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Abstract 

 
We present a plug-in application with a graphical user interface (GUI) for the Visual Molecular Dynamics (VMD) 

software for the analysis of electrostatic potentials.  It consists of a window for control and visualization of the 

distribution of charges.  It also modifies the representation of the molecules showed on the main VMD window to 

show the effect of the interaction on selected molecules.  We developed an algorithm that approximates 

computationally intensive calculations of the electrostatic forces with less pseudo-atoms using a N x M x L matrix of 

boxes, reducing the amount of computation factor of N x M x L.  The GUI shows a false-color representation of the 

pseudo-atoms.  A menu is used to configure the results shown by the VMD window.  A set of buttons allow the user 

to change the view points of the canvas and to control the computations.  Even with the enhanced algorithms the 

user may have to wait seconds or minutes depending on the size of boxes being used.  Different threads are created 

in order to show the progression of the computations while they are being performed.  Communication between 

threads is made possible by using shared memory.  

Keyword: Molecular dynamics 

 

1. Introduction 

 
Molecular Dynamics (MD) simulations often give important insight on the properties of molecules and their 

interactions.  They are based on computing prescribed forces between particles.  In the case of classical MD, those 

particles represent atoms and the forces describe the fundamental forces related to bonds, Van Der Waals and 

electrostatic forces.  Classical MD simulations are well-suited to provide insights into the fundamental properties of 

CNT-DNA hybrids because they enable calculation of structural properties with atomic resolution.  For example, 

Carbon nanotubes (CNT) and single stranded DNA (ss-DNA), interesting and important systems in nanoscience, 

have been used to construct nanoscale chemical sensors.  A detailed understanding of electrical properties of these 

systems is relevant for the design of such sensors. 

   MD simulations are limited by the available computational power.  State of the art simulations deal with systems 

composed of hundreds of thousands of atoms.  They use time steps in the order of femptoseconds (10
-12

 seconds).  

Using massively parallel systems and sophisticated algorithms with execution times of several days one may achieve 

simulations with total simulated time of the order of several nanoseconds (10
-9

 seconds).  Then, the large data sets of 

simulated data, called trajectories, are analyzed with software that is bound by similar limitations. 

   Visual Molecular Dynamics (VMD) is a computer program to visualize and model molecules
7
.  This tool was 

developed for viewing and analyzing the results of molecular dynamics simulations, but it also includes applications 

for visualizing volumetric data, sequence data, and arbitrary graphics objects.  When used for viewing and analyzing 

MD trajectories, although it may be used in-line as the simulation progresses, most often it is used off-line after the 

whole trajectory has been produced. Users can implement Tool Command Language (Tcl) and Python
1
 scripts 

within VMD to add functionality for the analysis of MD trajectories because it includes embedded Tcl and Python 

interpreters. 
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   This paper presents a plug-in application with a graphical user interface (GUI) for VMD for the analysis of 

electrostatic potentials.  It is meant to provide a first glance of the distribution of charges and electrostatic 

interactions to the researchers that may be recomputed with more detail and precision off-line.  False-color 

representations of the distribution of charges, projection of the atoms onto 2D planes, and 3D representations of the 

effect of electrostatic interactions on selected molecules are made available almost instantly.  Visual clues provide 

feedback to the researcher about computation progresses and scales. 

   The GUI implements an algorithm that approximates computationally intensive calculations of the electrostatic 

forces by dividing the sample space into N x M x L boxes.  Pseudo-atoms that represent averages over each of the 

boxes are then used to reduce the amount of computation.  Multi-threading and the use of C++
2
 for the most CPU 

intensive parts of the code also help to achieve the response times expected from an interactive application. 

 

2. Background 

 
The VMD program is compatible with main file formats produced by MD simulators.  This relieves the VMD plug-

in programmer of the direct interpretation and manipulation of the data.  Access to the positions, types and charges 

of the atoms is made through the Python modules provided by VMD.  Tkinter
3,4

, a GUI package for Python, is used 

for building the window that let the researcher control points of view, atom types being viewed, and computation of 

interactions. 

 

2.1. Python and CPU intensive code 

 
Python is an interpreted programming language.  It is designed to be minimalist in the sense of syntactic complexity. 

As a consequence the code written in that language is relatively easy to understand and modify even by non-experts.  

At the same time, it supports programming paradigms such as object oriented programming and structured 

programming.  Functionality pertinent to the construction of computational tools for MD simulations such as 

graphical user interfaces, threading, interprocess communications and interfacing with compiled languages is 

provided by a large collection of modules.  On the other hand, being an interpreted language with a characteristic of 

placing syntax clarity over efficiency, it presents further limitations to computationally intensive applications.  A 

study made about performance between different programming languages reports that it took 192 seconds per 

iterations to solve the Flavius Josephus problem in Python using a code consisting of 41 lines
6
. 

 

2.2. VMD modules 

 
VMD provides three modules for accessing and manipulating VMD state with objects that represent important 

entities.  They are referred in the VMD User's Manual as proxy classes that “are written in pure Python and use the 

lower level built-in interfaces to communicate with VMD”.  They provide the classes: 

 

 Molecule: a proxy for molecules loaded into VMD; 

 MoleculeRep: to keep track of the representations in a molecule; 

 AtomSel: whose instances are independent of the molecules and representations in VMD.  

Other non-object oriented modules are provided for interacting with VMD including: 

 color: used to change the color definitions, color maps, or edit the color scale; 

 display:  controls the VMD camera as well as screen updates; 

 graphics:  used to create custom 3-D objects from graphics primitives such as triangle, line, sphere, text,  

 material, etc. 

 

2.3. electrostatic model 

 
When electrostatic charges are present, the Coulomb potentials between two atoms ai, aj is given by 

 

                             (1) 

 

where Qi and Qj are the charges of the atoms, ri,j their distance, and ε0 is a constant. For each atom, the potential 
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between it and all other atoms is computed and added to obtain the net potential on that atom: 

 

                             (2) 

 

where ri,j is the unit vector pointing from ai to aj. 

 

2.4. test case: CNT-DNA hybrids 

 
CNTs are cylindrical sheets of carbon with diameters of ~1nm and lengths up to a few centimeters.  CNTs have 

electronic and structural properties that vary depending on the diameter, chirality and length.  They have many 

interesting properties such as high mechanical strength and electronic stability.  These features make them 

candidates for practical applications. 

   Single strand deoxyribonucleic acid (ss-DNA) is a variant of the widely known biomolecule that consists only one 

chain of alternating sugars and phosphates. They are often represented by sequences of the letters C, A, T, and G that 

correspond to the different base units.  It is understood that ss-DNA attaches to the CNT by the π − π stacking 

interaction.  MD simulations of ss-DNA adsorbing to a CNT used in this project have been done both at the 

University of Pennsylvania and at the University of Puerto Rico at Humacao
8,9

. 

 

3. Methods 

 

3.1. computation of charges and electrostatic potentials 

 
This software serves to visualize two different properties related to charged particles: the distribution of charges 

throughout the space, and the Coulomb potential at each of the atoms as described in section 2.3.  Sometimes it is 

desirable in a simulation to view the distribution of the charges and the interactions between them.  The problem is 

that many algorithms used for this task are time consuming.  A new approach is needed to speed up these 

calculations.  The technique used here helps to improve these calculations and show an average of the distribution of 

charges and the electrostatic interaction among atoms.  This approach takes less time to calculate an average of the 

interaction among charges.  The algorithm first takes a frame in the simulation.  It then divides the frame in N x M x 

L boxes.  The mount of subdivisions is entered by the user. 

 

3.1.1. charge's grid 

 
This matrix (grid3D) represents a subdivision of the space in N x M x L cubes (Figure 1).  Each matrix entry stores 

the the sum of the charges of the atoms in the corresponding region.  Later, in the computation of electrostatic 

interactions between all atom pairs, a simulated atom at the center of the box with this sum of charges as its charge 

will be used by substituting the computations corresponding to all the atoms in that box. 

 

 

Figure 1.The space occupied by the atoms is divided by 3 x 3 x 3 boxes.  The appropriate row or column of boxes is 

added to compute false color in the 2D projections. 

 

3.1.2. distribution of charges 

 



235 

 

Isosurfaces are often used to represent the different charge levels throughout a 3D space of continuous models.  In 

our instance we have discrete particles.  Therefore a 2D discrete representation was chosen for this purpose.  Atoms 

are projected to a plane.  The user may choose between three planes: the X-Y, X-Z, and Y-Z planes.  Computing the 

projections onto these planes is simple: take the corresponding coordinates from the three coordinates.  For example, 

in the X-Y projection, 

 

     .                       (3) 

 

   The similar technique is applied to the grid3D described in section 3.1.1 to produce a 2D projection (grid2D).  For 

instance, in an XY projection, all the magnitudes in the corresponding column are added, that is, 

 

      .                     (4) 

 

3.1.3. electrostatic potentials 

 
Electrostatic potentials are computed as in section 2.3, but for each atom, instead of computing the sum over all 

other atoms, it is done over the simulated atoms at the center of the grid boxes.  Even with the reduction in 

computation accomplished by the technique used here, obtaining good approximations requires a grid with enough 

elements.  Assuming a grid with M x N x L cells, computing charges of all atoms takes O(N * M
3
).  The 

performance of Python results in a quest limitation. 

   As explained before, Python is an interpreted language, which makes it slow for big calculations.  In order to 

improve the time spent on calculations, a merge between programming languages was implemented.  This merge 

consists of the C++ and Python programming languages.  Since C++ compiles into computer language directly, the 

running time is faster than Python.  To make this merge possible, the Simplified Wrapper and Interface Generator 

(SWIG) library was used.  SWIG is a software development tool that connects programs written in C and C++ with 

a variety of high-level programming languages.  SWIG is used with different types of languages including common 

scripting languages such as Perl, PHP, Python, Tcl and Ruby
5
.  Using SWIG libraries helped to make the main 

calculations using C++ and the GUI in Python.  For compiling the C++ files, GNU C++ version 4.3.2 compiler was 

used. 

   SWIG libraries' array passing capabilities are limited.  These libraries do not accept templates and reference 

points, which makes it difficult passing the molecule as a parameter for the functions.  To solve this just the 

necessary atom information became the parameters, instead of the whole molecule.  This helped the calculations 

because only the essential atoms and information where used, which results in faster calculations. 

   Finally, an updated edition of Python is needed for the use of newer and better libraries.  The Python plug-in in 

VMD 1.8.6 uses Python 2.2 libraries.  These libraries are not as sophisticated as more recent versions of Python.  

The source code of VMD was edited, making the principal libraries of the Python plug-in be the Python 2.5 installed 

in the computer instead of being an extra library that must be added to VMD.  This improves the VMD, making use 

of the most recent Python functions. 

 

3.2. graphical user interface 

 
In order to analyze and view the representation of the charges within the system shown in the VMD screen we 

developed a GUI (Figure 2) that can be called with the VMD.  The GUI is divided into two parts that work alongside 

each other and are written in the same source code; the menu and the canvas.  The menu handles the interaction with 

the user in order to allow them to view the representation of the charges in the system.  The canvas handles the calls 

by the menu and dynamically changes in order to show the representation that the user desires. 

 

3.2.1. menu and buttons 

 
The menu and buttons bar were designed to be as simple as possible while allowing the user to fully understand how 

each function on screen is intended to work.  The buttons bar consists of various buttons where most are visually 

represented by what each does.  A selector menu allows the user to choose between the individual components 

(residues) of the molecule in order to calculate the whole molecule or each component.  This also decides what the 

canvas will show for the user.  The implementation for this selector was made by catching residual names of the 
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molecule loaded into VMD and displaying the names of the components on the menu and sending the selection as a 

parameter to one of the canvas classes to display only the molecules with the sent name.  The parameters menu 

allows the user to change various parameters during the simulation, such as the subdivisions of the representations 

of the charges in the canvas, the quantity of frames being analyzed, and the minimum and maximum of the color 

representation of charges in the canvas and the VMD OpenGL display. 

   The save button stores the state of the simulation.  When opened through the GUI it returns the user to the moment 

of the simulation when it was last saved.  Following the open button are three buttons called the XY view button, the 

XZ view button, and the YZ view button, respectively.  Each button changes the view of the canvas between each of 

the main projections for the molecule selected as it is represented in the VMD.  This does not change in any way the 

view of the VMD, it is only relative to its view.  Changes to the GUI screen occur after the program has calculated 

the charges for that view.  These calculations are done using the threaded code making the changes that occur within 

the canvas dynamically. 

   The following button in the menu is the run button.  When pressed, the program begins to make the calculations 

necessary in order to change the representation of the molecule in the main VMD OpenGL display to show the 

magnitude and direction of the electrostatic potential on each of the atoms that belong to the residues selected by the 

researcher.  The last button, close, invokes a small callback function that asks the user whether the application 

should be closed. 

 

 

Figure 2.Screen shot of all the components of the plug-in.  The window in the upper left corner is used to control the 

computations, projections and residue selection. Progress bars provide feedback about the computations.  After 

completion, electrostatic potentials are shown in the main VMD window (upper right). 

 

3.3.3. representation of distribution of charges 

 
Atoms are particles without colors or any determined shape.  In order to represent the distribution of charges, a 

spherical shape has been assigned to represent an atom (Figure 3).  To represent the charge we assigned a false color 

palette. Each charge will have a color depending on the value of the charge.  The colors go from red (the maximum 

value) to blue (the minimum value) and the other resulting colors are the spectrum between those colors. 
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3.3.1. pixel representation 
 

With the creation of a grid and the algorithm to transform it into a 2D grid, the transformation of the coordinates into 

pixel is simple.  The representation of the coordinates into pixel is allowed by the following algorithm: 

 

                             (5) 

 

where α is the desired coordinate and D is the height, if a pixel of the Y coordinate is desired, or the width, if the 

pixel from the X coordinate is desired.  This algorithm allows the conversion of 2D projections by doing the 

calculation already described by the formula. 

 

 

Figure 3. A 3D representation of a carbon nanotube surrounded by water and its XY projection. 

 

3.3.2. color representation 

 
For a better analysis of the charges in the space study, we add color to the propagation of the charges in the studied 

space.  False colors where used to scale the charges.  Red is the color of the more charged atom and blue is the color 

for the less charged atom in this scale.  To help the user analyze the charges, a color bar was added in which the 

colors are sorted from maximum to minimum value.  The maximum value of the charge found in the system is at the 

top of this bar and the minimum value that can be found is at the bottom.  This bar is shown in the study space.  In 

order to assign the colors we created a hexadecimal RGB palette and an algorithm to change from decimal base to 

hexadecimal string base in order to use the color library of VMD.  First the algorithm takes the decimal value of the 

color and then converts it into a string equal to its hexadecimal value. 

 

4. Results 

 

 

Figure 4. Charge distribution on the nanotube (left) and electrostatic forces acting on it (right).  Lines direct the 

direction of the force. 
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4.1. agreement with expected results 

 
In order to analyze our result we first compare our findings of the representation of the charges with previously 

obtained information.  When we represent a small CNT within water, no significant charges can be seen (Figure 4). 

   With the projections and the color representations of the charges a model or an idea in how the charges are 

propagated in the polymer and the fibers can be seen.  The charges and the trajectories for the projection and the 

colors were previous calculated data.  The result was a success since the projection and the colors met the 

expectation. 

 

4.2. performance 

 
Over all, the GUI is satisfactory due to the threads used but can still be improved by adding other functions such as 

an open button. 

   The edited version of VMD works successfully.  The Python plug-in in VMD now uses Python 2.5 version.  Also 

the VMD libraries that can be imported in the original Python plug-in are still usable in this version.  A few tests 

where made using the pickel, sockets, threads and TkInter libraries (which were used for the GUI).  The results show 

that it is stable and the calculations are correct. 

   The improvement of calculating the charges using C++ was successful.  The script was tested using a computer 

with an Intel 2.66 GHz QuadCore processor and 3 GBs.  The tests where done using the original VMD, the edited 

VMD, with the code using pure Python and the embedded code (Figure 5).  Also, the tests were made using two 

subjects: a short CNT surrounded by water and a longer CNT-DNA hybrid in a water box.  The results show an 

improvement in time for calculating the charges. 
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Figure 5. Comparison in time between different versions of VMD and script. 

 

5.  Discussion 

 
For future work, the GUI will implement a better selector tool.  In the representation area a feature will be added to 

rotate the 3D view of the VMD display when selecting a 2D representation.  Also, the color bar of the electrostatic 

potential representation will be added to the VMD display. 
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