
 

 

 

 

                                                                                                                                              SWRU057 

 

 
 
 

 

 

 

 

 

 

 

User Manual 
Rev. 1.4 

CC1010IDE Integrated Development Environment 
 

 
 

 

 

 

 

 

 

 



 

 

 

 

                                                                                                                                              SWRU057 

 

 

Table of contents 
 

INTRODUCTION ....................................................................................................................... 3 
DOCUMENTATION ..................................................................................................................... 4 
ABBREVIATIONS / DEFINITIONS .................................................................................................. 4 
BASIC CC1010IDE ASSOCIATIONS ........................................................................................... 6 

INSTALLING THE CC1010IDE ................................................................................................ 7 
SETTING UP A SOFTWARE PROJECT FOR THE CC1010 ................................................ 11 

CONFIGURE TARGET PROFILE.................................................................................................. 11 
CONFIGURE MEMORY AND CLOCK PROFILE............................................................................... 14 
CONFIGURE OUTPUT PROFILE.................................................................................................. 15 
CONFIGURE DEBUG PROFILE (IN-CIRCUIT DEBUGGER)............................................................... 17 

CC1010 CODE INSPECTION AND TESTING ....................................................................... 18 
DEBUGGER OPERATION .......................................................................................................... 18 
SIMULATOR OPERATION .......................................................................................................... 18 

LIBRARIES AND EXAMPLES................................................................................................ 19 
HARDWARE DEFINITION FILES (HDF) ...................................................................................... 20 
HARDWARE ABSTRACTION LIBRARY (HAL) .............................................................................. 20 
CHIPCON UTILITY LIBRARY (CUL) ........................................................................................... 20 
HAL LIBRARY REFERENCE ...................................................................................................... 21 
CUL LIBRARY REFERENCE ...................................................................................................... 39 
APPLICATION EXAMPLES ......................................................................................................... 48 
GENERIC EXAMPLES ............................................................................................................... 52 

UTILITIES................................................................................................................................ 53 
FLASH PROGRAMMER............................................................................................................. 53 
SMARTRF® STUDIO............................................................................................................... 55 

MAINTENANCE ...................................................................................................................... 56 
UPGRADES ............................................................................................................................ 56 
SUPPORT............................................................................................................................... 56 

TUTORIAL............................................................................................................................... 57 
BUILD A CC1010 SOFTWARE APPLICATION .............................................................................. 57 
WRITE APPLICATION TO THE CC1010 (WITHOUT DEBUG OPTION) .............................................. 63 
WRITE DEBUG MONITOR TO THE CC1010 ................................................................................ 64 
DEBUG THE CC1010 CODE..................................................................................................... 65 
DEBUG THE CC1010 PERIPHERALS......................................................................................... 66 

EVALUATING THE CC1010 PERFORMANCE ..................................................................... 67 
DISCLAIMER .......................................................................................................................... 70 



 
 

 

                                                              

SWRU057 Page 3 of 70

  

Introduction 
The Integrated Development Environment (IDE) supports development, debugging and 
simulation of CC1010 software applications and includes a project manager GUI, text editor, 
simulator and debugger GUIs, and a compiler/assembler/linker. The CC1010IDE is based on 
“uVision2”, a software development tool from Keil ™ Elektronik GmbH. This tool provides a 
framework for most of the CC1010IDE features and it also supports most 8051 
microcontroller platforms. 
 
The editor is primarily a tool for editing source and assembler files. However, it also provides 
syntax highlighting and other helpful functionality, such as GUI, needed for 
simulation/debugging (disassembly, register dumps, memory dumps, watch windows, 
instruction stepping, etc.). In addition, the IDE provides the interfaces towards the DLL used 
for simulation and in-circuit debugging. 
 
Since the compiler/assembler/linker is integrated in the development platform, the IDE in 
effect ‘hides’ the invocation of these tools. More specifically the compiler converts one or 
more C source files into assembly code, which, together with any handwritten assembler files 
are fed to the assembler. The assembler then produces object files (machine code and binary 
data), which in turn are fed into the linker together with any precompiled libraries. Finally, the 
linker isolates functions and variables that are actually used and produces an executable file 
in Intel HEX format that can be downloaded into the FLASH memory of a CC1010. 
 
 
 
 



 
 

 

                                                              

SWRU057 Page 4 of 70

  

Documentation 

In addition to the files related to the use and functionality of the CC1010, the CC1010IDE 
includes a set of documentation files (i.e.: CC1010DK User Manual), that provide details of 
the CC1010 platform. The CC1010IDE documentation and software files are specified in later 
chapters and distributed as follows (shaded boxes indicate location of the Chipcon files): 
 
 

C51

ASM

EXAMPLES (+)

HLP

INC (+)

MON51

CC1010DebugMon

Chipcon

UV2

Keil

BIN

DATASHTS

LIB (+)

ISD51 (+)

MON390 (+)

RtxTiny2 (+)

 
Figure 1: Software. 

 
 

Chipcon

Program Files

Documentation

Flash Programmer

SmartRF Studio  
Figure 2: Documentation 

 
 

ASM 
Hardware definitions for 8051 and other microcontrollers. 

BIN 
Keil ™ program files, i.e.: compiler, linker, etc. 
CC1010 debug extensions (DLL’s). 

EXAMPLES(+) 
CC1010 application examples + generic examples. 

HLP 
Keil ™ help documents (compiler help, syntax help, etc). 

INC(+) 
Header files for CC1010 and other supported platforms. 

ISD51(+) 
In System Debugger provided by Keil ™. 

LIB (+) 
Keil ™ library files, i.e.: RS232 adapted dialog functions. 
Chipcon libraries (HDF, HAL and CUL). 

MON390(+) 
Debug monitor for Dallas CPU. 

MON51 
Keil ™ library files for the debug monitor. 

RtxTiny2(+) 
Tiny real time operating system provided by Keil ™, including 
task scheduler, etc. 

CC1010DebugMon 
CC1010 debug monitor (target/embedded debug driver). 

DATASHTS 
CC1010 documentation, i.e.: user manuals. 

UV2 
Keil ™ uVision2 IDE program files (including device 
database). 

Documentation 
Chipcon documentation, datasheets, etc. 

Flash Programmer 
CC1010 flash programmer. 

SmartRF® Studio 
SmartRF® Studio (tool for RF performance evaluation). 

 

Abbreviations / Definitions 

 
 
CC1010IDE CC1010 Integrated Development Environment 



 
 

 

 

                                      

SWRU057 Page 5 of 70

  

CC1010EB CC1010 Evaluation Board 
CC1010DK CC1010 Development Kit 
CC1010DS CC1010 Data Sheet 
CUL Chipcon Utility Library 
DLL Dynamic-Link Library 
HAL Hardware Abstraction Library 
HDF Hardware Definition Files 
ICD In-Circuit Debugger 
IDE Integrated Development Environment 
RF Radio Frequency 
UV2 Keil ™ uVision2 
 
 



 
 

 

 

                                      

SWRU057 Page 6 of 70

  

Basic CC1010IDE associations 

In order to provide a complete development environment the CC1010IDE integrates with a 
number of other components. In addition to the application source code, it associates with 
source libraries, documentation and DLL’s, and uses the serial port and parallel port to 
download/communicate with the CC1010 embedded software: 
 

CC1010IDE Core:
GUI,

Editor,
Compiler,

Assembler,
Linker,

Debugger,
Simulator,

SmartRF Studio,
Flash programmer

Libraries:
Standard C,

HDF, HAL, CUL

Simulator DLL

Application:
RS232 modem,

Temperature sensor,
etc.

Documentation:
CC1010 DK User Manual,
CC1010 DS Data Sheet,

etc.

Serial Port Interface:
In-circuit Debugger DLL

Parallel Port Interface:
Parallel port driver,

SPI programming DLL,
Stand-alone

SPI programming utility

Embedded SW (HEX-file):
Application,

SmartRF Studio Adapter,
Serial Port Debug Monitor

 
Figure 3: Basic CC1010IDE associations. 

 
 
 



 
 

 

 

                                      

SWRU057 Page 7 of 70

  

Installing the CC1010IDE 
The CC1010IDE integrates closely with Keil ™ uVision2 IDE. Hence in order for the 
CC1010IDE modules to work Keil ™ uVision2 must be installed on the computer first, 
otherwise the CC1010IDE installation will throw the following error message: 
 

 
Figure 4: CC1010IDE installation check. 

 
 
 



 
 

 

 

                                      

SWRU057 Page 8 of 70

  

Once Keil ™ uVision2 IDE has been installed successfully the CC1010IDE installation 
program will automatically detect/recognize it on the computer and allow the user to proceed 
with the CC1010IDE installation. 
 

 
Figure 5: CC1010IDE installation start. 

 
 
 



 
 

 

 

                                      

SWRU057 Page 9 of 70

  

The CC1010IDE installation covers multiple components that can be selected based on 
individual needs. However, a default installation profile is used unless specified otherwise. To 
change the suggested profile, just browse the ‘Select Components’ dialog and select/deselect 
components as you prefer: 
 

 
Figure 6: CC1010IDE installation components. 

 
 
 



 
 

 

 

                                      

SWRU057 Page 10 of 70

  

Please note that the evaluation version of Keil ™ uVision2 accompanying the CC1010IDE 
distribution imposes certain restrictions/limitation on the compiler: 

• PK51/C51 Compiler: 

• The 8051 compiler, assembler, linker, and debugger are limited to 2 Kbytes of object 
code but source code can be any size. Programs generating more than 2 Kbytes of 
object code will not compile, assemble, or link. 

• The debugger supports 2 Kbyte files or smaller. 

• Programs begin at offset 0x0800. 

• No hardware support is available for multiple DPTR registers. 

• No support is available for user libraries or floating point arithmetic. 

• The following Code Banking Linker, Library Manager and RTX-51 Tiny Real-Time 
Operating System, which are present in the PK51 Full Version, are not included in the 
PK51/C51 Eval Version. 

• It is not possible to generate assembler source files or use in-line assembler features. 
 
For general limitations on the Keil ™ uVision2 compiler, please refer to C51 User’s Guide. 
 
 



 
 

 

 

                                      

SWRU057 Page 11 of 70

  

Setting up a software project for the CC1010 
Before the CC1010IDE can generate any target software it needs a software project with 
consistent references to the actual target platform. These references can be specified in the 
target configuration dialog. 

Configure target profile 

The initial step of target configuration is device association; right-click on ‘Target’ (CC1010) 
and choose ‘Select device for target’. Then browse the Chipcon folder and associate a device 
profile with the desired operation mode. For normal CC1010 run-time operation, just choose 
‘CC1010’. To configure the CC1010 device for debug operation, however, choose 
‘CC1010_debug’. This will dedicate specific memory ranges in the CC1010 RAM/ROM to the 
so-called debug monitor, an embedded software module that drives the debug process (i.e.: 
instruction stepping) on the CC1010 based on commands from the CC1010IDE (via RS232). 
Note that the evaluation version of Keil ™ IDE does NOT support ‘Extended Linker…’: 
 

 
Figure 7: CC1010 device profile for Keil ™ - evaluation version. 

 
 



 
 

 

 

                                      

SWRU057 Page 12 of 70

  

Remember to always choose ‘Extended Linker…’ when using the full version of Keil ™ IDE: 
 

 
Figure 8: CC1010 device profile for Keil ™ - full version. 

 
 
 



 
 

 

 

                                      

SWRU057 Page 13 of 70

  

After choosing the desired device profile, right-click on ‘Target’ (CC1010) and choose 
‘Options for Target CC1010’: 
 

 
Figure 9: Target options. 

 
 
 



 
 

 

 

                                      

SWRU057 Page 14 of 70

  

Configure memory and clock profile 

Choose the ‘Target’ tab to configure the memory and clock profile for the CC1010 target. 
Basically, the CC1010 is driven by an oscillator and it supports on-chip ROM/XRAM. For 
debug operation it is necessary to allocate some memory for the debug monitor (as a result 
the target will offer slightly less ROM/RAM space for the CC1010 application). Thus to enable 
CC1010 debugging, ensure that the options ‘Use On-Chip ROM/XRAM’ are selected. For 
consistency, please refer to following recommendation: 
 

 
Figure 10: Memory and clock profile. 

 
 
 



 
 

 

 

                                      

SWRU057 Page 15 of 70

  

Configure output profile 

The CC1010IDE “build process” generates an executable file according to the settings 
specified in the ‘Output’ tab. To support the CC1010 target the output file must be in the 
correct format. The ‘Output’ tab also offers options to run user-specified programs after the 
output file has been made. In general Chipcon recommends the following output 
configuration: 
 

 
Figure 11: Output profile. 

 
 



 
 

 

 

                                      

SWRU057 Page 16 of 70

  

In addition to the executable file the CC1010IDE can also produce a variety of list files, i.e.: to 
support inspection/debugging of the target code. In order to generate a full inspection 
reference to the target code the following listing configuration is recommended: 
 

 
Figure 12: Listing profile. 

 
 



 
 

 

 

                                      

SWRU057 Page 17 of 70

  

Configure debug profile (in-circuit debugger) 

The ‘Debug’ tab enables you to configure the CC1010 in-circuit debugger and simulator. The 
in-circuit debugger supports remote run-time control of the CC1010 software and requires 
communication between the PC and CC1010EB. To configure the CC1010 target for in-circuit 
debugging Chipcon recommends the following configuration: 
 

 
Figure 13: Debug profile. 

 
 
 



 
 

 

 

                                      

SWRU057 Page 18 of 70

  

CC1010 Code inspection and testing 
To inspect and test the target software CC1010IDE includes powerful tools for in-circuit 
debugging and limited target simulation. 

Debugger operation 

The CC1010 in-circuit debugger consists of a uVision2 plug-in DLL, that communicates with a 
hidden 8051 program through a serial cable. With a few exceptions, it is completely 
transparent for the user: 

• It is impossible to step into an interrupt (use breakpoints instead). 
• It is impossible to stop inside a high priority interrupt (use breakpoints instead). 
• The CC1010 should only be reset through the debugger. 
• Idle and sleep mode should be avoided. 
• The watchdog timer will be disabled. 
• C-code steps are done through several assembly code steps (a progress bar is 

displayed in the uVision2 status bar). Expected performance: 30-40 ASM 
steps/second. 

• The LJMP instruction at address 0 is moved to a reserved address at page 0. The 
move is hidden by the debugger plug-in. 

For text boxes in the debugger dialogs: 

• Press ‘ENTER’ to write the value to the target (CC1010). 
• Exit the text box to undo an entry: If the user activates a different dialog before 

pressing ‘ENTER’ the current values in the text box is replaced by old values 

Resources used on CC1010: 

• UART 1 
• Stack: 4 bytes 
• Xdata: 22 bytes 
• Flash: > 2k bytes 

The following procedure is required for CC1010 debugging: 

• Connect parallel cable between PC and CC1010EB. 
• Connect serial cable between PC and CC1010EB (‘SERIAL 1’). 
• On CC1010EB, make sure the SER_RST jumper is shorted and the SER_OFF 

jumper is open. 
• Make sure the right debugger plug-in/driver is selected in Keil: 

’Project->Options for Target->Debug->Use=Chipcon CC1010 In-System Debugger’ 
• Make sure the right PC serial port is selected for the debugger plug-in/driver in Keil: 

’Project->Options for Target->Debug->Settings’. 
• In the IDE choose ‘Tools->Write Debug Bootloader To CC1010 Flash’ to download 

the debug bootloader to CC1010. This prepares CC1010 for debugging. 
• In the IDE choose ‘Debug->Start/Stop Debug Session’ to start debugging. The 

debugger will then automatically download the application code to CC1010. 

Simulator operation 

Not available in this version. 
 



 
 

 

 

                                      

SWRU057 Page 19 of 70

  

Libraries and examples 
The CC1010IDE includes a variety of source files to ease and support the program 
development. Besides the standard C libraries, the source/support files are divided into 4 
main groups: Hardware Definition Files (HDF), Hardware Abstraction Library (HAL), Chipcon 
Utility Library (CUL) and finally application examples. To examine these files in detail refer to 
the Keil ™ program directory. 
 

Application Examples
(source code)

Chipcon Utility Library
(CUL)

Hardware Abstraction Library
(HAL)

Standard C
Libraries

Hardware Definition Files
(HDF)

RS232-modem,
Temperature sensor, keyboard,
Nightrider, etc.

CRC, SPP, etc.

RS232, SPI, ADC, DES (crypto), etc.

Register definitions,
interrupt vector mapping, etc.

 
Figure 14: Library stack. 

 
 

C51

ASM

EXAMPLES (+)

HLP

INC (+)

MON51

CC1010DebugMon

Chipcon

UV2

Keil

BIN

DATASHTS

LIB (+)

ISD51 (+)

MON390 (+)

RtxTiny2 (+)

 
Figure 15: Library files. 

 

Library limitations 
- Keil ™ Full version: 

CUL and HAL are provided as libraries (.lib). 
- Keil ™ Evaluation version: 

User libraries are not supported. 
Each individual HAL, CUL, files must be added 
“manually” to each software project. 

HDF overview (INC): 
- Evaluation Board macros (i.e.: LED control). 
- Register definitions (i.e.: special function registers). 
- Control register definitions/macros. 
- Interrupt macros (i.e.: vector assignments). 
- Etc. 

HAL overview (LIB): 
- RF calibration, configuration, packet transfer, etc. 
- Flash memory write. 
- Timer configuration. 
- ADC configuration. 
- Port configuration. 
- UART control/configuration. 
- DES data encryption. 
- Etc. 

CUL overview (LIB): 
- CRC checksum calculation. 
- Simple Packet Protocol (SPP). 
- Etc. 

Application examples overview (EXAMPLES): 
- Simple UART communication (echo function). 
- RS232 modem communication. 
- Etc. 



 
 
 

 

 

                                      

SWRU057 Page 20 of 70

  

Hardware Definition Files (HDF) 

The hardware definition files define register addresses, interrupt vector mapping and other 
hardware constants. They also include useful macros for the CC1010EB, and all definitions 
generally support both assembly and C language: 

Application Examples
(source code)

Chipcon Utility Library
(CUL)

Hardware Abstraction Library
(HAL)

Standard C
Libraries

Hardware Definition Files
(HDF)

"CC1010EB.h" : LED_ON, LED_OFF, etc.
"Reg1010.h"    : RFBUF, INUM_RF, etc.

 
Figure 16: Hardware Definition Files (HDF). 

Hardware Abstraction Library (HAL) 

To support quick and easy program development Chipcon provides a library of macros and 
functions that simplify hardware access on the CC1010. These are located in the Hardware 
Abstraction Library (HAL) and implement a hardware abstraction interface for the user 
program. As a result the user program can access the microcontroller peripherals, etc. via 
function/macro calls, without specific knowledge about the hardware details. 

Application Examples
(source code)

Chipcon Utility Library
(CUL)

Hardware Abstraction Library
(HAL)

Standard C
Libraries

Hardware Definition Files
(HDF)

"HAL.h" : halRFSendPacket(...), etc.

 
Figure 17: Hardware Abstraction Library (HAL). 

Chipcon Utility Library (CUL) 

Besides the HAL module the CC1010IDE also provides a library of RF communication 
building blocks located in the Chipcon Utility Library (CUL). This library offers useful support 
for typical RF applications and, eventually it will provide a full RF protocol. 

Application Examples
(source code)

Chipcon Utility Library
(CUL)

Hardware Abstraction Library
(HAL)

Standard C
Libraries

Hardware Definition Files
(HDF)

"CUL.h" : culCRC16(...), sppReceive(...), etc.

 
Figure 18: Chipcon Utility Library (CUL). 



 
 
 

 

 

                                      

SWRU057 Page 21 of 70

  

HAL library reference 

void halConfigADC(byte options, word clkFreq, byte threshold) 
 
Description: 
 

This function configures the ADC. 
An interrupt is generated in all modes (except for reset-generating mode in which a 
reset is generated instead) whenever the 8 MSB of the measured sample is greater 
or equal to the threshold value. Thus, if an interrupt for each sample is desired, the 
threshold should be set to 0 (and the ADC and GLOBAL_ADC_DES interrupts 
enabled.) After configuring the ADC it must be powered up using the 
ADC_POWER(bool) macro. It should be powered down again when not in use to 
conserve power. The correct ADC input must be selected using the 
ADC_SELECT_INPUT(input) macro and started using the ADC_RUN(bool) macro for 
continuous modes. The ADC_SAMPLE_SINGLE macro is used to initiate a sample 
acquisition in single-conversion mode, and the ADC_RUNNING macro can be used 
to determine whether the sample is complete The ADC_GET_SAMPLE_10BIT or 
ADC_GET_SAMPLE_8BIT macros return the latest sample value. 

 
Arguments: 
 

byte options 
Selects operational mode 

 
word clkFreq 

The XOSC clock frequency in kHz. 
 

byte threshold 
The threshold value for generating interrupts (and stopping in multi-conversion, 
stopping mode) or reset (in multi-conversion, reset-generating mode). 

 
Return: 
 

void 
 
 
 



 
 
 

 

 

                                      

SWRU057 Page 22 of 70

  

void halConfigRealTimeClock(byte period) 
 
Description: 

 
This function configures the realtime clock. In order for the realtime clock to function 
the 32 kHz oscillator must be connected to a 32 kHz crystal or a 32 kHz clock signal 
must be available on pin XOSC32_Q1. The 32 kHz oscillator must be started up and 
stable before the RTC is activated. The realtime clock must be started by using the 
macro RTC_RUN(TRUE). 
 

Arguments: 
 
byte period 

The desired period between interrupts in seconds. 
 

Return: 
 
void 

 
 



 
 
 

 

 

                                      

SWRU057 Page 23 of 70

  

ulong halConfigTimer01(byte options, ulong period, word clkFreq, word* modulo) 
 
Description: 
 

This function configures timer 0 or 1 (depending on the value given in option as either 
an interrupt timer (an interrupt is generated at certain intervals in time, as specified by 
period) or an interrupt pulse counter (an interrupt when period number of pulses have 
been detected on P3.4/P3.5 for timer0/timer1.) Some timer settings (with long 
timeouts) require that the user initializes timer register in the interrupt service routine 
(ISR.) This should be done by using the appropriate version of the 
ISR_TIMERx_ADJUST(m) macro with the word pointed to by modulo as an 
argument. The modulo argument takes a pointer to a word, if it is NULL, many timer 
settings will be unavailable. It is the responsibility of the programmer to make sure 
that the appropriate timer ISR has been declared (and that it begins with the 
obligatory ISR_TIMERx_ADJUST(m) macro). The timer must be started with macro 
TIMERx_RUN(TRUE). 

 
Arguments: 

 
byte options 

Options indicating which timer to configure and how. 
 
ulong period 

The desired period between interrupts in microseconds in timer mode, or the 
number of counted pulses between interrupts in counter mode. 

 
word clkFreq 

The XOSC clock frequency in kHz. 
 
word* modulo 

A pointer to a word (in xdata) which after the function has returned contains the 
value to supply to the obligatory macro invocation of ISR_TIMERx_ADJUST(m) 
at the start of the timer ISR. 

 
Return: 

 
ulong 

In timer mode, the actual period in microseconds between interrupts or zero if the 
period is impossible to achieve. In counter mode, zero if the supplied count value 
is impossible to achieve, otherwise one. 

 
 
 



 
 
 

 

 

                                      

SWRU057 Page 24 of 70

  

ulong halConfigTimer23(byte options, ulong period, word clkFreq) 
 
Description: 
 

This function configures timer 2 or 3 (depending on the value given in option as either 
an interrupt timer (an interrupt is generated at certain intervals in time, as specified by 
period) or a pulse width modulator (PWM). If period is specified as 0, then, in timer 
mode the timeout period will be set to the maximum possible, and in PWM mode the 
period will be set as long as possible. Using the PWM mode of timer 2/3 overrides the 
normal operation of ports P3.4/P3.5 and can thus not be used in conjunction with 
timer 0/1 configured as counters. The duty cycle is set to 50% (128/255) initially in 
PWM mode. The timer/PWM must be started with macro TIMERx_RUN(TRUE). 

 
Arguments: 
 

byte options 
Options indicating which timer to configure and how. 

 
ulong period 

The desired period between interrupts in microseconds. In PWM mode the duty 
cycle will be set as close to 50% as possible. This duty cycle can be changed (in 
an ISR or at any other time) by using the appropriate 
PWMx_SET_DUTY_CYCLE(...) macro. If period is 0, then the maximum period 
possible will be set. The period can also be adjusted dynamically with the 
PWMx_SET_PERIOD(...) macro. 

 
word clkFreq 

The XOSC clock frequency in kHz. 
 
Return: 

 
ulong 

The actual period in microseconds or zero if the desired period is too high. 
 

 
 



 
 
 

 

 

                                      

SWRU057 Page 25 of 70

  

bool halCopy2Flash(byte code* flashPtr, byte* src, word length, byte xdata* ramBuffer, 
word clkFreq) 

 
Description: 
 

Copies length bytes from the memory area pointed to by src (in any memory space) 
to the memory area in CODE memory space pointed to by flashPtr. A 128 byte 
temporary buffer in the XDATA memory space must be pointed to by ramBuffer. 
None of the pointers (flashPtr, src or ramBuffer) need to be page-aligned (address 
mod 128=0) as with halFlashWritePage(...), neither does length have to be a multiple 
of 128 bytes -- it can in fact be between 1 and 32768 bytes, although it goes without 
saying that it is unwise to overwrite the memory occupied by the code for this 
function. The result is undefined if the memory areas occupied by [src, src+length-1] 
and [ramBuffer, ramBuffer+127] overlap. A verification of the data written is 
performed after programming – if this verification fails for some reason (flash page is 
write locked, flash programming failure) or some of the supplied arguments are 
invalid the function returns FALSE. All interrupts are turned off while this function 
executes. 

 
Arguments: 

 
byte code* flashPtr 

Pointer to the destination of the write in code memory space. 
 
byte* src 

Pointer to the data source. 
 
word length 

The number of bytes to copy. 
 
byte xdata* ramBuffer 

A pointer to a 128 byte big buffer in XDATA memory space used to hold 
temporary data. 

 
word clkFreq 

The XOSC clock frequency in kHz. 
 
Return: 

 
bool 

TRUE if the write was successful. False if programming/verification failed or the 
supplied arguments were invalid. 

 
 
 



 
 
 

 

 

                                      

SWRU057 Page 26 of 70

  

byte* halDES(byte options, byte xdata* buffer, byte xdata* key, word length) 
 
Description: 
 

This function performs DES encryption/decryption on a block of data. The 
encryption/decryption operations are performed in place (i.e. the plaintext is 
overwritten by the ciphertext or vice versa) on suitably aligned data [ address(buffer) 
mod 8 = 0 ]. key should point to the key used for single-DES operations or keys in the 
case of triple-DES. Two modes of the DES standard are supported: 8-bit Cipher 
Feedback (CFB) and Output Feedback (OFB.) CFB is self-synchronizing (the end of 
a ciphertext can be decrypted even though the beginning is unavailable) and can be 
used to calculate error check codes. OFB is not self- synchronizing and is not 
suitable for error check code calculation, but does have the favorable property that a 
single bit error in the received ciphertext produces only a single bit error in the 
decrypted plaintext. In CFB/OFB mode an initialization vector of 8 bytes is part of the 
algorithm. This vector must be identical for the encryption and decryption process. 
The choice of initialization data does not affect the security of the encryption in any 
way, and this function thus uses the value 0. option is used to chose between these 
modes of operation, between single-DES and triple-DES, and between decryption 
and decryption. This function does not return until all data has been encrypted/ 
decrypted, since the DES hardware is so fast. The DES hardware can run at the 
same time as the 8051 and generate an interrupt when finished. If this is desired the 
hardware must be programmed directly. 

 
Arguments: 

 
byte options 

One or more of the below defined constants define the desired operational mode: 
DES_SINGLE_DES, DES_TRIPLE_DES, DES_ENCRYPT, DES_DECRYPT, 
DES_OFB_MODE, DES_CFB_MODE. 

 
byte xdata* buffer 

Pointer to the data to encrypt/decrypt in XDATA memory space. The address of 
buffer must be divisible by eight, i.e. address(buffer) mod 8 = 0. 

 
byte xdata* key 

A pointer to a key (or three keys for triple-DES) stored in XDATA memory space. 
This address must be divisible by eight, i.e. address(key) mod 8 = 0. The 56 
active bits of a DES-key are expected to be in a compressed 7-byte format, in 
which all parity bits are removed. In the case of a single key, the 56 bits of the 
key must lie on key[0] - key[6], in big-endian order. In the case of three keys 
(triple-des), the three keys must lie on key[0] - key[6], key[8] - key[14] and key[16] 
- key[22], all in big-endian order. DES_NORMAL_2_COMPACT_KEY(...) can be 
used to convert a regular DES key to the compact form. A key can be generated 
by simply using 7 random bytes. 

 
word length 

The number of bytes to perform the encryption/decryption on 
 

Return: 
 
byte* 

A pointer to the start of buffer is returned. 



 
 
 

 

 

                                      

SWRU057 Page 27 of 70

  

bool halFlashWritePage(byte code* flashPage, byte xdata* ramBuffer, word clkFreq) 
 
Description: 
 

Writes into the flash page pointed to by flashPage 128 bytes of data pointed to by 
ramBuffer. The addresses of both flashPage and ramBuffer must be an integer 
multiple of 128, i.e. adr mod 128=0. clkFreq must be the XOSC frequency in kHz and 
is used to calculate the correct erasure and programming times. If these conditions 
are not met the function does not perform any programming and returns FALSE. A 
verification of the data written is performed after programming - if this verification fails 
for some reason (flash page is write locked, or flash programming failure) the function 
also returns FALSE. All interrupts are turned off while this function executes. 

 
Arguments: 

 
byte code* flashPage 

Pointer to the destination of the write in code memory space. Address must be an 
integer multiple of 128 bytes. 

 
byte xdata* ramBuffer 

Pointer to the data source in RAM for the write in XDATA memory space. 
Address must be an integer multiple of 128 bytes. 

 
word clkFreq 

The XOSC clock frequency in kHz. 
 
Return: 

 
bool 

TRUE if the write was successful. False if programming/verification failed or 
supplied arguments were invalid. 

 
 



 
 
 

 

 

                                      

SWRU057 Page 28 of 70

  

void halRandomNumberGen(byte* rnd_data, word length) 
 
Description: 
 

This function activates the true RNG in the CC1010, waits long enough for the output 
to be truly random and then samples individual random bits with a period that 
ensures that the output is sufficiently random. This function must never be used at 
the same time as RF is in use. A total of _length_ bytes of random data is stored at 
the location pointed to by rnd_data. 

 
Arguments: 

 
byte* rnd_data. 

A pointer to a buffer to receive the random bytes. 
 
word length 

The number of random bytes to generate. 
 
Return: 

 
void 

 
 



 
 
 

 

 

                                      

SWRU057 Page 29 of 70

  

void halRFCalib(RF_RXTXPAIR_SETTINGS code* rf_settings, 
RF_RXTXPAIR_CALDATA xdata* rf_caldata) 

 
Description: 
 

Performs the necessary RF-calibration for an RX/TX channel pair with the settings 
specified by the RF_RXTXPAIR_SETTINGS data structure pointed to by rf_settings. 
The results of the calibration are stored in the RF_RXTXPAIR_CALDATA data 
structure pointed to by rf_caldata. Call this function once for each RX/TX channel pair 
that will be used by the program before they are used and whenever the supply 
voltage or temperature has changed significantly. The application Chipcon SmartRF® 
Studio should be used to generate this data structure. 

 
Arguments: 

 
RF_RXTXPAIR_SETTINGS code* rf_settings 

Pointer to a RF_RXTXPAIR_SETTINGS data structure containing the settings for 
an RX/TX channel pair (exported from SmartRF® Studio.) 

 
RF_RXTXPAIR_CALDATA xdata* rf_caldata 

A pointer to a RF_RXTXPAIR_CALDATA data structure which will be filled with 
the results from the calibration. 

 
Return: 

 
void 

 
 



 
 
 

 

 

                                      

SWRU057 Page 30 of 70

  

void halRFOverrideDataFormat(byte dataFormat) 
 
Description: 
 

Function used to override the data format (normally specified by an RX/TX-pair). If 
this function is called before halRFSetRxTxOff(...) it uses the parameter passed to 
this function instead of whatever the RX/TX-pair defines. If it is passed during an RF-
operation, i.e. after halRFSetRxTxOff(...) is called, the parameter passed is 
immediately updated in hardware. 

 
Arguments: 

 
byte dataFormat 

RF data format. To disable the override the function must be called with the 
parameter RF_NO_OVERRIDE. 

 
Return: 

 
void 

 
 
void halRFOverrideOutputPower(byte txPower) 

 
Description: 
 

Function used to override the RF TX output power (normally specified by an RX/TX-
pair). If this function is called before halRFSetRxTxOff(...) it uses the parameter 
passed to this function instead of whatever the RX/TX-pair defines. If it is passed 
during an RF-operation, i.e. after halRFSetRxTxOff(...) is called, the parameter 
passed is immediately updated in hardware. 

 
Arguments: 

 
byte txPower 

A value between 1 and 28 indicates desired power level -- 28 is highest and 1 
lowest. Some useful constants are defined below. The override is turned off by 
passing 0 or RF_NO_OVERRIDE. 

 
Return: 

 
void 

 
 



 
 
 

 

 

                                      

SWRU057 Page 31 of 70

  

void halRFOverrideBaudRate(byte baudRate) 
 
Description: 
 

Function used to override the baudrate (normally specified by an RX/TX-pair). If this 
function is called before halRFSetRxTxOff(...) it uses the parameter passed to this 
function instead of whatever the RX/TX-pair defines. If it is passed during an RF-
operation, i.e. after halRFSetRxTxOff(...) is called, the parameter passed is 
immediately updated in hardware. Note that for optimal performance, the baudrate 
can only be changed without a new calibration within the two sets (600, ..., 19200) 
and (38400, 76800). 

 
Arguments: 

 
byte dataFormat 

To disable the override the function must be called with the parameter 
RF_NO_OVERRIDE. 

 
Return: 

 
void 

 
 



 
 
 

 

 

                                      

SWRU057 Page 32 of 70

  

char halRFReadRSSI() 
 
Description: 
 

This function activates RSSI output on the AD2 pin, activates the ADC for channel 2 
reads, the RSSI output voltage and converts it to an approximation of the incoming 
signal's strength in dBm (range is appr. -110 to -50 dBm.) The value obtained is 
approximate and most valid for a signal @ 600 MHz. The accuracy should be no 
worse than +/- 10 dBm at any frequency. An RSSI filter circuit of one capacitor and 
one resistor is required to be connected to the AD2 pin externally (see datasheet for 
details). This function disrupts user ADC operation and does not restore the ADC to 
its former state. The function can be used as a carrier sense if the returned value is 
compared to some relatively low threshold. 

 
Arguments: 

 
void 
 

Return: 
 
char 

The approximate signal strength of the incoming signal in dBm. 
 

 



 
 
 

 

 

                                      

SWRU057 Page 33 of 70

  

byte halRFReceivePacket(byte timeOut, byte* packetData, byte maxLength, char* 
rssiByte, word clkFreq) 

 
Description: 
 

Used to receive a packet sent using halSendPacket on another CC1010. The current 
modem/RF configuration is used and RX is assumed to be powered up. The function 
waits for a valid syncronization byte (RF_SUITABLE_SYNC_BYTE) for up to timeOut 
ms. If timed out without receiving the sync. byte the function returns 0. If a sync. byte 
is received in time the number of bytes indicated by the packet is received (max 
maxLength bytes) and put in the buffer pointed to by packetData, after which the 
function returns the number of bytes received. THIS FUNCTION ASSUMES THAT 
TIMER3 IS AVAILABLE! 

 
Arguments: 

 
byte timeOut 

Timeout for reception of valid synchronization byte in tens of ms. A value of zero 
gives an infinite timeout. 

 
byte* packetData 

A pointer to a buffer for the received data. 
 
byte maxLength 

The maximum number of bytes to receive (max packet size 253 bytes). 
 
char* rssiByte 

If this pointer is different from NULL an RSSI measurement is performed after 
receiving the sync byte using the halReadRSSI(...) function and its return value 
stored in the byte pointed to by rssiByte. 

 
word clkFreq 

The XOSC clock frequency in kHz. 
 

Return: 
 
byte 

The actual number of bytes received or 0 if timed out / CRC error. 
 

 



 
 
 

 

 

                                      

SWRU057 Page 34 of 70

  

void halRFSendPacket(byte numPreambles, byte* packetData, byte length) 
 
Description: 
 

Used to send a packet using the current RF configuration. (It is assumed that 
halRFSetRxTxOff(...) has been called with the appropriate RX/TX pair and mode 
RF_TX.) First numPreambles preamble bytes (RF_PREAMBLE_BYTE) are 
transmitted followed by a synchronization byte (RF_SUITABLE_SYNC_BYTE), the 
length byte, the data pointed to by packetData (length bytes) and then, finally, the 
CRC-16 (CCITT) of the data. 

 
Arguments: 

 
byte numPreambles 

The number of preamble bytes (RF_PREAMBLE_BYTE) to transmit. 
 
byte* packetData 

A pointer to the actual data to transmit. 
 
byte length 

The number of bytes to transmit. (Max 253) 
 
Return: 

 
void 

 
 
void halRFSetRxTxOff(byte mode, RF_RXTXPAIR_SETTINGS code* rf_settings, 
RF_RXTXPAIR_CALDATA xdata* rf_caldata) 
 

Description: 
 

Function used to set a specific RX/TX channel pair as the current RF configuration. 
The mode parameter is used to select between activating RF in RX or TX or turning 
off RF. 

 
Arguments: 

 
byte mode 

Options given below. Turn off, turn on in RX, or on in TX. If RF_OFF is supplied 
the two pointers can be NULL. 

 
RF_RXTXPAIR_SETTINGS code* rf_settings 

Pointer to a RF_RXTXPAIR_SETTINGS data structure containing the settings for 
an RX/TX channel pair (exported from SmartRF® Studio.) 

 
RF_RXTXPAIR_CALDATA xdata* rf_caldata 

A pointer to a RF_RXTXPAIR_CALDATA data structure which will be filled with 
the results from the calibration. 

 
Return: 

 
void 

void halSpiTransferBlock(byte* inoutBuffer, word length, bool enableRead) 
 



 
 
 

 

 

                                      

SWRU057 Page 35 of 70

  

Description: 
 

Transfers length bytes of the data block pointed to by inoutBuffer over the SPI 
interface. It is assumed that the SPI interface has already been correctly configured. 
If read is TRUE the incoming data on the SPI interface will be stored in place in 
inoutBuffer, (overwriting the data that is transmitted), otherwise the received data is 
ignored. 

 
Arguments: 

 
byte* inoutBuffer 

Pointer to a block of data that is to be transmitted. If read is TRUE the received 
data will overwrite this data. 

 
word length 

The number of bytes to receive/transmit. 
 
bool enableRead 

Overwrite the data transmitted with the received data (TRUE) or ignore received 
data (FALSE). 

 
Return: 

 
void 

 
 
void halWait(byte timeOut, word clkFreq) 
 

Description: 
 

A wait functions which performs a number of iterations of a simple wait loop, so that 
at least timeOut ms goes by before the function returns. 

 
Arguments: 

 
byte timeOut 

The time to wait in ms. 
 
word clkFreq 

The XOSC clock frequency in kHz. 
 

Return: 
 
void 
 

 
 



 
 
 

 

 

                                      

SWRU057 Page 36 of 70

  

void halSetPort(byte portNum, byte dataByte) 
 
Description: 
 

Function which sets data for an entire port. 
 
Arguments: 

 
byte portNum 

Port identification. 
 
byte dataByte 

Data value to be placed on the requested port. 
 

Return: 
 
void 

 
 
void halSetPortBit(byte portNum, byte bitNum, byte dataBit) 

 
Description: 
 

Function which sets port data bitwise. 
 
Arguments: 

 
byte portNum 

Port identification. 
 
byte bitNum 

Bit identification (bit0 = lsb, bit7 = msb). 
 
byte dataBit 

Data value to be placed on requested port bit. 
 

Return: 
 
void. 
 

 
 
 



 
 
 

 

 

                                      

SWRU057 Page 37 of 70

  

void halSetPortBitDir(byte portNum, byte bitNum, byte direction) 
 
Description: 
 

Function which sets the direction (in/out) for one specific port bit. 
 
Arguments: 

 
byte portNum 

Port identification 
 
byte bitNum 

Bit identification (bit0 = lsb, bit7 = msb). 
 
byte direction 

Port direction (in = 1, out = 0). 
 
Return: 

 
void 

 
 
void halSetPortDir(byte portNum, byte direction) 

 
Description: 
 

Function which sets the direction for an entire port. 
 
Arguments: 

 
byte portNum 

Port identification. 
 
byte direction 

Port direction (in = 1, out = 0). 
 

Return: 
 
void 
 

 



 
 
 

 

 

                                      

SWRU057 Page 38 of 70

  

byte halGetPort(byte portNum) 
 
Description: 
 

Function which gets current data value on requested port. 
 
Arguments: 

 
byte portNum 

Port identification. 
 
Return: 

 
byte 

Current data value on requested port. 
 
 
byte halGetPortBit(byte portNum, byte bitNum) 

 
Description: 
 

Function which gets the current value on one specific port bit. 
 
Arguments: 

 
byte portNum 

Port identification. 
 
byte bitNum 

Bit identification (bit0 = lsb, bit7 = msb). 
 

Return: 
 
byte 

Current value on requested port bit. 
 



 
 
 

 

 

                                      

SWRU057 Page 39 of 70

  

CUL library reference 

byte culSmallCRC8(byte crcData, byte crcReg) 
 
Description: 
 

A CRC-8 (DOW) implementation optimized for small code size. The function should 
be called once for each byte in the data the CRC is to be performed on. For the 
invocation on the first byte the value CRC8_INIT should be given for crcReg. The 
value returned is the CRC-8 of the data supplied so far. This CRC-value should be 
added at the end of the data to facilitate a later CRC check. During checking the 
check should be performed on all the data AND the CRC-16 value appended to it. 
The data is intact if the value returned is 0. 

 
Arguments: 

 
byte crcData 

The data to perform the CRC-8 operation on. 
 
byte crcReg 

The current value of the CRC register. For the first byte the value CRC8_INIT 
should be supplied. For each additional byte the value returned for the last 
invocation should be supplied. 

 
Return: 

 
byte 

The updated value of the CRC8 register. This corresponds to the CRC-8 of the 
data supplied so far. During CRC checking, after working through all the data and 
the appended CRC-8 value, the value will be 0 if the data is intact. 

 
 
 



 
 
 

 

 

                                      

SWRU057 Page 40 of 70

  

word culSmallCRC16(byte crcData, word crcReg) 
 
Description: 
 

A CRC-16/CCITT implementation optimized for small code size. The function should 
be called once for each byte in the data the CRC is to be performed on. For the 
invocation on the first byte the value CRC16_INIT should be given for crcReg. The 
value returned is the CRC-16 of the data supplied so far. This CRC-value should be 
added at the end of the data to facilitate a later CRC check. During checking the 
check should be performed on all the data AND the CRC-16 value appended to it. 
The data is intact if the value returned is 0. 

 
Arguments: 

 
byte crcData 

The data to perform the CRC-16 operation on. 
 
word crcReg 

The current value of the CRC register. For the first byte the value CRC16_INIT 
should be supplied. For each additional byte the value returned for the last 
invocation should be supplied. 

 
Return: 

 
word 

The updated value of the CRC16 register. This corresponds to the CRC-16 of the 
data supplied so far. During CRC checking, after working through all the data and 
the appended CRC-16 value, the value will be 0 if the data is intact. 

 
 



 
 
 

 

 

                                      

SWRU057 Page 41 of 70

  

byte culFastCRC8(byte crcData, byte crcReg) 
 
Description: 
 

A CRC-8 (DOW) implementation optimized for fast execution. The function should be 
called once for each byte in the data the CRC is to be performed on. Before the 
invocation on the first byte the FAST_CRC8_INIT() macro should be called. This final 
CRC-value  should be added at the end of the data to facilitate a later CRC check. 
During checking the check should be performed on all the data AND the CRC-8 value 
appended to it. The data is intact if the value returned is 0. 

 
Arguments: 

 
byte crcData 

The data to perform the CRC-8 operation on. 
 
byte crcReg 

The current value of the CRC register. For each additional byte the value 
returned for the last invocation should be supplied. 

 
Return: 

 
byte 

The updated value of the CRC8 register. This corresponds to the CRC-8 of the 
data supplied so far. During CRC checking, after working through all the data and 
the appended CRC-8 value, the value will be 0 if the data is intact. 

 
 



 
 
 

 

 

                                      

SWRU057 Page 42 of 70

  

word culFastCRC16(byte crcData, word crcReg) 
 
Description: 
 

A CRC-16 (CCITT) implementation optimized for fast execution. The function should 
be called once for each byte in the data the CRC is to be performed on. Before the 
invocation on the first byte the FAST_CRC16_INIT() macro should be called. This 
final CRC-value should be added at the end of the data to facilitate a later CRC 
check. During checking the check should be performed on all the data AND the CRC-
16 value appended to it. The data is intact if the value returned is 0. 

 
Arguments: 

 
byte crcData 

The data to perform the CRC-16 operation on. 
 
word crcReg 

The current value of the CRC register. For each additional byte the value 
returned for the last invocation should be supplied. 

 
Return: 

 
word 

The updated value of the CRC16 register. This corresponds to the CRC-16 of the 
data supplied so far. During CRC checking, after working through all the data and 
the appended CRC-16 value, the value will be 0 if the data is intact. 

 
 



 
 
 

 

 

                                      

SWRU057 Page 43 of 70

  

byte sppReceive (SPP_RX_INFO xdata *pRXInfo) 
 
Description: 
 

If the transceiver is ready (in idle mode), the receive section will be powered up and 
the RF interrupt enabled. The RF ISR will then receive the packet and transmit an 
ack if requested to. When finished, the receive section will be powered down. This 
function will return immediately and the application can continue while the ISR 
receives the packet. When finished, sppStatus() will return IDLE_MODE. During the 
transmission it will return RX_MODE or RXACK_MODE. After the reception: Use 
pRXInfo->status to find out what happened: 
SPP_RX_TIMEOUT = Timeout (nothing received). 
SPP_RX_TOO_LONG =  dataLen > maxDataLen (the buffer is invalid). 
SPP_RX_FINISHED =  source, dataLen and *pDataBuffer in *pRXInfo are valid. 

 
Arguments: 

 
SPP_RX_INFO xdata *pRXInfo 

An SPP_RX_INFO struct must be prepared before the reception, including the 
following values: 
maxDataLen (Length of the data buffer, 0-255) 
DataBuffer (pointer to the reception buffer). 

 
Return: 

 
byte 

SPP_RX_STARTED if OK 
SPP_BUSY if not ready. 

 



 
 
 

 

 

                                      

SWRU057 Page 44 of 70

  

byte sppSend (SPP_TX_INFO xdata *pTXInfo) 
 
Description: 
 

If the transceiver is ready (in idle mode), the transmit section will be powered up and 
the RF interrupt enabled. The RF ISR will then transmit the packet (pTXInfo) and 
receive the ack (if requested). If requested (sppSettings.txAttempts = n), the packet 
will be re-transmitted (n-1) times, until the ack is received. When finished the transmit 
section will be powered down. This function will return immediately and the 
application can continue while the ISR transmits the packet. When finished, 
sppStatus() will return IDLE_MODE. During the transmission it will return TX_MODE 
or TXACK_MODE. After the transmission: Use pTXInfo->status to find out what 
happened: 
SPP_TX_ACK_INVALID = Something was received, but not the ack 
SPP_TX_ACK_TIMEOUT = No response 
SPP_TX_FINISHED 
sppSettings.txAckTimeout gives the ack timeout in msecs. 

 
Arguments: 

 
SPP_TX_INFO xdata *pTXInfo 

An SPP_TX_INFO struct must be prepared before the transmission, including the 
following values: 
destination (SPP_BROADCAST or 1-255) 
flags (SPP_ACK_REQ | SPP_ENCRYPTED_DATA) 
dataLen (Length of *pDataBuffer, 0-255) 
pDataBuffer (pointer to the transmission data buffer). 

 
Return: 

 
byte 

SPP_TX_STARTED if OK 
SPP_BUSY if not ready 

 
 



 
 
 

 

 

                                      

SWRU057 Page 45 of 70

  

void sppSetupRF (RF_RXTXPAIR_SETTINGS code *pRF_SETTINGS, 
RF_RXTXPAIR_CALDATA xdata *pRF_CALDATA, word clkFreq, bool calibrate) 

 
Description: 
 

Sets up SPP for transmission or reception. 
Call this function to (re)calibrate the radio, or to switch between different RF settings. 

 
Arguments: 

 
RF_RXTXPAIR_SETTINGS code* pRF_SETTINGS 

RF settings (frequencies, modem settings, etc.). 
 
RF_RXTXPAIR_CALDATA xdata* pRF_CALDATA 

RF_RXTXPAIR_CALDATA xdata* pRF_CALDATA 
 
word clkFreq 

The XOSC clock frequency in kHz. 
 
bool calibrate 

Calibrate now. *pRF_CALDATA is written to when calibrate = TRUE, and read 
from otherwise. Use FALSE if *pRF_CALDATA is valid. 

 
Return: 

 
void 

 
 



 
 
 

 

 

                                      

SWRU057 Page 46 of 70

  

void sppReset (void) 
 
Description: 
 

Stops a transmission or reception by - turning the transceiver off - entering IDLE 
mode (sppStatus()). 

 
Arguments: 

 
void. 
 

Return: 
 
void 

 
 
byte sppStatus (void) 

 
Description: 
 

Returns the status of the SPP. 
 
Arguments: 

 
void 

 
Return: 

 
byte 

SPP_IDLE_MODE =  Ready to transmit or receive 
SPP_TX_MODE = Transmitting a packet 
SPP_TXACK_MODE = Waiting for the ack 
SPP_RX_MODE = Waiting for or receiving a packet 
SPP_RXACK_MODE = Transmitting the ack. 

 
 



 
 
 

 

 

                                      

SWRU057 Page 47 of 70

  

void sppStartTimer (word clkFreq) 
 
Description: 
 

Run timer3 with a period of 10 msecs. 
 
Arguments: 

 
word clkFreq 

The XOSC clock frequency in kHz. 
 

Return: 
 
void 

 
 
void sppSetTimerCB (byte cb, void (*pF) (), word *pTicks 

 
Description: 
 

Add timer callback. 
 
Arguments: 

 
byte cb 

Callback index - use SPP_CUSTOM_0_TIMER or SPP_CUSTOM_1_TIMER 
The SPP finite state machine uses SPP_FSM_TIMER. 

 
void *pF 

Pointer to the function to call 
 
word *pTicks 

The timeout in 10s of msecs 
 
Return: 

 
void 

 
 
word sppGetTime (void) 

 
Description: 
 

Returns the value of the 10-msec counter, which is started by sppSetupRF(...). 
 
Arguments: 

 
void 

 
Return: 

 
word 

The current time in 10s of msecs. 



 
 
 

 

 

                                      

SWRU057 Page 48 of 70

  

Application examples 

The CUL, HAL and HDF enable the user to create applications based on a consistent and 
tested software platform. To boost the application development process the CC1010IDE also 
offers some useful application examples that demonstrate typical use/integration of the 
libraries. In general these examples can be downloaded from Chipcon’s web site 
(http://www.chipcon.com). Detailed documentation and explanation of the application 
examples are available under the Chipcon documentation directory: 
C:\Program Files\Chipcon. 

Application Examples
(source code)

Hardware Abstraction Library
(HAL)

Standard C
Libraries

Hardware Definition Files
(HDF)

"temp_main.c" : tbcTransmit(...), etc.

Chipcon Utility Library
(CUL)

 
Figure 19: Chipcon application examples. 

 
 

http://www.chipcon.com/


 
 
 

 

 

The example below is typical of the way the Chipcon libraries can be used in an application 
that enables terminal communication with the CC1010. This application example implements 
a simple file transfer protocol on top of HAL, and uses a UART channel to communicate with 
a terminal program on the PC. Note that parts of the source code, i.e.: dialog, have been 
removed to highlight the core functionality: 
 
 
 
 
 
 

Include libraries: HDF + HAL + Standard C 

Call HAL macro 

Call HAL macro 

RX function 

TX function 

Call standard C functions 

(Keil ™ adaptation for RS232) 

. 
Figure 20: Application example promoting typical integration of Chipcon libraries
                                      

SWRU057 Page 49 of 70

  



 
 
 

 

 

 

After building and downloading the application example, follow the test procedure below: 
 
 
 
 
 
 

Test procedure: 
1. Connect a PC to CC1010EB, using crossed 0-modem serial cable. 

2. Open terminal program (i.e.: hyperterminal) on PC. 

3. Configure serial communication on COM1/COM2: 
57.6 kbit/sec, 8 data bit, 1 stop bit, no parity, no flow control. 

4. Type ’1’ and enter name of file to be transferred [PC -> CC1010EB]. 

5. Type ’2’ to prepare CC1010EB for file transfer. 
Follow the instructions on the screen. 

6. If the file transfer succeeded then option ’3’ becomes available. 
type ’3’ to request CC1010EB to echo [CC1010EB -> PC] the file 
characters it has just received. 

7. Type ’9’ to end session. 

 
Figure 21: Application example - test procedure.
                                     

SWRU057 Page 50 of 70

  



 
 
 

 

 

Type ‘2’ to transfer file from the PC to CC1010EB: 
 
 

 
 
Type ‘3’ to t
 
 

 
 

. 
Figure 22: Application example – file transfer from PC to CC1010EB
ransfer file from CC1010EB to the PC, then verify content: 

 
Figure 23: Application example – file transfer from CC1010EB to PC.
                                      

SWRU057 Page 51 of 70

  



 
 
 

 

 

                                      

SWRU057 Page 52 of 70

  

Generic examples 

In addition to the Chipcon-specific application examples developed for the CC1010 platform 
Keil ™ provides numerous generic sample programs. To examine these examples and 
corresponding source files, refer to the directories indicated below:
 

C51

ASM

EXAMPLES

Keil

BIN

ADI 83X

ASM

BADCODE

Bank_EX1

BLINKY

Chipcon (+)

CSAMPLE

Dallas 390 (+)

DES

DHRY

FarMemory (+)

HELLO

Infineon C517

MEASURE

Philips 80C51MX (+)

SIEVE

TRAFFIC

WHETS  

Figure 24: Generic examples. 

 

ADI 83X 
Extended features of Analog Devices ADuC83X. 

ASM 
Assembly code for serial communication on 8052. 

BADCODE 
Source file with errors; useful as a debugging exercise. 

Bank_EX1 
Program execution in several code banks. 

BLINKY 
Blink LED’s on a MCBx51 evaluation board. 

Chipcon (+) 
CC1010 application examples. 

CSAMPLE 
Calculator (+/-) and serial communication. 

Dallas 390 (+) 
Contiguous addressing mode for Dallas 390 CPU. 

DES 
8051 Data Encryption. 

DHRY 
8051 code efficiency test with dhrystone benchmark. 

FarMemory (+) 
Far memory addressing, i.e.: EEPROM access. 

HELLO 
“Hello World” for 8051 using serial communication. 

Infineon C517 
Simulate Hewlett Packard calculator with C517. 

MEASURE 
Simulate data logger with C515. 

Philips 80C51MX 
Code banking for 80C51MX expanded memory. 

SIEVE 
Prime number calculation for performance testing. 

TRAFFIC 
Trafficlight control using RTX51 Tiny OS/Scheduler. 

Triscend Code Banking 
Triscend code banking. 

WHETS 
Floatingpoint test using Whetstone benchmark. 



 
 
 

 

 

 

Utilities 

Flash Programmer 

The Flash programmer basically implements a fast synchronous serial link between the PC 
parallel port and the CC1010EB. It generally supports the complete SPI protocol required for 
correct CC1010 programming and offers the following main programming options: 

Action to perform: 

Specifies basic flash memory operations, such as read/write, test and content/file 
processing/comparison. 

Memory lock options: 

Specifies read/write protection of specific target memory areas/ranges. 

Device clock frequency: 

Specifies the target clock frequency, this must be consistent with the actual target. 
 

. 
Figure 25: CC1010IDE utility – Flash programmer
                                     

SWRU057 Page 53 of 70

  

Chipcon

Program Files

Documentation

Flash Programmer

SmartRF Studio



 
 
 

 

 

                                      

SWRU057 Page 54 of 70

  

All though the flash programmer normally expects user dialog through the graphical interface, 
it still maintains full command line support. Execute the following command line to display all 
flash programming options: 
‘C:\Program Files\Chipcon\Flash Programmer\ccprog.exe –h’. 

 
Figure 26: CC1010IDE utility - Flash programmer help. 

Example usage: 

1. ccprog.exe –p -l LPT1 –c 14.7456 c:\chipcon\cc1010\test1.hex 
 
This command line instructs the flash programmer to write the specified hex file into 
CC1010 flash memory and then immediately verify the flash memory content against 
the original hex file. It acquires the parallel port, LPT1, to communicate with CC1010 
and sets the clock frequency to 14.7456 MHz. 
 

2. ccprog.exe –r c:\chipcon\cc1010\test1verify.hex 
 
This command line instructs the flash programmer to read the content of the flash 
memory and then store it in the specified hex-file. In this case the flash programmer 
acquires LPT1 and sets the clock frequency to 14.7456 MHz by default. 



 
 
 

 

 

 

SmartRF® Studio 

To diagnose the CC1010 RF transceiver after the debug option has been removed Chipcon 
recommends using ‘SmartRF® Studio’. This tool implements a serial communication protocol 
with the CC1010EB through the PC parallel port. To support SmartRF® Studio 
communication it is necessary to install/download a so-called “SmartRF® Studio adapter” on 
the CC1010EB. This enables the user to diagnose, configure and test the CC1010 RF 
transceiver from the PC. It will also be possible to export a complete set of RF parameter 
settings from SmartRF® Studio into the application source code, without tedious retyping. 
See the SmartRF® Studio user manual for more information on this program: 
 
 
 

 

 
Figure 27: CC1010IDE utility – SmartRF® Studio.
                                     

SWRU057 Page 55 of 70

  

Chipcon

Program Files

Documentation

Flash Programmer

SmartRF Studio



 
 
 

 

 

                                      

SWRU057 Page 56 of 70

  

Maintenance 

Upgrades 

Each CC1010IDE release includes multiple stand-alone submodules with individual revisions. 
Chipcon guarantees consistent CC1010IDE performance based on integration testing prior to 
a new release. To maintain and ensure CC1010IDE integrity, separate module 
upgrades/updates should not be installed without prior Chipcon recommendation. In general 
Chipcon will notify the user whenever a new CC1010IDE upgrade is available. Depending on 
what CC1010IDE module(s) are affected, the user will be able to receive a patch or complete 
upgrade. However, in case of intermediate Keil ™ upgrades/updates, the user will have to 
refer to technical support at Chipcon in order to verify consistency with the CC1010IDE. 
 
CC1010IDE main modules: 
 

- Keil ™ uVision2 (IDE). 
 

- Flash programmer. 
 

- SmartRF® Studio. 
 

- Debug extensions (DLL plug-in’s for in-circuit debugger, etc.). 
 

- Libraries (i.e.: HDF, HAL, CUL). 

Support 

In order to get upgrades or technical support for CC1010, please access the following links: 
 

- http://www.Keil.com/product/softmaint.htm 
 

- http://www.chipcon.com 
 

http://www.keil.com/product/softmaint.htm
http://www.chipcon.com/


 
 
 

 

 

                                      

SWRU057 Page 57 of 70

  

Tutorial 
To quickly and safely create a CC1010 application Chipcon recommends that the user begins 
by creating a software project. This will serve as a reference for the IDE when processing the 
different source files for the CC1010 target. 

Build a CC1010 software application 

Create a new software project: 

From the ‘Project’ menu, choose ‘New Project’. 
Then create/select project folder + name: 
 

 
Figure 28: Tutorial - create new software project. 

 
 



 
 
 

 

 

                                      

SWRU057 Page 58 of 70

  

Select target device (i.e.: with debug mode): 

 
Figure 29: Tutorial - select target device 

 



 
 
 

 

 

                                      

SWRU057 Page 59 of 70

  

Select target profile for debug mode (refer to chapter 3 for the remaining configuration tab’s): 

 
Figure 30: Tutorial – configure target profile. 

 
 



 
 
 

 

 

 

Create source file(s): 

After creating a software project the next step in making a CC1010 application is to create 
one or more source files. Together with referenced library file(s) the source file will provide 
the actual functionality of the target application. 
 
From the ‘File’ menu, choose ‘New’. Then edit and save file: 
 
 

 
 

. 
Figure 31: Tutorial – create source file
                                     

SWRU057 Page 60 of 70

  



 
 
 

 

 

                                      

SWRU057 Page 61 of 70

  

Add source file(s) to the software project: 

Once the source file(s) are created the IDE needs a reference to these files so that it can 
process (compile, assemble, link, etc.) the file(s). 
 
Right-click on ‘Source Group 1’ and choose ‘Add Files to Group Source Group 1’. 
Then locate the file(s) and choose ‘add’: 
 

 
Figure 32: Tutorial – add source file to software project. 

 
 



 
 
 

 

 

                                      

SWRU057 Page 62 of 70

  

Build executable code for the CC1010: 

The final step in creating a CC1010 application is the build process. Based on the original 
source files this will produce an executable file for the CC1010 target. 
 
Right-click on ‘Source Group 1’ and choose ‘Rebuild target’: 
 

 
Figure 33: Tutorial – build application for CC1010. 

 
 



 
 
 

 

 

                                      

SWRU057 Page 63 of 70

  

Write application to the CC1010 (without debug option) 

After the application is built it is ready for the target (CC1010 FLASH). To write the application 
to the CC1010 target, choose ‘Tools’ menu and then click on ‘Write current Hexfile to CC1010 
Flash’. Alternatively, run the flash programming as stand-alone from ‘C:\Program 
Files\Chipcon\Flash Programmer\ccprog.exe’. Verify port and device clock frequency and 
then choose ‘Do it’ to execute the write process. The CC1010 application will now execute as 
soon as the CC1010 target (i.e.: Evaluation Board) is reset: 
 

 
Figure 34: Tutorial – write application to CC1010 (without debug mode). 

 
 



 
 
 

 

 

                                      

SWRU057 Page 64 of 70

  

Write debug monitor to the CC1010 

The CC1010EB supports debugging based on a so-called debug monitor. This embedded 
software module monitors and schedules debug commands that arrive from the user (PC) on 
the asynchronous serial link. CC1010EB debugging is enabled by downloading the debug 
monitor to the CC1010EB. The CC1010 application will be downloaded to the CC1010 when 
the debug process is initiated. From the ‘Tools’ menu, choose ‘Write Debug Bootloader To 
CC1010 Flash’: 
 

 
Figure 35: Tutorial - write debug monitor to CC1010. 

 



 
 
 

 

 

                                      

SWRU057 Page 65 of 70

  

Debug the CC1010 code 

From the ‘Debug’ menu, choose ‘Start/Stop Debug Session’. This initiates a process that 
downloads the application to the CC1010. Inspect the embedded CC1010 code using 
common debug commands, such as step, breakpoint, etc.: 
 

 
Figure 36: Tutorial – debug the CC1010 code. 

 



 
 
 

 

 

                                      

SWRU057 Page 66 of 70

  

Debug the CC1010 peripherals 

From the peripherals menu it is possible to access the CC1010’s peripheral hardware 
directly. One of the peripheral dialogs, ‘A/D Converter’, enables the user to access the 
CC1010 A/D converter directly from the PC. Browse this dialog to set up the A/D converter 
and then click ‘Refresh’ to read the current value on the selected analogue channel. Similar 
debugging actions can be carried out on other CC1010 peripherals. To activate a parameter-
change in the peripherals dialog, make sure to press enter after each entry. For more details 
on direct debugging of the CC1010 peripherals, please study the peripherals menu: 
 

 
Figure 37: Tutorial – debug the CC1010 peripherals. 

 
 



 
 
 

 

 

                                      

SWRU057 Page 67 of 70

  

Evaluating the CC1010 performance 
To evaluate the CC1010 performance Chipcon offers a CC1010EB which integrates a 
number of components to facilitate thorough testing of the CC1010. See the CC1010DK User 
Manual for details regarding setup and operation. 
 
Basic setup procedure: 

1. Connect CC1010EB to power supply. 
2. Connect parallel cable between parallel port on the PC and CC1010EB. 
3. Connect serial cable between serial port on the PC and CC1010EB. 
4. Use the CC1010IDE to build an executable program for the CC1010. 
5. Use the Chipcon Flash programmer to download the program on the 

CC1010. 
 
 



 
 
 

 

 

                                      

SWRU057 Page 68

Evaluation Module: 

The Evaluation Module contains the CC1010 chip, the needed external circuitry for operation, 
pull-up resistors for all general I/O pins, test points and a temperature sensor. Not all 
components are needed in an actual application. Please see the datasheet for a typical 
application circuit. The Evaluation Module is produced in two versions; the difference 
between them is the frequency band of operation. One version is optimized for use at 433 
MHz, the other for use at 868 MHz and at 915 MHz. This covers the most used frequency 
bands, the 433 MHz band in Europe and the US, the 868 MHz band in Europe, and the 902-
928 MHz band in the US. See application note AN001 for more information about applicable 
regulations. The operating frequency band is marked on the PCB. 
 
 
 

 
Figure 38: CC1010EM Evaluation Module 

 
 

 

r 

s 

 

CC1010 
Antenna 
connector
 
Temperature
sensor 
Trimmer 
capacito
Power 
connection
32.768 kHz
crystal 
High-frequency 
crystal 
 of 70

  



 
 
 

 

 

                                      

SWRU057 Page 69 of 70

  

Evaluation Board: 

The Evaluation Board is used as a motherboard for the Evaluation Modules, providing 
external circuitry for easy prototyping and connectors for easy connection to external 
equipment. 
 
 
 
 

 

Figure 39: CC1010EB Evaluation Board (with CC1010EM plugged in) 
 
 
 

Parallel port 

Serial port 0 

Serial port 1 

Power 
terminal 
block 

DC jack 
power input 

SMA 
connectors 

Potmeter

Buttons

LEDs 

Analog I/O 
connector 

Digital I/O B 
connector 

Digital I/O A 
connector 

SPI I/O 
connector 

Jumpers 

Power 
selection 
switch 



 
 
 

 

 

                                      

SWRU057 Page 70 of 70

  

Disclaimer 
Chipcon AS believes the furnished information is correct and accurate at the time of this printing. However, Chipcon 
AS reserves the right to make changes to this product without notice. Chipcon AS does not assume any responsibility 
for the use of the described product. Please refer to Chipcon’s web site for the latest update. 
SmartRF® is a registered trademark of Chipcon AS. SmartRF® is Chipcon's RF technology platform with RF library 
cells, modules and design expertise. Based on SmartRF® Chipcon develops standard component RF-circuits as well 
as full custom ASICs based on customers' requirements. 

All other trademarks and registered trademarks are the sole property of their respective owners. 
 
 


	Introduction
	Documentation
	Abbreviations / Definitions
	Basic CC1010IDE associations

	Installing the CC1010IDE
	Setting up a software project for the CC1010
	Configure target profile
	Configure memory and clock profile
	Configure output profile
	Configure debug profile (in-circuit debugger)

	CC1010 Code inspection and testing
	Debugger operation
	Simulator operation

	Libraries and examples
	Hardware Definition Files (HDF)
	Hardware Abstraction Library (HAL)
	Chipcon Utility Library (CUL)
	HAL library reference
	CUL library reference
	Application examples
	Generic examples

	Utilities
	Flash Programmer
	SmartRF® Studio

	Maintenance
	Upgrades
	Support

	Tutorial
	Build a CC1010 software application
	Write application to the CC1010 (without debug option)
	Write debug monitor to the CC1010
	Debug the CC1010 code
	Debug the CC1010 peripherals

	Evaluating the CC1010 performance
	Disclaimer


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


