (‘human-readable’, memory sizes, or object sizes), and the second the
name of the file containing the traces.

With all the outputs, the program printed out the size of a free-list cell,
the minimum allocatable cell size, the two measures of fragmentation used
by [8] and a measure of internal fragmentation, all written to stderr (the
Unix standard error stream; by default the console).

With ‘human-readable’ output, the program printed out a set of lines
corresponding to the actual traces on stdout; the code being used to do this
follows (trace is the name of the struct that contains each memory trace).

printf("Op: %c\n",trace.op);

printf("Requested: %d\n",trace.request);

printf("Really Allocated: %d\n",trace.alloced);

printf("Address: %lx\n",trace.address);

printf("Start tick: %ld\n",trace.starttick);

printf("End tick: %ld\n",trace.endtick);

printf("Heap size: %ld\n",trace.heapsize);

When an output of memory sizes was requested, the program printed out
a tabulated list of numbers on stdout, corresponding (in order) to the total
amount of memory allocated, the total live memory, the total memory that
would have been live given zero internal fragmentation, and the heapsize at
each particular operation. This output could then be redirected to a file,
and used to generate some graphs of heap size and live memory usage as
allocations took place.

When an output of object sizes was requested, the program printed out
a tabulated list of numbers on stdout, corresponding to object sizes and
number of each size allocated. This output could then be redirected to a file,
and used to generate a graph of number of objects vs. object size.

To generate the graphs of the memory allocator characteristics, the out-
puts from the trace processor were used as the input to gnuplot, a free
graphing program available on most Unix systems. The commands that
needed to be given to gnuplot to generate the graphs are given in the User
Manual (Appendix B).

4.4 Test and Debug

4.4.1 Statement of test plan

An initial test of the code was to make sure it compiled properly, and that
some trace files could be generated without any errors occurring.
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Once some traces were obtained, to make sure that they appeared to
be written correctly (before they were processed), the files were inspected
by eye using a hexadecimal dump (in this case, the files were copied to a
Unix machine, a read using the utility hexdump(1)). Because each trace file
contained at least a few hundred operations, the files could not be examined
too closely in this way, but it gave a good indication that the traces were
written out correctly.

4.4.2 Summary of test results

Although the code itself had compiled properly, using the code from within
an application startup caused it to fail. This is discussed in section 4.5.1.

Once the traces had been obtained, an initial inspection found that they
had been created successfully. However, some issues were then seen to arise
when the trace files were copied to another machine. This is discussed in
section 4.5.6.

4.5 Issues

4.5.1 Application startup

Unfortunately, having compiled the MyHeap code, and a test application5

which switched from the Symbian allocator to the tracing allocator in its
NewApplication() routine (see section 4.2.3), the test application was then
found to fail on startup. Investigation into this problem found that it was
failing because some of the control environment base class objects had al-
ready been allocated before the heap was switched, and subsequently were
attempting to access the old heap, which was prevented by the OS.

After some deliberation and discussion with Symbian, it was decided to
modify some of the code in the OS which launches applications, to enable the
heap (and memory allocator) to be used before the application itself starts
up.

4.5.2 EIKDLL

The operating system application launching code that needs to be modified is
located in src\COMMON\GENERIC\app-framework\uikon\coresrc\EIKDLL.CPP

5An application that displayed “Hello World” on the screen, which is part of the Sym-
bian development kit as sample code, was used, as this was one of the simplest applications
available, and hence easy to experiment with
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in the function called AppThreadStartFunction. The code that was used to
modify this file and the method of compilation is given in the System Manual
in section A.2.

Having done this, switching to the tracing allocator worked properly, and
applications were able to run and output traces.

4.5.3 CodeWarrior bug

When attempting to compile the application launcher code, a bug was en-
countered in CodeWarrior whereby long path names were not handled cor-
rectly, and the build failed. This necessitated a build from the command line
(this is described in the System Manual, section A.2).

4.5.4 Struct alignment issues

Initially when writing out the traces (see section 4.2.3), the operation was
treated as a 16-bit integer, with the rest of the information being 32-bit
integers. However, although this was then written out correctly by the
DumpTrace() function, when processing the trace files (see section 4.3) the
C struct was aligned so that each 32-bit integer fell on a 4-byte boundary.
This then meant that when the trace was read in, the two bytes of the oper-
ation were read in correctly, but then the next two bytes were ignored (the
two bytes being part of the next item in the struct: the amount of memory
requested) so the next item, when reading in, was aligned to a 4-byte bound-
ary. To get around this issue, every item when writing out and reading in
the traces was treated as a 32-bit integer.

4.5.5 Timing issues

Another encountered issue involved obtaining the timing information – due
to the allocation and free routines running quickly, it would be necessary
to obtain microsecond accuracy to be able to tell how long it took for the
routines to run. From the Symbian documentation, it appeared that the
gettimeofday() call (from their implementation of the C standard library)
looked promising – one of the returned values is the system time in microsec-
onds. However, having used this when obtaining traces, it turned out that
this call was only updated every 5 milliseconds. Having spoken with Symbian
about this, it turned out that user processes are not given access to any timer
finer than a few milliseconds. There exists a Kern::TickCount() method
which should return more accurate timing information; however, this is only
accessible from a kernel-space process, and causes an error if attempting to
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call it from a user-space process. It was therefore decided to not attempt any
further to obtain more accurate timing information, due to time constraints,
and leave this for further work (see section 7.2).

4.5.6 Endian issues

As a result of checking the trace files by inspection, it was found that when
copying the trace files to a computer that used a different architecture (the
trace files were generated on a computer with an x86 architecture, and then
copied onto computers using SPARC or PowerPC processors), the bytes in
the trace file were swapped. This is due to endian issues (the order in which
bytes of words are held in memory) – the x86 is little-endian (storing least
significant byte first), whereas the SPARC and PowerPCs are big-endian
(storing the most significant byte first). To work around this issue, a short
program (listed at the end of the report with the rest of the code) was written
to do the appropriate byte shifting so the traces could be read on a big-endian
architecture. This read in the name of a tracefile on the command line, and
wrote out a byte-swapped version to a file of the same name, but with .end

appended.



Chapter 5

Symbian OS allocator results

The method for obtaining the results has already been discussion in section
4.3. This chapter shall discuss some interesting aspects of the processed re-
sults. All the graphs obtained from the results are included in the Appendix,
before the code section.

When processing the results, it was found that in certain places, the heap
size appeared to suddenly reduce back to its initial size while there was still a
large amount of allocated memory. Further investigation (using the “human-
readable” output option of the trace file processor) found that the objects
being allocated when the heap size went to its initial size were allocated from
a different memory location, leading to the conclusion that the applications,
during the course of their execution, created multiple heaps.

It was therefore decided to concentrate the investigation of the allocator
external fragmentation performance on one heap only: the initial heap to be
used. Another program was written (whose code can be seen at the end of the
report) which ran through a given tracefile, and produced another tracefile
as an output, containing only allocations from the initial heap. Due to the
maximum size of a heap being set at 16MB, or 1,000,000 in hexadecimal,
(this is one of the parameters to the ChunkHeap method call when creating
a new heap, given in the System Manual (Appendix A)) the top 8 bits were
used as a mask on the address (the bottom 24 bits are the parts of the address
that may vary in a heap) to see if a particular operation took place on the
initial heap.
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5.1 Characteristics of the Symbian OS allo-

cator

All the graphs obtained from investigating the initial heap appear to be very
similar; this is because as an application loads, a new (graphical) environment
needs to be set up for it: the traces plotted on the graphs are of the memory
usage and heap size as this environment is being set up. One of the graphs
is shown in figure 5.1.

The external fragmentation of all these heaps were identical; using a mea-
sure of fragmentation comparing the amount of live memory to the heap size
at the point where the heap size is maximal gives a fragmentation measure
of 7.0%. Using a measure that compares the maximum heap size to the max-
imum amount of live memory gives a fragmentation measure of 6.9%. The
details of these fragmentation measurements are given in section 2.4.2. The
first measure corresponds quite well to the average fragmentation for a first-
fit address-ordered allocator obtained by [8]: this measured 6.63% average
fragmentation. However, using the second measure, [8] found the average
fragmentation to be 2.30%. The discrepancy between the two values occurs
because the allocations obtained from the Symbian OS are quite different to
the allocations in the software that was used in the Johnstone and Wilson
study – in the Symbian allocations, the heap size followed the live memory
usage fairly closely.

To obtain a measure of the internal fragmentation, the entire trace file
was processed (the internal fragmentation is not dependent on the heap size;
therefore having multiple heaps does not matter), and an average value for
the percentage fragmentation obtained; the percentage for each value was

worked out using %frag = 100 ∗
(

allocated memory
requested memory − 1

)

. The results of

this are given in table 5.1.
The large measures of internal fragmentation show that rhere is a large

amount of memory wasted; a lot of this is likely to be due to using a first-fit
allocator (and not being able to split off blocks), instead of a best-fit.

5.2 Characteristics of smartphone apps used

for the traces

To provide a better overview of the frequency of object allocation when
running an application, the allocated objects across the entire run of the
program (i.e. across all the heaps) were considered.
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Figure 5.1: Memory usage in the Contacts application

Application Internal fragmentation (%)

Agenda (1st run) 63.0%
Agenda (2nd run) 65.0%
Contacts 66.0%
HelloWorld 66.0%
Messaging 66.0%
Message editor 66.0%
Time (alarm) 66.0%

Table 5.1: Internal fragmentation of the test applications, across the entire
run of the application
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Figure 5.2: Distribution of object sizes in the Contacts application

One of the graphs obtained is seen in figure 5.2. As can be seen, there is a
fairly random spread to the objects allocated; the size of the majority varies
between 10 bytes and 1000 bytes. All of the other applications resulted in
similar looking graphs (hence only one is produced here; the others are found
in the Appendix).

5.3 Overheads

Each free and allocated block has a header associated with it, which contains
such information as the length of the block, and possibly (if the block is
free) a pointer to the next block on the free list. This necessarily adds some
(unavoidable) overhead to the memory allocator, and hence also requires a
minimum allocatable block size (guaranteeing that there is enough space for
all required headers). In the Symbian allocator, this is set to 12 bytes, so
any requests for smaller blocks get rounded up to 12 bytes.

From examining the Symbian code, an allocated block only has 4 bytes
of header, which contains the size of the block. Therefore each allocation
will use an extra 4 bytes over the memory that is said to be live. This does
not actually use a great deal of extra memory – if there are 5,000 live blocks
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of data in use at any one time, then there is an overhead of approximately
20kB.



Chapter 6

Critical assessment of Symbian
OS framework

6.1 Design of a segregated free list allocator

Given that the tracing extensions to the Symbian allocator worked, and the
system had been set up to use this tracing allocator, it was then decided
to attempt to implement a segregated free list allocator to see how well the
Symbian OS infrastructure coped with using a replacement allocator. In
theory, this should just be a case of overriding some methods in the Symbian
allocator, and switching to the new allocator, all of which is supported by
the framework (see section 3.4). As such, it would be useful to enhance the
MyHeap code (see section 4.2.3) with the ability to use the segregated free list
allocator.

In an ideal segregated free list, every possible allocatable size will have
its own set of free lists (see section 2.2.2). However, this requires having up
to 232 free lists (on a 32-bit processor), and hence is not practical, so a set
of free lists corresponding only to a limited range of sizes is more useful. An
appropriate range of sizes can only really be found by empirical observation
to find out how big allocated objects tend to be. If the set of free lists only
corresponds to a limited range of sizes, then consideration must be given to
any cell that is to be allocated outside the chosen range of sizes. To address
this, two extra free lists, a so-called ‘small’ list and ‘large’ list, are used; the
small list holding a free list of blocks smaller than the minimum size in the
segregated list, and the large list holding a free list of blocks larger than
the maximum. These lists can then be treated as sequential free lists, and
can be allocated from using a sequential fit algorithm (this often tends to be
first-fit).
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Additionally, it would be useful for this segregated free list allocator to
be used as a base for an exact-fit peer group memory allocator as described
by Chris Clack (see section 7.2); where this has been done (hence causing
some differences between this implementation and a “standard” segregated
free list implementation) is noted in section 6.2.2.

6.2 Implementation

6.2.1 Overview

To be able to extend the MyHeap code with the segregated free list allocator,
it was decided to make use of the C pre-processor to select the allocator to
use (i.e. use of the Symbian allocator, or the segregated free list allocator).
This would then allow for easy switching between the allocators – only re-
quiring uncommenting one line of code, commenting out another line, and
recompiling. Hence at the start of the header file, myheap.h, the following
definitions are set up:

//#define segregatedFreelist // Segregated free list with linear

// searching

#define symbianMalloc // Use the original Symbian allocator

// Define, if we want tracing

#define tracing

As the code above stands, the original Symbian allocator, with tracing ex-
tensions, is to be used.

The entire code can be seen at the end of the report; only important
aspects of the implementation of the segregated free list allocator will be dis-
cussed. As to how the definitions given above are used, this is best illustrated
when looking at the code in its entirety.

The operation of the allocator is intended to mimic the operation of the
Symbian allocator as closely as possible (see section 3.3), merely using a
different data structure to hold the free blocks. Hence discussion of the
routines in the code will concentrate on the differences between this and
the Symbian allocator. Operations not discussed should be assumed to be
identical to the Symbian implementation, discussed in section 3.3.
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6.2.2 Structure of the free lists and blocks

Free block

A block on the free list contains four items in the header:

1. Its length and availability

2. The length and availability of the previous block in the heap

3. A pointer to the next free block in the free lists

4. A pointer to the previous free block in the free lists

An allocated block only contains the first two items in its header.
The availability is marked with the top bit – if it is set, then the block is

free; if it is cleared (i.e. 0), then the block is in use. This may be regarded
as non-standard in an implementation of a linked list; it is implemented in
this way to provide a basis for an extension of this code to implement Chris
Clack’s allocator. Using the length and availability of the previous block in
the heap provides an easy mechanism for coalescing without having to search
through the entire heap for the block next to one being freed.

However, if the length of a block is requested, then the top bit must be
ignored (the top bit is usually designated as a sign bit – if it is set, then the
number being represented is negative). Hence the header file contains some
useful macros such as (amongst others):

#define GETLENGTH(s) ((s)->len & 0x7FFFFFFF)

#define ISFREE(s) ((s)->len < 0)

Using these macros, if the implementation changes, only the macro needs
to be changed instead of finding every location in the code: the code itself
should continue working.

Free lists

All the free blocks are held in a doubly-linked list. In addition to this, the
segregated lists are implemented by holding a list of a particular size as
elements in an array; the list holding free blocks of size MINSIZE (which is
defined in the header file) is held in position 1 in the array; the rest of the
array holds free lists of increasing size, up to MAXSIZE (also defined in the
header file), which is held in the second-last element. The header file may
contain, for example, the following definitions:
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#define MINSIZE 128

#define MAXSIZE 256

#define ARRAYTOP 2+MAXSIZE-MINSIZE

When protected variables are declared as part of the MyHeap class definition,
the array is held as an instance variable of a heap:

SCell* freelists[3+MAXSIZE-MINSIZE];

An SCell is the name given to a free block.
Because the segregated list only holds free lists between the values of

MINSIZE and MAXSIZE, allocations smaller than MINSIZE or larger than MAXSIZE

need to be catered for – this is done by having a ‘small block’ free list, and
a ‘large block’ free list, which are held in the segregated list array at posi-
tion 0 and the last element respectively. Both of these lists act as a first-fit
sequential allocator.

When a block is added to the free lists, it is placed at the head of its
particular size free list (see section 6.2.9 for more details), and then tied in
with the doubly-linked free list. Removal of a block from the free lists also
happens from the head of its free list (see section 6.2.8 for more details);
hence each individual free list (as referenced from the segregated list array)
contains blocks that are held in LIFO (Last In First Out) order.

6.2.3 Allocation

When a block is to be allocated from the free lists, a call to the function
getCell() is made (this is described below in section 6.2.7) – this returns
a block of at least the requested size, or NULL if a block was not able to be
found.

The block is then marked as being in use, and checked to see if it can
be split to hold a new block from the excess memory between the requested
size and the size of the returned block. If not, then, assuming the returned
block is not the last block in the heap, the next block in the heap is obtained,
and its previous block size element is set to being in use. The block is then
removed from the free lists (see section 6.2.8), marked as being in use, and
returned.

If there is enough space to create a new block, then a new one is cre-
ated, marked as being free, and its previous block size set to the size of the
requested block size, and marked as being in use. If this new block is not
at the top of the heap, then the next block in the heap is obtained, and its
previous block size element is set to the length of the newly split off block,
and marked as being free. If the new block is at the top of the heap, then the
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variable iTopMostCell is updated with the address of the new block. The
old block is then removed from the free lists, the newly split off block added
(see section 6.2.9), the size of the old block is then updated to match the
requested memory size, marked in use, and the block is returned.

6.2.4 Freeing

When a block of memory is freed (i.e. is being returned to the free lists), it is
initially marked as being free. First an attempt is made to coalesce the block
with the one below it in the heap. If this is possible (i.e. the block below
is free), then that block is removed from the free lists, and its size increased
by the size of the newly freed block. The pointer to the newly freed block is
then changed to point to the start of the previous (now extended) block.

If the block is not at the top of the heap, then the next block in the heap
is obtained, and its previous block size element is updated to reflect the size
of the new block (in case it had been coalesced above), and the previous block
element is marked as being free. An attempt is made to coalesce forwards –
if this is possible, then the size of the new block is extended by the size of
the next block and the next block removed from the free lists; if this is then
the last block in the heap, the variable iTopMostCell is updated to point to
the start of the new block; if it is not the last block in the heap, then the
previous block element of the next block in the heap is updated to reflect the
new block size.

Once any coalescing has been attempted, then an attempt may be made
to shrink the heap – this follows the same criteria as given in section 3.3.2,
as to whether or not an attempt is made.

Finally, the newly freed block is added to the free lists (see section 6.2.9).

6.2.5 Reallocation

If a block is to be extended, then a new block is allocated, the contents of
the memory copied from the old block, and the old block is freed up. For
simplicity, and to assist with the debugging process, an attempt is currently
not made to attempt to grow a block in place (however, there is the framework
of a procedure in place, which needs further development before it can be
used).

If a block is to be shrunk, and there is enough space left over to be able
to form a new block, then a new block is created from the excess space, and
marked as being free. The value of the previous size element of the new block
is set to the requested reallocation size (the new length of the shrunk block).
This new cell is then added to the free lists.
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6.2.6 Growing the heap

The top-most cell (value of the variable iTopMostCell) is obtained, and a
check is made whether it is free or not. If it is, then the size extension
requested is reduced by the size of that cell:

SCell* pT=iTopMostCell;

TBool top_is_free = ISFREE(pT);

TInt extra=top_is_free ? aSize-(GETLENGTH(pT)) : aSize;

If the size of the extended heap is not greater than the maximum heap size,
a request is made to the kernel to allocate more memory. If this is successful
and the top-most block is free, it is extended; if the top-most block is not
free, then a new block is created and added to the free lists.

6.2.7 Obtaining a block

The procedure for obtaining a block returns a block of at least the requested
size. Initially, the requested block size’s location in the array of free lists is
obtained via the function ListLocation, defined as:

inline TInt MyHeap::ListLocation(TUint aSize) const

/**

* Returns location in the segmented free list

*/

{return (aSize < MINSIZE ? 0 : (aSize > MAXSIZE ? (ARRAYTOP) :

(1+aSize-MINSIZE)));}

The inline keyword asks the compiler to insert the generated code as part
of the calling function, instead of creating an entirely new function (with
associated jumps in the executable code). If the requested size (aSize) is
smaller than MINSIZE, the value 0 is returned (which corresponds to the
bottom element of the array of free lists); if the requested size is larger than
MAXSIZE, then the value ARRAYTOP is returned, which corresponds to the top
element of the free list array. Otherwise, the value corresponding to the
array element of the free list of the requested size is returned (this starts at
1, because the 0th element is taken by the small block list).

Once this has been obtained, then a search is made up the free lists to
find the first non-empty location that is at least as large as the requested size
(which may well be the same as the location returned by the ListLocation

function). If this is not found, then a NULL value is returned. If the first
non-empty location is in the small list, then a first-fit match is attempted;
if this is unsuccessful, then the list location is set to the first segregated free
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list, and a linear search is performed for the next available block (up until the
large list location is hit). If the first-fit match is successful, then the block is
returned.

If the first non-empty location is one of the segregated lists, then the
block at the head of the list is returned.

If the large list contains the first non-empty location, then a first-fit match
is attempted; if this is unsuccessful, a NULL pointer is returned, as there is
no block of at least the requested size that is free. If the match is successful,
then that block is returned.

6.2.8 Removing a block from the free lists

When a block is to be removed, the previous and next pointers on either side
of the doubly linked list (if they point to valid blocks) are set up to point to
each other:

SCell* pP=aCell->prev;

SCell* pN=aCell->next;

TInt aSize=GETLENGTH(aCell);

TInt listlocation=ListLocation(aSize);

if (pP)

{

pP->next = pN;

}

if (pN)

{

pN->prev = pP;

}

aCell is the block to be removed from the list
If the block that is being removed is at the head of its linked list, then

care must be taken to update the array holding the linked lists – if there is
another block of the same size following, the element of the array needs to
be updated to point to this block. If there is not a block of the same size
following (or, in the case of the small list, a block not smaller than MINSIZE),
then the element of the array needs to be set to NULL (i.e. marked as being
empty).

6.2.9 Adding a block to the free lists

When adding a block to the free lists, initially a check is made to see if a
block of the same size already exists (i.e. the element of the free list array is
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not NULL). If such a block does exist, then the new block is added at the head
of the list (with the previous and next pointers being set up appropriately).

If such a block does not exist, then it is necessary to find the next larger
block – this is done with a call to getCell() (described in section 6.2.7). If
a block is returned, then the previous pointer of the newly added block is set
to the same as the previous pointer of the next larger block, the rest of the
pointers updated appropriately, and the new block becoming the head of a
new list.

If a block is not returned (i.e. the added block is the largest in the heap),
then the next smaller block needs to be found, which is done by a call to the
function getSmallerCell(). The value returned from this function is used
as the value of the previous pointer in the newly added block, the new block’s
next pointer is set to NULL and other pointers are updated appropriately, at
which point the new block becomes the head of a new list.

The getSmallerCell() function works very similarly to the getCell()

function described in section 6.2.7, except that it returns a cell that is the
next smaller in size than the requested size (or NULL if such a block does not
exist); hence searching is performed down the free list array, instead of up
the array.

6.3 Test and Debug

Testing of the allocator (and hence the Symbian OS allocator extensibility
framework), consisted of attempting to compile the code and run various
applications.

In the course of this, a number of issues with the code were found and
fixed until the shell application (the basic user interface) was able to run.

6.4 Issues

Even though this allocator was implemented to mimic the behaviour of the
Symbian allocator, and applications were run successfully using the tracing
extensions (so successfully using MyHeap), when running applications with
this allocator, failures were observed in varoius places.

One of the observed failures was an error marked as CONE:8 when shutting
down an application. This, according to the Symbian documentation, is an
error that occurs when the OS environment found window server resources
had not been freed. It was not possible (mainly due to time constraints –
tracking down the problem would have taken many days) to find out which
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resources in particular had not been freed. It was, however, interesting to
note that this error occurred when running the replacement allocator, but
not with the Symbian allocator (which may imply some dependency on the
Symbian allocator).

Another observed failure (either when starting some applications, or dur-
ing the course of running the applications) resulted in CodeWarrior stopping
execution of the emulator and returning to the IDE. Running the emulator
outside of the CodeWarrior environment showed that the execution was ter-
minated when an error marked as KERN-EXEC:3 occurred. According to the
Symbian documentation, this error is thrown when an unhandled exception
occurs; it is most common when an access violation occurs, for example by
derefencing NULL. The cause of this error was not able to be tracked down,
mainly due to CodeWarrior not launching a debugger session (which may
have helped track the cause of the error), but terminating execution.



Chapter 7

Summary and Conclusions

This chapter contains a brief recap of the work carried out in this report.
Further work is suggested to continue the investigation, and the report is
concluded with some personal comments about the work.

7.1 Summary

An investigation into the fragmentation performance of the Symbian Oper-
ating System memory allocator and an assessment of the extensibility of the
allocator framework has been presented.

The Symbian allocator implementation is a first-fit address ordered allo-
cator which uses coalescing. Traces of allocator activity had been obtained
to get a measure of fragmentation performance, and this lead to the ob-
servation that each application created multiple heaps during the course of
its execution. It was therefore decided to concentrate the measures of frag-
mentation on only one heap (the first heap created during execution). Two
measures of external fragmentation and a measure of internal fragmentation
were obtained (described in section 4.3).

The external fragmentation performance was found to be good, with only
about 7% fragmentation. However, internal fragmentation performance was
found to be poor, with fragmentation measures between 63 and 66%.

Additionally to the allocator performance, some statistics on the fre-
quency of object allocations were obtained which may be useful to note when
implementing a memory manager.

An investigation into the extensibility of the allocator proved interesting
– some limitations became apparent, such as the failure to switch to a new
heap from within an application: it was necessary to modify the application
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launching code in the Operating System. Further investigation into the ex-
tensibility by implementing a segregated free list allocator lead to an apparent
weakness in the environment: the fact that window server resources were not
freed properly when running the replacement allocator but not the Symbian
allocator implies some extra dependence on the Symbian implementation.

Another weakness turned out to be the development environment itself –
although CodeWarrior does include a debugger (which at times proved to be
very useful) there were also times where the debugger did not launch, merely
terminating execution of the emulator without giving any indication as to
why the emulator was terminated. The emulator itself had to be run outside
the CodeWarrior environment to find out the error that occurred, causing it
to be terminated.

7.2 Further work

There are a number of ways that this investigation can be enhanced and
extended; indeed the study itself discovered issues that had to be left for
further study. Ideas and suggestions for further work are listed below.

One enhancement is to modify the trace processing program to be able to
deal with multiple heaps from within one trace file. Alternatively, the MyHeap
code could be modified so that instead of keeping the array of structs (the
traces) as a global variable, each heap gets its own local array, which is then
written out when the heap gets destroyed: this would involve creating a
destructor method.

There may be some code issues with the segregated free list implementa-
tion (causing the KERN-EXEC:3 panics) that remain unresolved due to time
constraints: it may be possible to find these after careful inspection of the
code, or after time spent working with the debugger to find problems. Some
debugging code remains with this implementation, which may be useful as a
base to work with.

Still with the segregated free list, it would be useful to implement the
function that attempts to grow a reallocated cell in place – the framework
exists in the code, but the functionality was not implemented due to trying to
keep the code as simple as possible for the purposes of testing and debugging.

Some of the design decisions for the segregated free list allocator were
taken so it would be possible to extend the code further by implementing an
allocator described by Chris Clack1, without taking a great deal of effort –

1This is described in UK Patent Application 9924061.1: A Data Structure, Memory
Allocator and Memory Management System, Example of Technique
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the main modification needed is to use a non-linear method of searching the
free lists (a description of the allocator is outside the scope of this project).

One of the issues that was encountered fairly early on was that of ob-
taining timing information for the memory allocator – i.e. measuring how
many microseconds it took to perform an allocation or free operation. How-
ever, due to a lack of access to sufficiently accurate timing information, it
was decided not to pursue the timing information further for this project.
However, the Symbian OS kernel does have access to more accurate timing
information, but this is not accessible to a user-space process. It may be pos-
sible to develop a simple device driver, accessible from user-space processes,
which provides access to the kernel timer devices. Doing this would then
open up more ways of assessing the Symbian allocator and comparing it to
other implementations (comparing speed of allocations).

7.3 Conclusions

Overall, I am happy with the outcome of the study. Although a number of
issues were enountered, they had been overcome sufficiently to generate some
useful results.

The Symbian OS allocator extensibility framework still has issues that
need to be worked out before it can be used properly in a non-Symbian
development environment (e.g. third-party software authors who write soft-
ware for the Symbian platform); one of the major issues is (currently) the
lack of documentation for supporting this framework. Hopefully this report
will provide some indicators as to where improvements may be made.

The Symbian allocator performance with regards to external fragmen-
tation is in line with the fragmentation performance of a first-fit address-
ordered allocator, as documented by Johnstone and Wilson[8] – their study
showed an average external fragmentation of 6.63% when comparing max-
imum heap size to the amount of live memory at that point, whereas the
investigations here gave the fragmentation at 7%. Internal fragmentation
was shown to be quite high (around 65%), which indicates that there is a
large amount of unusable memory. Although this is normally not likely to
be much of an issue for a device with a large amount of memory (such as a
workstation), it can become a large problem on a low-memory device such as
a smartphone; for example allowing fewer applications to run concurrently,
or limiting the amount of data that can be stored.

Internal fragmentation is a phenomenon that appears to be investigated
less often than external fragmentation; nevertheless it is extremely worthy of
more investigation, such as getting statistics for the performance of various
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allocator algorithms. It stands to reason that a best-fit allocator (or an
allocator that uses a best-fit policy, such as a segregated free list allocator)
would provide the best internal fragmentation performance, as it attempts
to find a block closest in size to the requested size, instead of just taking the
first block that is large enough.

To conclude, I would say I have produced a good solid study. The objec-
tives of the project were met; additionally I believe that this is the first study
that has obtained memory allocation traces from smartphone applications.
If this project proves useful for Symbian in further developing their allocator
and framework, or if it provides a useful base for anyone extending the work
described, I would consider it a great success.



Appendix A

System manual

This manual outlines the main technical details that would enable a reader
to set up an environment that allows for further investigation of the Symbian
memory allocator and allocator extensions.

A.1 Software Installation

The installation of the software follows a number of steps:

1. Metrowerks CodeWarrior for Symbian v. 2.8 needs to be installed.
This is available as a trial edition for download from
http://www.metrowerks.com1 , and acts as a standard Windows in-
staller package.

2. The Symbian emulator needs to be installed – this is available as a
development kit (DevKit) from Symbian, and contains the emulator
as well as some source code. Again, this acts as a standard Windows
installer package.

3. Before the emulator can be run, a default device needs to be set up.
Running the command devices from the command line will give a list
of devices (emulator targets) that can be used. The TechView device
needs to be set as the default – to do this, run devices -setdefault

@03282a Symbian OS v8.0b:com.symbian.TechView from the command
line.

4. Once the default device has been set up, running epoc from the com-
mand line should launch the emulator.

1If working on this at Symbian, a full edition of this version is available on the Symbian
network
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5. Copy the MyHeap code from the CD supplied2 into a directory on the
hard disk.

A.2 Code Compilation

Once the software has been installed, it is then necessary to set the system up
to be able to use the tracing allocator (or other allocator implementations).
This also involves a number of steps:

1. Go to the directory containing the MyHeap code and edit myheap.h and
check that the line

#define symbianMalloc

is uncommented, and the other allocator selections are commented out.

2. At the command prompt in that directory, enter the following

commands to build the system:

bldmake bldfiles

abld build winscw

abld freeze winscw

abld build winscw

3. Go to the directory
src\COMMON\GENERIC\app-framework\uikon\coresrc that is located
under the Symbian DevKit installation directory (normally under C:\Symbian),
and open the file EIKDLL.CPP for editing.

4. Find the function named AppThreadStartFunction, and add the fol-
lowing code before the line if(commandLineHBuf == NULL):

const TUint KMaxFileLength=128;

const TBufC<KMaxFileLength> cached(

*STATIC_CAST(const TDesC*, aParam));

GlobalFreePtr(aParam);

// Set up a new heap here

2This is also available as a .zip file from
http://www.eco.li/writings/msccs/myheap.zip
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MyHeap* mh=MyHeap::ChunkHeap(NULL,0x1000,0x1000000);

RHeap* oldheap=User::SwitchHeap(mh);

HBufC* const commandLineHBuf=cached.AllocL();

5. After the line EikDll::RunAppInsideThread(cmdLine);, add the fol-
lowing code:

MyHeap::DumpTrace();

User::SwitchHeap(oldHeap);

6. Save the file, and open the file eikcore base.mmh in the same directory.

7. Add MYHEAP.LIB to the list of libraries (at the end of one of the lines
which starts with library, and save the file.

8. On the command line, go to the directory
src\COMMON\GENERIC\app-framework\uikon\group that is located un-
der the Symbian DevKit installation directory (normally under C:\Symbian).

9. Build the library by entering the following commands:3

bldmake bldfiles

abld build winscw

A.3 CodeWarrior use

Once the environment is set up, the MyHeap project can be imported into
CodeWarrior. This is done by selecting File | Import project from .mmp

file from within the IDE, selecting the appropriate SDK and then selecting
the appropriate .mmp file. Compilation is achieved by pressing F7 or selecting
Project | Make, and the emulator can be launched with the debugger by
pressing F5 or selecting Project | Debug.

Tracing may be turned on and off by uncommenting or commenting out
the line #define tracing in the MyHeap.h file, and the implementation of
the segregated free list allocator (see section 6.2) may be used by uncomment-
ing out the line #define segregatedFreelist and commenting out the line
#define symbianMalloc. These necessitate a recompilation of MyHeap.

3If this build is attempted from within the CodeWarrior IDE it will fail, due to a bug
in CodeWarrior not handling long path names properly; hence this step must be done at
the command line
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Note that the compiler may generate an error about ‘Exports not yet
frozen’. Unfortunately, CodeWarrior does not have the ability to freeze the
exported functions (see section 3.2), so, if this occurs, the project must be
recompiled on the command line. This is achieved with the following com-
mands:

abld reallyclean winscw

del myheapwins.def

abld build winscw

abld freeze winscw

abld build winscw

Included with the MyHeap code is a batch file called rebuild.bat which
automatically runs the above commands.



Appendix B

User Manual

Once the system has been set up (with tracing enabled) and run as described
in the System Manual, some traces should be obtained by running some of the
programs available with the emulator. This User Manual deals with the pro-
cessing of the trace files once they have been written out. Please note that the
processing is assumed to be performed on a Unix system with compilers avail-
able; if this is not the case, it is recommended to install Cygwin, a free Unix-
like environment for Windows, available from http://www.cygwin.com. The
installation of this environment is beyond the scope of this document.

The trace files themselves will be found in the emulator’s C:\traces
directory; this maps (assuming default installation paths) to the directory
C:\Symbian\03282a Symbian OS v8.0b\bin\techview\epoc32\winscw\c\traces
on the host system. Once created, these files should be moved to another
directory.

B.1 Processing the trace files

The file processtracefile.c, included with the MyHeap code, is used to pro-
cess the files. Initially, it needs to be compiled. This is done at a Unix shell
prompt with the command cc -o processtracefile processtracefile.c

which will generate an executable called processtracefile. If this is run
with no arguments, then the following output is displayed:

Wrong number of arguments.

Usage: ./processtracefile [hmo] tracefile

h: Produce human-readable output

m: Produce a dump of memory sizes

o: Produce a dump of object sizes
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With all the outputs, the size of a free-list cell, the minimum allocatable
cell size, two measures of external fragmentation used by [8] and a measure
of internal fragmentation all written to stderr, which is the Unix standard
error stream (by default this goes to the console).

When “human-readable” output is specified, the program prints out a set
of lines on stdout (the Unix standard output stream, by default this is the
console) that correspond to the traces, for example:

Op: A

Requested: 70

Really Allocated: 84

Address: 18240080

Start tick: 540625

End tick: 540625

Heap size: 3980

The address is given as a hexadecimal number; Requested, Really Allocated
and Heap size are given in bytes; Start tick and End tick are (currently) the
millisecond value of the system time.

When “memory size” output is specified, the program prints a set of lines
on stdout that look like:

84 84 70 3980

124 124 98 3980

The first column gives the total memory allocated (to give a ‘time in megabytes’);
the second column gives the total live memory used; the third column gives
the total live memory that would be used given no internal fragmentation
(i.e. only the requested size was allocated, and no more); the fourth column
gives the heap size.

This output can be redirected into a file (using a command such as
./processtracefile m tracefile > file) which can be fed into graphing soft-
ware (section B.2).

When “object size” output is specified, the program prints a set of lines
on stdout that look like:

0 46

4 1028

5 1949

The first column gives the object size in bytes, and the second column
gives the frequency of allocation. This can also be redirected into a file that
can then be fed into some graphing software.
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B.2 Producing graphs

The graphs were produced using gnuplot1, a free graphing program available
on most Unix systems. Entering gnuplot at a Unix shell prompt should
launch the program.

To plot the object size and frequency, the command that needs to be
entered is plot ’file’ using 1:2, where file is the name of the file containing
the output of object sizes. It may be necessary to use logarithmic instead of
linear scales to see the plots properly; this can be done with the command
set logscale xy.

Plotting the memory sizes is similar, but due to having multiple output
columns, a few extra commands are needed:

plot ’file’ using 1:4 with lines title ‘‘Heap size’’

replot ’file’ using 1:2 with lines title ‘‘Live memory’’

replot ’file’ using 1:3 with lines title ‘‘Total requested memory’’

The replot command tells gnuplot to add plots to an existing graph; the
with lines qualifier joins the point with lines, instead of just plotting indi-
vidual points.

B.3 Endian issues

If the processing of the trace files is attempted on a machine that does not
use an x86-type processor, such as a Sun SPARC or Apple Mac (which uses a
PowerPC processor), then the result of processing the trace files will look like
garbage. This is due to the way the different architectures store data (out-
lined in section 4.5.6), and so byte orders need to be swapped for the traces
to be usable. Included in the MyHeap code is a file called switchendian.c

which does this. Compilation (at a Unix shell prompt) is achieved with the
command cc -o switchendian switchendian.c.

Running the program requires specifying a trace file on the command line
(./switchendian tracefile). A new file is generated, tracefile.end, which
contains the byte-swapped traces. This file can then be fed into the tracefile
processor successfully.

B.4 Multiple heaps issues

Due to the applications in the Symbian OS creating multiple heaps during the
course of their execution, and the trace file processor not being able to keep

1http://www.gnuplot.info
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track of multiple heaps, another program is included with the MyHeap code,
called getheapops.c. This runs over a tracefile, picking up any operations
that are performed on the first heap that is created in an application run, and
writing them out to a new tracefile. Compilation (at a Unix shell prompt) is
achieved with the command cc -o getheapops getheapops.c.

Running the program requires specifying a trace file on the command line
(as with the switchendian program), and a new file is created with the name
of the file that was given on the command line, with .oneheap appended to
the filename.
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Results

On the following pages are all the graphs that have been obtained from
processing the trace files.



Code

The following pages contain a listing of all the code that was used in the
project. Please note that some of the code and comments in the MyHeap

code have been taken from the Symbian allocator implementation – in these
files I have indicated my own code by using a mark in the margin. The C
code (for processing the trace files) is entirely my own work.


