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Abstract—Research has shown that providing users fine-
grained information concerning their power usage in the home
fosters conservation. Several existing systems achieve this goal
by exploiting appliances’ power usage signatures identified in
labor-intensive in situ training processes. Recent work shows
that autonomous power usage monitoring can be achieved
by supplementing a household power meter with distributed
sensors that detect the working states of appliances. However,
sensors must be carefully installed for each appliance, resulting
in high installation cost. This paper presents Supero – an ad
hoc sensor system that can monitor appliance power usage
without supervised training. By exploiting multi-sensor fusion
and unsupervised machine learning algorithms, Supero can
classify the appliance events of interest and autonomously
associate the power usage with respective appliances. Our
extensive evaluation in five homes shows that Supero estimates
the energy consumption with errors less than 7.5%. Moreover,
the users can deploy Supero with considerable flexibility and
in short time.

I. INTRODUCTION

Since 1978 the percentage of residential electricity has

increased from 17% to 31% [1], while the cost of energy

has also been on the rise. Consumers have become more

interested in reducing their energy usage by appliances. If

the home owner could have a better understanding of the

energy consumption of each appliance, the waste of power

could be identified. Research [2] has shown that providing

users information concerning their fine-grained power usage

in the home fosters conservation.

Previous systems for residential power usage monitoring

can be broadly classified into two basic categories. The first

category, direct sensing, measures power usage through in-

line power meters. Examples include Kill-A-Watt [3], Watts-

Up [4], and radio-enabled ACme [5]. As these meters are

connected in between the appliance and power outlet, they

cannot be used on the appliances permanently connected to

the power lines, such as ceiling lights. The second category,

indirect sensing, is less intrusive as it infers the working

states and energy consumption of individual appliances by

detecting their power usage patterns [6], [7] or the ambient

signals they emit during operations [8]. However, the accu-

racy of these techniques can be influenced by the physical

characteristics of the electrical wiring and appliances. As

a result, many of them need in situ supervised training,

∗ The first two authors are listed in alphabetic order.

in which the information about energy consumption and

groundtruth appliance usage are collected and fed to the

system. Such a training process is often labor-intensive and

sometimes intrusive. A promising solution is to sense the

light, acoustic, and magnetic signals generated by appliances

and then correlate them with the total household power

measurement to infer per appliance energy consumption [9].

However, to achieve autonomous monitoring, this approach

would typically require sensors to be carefully installed for

each appliance, which may result in high installation cost

[10] and reduced usability for non-professional users.

In this work, we ask the question – is it possible for

a residential power usage monitoring system to use only

inexpensive sensing devices, be easy to install, and yet

be capable of working based on a small amount of easily

obtained prior information, without resorting to supervised

in situ training? Such a system must automatically detect

events of interest, autonomously associate the events with

the correct appliances, and finally infer the power usage of

each appliance. Several key challenges must be addressed

for achieving the unsupervised power usage monitoring.

First, homes are a highly dynamic and complex environ-

ment. Inexpensive sensors typically have limited sensing

capabilities, and hence likely produce false alarms or miss

important events. Second, when the sensors are installed in

an ad hoc manner, it is highly difficult to associate an event

detected by possibly multiple sensors with the appliance that

generates the event. Finally, to make the system practical,

it is desirable to minimize the amount of prior information

about the appliances that needs to be collected by users. At

the same time, the system must ensure the accurate power

usage monitoring based on the limited prior information

without any supervised post-deployment training.

This paper presents the design and implementation of Su-

pero – a System for Unsupervised PowER mOnitoring using

inexpensive wireless sensors that are ad hoc deployed in the

home. Supero utilizes a power meter to measure the real-

time total household power consumption and inexpensive

light and acoustic sensors to detect the events of appli-

ances. Supero adopts a multi-sensor fusion scheme where

the data collected by power, light, and acoustic sensors

are correlated to mitigate the impact of noise and remove

possible sensing errors. By using advanced unsupervised

clustering algorithms, Superio analyzes the signal signatures



of different appliances and identifies the events generated

by the same appliance. Moreover, Supero autonomously

associates the classified events with appliances through

an optimization framework that accounts for environment-

dependent factors like light signal propagation. Provided

with a small amount of easily obtained prior information

such as sensor-appliance distances and the rated powers of

a small subset of appliances, these unsupervised algorithms

work together to disaggregate the total household energy

consumption to individual appliances. As Supero does not

require any post-deployment in situ training, it facilitates the

deployment by non-professional users.

We implemented Supero using TelosB/Iris motes and a

wireless power meter, and evaluated Supero in five homes

with significantly different square footage and electric power

consumption. A 10-day extensive evaluation in an apartment

and a ranch house shows that Supero estimates the energy

consumption with errors less than 7.5%. Our results also

demonstrate that Supero can be easily deployed by non-

professional users in short time.

II. RELATED WORK

This section discusses representative indirect sensing ap-

proaches for appliance power usage monitoring, and identi-

fies the differences from Supero.

Early work [6], [11], [12] utilized per appliance power

operating characteristics measured at the power panel to

disaggregate the total energy consumption using pattern

recognition algorithms. To correctly identify appliances,

these approaches need either post-deployment training [6],

[12] or a comprehensive database of priori power character-

istics of appliances [6], [11]. A recent paper [13] presented

the experiences of monitoring power usage of a lab using

38 ACme meters [5] and 6 light sensors. In [14], binary

sensors were employed to help deploying power meters to

estimate energy breakdowns for major devices in a building.

These two studies exploited the tree topology of the power

supply system to reduce the number of sensors [13] and

derive estimation quality [14]. In [7], an electrical event

detection and classification approach was developed based

on the frequency patterns of the transient noises generated by

switching on/off appliances and measured by a single in-line

sensor. However, the transient signature is heavily influenced

by the physical characteristics of the electrical wiring, which

results in the need of post-deployment training. In [8], [15],

appliances were recognized based on their electromagnetic

interference [8] and acoustic signals [15]. However, both

two approaches need labor-intensive in-situ training for the

particular home they are deployed in. A typical training

process involves switching different appliances, collecting

and labeling signals. In a recent work [16], a thermal camera

is employed to detect the on/off states of the appliances in

its field of view, which are utilized to infer the per-appliance

energy consumption. Compared with tiny wireless sensors,

the thermal camera is cumbersome, hard to install, and can

raise privacy concerns in residential environment.

ViridiScope [9] is a fine-gained power usage monitoring

system that is closest to Supero. It features an autonomous

regression-based calibration framework that can calculate

the energy consumption of each appliance. A fundamental

requirement of the regression approach is that the working

states of each appliance can be accurately sensed. This was

achieved by installing dedicated sensors for each appliance

[9]. For instance, magnetic sensors were carefully attached

to the power cords of the monitored appliances, and light

sensors were positioned in close proximity to the monitored

light and must not be triggered by other lights. Such an

approach incurs high-cost sensor installations, especially for

the difficult-to-access appliances such as ceiling lights/fans.

In contrast, Supero allows ad hoc and non-dedicated sensor

deployment, which can significantly reduce installation cost

and improve usability.

III. OVERVIEW OF SUPERO

A. Design Objectives and Challenges

The main goal of Supero is to provide a fine-grained

electrical power usage report for a specified time duration

in a household. The report includes the details of the energy

consumption of a particular appliance as well as when it was

turned on and off. Supero is designed to meet the following

three objectives. First, the sensors should be deployed in an

ad hoc and non-intrusive manner. A non-professional should

be able to deploy the sensors with intuitive instructions such

as “place a light sensor with no obstruction to lights” and

“place an acoustic sensor on top of a microwave.” Second,

we aim to reduce the system configuration efforts by avoid-

ing labor-intensive training and extensive user input. Third,

Supero should be able to achieve long-term monitoring (e.g.,

a few weeks), such that the generated report is instructive

and meaningful for identifying wasteful energy usage.

Four major challenges are brought by the above design

objectives. First, due to the ad hoc deployment, a sensor may

pick up the signals emitted by multiple appliances, making

it difficult to differentiate which appliance is consuming

power. For instance, a light sensor can sense the signals

emitted by various lights and an acoustic sensor in the

kitchen can hear the sounds from exhaust fan, disposer,

microwave and etc. Second, without careful installation,

sensors typically suffer sensing errors caused by interference

from environment and human activities. For instance, light

sensors likely report false alarms when nearby window

blinds are opened during the day time and acoustic sensors

may pick up sounds unrelated to power consumption such as

human conversation. Third, without in situ system training,

more prior information is often required to bootstrap the

unsupervised learning approaches. We strive to reduce the

difficulties for non-professional in obtaining the prior infor-

mation required by Supero, while maintaining satisfactory



monitoring accuracy. Finally, to extend system lifetime,

wireless sensors must adopt lightweight sensing algorithms

and send the least amount of data, which however imposes

challenges to accurate appliance working state monitoring.

B. Motivation

To meet the aforementioned objectives, Supero utilizes a

household power meter and a small number of inexpensive

light and acoustic sensors that are deployed in an ad hoc

manner in the home. Based on an unsupervised approach, it

does not require any in situ system training, but leverages a

small amount of prior information that can be easily obtained

by non-professional users. We now discuss several important

observations that motivate our approach.

Real-time total household power metering. Nowadays, the

real-time total household power consumption can be easily

measured by installing a commercial off-the-shelf smart

meter (e.g., TED [17] and AlertMe [18]) on the main circuit

panel. These meters are inexpensive and most of them can

be easily installed without hardwiring with the power lines

[18]. Moreover, as the coverage of smart grid increases, the

real-time total household power readings are increasingly

available to the homeowners, without resorting to a personal

smart meter.

Sensing modalities. According to a survey of U.S. Depart-

ment of Energy [19], the average distribution of electricity

consumption in household is: heating 24%, lights 24%, air

conditioners (ACs) 20%, refrigerators 15%, dryers 9%, and

electronics 9%. As most heating appliances consume sub-

stantially more power than other appliances, their consump-

tion trace often can be identified from the real-time total

household power readings. Most lights, ACs, refrigerators

and dryers emit detectable light and acoustic signals. As a

result, on average, more than 90% power consumption of

a typical household can be captured by a combination of a

smart meter and a set of light and acoustic sensors.

Useful prior information. To avoid expensive in situ system

training, Supero leverages unsupervised learning techniques

and a small amount of prior knowledge including rough

sensor-appliance distances and the rated powers of a small

subset of appliances. As the light/acoustic signal decays

with the distance from the source appliance, the distances

between sensors and appliances provide important hints

for associating the detected events to the right appliances.

Moreover, although the rated power of an appliance often

has small discrepancy with the actual power consumption, it

helps identifying the consumption trace of a small number

of difficult-to-detect appliances from the household power

readings. Rated powers are often available from the labels

on the appliances or the user manuals. Moreover, there exist

a few publicly available databases (e.g., [20]), which provide

rated power based on the appliance brand and model.
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Fig. 1. Architecture of Supero.

C. System Architecture

Supero is composed of a number of wireless sensors

distributed in the home, a wireless smart meter, and a base

station receiving the information from the sensors and the

smart meter. Fig. 1 illustrates the architecture of Supero.

In this work, we only consider light and acoustic sensors

while other sensing modalities such as infrared can be easily

incorporated by Supero. Supero has a two-tier architecture as

follows. In the first tier, sensors sample signals and detect the

events that are possibly caused by turning on/off appliances.

Specifically, if a sensor detects a significant change in the

received signal, it extracts various relevant features and

sends an event message to the base station. The details of

the first tier will be presented in Section IV. The base station

provides a graphic configuration interface that allows user

to input prior information such as sensor-appliance distances

and appliances’ rated powers. When Supero is requested to

generate a power usage report for a specified time period,

the base station executes the following algorithms based on

the collected data and the prior information input by user:

Multi-modal data correlation: The base station corre-

lates sensor events and power readings to differentiate the

events generated by turning on and off appliances and

the false alarm events unrelated to power consumption.

(Section IV-D)

Unsupervised event clustering: By leveraging unsuper-

vised clustering algorithms, the events generated by an

appliance can be classified into the same cluster and the

power of the appliance can be estimated by correlating with

the measurements of the smart meter. (Section V)

Autonomous event-appliance association: Supero asso-

ciates the classified events with respective appliances based

on event features and prior information. Based on the clus-

tering and association results, Supero calculates the energy

consumption of each appliance. (Section VI)

IV. EVENT DETECTION AND DATA CORRELATION

In this section, we first describe the event detection

algorithms for sensors, and then present a multi-modal data

correlation algorithm to reduce sensing errors.

A. Light Event Detection

Light sensors detect the state changes of lights from the

changes of light readings. However, besides electrical light
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events, the change of sensor readings can also be caused by

sensor noise and natural ambient light change. We present

a light event detection algorithm that is resilient to these

dynamics. Light sensors may also pick up events unrelated to

power consumption (referred to as non-power events), such

as those caused by human movement and opening/closing

window blinds. The non-power events will be identified by

the multi-modal data correlation discussed in Section IV-D.

Light sensors sample light intensity periodically (4Hz in

our implementation) and detect light events by an exponen-

tial difference filter (EDF), which is a lightweight and yet

effective detection algorithm. By denoting x[n] as the sensor

reading at time step n, the exponential moving average,

denoted by x̄[n], is computed by x̄[n] = α ·x[n] + (1−α) ·
x̄[n − 1], where α ∈ (0, 1). By setting α = αs or α = αl

where αs > αl, we have the short-term and long-term

moving averages denoted by x̄s[n] and x̄l[n]. The changes

of x̄s[n] and x̄l[n] capture the transient light changes and

natural ambient light dynamics, respectively. Given two

positive thresholds ηL and τ , the sensor counts the number

of continuous samples satisfying |x̄s[n]− x̄l[n]| ≥ ηL and

raises a detection once the count exceeds τ . The sign of

(x̄s[n]− x̄l[n]) indicates whether the appliance is turned on

or off. Whenever the sensor raises a detection, it reports a

light event message including current reading and the two

averages. Moreover, it sets x̄l[n] = x̄s[n] to quickly adapt

the long-term average to the most recent light intensities.

The sensor maintains a Gaussian noise model based on

the recent measurements when |x̄s[n]− x̄l[n]| < ηL. The

threshold ηL is continuously updated according to the noise

model to achieve a low false alarm rate, e.g., 5%. The

settings of αs, αl and τ will be discussed in Section VIII.

Fig. 2 shows the operation of the EDF on the readings of a

photodiode when two lights are turned on/off and a person

moves around. It can be seen that the light events can be

accurately detected and the human movements do not trigger

false alarms.

B. Acoustic Event Detection

A challenge in acoustic sensing is that high sampling

rate is often required to extract acoustic features of interest.

Motivated by the observation that many appliances remain

off in most of the time, Supero adopts an adaptive sam-

pling scheme to reduce computation overhead for sensors.

Initially, the sensor samples acoustic signal at 1 kHz for 0.05

seconds (i.e., 50 samples) every 2 seconds. When the signal

energy exceeds a threshold ηA, the sensor switches to a high

sampling rate of 12.5 kHz to capture more details of the

possible event. In the fast sampling mode, the sensor samples

for 0.08 seconds (i.e., 1024 samples) every 2 seconds. A

series of software filters decompose the signal of 1024

samples into low-pass, band-pass and high-pass signals.

Signal energy and zero crossing count of the signals in

the whole band and the three subbands are computed and

transmitted to the base station. Note that zero crossing count

characterizes frequency and can be efficiently computed.

The sensor remains in the fast sampling model when the

acoustic signal energy is above ηA. We set a low threshold

ηA such that the acoustic sensors will not miss the sound

triggered by an appliance of interest. Note that different

from a light event that refers to the switching on/off of

a light, an acoustic event refers to the sound heard by

a sensor. Therefore, the sensor will continuously report

acoustic events while the sound persists. We refer to the

switching or phase change of an acoustic appliance as an

acoustic transition. Owing to intrinsic complexity of the

acoustic modality, acoustic transition detection is achieved

by advanced pattern recognition algorithms on the base

station. This is due to the fact that simple algorithms cannot

well handle the dynamic acoustic signals, while complex

pattern recognition algorithms pose significant computation

overhead on sensors. For instance, the EDF based on signal

energy can easily miss important events especially when the

sounds from non-power events (e.g., shower) and acoustic

appliances (e.g., bath fan) overlap with each other.

C. Power Event Detection

Various commercial off-the-shelf smart meters (e.g., TED

[17]) can deliver real-time power consumption readings.

As the total power consumption is critical for identifying

appliance events and estimating the power of each appliance,

the real-time power readings are transmitted to base station

for storage. The base station detects interesting power events

based on changes in power readings. As the characteristic

of power readings is similar to light readings, we also apply

the EDF to detect the rapid increases and drops in power.

The settings of the EDF will be discussed in Section VIII.

D. Multi-modal Data Correlation

Due to limited sensing capability and complex home

environment, sensors can easily raise false alarms and miss

important on/off events of appliances. For instance, a light

sensor may report events when nearby window blinds are

opened and closed, and an acoustic sensor can be trig-

gered by human conversations. To deal with these sensing

errors, we present a two-tier fusion approach to correlate

the light/power events and acoustic transitions reported by

different sensors. The first tier uses a short moving window

to correlate the events/transitions from multiple sensors of



the same modality.1 The events/transitions falling into the

same window are regarded to be generated by the same

source. This is equivalent to an OR-rule decision fusion

that can largely reduce the overall miss rate. The second

tier correlates the results of the first tier with the readings

from the smart meter to remove false alarms. Specifically,

the base station first calculates the power change of an

event/transition from the first tier. If the power change is

smaller than the minimum wattage among the monitored

appliances, the event/transition will be discarded. In Supero,

the base station timestamps all sensor event messages and

the real-time power readings using its system clock. The

window-based data correlation can fully tolerate small de-

lays of the real-time sampling and event detection algorithms

of sensors. The appliances that cannot be easily or reliably

detected by light and acoustic sensors (e.g., rice cookers)

are referred to as unattended appliances. A power event is

regarded to be caused by an unattended appliance if there is

no simultaneous light event or acoustic transition. We refer

to such power events as unattended events.

A challenge in power event detection is to deal with

the power transients and delay effect of inductive/capacitive

loads. We set a guard region centered at the time instance

of the event and adopt the averages of the power readings

before and after the guard region to calculate the power

change. Note that the length of the guard region dictates the

time granularity at which Supero can differentiate two events

happening close to each other. In our implementation, a

guard region of 6 seconds well handles power transients and

inductive/capacitive delays, and effectively identifies false

alarms.

V. UNSUPERVISED EVENT CLUSTERING

A novel feature of Supero is that it automatically classifies

the events detected by the sensors and associates them with

the right appliances, without any in situ system training.

This section presents the unsupervised event clustering al-

gorithms. We first define the following notation:

• NL and NA are the total numbers of light and acoustic

sensors. ML, MA, and MU are the total numbers of

light, acoustic, and unattended appliances. ∆k denotes

the absolute power change on the kth light/power event

or acoustic transition.

• xi denotes the feature of sensor i in an event. For light

modality, xi is the absolute change of light intensity

measured by sensor i, which can be calculated from the

current reading and the long-term average; For acoustic

modality, xi is the acoustic feature sent from sensor

i, which is composed of the signal energies and zero

crossing counts in the subbands; For unattended power

events, by letting the index of smart meter be 0, x0 =

1For acoustic modality, event refers to the start or end of a detected sound
signal. Acoustic event will be formally defined in Section V-B.
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∆k. For light and acoustic modality, the feature vector

is defined as X = [x1, x2, . . . , xN ]T, where N = NL

or NA.

A. Light Event Clustering

Due to the ad hoc deployment strategy, the signal emitted

by an appliance can be sensed by multiple sensors. More-

over, due to the spatial distribution of sensors/appliances

and environmental dynamics, the group of sensors that can

detect each appliance is different. For a particular appliance,

although the features measured by sensor i are dynamic due

to noise, their variance typically falls within a small range.

Hence, the feature vectors of the events caused by the same

appliance are clustered in the feature space. Fig. 3 shows

the feature vectors of intensity change measured by two

light sensors when three standing lights nearby were turned

on and off. We can clearly see that the feature vectors are

clustered.

The light event features will be clustered into ML clusters.

The Euclidean distance between two feature vectors can

be small when non-zero vector entries are measured by

completely different light sensors, leading to potential false

clustering result. Hence, the Euclidean distance is not a

desirable dissimilarity metric for the light modality. Supero

adopts a new dissimilarity metric that incorporates sensor

location information. Let bk,i ∈ {0, 1} denote the detection

decision made by light sensor i regarding event k, where

bk,i = 1 means that sensor i detects on/off event of

some appliance. The decision vector, denoted by Bk, is

given by Bk = [bk,1, bk,2, . . . , bk,NL
]T. The dissimilarity

between two decision vectors Bk and Bj is defined as

d(Bk, Bj) =
∑NL

i=1 bk,i ⊕ bj,i −
∑NL

i=1 bk,i · bj,i, where ⊕
represents exclusive OR,

∑NL

i=1 bk,i ⊕ bj,i is the number of

sensors that can only detect either event k or j but not both,

and
∑NL

i=1 bk,i · bj,i is the number of sensors that can detect

both event k and j. Hence, d(Bk, Bj) quantifies the net

difference between the sets of sensors observing the two

events. By denoting ‖Xk − Xj‖ as the Euclidean distance

between the feature vectors Xk and Xj in event k and j,

the new dissimilarity metric is defined as

d(Xk, Xj) =

{

‖Xk −Xj‖, d(Bk, Bj) < d0,

‖Xk −Xj‖+ δ, d(Bk, Bj) ≥ d0,
(1)
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where d0 is a threshold and δ is a large constant that

can separate the feature vectors observed by very different

subsets of sensors. The setting of d0 will be discussed in

Section VIII.

Clustering algorithms based on the Euclidean distance

(e.g., k-means) cannot be applied due to the use of the metric

defined in (1). Supero adopts the merging-based clustering

algorithm [21], which is applicable to nonlinear dissimilarity

measures, to group the feature vectors into ML clusters. Due

to space limitation, we omit the details of the clustering

algorithm. Our experience shows that, the clusters with a

small number of feature vectors often affect the accuracy of

clustering results. To improve the robustness of clustering,

we detect outliers as follows. If the size of a cluster is

smaller than a small threshold, its member feature vectors

are regarded to be outliers, which are discarded and then the

clustering algorithm is re-executed. Outliers are produced

by unidentified false alarms and rarely used appliances and

hence removing them has little impact on the accuracy of

overall energy consumption estimation. The setting of the

outlier detection threshold will be discussed in Section VIII.

B. Acoustic Event Clustering and Transition Detection

A challenge of acoustic event clustering is that many

appliances such as multi-speed fan have multiple opera-

tion phases. Unfortunately, the number of phases of many

appliances cannot be easily determined by the user. For

instance, refrigerators have different phases depending on

the brand/model and when they were made. Moreover, the

number of actually used phases of an appliance such as

multi-speed fan highly depends on the habit of the user and

hence is unpredictable. In addition, the overlaps between the

sounds from different appliances and noises (e.g., shower,

water flush) can also result in unpredictable number of

acoustic patterns. As a result, it is infeasible to assume

a known and fixed number of clusters in the collected

acoustic features. We propose the following approach based

on advanced pattern recognition algorithms to address the

above challenges.

The dimensionality of acoustic feature vector is 8NA,

which will incur heavy computation overhead in clustering

even when a few acoustic sensors are deployed. Supero first

applies principal component analysis (PCA) to reduce the

dimensionality. In our experiments, to keep 99% sample

variance, the dimensionality can be reduced from 40 to 8
when 5 acoustic sensors are deployed. Supero then estimates

the number of clusters as kopt = argmaxk
det(Sb(k))
det(Sw(k)) [21],

where Sb(k) and Sw(k) are the between-cluster and within-

cluster variance matrices when the specified cluster number

is k. For each given k, the k-means algorithm is executed

to cluster the features into k clusters and calculate Sb(k)
and Sw(k). With the clusters under kopt, Supero detects the

acoustic transitions by identifying the transitions between

clusters over time. Specifically, by dividing time into small

windows, edges between two consecutive windows having

different largest clusters are detected as acoustic transitions.

The window size is selected to minimize the product of

the number of acoustic transitions and the sum of misclas-

sification rates in all windows. The misclassification rate

in a window is the ratio of the number of events that

do not belong to the largest cluster in the window to the

total number of events in the window. The rationale of

jointly considering the number of acoustic transitions in the

minimization objective is as follows. The misclassification

rate typically decreases with the window size. Therefore,

only minimizing the sum of misclassification rates will

mostly result in an unreasonable small window size. Fig. 5

shows a case study using an acoustic sensor to identify the

number of phases of a 3-speed fan and detect the phase

changes. We can see that the number of phases can be

correctly identified as 3. Moreover, the phase changes can

be accurately detected.

C. Unattended Power Event Clustering

For the unattended power events (i.e., detected power

changes without simultaneous light/acoustic events), Supero

adopts the Euclidean distance between the power changes as

the dissimilarity metric and applies the k-means algorithm

to cluster the events into MU clusters. To simplify the

discussion, in this paper, we assume that the unattended

appliances are not multi-phase. However, by extending the

approach developed for acoustic modality, Supero can be

extended to address multi-phase unattended appliances.

VI. AUTONOMOUS APPLIANCE ASSOCIATION

The event clustering does not answer which appliance

triggers the events in a cluster. To accurately estimate the

energy consumption of different appliances, the events must

be correctly associated with the appliance that generates

them. In this section, we address this issue by exploiting

the correlation of event features, sensing models, estimated

sensor-appliance distances and other prior information.

A. Light Cluster-Appliance Association

The decay of light intensity follows the power law, which

can be exploited to associate light appliances and clusters.



However, in complex household environment, the decay of

light intensity is affected by several factors such as the

reflection of furniture and walls. We conducted extensive

measurements using light sensors to verify the decay model

in various household environments. Due to space limitation,

we only report one set of results. Fig. 4 plots the light

intensity readings of a photodiode in a 5 × 3.2m2 living

room, where the line-of-sight distance between the light bulb

and the sensor ranges from 60 cm to 3m. Both axes of Fig. 4

are in log-scale. We have two observations from the figure.

First, the linear relationship conforms to the power law.

Second, at a certain distance from the light bulb, the intensity

measured by the sensor is proportional to the power of the

light bulb. Therefore, we assume that the intensity measured

by sensor i, denoted by yi, is given by yi = β·Pj ·d−α
ij , where

Pj is the power of light appliance j, dij is the line-of-sight

distance between sensor i and light appliance j, α is the path

loss exponent of the power law, and β is a scaling factor. The

α and β can vary with deployment environment, but have

bounded ranges. The α typically ranges from 2.0 to 5.0.

The β is the ratio of sensor’s intensity at unit distance from

the light source to its power. The range of β can be easily

obtained in offline lab experiments. Based on the ranges of α

and β, Supero automatically learns the values of α and β in

a specific deployment such that the association minimizes

the discrepancy between the measurements and the decay

model. This is desirable because otherwise determining their

exact values through in situ calibration would be labor-

intensive and infeasible for non-professionals.

The association between clusters and appliances is for-

mally represented by a square matrix A = [am,j ]M×M .

If cluster m is associated with appliance j, am,j = 1;

Otherwise, am,j = 0. Let µm denote the average of the

feature vectors in cluster m. Hence, the ith component of

µm, denoted by µm,i, is the average change of light intensity

measured by sensor i when the corresponding appliance is

turned on and off. By denoting Rm as the set of sensors

that makes positive decisions in cluster m, we define the

error caused by associating cluster m with appliance j as

em,j =
∑

i∈Rm

∣

∣β · Pm · d−α
i,j − µm,i

∣

∣, where Pm is the

power of the appliance that generates the events in cluster

m. We estimate Pm as the median value of the absolute

power changes (i.e., ∆k) of the events in cluster m. For

certain α, β and association A, the total error is defined

as E(α, β,A) =
∑

∀m,∀j am,j · em,j . Based on this error

metric, we formulate the light cluster-appliance association

problem as follows:

Light Cluster-Appliance Association Problem. Find

α, β and A to minimize E(α, β,A), subject to that

∀m,
∑

∀j am,j = 1 and ∀j,∑∀m am,j = 1.

The constraint means that A is a one-to-one mapping.

To solve the above problem, we first fix α and β and

then find A to minimize E(α, β,A) under the constraint,

Algorithm 1 Acoustic Transition-Appliance Association Algo-
rithm
Input: acoustic transition set T , non-primarily monitored appliance set A
Output: acoustic transition-appliance association

1: C = ∅
2: for transition k in T do

3: find sensor i with the largest absolute change of signal energy in k

4: if sensor i is a primary sensor then

5: associate k with the corresponding primarily monitored appliance
6: else

7: C = C ∪ {k}
8: end if
9: end for

10: cluster the transitions in C using k-means algorithm based on their
absolute power changes, with |A| as the number of clusters

11: sort clusters according to their centers
12: sort appliances in A in terms of power
13: associate the sorted clusters with the appliances in A in order

which is a linear assignment problem [22]. We employ the

Hungarian algorithm [22] with a time complexity of O(M4
L)

to solve this sub-problem. Henceforth, the final solution can

be found by enumerating α and β in their possible ranges.

The association process can be further sped up by identifying

the dedicated light sensors. Cluster m is an dedicated cluster

if Rm ∩ Rn = ∅, ∀n 6= m, i.e., cluster m is monitored by

dedicated sensors. Before running the Hungarian algorithm,

each dedicated cluster m is associated with the appliance that

is closest to the sensors in Rm. The unassociated clusters

and appliances are then fed into the Hungarian algorithm.

The association algorithm requires the knowledge of

sensor-appliance distances that can be estimated by a sonic

laser tape, arm span or even rough visual estimation. The

association algorithm is robust regarding the distance es-

timation. As long as the relative order of the distances is

correct, the association results are not affected. Moreover,

the optimization framework finds α and β by jointly ac-

counting for the detected event features and sensor-appliance

distances. As a result, the ranges of α and β limit the impact

of inaccuracy of sensor-appliance distances on association

results. These observations are confirmed in Section IX.

B. Acoustic Transition-Appliance Association

For electrical lights, most power is consumed in the form

of light. Hence, the scaling factor β in the power law

does not vary substantially across different lights. Although

acoustic signal also follows the power law, in contrast to

light, it is typically a by-product in the operation of appli-

ances. As a result, the scaling factor can vary significantly

across different acoustic appliances and the association al-

gorithm developed for light modality is not well applicable

to acoustic modality.

We propose a heuristic association approach for acoustic

modality. Sensor i is defined as the primary sensor of

appliance j if the absolute change of signal energy of sensor

i is always the largest when appliance j changes its state and

must not be the largest when any other appliance changes



state. The appliance j is defined as a primarily monitored

appliance. The complement set of primarily monitored

appliances comprises non-primarily monitored appliances.

Different from dedicated sensor that can only sense one

appliance, a primary sensor can sense multiple appliances.

The primary sensors can be identified according to user’s

intuition based on the sensor and appliance locations. When

a sensor cannot be accurately classified as a primary sensor,

it can be conservatively excluded from the set of primary

sensors. The pseudo code of the acoustic event-appliance

association is in Algorithm 1. In Line 12 of the algorithm,

the non-primarily monitored appliances are sorted according

to power. Hence, the required extra prior information is

the order of non-primarily monitored appliances in terms

of power.

C. Unattended Appliance Association

As the unattended appliances are not sensed by any sensor,

more accurate prior information about them will be required.

Similar to light modality, the power of the appliance that

generates the unattended power events in cluster m, denoted

by Pm, can be estimated as the median value of the absolute

power changes of the events in cluster m. Supero associates

the clusters with appliances by matching Pm’s with the

rated powers. The association can be formulated as a linear

assignment problem, where the error of associating cluster

m with appliance j is defined as em,j = |Pm−P ∗
j | and P ∗

j is

the rated power of j. As the association is accomplished by

an optimization algorithm, it is resilient to small deviations

between the true working power and rated power. We

propose to create a virtual background appliance to represent

all the appliances that consume little but variable powers,

such as laptop computers. In the association algorithm, the

association error of the background appliance is always

zero, i.e., em,j = 0 for any cluster m. In other words,

the background appliance can be associated with any cluster

such that it will not affect the association of other unattended

appliances.

Our pilot deployments show that, for various acoustic

appliances that have complex signal patterns, the sensors

may miss important events. For instance, the sound of a

water boiler becomes detectable in a couple of seconds

after turned on. The delayed acoustic event may be falsely

removed by the data correlation due to little power change.

To address this issue, we treat such an acoustic appliance as

an unattended appliance as well and then merge the acoustic

transitions and power events. In practice, the user may not

know which acoustic appliances might be missed by sensors.

A conservative strategy is to jointly monitor most acoustic

appliances and input their rated powers. Supero is expected

to become more robust to misses if more rated powers are

provided.

0
0.5

1
1.5

2

P
o
w

er
(k

W
)

change heat level power
envelope

0
0.2
0.4
0.6
0.8

1

0 1000 2000 3000 4000 5000 6000

S
td

D
ev

(k
W

)

Time (s)

threshold

Fig. 6. Detecting stove burner. (1) Red curve: Total household power
readings when a burner is working; Blue curve: The reconstructed lower
envelope. (2) Standard deviation of power readings and threshold-based
detection results (detection window size: 100 s).

D. Energy Calculation

Supero adopts a simple approach to calculate the energy

consumed by each appliance based on the detected events

and estimated powers. For a single-phase appliance, the

energy consumption is simply the product of power and

the on time. For a multi-phase appliance, its power can be

updated according to the associated power changes. Inte-

grating the power over time yields the energy consumption.

The evaluation will show that this approach leads to satis-

factory results. Based on the association results, regression

approaches, e.g., [9], can also be integrated with Supero

to improve the robustness in the case of false alarms and

misses.

VII. DUTY-CYCLED HEATING APPLIANCES

As discussed in Section III-B, heating appliances such

as stove burner and oven are major electricity consumer

in homes. Most modern heating appliances duty-cycle to

achieve the desired heat level. For instance, the top part

of Fig. 6 shows the total household power readings when

a GE JB710ST2SS burner is working. As the cycle can

be short (e.g., several seconds), the EDF-based detector

discussed in Section IV-C will have poor performance. In

this section, we propose a new approach to detect the duty-

cycling pattern from the total power readings and calculate

the related energy consumption.

Duty-cycled appliance rapidly switches between on and

off, causing large variation in power readings. Hence, we

detect the duty-cycling pattern based on the standard devi-

ation of the windowed power readings. By denoting P and

γ ∈ (0, 1) as the power and duty cycle of the appliance,

the standard deviation of the power readings can be derived

as P
√

γ − γ2. We choose a threshold of P
√
0.05− 0.052

by conservatively assuming that the duty cycle is greater

than 5%. When P is unknown, we can choose a default

value of 1.5 kW for P because most duty-cycled heating

appliances have a rated power around 1.5 kW [20]. As a

result, the default threshold is 0.327 kW. To suppress the

false alarms caused by other high-power non-duty-cycled

appliances, we further require that the zero crossing count

of the mean-removed power readings in a window is at least

2. The bottom part of Fig. 6 shows the standard deviation



of the power readings in the top part and the detection

result. We can see that the time duration that the burner is

working can be accurately detected. For the power readings

in a window that has a positive detection, we apply the k-

means algorithm with k = 2 and then interpolate the power

readings in the cluster with smaller average to reconstruct the

lower envelope of power consumption (i.e., the background

power), as shown in the top part of Fig. 6. With the lower

envelope, it is easy to calculate the energy consumption of

the duty-cycled appliance.

In typical U.S. homes, stove burner and oven are the

major duty-cycled heating appliances and they are often

the components of the range. Supero does not differentiate

the duty-cycled heating appliances and attributes all energy

consumption to the range. To address multiple simulta-

neously working duty-cycled appliances, the number of

clusters, i.e., k, can be first determined by the technique

presented in Section V-B. The rapid duty-cycling can cause

significant errors to the EDF-based power event detection

(cf. Section IV-C) and the second tier of the multi-modal data

correlation (cf. Section IV-D). Hence, when a duty-cycled

appliance is detected, Supero disables these two components

and the power changes of the light/acoustic events in this

period are set to be missing values. Although such a design

can cause errors to other appliances, it is worthwhile to give

priority to the duty-cycled electricity vampires.

VIII. IMPLEMENTATION, CONFIGURATION, AND

DEPLOYMENT

A. System Implementation

Sensors and smart meter. The sensors are implemented

using TelosB and Iris motes [23]. TelosB only has light

sensors while Iris has both light and acoustic sensors.

According to our lab tests, the light sensors on TelosB and

Iris have satisfactory isotropic sensitivity in a considerably

large incoming angle, which can mitigate the impact of

sensor orientation on the association algorithm presented in

Section VI-A. The light sensors on TelosB and Iris have

also been calibrated such that they can be used in the same

deployment. The signal sampling and event detection algo-

rithms described in Section IV are implemented in TinyOS

2.1. To reduce computation overhead, these algorithms are

carefully implemented using integer arithmetic. All sensors

use 802.15.4 channel 11. The sensors communicate directly

with the base station. Such a single-hop topology suffices

for our deployments in three apartments and two multi-story

houses. TED5000 [17] is used to measure the total household

power consumption.

Base station. The base station is a TelosB mote connected

to a netbook computer. A daemon service on the computer

retrieves real-time power readings from the TED5000 and

stores the event messages received by the base station mote

in a database. The data correlation, clustering and association

algorithms are implemented in GNU Octave.

Groundtruth Kill-A-Watt meters. In order to evaluate the

accuracy of Supero, we build 14 power meters based on

the P3 Kill-A-Watt (KAW) Model P4400 [3] to provide

groundtruth power usage data of individual appliances. We

connect two ADC channels of a Senshoc mote to two pins on

the internal circuit board of a KAW to sample the voltage

and current signals. Senshoc is a TelosB-compatible mote

implementation with significantly reduced cost. Fig. 8(a)

shows a modified KAW. The Senshoc mote computes and

transmits the real-time power usage data to the base station

for storage. Each modified KAW is carefully calibrated to

output accurate power readings.

B. System Configuration

The parameters of algorithms in Supero are determined

by offline experiments. Note that this process does not

need to be repeated for different deployment environments.

All the deployments in our experimental evaluation use

the same parameter settings. The first group of parameters

are the coefficients of the EDF for light and power event

detection presented in Section IV. By setting αs = 0.18,

αl = 0.074 and τ = 4, light sensors are resilient to sensor

noise and normal human movement; By setting αs = 0.31,

αl = 0.08 and τ = 4, power changes as small as 50W can

always be detected. As the above settings depend on sensor

noise and reading calibration, they are sensor-specific but

environment-independent. The above settings are obtained

by extensive evaluation on raw sensor data collected in a

pilot deployment. The second group of parameters are d0
and outlier cluster size in the light event clustering presented

in Section V-A. We set d0 = 2, i.e., two feature vectors

should be classified into two distinct clusters if the number

of sensors that can only detect the first event is 2 more than

that of the second event. Moreover, we set the outlier cluster

size to be 2, i.e., we ignore the appliances that only generate

less than 2 events in a long period such as several days.

As other parameters can be either easily set (e.g., ηA for

acoustic sampling and δ in (1)) or autonomously optimized

(e.g., α and β in Section VI-A), we omit the details here.

C. System Deployment

In this section, we first discuss the sensor deployment

strategies and then summarize the user inputs to Supero. A

necessary condition for correct clustering and association is

that every appliance can be detected, which is referred to

as the coverage requirement. A conservative and intuitive

deployment strategy is to place a sensor close to each

appliance. The user manual can provide a table of detection

ranges for typical household appliances, which are measured

in offline experiments. For instance, a 60W incandescent

bulb can be reliably detected by a TelosB mote within 5m. In

addition, we also discuss an incremental deployment strategy

that can possibly reduce the number of sensors. Initially, a

sensor is deployed for each appliance that emits dim signal.



(a) Acoustic configuration (b) Rated power database

Fig. 7. Web configuration interface

The user then switches each other appliance to check if it

can be detected by any already deployed sensor by looking

at sensor’s LED, which blinks to indicate a detection. If not,

an additional sensor is deployed for the uncovered appliance.

This process repeats until the coverage requirement is met.

Finally, a few extra sensors may be deployed at random

locations in the regions (e.g., living room, dining area)

without any sensors.

We now summarize the user inputs to Supero. First,

Supero needs a list of monitored appliances, which are

categorized as lights, acoustic appliances, and unattended

appliances. Supero also needs to know whether an appliance

has multiple working states while the exact number of

working states is optional. Second, for light modality, Supero

requires roughly estimated line-of-sight distances between

sensors and lights, which can be measured by a sonic laser

tape, arm span or even visual estimation. As discussed

in Section VI-A, Supero is robust regarding the distance

estimation. Third, for acoustic modality, Supero needs to

know whether an acoustic appliance has a primary sensor.

All non-primarily monitored acoustic appliances need to be

sorted according to their powers (cf. Section VI-B). Such a

ranking is usually straightforward based on common sense.

This can also be done based on their rated powers. Finally,

Supero requires the rated powers of unattended appliances.

We note that the number of unattended appliances is small

in a typical household. Rated powers can be obtained by

reading the labels on the appliances or from a database

of rated powers. The information described above can be

easily obtained by non-professionals and input to the system

after deployment. Supero only needs to be reconfigured

occasionally, e.g., when sensors/appliances are relocated.

We have developed a web configuration interface using

JavaServer Pages served by the base station computer to

help the user input all the required information. For instance,

Fig. 7(a) shows the configuration for the acoustic sensing,

where the user can input the acoustic sensor IDs, appliance

names, and other information described in last paragraph.

In addition, we leverage TPCDB [20], which is an online

collaboratively edited database of appliance powers, to help

the user input the required rated powers. Currently, TPCDB

comprises the information of more than 500 appliances.

Fig. 7(b) shows our interface of querying TPCDB through

its web service API, where the user can find the rated power

by appliance type, manufacturer and model.

IX. EXPERIMENTAL EVALUATION

A. Deployments and Methodology

We deployed and evaluated Supero in five typical house-

hold environments. We first deployed Supero in a 40m2

single-bedroom apartment (Apartment-1) and an 150m2

three-bedroom ranch house (House-1) to evaluate the perfor-

mance of Supero. As most appliances in Apartment-1 can

be monitored by groundtruth KAW meters, the Apartment-1

deployment allows us to extensively evaluate the accuracy of

Supero. In House-1, most appliances are hardwired to power

lines and hence we cannot collect complete groundtruth

information using KAWs. The major purpose of the House-1

deployment is to evaluate the portability of Supero to larger

home environment. We further deployed Supero in other

three homes to evaluate the impact of sensor placement on

the sensing results and how easily Supero can be deployed

by non-professional volunteers.

We compare Supero with two baseline approaches. These

two baselines are based on a state-of-the-art residential

power monitoring system called ViridiScope [9]. ViridiS-

cope estimates the power of each appliance i (denoted by

pi) by the regression argmin{pi|∀i} ‖P (t)−∑

∀i pisi(t)‖ℓ1 ,

where si(t) is the state (0 or 1) of appliance i and P (t) is the

total household power at time t. In our evaluation, the first

baseline approach (referred to as Oracle) uses groundtruth

information to generate the state of each appliance and

then applies the regression in ViridiScope. The results of

Oracle allow us to evaluate the accuracy of Supero with

respect to the state-of-the-art approaches. In the second

baseline approach (referred to as Baseline), the state of each

appliance is detected by the sensor closest to the appliance

and then the regression in ViridiScope is applied. In the

implementation of ViridiScope, each appliance’s state was

obtained by dedicated sensors that were carefully installed

on the appliances [9]. The results of Baseline will help us

understand the challenges brought by the ad hoc sensor

deployment.

B. Controlled Experiment in Apartment-1

1) Experimental Settings: All electrical appliances in

Apartment-1 include 5 standing lights, fridge, water boiler,

3-speed tower fan, rice cooker, bath fan, hair dryer, 3 laptop

computers and a WiFi router. The apartment uses natural

gas range and steam-based central heating unit that do not

draw electrical power. The deployment consists of 4 TelosB

and 5 Iris motes. The Iris motes only detect acoustic events.

The laptops and router cannot be easily detected by sensors.

However, as the router’s rated power is known and it is
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Fig. 9. Results of the controlled experiment in Apartment-1. (1) The top chart shows the power readings labeled with groundtruth of events. (2) The bars
in the second chart show the detections of light sensors. Two black bars at around the 35

th minute are the false alarms (labeled “FA” in the chart) identified
by multi-modal data correlation. Clusters are differentiated by colors and the overhead numbers are the IDs of the associated light. (3) The third chart
shows the major principle component given by PCA and the acoustic transitions detected by the window-based algorithm. The acoustic transitions with the
same color are associated with the same appliance. (4) The bottom chart shows the clustered and associated power events of the unattended appliances.
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Fig. 8. (a) The power meter used to measure ground-truth power usage
of appliances. It consists of a Sensehoc mote and a KAW. (b) Apartment-1
deployment.

always on, Supero can estimate its energy consumption.

Hence, Supero can estimate the energy consumption of the

laptops as the difference between the total energy consump-

tion and the sum of estimated energies consumed by all

other appliances. A KAW is connected to each appliance to

provide groundtruth power usage, except for the bath fan that

is hardwired on the ceiling. The rice cooker (500W), water

boiler (1500W) and fridge (about 150W) are treated as

unattended appliances. The water boiler and fridge are also

monitored by acoustic sensors. However, there are numerous

miss detections due to sound delay and low sound level,

as discussed in Section VI-C. Fig. 8(b) shows the floor

plan of the apartment and the sensor positions. The sensors

are placed on the floor, nearby table, chairs and toilet. The

positions of sensors are not carefully chosen except for tower

fan, fridge and water boiler. As the tower fan and fridge

are quiet, they cannot be detected even when the sensor is

just several centimeters away. The water boiler is also quiet

for a few seconds after it is turned on. Therefore, sensors

are deployed close to these appliances. As the bathroom has

complex sound patterns, we deployed two acoustic sensors in

bathroom. Note that they are not dedicated sensors because

each of them can hear all appliances and water facilities in

the bathroom. In this section, we present the results of a

controlled experiment, in which we intentionally turned on

and off the appliances. The controlled experiment allows us

to understand the micro-scale performance of Supero.
2) Energy Estimation Accuracy: Fig. 9 shows the

groundtruth information, power readings, event detection

and clustering results for the controlled experiment. During

this experiment all two light false alarms are identified by

the multi-modal event correlation. There is no light miss

detection. Moreover, all light events are correctly clustered

and associated with lights. For acoustic modality, the non-

power sounds such as toilet flush and tap water can be

identified by the multi-modal data correlation. From the third

chart in Fig. 9, Supero fails to detect the off event of fridge

and total four events of water boiler. In the experiment, the

fridge turned itself off about 3 seconds after the tower fan

finished its transition from the first speed to the second

speed. As the window size of the window-based acoustic

event detection algorithm is larger than 3 seconds, the off



event of fridge is missed. The miss detections of water boiler

are caused by the delay of sound. However, as discussed in

Section VI-D, by jointly treating fridge and water boiler

as acoustic and unattended appliances, these misses can be

successfully recovered by the events detected from power

readings. Other detected acoustic transitions including the

phase changes of the 3-speed tower fan can be correctly

associated with the appliances. As the differences between

the powers of the tower fan in different speeds can be as

low as 6W, the phase changes of the tower fan cannot be

detected only based on power readings.

Table I shows the groundtruth measurements by KAWs

and the estimation results of various approaches. Both

Supero and Oracle can accurately estimate the power and

energy of each appliance. The relative error of energy

consumption, averaged over all appliances, is 3.6% and

3.1% for Supero and Oracle, respectively. As Light 1, 2

and 3 have no nearby sensor, Baseline uses the groundtruth

states of Light 1, 2 and 3. For other appliances, Baseline

uses the closest sensor to detect the state of an appliance.

As Baseline does not perform data correlation and event

clustering, the detections contain excessive false alarms.

For instance, as the hair dryer is very noisy, all acoustic

sensors will raise detections when the hair dryer is on, which

introduce false alarms for all other acoustic appliances.

Water boiler and bath fan suffer from the same issue as

well. As a result, Baseline yields wrong power and energy

estimates for several appliances. In fact, it is highly difficult

to deploy dedicated acoustic sensors as they can be easily

triggered by any noisy appliance in the home. Our results

show that acoustic data from multiple sensors must be

jointly processed to produce correct detections. We note that

the performance of regression can be potentially improved

if magnetic sensors are employed. When attached to the

power cord of the appliance, a magnetic sensor may detect

the working state of appliance more reliably than acoustic

sensors. However, this significantly increases the installation

cost. Especially, it is very difficult to install the magnetic

sensors for the permanently installed appliances without

exposed power cords.

3) Impact of Distance Errors: As the association algo-

rithm presented in Section VI-A requires the distances be-

tween sensors and lights, we now evaluate the robustness of

the association algorithm with respect to the distance errors.

As Light 4 and Light 5 can only be detected by dedicated

sensors (cf. Fig. 8(b) and Fig. 9), Supero autonomously

prunes their clusters to speed up the association algorithm as

discussed in Section VI-A. Hence, we only focus on Light 1,

2 and 3, which are monitored by Node 1 and 2. The distances

between the lights and nodes are within 1 to 3 meters. The

distances given to Supero are distorted as follows. First, we

proportionally increase all the distances. As the association

algorithm can find a best fit scaling factor β, the association

remains correct even if we multiply the distances by 10.
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Fig. 10. PRR and power traces in 10 days.

Second, we add a random bias to a particular distance in

each test. The result shows that if the bias is within 70%
of the true distance, the association remains correct. These

results demonstrate that Supero is robust to the errors in

the light-sensor distances. Finally, when we exclude Node 2

from the evaluation, the results remain the same as long as

the order of the distances from Node 1 to Light 1 and Light

3 is consistent with reality, i.e., Light 1 is farther from Node

1 than Light 3.

C. 10-Day Experiment in Apartment-1

To evaluate the performance of Supero in long period, we

conducted an uncontrolled experiment that lasts for 10 days

in Apartment-1 with the deployment shown in Fig. 8(b).

During the 10 days, two residents led normal life in the

apartment. In this section, we first discuss our experiences

and learned lessons, and then present the evaluation results.

1) Experiences and Learned Lessons: Router failures.

The probe of TED5000 installed on the power panel sends

real-time readings through power lines to the TED5000

gateway, which was attached on a power outlet and wired to

the WiFi router (TP-Link WR740N) to deliver readings to

the base station computer. However, the router failed twice

during the 10 days, leading to disruptions to the collection

of power readings. We had to reset the router manually to

restart the data collection. We suspect that the failures were

caused by bugs in the router. As power readings are crucial

information to Supero, various improvements can be made

in the future work. For instance, when the base station fails

to receive power readings for a while, it can raise alarm

sound to remind the user to reset the router.

Communication performance. The quality of wireless links



Table I
ENERGY BREAKDOWN IN THE 1-HOUR CONTROLLED EXPERIMENT IN APARTMENT-1.

Appliance KAW measurements Supero Oracle Baseline
Name Rated power Power Energy Power Energy Error∗ Power Energy Error∗ Power Energy Error∗

(W) (W) (kW·h) (W) (kW·h) (%) (W) (kW·h) (%) (W) (kW·h) (%)
Light 1 150 152 0.0307 154 0.0309 0.7 152 0.0305 0.7 153 0.0310 1.0
Light 2 150 148 0.0298 150 0.0300 0.7 150 0.0300 0.7 151 0.0305 2.3
Light 3 150 151 0.0300 153 0.0304 1.3 153 0.0306 2.0 152 0.0307 2.3
Light 4 50 60 0.0211 61 0.0210 0.5 60 0.0210 0.5 62 0.0219 3.8
Light 5 100 102 0.0207 103 0.0205 0.5 100 0.0200 3.4 102 0.0206 0.5

Water boiler 1500 1472-1524 0.0490 1479 0.0456 6.9 1481 0.0481 1.8 232 0.0289 41.0
Tower fan N/A 23-40 0.0031 N/A 0.0029 5.3 {23, 28, 35} 0.0028 9.7 30 0.0045 45.1

Rice cooker 500 498 0.0163 508 0.0168 3.1 507 0.0168 3.1 508 0.0163 0.0
Hair dryer N/A 442 0.0158 462 0.0150 5.1 459 0.0150 5.1 5 0.0018 88.6

Fridge N/A† 117-146 0.0784 129 0.0841 7.3 122 0.0795 1.4 119 0.0848 8.2
Bath fan N/A N/A N/A 60 0.0020 N/A 61 0.0020 N/A 55 0.0048 N/A
Router 12 12.5 0.0147 12 0.0142 3.4 13 0.0154 4.8 13 0.0154 4.8

3 Laptops N/A 37-63 0.0468 36 0.0430 8.1 31 0.4840 3.4 53 0.0472 0.9
Average error 3.6 3.1 16.5

∗Error is the relative error of energy, in percentage, with respect to the KAW measurements.
†Fridge’s rated power is not available. However, its power events can be correctly associated when a rated power of 80 W to 400 W is given to Supero.

Table II
ENERGY BREAKDOWN DURING 7 DAYS IN APARTMENT-1∗

Appliance KAW Supero Oracle Baseline
Name E P E Error P E Error P E Error

Light 1 4.14 154 4.17 0.5 152 4.11 0.9 152 4.11 0.9
Light 2 4.96 150 4.96 0.1 149 4.92 0.8 149 4.92 0.8
Light 3 6.15 155 6.24 1.4 155 6.25 1.7 155 6.25 1.7
Light 4 1.45 62 1.45 0.1 62 1.45 0.1 63 1.48 1.7
Light 5 0.39 105 0.39 0.2 105 0.39 0.7 110 0.41 5.5

Water boiler 0.48 1493 0.48 0.5 1491 0.48 1.6 0 0 100
Tower fan 0.15 30 0.21 50 26 0.17 17.9 24 0.24 66.2

Rice cooker 1.00 499 0.98 2.2 513 1.01 1.2 511 1.01 0.8
Hair dryer 0.09 467 0.07 19.2 467 0.09 0.4 3 0.02 73.2

Fridge 12.22 143 11.8 3.7 127 11.8 3.2 127 11.8 3.2
Bath fan N/A 50 0.12 N/A 57 0.17 N/A 0 0 N/A
Router 2.12 12 2.03 4.3 18 3.04 43.3 18 3.04 43.3

Average error 7.5 6.5 27.0

Table III
ENERGY BREAKDOWN IN HOUSE-1∗

Appliance Groundtruth Supero
Name P E P E Error

Entry light 32 .0079 33 .0081 2.3
Hall light 38 .0112 38 .0109 1.9

Kitchen light 24 .0059 23 .0056 5.8
Dining light 76 .0149 77 .0113 24.6
Living light 43 .0041 41 .0040 3.1

Master bed light 33 .0065 31 .0061 6.0
Master bath light 22 .0054 21 .0052 3.6
Master bath fan 47 .0069 47 .0068 2.3
Guest bed light 29 .0071 29 .0056 21.2
Guest bath light 20 .0070 20 .0070 0.6
Guest bath fan 41 .0097 40 .0097 0.0
Stove burner 1356 .4603 1379 .4675 1.6

Water dispenser N/A N/A 140 .0518 N/A
Average error 6.1

∗Power (P ) and energy (E) are in W and kW·h; Error is the relative error of energy, in percentage, with respect to the KAW measurements.

between the base station and sensors can affect the perfor-

mance of Supero. Each Supero sensor only sends a packet

when an event is detected while each KAW continuously

transmits groundtruth power usage to the base station by

the attached Senshoc mote equipped with a CC2420 radio.

Therefore, we use the data traces of KAWs to examine

the packet reception ratio (PRR). Fig. 10(a) shows the

PRR of a KAW during the 10 days. We can see that

the communication performance significantly degraded and

fluctuated between the evening of September 1 and the noon

of September 3. As the residents watched online videos

during this period, we suspect that the poor link quality was

caused by the interference from WiFi. We also examined the

traces of other KAWs. Similarly, their link quality degraded

during this outrage period. We were able to repeat this phe-

nomenon in an extra experiment using Senshoc motes and

two laptops that transferred a large file over WiFi. Although

the channel of Senshoc was set to 11, which is well separated

from channel 6 used by WiFi, the PRR of Senshoc still

significantly degraded. However, we did not observe signif-

icant degradation of PRR when experimenting with TelosB

and Iris motes. Hence, we suspect that the performance

degradation is caused by the imperfect antenna design of

Senshoc. Nevertheless, after the 10-day experiment, we have

enabled packet acknowledgment and added retransmission

mechanism to enhance the reliability of communication. Due

to the router failures and lost groundtruth information from

KAWs, we only use three data segments (“seg 1”, “seg

2” and “seg 3” shown in Fig. 10(a)). The total length of

the three segments is more than 7 days. The three data

segments are concatenated and then fed to the clustering

and association algorithms.

Power spikes. Power spike is a typical dynamics in power

lines, which can be caused by bad weather conditions and

turning on/off appliances in the tested home and even neigh-

bor homes. Power spikes may cause errors in the appliance

power estimation. In the controlled experiment, we can see a

few power spikes in the top chart of Fig. 9 when an appliance

changes state. As we apply a guard region for computing the

power change as discussed in Section IV-D, the power spikes

do not affect the results. However, in the 10-day experiment,

we observe excessive power spikes as shown in Fig. 10(b)

that can affect the calculation of power changes for the

detected events. We suspect that the power spikes observed

on September 1 were caused by the thunderstorms during

the period of experiment. A zoomed-in view of the power

trace on that day is shown in Fig. 10(c). Almost all power

spikes can be removed by a median filter with a window size

of 7 seconds. We also apply the median filter with the same

setting to the power traces collected in other experiments.

2) Evaluation Results: Table II shows the results based

on the data of 7 days. During this period, 713 false alarms

out of total 859 light events were raised by light sensors,

where 703 false alarms are identified by the multi-modal



data correlation. All the remaining false alarms are iden-

tified as outliers by the clustering algorithm presented in

Section V-A. In addition to the acoustic transitions generated

by fridge, 60 acoustic transitions were detected. We can

see from Table II that Supero can accurately estimate the

energy consumption of lights. The tower fan was turned on

and off twice in the experiment and all its transitions were

detected. However, two bath fan transitions were incorrectly

associated with the tower fan, because Node 13 (i.e., the

primary sensor for tower fan) heard loud noises in living

room at the same times. The two false associations introduce

errors to the energy estimates of tower fan and hair dryer.

From Table II, the overall performance of Supero is close

to that of Oracle. Baseline fails to estimate the energy

consumption of several appliances due to excessive false

alarms.

D. Controlled Experiment in House-1

House-1 is an one-story three-bedroom ranch house with

living space of about 150m2. Compared with Apartment-

1, it has more lights in various types (incandescent bulbs,

standard/compact fluorescent lamps) and an electrical stove

burner. Hence, the House-1 deployment evaluates whether

Supero can be ported to a different household environment.

The deployment consists of 7 TelosB and 3 Iris motes.

The Iris motes detect both light and acoustic events. From

the clustering result, there is no dedicated light sensor, i.e.,

each light sensor can detect multiple lights. As almost all

monitored appliances are hardwired to power lines, we do

not install KAW. We conducted a controlled experiment for

more than 5 hours. Groundtruth information was manually

recorded and then rectified by checking the total power

readings. In the experiment, 40 false alarms out of total 127

light events were raised by light sensors, where 38 false

alarms are identified by the multi-modal data correlation.

The left two false alarms are identified as outliers by the

clustering algorithm. Table III shows the results. In a dining

light event, a sensor monitoring the dining light missed the

event, which results in a misclassification and introduces

error to the energy estimate of dining light. From the

background cluster of unattended power events, we observe

an unknown appliance with a power of 140W was turned

on every about 10 minutes and lasted one minute. It turns

out to be a hot water dispenser on a sink. Moreover, it

is the dispenser that caused a miss detection of guest bed

light as they were once turned on/off at the same time. The

average error of Supero is 6.1%, which is consistent with

the experiments in Apartment-1.

E. Sensor Placement

As sensors are deployed in an ad hoc manner, Supero is

designed to be robust to the high variability in sensor place-

ment. We deployed Supero in three more homes (Apartment-

2, Apartment-3, House-2) to evaluate the impact of sensor

Fig. 11. Sensor placements in Apartment-2. The numbers in the squares
and circles are the sensor IDs of TelosB and Iris. If a TelosB does not face
upward, the arrow represents its facing direction.

Node 2

2nd placement

Node 5

4th placement Node 11 Node 20

Fig. 12. Sensor installation examples. Sensors were placed on the ground,
in the corner of walls, on the fan of a range, and on a table.

placement on the sensing results and provide case studies on

whether non-professionals can successfully deploy Supero in

their homes and how much time they need.

1) Impact of Sensor Placement: We deployed 6 TelosB

and 11 Iris motes in Apartment-2, which is a 80m2 two-

bedroom apartment, to evaluate the impact of sensor place-

ment on the sensing results. Sensors were only deployed

in the doorway, living room and kitchen area, as shown

in Fig. 11. As the “doorway light 1” and “doorway light

2” are in series, they are regarded as one light. As shown

in Fig. 12, sensors were placed or attached on ground,

walls, appliances and furniture using mounting tape. We

separately evaluate the impact of sensor placement on the

light and acoustic sensing algorithms. We conducted five

sensor placement trials to monitor 6 lights including in-

candescent bulbs and standard/compact fluorescent lamps.

Different colors of TelosB motes in Fig. 11 represent differ-

ent placements, which are also labeled with the initials of

the color names, i.e., ’R’, ’G’, ’B’, ’Y’ and ’BK’. The red

and green placements follow the conservative deployment

strategy discussed in Section VIII-C. The blue and yellow

placements follow the incremental strategy to reduce the

number of sensors from 6 to 4. As there is no sensor in

the living room, the black placement does not follow any



Table IV
Rm AND CLUSTERING/ASSOCIATION RESULTS

`
`
`
`
`
`
`
`

Appl.

Placement
Red Green Blue Yellow Black

Dining light {6} {6} {6} {6} {6}
Kitchen light {3} {3} {3} {3} {3}

Doorway light {5} {5} {1} {1} {1}
Living light 1 {1,2,4} {1,2,4} {5} {5,3} {3}
Living light 2 {1,2,4,6} {1,2,4,6} {5,6} {5,6} {6}

Clustering/association X X X X X

deployment strategy. All placements ensure the coverage

requirement. The distances between sensors and lights were

determined by visual estimation. We conducted a controlled

experiment to evaluate each placement. Table IV shows the

set of sensors that can detect the same light (i.e., Rm defined

in Section VI-A). The clustering and association results

of the red to yellow placements are correct. In the black

placement of 3 sensors, although all events can be detected,

they cannot be correctly clustered. For instance, although

sensor 6 can detect the near dining light (13W) and the

farther “living light 2” (150W), the changes of light intensity

from the two lights measured by sensor 6 are similar, leading

to incorrect clustering.

We then deployed 11 Iris motes as shown in Fig. 11

and then select four different subsets of them to evaluate

the impact of sensor placement. The subsets are S1 =
{All 11 Iris motes}, S2 = {10, 12, 14, 15, 16, 18, 20}, S3 =
{10, 12, 14, 19}, and S4 = {10, 14}. The acoustic appliances

covered in the experiment include exhaust fan over the range,

waste disposer in the sink, dish washer and vacuum. During

the experiment, we used the vacuum both in the dinning

area and living area. S1 and S2 use redundant sensors and

hence are conservative. S3 basically follows the incremental

deployment strategy. As there is no sensor in the living area,

S4 does not follow any deployment strategy. All subsets

ensure the coverage requirement. As the exhaust fan has

two phases (low- and high-speed), sensor 10 that is closest

to the fan is designated as the primary sensor of the fan. For

other appliances, the order (rather than the actual values)

of their power consumption is provided to Supero. The

event detection and association results for S1, S2 and S3

are correct. For S4, although all acoustic events can be

successfully detected, some of them cannot be correctly

associated. For instance, when the vacuum ran in the living

area, sensor 10 received the highest signal energy, which is

inconsistent with its designation as the primary sensor of the

exhaust fan.

From the above results, we can see that by following the

deployment strategies discussed in Section VIII-C, the user

has considerable flexibility in choosing the sensor positions.

Compared with the existing approaches that require careful

sensor installation, this feature is highly desirable to facili-

tate the large-scale deployment in practice.

2) Deployment Time: We now present two case studies

on how easily Supero can be deployed and configured by

non-professionals. We recruited two homeowner volunteers

to deploy Supero in their homes including a single-bedroom

apartment (Apartment-3) and a two-story house with base-

ment (House-2). We first introduced Supero and explained

the deployment strategies to the volunteers, which took less

than one hour. They then installed the sensors and configured

the system using the web interface without any instructions

from us. For safety reasons, they did not install TED5000.2

In Apartment-3, the volunteer deployed 5 TelosB and 3 Iris

motes to monitor all appliances including 5 lights, a fridge,

a microwave and a fan. The deployment and configuration

only took about half an hour. In House-2, the volunteer took

about one hour to survey the appliances and another hour to

install the sensors. He finally deployed 12 TelosB and 10 Iris

motes to monitor 12 lights, an exhaust fan in kitchen, a waste

disposer, a dish washer, a fridge, a microwave, and three

fans in three bathrooms. The base station on the first floor

can reliably receive the packets from the sensors distributed

on two floors and basement. After the system deployments,

we conducted controlled experiments to evaluate the de-

ployments and configurations. We generate fake total power

readings according to the groundtruth to run the algorithms.

The event detection, clustering and association results of

the controlled experiment in both deployments are correct.

These two case studies show that the non-professional users

are able to quickly deploy Supero and ensure correct sensing

results. We also find that the non-professional users tend

to adopt the conservative deployment strategy discussed in

Section VIII-C.

F. System Lifetime

This section evaluates the lifetime of the battery-powered

Supero sensors. In this experiment, we force the CPUs of

the motes to stay active even though they would operate

in low duty cycles (e.g., ≤ 5% for Iris) in Supero. The

radios are turned on only when there are packets to transmit.

The TelosB motes report their battery voltages to the base

station every minute. Fig. 13(a) plots the battery voltages

of two TelosB motes with Alkaline and Lithium batteries,

respectively, over time. The projected lifetime with Alkaline

batteries is 79 days by conservatively setting the minimum

operating voltage (MOV) to be 2.2V although it is 2.1V

in datasheet [23]. With the high-capacity Lithium batteries,

there is no observable voltage drop in one month. For the

tested Iris mote, we enforce it to always work in the fast

sampling mode. It piggybacks voltage reading to the acoustic

feature packet. Fig. 13(b) plots the battery voltage of the Iris

with Alkaline batteries. The tested Iris kept working from

the 4th to the 9th day. Regression analysis shows that the

projected lifetime is 40 days by conservatively setting the

MOV of Iris to be 2.2V, since the MOVs of the RF230

2The TED5000 probe needs to be hardwired to the electrical service wires
to get powered and connected to the gateway. We are building a battery-
powered Zigbee smart meter based on TelosB and Fluke i2000 Flex current
clamps to replace TED5000, which does not need the hardwiring.
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Fig. 13. Battery voltage traces of TelosB and Iris.

radio chip and ATmega1281 8MHz MCU on Iris are 2.1V

and 1.8V. We note that the lifetime can be further extended

by simply using Lithium batteries and duty-cycling the CPU

of motes.

X. CONCLUSION AND FUTURE WORK

This paper presents Supero – a sensor system for un-

supervised residential power usage monitoring. In Supero,

the multi-sensor fusion can effectively reduce sensing errors

in complex household environments. By using unsupervised

event clustering algorithms and a novel event-appliance as-

sociation framework, Supero can autonomously estimate the

power and energy of each monitored appliance. Extensive

evaluation in five homes shows that Supero estimates per-

appliance energy consumption with an average error of less

than 7.5%. Case studies demonstrate that the users can

successfully deploy Supero in short time.

As discussed in Section III-B, electronics like TV and

stereo consume 9% electricity in typical U.S. homes. It is

challenging to monitor the activities of many electronics as

they emit either no or complex light/acoustic signals and

often consume variable power. From the fact that a home

typically has a limited number of high-power electronics and

most of them are plugged into power outlets, a direct sensing

approach, e.g., by applying radio-enabled KAW developed in

this work, can be integrated with Supero to achieve complete

coverage of power usage monitoring.

Our evaluation does not cover all possible appliances due

to the specific settings of the tested homes. For instance, in

the apartments evaluated in this paper, the laundry machines

are shared among multiple homes and do not draw power

from the tested apartments. We also acknowledge that there

may exist a small number of appliances that have highly

complex signal characteristics and power consumption pro-

files, e.g., a modern furnace with variable speed motor. In

our future work, we will study these appliances and explore

the use of other sensing modalities such as infrared, seismic,

magnetic and imaging sensors to detect their activities.
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