
The following document contains information on Cypress products. 



F2MC-8L/8FX FAMILY
SOFTUNETM Workbench
USER'S MANUAL

MB90880ÉVÉäÅ[ÉY Cover Sheet

Support Soft Manual
Publication Number CM25-00324 Revision 6.1 Issue Date September 1, 2014





F2MC-8L/8FX FAMILY
SOFTUNETM Workbench
USER'S MANUAL

MB90880ÉVÉäÅ[ÉY Cover Sheet

Support Soft Manual





  
  

S u p p o r t  S o f t  M a n u a l

Septe
PREFACE

■ What is the SOFTUNE Workbench? 

SOFTUNE Workbench is support software for developing programs for the F2MC-8L/8FX family of

microprocessors / microcontrollers. 

It is a combination of a development manager, simulator debugger, emulator debugger, monitor debugger,

and an integrated development environment for efficient development.

■ Purpose of this manual and target readers
This manual explains functions of SOFTUNE Workbench.

This manual is intended for engineers designing several kinds of products using SOFTUNE Workbench.

■ Trademarks
SOFTUNE is a trademark of Spansion LLC.

Windows is registered trademarks of Microsoft Corporation in the U.S. and other countries.

Other company names and products names are trademarks or registered trademarks of their respective

companies.

■ Organization of Manual 
This manual consists of 2 chapters. 

CHAPTER 1  BASIC FUNCTIONS

  This chapter describes the basic functions on the SOFTUNE Workbench.

CHAPTER 2  DEPENDENCE FUNCTIONS

  This chapter describes the functions dependent on F2MC-8L/8FX family MCU.
mber 1, 2014, CM25-00324-6Ea i



S u p p o r t  S o f t  M a n u a l

ii
 CM25-00324-6Ea, September 1, 2014



  

S u p p o r t  S o f t  M a n u a l

Septe
CONTENTS

CHAPTER 1 BASIC FUNCTIONS .....................................................................................  1
1.1 Workspace Management Function .....................................................................................................  2
1.2 Project Management Function ............................................................................................................  3
1.3 Project Dependence ...........................................................................................................................  5
1.4 Make/Build Function ...........................................................................................................................  6

1.4.1 Customize Build Function ..............................................................................................................  7
1.5 Include Dependencies Analysis Function ...........................................................................................  9
1.6 Functions of Setting Tool Options .....................................................................................................  10
1.7 Error Jump Function .........................................................................................................................  11
1.8 Editor Functions ................................................................................................................................  13
1.9 Storing External Editors ....................................................................................................................  14
1.10 Storing External Tools ......................................................................................................................  16
1.11 Macro Descriptions Usable in Manager ............................................................................................  17
1.12 Setting Operating Environment .........................................................................................................  23
1.13 Debugger Types ...............................................................................................................................  24
1.14 Memory Operation Functions ...........................................................................................................  25
1.15 Register Operations ..........................................................................................................................  26
1.16 Line Assembly and Disassembly ......................................................................................................  27
1.17 Symbolic Debugging .........................................................................................................................  28

1.17.1 Referring to Local Symbols .........................................................................................................  30
1.17.2 Referring to Variables of C Language .........................................................................................  31

CHAPTER 2 DEPENDENCE FUNCTIONS .....................................................................  33
2.1 Simulator Debugger ..........................................................................................................................  34

2.1.1 Instruction Simulation ..................................................................................................................  35
2.1.2 Memory Simulation ......................................................................................................................  36
2.1.3 I/O Port Simulation ......................................................................................................................  37
2.1.4 Interrupt Simulation .....................................................................................................................  38
2.1.5 Reset Simulation .........................................................................................................................  39
2.1.6 Low-Power Consumption Mode Simulation .................................................................................  40
2.1.7 STUB Function ............................................................................................................................  41
2.1.8 Break ...........................................................................................................................................  42

2.1.8.1 Code Break ...............................................................................................................................  43
2.1.8.2 Data Break ................................................................................................................................  44
2.1.8.3 Guarded Access Break .............................................................................................................  45
2.1.8.4 Trace Buffer-full Break ..............................................................................................................  46
2.1.8.5 Forced Break ............................................................................................................................  47

2.1.9 Measuring the Number of Execution Cycles ...............................................................................  48
2.1.10 To Refer to a Program Execution History, Use [TRACE] ............................................................  49

2.1.10.1 Displaying Trace Data ..............................................................................................................  50
2.1.10.2 Saving Traced Data ..................................................................................................................  52
2.1.10.3 Searching Traced Data .............................................................................................................  53
2.1.10.4 To Terminate Trace Obtention .................................................................................................  54
mber 1, 2014, CM25-00324-6Ea iii



S u p p o r t  S o f t  M a n u a l

iv
2.1.11 Confirming the Debugger's State .................................................................................................  55
2.2 Emulator Debugger (MB2141) ..........................................................................................................  57

2.2.1 Setting Operating Environment ...................................................................................................  58
2.2.1.1 MCU Operation Mode ...............................................................................................................  59
2.2.1.2 Memory Area Types .................................................................................................................  60
2.2.1.3 Memory Mapping ......................................................................................................................  61
2.2.1.4 Timer Minimum Measurement Unit ..........................................................................................  63

2.2.2 On-the-fly Executable Commands ...............................................................................................  64
2.2.3 On-the-fly Memory Access ..........................................................................................................  65
2.2.4 Break ...........................................................................................................................................  67

2.2.4.1 Code Break ...............................................................................................................................  68
2.2.4.2 Data Break ................................................................................................................................  70
2.2.4.3 Sequential Break ......................................................................................................................  71
2.2.4.4 Guarded Access Break .............................................................................................................  72
2.2.4.5 Trace Buffer-full Break ..............................................................................................................  73
2.2.4.6 Performance Buffer-full Break ..................................................................................................  74
2.2.4.7 Forced Break ............................................................................................................................  75

2.2.5 Events ..........................................................................................................................................  76
2.2.5.1 Operation in Normal Mode .......................................................................................................  78
2.2.5.2 Operation in Multi Trace Mode .................................................................................................  80
2.2.5.3 Operation in Performance Mode ..............................................................................................  82

2.2.6 Control by Sequencer ..................................................................................................................  84
2.2.6.1 Setting Sequencer ....................................................................................................................  86
2.2.6.2 Break by Sequencer .................................................................................................................  88
2.2.6.3 Trace Sampling Control by Sequencer .....................................................................................  89
2.2.6.4 Time Measurement by Sequencer ...........................................................................................  91
2.2.6.5 Sample Flow of Time Measurement by Sequencer ..................................................................  92

2.2.7 To Refer to a Program Execution History, Use [TRACE] ............................................................  94
2.2.7.1 Single Trace .............................................................................................................................  95
2.2.7.2 Setting Single Trace .................................................................................................................  97
2.2.7.3 Multi Trace ................................................................................................................................  99
2.2.7.4 Setting Multi Trace ..................................................................................................................  101
2.2.7.5 Displaying Trace Data Storage Status ...................................................................................  102
2.2.7.6 Specify Displaying Trace Data Position ..................................................................................  103
2.2.7.7 Display Format of Trace Data .................................................................................................  104
2.2.7.8 Reading Trace Data On-the-fly ...............................................................................................  106
2.2.7.9 Saving Trace Data ..................................................................................................................  108
2.2.7.10 Searching of Trace Data .........................................................................................................  109

2.2.8 Measuring Performance ............................................................................................................  110
2.2.8.1 Performance Measurement Procedures .................................................................................  111
2.2.8.2 Display Performance Measurement Data ...............................................................................  113

2.2.9 Measuring Coverage .................................................................................................................  115
2.2.9.1 Coverage Measurement Procedures ......................................................................................  116

2.2.10 Execution Time Measurement ...................................................................................................  119
2.2.11 Sampling by External Probe ......................................................................................................  121
2.2.12 Confirming the Debugger's State ...............................................................................................  123

2.3 Emulator Debugger (MB2146-09/09A/09B) ....................................................................................  125
CM25-00324-6Ea, September 1, 2014



  

S u p p o r t  S o f t  M a n u a l

Septe
2.3.1 Setting Operating Environment .................................................................................................  128
2.3.1.1 Clock-up Mode .......................................................................................................................  129
2.3.1.2 Main Clock Oscillation ............................................................................................................  130

2.3.2 Programming to FLASH Memory ..............................................................................................  131
2.3.3 Break .........................................................................................................................................  133

2.3.3.1 Code Break .............................................................................................................................  134
2.3.3.2 Data Break ..............................................................................................................................  135
2.3.3.3 Monitoring Data Break ............................................................................................................  136
2.3.3.4 Sequential Break ....................................................................................................................  137
2.3.3.5 Forced Break ..........................................................................................................................  138

2.3.4 Real-time Trace .........................................................................................................................  139
2.3.4.1 Displaying Trace Data ............................................................................................................  141
2.3.4.2 Saving Trace Data ..................................................................................................................  142
2.3.4.3 Searching Trace Data .............................................................................................................  143

2.3.5 Notes on Executing Program .....................................................................................................  144
2.3.6 RAM Monitoring .........................................................................................................................  145
2.3.7 Measuring the Number of Execution Cycles .............................................................................  147
2.3.8 Confirming the Debugger's State ...............................................................................................  149

2.4 Emulator Debugger (MB2146-08) ...................................................................................................  151
2.4.1 Setting Operating Environment .................................................................................................  152

2.4.1.1 Main Clock Oscillation Frequency ..........................................................................................  153
2.4.2 Erasing/Programming FLASH Memory .....................................................................................  154
2.4.3 Erasing/Programming FRAM Area ............................................................................................  156
2.4.4 Notes on Executing Program .....................................................................................................  157
2.4.5 FLASH Security .........................................................................................................................  158
2.4.6 Notes on Starting/Stopping Debugger .......................................................................................  159
2.4.7 Break .........................................................................................................................................  161

2.4.7.1 Code Break .............................................................................................................................  162
2.4.7.2 Forced Break ..........................................................................................................................  163

2.4.8 Confirming the Debugger's State ...............................................................................................  164
2.5 Emulator Debugger (MB2146-07) ...................................................................................................  166

2.5.1 Setting Operating Environment .................................................................................................  167
2.5.1.1 Optimization of Response Speed ...........................................................................................  168
2.5.1.2 Oscillation Frequency .............................................................................................................  169
2.5.1.3 Power Supply to BGM Adapter ...............................................................................................  170
2.5.1.4 Synchronization of FLASH memory at Startup of Debugger ..................................................  171
2.5.1.5 For this setting, use the setup wizard. ....................................................................................  172

2.5.2 Writing to or Erasing FLASH Memory .......................................................................................  173
2.5.3 Writing to or Erasing FRAM Area ..............................................................................................  175
2.5.4 Precautions on Program Execution ...........................................................................................  176
2.5.5 Flash Security Detection Function .............................................................................................  177
2.5.6 Precautions on Starting and Ending the Debugger ...................................................................  178
2.5.7 Break .........................................................................................................................................  180

2.5.7.1 Code Break .............................................................................................................................  181
2.5.7.2 Forced Break ..........................................................................................................................  182

2.5.8 RAM Monitoring .........................................................................................................................  183
2.5.9 Confirming the Debugger's State ...............................................................................................  186
mber 1, 2014, CM25-00324-6Ea v



S u p p o r t  S o f t  M a n u a l

vi
2.6 Monitor Debugger ...........................................................................................................................  188
2.6.1 Writing to the FLASH memory ...................................................................................................  189
2.6.2 Fast downloading ......................................................................................................................  190
2.6.3 Points to Note when Executing Programs .................................................................................  191
2.6.4 Break .........................................................................................................................................  192

2.6.4.1 Code Break .............................................................................................................................  193
2.6.4.2 Forced Break ..........................................................................................................................  194

2.6.5 Confirming the Debugger's State ...............................................................................................  195

APPENDIX .........................................................................................................................  197
APPENDIX A Major Changes .....................................................................................................................  198

INDEX................................................................................................................................... 199
CM25-00324-6Ea, September 1, 2014



Septe

S u p p o r t  S o f t  M a n u a l
CHAPTER 1
BASIC FUNCTIONS

This chapter describes the basic functions on the 
SOFTUNE Workbench. 

1.1  Workspace Management Function

1.2  Project Management Function

1.3  Project Dependence

1.4  Make/Build Function

1.5  Include Dependencies Analysis Function

1.6  Functions of Setting Tool Options

1.7  Error Jump Function

1.8  Editor Functions

1.9  Storing External Editors

1.10  Storing External Tools

1.11  Macro Descriptions Usable in Manager

1.12  Setting Operating Environment

1.13  Debugger Types

1.14  Memory Operation Functions

1.15  Register Operations

1.16  Line Assembly and Disassembly

1.17  Symbolic Debugging
mber 1, 2014, CM25-00324-6Ea 1



CHAPTER 1  BASIC FUNCTIONS
1.1  Workspace Management Function

S u p p o r t  S o f t  M a n u a l

2

1.1 Workspace Management Function 

This section explains the workspace management function of SOFTUNE Workbench. 

■ Workspace 
SOFTUNE Workbench uses workspace as a container to manage two or more projects including

subprojects. 

For example, a project that creates a library and a project that creates a target file using the project can be

stored in one workspace. 

■ Workspace Management Function 
To manage two or more projects, workspace manages the following information: 

- Project 

- Active project 

- Subproject 

■ Project 
The operation performed in SOFTUNE Workbench is based on the project. The project is a set of files and

procedures necessary for creation of a target file. The project file contains all data managed by the project. 

■ Active Project 
The active project is basic to workspace and undergoes [Make], [Build], [Compile/Assemble], [Start

Debug], and [Update Dependence] in the menu. [Make], [Build], [Compile/Assemble], and [Update

Dependence] affect the subprojects within the active project. 

If workspace contains some project, it always has one active project. 

■ Subproject 
The subproject is a project on which other projects depend. The target file in the subproject is linked with

the parent project of the subproject in creating a target file in the parent project. 

This dependence consists of sharing target files output by the subproject, so a subproject is first made and

built. If making and building of the subproject is unsuccessful, the parent project of the subproject will not

be made and built. 

The target file in the subproject is however not linked with the parent project when: 

- An absolute format (ABS)-type project is specified as a subproject. 

- A library (LIB)-type project is specified as a subproject. 

■ Restrictions on Storage of Two or More Projects 
Only one REALOS-type project can be stored in one workspace. 
CM25-00324-6Ea, September 1, 2014



CHAPTER 1  BASIC FUNCTIONS
1.2  Project Management Function

S u p p o r t  S o f t  M a n u a l

Septe
1.2 Project Management Function 

This section explains the project management function of SOFTUNE Workbench. 

■ Project Management Function 
The project manages all information necessary for development of a microcontroller system. 

- Project configuration 

- Active project configuration 

- Information on source files, include files, other object files, library files 

- Information on tools executed before and after executing language tools (customize build function) 

■ Project format 
The project file supports two formats: a "workspace project format", and an "old project format".

The differences between the two formats are as follows: 

● Workspace project format 

- Supports management of two or more project configurations 

- Supports use of all macros usable in manager 

- Does not support early Workbench versions*

● Old project format 

- Supports management of just one project configuration 

- Limited number of macros usable in manager

For details, see Section "1.11  Macro Descriptions Usable in Manager".

- Supports early Workbench versions*

When a new project is made, the workspace project format is used. 

When using an existing project, the corresponding project format is used. 

If a project made by an early Workbench version* is used, a dialog asking whether to convert the file to the

workspace project format is displayed. For details, refer to Section "2.13 Reading SOFTUNE Project Files

of Old Versions" of "SOFTUNE Workbench Operation Manual". 

To open a project file in the workspace project format with an early Workbench version*, it is necessary to

convert the file to the old project format. For saving the file in other project formats, refer to Section "4.2.7

Save As" of "SOFTUNE Workbench Operation Manual". 

*: V30L26 or earlier 
mber 1, 2014, CM25-00324-6Ea 3



CHAPTER 1  BASIC FUNCTIONS
1.2  Project Management Function

S u p p o r t  S o f t  M a n u a l

4

■ Project Configuration 

The project configuration is a series of settings for specifying the characteristics of a target file, and

making, building, compiling and assembling is performed in project configurations. 

Two or more project configurations can be created in a project. The default project configuration name is

Debug. A new project configuration is created on the setting of the selected existing project configuration.

In the new project configuration, the same files as those in the original project configuration are always

used. 

By using the project configuration, the settings of programs of different versions, such as the optimization

level of a compiler and MCU setting, can be created within one project. 

In the project configuration, the following information is managed: 

- Name and directory of target file 

- Information on options of language tools to create target file by compiling, assembling and linking

source files 

- Information on whether to build file or not 

- Information on setting of debugger to debug target file 

■ Active Project Configuration 
The active project configuration at default undergoes [Make], [Build], [Compile/Assemble], [Start Debug],

and [Update Dependence]. 

The setting of the active project configuration is used for the file state displayed in the SRC tab of project

window and includes files detected in the Dependencies folder. 

Note: 
If a macro function newly added is used in old project format, the macro description is expanded at
the time of saving in old project format. For the macro description newly added, refer to Section "1.11
Macro Descriptions Usable in Manager". 
CM25-00324-6Ea, September 1, 2014



CHAPTER 1  BASIC FUNCTIONS
1.3  Project Dependence

S u p p o r t  S o f t  M a n u a l

Septe
1.3 Project Dependence 

This section explains the project dependence of SOFTUNE Workbench. 

■ Project Dependence 
If target files output by other projects must be linked, a subproject is defined in the project required in

[Project Dependence] in the [Project] menu. The subproject is a project on which other projects depend. 

By defining project dependence, a subproject can be made and built to link its target file before making and

building the parent project. 

The use of project dependence enables simultaneous making and building of two or more projects

developed in one workspace. 

A project configuration in making and building a subproject in [Project Configuration]-[Build

Configuration] in the [Project] menu can be specified. 
mber 1, 2014, CM25-00324-6Ea 5



CHAPTER 1  BASIC FUNCTIONS
1.4  Make/Build Function

S u p p o r t  S o f t  M a n u a l

6

1.4 Make/Build Function 

This section explains the make/build function of SOFTUNE Workbench. 

■ Make Function 
Make function generates a target file by compiling/assembling only updated source files from all source

files registered in a project, and then joining all required object files. 

This function allows compiling/assembling only the minimum of required files. The time required for

generating a target file can be sharply reduced, especially, when debugging. 

For this function to work fully, the dependence between source files and include files should be accurately

grasped. To do this, SOFTUNE Workbench has a function for analyzing include dependence. For details,

see Section "1.5  Include Dependencies Analysis Function". 

■ Build Function 
Build function generates a target file by compiling/assembling all source files registered with a project,

regardless of whether they have been updated or not, and then by joining all required object files. Using

this function causes all files to be compiled/assembled, resulting in the time required for generating the

target file longer. Although the correct target file can be generated from the current source files. 

The execution of Build function is recommended after completing debugging at the final stage of program

development. 

Note: 
When executing the Make function using a source file restored from backup, the integrity between an
object file and a source file may be lost. If this happens, executing the Build function again. 
CM25-00324-6Ea, September 1, 2014



CHAPTER 1  BASIC FUNCTIONS
1.4  Make/Build Function

S u p p o r t  S o f t  M a n u a l

Septe
1.4.1 Customize Build Function 

This section describes the SOFTUNE Workbench to set the Customize Build function. 

■ Customize Build Function 
In SOFTUNE Workbench, different tools can be operated automatically before and after executing the

Assembler, Compiler, Linker, Librarian, Converter, or Configurator started at Compile, Assemble, Make,

or Build. 

The following operations can be performed automatically during Make or Build using this function: 

- Starting the syntax check before executing the Compiler, 

- After executing the Converter, starting the S-format binary Converter (m2bs.exe) and converting

Motorola S-format files to binary format files. 

■ Setting Options 
An option follows the tool name to start a tool from SOFTUNE Workbench. The options include any file

name and tool-specific options. SOFTUNE Workbench has the macros indicating that any file name and

tool-specific options are specified as options. 

If any character string other than parameters is specified, it is passed directly to the tool as it is. For details

about the parameters, see Section "1.11  Macro Descriptions Usable in Manager". 

■ Macro List 
The Setup Customize Build dialog provides a macro list for macro input. The build file, load module file,

project file submenus indicate their sub-parameters specified.

The environment variable brackets must have any item; otherwise, resulting in an error. 

Table 1.4-1 Macro List

Macro List Macro Name

Build file %(FILE)

Load module file %(LOADMODULEFILE)

Project file %(PRJFILE)

Workspace file %(WSPFILE)

Project directory %(PRJPATH)

Target file directory %(ABSPATH)

Object file directory %(OBJPATH)

List file directory %(LSTPATH)

Project construction name %(PRJCONFIG)

Environment variable %(ENV[])

Temporary file %(TEMPFILE)
mber 1, 2014, CM25-00324-6Ea 7



CHAPTER 1  BASIC FUNCTIONS
1.4  Make/Build Function

S u p p o r t  S o f t  M a n u a l

8

Note:

When checking [Use the Output window], note the following: 

• Once a tool is activated, Make/Build is suspended until the tool is terminated. 

• The Output window must not be used with a tool using a wait state for user input while the tool is
executing. The user can not perform input while the Output window is in use, so the tool cannot
be terminated. To forcibly terminate the tool, select the tool on the Task bar and input Control - C,
or Control - Z. 
CM25-00324-6Ea, September 1, 2014



CHAPTER 1  BASIC FUNCTIONS
1.5  Include Dependencies Analysis Function

S u p p o r t  S o f t  M a n u a l

Septe
1.5 Include Dependencies Analysis Function 

This section describes the function of the Include Dependencies Analysis of SOFTUNE 
Workbench. 

■ Analyzing Include Dependencies 
A source file usually includes some include files. When only an include file has been modified leaving a

source file unchanged, SOFTUNE Workbench cannot execute the Make function unless it has accurate and

updated information about which source file includes which include files. 

For this reason, SOFTUNE Workbench has built-in Include Dependencies Analysis function. This function

can be activated by selecting the [Project] -[Include Dependencies] menu. By using this function, users can

know the exact dependencies, even if an include file includes another include file. 

SOFTUNE Workbench automatically updates the dependencies of the compiled/assembled files. 

Note: 
When executing the [Project] - [Include Dependencies] menu, the Output window is redrawn and
replaced by the dependencies analysis result. 

If the contents of the current screen are important (error message, etc.), save the contents to a file
and then execute the Include Dependencies command. 
mber 1, 2014, CM25-00324-6Ea 9



CHAPTER 1  BASIC FUNCTIONS
1.6  Functions of Setting Tool Options

S u p p o r t  S o f t  M a n u a l

10
1.6 Functions of Setting Tool Options 

This section describes the functions to set options for the language tools activated 
from SOFTUNE Workbench. 

■ Function of Setting Tool Options 
To create a desired target file, it is necessary to specify options for the language tools such as a compiler,

assembler, and linker. SOFTUNE Workbench stores and manages the options specified for each tool in

project configurations. 

Tool options include the options effective for all source files (common options) and the options effective

for specific source files (individual options). For details about the option setting, refer to Section "4.5.5

Setup Project" of "SOFTUNE Workbench Operation Manual". 

• Common options 

These options are effective for all source files (excluding those for which individual options are
specified) stored in the project. 

• Individual options 

These options are compile/assemble options effective for specific source files. The common options
specified for source files for which individual options are specified become invalid. 

■ Tool Options 
In SOFTUNE Workbench, the macros indicating that any file name and directory name are specified as

options. 

If any character string other than parameters is specified, it is passed directly to the tool. For details about

the parameters, see Section "1.11  Macro Descriptions Usable in Manager". For details about the tool

options for each tool, refer to the manual of each tool.
CM25-00324-6Ea, September 1, 2014



CHAPTER 1  BASIC FUNCTIONS
1.7  Error Jump Function

S u p p o r t  S o f t  M a n u a l

Septe
1.7 Error Jump Function 

This section describes the error jump function in SOFTUNE Workbench. 

■ Error Jump Function 
When an error, such as a compile error occurs, double-clicking the error message displayed in the Output

window, automatically opens  the  source  file  where  the error  occurred,  and moves  the cursor to the

error line. This function permits efficient removal of compile errors, etc. 

The SOFTUNE Workbench Error Jump function analyzes the source file names and line number

information embedded in the error message displayed in the Output window, opens the matching file, and

jumps automatically to the line. 

The location where a source file name and line number information are embedded in an error message,

varies with the tool outputting the error. 

An error message format can be added to an existing one or modified into an new one. However, the

modify error message formats for pre-installed Spansion language tools are defined as part of the system,

these can not be modified. 

A new error message format should be added when working the Error Jump function with user registered

tool. To set Error Jump, execute the [Setup] - [Setup Error Jump] menu. 

■ Syntax 
An error message format can be described in Syntax. SOFTUNE Workbench uses macro descriptions as

shown in the Table 1.7-1 to define such formats. 

To analyze up to where %f, %h, and %* continue, SOFTUNE Workbench uses the character immediately

after the above characters as a delimiter. Therefore, in Syntax, the description until a character that is used

as a delimiter re-appears, is interpreted as a file name or a keyword for help, or is skipped over.   To use %

as a delimiter, describe as %%. The %[char] macro skips over as long as the specified character continues

in parentheses. To specify "]" as a skipped character, describe it as "\]". Blank characters in succession can

be specified with a single blank character. 

[Example] 

***   %f(%l)   %h: or, %[*]   %f(%l)   %h: 

The first four characters are "***   ", followed by the file name and parenthesized line number, and then

Table 1.7-1 List of Special Characters String for Analyzing Error Message

Parameter Semantics

%f Interpret as source file name and inform editor.

%l Interpret as line number and inform editor.

%h Become keyword when searching help file.

%* Skip any desired character.

%[char] Skip as long as characters in [ ] continues.
mber 1, 2014, CM25-00324-6Ea 11



CHAPTER 1  BASIC FUNCTIONS
1.7  Error Jump Function

S u p p o r t  S o f t  M a n u a l

12
the keyword for help continues after one blank character. 

This represents the following message: 

***C:\Sample\sample.c(100)   E4062C:  Syntax Error:  near /int. 
CM25-00324-6Ea, September 1, 2014



CHAPTER 1  BASIC FUNCTIONS
1.8  Editor Functions

S u p p o r t  S o f t  M a n u a l

Septe
1.8 Editor Functions 

This section describes the functions of the SOFTUNE Workbench built-in standard 
editor. 

■ Standard Editor 
SOFTUNE Workbench has built-in editor called the standard editor. The standard editor is activated as the

Edit window in SOFTUNE Workbench. As many Edit windows as are required can be opened at one time. 

The standard editor has the following functions in addition to regular editing functions. 

• Keyword marking function in C/assembler source file 

Displays reserved words, such as if and for, in different color 

• Error line marking function 

The error line can be viewed in a different color, when executing Error Jump. 

• Bookmark setup function 

A bookmark can be set on any line, and instantaneously jumps to the line. Once a bookmark is set, the
line is displayed in a different color. 

• Ruler, line number display function 

The Ruler is a measure to find the position on a line; it is displayed at the top of the Edit window. A line
number is displayed at the left side of the Edit window. 

• Automatic indent function 

When a line is inserted using the Enter key, the same indent (indentation) as the preceding line is set
automatically at the inserted line. If the space or tab key is used on the preceding line, the same use is set
at the inserted line as well. 

• Function to display, Blank, Line Feed code, and Tab code 

When a file includes a Blank, Line Feed code, and Tab code, these codes are displayed with special
symbols. 

• Undo function 

This function cancels the preceding editing action to restore the previous state. When more than one
character or line is edited, the whole portion is restored. 

• Tab size setup function 

Tab stops can be specified by defining how many digits to skip when Tab codes are inserted. The default
is 8. 

• Font changing function 

The font size for character string displayed in the Edit window can be selected. 
mber 1, 2014, CM25-00324-6Ea 13



CHAPTER 1  BASIC FUNCTIONS
1.9  Storing External Editors

S u p p o r t  S o f t  M a n u a l

14
1.9 Storing External Editors 

This section describes the function to set an external editor to SOFTUNE Workbench. 

■ External Editor 
SOFTUNE Workbench has built-in standard editor, and use of this standard editor is recommended.

However, another accustomed editor can be used, with setting it, instead of an edit window. Use the [Setup]

- [Setup Editor] menu to set an external editor. 

■ Precautions 
There is no particular limit on which editor can be set, but some precautions (below) may be necessary.

• Error jump function 

The Error Jump cannot move the cursor to an error line if the external editor does not have a function to
specify the cursor location when activated the external editor. 

• File save at compiling/assembling 

SOFTUNE Workbench cannot control an external editor. Always save the file you are editing before
compiling/assembling. 

■ Setting Options 
When activating an external editor from SOFTUNE Workbench, options must be added immediately after

the editor name. The names of file to be opened by the editor and the initial location of the cursor (the line

number) can be specified. SOFTUNE Workbench has a set of special parameters for specifying any file

name and line number, as shown in the Table 1.9-1 . If any other character string are described by these

parameters, such characters string are passed as it is to the editor. 

%f (File name) is determined as follows: 

1. If the focus is on the SRC tab of project window, and if a valid file name is selected, the selected file
name becomes the file name. 

2. When a valid file name cannot be acquired by the above procedure, the file name with a focus in built-in
editor becomes the file name. 

%x (project path) is determined as follows: 

1. If a focus is on the SRC tab of project window and a valid file name is selected, the project path is a
path to the project in which the file is stored. 

2. If no path is obtained, the project path is a path to the active project. 

Also file name cannot be given double-quotes in the expansion of %f macros.

Therefore, it is necessary for you to provide double-quotes for %f. Depending on the editor, there are line

numbers to which there will be no correct jump if the entire option is not given double-quotes. 
CM25-00324-6Ea, September 1, 2014



CHAPTER 1  BASIC FUNCTIONS
1.9  Storing External Editors

S u p p o r t  S o f t  M a n u a l

Septe
■ Example of Optional Settings 

Note: 
Regarding execution of error jump in Hidemaru: 

To execute error jump in Hidemaru used as an external editor, use the [Others] - [Operating
Environment] - [Exclusive Control] menu, and then set "When opening the same file in Hidemaru"
and "Opening two identical files is inhibited".

Table 1.9-1 List of Special Characters for Analyzing Error Message

Parameter Semantics 

%% Means specifying % itself 

%f Means specifying file name 

%l Means specifying line number 

%x Means specifying project path 

Table 1.9-2 Parameters Used in Option Setups (For External Editors)

Editor name Argument 

WZ Editor V4.0 %f /j%l 

MIFES V1.0 %f+%l 

UltraEdit32 %f/%l/1

TextPad32 %f(%l) 

PowerEDITOR %f -g%l 

Codewright32 (PowerEDITOR) %f -g%l

Hidemaru for Win3.1/95 /j%l:1 %f 

ViVi /line=%l %f 
mber 1, 2014, CM25-00324-6Ea 15



CHAPTER 1  BASIC FUNCTIONS
1.10  Storing External Tools

S u p p o r t  S o f t  M a n u a l

16
1.10 Storing External Tools 

This section describes the function to set an external tool to SOFTUNE Workbench. 

■ External Tools 
A non-standard tool not attached to SOFTUNE Workbench can be used by setting it as an external tool and

by calling it from SOFTUNE Workbench. Use this function to coordinate with a source file version

management tool. 

If a tool set as an external tool is designed to output the execution result to the standard output and the

standard error output through the console application, the result can be specified to output the SOFTUNE

Workbench Output window. In addition, the allow description of additional parameters each time the tool is

activated. 

To set an external tool, use the [Setup] - [Setup Tool] menu. 

To select the title of a set tool, use the [Setup] - [Tool execution] menu. 

■ Setting Options 
When activating an external tool from SOFTUNE Workbench, options must be added immediately after the

external tool name. Specify the file names and unique options, etc. 

SOFTUNE Workbench has a set of special parameters for specifying any file name and unique tool

options. 

If any characters string described other than these parameters, such characters string are passed as it is to

the external tool. 

For details about the parameters, see Section "1.11  Macro Descriptions Usable in Manager". 

Note:
When checking [Use the Output window], note the following: 

• Once a tool is activated, neither other tools nor the compiler/assembler can be activated until the
tool is terminated. 

• The Output window must not be used with a tool using a wait state for user input while the tool is
executing. The user cannot perform input while the Output window is in use, so the tool cannot be
terminated. To forcibly terminate the tool, select the tool on the Task bar and input Control - C, or
Control - Z. 
CM25-00324-6Ea, September 1, 2014



CHAPTER 1  BASIC FUNCTIONS
1.11  Macro Descriptions Usable in Manager

S u p p o r t  S o f t  M a n u a l

Septe
1.11 Macro Descriptions Usable in Manager 

This section explains the macro descriptions that can be used in the manager of 
SOFTUNE Workbench. 

■ Macros 
SOFTUNE Workbench has special parameters indicating that any file name and tool-specific options are

specified as options. 

The use of these parameters as tool options eliminates the need for options specified each time each tool is

started. 

The type of macro that can be specified and macro expansion slightly vary depending on where to describe

macros. The macros usable for each function are detailed below. For the macros that can be specified for

"Error Jump" and "External Editors" see Sections "1.7  Error Jump Function" and "1.9  Storing External

Editors". 

■ Macro List 
The following is a list of macros that can be specified in SOFTUNE Workbench. 

The macros usable for each function are listed below. 

- External tools: Table 1.11-1 and Table 1.11-2 

- Customize build: Table 1.11-1 and Table 1.11-2 

- Tool options: Table 1.11-2 

The directory symbol \ is added to the option directories in Table 1.11-1 but not to the macro directories in

Table 1.11-2 . 

The sub-parameters in Table 1.11-3 can be specified in %(FILE), %(LOADMODULEFILE), %(PRJFILE),

and %(WSPFILE).   

The sub-parameter is specified in the form of %(PRJFILE[PATH]). 

If the current directory is on the same drive, the relative path is used. The current directory is the workspace

directory for %(PRJFILE) and %(WSPFILE), and the project directory for other than them.
mber 1, 2014, CM25-00324-6Ea 17



CHAPTER 1  BASIC FUNCTIONS
1.11  Macro Descriptions Usable in Manager

S u p p o r t  S o f t  M a n u a l

18
Table 1.11-1 List of Macros that can be Specified 1 

Parameter Meaning 

%f Passed as full-path name of file. *1

%F Passed as main file name of file. *1 

%d Passed as directory of file. *1 

%e Passed as extension of file. *1

%a Passed as full-path name of load module file. 

%A Passed as main file name of load module file.  *2 

%D Passed as directory of load module file.  *2 

%E Passed as extension of load module file.  *2 

%x Passed as directory of project file.  *2 

%X Passed as main file name of project file.  *2 

%% Passed as %. 

Table 1.11-2 List of Macros that can be Specified 2 

Parameter Meaning 

%(FILE) Passed as full-path name of file. *1 

%(LOADMODULEFILE) Passed as full-path name of load module file.  *2 

%(PRJFILE) Passed as full-path name of project file.  *2 

%(WSPFILE) Passed as full-path name of workspace file.  *3

%(PRJPATH) Passed as directory of project file.  *2 

%(ABSPATH) Passed as directory of target file.  *2 

%(OBJPATH) Passed as directory of object file.  *2 

%(LSTPATH) Passed as directory of list file.  *2 

%(PRJCONFIG) Passed as project configuration name.  *2, *3

%(ENV [Environment variable]) 
Environment variable value specified in environment variable 
brackets is passed. 

%(TEMPFILE) Temporary file is created and its full-path name is passed. *4 
CM25-00324-6Ea, September 1, 2014



CHAPTER 1  BASIC FUNCTIONS
1.11  Macro Descriptions Usable in Manager

S u p p o r t  S o f t  M a n u a l

Septe
*1:The macros are determined as follows: 

• Customize build 

1. Source file before and after executing compiler and assembler 

2. Target file before and after executing linker, librarian and converter 

3. Configuration file before and after executing configuration 

• Tool options 

Null character 

• Others 

1. File as focus is on the SRC tab of project window and valid file name is selected 

2. File on which focus is in internal editor as no valid file name can be obtained in 1 

3. Null character if no valid file name can be obtained 

*2:The macros are determined as follows: 

• Customize build and tool options 

Information on configuration of project under building, making, compiling and assembling 

• Others 

1. Information on active configuration of project in which file is stored as focus is on the SRC tab of

project window and valid file name is selected 

2. Information on active configuration of active project if no valid file name can be obtained in 1 

*3:The macros can use only the project of the workspace project format.

*4:The content of a temporary file can be specified only with customize build. 

*: The macros can use only the project of the workspace project format.

Table 1.11-3 List of Sub parameters 1

Sub parameter Meaning 

[PATH] Directory of file 

[RELPATH] Relative path of file 

[NAME]  Main file name of file 

[EXT] Extension of file 

[SHORTFULLNAME] Full path name of short file 

[SHORTPATH] Directory of short file 

[SHORTNAME] Main file name of short file 

[FOLDER] 
Name of folder in which files are stored in the SRC tab of project window 
(Can be specified only in %(FILE).) * 
mber 1, 2014, CM25-00324-6Ea 19



CHAPTER 1  BASIC FUNCTIONS
1.11  Macro Descriptions Usable in Manager

S u p p o r t  S o f t  M a n u a l

20
■ Examples of Macro Expansion 
If a workspace is opened in the following setting, a macro expansion is carried out as shown in examples 1

to 3.

[Example 1] Macro expansion in external tools 

Focus is on Subprj project file in the SRC tab of project window. 

%a : C:\Subprj\Release\Abs\Subprj.abs 

%A : SUBPRJ.abs 

%D : C:\Subprj\Release\Abs\

%E : .abs 

%(FILE[FOLDER]) : Source Files\Common 

%(PRJFILE) : C:\Subprj\Subprj.prj 

Focus is not in the SRC tab of project window. 

%a : C:\Wsp\Sample\Debug\Abs\Sample.abs 

%A : Sample.abs 

%D : C:\Wsp\Sample\Debug\Abs\ 

%(PRJFILE) : C:\Wsp\Sample\Sample.prj 

[Example 2] Macro expansion in customize build 

Release configuration of Subprj project is built. 

%(FILE) : C:\Subprj\LongNameFile.c 

%(FILE[PATH]) : C:\Subprj 

%(FILE[RELPATH]): . 

%(FILE[NAME]) : LongNameFile 

%(FILE[EXT]) : .c 

%(FILE[SHORTFULLNAME]): C:\Subprj\LongFi~1.c 

%(FILE[SHORTPATH]): C:\Subprj 

%(FILE[SHORTNAME]): LongFi~1 

%(PRJFILE[RELPATH]): ..\Subprj 

%(PRJPATH) : C:\Subprj 

%(OBJPATH) : C:\Subprj\Release\Obj 

%(PRJCONFIG) : Release 

Workspace : C:\Wsp\Wsp.wsp 

Active project : C:\Wsp\Sample\Sample.prj 

Active project configuration - Debug 

Object directory : C:\Wsp\Sample\Debug\Obj\ 

Subproject : C:\Subprj\Subprj.prj 

Active project configuration - Release 

Object directory : C:\Subprj\Release\Obj\

Target file : C:\Subprj\Release\Abs\Subprj.abs 
CM25-00324-6Ea, September 1, 2014



CHAPTER 1  BASIC FUNCTIONS
1.11  Macro Descriptions Usable in Manager

S u p p o r t  S o f t  M a n u a l

Septe
%(ENV[FETOOL]) : C:\SOFTUNE 

%(TEMPFILE) : C:\Subprj\Release\Opt\_fs1056.TMP 
mber 1, 2014, CM25-00324-6Ea 21



CHAPTER 1  BASIC FUNCTIONS
1.11  Macro Descriptions Usable in Manager

S u p p o r t  S o f t  M a n u a l

22
[Example 3] Macro expansion in tool options 

Release configuration of Subprj project is built. 

%(FILE) :

%(PRJFILE[RELPATH]): ..\Subprj 

%(PRJPATH) : C:\Subprj 

%(OBJPATH) : C:\Subprj\Release\Obj 

%(PRJCONFIG) : Release 

%(ENV[FETOOL]) : C:\SOFTUNE 
CM25-00324-6Ea, September 1, 2014



CHAPTER 1  BASIC FUNCTIONS
1.12  Setting Operating Environment

S u p p o r t  S o f t  M a n u a l

Septe
1.12 Setting Operating Environment 

This section describes the functions for setting the SOFTUNE Workbench operating 
environment. 

■ Operating Environment 
Set the environment variables for SOFTUNE Workbench and some basic setting for the workspace. 

To set the operating environment, use the [Setup]-[Setup Development Environment] menu. 

● Environment Variables 

Environment variables are variables that are referenced to mainly using the language tools activated from

SOFTUNE Workbench. The semantics of an environment variable are displayed in the lower part of the

Setup dialog. However, the semantics are not displayed for environment variables used by tools added later

to SOFTUNE Workbench. 

When SOFTUNE Workbench and the language tools are installed in a same directory, it is not especially

necessary to change the environment variable setups. 

● Basic setups for workspace 

The following setups are possible. 

• Open the previously workspace at start up 

When starting SOFTUNE Workbench, it automatically opens the last opened workspace. 

• Display options while compiling/assembling 

Compile options or assemble options can be viewed in the Output window. 

• Save dialog before closing workspace

Before closing the workspace, a dialog asking for confirmation of whether or not to save the workspace
to the file is displayed. If this setting is not made, SOFTUNE Workbench automatically saves the
workspace without any confirmation message. 

• Save dialog at compiling/assembling 

Before compiling/assembling, a dialog asking for confirmation of whether or not to save a source file that

has not been saved is displayed. If this setting is not made, the file is saved automatically at compile/

assemble/make/build. 

• Termination message is highlighted at Make/Build 

At Compile, Assemble, Make, or Build, the display color of termination messages (Abort, No Error,
Warning, Error, Fatal error, or Failing During start) can be changed freely by the user. 

■ Reference Section 
Development Environment 

Note: 
Because the environment variables set here are language tools for the SOFTUNE Workbench, the
environment variables set on previous versions of SOFTUNE cannot be used. In particular, add the
set values of [User Include Directory] and [Library Search Directory] to [Project Settings]. 
mber 1, 2014, CM25-00324-6Ea 23



CHAPTER 1  BASIC FUNCTIONS
1.13  Debugger Types

S u p p o r t  S o f t  M a n u a l

24
1.13 Debugger Types 

This section describes the types of SOFTUNE Workbench debuggers. 

■ Type of Debugger
SOFTUNE Workbench integrates three types of debugger: a simulator debugger, emulator debugger and

monitor debugger.

Any one can be selected depending on the requirement. 

■ Simulator Debugger 
The simulator debugger simulates the MCU operations (executing instructions, memory space, I/O ports,

interrupts, reset, etc.) with software to evaluate a program. 

It is used for evaluating an uncompleted system and operation of individual units, etc. 

■ Emulator Debugger 
The emulator debugger is software to evaluate a program by controlling the emulator from a host computer

through a communications line (RS-232C, LAN, USB). 

Before using this debugger, the emulator must be initialized. 

■ Monitor Debugger 
The monitor debugger evaluates a program by putting it into an evaluation system and communicating with

a host.

An RS-232C interface and an area for the debug program are required within the evaluation system.
CM25-00324-6Ea, September 1, 2014



CHAPTER 1  BASIC FUNCTIONS
1.14  Memory Operation Functions

S u p p o r t  S o f t  M a n u a l

Septe
1.14 Memory Operation Functions 

This section describes the memory operation functions. 

■ Functions for Memory Operations 
• Display/Modify memory data 

Memory data can be display in the Memory window and modified. 

• Fill 

The specified memory area can be filled with the specified data. 

• Copy 

The data in the specified memory area can be copied to another area. 

• Compare 

The data in the specified source area can be compared with data in the destination area. 

• Search 

Data in the specified memory area can be searched. 

For further details of the above functions, refer to "3.11 Memory Window" in "SOFTUNE Workbench Operation

Manual". 

• Display/Modify C variables 

The names of variables in a C source file can be displayed in the Watch window and modified. 

• Setting Watch point 

By setting a watch point at a specific address, its data can be displayed in the Watch window. 

For further details of the above functions, refer to "3.13 Watch Window" in "SOFTUNE Workbench Operation

Manual". 
mber 1, 2014, CM25-00324-6Ea 25



CHAPTER 1  BASIC FUNCTIONS
1.15  Register Operations

S u p p o r t  S o f t  M a n u a l

26
1.15 Register Operations 

This section describes the register operations. 

■ Register Operations 
The Register window is opened when the [View] - [Register] menu is executed. The register and flag

values can be displayed in the Register window. 

For further details about modifying the register value and the flag value, refer to "4.4.4 Register" in

"SOFTUNE Workbench Operation Manual". 

The name of the register and flag displayed in the Register window varies depending on each MCU in use.

For the list of register names and flag names for the MCU in use, refer to "Appendix A Register Name

List" of "SOFTUNE Workbench Operational Manual".
CM25-00324-6Ea, September 1, 2014



CHAPTER 1  BASIC FUNCTIONS
1.16  Line Assembly and Disassembly

S u p p o r t  S o f t  M a n u a l

Septe
1.16 Line Assembly and Disassembly 

This section describes line assembly and disassembly. 

■ Line Assembly 
To perform line-by-line assembly (line assembly), right-click anywhere in the Disassembly window to

display the short-cut menu, and select [Inline Assembly]. For further details about assembly operation, refer

to "4.4.3 Assembly" in "SOFTUNE Workbench Operation Manual". 

■ Disassembly 
To display disassembly, use the [View]-[Assembly] menu. By default, disassembly can be viewed starting

from the address pointed by the current program counter (PC). However, the address can be changed to any

desired address at start-up. 

Disassembly for an address outside the memory map range cannot be displayed. If this is attempted, "???"

is displayed as the mnemonic. 
mber 1, 2014, CM25-00324-6Ea 27



CHAPTER 1  BASIC FUNCTIONS
1.17  Symbolic Debugging

S u p p o r t  S o f t  M a n u a l

28
1.17 Symbolic Debugging 

The symbols defined in a source program can be used for command parameters 
(address). There are three types of symbols as follows: 
• Global Symbol 
• Static Symbol within Module (Local Symbol within Module) 
• Local Symbol within Function 

■ Types of Symbols 
A symbol means the symbol defined while a program is created, and it usually has a type. Symbols become

usable by loading the debug information file. 

Furthermore, for symbol of C language, it recognizes the type and executes the command.

There are three types of symbols as follows: 

• Global symbol 

A global symbol can be referenced to from anywhere within a program. In C language, variables and
functions defined outside a function without a static declaration are in this category. In assembler,
symbols with a PUBLIC declaration are in this category. 

• Static symbol within module (Local symbol within module) 

A static symbol within module can be referenced to only within the module where the symbol is defined. 

In C language, variables and functions defined outside a function with a static declaration are in this
category. In assembler, symbols without a PUBLIC declaration are in this category. 

• Local symbol within function 

A local symbol within a function exists only in C language. A static symbol within a function and an
automatic variable are in this category. 

- Static symbol within function

Out of the variables defined in function, those with static declaration. 

- Automatic variable

Out of the variables defined in function, those without static declaration and parameters for the

function. 

■ Setting Symbol Information 
Symbol information in the file is set with the symbol information table by loading a debug information file.

This symbol information is created for each module. 

The module is constructed for each source file to be compiled in C language, in assembler for each source

file to be assembled. 

The debugger automatically selects the symbol information for the module to which the PC belongs to at

abortion of execution (Called "the current module"). A program in C language also has information about

which function the PC belongs to. 
CM25-00324-6Ea, September 1, 2014



CHAPTER 1  BASIC FUNCTIONS
1.17  Symbolic Debugging

S u p p o r t  S o f t  M a n u a l

Septe
■ Line Number Information 

Line number information is set with the line number information table in SOFTUNE Workbench when a

debug information file is loaded. Once registered, such information can be used at anytime thereafter. Line

number is defined as follows: 

[Source File Name]    $Line Number
mber 1, 2014, CM25-00324-6Ea 29



CHAPTER 1  BASIC FUNCTIONS
1.17  Symbolic Debugging

S u p p o r t  S o f t  M a n u a l

30
1.17.1 Referring to Local Symbols 

This section describes referring to local symbols and Scope. 

■ Scope 
When a local symbol is referenced to, Scope is used to indicate the module and function to which the local

symbol to be referenced belongs. 

SOFTUNE Workbench automatically scopes the current module and function to refer to local symbols in

the current module with preference.   This is called the Auto-scope function, and the module and function

currently being scoped are called the Current Scope. 

When specifying a local variable outside the Current Scope, the variable name should be preceded by the

module and function to which the variable belongs. This method of specifying a variable is called a symbol

path name or a Search Scope. 

■ Moving Scope 
As explained earlier, there are two ways to specify the reference to a variable: by adding a Search Scope

when specifying the variable name, and by moving the Current Scope to the function with the symbol to be

referenced to. The Current Scope can be changed by displaying the Call Stack dialog and selecting the

parent function. For further details of this operation, refer to "4.6.7 Stack" in "SOFTUNE Workbench

Operation Manual". Changing the Current Scope as described above does not affect the value of the PC. 

By moving the current scope in this way, you can search a local symbol in parent function with precedence. 

■ Specifying Symbol and Search Procedure 
A symbol is specified as follows: 

When a symbol is specified using the module and function names, the symbol is searched. However, when

only the symbol name is specified, the search is made as follows: 

1. Local symbols within function in Current Scope 

2. Static symbols within module in Current Scope 

3. Global symbols 

If a global symbol has the same name as a local symbol in the Current Scope, specify "\" or "::" at the start

of global symbol. By doing so, you can explicitly show that is a global symbol. 

An automatic variable can be referenced to only when the variable is in memory. Otherwise, specifying an

automatic variable causes an error. 

[[Module Name] [\Function Name] \] Symbol Name
CM25-00324-6Ea, September 1, 2014



CHAPTER 1  BASIC FUNCTIONS
1.17  Symbolic Debugging

S u p p o r t  S o f t  M a n u a l

Septe
1.17.2 Referring to Variables of C Language

Variables of C language can be specified using the same descriptions as in the source 
program written in C language. 

■ Specifying Variables of C Language
Variables of C language can be specified using the same descriptions as in the source program. The address

of variables of C language should be preceded by the ampersand symbol "&". Some examples are shown in

the Table 1.17-1 . 

■ Notes on Symbols of C Language

The C compiler outputs symbol information with "_" prefixed to global symbols. For example, the symbol

main outputs symbol information _main. However, SOFTUNE Workbench permits access using the

symbol name described in the source to make program debugging described in C easier. 

Consequently, a symbol name described in C language and a symbol name described in assembler, which

should both be unique, may be identical. 

In such a case, the symbol name in the Current Scope normally is preferred. To refer to a symbol name

outside the Current Scope, specify the symbol with the module name. 

If there are duplicated symbols outside the Current Scope, the symbol name searched first becomes valid.

To refer to another one, specify the symbol with the module name. 

Table 1.17-1 Examples of Specifying Variables

Example of Variables
Example of Specifying 

Variables
Semantics

Regular Variable int  data; data Value of data

Pointer char  *p; *p Value pointed to by p

Array char  a[5]; a[1] Value of second element of a

Structure

struct stag { 
    char  c; 
    int   i; 
}; 
struct stag st; 
struct stag  *stp; 

st.c 
stp- >c 

Value of member c of st
Value of member c of the 
structure to which stp points

Union

union utag { 
    char  c; 
    int   i; 
} uni; 

uni.i Value of member i of uni

Address of variable int  data; &data Address of data

Reference type
int i;
int  &ri =  i; 

ri Same as i
mber 1, 2014, CM25-00324-6Ea 31



CHAPTER 1  BASIC FUNCTIONS
1.17  Symbolic Debugging

S u p p o r t  S o f t  M a n u a l

32
 CM25-00324-6Ea, September 1, 2014



Septe

S u p p o r t  S o f t  M a n u a l
CHAPTER 2
DEPENDENCE FUNCTIONS

This chapter describes the functions dependent on 

F2MC-8L/8FX family MCU.

2.1  Simulator Debugger

2.2  Emulator Debugger (MB2141)

2.3  Emulator Debugger (MB2146-09/09A/09B)

2.4  Emulator Debugger (MB2146-08)

2.5  Emulator Debugger (MB2146-07)

2.6  Monitor Debugger
mber 1, 2014, CM25-00324-6Ea 33



CHAPTER 2  DEPENDENCE FUNCTIONS
2.1  Simulator Debugger

S u p p o r t  S o f t  M a n u a l

34
2.1 Simulator Debugger

This section describes the functions of the simulator debugger.

■ Simulator Debugger
The simulator debugger simulates the MCU operations with software to evaluate a program.

It is used to evaluate an uncompleted system, the operation of single units, etc.

■ Simulation Range
The simulator debugger simulates the MCU operations (instruction operations, memory space, interrupts,

reset, power-save consumption mode, etc.) with software. Peripheral I/Os, such as a timer, DMAC and

serial I/O, other than the CPU core of the actual chip are not supported as peripheral resources. I/O space to

which peripheral I/Os are connected is treated as memory space. There is a method for simulating interrupts

like timer interrupts, and data input to memory like I/O ports. For details, see the sections concerning I/O

port simulation and interrupt simulation.

• Instruction simulation

• Memory simulation

• I/O port simulation (Input port)

• I/O port simulation (Output port)

• Interrupt simulation

• Reset simulation

• Power-save mode simulation

Note:
• Of the low-power consumption modes, the following modes are excluded from the simulation

target.

- Clock mode

- Time-base timer mode
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.1  Simulator Debugger

S u p p o r t  S o f t  M a n u a l

Septe
2.1.1 Instruction Simulation

This section describes the instruction simulation executed.

■ Instruction Simulation

This simulates the operations of all instructions supported by the F2MC-8L/8FX. It also simulates the

changes in memory and register values due to such instructions.
mber 1, 2014, CM25-00324-6Ea 35



CHAPTER 2  DEPENDENCE FUNCTIONS
2.1  Simulator Debugger

S u p p o r t  S o f t  M a n u a l

36
2.1.2 Memory Simulation

This section describes the memory simulation executed.

■ Memory Simulation
The simulator debugger must first secure memory space to simulate instructions because it simulates the

memory space secured in the host machine memory.

One of the following operations is required.

• To secure the memory area, either use the [Setup] - [Memory Map] menu, or the SET MAP command in
the Command window.

• Load the file output by the Linkage Editor (Load Module File) using either the [Debug] - [Load target
file] menu, or the LOAD/OBJECT command in the Command window.

■ Simulation Memory Space
Memory space access attributes can be specified byte-by-byte using the [Setup] - [Memory Map] menu.

The access attribute of unspecified memory space is undefined.

The access attributes of the memory space, which was not specified by using the [Setup] - [Memory Map]

menu, remain undefined.

■ Memory Area Access Attributes
Access attributes for memory area can be specified as shown in Table 2.1-1 . A guarded access break

occurs if access is attempted against such access attribute while executing a program.   When access is

made by a program command, such access is allowed regardless of the attribute, CODE, READ or WRITE.

However, access to memory in an undefined area causes an error.

Table 2.1-1 Types of Access Attributes

Attribute Semantics

CODE Instruction operation enabled

READ Data read enabled

WRITE Data write enabled

undefined Attribute undefined (access prohibited)
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.1  Simulator Debugger

S u p p o r t  S o f t  M a n u a l

Septe
2.1.3 I/O Port Simulation

This section explains I/O port simulation executed.

■ I/O Port Simulation
The MCU operation against input port and output port is simulated. 

• Input port 

The following input port simulation methods are available. 

- Whenever a program writes data to the specified port, writing is executed to the specified data output

destination.

- Whenever instruction execution cycle count exceeds the specified cycle count, data is input to the

port. 

• Output port 

The following output port simulation methods are available. 

- Whenever a program calls the specified port, data is input from the specified data input source.

Up to 4096 port addresses can be set. 

■ Input Source or Output Destination
Input source at the input port, or output destination at the output port, can be specified to the following.

• File 

- A text file that can be created using an ordinary editor. 

Set the input data's delimiter to "," (comma). After reading the last data from the file, the data is read

again from the beginning of the file. 

- Binary file containing direct code 

• Terminal 

■ I/O Port Settings
I/O port settings can be configured using the following. 

• Dialog 

- I/O port configuration dialog

Refer to "4.7.2.1 I/O Port" in "SOFTUNE Workbench Operation Manual".

• Command 

- SET INPORT or SET OUTPORT

Refer to "1.20 SET INPORT" or "1.23 SET OUTPORT" in "SOFTUNE Workbench Command

Reference Manual". 
mber 1, 2014, CM25-00324-6Ea 37



CHAPTER 2  DEPENDENCE FUNCTIONS
2.1  Simulator Debugger

S u p p o r t  S o f t  M a n u a l

38
2.1.4 Interrupt Simulation

This section explains interrupt simulation.

■ Interrupt Simulation
The MCU operation in response to an interrupt request is simulated. 

Interrupts can be generated as follows: 

• While the program is being executed with a specified cycle count, interrupts are generated per specified
interrupt number, and overrides the interrupt generating conditions. 

• Interrupts are generated every time when the command execution cycle count exceeds the specified
cycle count. 

If interrupts are masked by the interrupt enable flag when the interrupt-generating conditions are
established, the interrupts are suspended. 

■ Control Methods of Interrupts
Interrupts are configured using the following methods.

• Dialog

- Interrupt dialog

Refer to section "4.7.2.2 Interrupts" of "SOFTUNE Workbench Operation Manual". 

• Command

- SET INTERRUPT

Refer to section "1.26 SET INTERRUPT" of "SOFTUNE Workbench Command Reference Manual". 
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.1  Simulator Debugger

S u p p o r t  S o f t  M a n u a l

Septe
2.1.5 Reset Simulation

This section explains reset simulation.

■ Reset Simulation
The operation of when MCU receives a reset signal is simulated.

At the moment, register is initialized.

The reset execution function by operation of MCU instructions, such as writing to RST bit in the standby

control register, is also supported.

■ Reset Control
Reset control can be achieved as follows. 

• Menu 

- [Debug] - [Reset MCU] menu 

Refer to section "4.6.3 Reset of MCU" of "SOFTUNE Workbench Operation Manual". 

• Command 

- RESET 

Refer to section "1.3 RESET" of "SOFTUNE Workbench Command Reference Manual." 
mber 1, 2014, CM25-00324-6Ea 39



CHAPTER 2  DEPENDENCE FUNCTIONS
2.1  Simulator Debugger

S u p p o r t  S o f t  M a n u a l

40
2.1.6 Low-Power Consumption Mode Simulation

This section describes the low-power consumption mode simulation.

■ Low-Power Consumption Mode Simulation
This simulator debugger can simulate the low-power consumption mode. 

Shifting to the low-power consumption mode can be done by writing to the standby control register. 

• When SLEEP bit is written 

Sleep mode is enabled, and [sleep] appears in the status bar. 

• When STOP bit is written 

Stop mode is enabled, and [stop] appears in the status bar. 

Upon execution of the program, interrupt request is generated, or it goes into a loop until the program

execution is terminated. Each cycle loop increments the cycle count by 1. 

During this period, I/O port processing can also be operated. 
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.1  Simulator Debugger

S u p p o r t  S o f t  M a n u a l

Septe
2.1.7 STUB Function

This section describes the STUB function which executes commands automatically 
when the breakpoint hit occurs.

■ Outline of STUB Function
The STUB function is supported so that a series of commands in the command list can automatically be

executed when a specified breakpoint is hit. The use of this function enables spot processing, such as

simple I/O simulation, external interrupt generation, and memory reprogramming, without changing the

main program.  This function is effective only when the simulator debugger is used.

■ Setting Method
The STUB function can be set by any of the following commands.

• Dialog

- Break Setting Dialog

Refer to "4.6.4 Breakpoint" of "SOFTUNE Workbench Operation Manual".

• Command

- SET BREAK

- SET DATABREAK

Refer to "3.1 SET BREAK (type 1)" or "3.10 SET DATABREAK (type 2)" of "SOFTUNE

Workbench Command Reference Manual".

execution starts

Breakpoint is hit

Break (STUB) processing

execution ends

P
ro

gr
am

 e
xe

cu
tio

n

Is there a breakpoint 
command list?

Re-execute 
(is no-break  specified)?

Execution restarts

YES

YES

NO

NO

Process a breakpoint command list 
(execute commands).

Execution stops
mber 1, 2014, CM25-00324-6Ea 41



CHAPTER 2  DEPENDENCE FUNCTIONS
2.1  Simulator Debugger

S u p p o r t  S o f t  M a n u a l

42
2.1.8 Break

This Debugger provides five types of break functions.  When by each break function 
aborts program execution, the address where a break occurred and the break factor are 
displayed.

■ Break Functions
This Debugger provides the following five types of break functions;

- Code break

- Data break

- Guarded access break

- Trace buffer-full break

- Forced break
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.1  Simulator Debugger

S u p p o r t  S o f t  M a n u a l

Septe
2.1.8.1 Code Break

It is a function that the simulator debugger aborts the program execution when the code 
access specified while executing the program is done.

■ Flow of Code Break
When the program reaches the breakpoint (Immediately before an instruction memory positional is

executed), the simulator debugger does the following processing.

1. The execution of the program is aborted (Before executing the instruction).

2. When the attainment frequency is checked, and it doesn't reach the attainment frequency of the specified
breakpoint, the program execution is restarted. It moves to 3 when it reaches the attainment frequency.

3. The memory position in which execution was aborted is displayed in the status bar.
The breakpoint can be set up to 65535 points or less.

When the code break occurs, the following message appears at the status bar.

Break at address by breakpoint

■ Setting Method
Set code break as follows.

• Command 

- SET BREAK

Refer to "3.1 SET BREAK (type 1)" of "SOFTUNE Workbench Command Reference Manual".

• Dialog 

- "Code" tab in breakpoint setting dialog

Refer to "4.6.4 Breakpoint" of "SOFTUNE Workbench Operation Manual".

• Window

- Source window/disassemble window

Refer to "3.7 Source Window" or "3.9 Disassemble Window" of "SOFTUNE Workbench Operation

Manual".
mber 1, 2014, CM25-00324-6Ea 43



CHAPTER 2  DEPENDENCE FUNCTIONS
2.1  Simulator Debugger

S u p p o r t  S o f t  M a n u a l

44
2.1.8.2 Data Break

It is a function that the simulator debugger aborts the program execution when the data 
access (read and write) specified while executing the program is done.

■ Flow of Data Break
The simulator debugger does the following processing when the program performs read/write  in the

breakpoint.

1. After the execution of the instruction is completed, the execution of the program is aborted.

2. It moves to 3 when the program execution is restarted when the access frequency is checked, and it
doesn't reach the access frequency of the specified data break, and it reaches the access frequency.

3. When it reaches the access frequency and the program execution is aborted, the following information is
displayed in the status bar:

• The memory position of the data breakpoint

• The memory position of the instruction in which it is writing (Or, reading) 

4. Next, the executed memory position is displayed.
Up to 65535 data break points can be set.

When the data break occurs, the following message appears at the status bar.

Break at address by databreak at access address

■ Setting Method
Set the data break as follows.

• Command 

- SET DATABREAK

Refer to "3.10 SET DATABREAK(type 2)" of "SOFTUNE Workbench Command Reference

Manual".

• Dialog 

- "Data" tab in breakpoint setting dialog

Refer to "4.6.4 Breakpoint" of "SOFTUNE Workbench Operation Manual".
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.1  Simulator Debugger

S u p p o r t  S o f t  M a n u a l

Septe
2.1.8.3 Guarded Access Break

It is a function to abort the program execution when the violation to the access 
attribute, doing the access, and guarded (An undefined area cannot be accessed) area 
are accessed.

■ Guarded Access Breaks 
It is a function to abort the program execution when the violation to the access attribute, doing the access,

and guarded (An undefined area cannot be accessed) area are accessed.

Guarded access break occurs in the following cases:

• Code Guarded

An instruction has been executed for an area having no code attribute.

• Read Guarded

A read has been attempted from the area having no read attribute.

• Write Guarded

A write has been attempted to an area having no write attribute.

When a break occurs due to a guarded break, the following message is displayed on the Status Bar.

Break at Address by guarded access {code/read/write} at Access Address

■ Setting Method
Set the access attribute as follows.

• Command 

- SET MAP

Refer to "1.13 SET MAP (type 1)" of  "SOFTUNE Workbench  Command Reference Manual".

• Dialog

- MAP Setting Dialog

Refer to "4.7.3 Memory Map" of  "SOFTUNE Workbench Operation Manual".
mber 1, 2014, CM25-00324-6Ea 45



CHAPTER 2  DEPENDENCE FUNCTIONS
2.1  Simulator Debugger

S u p p o r t  S o f t  M a n u a l

46
2.1.8.4 Trace Buffer-full Break

This function aborts the program execution when the trace buffer becomes buffer-full.

■ Trace Buffer-full Break 
This function aborts the program execution when the trace buffer becomes buffer-full.

When the trace buffer-full break occurs, the following message appears at the status bar.

Break at address by trace buffer full

■ Setting Method
Set the trace buffer-full break as follows.

• Command 

- SET TRACE/BREAK

Refer to "4.21 SET TRACE" of "SOFTUNE Workbench Command Reference Manual".

• Dialog 

- Trace setting dialog

Refer to "4.4.8 Trace" of "SOFTUNE Workbench Operation Manual".
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.1  Simulator Debugger

S u p p o r t  S o f t  M a n u a l

Septe
2.1.8.5 Forced Break

This function forcibly aborts the program execution to generate a break.

■ Forced Break 
This function forcibly aborts the program execution to generate a break.

When the forced break occurred, the following message appears at the status bar.

Break at address by command abort request

■ Generation Method
The methods of generating forced breaks are as follows.

• Menu

- [Debug]-[Abort] menu

Refer to "4.6.2 Abort" of "SOFTUNE Workbench Operation Manual".

• Command

- ABORT

Refer to "2.2 ABORT" of "SOFTUNE Workbench Command Reference Manual".
mber 1, 2014, CM25-00324-6Ea 47



CHAPTER 2  DEPENDENCE FUNCTIONS
2.1  Simulator Debugger

S u p p o r t  S o f t  M a n u a l

48
2.1.9 Measuring the Number of Execution Cycles

This function measures the number of program execution cycles.

■ Items to be Measured
Program execution cycle count and step count are measured. 

1. Execution cycle count 

Basic cycle count of each instruction, as stated in the programming manual, is calculated. 

The maximum measurement value is 232 -1, i.e., 4,294,967,295 cycles. 

2. Execution step count 

Program execution step count is measured. 

Up to 232 -1, i.e., 4,294,967,295 steps, can be measured. 

Measurement is done for each program execution, and the results indicate the following. 

• The previously recorded program execution step count 

• The sum of execution step count after the recent clearance. 

■ Displaying of Measurement Result
The measurement result can be displayed using the following method.

• Dialog

- Time measurement dialog

Refer to section "4.6.8 Time Measurement" of "SOFTUNE Workbench Operation Manual".

• Command

- SHOW TIMER

Refer to "4.19 SHOW TIMER" of "SOFTUNE Workbench Command Reference Manual".

■ Clearing of Measurement Result
The measurement result can be cleared using the following method.

• Dialog

- Time measurement dialog

Refer to section "4.6.8 Time Measurement" of "SOFTUNE Workbench Operation Manual".

• Command

- CLEAR TIMER

Refer to "4.20 CLEAR TIMER" of "SOFTUNE Workbench Command Reference Manual".
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.1  Simulator Debugger

S u p p o r t  S o f t  M a n u a l

Septe
2.1.10 To Refer to a Program Execution History, Use [TRACE]

This section describes the trace function of this simulator debugger.

■ Trace Functions
Trace is a function that records program execution record.

Trace data includes the following information that can be used to analyze the program execution record.

• Record of addresses where programs were executed: this includes the record before/after branch
instructions

• Data accessed while programs are executed: only the specified attributes are included

■ Acquisition of Trace Data
Trace data acquisition is started/ended at the following timing.

• Acquisition starts

- When a user program is executed

• Acquisition ends

- When a user program is stopped

■ Trace Buffer
A single data unit stored in the trace buffer is called a frame.

The trace buffer can contain up to 1001 frames.

Trace buffer is a ring buffer; when it becomes buffer-full, the new record automatically replaces the oldest

record in the buffer.

Figure 2.1-1  describes how data is stored in the trace buffer.

• When break halts program execution

Figure 2.1-1  Acquisition of trace data

Start Suspend Start Suspend

Program flow

Trace buffer

|------------- 1001 frames maximum -------------|
mber 1, 2014, CM25-00324-6Ea 49



CHAPTER 2  DEPENDENCE FUNCTIONS
2.1  Simulator Debugger

S u p p o r t  S o f t  M a n u a l

50
2.1.10.1 Displaying Trace Data

This section describes how to display trace data.

■ Display Formats of Trace Data
Two trace data diplay formats are available as follows.

Instruction : displays trace data in the order of command execution

Source : displays trace data by source row

■ Display Position of Trace Data
Each of the sampled trace data is numbered per frame. This number is called a frame number.

By specifying a frame number, display positioning within the trace buffer can be specified.

The most recently sampled trace data is numbered as 0.

Figure 2.1-2  Frame Numbers at the Time of Tracing

■ Display Methods of Trace Data
Trace data can be displayed in the trace window or the command window.

The following methods can be used. In either case, the same data can be accessed.

• Displaying via the trace window

1. Display the trace window.

- Select [Display] - [Trace] in the menu.

2. Select the display mode of the trace window.

- Right-click on the trace window. In the pop-up menu, select either [Instruction] or [Source]. 

Refer to section "3.14 Trace Window" of "SOFTUNE Workbench Operation Manual" for detailed

information.

3. Trace data can be updated (if the trace window is already displayed).

- Right-click on the trace window. In the pop-up menu, select [Update]. Trace data in the trace

window is updated. 

Refer to section "3.14 Trace Window" of "SOFTUNE Workbench Operation Manual" for detailed

information.

Frame number 0     1     2     3     4     5     6

Program flow
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.1  Simulator Debugger

S u p p o r t  S o f t  M a n u a l

Septe
• Displaying via the command window

1. Display the trace data per display mode.

For instruction: SHOW TRACE

For source: SHOW TRACE

Refer to section "4.15 SHOW TRACE (type2)" of "SOFTUNE Workbench Command Reference
Manual" for detailed information.
mber 1, 2014, CM25-00324-6Ea 51



CHAPTER 2  DEPENDENCE FUNCTIONS
2.1  Simulator Debugger

S u p p o r t  S o f t  M a n u a l

52
2.1.10.2 Saving Traced Data

This section explains the methods to save trace data.

■ To Save Trace Data
Trace data can be saved into a specified file. 

Both GUI (via window or dialog) and command-only methods can be used. These methods give the same

results. 

• Saving via GUI 

1. Display the trace window. 

- Select [Display] - [Trace] in the menu. 

2. Specify a file name to which the trace data will be saved. 

- Right-click on the trace window, and select [save] in the pop-up menu. "Save As..." dialog is

displayed. 

Here, specify the file name and directory to where you wish to store the file. Refer to section

"4.4.8 Trace" of "SOFTUNE Workbench Operation Manual" for detailed information. 

• Saving via command 

Save the trace data. 

- Execute SHOW TRACE/FILE command. 

Refer to section "4.16 SHOW TRACE (type 1)" of "SOFTUNE Workbench Command Reference

Manual" for detailed information. 

To append and save data to an existing file, execute SHOW TRACE/FILE/APPEND command. 
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.1  Simulator Debugger

S u p p o r t  S o f t  M a n u a l

Septe
2.1.10.3 Searching Traced Data

This section explains the methods to search trace data.

■ Searching of Trace Data
This function searches for trace data with a specified address or frame number.

Both GUI (via window or dialog) and command-only methods can be used. These methods give the same

results. 

• Searching via GUI 

1. Display the trace window. 

- Select [Display] - [Trace] in the menu. 

2. Specify the address or the frame number that you wish to search. 

- Right-click on the trace window, and select [search] in the pop-up menu. Trace search dialog is

displayed. 

Here, specify the address or the frame number that you wish to be displayed. Refer to section

"4.4.8 Trace" of "SOFTUNE Workbench Operation Manual" for detailed information. 

• Searching via command 

Search the trace data. 

- Execute SEARCH TRACE command. 

Refer to section "4.23 SEARCH TRACE" of "SOFTUNE Workbench Command Reference

Manual" for detailed information. 
mber 1, 2014, CM25-00324-6Ea 53



CHAPTER 2  DEPENDENCE FUNCTIONS
2.1  Simulator Debugger

S u p p o r t  S o f t  M a n u a l

54
2.1.10.4 To Terminate Trace Obtention

This section describes the buffer full break which terminates trace obtention when the 
trace buffer becomes full.

■ Buffer-full Break
When the trace buffer becomes full, trace obtention can be terminated. This function is called trace buffer-

full break.

■ Configuration
Controlling of trace buffer-full break can be done using the following methods. 

• Setting via GUI 

1. Display the trace window. 

- Select [Display] - [Trace] in the menu. 

2. Trace configuration dialog is displayed. 

- Right-click on the trace window, and select [Setup] in the short-cut menu. In the trace setup dialog

displayed, select [Enabled] under [Buffer-full break]. 

Refer to section "4.4.8 Trace" of "SOFTUNE Workbench Operation Manual" for detailed

information. 

• Setting via command 

Configure trace buffer-full break. 

- Execute SET TRACE /BREAK command. 

Refer to section "4.21 SET TRACE" of "SOFTUNE Workbench Command Reference Manual"

for detailed information. 
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.1  Simulator Debugger

S u p p o r t  S o f t  M a n u a l

Septe
2.1.11 Confirming the Debugger's State

This section explains various methods of confirming the debugger's state and its 
information.

■ Debugger Information
The following information can be obtained at the debugger's startup. 

• File information of SOFTUNE Workbench 

If problems are encountered with SOFTUNE Workbench and its behavior, refer to the information before
contacting the Sales Representatives. 

■ Confirmation Method
Debugger's information can be confirmed as follows.

• Command

- SHOW SYSTEM

Refer to section "1.12 SHOW SYSTEM" of "SOFTUNE Workbench Command Reference Manual".

• Dialog

- Version information dialog

Refer to section "4.9.3 Version Information" of "SOFTUNE Workbench Operation Manual".

■ Content to be Displayed
F2MC-8L/8FX Family SOFTUNE Workbench VxxLxx 
(c) Copyright Spansion, All Rights Reserved 1997-2014
=======================================================
Cpu information file path : Path to the CPU information file 
Cpu information file version : Version of the CPU information file 
=======================================================
Add in DLLs 
-------------------------------------------------------
SiCmn 
Product name : SOFTUNE Workbench 
File Path : Path to SiC896.dll 
Version : Version of SiC896.dll 

- - - - - - - - - - - - - - - - - - - - - - - - - - - -
SiiEd 
File Path : Path to SiiEd3.ocx 
Version : Version of SiiEd3.ocx 

-------------------------------------------------------
SiM896 
Product name : SOFTUNE Workbench 
File Path : Path to SiM896.dll 
Version : Version of SiM896.dll 

- - - - - - - - - - - - - - - - - - - - - - - - - - - -
Language Tools 
- Compiler 

File Path : Path to fcc896s.exe 
- Assembler 

File Path : Path to fasm896s.exe 
 - Linker 

File Path : Path to flnk896s.exe 
 - Librarian 

File Path : Path to flib896s.exe 
 - FJ-OMF to S-FORMAT Converter 

File Path : Path to f2ms.exe 
 - FJ-OMF to INTEL-HEX Converter 

File Path : Path to f2is.exe 
mber 1, 2014, CM25-00324-6Ea 55



CHAPTER 2  DEPENDENCE FUNCTIONS
2.1  Simulator Debugger

S u p p o r t  S o f t  M a n u a l

56
 - FJ-OMF to INTEL-EXT-HEX Converter 
File Path : Path to f2es.exe 

 - FJ-OMF to HEX Converter 
File Path : Path to f2hs.exe 

-------------------------------------------------------
SiOsM 
Product name : SOFTUNE Workbench 
File Path : Path to SiOsM896.dll 
Version : Version of SiOsM896.dll 

-------------------------------------------------------
F2MC-8L/8FX Family Debugger DLL 
Product name : SOFTUNE Workbench 
File Path : Path to SiD896.dll 
Version : Version of SiD896.dll 

- - - - - - - - - - - - - - - - - - - - - - - - - - - -
Debugger type : Current debugger type 
MCU type : Currently selected target MCU 
VCpu dll name : Path and name of currently selected virtual debugger section DLL 
VCpu dll version : Version of currently selected virtual debugger section DLL 
-------------------------------------------------------
SiIODef 
Product name : SOFTUNE Workbench 
File Path : Path to SiIODef.dll 
Version : Version of SiIODef.dll 

=======================================================
Current path : Currently specified project path 
Language : Currently selected language 
Help file path : Path to the help files 
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
2.2 Emulator Debugger (MB2141)

This section explains the functions of the emulator debugger (MB2141).

■ Emulator Debugger
The emulator debugger is a software to evaluate a program by controlling an emulator from a host

computer via a communications line (RS-232C, LAN).

■ Before Use
When using MB2141, first initialize the emulator by referring to "Appendix B Downloading Monitor

Program" and "Appendix C Setting LAN Interface"of "SOFTUNE Workbench Operation Manual".
mber 1, 2014, CM25-00324-6Ea 57



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

58
2.2.1 Setting Operating Environment

This section explains the operating environment setup.

■ Operating Environment
For the emulator debugger for the MB2141, it is necessary to set the following items according the

operating environment.  Predefined default settings for all these setup items are enabled at startup.

Therefore, it is not required to change the settings when using the default settings.  Adjusted settings can be

used as new default settings from the next time.

- MCU operation mode

- Memory Mapping

- Timer Minimum Measurement Unit
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
2.2.1.1 MCU Operation Mode

This section explains MCU operation mode.

■ MCU Operation Mode
There are three MCU operation modes as follows:

• Single chip mode (Mode 0)

• External ROM mode (Mode 1)

• Internal ROM mode with external access function (Mode 2)

The MCU operation mode varies depending on the product type.

Refer to the Hardware Manual for each MCU for further details.

Figure 2.2-1  MCU Modes and Memory Mapping

As shown in Figure 2.2-1 , memory mapping operation varies depending on MCU mode. Internal RAM

area (internal RAM, internal register, and internal I/O) cannot map to the emulation memory because it

accesses internal MCU regardless of mapping setup.

0000H

FFFFH

Mode 0 Mode 1

Internal ROM Area: The emulation memory is substituted 
for this area. Always map to the emulation memory. 

  External Access Area: Can be mapped freely to the emulation 
memory and user memory.

Non-Access Area: Can be mapped to the emulation memory. 

Internal Access Area: Access is performed to MCU internal 
memory regardless of the mapping setup.

Internal I/O Area 

Internal RAM

Internal ROM

Internal RAM Internal RAM

Internal ROM 

Internal
ROM

Internal I/O Area Internal I/O Area

Mode 2
mber 1, 2014, CM25-00324-6Ea 59



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

60
2.2.1.2 Memory Area Types

This section explains memory area.

■ Memory Area Types
A unit to allocate memory is called an area. Up to 20 areas can be set in 1-byte units. There is no limit on

the size of an area. An access attribute can be set for each area.

There are three different area types as follows:

• User Memory Area

Memory space in the user system is called the user memory area and this memory is called the user
memory.

To set the user memory area, use the SET MAP command.

• Emulation Memory Area

Memory space substituted for emulator memory is called the emulation memory area, and this memory is
called emulation memory.

The user system bus master (DMAC, etc.) cannot access emulation memory.

To set the emulation memory area, use the SET MAP command.

• Undefined Area

A memory area that does not belong to any of the areas described above is part of the user memory area.
This area is specifically called the undefined area.

The undefined area can be set to either NOGUARD area, which can be accessed freely, or GUARD area,
which cannot be accessed. Select either setup for the whole undefined area. If the area attribute is set to
GUARD, a guarded access error occurs if access to this area is attempted.
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
2.2.1.3 Memory Mapping

Memory space can be allocated to the user memory and the emulation memory, etc., 
and the attributes of these areas can be specified.
However, the MCU internal resources are not dependent on this mapping setup and 
access is always made to the internal resources.

■ Access Attributes for Memory Areas
The access attributes shown in Table 2.2-1  can be specified for memory areas.

A guarded access break occurs if access is attempted in violation of these attributes while executing a

program.

When access to the user memory area and the emulation memory area is made using program commands,

such access is allowed regardless of the READ, WRITE attributes. However, access to memory with the

GUARD attribute in the undefined area, causes an error.

When access is made to an area without the WRITE attribute by executing a program, a guarded access

break occurs after the data has been rewritten if the access target is the user memory area. However, if the

access target is the emulation memory area, the break occurs before rewriting. In other words, write-

protection (memory data cannot be overwritten by writing) can be set for the emulation memory area by not

specifying the WRITE attribute for the area.

This write-protection is only enabled for access made by executing a program, and is not applicable to

access by commands.

■ Creating and Displaying Memory Map
Use the following commands for memory mapping.

• SET MAP: Sets memory map

• SHOW MAP: Displays memory map

• CANCEL MAP: Changes memory map setting to undefined

Table 2.2-1 Types of Access Attributes

Area Attribute Description

User Memory Read Data Read and Instruction Execution Enabled

Emulation Memory Write Data Write Enabled

Undefined GUARD
GUARD Access Disabled

NOGUARD No check of access attribute
mber 1, 2014, CM25-00324-6Ea 61



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

62
[Example]

>SET MAP /USER H'0..H'1FFF
>SET MAP /READ/EMULATION H'FF00..H'FFFF
>SET MAP/GUARD
>SHOW MAP
address attribute type
0000 .. 1FFF code read write user
FF00 .. FFFF code read emulation
---------------------------------------------------------------
undefined area : guard
setup possibility : user = 19 emulation=19
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
2.2.1.4 Timer Minimum Measurement Unit

The timer minimum measurement unit affects the sequencer, the emulation timer and 
the performance measurement timer.

■ Setting Timer Minimum Measurement Unit
Choose either 1 s or 100 ns as the timer minimum measurement unit for the emulator of measuring time.

The minimum measurement unit for the following timers is changed depending on this setup.

• Timer values of sequencer (timer conditions at each level)

• Emulation timer

• Performance measurement timer

Table 2.2-2  shows the minimum measurement time length of each timer when 1 s or 100 ns is selected as

the minimum measurement unit.

When the minimum measurement unit is changed, the measurement values of each timer are cleared as

well. The default setting is 1 s.

Use the following commands to control timers.

• SET TIMERSCALE : Sets minimum measurement unit for timers

• SHOW TIMERSCALE: Displays status of minimum measurement unit setting for timers

[Example]

Table 2.2-2 Minimum Measurement Time Length of Each Timer

1 s selected 100 ns selected

Sequencer timer About 16 s About 1.6 s

Emulation timer About 70 min About 7 min

Performance measurement timer About 70 min About 7 min

>SET TIMERSCALE/100N
>SHOW TIMERSCALE
Timer scale : 100ns
>

mber 1, 2014, CM25-00324-6Ea 63



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

64
2.2.2 On-the-fly Executable Commands

Certain commands can be executed even while executing a program. This is called "on-
the-fly" execution.

■ On-the-fly Executable Commands
Certain commands can be executed on-the-fly. If an attempt is made to execute a command that cannot be

executed on-the-fly, an error "MCU is busy" occurs. Table 2.2-3  lists major on-the-fly executable

functions. For further details, refer to the SOFTUNE Workbench Command Reference Manual.

Meanwhile, on-the-fly execution is enabled only when executing the MCU from the menu or the tool

button. On-the-fly commands cannot be executed when executing the GO command, etc., from the

command window.

Table 2.2-3 Major Functions Executable in On-the-fly Mode

Function Restrictions Major Commands

MCU reset - RESET

Displaying MCU execution status - SHOW STATUS

Displaying trace data
Enabled only when trace function 
disabled

SHOW TRACE
SHOW MULTITRACE

Enable/Disable trace -
ENABLE TRACE
DISABLE TRACE

Displaying execution time 
measurement value (Timer)

- SHOW TIMER

Memory operation
(Read/Write)

Emulation memory only operable
Read only enabled in mirror area

ENTER
EXAMINE
COMPARE
FILL
MOVE
DUMP
SEARCH MEMORY
SHOW MEMORY
SET MEMORY

Line assembly, Disassembly
Emulation memory only enabled
Mirror area, Disassembly only 
enabled

ASSEMBLE
DISASSEMBLE
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
2.2.3 On-the-fly Memory Access

While on-the-fly, the area mapped to the emulation memory is Read/Write enabled, but 
the area mapped to the user memory is Read-only enabled.

■ Read/Write Memory while On-the-fly
The user memory cannot be accessed while on-the-fly (executing MCU). However, the emulation memory

can be accessed. (The cycle-steal algorithm eliminates any negative effect on the MCU speed.)

This emulator allows the user to use part of the emulation memory as a mirror area. The mirror area holds a

copy of the user memory. Using this mirror area makes the user memory to Read-only enabled function

available while on-the-fly.

However, at least one time access must be allowed before the emulation memory with the mirror area

setting has the same data as the user memory. The following copy types allow the emulation memory with

the mirror area setting to have the same data as the user memory.

• Copying only required portion using memory access commands

Data in the specified portion can be copied by executing a command that accesses memory. The
following commands access memory.

- Memory operation commands

SET MEMORY, SHOW MEMORY, EXAMINE, ENTER, COMPARE, FILL, MOVE, 

SEARCH MEMORY, DUMP, COPY, VERIFY

- Data load/save commands

LOAD, SAVE

Figure 2.2-2  Access to Mirror Area while MCU Suspended

Executing 
command

Emulation memory 
(Mirror setting) 

User memory 
MCU

operation 
(Suspended) 

Memory access 

Reflected 
mber 1, 2014, CM25-00324-6Ea 65



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

66
Figure 2.2-3  On-the-fly Access to Mirror Area

Note:
Memory access by a bus master other than the MCU is not reflected in the mirror area. 

Executing 
command

Emulation memory 
(Mirror setting) 

User memory 
MCU

operation 
(Operating) 

Memory read 

Reflected 

Memory access 
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
2.2.4 Break

This Debugger provides seven types of break functions.  When by each break function 
aborts program execution, the address where a break occurred and the break factor are 
displayed.

■ Break Functions
This Debugger provides the following seven types of break functions;

- Code break

- Data break

- Sequential break

- Guarded access break

- Trace buffer-full break

- Performance buffer-full break

- Forced break
mber 1, 2014, CM25-00324-6Ea 67



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

68
2.2.4.1 Code Break

This function aborts the program execution by monitoring a specified address by 
software. A break occurs before executing an instruction at the specified address.

■ Code Break 
This function aborts the program execution by monitoring a specified address by software. A break occurs

before executing an instruction at the specified address.

Up to 65535 addresses can be set for this debugger.

When the code break occurs, the following message appears at the status bar.

Break at address by breakpoint

■ Setting Method
Set code break as follows.

• Command 

- SET BREAK

Refer to "3.1 SET BREAK (type 1)" of "SOFTUNE Workbench Command Reference Manual".

• Dialog 

- "Code" tab in breakpoint setting dialog

Refer to "4.6.4 Breakpoint" of "SOFTUNE Workbench Operation Manual".

• Window

- Source window/disassemble window

Refer to "3.7 Source Window" or "3.9 Disassemble Window" of "SOFTUNE Workbench Operation

Manual".

■ Notes on Instruction Execution Break
If a break point is set after the instruction shown in Figure 2.2-4 , a break occurs before the instruction is

executed. As the debugger is designed to perform step execution internally and cause a break after the

execution, only the last one instruction cannot be executed in real time.
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
Figure 2.2-4  List of Instructions Affecting Instruction Execution Break

If an instruction execution break is set following the 1-byte branch instruction shown below, it occurs

immediately after the instruction is executed, because the 1-byte branch instruction is affected by prefetch

of the next instruction when executed. Instructions when the instruction execution break is set are  just

prefetched but not executed.

To avoid this, set the instruction execution break shifted one byte or set a breakpoint using the SET

EVENT/CODE command, which is unaffected by prefetch.

RET RETI JMP @A CALLV #vct
mber 1, 2014, CM25-00324-6Ea 69



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

70
2.2.4.2 Data Break

It is a function to abort the program execution when the data access (read or write) is 
done to a specified address.

■ Data Break 
This function aborts the program execution when a data access (read/write) is made to a specified address.

Up to 65535 data break points can be set for this debugger.

When the data break occurs, the following message appears at the status bar.

Break at address by databreak at access address

■ Setting Method
Set the data break as follows.

• Command 

- SET DATABREAK

Refer to "3.10 SET DATABREAK(type 2)" of "SOFTUNE Workbench Command Reference

Manual".

• Dialog 

- "Data" tab in breakpoint setting dialog

Refer to "4.6.4 Breakpoint" of "SOFTUNE Workbench Operation Manual".
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
2.2.4.3 Sequential Break

A sequential break is a function to abort an executing program, when the sequential 
condition is met by event sequential control.

■ Sequential Break 
A sequential break is a function to abort an executing program, when the sequential condition is met by

event sequential control. Use a sequential break when the event mode is set to normal mode using the SET

MODE command. When a break occurs due to a sequential break, the following message is displayed on

the Status Bar.

     Break at Address by sequential break (level = Level No.)

Refer to "2.2.6  Control by Sequencer" for details of the sequential break  function.

■ Setting Method
Set the sequential break using the following procedure:

1. Set event mode.

• Dialog

- Debug Environment Setting Dialog

Refer to "4.7.2.3 Debug Environment" of "SOFTUNE Workbench Operation Manual".

• Command

- SET MODE

Refer to "1.4 SET MODE" of "SOFTUNE  Workbench Command Reference Manual".

2. Set events

• Dialog

- Event Setting Dialog

Refer to "4.6.5 Event" of "SOFTUNE Workbench Operation Manual".

• Command

- SET EVENT

Refer to "3.15 SET EVENT" of "SOFTUNE Workbench Command Reference Manual".

3. Set sequencer

• Dialog

- Sequence Setting Dialog

Refer to "4.6.6 Sequence" of "SOFTUNE Workbench Operation Manual".

• Command

- SET SEQUENCE

Refer to "3.20 SET SEQUENCE" of "SOFTUNE Workbench Command Reference Manual".
mber 1, 2014, CM25-00324-6Ea 71



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

72
2.2.4.4 Guarded Access Break

A guarded access break aborts an executing program when accessing in violation of 
the access attribute and accessing a guarded area (undefined area in undefined area).

■ Guarded Access Breaks 
A guarded access break aborts an executing program when accessing in violation of the access attribute,

and accessing a guarded area (undefined area in undefined area).

A guarded access break occurs in the following cases:

1. Code Guarded

An instruction has been executed for an area having no code attribute.

2. Read Guarded

A read has been attempted from the area having no read attribute.

3. Write Guarded

A write has been attempted to an area having no write attribute.

If a guarded access occurs, the following message is displayed on the Status Bar.

Break at Address by guarded access {code/read/write} at Access Address

■ Setting Method
Set the access attribute as follows.

• Command

- SET MAP

Refer to "1.13 SET MAP (type 1)" of  "SOFTUNE Workbench  Command Reference Manual".

• Dialog

- MAP Setting Dialog

Refer to "4.7.3 Memory Map" of  "SOFTUNE Workbench Operation Manual".
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
2.2.4.5 Trace Buffer-full Break

This function aborts the program execution when the trace buffer becomes buffer-full.

■ Trace Buffer-full Break 
This function aborts the program execution when the trace buffer becomes buffer-full.

When the trace buffer-full break occurs, the following message appears at the status bar.

Break at address by trace buffer full

■ Setting Method
Set the trace buffer-full break as follows.

• Command 

- SET TRACE/BREAK

Refer to "4.21 SET TRACE" of "SOFTUNE Workbench Command Reference Manual".

• Dialog 

- Trace setting dialog

Refer to "4.4.8 Trace" of "SOFTUNE Workbench Operation Manual".
mber 1, 2014, CM25-00324-6Ea 73



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

74
2.2.4.6 Performance Buffer-full Break

It is a function to abort the program execution when the buffer for the performance 
measurement data storage becomes buffer-full.

■ Performance Buffer-full Break 
It is a function to abort the program execution when the buffer for the performance measurement data

storage becomes buffer-full.

When the performance buffer-full break occurs, the following message appears at the status bar.

Break at address by performance buffer full

■ Setting Method
Set the performance buffer-full break as follows.

• Command 

- SET PERFORMANCE/BREAK

Refer to "4.7 SET PERFORMANCE" of "SOFTUNE Workbench Command Reference Manual".

• Dialog 

- Performance setting dialog

Refer to "4.4.13 Performance" of "SOFTUNE Workbench Operation Manual".
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
2.2.4.7 Forced Break

This function forcibly aborts the program execution to generate a break.

■ Forced Break 
This function forcibly aborts the program execution to generate a break.

When the forced break occurred, the following message appears at the status bar.

Break at address by command abort request

■ Generation Method
 The methods of generating forced breaks are as follows.

• Menu

- [Debug]-[Abort] menu

Refer to "4.6.2 Abort" of "SOFTUNE Workbench Operation Manual".

• Command

- ABORT

Refer to "2.2 ABORT" of "SOFTUNE Workbench Command Reference Manual".

Note: 
The forced break cannot be generated when the MCU in the low power consumption mode or in the
hold state.  If the MCU is in the low power consumption mode or in the hold state when the strong
break is requested by the [Debug]-[Abort] menu during the program execution, the [Debug] - [Abort]
menu is ignored.  To generate a break forcibly, use the [Debug] - [Abort] menu to remove a factor by
the user system or use the [Debug]-[Reset of MCU] menu to remove it.  If the MCU enters the low
power consumption mode or the hold state during the program execution, the condition is displayed
at the status bar.
mber 1, 2014, CM25-00324-6Ea 75



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

76
2.2.5 Events 

The emulator can monitor the MCU bus operation, and generate a trigger at a specified 
condition called an event. 
In this emulator, event triggers are used in order to determine which function event 
triggers are used accounting to event modes for the following functions; 
• Sequencer 
• Sampling condition for multi-trace 
• Measuring point in performance measurement 

■ Setting Events 
Up to eight events can be set.

Table 2.2-4  shows the conditions that can be set for events. 

Notes: 
• In instruction execution, an event trigger is generated only when an instruction is executed. This

status cannot be specified concurrently with other status. 

• The data modify is a function to generate the event trigger when the data of specified address is
rewritten. When the data modify is specified in the status, the specified data is ignored. This
status cannot be specified concurrently with other status.

Use the following commands to set an event. 

SET EVENT: Sets event 

SHOW EVENT: Display event setup status 

CANCEL EVENT: Deletes event 

ENABLE EVENT: Enable event 

DISABLE EVENT: Disable event 

Table 2.2-4 Conditions for Setting Events

Condition Description 

Address Memory location (Address bit masking enabled) 

Data 
8-bit data (data bit masking enable) 
NOT specified enable

Status Select from among data read, data write, instruction execution and data modify. 

External probe 8-bit data (bit masking enable) 
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
[Example] 

>SET EVENT  1,func1 

>SET EVENT/WRITE 2,data[2],!d=h'10 

>SET EVENT/MODIFY 3,102 

An event can be set in the Event window as well. 

■ Event Modes 
There are three event modes as listed below. To determine which function event triggers are used for, select

one using the SET MODE command. The default is normal mode. 

The event value setting are made for each mode, so switching the event mode changes the event settings as

well. 

• Normal Mode 

Event triggers are used for sequencer. 

Since the sequencer can perform control at 8 levels, it can control sequential breaks, time measurement
and trace sampling. Real-time tracing in the normal mode is performed by single trace (tracing function
that samples program execution continuously). 

• Multi Trace Mode 

Event triggers are used for multitracing (trace function that samples data before and after event trigger
occurrence). 

• Performance Mode 

Event triggers are used for performance measurement to measure time duration between two event
trigger occurrences and count of event trigger occurrences. 
mber 1, 2014, CM25-00324-6Ea 77



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

78
2.2.5.1 Operation in Normal Mode 

As shown in the figure below, the event trigger set in the normal mode performs input to 
the sequencer. In the sequencer, either branching to any level, or terminating the 
sequencer, can be specified as an operation at event trigger occurrence. This enables 
debugging (breaks, limiting trace, measuring time) while monitoring program flow. 

■ Operation in Normal Mode 
The termination of sequencer triggers the delay counter. When the delay counter reaches the specified

count, sampling for the single trace terminates. A break normally occurs at this point, but if necessary, the

program can be allowed to run on without a break. 

Figure 2.2-5  Operation in Normal Mode

Events

SET EVENT

CANCEL EVENT

SHOW TRACE/STATUS

SHOW DELAY

DISABLE EVENT

ENABLE EVENT

SHOW EVENT

SHOW SEQUENCE level

SET
SEQUENCE/EVENT

CANCEL 
SEQUENCE/EVENT

SHOW SEQUENCE/ALL SET DELAY

SET 
SEQUENCE/TIMER

CANCEL
SEQUENCE/TIMER

SET SEQUENCE/DISABLE TRACE

SET SEQUENCE/ENABLE TRACE

SET SEQUENCE/NO TRACE
CLEAR TRACE

SEARCH TRACE

SHOW TRACE/DATA

ENABLE TRACE

DISABLE TRACE SET TRACE

Enable/Disable
   control

Enable

Disable

Select event number causing
trigger at each level, set
pass count value.

Timer setup
for each
condition

When each condition at each level met

When condition met

Delay
counter

Sequencer

Timer latch
When count ends

When count ends

Instructing MCU to
suspend operation

Buffer-full break
     control

Single trace measurement

Enable/Disable
   control

Measurement ends
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
■ Event-related Commands in Normal Mode 

Since the real-time trace function in the normal mode is actually the single trace function, the commands

can be used to control. 

Table 2.2-5  shows the event-related commands that can be used in the normal mode. 

Table 2.2-5 Event-related Commands in Normal Mode

Mode Usable Command Function 

Normal Mode 

SET EVENT 
SHOW EVENT 
CANCEL EVENT 
ENABLE EVENT 
DISABLE EVENT 

Sets event 
Displays event setup status 
Delete event 
Enables event 
Disables event 

SET SEQUENCE
SHOW SEQUENCE
CANCEL SEQUENCE
ENABLE SEQUENCE
DISABLE SEQUENCE

Sets sequencer 
Displays sequencer setup status 
Cancels sequencer 
Enables sequencer 
Disables sequencer 

SET DELAY
SHOW DELAY

Sets delay count 
Displays delay count setup status 

SET TRACE
SHOW TRACE
SEARCH TRACE
ENABLE TRACE
DISABLE TRACE
CLEAR TRACE

Sets trace buffer-full break 
Displays trace data 
Searches trace data 
Enables trace function 
Disables trace function 
Clears trace data 
mber 1, 2014, CM25-00324-6Ea 79



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

80
2.2.5.2 Operation in Multi Trace Mode 

When the multi trace mode is selected as the event mode, the real-time trace function 
becomes the multi trace function, and events are used as triggers for multitracing. 

■ Operation in Multi Trace Mode 
Multitracing is a trace function that samples data before and after an event trigger occurrence. When the

multi trace mode is selected as the event mode, the real-time trace function becomes the multi trace

function, and events are used as triggers for multitracing.

Figure 2.2-6  Operation in Multi Trace Mode

Events
Enable

Disable

All enabled events
generate trigger

Enable/Disable control Buffer full break control

Multitrace measurement

Instructing
MCU to
suspend
operation

SET EVENT

CANCEL EVENT DISABLE MULTITRACE

ENABLE MULTITRACE

SHOW MULTITRACE/STATUS

SET MULTITRACE

SEARCH MULTITRACE

SHOW MULTITRACE

CLEAR MULTITRACEDISABLE EVENT

ENABLE EVENT

SHOW EVENT
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
■ Event-related Commands in Multi Trace Mode 
Table 2.2-6  shows the event-related commands that can be used in the multitrace mode. 

Table 2.2-6 Event-related Commands in Multi Trace Mode

Mode Usable Command Function 

Multi Trace Mode 

SET EVENT 
SHOW EVENT 
CANCEL EVENT 
ENABLE EVENT 
DISABLE EVENT 

Sets event 
Displays event setup status 
Deletes event 
Enables event 
Disables event 

SET MULTITRACE
SHOW MULTITRACE
SEARCH MULTITRACE
ENABLE MULTITRACE
DISABLE MULTITRACE
CLEAR MULTITRACE

Sets trace buffer-full break 
Displays trace data 
Searches trace data 
Enables trace function 
Disables trace function 
Clears trace data 
mber 1, 2014, CM25-00324-6Ea 81



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

82
2.2.5.3 Operation in Performance Mode 

Event triggers set in the performance mode are used to measure performance. The time 
duration between two event occurrences can be measured and the event occurrences 
can be counted. 

■ Operation in Performance Mode 
The event triggers that are set in the performance mode are used to measure performance. The time

duration between two event occurrences can be measured and the event occurrences can be counted. 

Figure 2.2-7  Operation in Performance Mode

Events
Enable

Disable

Limited to following
combinations:

1,2  3,4  5,6  7,8

Buffer full break control

Performance measurement

Instructing
MCU to
suspend
operation

SET EVENT

CANCEL EVENT

SHOW PERFORMANCE/STATUS

SET PERFORMANCE

SHOW PERFORMANCE

CLEAR PERFORMANCEDISABLE EVENT

ENABLE EVENT

SHOW EVENT
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
■ Event-related Commands in Performance Mode 
Table 2.2-7  shows the event-related commands that can be used in the performance mode. 

Table 2.2-7 Event-related Commands in Performance Mode

Mode Usable Command Function 

Performance Mode 

SET EVENT 
SHOW EVENT 
CANCEL EVENT 
ENABLE EVENT 
DISABLE EVENT 

Sets event 
Displays event setup status 
Deletes event 
Enables event 
Disables event 

SET PERFORMANCE
SHOW PERFORMANCE
CLEAR PERFORMANCE

Sets performance 
Displays performance setup status 
Clears performance measurement data 
mber 1, 2014, CM25-00324-6Ea 83



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

84
2.2.6 Control by Sequencer 

This function aborts program execution when a program passes through a specified 
event based on a specific sequence under conditions of the event.

■ Sequence Function
This function aborts program execution when a program passes through a specified event based on a

specific sequence under conditions of the event. A break generated by this function is referred to as a

sequential break.

This function enables time measurement or sampling control as well as a break.

■ Use Conditions
To use the sequence function, set the event mode to the normal mode.

For details about setting, refer to one of the following.

"1.4 SET MODE" of "SOFTUNE Workbench Command Reference Manual"

"4.7.2.3 Debug Preferences" of "SOFTUNE Workbench Operation Manual"

■ Control by Sequencer 
As shown in Table 2.2-8 , controls can be made at 8 different levels. 

At each level, 8 events and 1 timer condition (9 conditions in total) can be set. 

A timer condition is met when the timer count starts at entering a given level and the specified time is

reached. 

For each condition, the next operation can be specified when the condition is met. Select any one of the

following. 

- Move to required level. 

- Terminate sequencer. 

The conditions set for each level are determined by OR. Therefore, if any one condition is met, the

sequencer either moves to the required level, or terminates. In addition, trace sampling suspend/resume can

be controlled when a condition is met. 

Table 2.2-8 Sequencer Specifications

Function Specifications 

Level count 8 levels 

Conditions settable for each level 

8 event conditions (1 to 16777216 times pass count can be 
specified for each condition.) 
1 timer condition (Up to 16 s. in 1s unit or up to 1.6 s. in 100 
ns units can be specified.*) 

Operation when condition met 
Branches to required level or terminates sequencer. 
Controls trace sampling. 

Other function Timer latch enable at level branching 

Operation when sequencer terminates Starts delay counter.
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
*: The minimum measurement unit for Timer value can be set to either 1 s or 100 ns using the SET

TIMERSCALE command. 
mber 1, 2014, CM25-00324-6Ea 85



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

86
2.2.6.1 Setting Sequencer 

The sequencer operates in the following order: 
1. The sequencer starts from level 1 simultaneously with the start of program executing. 
2. Depending on the setting at each level, branching to the required level is performed 

when the condition is met. 
3. When sequencer termination is specified, the sequencer terminates when the 

condition is met. 
4. When the sequencer terminates, the delay counter starts counting. 

■ Setting Sequencer 
Figure 2.2-8  shows the sequencer operation. 

Figure 2.2-8  Operation of Sequencer

Start executing program.  (Start sequencer.)

Set Conditions Operation when Condition Met

[Use event number 1?]   [Pass counter]

[Use event number 2?]   [Pass counter]

[Use event number 3?]   [Pass counter]

[Use event number 4?]   [Pass counter]

[Use event number 5?]   [Pass counter]

[Use event number 6?]   [Pass counter]

[Use event number 7?]   [Pass counter]

[Use event number 8?]   [Pass counter]

Timer condition  [Waiting time]

[Trace control] / [Branch level number]

[Trace control] / [Branch level number]

[Trace control] / [Branch level number]

[Trace control] / [Branch level number]

[Trace control] / [Branch level number]

[Trace control] / [Branch level number]

[Trace control] / [Branch level number]

[Trace control] / [Branch level number]

[Trace control] / [Branch level number]

Terminate
sequencer

Start delay count

Branch to specified level.
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
[Setup Examples] 

• Terminate sequencer when event 1 occurs. 

>SET SEQUENCE/EVENT 1,1,J=0 

• Terminate sequencer when event 2 occurs 16 times. 

>SET SEQUENCE/EVENT 1,2,16,J=0 

• Terminate sequencer when event 2 occurs after event 1 occurred. However, do not terminate sequencer
if event 3 occurs between event 1 and event 2. 

>SET SEQUENCE/EVENT 1,1,J=2 

>SET SEQUENCE/EVENT 2,2,J=0 

>SET SEQUENCE/EVENT 2,3,J=1 

• Terminate sequencer when event 2 occurs less than 300 s after event 1 occurred. 

>SET SEQUENCE/EVENT 1,1,J=2 

>SET SEQUENCE/EVENT 2,2,J=0 

>SET SEQUENCE/TIMER 2,300,J=1 

>SHOW SEQUENCE 

Sequencer Enable

 level1   level2   level3   level4   level5   level6   level7   level8

1 |1|->2  | |       | |       | |       | |       | |       | |       | |

2 | |  |2|->end | |       | |       | |       | |       | |       | |

3 | |  | |       | |       | |       | |       | |       | |       | |

4 | |  | |       | |       | |       | |       | |       | |       | |

5 | |  | |       | |       | |       | |       | |       | |       | |

6 | |  | |       | |       | |       | |       | |       | |       | |

7 | |  | |       | |       | |       | |       | |       | |       | |

8 | |  | |       | |       | |       | |       | |       | |       | |

T | |  |T|->1  | |       | |       | |       | |       | |       | |

 Latch 1 ( -> ) = Latch 2 ( -> ) =

>SHOW SEQUENCE 2

level no. = 2

event  pass-count    trace-cnt1   jmp-level1

2  1    enable   end

timer  00:00:000:300:000   enable   1

Indicates
move to level
2 when event
1 occurs at
level 1

Indicates terminating
sequencer when event 2
occurs at level 2.

Indicates move to level 1
when 300 µs passed before
event 2 occurs at level 2
mber 1, 2014, CM25-00324-6Ea 87



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

88
2.2.6.2 Break by Sequencer 

A program can aborts program execution when the sequencer terminates. This break is 
called a sequential break. 

■ Break by Sequencer 
A program can aborts program execution when the sequencer terminates. This break is called a sequential

break. 

As shown in Figure 2.2-9 , the delay count starts when the sequencer terminates, and after delay count

ends, either "break" or "not break but tracing only terminates" is selected as the next operation. 

To make a break immediately after the sequencer terminates, set delay count to 0 and specify "Break after

delay count terminates". Use the SET DELAY command to set the delay count and the operation after the

delay count. 

The default is delay count 0, and Break after delay count. 

Figure 2.2-9  Operation when sequencer terminates

[Examples of Delay Count Setups] 

• Break when sequencer terminates. 

>SET DELAY/BREAK 0 

• Break when 100-bus-cycle tracing done after sequencer terminates. 

>SET DELAY/BREAK 100 

• Terminate tracing, but do not break when sequencer terminates. 

>SET DELAY/NOBREAK 0 

• Terminate tracing, but do not break when 100-bus-cycle tracing done after sequencer terminates. 

>SET DELAY/NOBREAK 100 

Delay
counter

Sequencer
terminates

Count ends

Tracing terminates

Break (Sequential break)

Tracing terminates

Not break
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
2.2.6.3 Trace Sampling Control by Sequencer 

When the event mode is in the normal mode, real-time trace executing tracing called 
single trace. 
If the trace function is enabled, single trace samples all the data from the start of 
executing a program until the program is suspended. 

■ Trace Sampling Control by Sequencer 
Sets up suspend/resume trace sampling for each condition at each level of the sequencer. Figure 2.2-10

shows the trace sampling flow. 

For example, it is possible to suspend trace sampling when event 1 occurs, and then resume trace sampling

when event 2 occurs.  Sampling trace data can be restricted.

Figure 2.2-10  Trace Sampling Control (1)

As shown in Figure 2.2-11 , trace sampling can be disabled during the period from the start of a program

execution until the first condition occurs.  For this setup, use the GO command or the SET GO command. 

[Example] 

>GO/DISABLETRACE 

>SET GO/DISABLETRACE 

>GO 

Figure 2.2-11  Trace Sampling Control (2)

Start Suspend

Program flow

Trace buffer

Resume Suspend
Resume

Suspend

 

Start Suspend

Program flow

Trace buffer

Resume Suspend
Resume

Suspend
Resume

 

mber 1, 2014, CM25-00324-6Ea 89



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

90
[Setup Example] 

Suspend trace sampling when event 1 occurs, and then resume at event 2 and keep sampling data until

event 3 occurs. 

>SET SEQUENCE/EVENT/DISABLETRACE 1,1,J=2 

>SET SEQUENCE/EVENT/ENABLETRACE 2,2,J=3 

>SET SEQUENCE/EVENT/DISABLETRACE 3,3,J=2 

Start

Event 1
NO

Suspend trace sampling.

Level 1

YES

Event 2
NO

Resume trace sampling.

Level 2

YES

Event 3
NO

Suspend trace sampling.

Level 3

YES
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
2.2.6.4 Time Measurement by Sequencer 

Time can be measured using the sequencer.  A time measurement timer called the 
emulation timer is used for this purpose.  When branching is made from a specified 
level to another specified level, a timer value is fetched.  Up to two emulation timer 
values can be fetched.  This function is called the timer latch function. 

■ Time Measurement by Sequencer 
The time duration between two given points in a complex program flow can be measured using the timer

latch function. 

The timing for the timer latch can be set using the SET SEQUENCE command; the latched timer values

can be displayed using the SHOW SEQUENCE command. 

When a program starts execution, the emulation timer is initialized and then starts counting.  Select either

1s or 100 ns as the minimum measurement unit for the emulation timer.  Set the measurement unit using

the SET TIMERSCALE command. 

When 1 s is selected, the maximum measured time is about 70 minutes; when 100 ns is selected, the

maximum measured time is about 7 minutes.  If the timer overflows during measurement, a warning

message is displayed when the timer value is displayed using the SHOW SEQUENCE command. 
mber 1, 2014, CM25-00324-6Ea 91



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

92
2.2.6.5 Sample Flow of Time Measurement by Sequencer 

In the following sample, when events are executed in the order of Event 1, Event 2 and 
Event 3, the execution time from the Event 1 to the Event 3 is measured.  However, no 
measurement is made if Event 4 occurs anywhere between Event 1 and Event 3. 

■ Sample Flow of Time Measurement by Sequencer 

Start

Event 1
NO

Branch from level 1 to level 2 (Timer latch 1)

Level 1

YES

Event 4

Level 2

YES

Event 2
NO

YES

Sequencer terminates at level 3 (Timer latch 2)

Event 4

Level 3

YES

Event 3
NO

YES

End

 

CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
>SET SEQUENCE/EVENT  1,1,J=2

>SET SEQUENCE/EVENT  2,4,J=1

>SET SEQUENCE/EVENT  2,2,J=3

>SET SEQUENCE/EVENT  3,4,J=1

>SET SEQUENCE/EVENT  3,2,J=0

>SET SEQUENCE/LATCH  1,1,2

>SET SEQUENCE/LATCH  2,3,0

>SHOW SEQUENCE

Sequencer Enable

 level1 level2 level3 level4 level5 level6 level7 level8

1 |1|#>2  | |  | |  | |  | |  | |  | |  | |

2 | |  |2|->3  | |  | |  | |  | |  | |  | |

3 | |  | |  |3|#end  | |  | |  | |  | |  | |

4 | |  |4|->1  |4|->1  | |  | |  | |  | |  | |

5 | |  | |  | |  | |  | |  | |  | |  | |

6 | |  | |  | |  | |  | |  | |  | |  | |

7 | |  | |  | |  | |  | |  | |  | |  | |

8 | |  | |  | |  | |  | |  | |  | |  | |

T | |  |T|->1  | |  | |  | |  | |  | |  | |

 

Indicates 
that, if event 
1 occurs at 
level 1, move 
to level 2 and 
let the timer 
latched.

Indicates  that, if event 3 
occurs at level 3, the 
sequencer terminates and 
let the timer latched.  

Indicate time values of timer latch 1 and timer latch 2. The time 
value, deducting the value of the timer latch 1 from the value of the 
timer latch 2, represents the execution time. 
Time is displayed in the following format.

00 m  00 s  000 ms  000.0 

minutes seconds milliseconds microseconds
mber 1, 2014, CM25-00324-6Ea 93



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

94
2.2.7 To Refer to a Program Execution History, Use [TRACE]

This section describes the real-time trace function of this emulator debugger.

■ Real-time Trace Function
Trace is a function that records program execution record. 

Trace data includes the following information that can be used to analyze the program execution record. 

• The record of programs executed (address) 

• Data accessed while executing programs (specified attributes only) 

• Status information 

Access status: read / write / internal access 

Device status: Instruction execution / reset / hold 

• External probe data 

• Sequencer execution level 

■ Trace Mode
There are two trace methods prepared. 

• Single trace: traces from the beginning to the end of program execution 

• Multi trace: traces when events occur 

■ Trace Buffer
Trace buffer is a location where recorded data is stored. 

A single data unit stored in the trace buffer is called a frame. 

The trace buffer can contain up to 32,768 (32K) frames. 

Trace buffer is a ring buffer; when it becomes buffer-full, the new record automatically replaces the oldest

record in the buffer. 
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
2.2.7.1 Single Trace 

The single trace function traces all data from the start of executing a program until the 
program is aborted. 

■ Function of Single Trace 
The single trace is enabled by setting the event mode to normal mode using the SET MODE command. 

The single trace function traces all data from the start of executing a program until the program is

suspended. 

If the real-time trace function is enabled, data sampling continues execution to record the data in the trace

buffer while the GO, STEP, CALL commands are being executed. 

As shown in Figure 2.2-12 , suspend/resume trace sampling can be controlled by the event sequencer.

Since the delay can be set between the sequencer terminating the trigger and the end of tracing, the program

flow after an given event occurrence can be traced.  The delay count is counted in bus cycle units, so it

matches the sampled trace data count.  However, nothing can be sampled during the delay count if trace

sampling is suspended when the sequencer is terminated. 

After the delay count ends, a break occurs normally due to the sequential break, but tracing can be

terminated without a break. 

Furthermore, a program can be allowed to break when the trace buffer becomes buffer-full.  This break is

called a trace-buffer-full break. 

Figure 2.2-12  Sampling in Single Trace

Suspend
sampling

Start program

Program flow

Trace buffer

Delay

Sequencer Delay counter

Resume
sampling

Sequencer terminates
Trigger

Tracing
terminates
mber 1, 2014, CM25-00324-6Ea 95



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

96
■ Frame Number and Step Number in Single Trace 
The sampled trace data is numbered in frame units.  This number is called the frame number. 

When displaying trace data, the starting location in the trace buffer can be specified using the frame

number.  The trace data at the point where the sequencer termination trigger occurs is numbered 0; trace

data sampled before reaching the trigger point is numbered negatively, and the data sampled after the

trigger point is numbered positively (See Figure 2.2-13 ). 

If there is no sequencer termination trigger point available, the trace data sampled last is numbered 0. 

Figure 2.2-13  Frame Number in Single Trace

.

.

.

-3

-2

-1

0

+1

+2

+3

.

.

.

(Trigger point)

Delayed frames
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
2.2.7.2 Setting Single Trace 

The following settings 1 to 4 are required before executing single trace.  Once these 
settings have been made, trace data is sampled when a program is executed. 
1. Set event mode to normal mode. 
2. Enable trace function. 
3. Set events, sequencer, and delay count. 
4. Set trace-buffer-full break. 

■ Setting Single Trace 
The following settings are required before executing single trace.  Once these settings have been made,

trace data is sampled when a program is executed. 

1. Set event mode to normal mode. 

Use SET MODE command to make this setting. 

2. Enable trace function. 

Use the ENABLE TRACE command.  To disable the function, use the DISABLE TRACE command.
The default is Enable. 

3. Set events, sequencer, and delay count. 

Trace sampling can be controlled by setting the sequencer for events.  If this function is not needed, there
is no need of this setting. 

To set events, use the SET EVENT command.  To set the sequencer, use the SET SEQUENCE
command. 

Furthermore, set the delay count between sequencer termination and trace ending, and the break
operation (Break or Not Break) when the delay count ends.  If the data after event occurrence is not
required, there is no need of this setting. 

If Not Break is set, the trace terminates but no break occurs.  To check trace data in on-the-fly, use this
setup by executing the SET DELAY command. 
mber 1, 2014, CM25-00324-6Ea 97



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

98
4. Set trace-buffer-full break. 

The program can be allowed to break when the trace buffer becomes buffer-full.  Use the SET TRACE
command for this setting.  The default is Not Break.  Display the setup status using the SHOW TRACE/
STATUS command. 

Table 2.2-9  lists trace-related commands that can be used in the single trace function. 

Note: 
When the sequencer termination causes a break (sequential break), the last executed machine cycle
is not sampled. 

Table 2.2-9 Trace-related Commands that can be used in the single trace function

Usable Command Function

SET EVENT Sets events

SHOW EVENT Displays event setup status

CANCEL EVENT Deletes event

ENABLE EVENT Enables event

DISABLE EVENT Disables event

SET SEQUENCE Sets sequencer

SHOW SEQUENCE Displays sequencer setting status

CANCEL  SEQUENCE Cancels sequencer

ENABLE  SEQUENCE Enables sequencer

DISABLE  SEQUENCE Disables sequencer

SET DELAY Sets delay count value and operation after delay

SHOW DELAY Displays delay count setting status

SET TRACE Sets traces-buffer-full break

SHOW TRACE Displays trace data

SEARCH TRACE Searches trace data

ENABLE TRACE Enables trace function

DISABLE TRACE Disables trace function

CLEAR TRACE Clears trace data
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
2.2.7.3 Multi Trace

The multi trace function samples data where an event trigger occurs for 8 frames before 
and after the event trigger. 

■ Multi Trace Function 
Execute multi trace by setting the event mode to the multi trace mode using the SET MODE command. 

The multi trace function samples data where an event trigger occurs for 8 frames before and after the event

trigger. 

It can be used for tracing required only when a certain variable access occurs, instead of continuous tracing. 

The trace data sampled at one event trigger (16 frames) is called a block.  Since the trace buffer can hold

32K frames, up to 2048 blocks can be sampled.  Multi trace sampling terminates when the trace buffer

becomes buffer-full.  At this point, a executing program can be allowed to break if necessary. 

Figure 2.2-14  Multi Trace Sampling

■ Multi Trace Frame Number 
Sixteen frames of data are sampled each time an event occurs.  This data unit is called a block, and each

sampled block is numbered starting from 0.  This is called the block number. 

A block is a collection of 8 frames of sampled data before and after the event trigger occurs.  At the event

trigger point is 0, trace data sampled before reaching the event trigger point is numbered negatively, and

trace data sampled after the event trigger point is numbered positively.  These frame numbers are called

local numbers (See Figure 2.2-15 ). 

In addition to this local number, there is another set of frame numbers starting with the oldest data in the

trace buffer.  This is called the global number.  Since the trace buffer can hold 32K frames, frames are

numbered 1 to 32768 (See Figure 2.2-15 ). 

To specify which frame data is displayed, use the global number or block and local numbers. 

Start
execution

↓

Program flow

Trace buffer

Block

Event 1

↓

Event 2

↓

Event 3

↓

mber 1, 2014, CM25-00324-6Ea 99



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

100
Figure 2.2-15  Frame Number in Multi Trace

Block number Trace buffer Frame number

Global number Local number

 Event trigger

1 –7
2 –6
: :
: :
8 0
: :
: :

15 +7
16 +8
17 –7
18 –6

: :
: :

24 0
: :
: :

31 +7
32 +8

32752 –7
32753 –6

: :
: :

32759 0
: :
: :

32767 +7
32768 +8

1

 Event trigger

 Event trigger

2

2048

 

CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
2.2.7.4 Setting Multi Trace 

Before executing the multi trace function, the following settings must be made.  After 
these settings, trace data is sampled when a program is executed. 
1. Set event mode to multi trace mode. 
2. Enable trace function. 
3. Set event. 
4. Set trace-buffer-full break. 

■ Setting Multi Trace 
Before executing the multi trace function, the following settings must be made.  After these settings, trace

data is sampled when a program is executed. 

1. Set event mode to multi trace mode. 

Use the SET MODE command for this setting. 

2. Enable trace function. 

Use the ENABLE MULTITRACE command. To disable the function, use the DISABLE MULTITRACE
command. 

3. Set event. 

Set an event that sampling.  Use the SET EVENT command for this setting. 

4. Set trace-buffer-full break. 

To break when the trace buffer becomes buffer-full, set the trace-buffer-full break. Use the SET
MULTITRACE command for this setting. 

Table 2.2-10  shows the list of trace-related commands that can be used in multi trace mode. 

Table 2.2-10 Trace-related Commands that can be used in multi trace mode

Usable Command Function

SET EVENT Sets events

SHOW EVENT Displays event setup status

CANCEL EVENT Deletes event

ENABLE EVENT Enables event

DISABLE EVENT Disables event

SET MULTITRACE Sets trace-buffer-full break

SHOW MULTITRACE Displays trace data

SEARCH MULTITRACE Searches trace data

ENABLE  MULTITRACE Enables multi trace

DISABLE  MULTITRACE Disables multi trace

CLEAR MULTITRACE Clears trace data
mber 1, 2014, CM25-00324-6Ea 101



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

102
2.2.7.5 Displaying Trace Data Storage Status 

It is possible to display how much trace data is stored in the trace buffer.  This status 
data can be read by specifying /STATUS to the SHOW TRACE command in the single 
trace mode and to the SHOW MULTITRACE command in the multi trace mode. 

■ Displaying Trace Data Storage Status 
It is possible to display how much trace data is stored in the trace buffer.  This status data can be read by

specifying /STATUS to the SHOW TRACE command in the single trace mode and to the SHOW MULTITRACE

command in the multi trace mode. 

Frame numbers displayed in the multi trace mode is the global number. 

[Example] 

• In Single Trace 

 >SHOW TRACE/STATUS 

en/dis = enable :Trace function enabled 

buffer full = nobreak :Buffer full break function disabled 

sampling = end :Trace sampling terminates 

frame no. = -00120 to 00050 :Frame -120 to 50 store data 

step no. = -00091 to 00022 :Step -91 to 22 store data 

 > 

• In Multi Trace 

 >SHOW MULTITRACE/STATUS 

en/dis = enable :Multi trace function enabled 

buffer full = nobreak :Buffer full break function disabled 

sampling = end :Trace sampling terminates 

block no. = 1 to 5 :Block 1 to 5 store data 

frame no. = 00001 to 00159 :Frame 1 to 159 store data 

(Global number) 
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
2.2.7.6 Specify Displaying Trace Data Position

It is possible to specify from which data in the trace buffer to display.  To do so, specify 
a frame number with the SHOW TRACE command in the single trace mode, or specify 
either a global number or a block number and local number with the SHOW MULTITRACE 
command in the multi trace mode.  A range can also be specified. 

■ Specify Displaying Trace Data Position
It is possible to specify from which data in the trace buffer to displays.  To do this, specify a step or frame

number with the SHOW TRACE command in the single trace, and specify either a global number or a

block number and local number with the SHOW MULTITRACE command in the multi trace mode.  A

range can also be specified. 

[Example] 

• In Single Trace Mode 

 >SHOW TRACE -6 Start displaying from frame -6 

 >SHOW TRACE -6..10 Display from frame -6 to frame 10 

• In Multi Trace 

 >SHOW MULTITRACE/GLOBAL 500 Start displaying from frame 500

(Global number) 

 >SHOW MULTITRACE/LOCAL 2 Displaying block number 2 

 >SHOW MULTITRACE/LOCAL 2,-5..5 Display from frame -5 to frame 5

of block number 2 
mber 1, 2014, CM25-00324-6Ea 103



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

104
2.2.7.7 Display Format of Trace Data 

A display format can be chosen by specifying a command identifier with the SHOW 
TRACE command in the single trace, and with the SHOW MULTITRACE command in the 
multi trace.  The source line is also displayed if "Add source line" is selected using the 
SET SOURCE command. 
There are three formats to display trace data: 
• Display in all bus cycles (Specify /CYCLE.) 
• Display in only instruction execution (Specify /INSTRUCTION.) 
• Display in source line units (Specify /SOURCE.) 

■ Display All Bus Cycles (Specify /CYCLE.) 
In this mode, data can be displayed in the following format.

For multi trace, "Block number = XXXXXX" is displayed at the beginning of a block.

>SHOW TRACE -5  
step no.             address data        mnemonic                   ext-probe lvl 
- 00005  -----    :E191       95                                            11111111  1
- 00004  -----    :E192       95                                            11111111  1 
- 00003  -----    :09ED      92          [write]                         11111111  1    
- 00002  -----    :09EC      E1          [write]                         11111111  1 
demo3.c$89 {  
- 00001  -----    :E195       41          main:                          11111111  1 

 
00000  -----    :E19         F1                                            11111111  1 
00001  -----    :09EB      00          [write]                         11111111  1 
00002  -----    :09EA      20          [write]                         11111111  1 
00003  -----    :E196      F1                                             11111111  1 
00004  -----    :E197      E2           ** HOLD **                11111111  1 

> 

 

 

 
 

 

 

 

 

 

 

 

PUSHW   IX

Hexadecimal

Data

Hexadecimal

Disassembly display

Displays the disassembly
in the first frame for

instructions.
** HOLD **

Sequencer's level

Displays the level of the
sequencer executed at trace
sampling. When the sequencer
is not used, 1 is displayed.

External probe data

Binary

Frame number

(local number)
Signed decimal

For single trace, "....." is
displayed.

Frame number

(global number)
Signed decimal

Device status

Displays status of the MCU.
** HOLD **

Access status
[internal write] :    Write access to internal memory
[internal read] :    Read access to internal memory
[Write]  :    Write access to memory other than internal area
[xx]  :    Access status other than the above

When a read access is made to memory other than internal area,
nothing will be displayed because data access and code fetch are not
distinguished from eath other. 

Address
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
■ Display in Only Instruction Execution (Specify /INSTRUCTION.) 
Only instruction execution is displayed in the same format as when /CYCLE is specified.

Data, access status, and device status are not displayed.

[Example] 

>SHOW TRACE/INSTRUCTION -5 

frame no. address mnemonic ext-probe lvl

demo3.c$89 {

-00001 ----- :E195 \main: 11111111 1

PUSHW IX

00003 ----- :E196 MOVW A,SP 11111111 1

00005 ----- :E197 MOVW IX,A 11111111 1

00007 ----- :E198 PUSHW A 11111111 1

00011 ----- :E199 PUSHW A 11111111 1

00015 ----- :E19A PUSHW A 11111111 1

demo3.c$91 int cc = 1;

00019 ----- :E19B MOVW A,#0001 11111111 1

00022 ----- :E19E MOVW @IX-02,A 11111111 1

demo3.c$93 numdt = 10;

00027 ----- :E1A0 MOVW A,#000A 11111111 1

>

■ Display in Source Line Units (Specify /SOURCE.) 
Only the source line can be displayed.

[Example] 

 >SHOW TRACE/SOURCE -5

frame no. source 

-00001: ----- : demo3.c$89{

00019: ----- : demo3.c$91 int cc  =  1;

00027: ----- : demo3.c$93 numdt = 10;

00035: ----- : demo3.c$94 ackdat = 0;

00041: ----- : demo3.c$96 sort (&datpl); /* data sorting */

00054: ----- ; demo3.c$147 struct st *dat;

00071: ----- : demo3.c$152 ackdat += 5;

00082: ----- : demo3.c$153 nckdat = ackdat;

00086: ----- : demo3.c$154 for (j=0 ; j<numdt-1; j++) {

>

mber 1, 2014, CM25-00324-6Ea 105



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

106
2.2.7.8 Reading Trace Data On-the-fly 

Trace data can be read while executing a program.  However, this is not possible during 
sampling.  Disable the trace function or terminate tracing before attempting to read 
trace data. 

■ Reading Trace Data On-the-fly in Single Trace 
To disable the trace function, use the DISABLE TRACE command.  Check whether or not the trace

function is currently enabled by executing the SHOW TRACE command with /STATUS specified, or by

using built-in variable, %TRCSTAT. 

Tracing terminates when the delay count ends after the sequencer has terminated.  If Not Break is specified

here, tracing terminates without a break operation.  It is possible to check whether or not tracing has

terminated by executing the SHOW TRACE command with /STATUS specified, or by using built-in

variable, %TRCSAMP. 

To read trace data, use the SHOW TRACE command; to search trace data, use the SEARCH TRACE

command.  Use the SET DELAY command to set the delay count and break operation after the delay

count. 

[Example] 

>GO 

>>SHOW TRACE/STATUS

en/dis = enable

buffer full = nobreak

sampling = on <- Trace sampling continues.

>>SHOW TRACE/STATUS

en/dis = enable

buffer full = nobreak

sampling = end <- Trace sampling ends.

frame no. = -00805 to 00000

step no. = -00262 to 00000

>>SHOW TRACE -10

frame no. address data mnemonic ext-probe lvl

-00010_ _ _ _: F000 04 MOV A,#55 11111111 1

-00009_ _ _ _: F001 55 11111111 1

-00008_ _ _ _: F002 45 MOV 60,A 11111111 1

-00007_ _ _ _: F003 60 11111111 1

. . . 

If the CLEAR TRACE command is executed with the trace ending state, trace data sampling can be re-

executed by re-executing the sequencer from the beginning. 
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
■ Reading Trace Data On-the-fly in the Multi Trace 
Use the DISABLE MULTITRACE command to disable the trace function before reading trace data.

Check whether or not the trace function is currently enabled by executing the SHOW MULTITRACE

command with /STATUS specified, or by using built-in variable %TRCSTAT.  

To read trace data, use the SHOW MULTITRACE command; to search trace data, use the SEARCH

MULTITRACE command. 

[Example] 

>GO 

>>SHOW MULTITRACE/STATUS

en/dis = enable

buffer full = nobreak

sampling = on

>>DISABLE MULTITRACE

>>SHOW MULTITRACE/STATUS

en/dis = disable

buffer full = nobreak

sampling = end

block no. = 1 to 20

frameno. = 00001 to 00639

>>SHOW MULTITRACE 1

frame no. address data mnemonic ext-probe lvl

block no. = 1

00001 -00007 : F000 04 MOV A,#55 11111111 1

00002 -00006 : F001 55 11111111 1

00003 -00005 : F002 45 MOV 60,A 11111111 1

00004 -00004 : F003 60 11111111 1

. . . 

. . . 
mber 1, 2014, CM25-00324-6Ea 107



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

108
2.2.7.9 Saving Trace Data

This section explains the methods to save trace data.

■ Saving Trace Data
Trace data can be saved into a specified file. 

Both GUI (via window or dialog) and command-only methods can be used. These methods produce the

same results. 

• Saving via GUI 

1. Display the trace window. 

- Select [Display] - [Trace] in the menu. 

2. Specify a file name to which the trace data will be saved. 

- Right-click on the trace window, and select [save] in the pop-up menu. "Save As..." dialog is

displayed. 

Here, specify the file name and directory to where you wish to store the file. 

Refer to section "4.4.8 Trace" of "SOFTUNE Workbench Operation Manual" for detailed

information. 

• Saving via command 

Save the trace data. 

- Execute SHOW TRACE/FILE command. 

Refer to section "4.22 SHOW TRACE (type 1)" of "SOFTUNE Workbench Command Reference

Manual" for detailed information. 

To append and save data to an existing file, execute SHOW TRACE/FILE/APPEND command. 
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
2.2.7.10 Searching of Trace Data

This section explains the methods to search trace data.

■ Searching of Trace Data
This function searches for trace data with a specified address or frame number.

Both GUI (via window or dialog) and command-only methods can be used. These methods give the same

results. 

• Searching via GUI 

1. Display the trace window. 

- Select [Display] -[Trace] in the menu. 

2. Specify the address or the frame number that you wish to search. 

- Right-click on the trace window, and select [search] in the pop-up menu. Trace search dialog is

displayed. 

Here, specify the address or the frame number that you wish to be displayed. Refer to section

"4.4.8 Trace" of "SOFTUNE Workbench Operation Manual" for detailed information. 

• Searching via command 

Search the trace data. 

- Execute SEARCH TRACE command. 

Refer to section "4.23 SEARCH TRACE" of "SOFTUNE Workbench Command Reference

Manual" for detailed information. 
mber 1, 2014, CM25-00324-6Ea 109



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

110
2.2.8 Measuring Performance 

It is possible to measure the time and pass count between two events.  Repetitive 
measurement can be performed while executing a program in real-time, and when done, 
the data can be totaled and displayed. 
Using this function enables the performance of a program to be measured.  To measure 
performance, set the event mode to the performance mode using the SET MODE 
command. 

■ Performance Measurement Function 
The performance measurement function allows the time between two event occurrences to be measured and

the number of event occurrences to be counted.  Up to 32767 event occurrences can be measured. 

• Measuring Time 

Measures time interval between two events. 

Events can be set at 8 points (1 to 8).  However, in the performance measurement mode, the intervals,
starting event number and ending event number are combined as follows.  Four intervals have the
following fixed event number combination: 

• Measuring Count 

The specified events become performance measurement points automatically, and occurrences of that
particular event are counted. 

Interval Starting Event Number Ending Event Number

1 1 2 

2 3 4 

3 5 6 

4 7 8 
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
2.2.8.1 Performance Measurement Procedures 

Performance can be measured by the following procedure: 
• Setting event mode. 
• Setting minimum measurement unit for timer. 
• Specify performance-buffer-full break. 
• Setting events. 
• Execute program. 
• Display measurement result. 
• Clear measurement result. 

■ Setting Event Mode 
Set the event mode to the performance mode using the SET MODE command.  This enables the

performance measurement function. 

[Example] 

>SET MODE/PERFORMANCE 

> 

■ Setting Minimum Measurement Unit for Timer 
Using the SET TIMERSCALE command, choose either 1 s or 100 ns as the minimum measurement unit

for the timer used to measure performance.  The default is 1 s. 

When the minimum measurement unit is changed, the performance measurement values are cleared. 

[Example] 

>SET TIMERSCALE/1U <- Set 1 ms as minimum unit. 

> 

■ Specify Performance-Buffer-Full Break 
When the buffer for storing performance measurement data becomes buffer-full, a executing program can

be broken.  This function is called the performance-buffer-full break.  The performance buffer becomes

buffer-full when an event occurs 32767 times. 

If the performance-buffer-full break is not specified, the performance measurement ends, but the program

does not break. 

[Example] 

>SET PERFORMANCE/NOBREAK <- Specifying Not Break 

> 
mber 1, 2014, CM25-00324-6Ea 111



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

112
■ Setting Events 

Set events using the SET EVENT command. 

The starting/ending point of time measurement and points to measure pass count are specified by events. 

Events at 8 points (1 to 8) can be set.  However, in the performance measurement, the intervals, starting

event number and ending event number are fixed in the following combination. 

• Measuring Time 

Four intervals have the following fixed event number combination. 

• Measuring Count 

The specified events become performance measurement points automatically. 

■ Executing Program 
Start measuring when executing a program by using the GO or CALL command.  If a break occurs during

interval time measurement, the data for this specific interval is discarded. 

■ Displaying Performance Measurement Data 
Display performance measurement data by using the SHOW PERFORMANCE command. 

■ Clearing Performance Measurement Data 
Clear performance measurement data by using the CLEAR PERFORMANCE command. 

[Example] 

>CLEAR PERFORMANCE 

> 

Interval Starting Event Number Ending Event Number

1 1 2 

2 3 4 

3 5 6 

4 7 8 
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
2.2.8.2 Display Performance Measurement Data 

Display the measured time and measuring count by using the SHOW PERFORMANCE 
command. 

■ Displaying Measured Time 
To display the time measured, specify the starting event number or the ending event number. 

The lower time limit, upper time limit and display interval can be specified.  The specified time value is in

1s, when the minimum measurement unit of timer is set to 1 s by the SET TIMERSCALE command,

and in 100 ns when the minimum is set to 100 ns. 

>SHOW PERFORMANCE/TIME 1, 9000, 18999, 1000

event = 1 -> 2      time (µs) |   count

min time = 11637.0 -----------------------------+---------

max time = 17745.0 0.0 - 8999.0 | 0

avr time = 14538.0  9000.0 - 9999.0 | 0

10000.0 - 10999.0 | 0

11000.0 - 11999.0 | 2

12000.0 - 12999.0 | 19

13000.0 - 13999.0 | 52

14000.0 - 14999.0 | 283

15000.0 - 15999.0 | 92

16000.0 - 16999.0 | 3

17000.0 - 17999.0 | 1

18000.0 - 18999.0 | 0

19000.0 - | 0

-----------------------------+---------
       total | 452

Minimum 
execution time

Event number

Maximum 
execution time

Average 
execution time 

Count of measuring within given time interval

Total measuring count
mber 1, 2014, CM25-00324-6Ea 113



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

114
>SHOW PERFORMANCE/TIME  1,13000,16999,500

event    = 1 -> 2          time (µs) |   count

min time = 11637.0 -----------------------------+---------

max time = 17745.0 0.0 - 12999.0 | 21

avr time = 14538.0 13000.0 - 13499.0 | 13

13500.0 - 13999.0 | 39

14000.0 - 14499.0 | 121

14500.0 - 14999.0 | 162

15000.0 - 15499.0 | 76

15500.0 - 15999.0 | 16

16000.0 - 16499.0 | 2

16500.0 - 16999.0 | 1

17000.0 - 17499.0 | 1

-----------------------------+---------

       total | 452

Upper time limit for display 

Lower time limit for display 
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
2.2.9 Measuring Coverage 

This emulator has the C0 coverage measurement function.  Use this function to find 
now many percentage of an entire program has been executed. 

■ Coverage Measurement Function 
When testing a program, the program is executed with various test data input and the results are checked

for correctness.  When the test is finished, every part of the entire program should have been executed.  If

any part has not been executed, there is a possibility that the test is insufficient. 

This emulator coverage function is used to find now many percentage of the whole program has been

executed.  In addition, details such as which addresses were not accessed can be checked. 

This enables the measurement coverage range to be set and the access attributes to be measured. 

To execute the C0 coverage, set a range within the code area and set the attribute to Code attribute.  In

addition, specifying the Read/Write attribute and setting a range in the data area, permits checking the

access status of variables such as finding unused variables, etc. 

■ Coverage Measurement Procedures 
The procedure for coverage measurement is as follows: 

- Set range for coverage measurement: SET COVERAGE 

- Measuring coverage: GO, STEP, CALL 

- Displaying measurement result: SHOW COVERAGE 

■ Coverage Measurement Operation 
The following operation can be made in coverage measurement: 

- Load/Save of coverage data: LOAD/COVERAGE, SAVE/COVERAGE 

- Abortion and resume of coverage measurement:ENABLE COVERAGE, DISABLE COVERAGE 

- Clearing coverage data: CLEAR COVERAGE 

- Canceling coverage measurement range: CANCEL COVERAGE 
mber 1, 2014, CM25-00324-6Ea 115



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

116
2.2.9.1 Coverage Measurement Procedures 

The procedure for coverage measurement is as follows: 
• Set range for coverage measurement: SET COVERAGE 
• Measure coverage: GO, STEP, CALL 
• Display measurement result: SHOW COVERAGE 

■ Setting Range for Coverage Measurement 
Use the SET COVERAGE command to set the measurement range. Up to 32 ranges can be specified.  

By specifying /AUTOMATIC for the command qualifier, the code area for the loaded module is set

automatically.  However, the library code area is not set when the C compiler library is linked. 

[Example] 

>SET COVERAGE FF00..FFFF 

■ Measuring Coverage 
When preparing for coverage measurement, execute the program. 

Measurement starts when the program is executed by using the GO, STEP, or CALL command. 

■ Displaying Coverage Measurement Result 
To display the measurement result, use the SHOW COVERAGE command. The following can be

displayed:

- Coverage ratio of total measurement area 

- Displaying coverage ratio of load module 

- Summary of 16 addresses as one block

- Details indicating access status of each address

- Displaying coverage measurement result per source line

- Displaying coverage measurement result per machine instruction

• Coverage Ratio of Total Measurement Area (Specify /TOTAL for command qualifier.) 

>SHOW COVERAGE/TOTAL 

total coverage : 82.3% 

• Displaying coverage ratio of load module (specify /MODULE for the command qualifier)

>SHOW COVERAGE/MODULE 
sample.abs  . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . (84.03%) 
 +- startup.asm . . . . . . . . . . . . . . . . . . . . . . . . . . .. (90.43%) 
 +- sample.c  . . . . . . . . . . . . . . . . . . . . . . . . . . . . (95.17%) 
 +- samp.c  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (100.00%)

Displays the load modules and the coverage ratio of each module.
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
• Summary (Specify /GENERAL for command qualifier.)

• Details (Specify /DETAIL for command qualifier.)

>SHOW COVERAGE/GENERAL 
  (HEX) 0X0              +1X0              +2X0 
        +-------------------------+-------------------------+----------         ----------- 

address  0123456789ABCDEF0123456789ABCDEF0123456    ... ABCDEF   C0(%) 
FF00    **3*F*.......                                                   32.0

Display the access status of every 16 addresses
.   : No access

1 to F : Display the number accessed in 16 addresses by the hexadecimal number.
*   : Access all of the 16 addresses.

>SHOW COVERAGE/DETAIL FF00 

address  +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F C0(%) 
FF00     -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  100.0 
FF10     -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  100.0 
FF20     .  .  .  .   -  -  -  .  .  .  .  .  .  .  .  .    18.6 
FF30     -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  100.0 
FF40     -  .  -  -  -  -  -  -  -  -  -  -  -  -  -  -   93.7 
FF50     -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  100.0 
FF60     .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      0.0 
FF70     .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      0.0 
FF80     .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      0.0

Display one line of a 
coverage rate

Display the access status of every 1 address
.  :  No access 
-  :  Access
mber 1, 2014, CM25-00324-6Ea 117



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

118
• Displays per source line (specify /SOURCE for the command qualifier)

• Displays per machine instruction (specify /INSTRUCTION for the command qualifier)

Note:
With MB2141 emulator, the code coverage is affected by a prefetch. Note when analyzing.

>SHOW COVERAGE/SOURCE main 

Displays access status of each source line.
.   : No Access
*   : Accessed

Blank : Line which the code had not been generated or is outside the s cope of the coverage
            measurement

 * 70: { 
 71:         int     i; 
 72:         struct table *value[16]; 
 73:  
 * 74:         for (i=0; i<16; i++) 
 * 75:                 value[i] = &target[i]; 
 76:  
 * 77:         sort_val(value, 16L); 
 . 78: }

Displays access status of each source line .
.   : No Access

*   : Accessed

Blank : Instruction outside the scope of the coverage measurement
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
2.2.10 Execution Time Measurement

This section describes the execution time measurement function.

■ Item to be Measured
The program execution time is measured. 

This is done every time when a program is executed, and two values are displayed as measurement results,

as follows. 

- Execution time of the program just completed. 

- Sum of execution duration since the last clearance 

The maximum value can vary depending on the measurement unit specified. 

The minimum measurement value can either be set as 1s or 100ns. The default selection is 1s. 

When 1s is selected: 70 minutes is the maximum 

When 100ns is specified: 7 minutes is the maximum 

■ Setting the Measurement Unit
The minimum measurement unit can be set as follows. 

• Dialog 

- Debug environment setting dialog [emulation] tab 

Refer to section "4.7.2.3 Debug Environment" of "SOFTUNE Workbench Operation Manual". 

• Command 

- SET TIMERSCALE 

Refer to section "1.6 SET TIMERSCALE" of "SOFTUNE Workbench Command Reference

Manual". 

■ Displaying of Measurement Result
The measurement results can be displayed using the following methods. 

• Dialog 

- Time measurement dialog 

Refer to section "4.6.8 Time Measurement" of "SOFTUNE Workbench Operation Manual". 

• Command 

- SHOW TIMER 

Refer to "4.19 SHOW TIMER" of "SOFTUNE Workbench Command Reference Manual". 
mber 1, 2014, CM25-00324-6Ea 119



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

120
■ Clearing of Measurement Results
The measurement results can be cleared using the following methods. 

• Dialog 

- Time measurement dialog 

Refer to section "4.6.8 Time Measurement" of "SOFTUNE Workbench Operation Manual". 

• Command 

- CLEAR TIMER 

Refer to "4.20 CLEAR TIMER" of "SOFTUNE Workbench Command Reference Manual". 
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
2.2.11 Sampling by External Probe 

An external probe can be used to sample (input) data.  There are two sampling types: 
sampling the trace buffer as trace data, and sampling using the SHOW SAMPLING 
command. 

■ Sampling by External Probe 
There are two sampling types to sample data using an external probe:  sampling the trace buffer as trace

data, and sampling using the SHOW SAMPLING command. 

When data is sampled as trace data, such data can be displayed by using the SHOW TRACE command or

SHOW MULTITRACE command, just as with other trace data.  Sampling using the SHOW SAMPLING

command, samples data and displays its state. 

In addition, by specifying external probe data as events, such events can be used for aborting a program,

and as multi trace and performance trigger points. 

Events can be set by using the SET EVENT command. 

■ External Probe Sampling Timing 
Choose one of the following for the sampling timing while executing a program. 

- At rising edge of internal clock (clock supplied by emulator) 

- At rising edge of external clock (clock input from target) 

- At falling edge of external clock (clock input from target) 

Use the SET SAMPLING command to set up; to display the setup status use the SHOW SAMPLING

command. 

When sampling data using the SHOW SAMPLING command, sampling is performed when the command

is executed and has nothing to do with the above settings. 

[Example] 

>>SET SAMPLING/INTERNAL

>>SHOW SAMPLING 

sampling timing : internal 

channel 7 6 5 4 3 2 1 0 

1 1 1 1 0 1 1 1 
mber 1, 2014, CM25-00324-6Ea 121



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

122
■ Displaying and Setting External Probe Data 
When a command that can use external probe data is executed, external probe data is displayed in 8-digit

binary or 2-digit hexadecimal format.  The displayed bit order is in the order of the IC clip cable color code

order (Table 2.2-11 ).  The MSB is at bit7 (Violet), and the LSB is at bit0 (Black).  The bit represented by 1

means HIGH, while the bit represented by 0 means LOW.  When data is input as command parameters,

these values are also used for input. 

■ Commands for External Probe Data 
Table 2.2-12  shows the commands that can be used to set or display external probe data. 

Table 2.2-11 Bit Order of External Probe Data

IC Clip Cable Color Violet Blue Green Yellow Orange Red Brown Black

Bit Order
bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

External probe data

Table 2.2-12 Commands that can be used External Probe Data

Usable Command Function 

SET SAMPLING Sets sampling timing for external  probe 

SHOW SAMPLING Samples external probe data 

SET EVENT Enables to  specify external probe data as condition for event 1

SHOW EVENT Displays event  setup status 

SHOW TRACE Displays external  probe trace-sampled (single trace) 

SHOW MULTITRACE Displays external  probe trace-sampled (multi-trace)  
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

Septe
2.2.12 Confirming the Debugger's State

This section explains methods of confirming the debugger's state and its information.

■ Debugger Information
The following information can be obtained at the debugger's startup. 

- File information of SOFTUNE Workbench 

- Hardware-related information 

If problems are encountered with SOFTUNE Workbench and its behavior, refer to the information before

contacting the Sales Representatives. 

■ Confirmation Method
Debugger's information can be confirmed as follows. 

• Command 

- SHOW SYSTEM 

Refer to section "1.12 SHOW SYSTEM" of "SOFTUNE Workbench Command Reference Manual". 

• Dialog 

- Version information dialog 

Refer to section "4.9.3 Version Information" of "SOFTUNE Workbench Operation Manual". 

■ Content to be Displayed
F2MC-8L/8FX Family SOFTUNE Workbench VxxLxx 

(c) Copyright Spansion, All Rights Reserved 1997-2014

=======================================================

Cpu information file path : Path to the CPU information file 

Cpu information file version : Version of the CPU information file 

=======================================================

Add in DLLs 

-------------------------------------------------------

SiCmn 

Product name : SOFTUNE Workbench 

File Path : Path to SiC896.dll 

Version : Version of SiC896.dll 

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

SiiEd 

File Path : Path to SiiEd3.ocx 

Version : Version of SiiEd3.ocx 

-------------------------------------------------------

SiM896 

Product name : SOFTUNE Workbench 

File Path : Path to SiM896.dll 

Version : Version of SiM896.dll 

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

Language Tools 

 - Compiler 

File Path : Path to fcc896s.exe 

 - Assembler 

File Path : Path to fasm896s.exe 

 - Linker 

File Path : Path to flnk896s.exe 

 - Librarian 
mber 1, 2014, CM25-00324-6Ea 123



CHAPTER 2  DEPENDENCE FUNCTIONS
2.2  Emulator Debugger (MB2141)

S u p p o r t  S o f t  M a n u a l

124
File Path : Path to flib896s.exe 

 - FJ-OMF to S-FORMAT Converter 

File Path : Path to f2ms.exe 

 - FJ-OMF to INTEL-HEX Converter 

File Path : Path to f2is.exe 

 - FJ-OMF to INTEL-EXT-HEX Converter 

File Path : Path to f2es.exe 

 - FJ-OMF to HEX Converter 

File Path : Path to f2hs.exe 

-------------------------------------------------------

SiOsM 

Product name : SOFTUNE Workbench 

File Path : Path to SiOsM896.dll 

Version : Version of SiOsM896.dll 

-------------------------------------------------------

F2MC-8L/8FX Family Debugger DLL 

Product name : SOFTUNE Workbench 

File Path : Path to SiD896.dll 

Version : Version of SiD896.dll 

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

Debugger type : Current debugger type 

MCU type : Currently selected target MCU 

VCpu dll name : Path and name of currently selected virtual debugger section DLL 

VCpu dll version : Version of currently selected virtual debugger section DLL 

Monitor version : Monitor (dependent) version 

MCU frequency : Operation frequency 

Communication device : Device type 

Host name : LAN host name 

-------------------------------------------------------

SiIODef 

Product name : SOFTUNE Workbench 

File Path : Path to SiIODef.dll 

Version : Version of SiIODef.dll 

=======================================================

Current path : Currently specified project path 

Language : Currently selected language 

Help file path : Path to the help files 
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.3  Emulator Debugger (MB2146-09/09A/09B)

S u p p o r t  S o f t  M a n u a l

Septe
2.3 Emulator Debugger (MB2146-09/09A/09B)

This section describes the functions of the emulator debugger (MB2146-09/09A/09B).

■ Emulator Debugger (MB2146-09/09A/09B)

The emulator debugger for the F2MC-8FX family is a software package that you can use to test program

execution via a USB communication link from a host computer.

■ Before Use
When using the MB2146-09, 09A or 09B, refer to "Appendix D Setting USB Interface" in "SOFTUNE

Workbench Operation Manual" to setup the USB interface.

The monitor program is loaded automatically when the debugger starts immediately after the power is

turned on to the user system. The following dialog is displayed while the monitor program is loaded. Once

loaded, the monitor program isn't reloaded unless the power is turned off. The monitor program is located

in the Lib\896 sub-directory under the directory in which Workbench is installed.

■ Extended Debugging Functions
In addition to the basic debug functions, the following additional functions also become available with

certain combinations of BGM adapter and MCU board.

1. Function to measure the number of execution cycles

2. Function to monitor RAM

Table 2.3-1  shows debug functions for different BGM adapter and MCU board combinations. The version

number of the MCU board is shown on a sticker affixed to the board.
mber 1, 2014, CM25-00324-6Ea 125



CHAPTER 2  DEPENDENCE FUNCTIONS
2.3  Emulator Debugger (MB2146-09/09A/09B)

S u p p o r t  S o f t  M a n u a l

126
Table 2.3-1 Debug Functions for Different BGM Adapter and MCU Board Combinations  (1 / 2)

BGM adapter
MCU Board 

Debugger 
launched 

RAM 
monitoring

Measuring the 
number of 

execution cyclesModel Version No.

MB2146-09B

MB2146-303B
02B and later ❍ ❍ ❍

01A ❍ ❍ ❍

MB2146-301B
02B and later ❍ ❍ ❍

01A ❍ ❍ ❍

MB2146-303A-E
02B and later ❍ ✕ ❍

01A ❍ ✕ ❍

MB2146-302A-E
02B and later ❍ ✕ ❍

01A ❍ ✕ ❍

MB2146-301A-E
02B and later ❍ ✕ ❍

01A ❍ ✕ ❍

MB2146-303A
02B and later ❍ ✕ ❍

01A ❍ ✕ ✕

MB2146-302A
02B and later ❍ ✕ ❍

01A ❍ ✕ ✕

MB2146-301A
02B and later ❍ ✕ ❍

01A ❍ ✕ ✕

MB2146-09A

MB2146-303B
02B and later ✕ - ❍

01A ❍ ✕ ❍

MB2146-301B
02B and later ✕ - ❍

01A ❍ ✕ ❍

MB2146-303A-E
02B and later ✕ - ❍

01A ❍ ✕ ❍

MB2146-302A-E
02B and later ✕ - ❍

01A ❍ ✕ ❍

MB2146-301A-E
02B and later ✕ - ❍

01A ❍ ✕ ❍

MB2146-303A
02B and later ❍ ✕ ❍

01A ❍ ✕ ✕
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.3  Emulator Debugger (MB2146-09/09A/09B)

S u p p o r t  S o f t  M a n u a l

Septe
❍ : available

✕ : not available

Note:
If the combination of the BGM adaptor and the MCU board is not one of the combinations in Table
2.3-1 , an error message appears at the startup of the debugger and the debugger cannot be
started. Refer to "Appendix B Debugger Related Error Messages" in the "SOFTUNE Workbench
Command Reference Manual".

MB2146-09A

MB2146-302A
02B and later ❍ ✕ ❍

01A ❍ ✕ ✕

MB2146-301A
02B and later ❍ ✕ ❍

01A ❍ ✕ ✕

MB2146-09

MB2146-303B ✕
- -

- -

MB2146-301B
02B and later ✕ - -

01A ✕ - -

MB2146-303A-E
02B and later ✕ - -

01A ✕ - -

MB2146-302A-E
02B and later ✕ - -

01A ✕ - -

MB2146-301A-E
02B and later ✕ - -

01A ✕ - -

MB2146-303A
02B and later ❍ ✕ ✕

01A ❍ ✕ ✕

MB2146-302A
02B and later ❍ ✕ ✕

01A ❍ ✕ ✕

MB2146-301A
02B and later ❍ ✕ ✕

01A ❍ ✕ ✕

Table 2.3-1 Debug Functions for Different BGM Adapter and MCU Board Combinations  (2 / 2)

BGM adapter
MCU Board 

Debugger 
launched 

RAM 
monitoring

Measuring the 
number of 

execution cyclesModel Version No.
mber 1, 2014, CM25-00324-6Ea 127



CHAPTER 2  DEPENDENCE FUNCTIONS
2.3  Emulator Debugger (MB2146-09/09A/09B)

S u p p o r t  S o f t  M a n u a l

128
2.3.1 Setting Operating Environment

This section explains the operating environment setup.

■ Setting Operating Environment
For the emulator debugger for the MB2146-09, it is necessary to set the following items according the

operating environment.  Predefined default settings for all these setup items are enabled at startup.

Therefore, it is not required to change the settings when using the default settings.  Adjusted settings can be

used as new default settings from the next time.

- Clock-up mode

- Main Clock Oscillation
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.3  Emulator Debugger (MB2146-09/09A/09B)

S u p p o r t  S o f t  M a n u a l

Septe
2.3.1.1 Clock-up Mode

This section explains the clock-up mode.

■ Clock-up Mode
The MB2146-09 and communication speed of user system change by the operating frequency of the target

MCU.  When the operating frequency is reduced, especially in the sub clock mode, communication speed is

also reduced.  In this case, optimize the communication speed, the function increasing the operating

frequency automatically is called clock-up mode.  The default is enabled.

■ Setting Method
Set the clock-up mode as follows.

• Dialog

- Setup Wizard

Refer to "4.7.2.4 Setup Wizard" of "SOFTUNE Workbench Operation Manual".

• Dialog

- [Response Speed] tab in the debug environment setting dialog

Refer to "4.7.2.3 Debug Environment" of "SOFTUNE Workbench Operation Manual".

Notes:
• When the clock-up mode is used, the operating frequency is changed automatically at  breaking.

If the failure is caused by changing the operating frequency, disables the clock-up modes.

• If a break occurs immediately after changing the system clock mode by the user program, no
clock up is performed during oscillations stabilization wait state.  Clock up will be performed when
oscillations are stabilized.
mber 1, 2014, CM25-00324-6Ea 129



CHAPTER 2  DEPENDENCE FUNCTIONS
2.3  Emulator Debugger (MB2146-09/09A/09B)

S u p p o r t  S o f t  M a n u a l

130
2.3.1.2 Main Clock Oscillation

This section explains the main clock oscillation frequency.

■ Main Clock Oscillation
The MB2146-09 and communication speed of user system change by the operation frequency of the target

MCU.  The setting of the main clock oscillation (FCH) is required to calculate the operating speed of the

target MCU.  The default is the maximum frequency that specified MCU operates in the main clock.

■ Setting Method
Set the clock oscillation frequency as follows.

• Dialog

- Setup wizard

Refer to "4.7.2.4 Setup Wizard" of "SOFTUNE Workbench Operation Manual".
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.3  Emulator Debugger (MB2146-09/09A/09B)

S u p p o r t  S o f t  M a n u a l

Septe
2.3.2 Programming to FLASH Memory

This emulator supports programming to the FLASH memory.

■ Erasing/Programming FLASH Memory
Writing to FLASH memory/code break (software break) functions are supported. The content of FLASH

memory is secured in the buffer within the debugger, and the content of the buffer is referenced at reading/

writing. 

Writing FLASH memory is carried out automatically in the following cases.

• Before program execution processing

• Before reset processing

• Before end of debugging

When necessary, it can be carried out manually instead of via the above-mentioned processing.

The following dialog is displayed at writing to FLASH memory.

There are the following three functions for the operation of  FLASH memory:

1. Updating FLASH memory

([Environment] - [FLASH area control] - [Download FLASH memory] menu).

Updates Flash memory. FLASH memory is usually updated automatically prior to executive operation or
reset processing. Use this menu when updating Flash memory before this automatic updating.

This menu is enabled when data in the FLASH memory area is changed, requiring the writing to of
FLASH memory.

2. Uploading FLASH memory

([Environment] - [FLASH area control] - [Upload FLASH memory] menu).

Reads the contents of FLASH memory, and synchronizes with a buffer in the debugger. Be sure to
perform this synchronization when FLASH memory is rewritten (updated) by the user program, or the
program would not operate properly.
mber 1, 2014, CM25-00324-6Ea 131



CHAPTER 2  DEPENDENCE FUNCTIONS
2.3  Emulator Debugger (MB2146-09/09A/09B)

S u p p o r t  S o f t  M a n u a l

132
3. Erasing FLASH memory

([Environment] - [FLASH area control] - [Erase FLASH memory] menu).

Erase all data in FLASH memory. Note that this operation will erase all code break (software break)
settings.
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.3  Emulator Debugger (MB2146-09/09A/09B)

S u p p o r t  S o f t  M a n u a l

Septe
2.3.3 Break

This Debugger provides five types of break functions. 

■ Break Functions
This Debugger provides the following five types of break functions;

- Code break

- Data break

- Monitoring Data Break

- Sequential break

- Forced break
mber 1, 2014, CM25-00324-6Ea 133



CHAPTER 2  DEPENDENCE FUNCTIONS
2.3  Emulator Debugger (MB2146-09/09A/09B)

S u p p o r t  S o f t  M a n u a l

134
2.3.3.1 Code Break

This function aborts the program execution by monitoring a specified address by 
software. A break occurs before executing an instruction at the specified address.

■ Code Break 
This function aborts the program execution by monitoring a specified address by software. A break occurs

before executing an instruction at the specified address.

Up to 256 addresses can be set for this debugger.

When the code break occurs, the following message appears at the status bar.

Break at address by breakpoint

■ Setting Method
Set code break as follows.

• Command 

- SET BREAK

Refer to "3.1 SET BREAK (type 1)" of "SOFTUNE Workbench Command Reference Manual".

• Dialog 

- "Code" tab in breakpoint setting dialog

Refer to "4.6.4 Breakpoint" of "SOFTUNE Workbench Operation Manual".

• Window

- Source window/disassemble window

Refer to "3.7 Source Window" or "3.9 Disassemble Window" of "SOFTUNE Workbench Operation

Manual".
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.3  Emulator Debugger (MB2146-09/09A/09B)

S u p p o r t  S o f t  M a n u a l

Septe
2.3.3.2 Data Break

It is a function to abort the program execution when the data access (read or write) is 
done to a specified address.

■ Data Break 
This function aborts the program execution when a data access (read/write) is made to a specified address.

Up to 2 data break points can be set for this debugger.

When the data break occurs, the following message appears at the status bar.

Break at address by databreak at access address

■ Setting Method
Set the data break as follows.

• Command 

- SET DATABREAK

Refer to "3.9 SET DATABREAK (type 1)" of "SOFTUNE Workbench Command Reference

Manual".

• Dialog 

- "Data" tab in breakpoint setting dialog

Refer to "4.6.4 Breakpoint" of "SOFTUNE Workbench Operation Manual".

Note:
When set as the monitoring data break, a break does not occur as the data break.
mber 1, 2014, CM25-00324-6Ea 135



CHAPTER 2  DEPENDENCE FUNCTIONS
2.3  Emulator Debugger (MB2146-09/09A/09B)

S u p p o r t  S o f t  M a n u a l

136
2.3.3.3 Monitoring Data Break

It is a special break function to abort execution while it is corresponding to specified 
data when the program reaches a specified address.

■ Monitoring Data Break 
It is a special break function to abort execution while it is corresponding to specified data when the

program reaches a specified address. 

The following figure shows the break conditions of the monitoring data break.

Figure 2.3-1  Break Conditions of Monitoring Data Break

■ Setting Method
Set the monitoring data break as follows.

• Command 

- SET BREAK /DATAWATCH

Refer to "3.2 SET BREAK (type 2)" of "SOFTUNE Workbench Command Reference Manual".

• Dialog 

- "Data" tab in breakpoint setting dialog

Refer to "4.6.4 Breakpoint" of "SOFTUNE Workbench Operation Manual".

Flow of program Monitoring Data

Specified address

Specified address

Break does not 
occur when data 
is not matching.

Break occurs 
when data is 
matching.

Data 
matching
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.3  Emulator Debugger (MB2146-09/09A/09B)

S u p p o r t  S o f t  M a n u a l

Septe
2.3.3.4 Sequential Break

A sequential break is a function to abort an executing program, when it is executed in 
the order of level 1 and then level 2 at two specified addresses.

■ Sequential Break 
A sequential break is a function to abort an executing program, when it is executed in the order of level 1

and then level 2 at two specified addresses. One break can be set for this debugger.

When the Sequential break occurs, the following message appears at the status bar.

Break at address by hardware breakpoint

■ Setting Method
Set the Sequential break as follows.

• Command 

- SET BREAK /SEQUENCE

Refer to "3.3 SET BREAK (type 3)" of "SOFTUNE Workbench Command Reference Manual".

• Dialog 

- "Sequential" tab in breakpoint setting dialog

Refer to "4.6.4 Breakpoint" of "SOFTUNE Workbench Operation Manual".
mber 1, 2014, CM25-00324-6Ea 137



CHAPTER 2  DEPENDENCE FUNCTIONS
2.3  Emulator Debugger (MB2146-09/09A/09B)

S u p p o r t  S o f t  M a n u a l

138
2.3.3.5 Forced Break

This function forcibly aborts the program execution to generate a break.

■ Forced Break 
This function forcibly aborts the program execution to generate a break.

When the forced break occurred, the following message appears at the status bar.

Break at address by command abort request

■ Generation Method
The methods of generating forced breaks are as follows.

• Menu

- [Debug]-[Abort] menu

Refer to "4.6.2 Abort" of "SOFTUNE Workbench Operation Manual".

• Command

- ABORT

Refer to "2.2 ABORT" of "SOFTUNE Workbench Command Reference Manual".
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.3  Emulator Debugger (MB2146-09/09A/09B)

S u p p o r t  S o f t  M a n u a l

Septe
2.3.4 Real-time Trace

While execution a program, the executed address information is sampled and stored in 
the trace buffer. This function is called "trace".

■ Trace
The program execution history can be analyzed from the data stored by the trace buffer.

Since the trace buffer has a ring structure, when it becomes buffer-full, it automatically returns to the start

to overwrite existing data.

■ Trace Data
The stored data sampled by the trace is called trace data.

For the emulator debugger of the MB2146-09, 16 divergences immediately before the execution

interruption can be sampled. 

Note:
When 4096 or more branch instructions are not executed, only 4096 instructions from the branch
destination address is displayed.

■ Sampling Trace Data
When the trace function is enabled, the data is sampled during command execution, and it is stored in the

trace buffer.

When the program execution is stopped by the break cause such as break point, the trace sampling is ended.
mber 1, 2014, CM25-00324-6Ea 139



CHAPTER 2  DEPENDENCE FUNCTIONS
2.3  Emulator Debugger (MB2146-09/09A/09B)

S u p p o r t  S o f t  M a n u a l

140
■ Frame number
A number is assigned to each frame of sampled trace data. This number is called a frame number.

The frame number is used to specify the display start position of the trace buffer. The value 0 is assigned to

trace data at the position for current program counter (PC). Negative values are assigned to previous trace

data.

Figure 2.3-2  Frame Number in Trace

.

.

.

-3

-2

-1

0

+1

+2

+3

.

.

.

(Trigger point)

Delayed frames
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.3  Emulator Debugger (MB2146-09/09A/09B)

S u p p o r t  S o f t  M a n u a l

Septe
2.3.4.1 Displaying Trace Data

The data stored in the trace buffer is displayed.

■ Displaying Trace Data Storage Information
Trace window is displayed how much trace data is stored in the trace buffer. Also, the command displays

by SHOW TRACE/STATUS.

■ Display Format of Trace Data
There are two types of display format for the trace buffer.

• Display instruction execution only (Display instruction)

Display the instruction execution in disassembly unit.

• Display in source line units (Display source)

Display the source line only.

■ Clearing Trace Data
When the trace data is cleared, execute [Clear] within the shortcut menu in the trace window. Also, the

command executes the CLEAR TRACE command.

Note:
When the emulator debugger for the MB2146-09 is used, the address information is outputted at the
branch instruction fetch, the trace is implemented.

At that time, notes the following points related to display trace data.

The disassembly display is performed after reading from the memory. In this case, when the
instruction is completed to write after the code fetch, it does not display correctly.
mber 1, 2014, CM25-00324-6Ea 141



CHAPTER 2  DEPENDENCE FUNCTIONS
2.3  Emulator Debugger (MB2146-09/09A/09B)

S u p p o r t  S o f t  M a n u a l

142
2.3.4.2 Saving Trace Data

This section explains the methods to save trace data.

■ Saving Trace Data
Trace data can be saved into a specified file. 

Both GUI (via window or dialog) and command-only methods can be used. These methods give the same

results. 

• Saving via GUI 

1. Display the trace window. 

- Select [Display] - [Trace] in the menu. 

2. Specify a file name to which the trace data will be saved. 

- Right-click on the trace window, and select [save] in the pop-up menu. "Save As..." dialog is

displayed. 

Here, specify the file name and directory to where you wish to store the file. 

Refer to section "4.4.8 Trace" of "SOFTUNE Workbench Operation Manual" for detailed

information. 

• Saving via command 

Save the trace data. 

- Execute SHOW TRACE/FILE command. 

Refer to section "4.22 SHOW TRACE (type 1)" of "SOFTUNE Workbench Command Reference

Manual" for detailed information. 

To append and save data to an existing file, execute SHOW TRACE/FILE/APPEND command. 
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.3  Emulator Debugger (MB2146-09/09A/09B)

S u p p o r t  S o f t  M a n u a l

Septe
2.3.4.3 Searching Trace Data

This section explains the methods to search trace data. 

■ Searching Trace Data
This function searches for trace data at a specified address or in a specified frame.

Both GUI (via window or dialog) and command-only methods can be used. These methods give the same

results. 

• Searching via GUI 

1. Display the trace window. 

- Select [Display] - [Trace] in the menu. 

2. Specify the address or the frame number that you wish to search. 

- Right-click on the trace window, and select [search] in the pop-up menu. Trace search dialog is

displayed. 

Here, specify the address or the frame number that you wish to be displayed. Refer to section

"4.4.8 Trace" of "SOFTUNE Workbench Operation Manual" for detailed information. 

• Searching via command 

Search the trace data. 

- Execute SEARCH TRACE command. 

Refer to section "4.23 SEARCH TRACE" of "SOFTUNE Workbench Command Reference

Manual" for detailed information. 
mber 1, 2014, CM25-00324-6Ea 143



CHAPTER 2  DEPENDENCE FUNCTIONS
2.3  Emulator Debugger (MB2146-09/09A/09B)

S u p p o r t  S o f t  M a n u a l

144
2.3.5 Notes on Executing Program

This emulator notes the following points.

■ Break at Standby Mode
When the abort operation is executed in the standby mode, the debugger cancels the standby mode and

aborts the execution. Therefore, it is aborted in next address of instruction to be transmitted to the standby

mode.
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.3  Emulator Debugger (MB2146-09/09A/09B)

S u p p o r t  S o f t  M a n u a l

Septe
2.3.6 RAM Monitoring

MB2146-09 emulator can monitor the memory content of certain address during the 
user program is running.

■ RAM Monitoring
This function monitors the memory content of certain address during the user program is running.

Up to 32 addresses in 16 bit units can be set.

Those addresses are monitored in the RAM monitoring window.

■ Conditions for Use
RAM monitoring can be used under the following conditions.

SOFTUNE Workbench: Version V30L32 or later

BGM adapter:  Model MB2146-09B-E

MCU board:  Model MB2146-301B-E/303B-E

■ Setting Method
Set RAM monitoring as follows.

• Command 

- SET RAMMONITOR

Refer to Section "4.28 SET RAM MONITOR" of "SOFTUNE Workbench Command Reference

Manual".

• Dialog

- RAM monitoring setting dialog

Refer to Section "4.4.15 RAM monitoring" of "SOFTUNE Workbench Operation Manual".

■ Halt Time During Monitoring
To read data, the RAM monitoring function must temporarily halt and then restart the user program.

The formulas below calculate the number of times the user program is halted and the halt duration for each

read operation.

Number of times the user program halts = 2  <no. of bytes read>

Total user program halt duration = <Number of times the user program halts>  <Halt time> *

* : Duration of each halt

This varies as follows depending on the operating frequency (Fch).
mber 1, 2014, CM25-00324-6Ea 145



CHAPTER 2  DEPENDENCE FUNCTIONS
2.3  Emulator Debugger (MB2146-09/09A/09B)

S u p p o r t  S o f t  M a n u a l

146
As user program halts are performed at 1.5ms intervals (fixed), user program execution operates as shown

in the figure below during monitoring.

Accordingly, the total halt time for the user program when reading four bytes is as follows.

Example: Reading four bytes at an operating frequency of 16MHz. 

Number of user program halts =  2  4 = 8 

Total user program halt time = 22  8 = 176 s

Note:
As this function performs a pseudo-on-the-fly memory read, the execution halt time may become
long if not a few variables have been registered.

Table 2.3-2 Operating Frequency vs. Halt Duration

Operating Frequency  [MHz] Duration of Halt  [s]

16 approx. 22

10 approx. 35

8 approx. 44

4 approx. 88

2 approx. 175

Program execution

Halt timeExecution time after break:1ms (fixed)
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.3  Emulator Debugger (MB2146-09/09A/09B)

S u p p o r t  S o f t  M a n u a l

Septe
2.3.7 Measuring the Number of Execution Cycles

MB2146-09B emulator can measure the number of program execution cycles.

■ Measuring the Number of Execution Cycles
This function measures the number of program execution cycles.

Measuring is performed whenever the program is executed, the following two values are displayed.

- Number of execution cycles for the previous program execution

- Total number of execution cycles up to that time after the debugger has started

The default maximum value for the measurement result is 65535 cycles.

■ Conditions for Use
Measuring the number of execution cycles can be used under the following conditions.

SOFTUNE Workbench: Version V30L30 or later

BGM adapter:  Model MB2146-09

MCU board:  Model MB2146-301A/302A/303A (Version 02B or later)

When this function is used, the following internal resource is used by the debugger.

Note that this means the resource cannot be used by the user program.

16-bit reload timer ch.1

■ How to Extend the Measurement Range
The default maximum value for the measurement result is 65535 cycles, but this can be extended to a

maximum of 4294967295 cycles.

Extending the measurement range requires that you link the relative-format load module file from the

following directory into the user program.

<SOFTUNE installation directory>\Lib\896\EXETMR.REL

If using this library, the following resources are also used.

■ Displaying the Measurement Result
The following methods can be used to display the results.

1. Time measurement dialog

[Debug] - [Time Measurement] menu

2. SHOW TIMER command

Interrupt vector:  IRQ17

Interrupt handler:  User ROM (16 bytes)

Overflow counter:  User RAM (2 bytes: 0x0F7E to 0x0F7F)

Reserved symbol name:  __EXETMROVRHDR

 __EXTTMROVRHDRVER
mber 1, 2014, CM25-00324-6Ea 147



CHAPTER 2  DEPENDENCE FUNCTIONS
2.3  Emulator Debugger (MB2146-09/09A/09B)

S u p p o r t  S o f t  M a n u a l

148
■ Clearing the Measurement Result
The following methods can be used to clear the results.

• Command

- CLEAR TIMER

Refer to "4.20 CLEAR TIMER" of  "SOFTUNE Workbench Command Reference Manual".

• Dialog

- Time measurement dialog

Refer to "4.6.8 Time Measurement" of  "SOFTUNE Workbench Operation Manual".

■ Error
The measurement result for the number of execution cycles has an error of around zero to ten or so cycles.

The following additional error also occurs if the measurement range is extended.

Error = Overflow counter (upper 16 bits)  N*

*: 0 to 10 or so cycles (approx.)

Notes:
• To minimize the error when measuring the number of execution cycles, use continuous instruction

execution as far as possible.

• It is possible that 16-bit counter overflow events may be missed if interrupts are disabled for a
long period of time. In this case, the measurement result will not be correct.

• The following reserverd symbols can be referenced, but do not define them.
__EXETMROVRHDR
__EXTTMROVRHDRVER
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.3  Emulator Debugger (MB2146-09/09A/09B)

S u p p o r t  S o f t  M a n u a l

Septe
2.3.8 Confirming the Debugger's State

This section explains various methods of confirming the debugger's state and its 
information. 

■ Debugger Information
With this emulator debugger, the following information can be obtained at the time of startup. 

- File information of SOFTUNE Workbench 

- Hardware-related information 

If problems are encountered with SOFTUNE Workbench and its behavior, refer to the information before

contacting the Sales Representatives. 

■ Confirmation Method 
Debugger's information can be confirmed as follows. 

• Command 

- SHOW SYSTEM 

Refer to section "1.12 SHOW SYSTEM" of "SOFTUNE Workbench Command Reference Manual". 

• Dialog 

- Version information dialog 

Refer to section "4.9.3 Version Information" of "SOFTUNE Workbench Operation Manual". 

■ Content to be Displayed
F2MC-8L/8FX Family SOFTUNE Workbench VxxLxx 

(c) Copyright Spansion, All Rights Reserved 1997-2014

=======================================================

Cpu information file path : Path to the CPU information file 

Cpu information file version : Version of the CPU information file 

=======================================================

Add in DLLs 

-------------------------------------------------------

SiCmn 

Product name : SOFTUNE Workbench 

File Path : Path to SiC896.dll 

Version : Version of SiC896.dll 

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

SiiEd 

File Path : Path to SiiEd3.ocx 

Version : Version of SiiEd3.ocx 

-------------------------------------------------------

SiM896 

Product name : SOFTUNE Workbench 

File Path : Path to SiM896.dll 

Version : Version of SiM896.dll 

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

Language Tools 

 - Compiler 

File Path : Path to fcc896s.exe 

 - Assembler 

File Path : Path to fasm896s.exe 

 - Linker 

File Path : Path to flnk896s.exe 
mber 1, 2014, CM25-00324-6Ea 149



CHAPTER 2  DEPENDENCE FUNCTIONS
2.3  Emulator Debugger (MB2146-09/09A/09B)

S u p p o r t  S o f t  M a n u a l

150
 - Librarian 

File Path : Path to flib896s.exe 

 - FJ-OMF to S-FORMAT Converter 

File Path : Path to f2ms.exe 

 - FJ-OMF to INTEL-HEX Converter 

File Path : Path to f2is.exe 

 - FJ-OMF to INTEL-EXT-HEX Converter 

File Path : Path to f2es.exe 

 - FJ-OMF to HEX Converter 

File Path : Path to f2hs.exe 

-------------------------------------------------------

SiOsM 

Product name : SOFTUNE Workbench 

File Path : Path to SiOsM896.dll 

Version : Version of SiOsM896.dll 

-------------------------------------------------------

F2MC-8L/8FX Family Debugger DLL 

Product name : SOFTUNE Workbench 

File Path : Path to SiD896.dll 

Version : Version of SiD896.dll 

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

Debugger type : Current debugger type 

MCU type : Currently selected target MCU 

VCpu dll name : Path and name of currently selected virtual debugger section DLL 

VCpu dll version : Version of currently selected virtual debugger section DLL 

Adapter type : BGM adapter currently used 

Adapter version : Version of the adapter 

Target type : BGM target currently used 

Target version : BGM target version 

Communication device : Device type 

-------------------------------------------------------

SiIODef 

Product name : SOFTUNE Workbench 

File Path : Path to SiIODef.dll 

Version : Version of SiIODef.dll 

=======================================================

Current path : Currently specified project path 

Language : Currently selected language 

Help file path : Path to the help files 
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.4  Emulator Debugger (MB2146-08)

S u p p o r t  S o f t  M a n u a l

Septe
2.4 Emulator Debugger (MB2146-08)

This section explains the functions of the emulator debugger (MB2146-08) for the 
F2MC-8FX Family.

■ Emulator Debugger

The emulator debugger (MB2146-08) for the F2MC-8FX Family is software that controls an emulator from

a host computer via a communications line (USB) to evaluate programs. 

■ Before Use
Before using the MB2146-08, confirm the following.

• Combination of BGM adapter and MCU board

Your hardware manual or data sheet

• Setup of USB interface

"Appendix DUSB Interface Settings" of "SOFTUNE Workbench Operation Manual"

Note:

If the combination of the BGM adaptor and the MCU is incorrect, an error message appears at the
startup of the debugger and the debugger cannot be started.

For details, refer to "Appendix B Debugger Related Error Messages" of "SOFTUNE Workbench
Command Reference Manual".
mber 1, 2014, CM25-00324-6Ea 151



CHAPTER 2  DEPENDENCE FUNCTIONS
2.4  Emulator Debugger (MB2146-08)

S u p p o r t  S o f t  M a n u a l

152
2.4.1 Setting Operating Environment

This section explains the operating environment setup.

■ Setting Operating Environment
For this debugger, it is necessary to set the following operating environment. Predefined default settings for

all these setup items are enabled at startup. Therefore, setup is not required when using the default settings.

Adjusted settings can be used as new default settings from the next time.

• Main clock oscillation frequency
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.4  Emulator Debugger (MB2146-08)

S u p p o r t  S o f t  M a n u a l

Septe
2.4.1.1 Main Clock Oscillation Frequency

This section explains the main clock oscillation frequency.

■ Setting Main Clock Oscillation Frequency
The communication speed of MB2146-08 and the user system changes depending on the operating

frequency of the target MCU. The setting of the main clock oscillation (FCH) is required to calculate the

operating speed of the target MCU. The default setting is the maximum frequency at which the specified

MCU operates in the main clock.

■ Setting Method
Set the clock oscillation frequency as follows.

• Dialog

- Setup wizard

Refer to "4.7.2.4 Setup Wizard" of "SOFTUNE Workbench Operation Manual".

Note:

Use the default setting when only the internal main CR clock is used.
mber 1, 2014, CM25-00324-6Ea 153



CHAPTER 2  DEPENDENCE FUNCTIONS
2.4  Emulator Debugger (MB2146-08)

S u p p o r t  S o f t  M a n u a l

154
2.4.2 Erasing/Programming FLASH Memory

This debugger supports programming to the FLASH memory.

■ Erasing/Programming FLASH Memory
Writing to FLASH memory/code break (software break) functions are supported. The content of FLASH

memory is secured in the buffer within the debugger, and the content of the buffer is referenced at reading/

writing. 

Writing FLASH memory is carried out automatically in the following cases.

• Before program execution processing

• Before reset processing

• Before end of debugging

When necessary, it can be carried out manually instead of via the above-mentioned processing.

The following dialog is displayed at writing to FLASH memory.

There are the following three functions for the operation of FLASH memory:

1. Updating FLASH memory

([Environment] - [FLASH area control] - [Download FLASH memory] menu). 

Updates Flash memory. Normally, Flash memory is updated automatically before performing execution

or reset processing and before stopping the debugger. Use this menu when updating Flash memory

before this automatic updating. 

This menu is enabled when data in the FLASH memory is changed, requiring the writing to FLASH

memory.

2. Synchronizing FLASH memory

([Environment] - [FLASH area control] - [Synchronize FLASH memory] menu). 

Reads the contents of FLASH memory, and synchronizes with a buffer in the debugger. Be sure to

perform this synchronization when FLASH memory is rewritten by the user program, or the content of

the memory may not be referenced properly.

Furthermore, synchronization is made automatically before starting the debugger.
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.4  Emulator Debugger (MB2146-08)

S u p p o r t  S o f t  M a n u a l

Septe
3. Erasing FLASH memory

([Environment] - [FLASH area control] - [Erase FLASH memory] menu). 

Erases all data in FLASH memory. Note that this operation will also erase all code break (software

break) settings.

Note:

Chip erasing is automatically executed for 1-sector device.
mber 1, 2014, CM25-00324-6Ea 155



CHAPTER 2  DEPENDENCE FUNCTIONS
2.4  Emulator Debugger (MB2146-08)

S u p p o r t  S o f t  M a n u a l

156
2.4.3 Erasing/Programming FRAM Area

This debugger supports erasing/programming FRAM area.

■ Erasing/Programming FRAM
This debugger supports erasing/programming FRAM area.

Both erasing and programming can be performed in the same way as to the RAM area.

To erase the UseFRAM area completely, perform the following operations. 

[Environment] - [Flash area control] - [Erase Flash memory] menu

Note: 
• The following menus are disabled FRAM is used.

- [Flash area control] - [Update Flash memory] menu

- [Flash area control] - [Synchronize FLASH memory] menu
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.4  Emulator Debugger (MB2146-08)

S u p p o r t  S o f t  M a n u a l

Septe
2.4.4 Notes on Executing Program

The following points must be noted when executing a program using this debugger.

■ Break at Standby Mode
When the abort operation is executed in the standby mode, the debugger cancels the standby mode and

aborts the execution. Therefore, it is aborted in next address of instruction to be transmitted to the standby

mode.
mber 1, 2014, CM25-00324-6Ea 157



CHAPTER 2  DEPENDENCE FUNCTIONS
2.4  Emulator Debugger (MB2146-08)

S u p p o r t  S o f t  M a n u a l

158
2.4.5 FLASH Security

This debugger performs a support for the FLASH security function installed in the MCU.

■ FLASH Security
This debugger performs a support for the FLASH security function installed in the MCU. The FLASH

security function manipulates the value of the security byte (1-byte area in the FLASH memory defined for

each MCU) to place the FLASH memory in protected state (in which no debug operation other than erasing

the FLASH memory is accepted) so that programs and other content in the FLASH memory are

undisclosed to third parties. There are the following two types of detection timing to detect the protected

state using the FLASH security function.

At startup of debugging: When the FLASH memory is already in the protected state.

During debugging: When the memory moves to the protected state by an operation such as

writing to the memory.

When it is determined that the FLASH memory is already in the protected state, the following dialog

appears.

If "Yes" is selected, the debugger starts or debugging continues once the FLASH memory is erased. If "No"

is selected, the debugger stops.

■ FRAM Device
   The FRAM memory security function is supported as well as the flash security. 
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.4  Emulator Debugger (MB2146-08)

S u p p o r t  S o f t  M a n u a l

Septe
2.4.6 Notes on Starting/Stopping Debugger

The following points must be noted when starting or stopping this debugger.

■ When Starting Debugger
As the FLASH memory uses a buffer-style control, it must always be synchronized with the FLASH

memory first. At startup of the debugger, it is automatically synchronized with the FLASH memory. This

may take a significant time because the entire FLASH memory of the MCU must be read. Under the

following conditions, it takes approximately 20 seconds.

FLASH memory: the sector size = 16KB

Clock: Clock-up mode = ON 

For this debugger, the power supply can be monitored. If an abnormality is detected at startup of the

debugger, the following dialog will appear.

When "OK" is selected, the startup of the debugger is retried. When "Cancel" is selected, the debugger

stops.

This debugger cannot be started, unless the clock is in the normal state. Therefore, if an abnormality is

detected at startup of the debugger, the following dialog will appear.

When "Yes" is selected, the startup of the debugger is retried. When "No" is selected, the debugger stops.
mber 1, 2014, CM25-00324-6Ea 159



CHAPTER 2  DEPENDENCE FUNCTIONS
2.4  Emulator Debugger (MB2146-08)

S u p p o r t  S o f t  M a n u a l

160
■ Debug the End
The software break which is set in the FLASH memory during debugging must be erased before the

debugging ends, considering that the MCU may be used standalone after the debugger stops. Therefore, the

FLASH memory should be updated for each sector to which the software break is set. The time required

depends on the setup conditions of the software break.

Note:

When a software break is set, standalone operation cannot be guaranteed under the following
conditions.

• Operation is aborted while the FLASH memory is being updated upon completion of debugging

• Workbench ends abnormally during debugging

• Hardware connection is disconnected during debugging
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.4  Emulator Debugger (MB2146-08)

S u p p o r t  S o f t  M a n u a l

Septe
2.4.7 Break

This Debugger provides two types of break functions.  When by each break function 
aborts program execution, the address where a break occurred and the break factor are 
displayed.

■ Break Functions
This Debugger provides the following two types of break functions;

- Code break

- Forced break
mber 1, 2014, CM25-00324-6Ea 161



CHAPTER 2  DEPENDENCE FUNCTIONS
2.4  Emulator Debugger (MB2146-08)

S u p p o r t  S o f t  M a n u a l

162
2.4.7.1 Code Break

This function aborts the program execution by monitoring a specified address. A break 
occurs before executing an instruction at the specified address. 

■ Code Break
This function aborts the program execution by monitoring a specified address by means of software or

hardware. A break occurs before executing an instruction at the specified address. 

The maximum points to be set are as follows. 

Hardware: 3 points 

Software: 256 points 

When the code break occurs, the following message appears in the status bar. 

- Hardware 

Break at address by hardware breakpoint 

- Software 

Break at address by breakpoint 

■ Setting Method
Code break can be controlled as follows. 

• Command 

- SET BREAK 

Refer to "3.1 SET BREAK (type 1)" of "SOFTUNE Workbench Command Reference Manual". 

• Dialog 

- Break point setting dialog [code] tab 

Refer to "4.6.4 Break Point" of "SOFTUNE Workbench Operation Manual". 

• Window 

- Source window/disassemble window 

Refer to "3.7 Source Window" or "3.9 Disassemble Window" of "SOFTUNE Workbench Operation

Manual". 
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.4  Emulator Debugger (MB2146-08)

S u p p o r t  S o f t  M a n u a l

Septe
2.4.7.2 Forced Break

This function forcibly aborts the program execution to generate a break.

■ Forced Break 
This function forcibly aborts the program execution to generate a break.

When the forced break occurred, the following message appears at the status bar.

Break at address by command abort request
mber 1, 2014, CM25-00324-6Ea 163



CHAPTER 2  DEPENDENCE FUNCTIONS
2.4  Emulator Debugger (MB2146-08)

S u p p o r t  S o f t  M a n u a l

164
2.4.8 Confirming the Debugger's State

This section explains methods of confirming the debugger's state and its information. 

■ Debugger Information 
With this emulator debugger, the following information can be obtained at the time of startup. 

- File information of SOFTUNE Workbench 

- Hardware-related information 

If problems are encountered with SOFTUNE Workbench and its behavior, refer to the information before

contacting the Sales Representatives. 

■ Confirmation Method 
Debugger's information can be confirmed as follows. 

• Command 

- SHOW SYSTEM 

Refer to section "1.12 SHOW SYSTEM" of "SOFTUNE Workbench Command Reference Manual". 

• Dialog 

- Version information dialog 

Refer to section "4.9.3 Version Information" of "SOFTUNE Workbench Operation Manual". 

■ Content to be Displayed 
F2MC-8L/8FX Family SOFTUNE Workbench VxxLxx 

(c) Copyright Spansion, All Rights Reserved 1997-2014

=======================================================

Cpu information file path : Path to the CPU information file 

Cpu information file version : Version of the CPU information file 

=======================================================

Add in DLLs 

-------------------------------------------------------

SiCmn 

Product name : SOFTUNE Workbench 

File Path : Path to SiC896.dll 

Version : Version of SiC896.dll 

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

SiiEd 

File Path : Path to SiiEd3.ocx 

Version : Version of SiiEd3.ocx 

-------------------------------------------------------

SiM896 

Product name : SOFTUNE Workbench 

File Path : Path to SiM896.dll 

Version : Version of SiM896.dll 

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

Language Tools 

 - Compiler 

File Path : Path to fcc896s.exe 

 - Assembler 

File Path : Path to fasm896s.exe 

 - Linker 

File Path : Path to flnk896s.exe 

 - Librarian 
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.4  Emulator Debugger (MB2146-08)

S u p p o r t  S o f t  M a n u a l

Septe
File Path : Path to flib896s.exe 

 - FJ-OMF to S-FORMAT Converter 

File Path : Path to f2ms.exe 

 - FJ-OMF to INTEL-HEX Converter 

File Path : Path to f2is.exe 

 - FJ-OMF to INTEL-EXT-HEX Converter 

File Path : Path to f2es.exe 

 - FJ-OMF to HEX Converter 

File Path : Path to f2hs.exe 

-------------------------------------------------------

SiOsM 

Product name : SOFTUNE Workbench 

File Path : Path to SiOsM896.dll 

Version : Version of SiOsM896.dll 

-------------------------------------------------------

F2MC-8L/8FX Family Debugger DLL 

Product name : SOFTUNE Workbench 

File Path : Path to SiD896.dll 

Version : Version of SiD896.dll 

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

Debugger type : Current debugger type 

MCU type : Currently selected target MCU 

VCpu dll name : Path and name of currently selected virtual debugger section DLL 

VCpu dll version : Version of currently selected virtual debugger section DLL 

Adapter type : BGM adapter currently used 

Adapter version : Version of the adapter 

Target type : BGM target currently used 

Target version : BGM target version 

Communication device : Device type 

-------------------------------------------------------

SiIODef 

Product name : SOFTUNE Workbench 

File Path : Path to SiIODef.dll 

Version : Version of SiIODef.dll 

=======================================================

Current path : Currently specified project path 

Language : Currently selected language 

Help file path : Path to the help files 
mber 1, 2014, CM25-00324-6Ea 165



CHAPTER 2  DEPENDENCE FUNCTIONS
2.5  Emulator Debugger (MB2146-07)

S u p p o r t  S o f t  M a n u a l

166
2.5 Emulator Debugger (MB2146-07)

This section explains the functions of the emulator debugger (MB2146-08) for the 
F2MC-8FX Family.

■ Emulator Debugger

The emulator debugger (MB2146-07) for F2MC-8FX family is a software product that controls the

emulator from the host computer to evaluate programs.

■ Before Use
When using the emulator debugger (MB2146-07), set up the USB interface. For details, refer to "Appendix

D  Setting USB Interface" of "SOFTUNE Workbench Operation Manual".

Notes:
• If the connected MCU is not compatible with the BGM adapter (MB2146-07), the debugger cannot

be started. For information of compatibility, refer to the Hardware Manual for the product type you
are using.

• When using MCU of Target Version "3.x" with the emulator debugger (MB2146-07), step
execution for the codes which change the following register values always results in the same
value.

PLLC = 0x90;
SYCC = 0xFE;

To check Target Version, refer to "2.5.9  Confirming the Debugger's State".
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.5  Emulator Debugger (MB2146-07)

S u p p o r t  S o f t  M a n u a l

Septe
2.5.1 Setting Operating Environment

This section explains the operating environment setup.

■ Setting Operating Environment
When using this debugger, set up the operating environment for the following items. When using the

default settings, this step can be omitted because each item is set to the default at startup. Furthermore, the

setting value is restored during the next debugger startup.

• Optimization of Response Speed

• Oscillation Frequency

• Power Supply to the BGM Adapter

• Synchronization of FLASH memory at startup of debugger

• Automatic Update of Firmware
mber 1, 2014, CM25-00324-6Ea 167



CHAPTER 2  DEPENDENCE FUNCTIONS
2.5  Emulator Debugger (MB2146-07)

S u p p o r t  S o f t  M a n u a l

168
2.5.1.1 Optimization of Response Speed

This section describes the optimization of response speed.

■ Optimization of Response Speed
The communication speed between the BGM adapter (MB2146-07) and user system varies depending on

the operating frequency of the target MCU. This emulator debugger provides a function that automatically

raises the operating frequency to optimize the communication speed. This function is called the

optimization of response speed.

If the optimization of response speed is disabled while the operating frequency is low, the screen update

may be delayed because of increase of data reading time for debugger.

■ Setting Method
To enable/disable the response speed optimization function, use one of the following.

The default is enabled.

• Setup wizard

Refer to section "4.7.2.5 Setup Wizard" of "SOFTUNE Workbench Operation Manual" for detailed
information.

• [Response Speed] tab on debug environment setting dialog

Refer to section "4.7.2.3 Debug Environment" of "SOFTUNE Workbench Operation Manual" for
detailed information.

This setting is also used to temporarily stop a user program in the RAM monitoring function.

Note:
When the response speed optimization function is enabled, the operating frequency is automatically
changed at break of user program. If you do not want to change the operating frequency
automatically, disable the response speed optimization function.
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.5  Emulator Debugger (MB2146-07)

S u p p o r t  S o f t  M a n u a l

Septe
2.5.1.2 Oscillation Frequency

This debugger requires an oscillation frequency setting.

■ Setting Oscillation Frequency
The communication speed between the BGM adapter (MB2146-07) and user system varies depending on

the operating frequency of the target MCU. To obtain the operating speed of the target MCU, set the

oscillation clock (FCH) of the main clock. The default is set to the maximum frequency with which the

specified MCU operates with the main clock. Please refer to the hardware manual of the kind used for

details of the oscillation clock (FCH) of the main clock.

■ Setting Method
The oscillation frequency is set by setup wizard. 

For detailed, refer to section "4.7.2.4 Setup Wizard" of "SOFTUNE Workbench Operation Manual".

Note:
If only the built-in main CR clock is enabled, use the default.

For details of the built-in main CR clock, refer to the Hardware Manual for the product type you are
using.
mber 1, 2014, CM25-00324-6Ea 169



CHAPTER 2  DEPENDENCE FUNCTIONS
2.5  Emulator Debugger (MB2146-07)

S u p p o r t  S o f t  M a n u a l

170
2.5.1.3 Power Supply to BGM Adapter

This debugger requires a setting for power supply to the BGM adapter.

■ Power Supply Setting
The emulator debugger (MB2146-07) can directly supply power to the target.

■ Setting Method
Power supply to the BGM adapter is set as follows.

The default is disabled.

• Setup Wizard

For detailed, refer to section "4.7.2.4 Setup Wizard" of "SOFTUNE Workbench Operation Manual".

Note:
• Even if "Supply power from the BGM adapter to the target" of setup wizard is enabled, the target

does not operate in any of the following cases. Refer to the specifications of the target board or
the hardware manual of the BGM adapter (MB2146-07) for detailed information.

- A power wire from the BGM adapter (MB2146-07) is not connected to the target.

- The voltage supplied with the BGM adapter (MB2146-07) to the target does not reach the value
level required to drive the target.
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.5  Emulator Debugger (MB2146-07)

S u p p o r t  S o f t  M a n u a l

Septe
2.5.1.4 Synchronization of FLASH memory at Startup of 
Debugger

This debugger requires a setting to specify whether or not to synchronize FLASH 
memory when the debugger starts.

■ FLASH Memory Synchronization Setting
The BGM adapter (MB2146-07) secures the content of FLASH memory in the buffer within the debugger,

and the content of the buffer is referenced at reading/writing. Specify whether or not to synchronize the

contents of that buffer with the latest data of FLASH memory when the debugger starts. For details about

synchronizing FLASH memory, refer to section "2.5.2  Writing to or Erasing FLASH Memory".

■ Setting Method
FLASH Memory Synchronization is set as follows.

The default is enabled.

• Setup Wizard

For detailed, refer to section "4.7.2.4 Setup Wizard" of "SOFTUNE Workbench Operation Manual".
mber 1, 2014, CM25-00324-6Ea 171



CHAPTER 2  DEPENDENCE FUNCTIONS
2.5  Emulator Debugger (MB2146-07)

S u p p o r t  S o f t  M a n u a l

172
2.5.1.5 For this setting, use the setup wizard.

This debugger requires a setting to specify whether or not to automatically update 
firmware when the debug starts

■ Automatic Update of Firmware
The BGM adapter (MB2146-07) automatically updates the latest firmware based on information in the

emulator when the debugging starts.

Firmware products compared for update are under Lib\907 of the SOFTUNE installation directory.

■ Setting Method
Automatic Update of Firmware is set as follows.

The default is enabled.

• Setup Wizard

For detailed, refer to section "4.7.2.4 Setup Wizard" of "SOFTUNE Workbench Operation Manual".
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.5  Emulator Debugger (MB2146-07)

S u p p o r t  S o f t  M a n u a l

Septe
2.5.2 Writing to or Erasing FLASH Memory

This debugger supports writing to or erasing FLASH memory.

■ Writing to or Erasing Flash Memory
The emulator debugger (MB2146-07) supports writing to FLASH memory and making a code break

(software break).

This debugger secures the content of FLASH memory in the buffer within the debugger, and the content of

the buffer is referenced at reading/writing. For details of the code break (software break), refer to "2.5.7.1

Code Break".

Writing FLASH memory is carried out automatically in the following cases.

• Before program execution processing

• Before reset processing

• Before end of debugging

The following dialog is displayed at the time of writing to FLASH memory.

Perform one of the followings to manually write/erase FLASH memory.

• Updating FLASH memory

([Environment] - [FLASH area control] - [Download FLASH memory] menu)

Updates FLASH memory. FLASH memory is usually updated automatically prior to executive operation
or reset processing. Use this menu when updating FLASH memory before carrying out this automatic
updating process.

This menu is enabled when data in FLASH memory is changed, writing to FLASH memory is required.
mber 1, 2014, CM25-00324-6Ea 173



CHAPTER 2  DEPENDENCE FUNCTIONS
2.5  Emulator Debugger (MB2146-07)

S u p p o r t  S o f t  M a n u a l

174
• Synchronizing FLASH memory

([Environment] - [FLASH area control] - [Synchronize FLASH memory] menu)

Synchronizes the content of the buffer in debugger with that in the flash memory.

Synchronization is automatically performed in steps shown below.

1. The debugger reads the content in the flash memory.

2. The content is compared to that of the buffer in debugger.

3. If there is any difference, the content of buffer is overwritten with that in the flash memory.

Be sure to perform this synchronization when flash memory is written by the user program.

If the synchronization of flash memory is not performed, the following problems may occur.

- The memory content of the debugger cannot be referred properly.

- The user program cannot be executed properly.

• Erasing FLASH memory

([Environment] - [FLASH area control] - [Erase FLASH memory] menu)

Erases all data in FLASH memory. Note that this operation will erase all code break (software break)
settings.

Note:
When setting code break (software), the contents of the flash memory of the specified address are
temporarily rewritten.
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.5  Emulator Debugger (MB2146-07)

S u p p o r t  S o f t  M a n u a l

Septe
2.5.3 Writing to or Erasing FRAM Area

This debugger supports writing to or Erasing the FRAM area.

■ Writing to or Erasing FRAM
This debugger supports writing to or erasing a FRAM product.

This area can be written to or erased in the memory window, in the same way as for a normal RAM area.

To erase all the FRAM area, select the following menu.

[Environment] - [FLASH area control] - [Erase FLASH memory] menu

Note:
• When an FRAM product is used, FRAM area update or synchronization is not performed even if

any of the following menus is selected.

- [FLASH area control] - [Download FLASH memory] menu

- [FLASH area control] - [Synchronize FLASH memory] menu
mber 1, 2014, CM25-00324-6Ea 175



CHAPTER 2  DEPENDENCE FUNCTIONS
2.5  Emulator Debugger (MB2146-07)

S u p p o r t  S o f t  M a n u a l

176
2.5.4 Precautions on Program Execution

In this debugger, note the following points when executing a program.

■ Break in Standby Mode
If abort operation is performed in the standby mode, the debugger releases the standby mode, and aborts

program execution. Therefore, abort at the address following the instruction that changes to the standby

mode.
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.5  Emulator Debugger (MB2146-07)

S u p p o r t  S o f t  M a n u a l

Septe
2.5.5 Flash Security Detection Function

This debugger supports the flash security function installed in the MCU.

■ Flash Security
This debugger supports the flash security function installed in the MCU.

The flash security function places programs in FLASH memory into the protected state, keeping the

contents private for third parties. FLASH memory is placed into the protected state (*2) state by writing the

specific value to the security byte (*1) in MCU. The protect state can be canceled by erasing all contents in

the flash memory.

(*1) Security byte: 1 byte area within FLASH memory, specified for each MCU.

(*2) Protected state: Debug operations other than erasing FLASH memory are not accepted.

The flash security function detects the protected state at the following two times.

- At startup of debugger: Flash memory is already placed in the protected state.

- During debugging: Flash memory changes to the protected state due to memory writing.

If FLASH memory is in the protected state, the following dialog appears.

If "Yes" is selected, FLASH memory is erased. The debugger is started if debugging is running.

If "No" is selected, the debugger is stopped.

■ For FRAM product
The FRAM memory security function is supported in the same way as for flash security.
mber 1, 2014, CM25-00324-6Ea 177



CHAPTER 2  DEPENDENCE FUNCTIONS
2.5  Emulator Debugger (MB2146-07)

S u p p o r t  S o f t  M a n u a l

178
2.5.6 Precautions on Starting and Ending the Debugger

In this debugger, note the following points when starting and ending the debugger.

■ When Starting the Debugger
• Synchronizing FLASH Memory

Flash memory is controlled in the buffer method; therefore, the debugger must synchronize with FLASH
memory at startup.

- Synchronize: Reads all the contents of FLASH memory.

- Not synchronize: Erases the contents of FLASH memory.

For this setting, use the setup wizard. Refer to section "4.7.2.5 Setup Wizard" of "SOFTUNE Workbench
Operation Manual" for detailed information.

It takes up to 20 seconds longer for the debugger to start under the following conditions when
"synchronization" takes place compared to the time when "synchronization" does not take place.

Flash memory: The sector size is 16 KB.

Clock: The clock-up mode is enabled.

• Power Monitoring

This debugger supports power monitoring. If an error is detected at startup of the debugger, the following
dialog appears.

If "OK" is selected, the startup of the debugger is retried. If "Cancel" is selected, the debugger is stopped.

• Detecting CR trimming

This debugger cannot be started unless the clock status is normal. If an error is detected at startup of the

debugger, the following dialog appears.

If "Yes" is selected, the startup of the debugger is retried. If "No" is selected, the debugger is stopped. For

details of CR trimming, refer to the Hardware Manual for the product type you are using.
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.5  Emulator Debugger (MB2146-07)

S u p p o r t  S o f t  M a n u a l

Septe
■ When Ending the Debug
Considering that the MCU is to be used in the stand-alone mode after the debugging ended, this debugger

automatically erases software breaks specified in FLASH memory when the debugging process ends.

Therefore, update FLASH memory for each sector in which a software break is specified. The required

time depends on the software break setting.

Note:
If a software break is specified, stand-alone operations cannot be ensured under the following
conditions.

1. Updating FLASH memory was aborted when the debugger ended.

2. Workbench has been ended abnormally during debugging.

3. A connection with hardware has been disconnected during debugging.
mber 1, 2014, CM25-00324-6Ea 179



CHAPTER 2  DEPENDENCE FUNCTIONS
2.5  Emulator Debugger (MB2146-07)

S u p p o r t  S o f t  M a n u a l

180
2.5.7 Break

This debugger supports two types of break functions. If program execution is aborted 
by each break function, break address and break cause are displayed on the screen.

■ Break Functions
This debugger supports the following two types of break functions.

- Code break

- Forced break
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.5  Emulator Debugger (MB2146-07)

S u p p o r t  S o f t  M a n u a l

Septe
2.5.7.1 Code Break

This function aborts program execution by monitoring a specified address. A break 
occurs before executing an instruction at the specified address.

■ Code Break
This function aborts a program by monitoring a specified address using hardware or software. A break

occurs before executing an instruction at the specified address.

The maximum number of setting points are as follows.

Hardware: 3 points

Software: 256 points

When the code break occurs, the following message appears in the status bar. 

- Hardware

Break at address by hardware breakpoint 

- Software

Break at address by breakpoint 

■ Setting Method
Code break can be set as follows.

• Command

- SET BREAK

Refer to "3.1 SET BREAK (type 1)" of "SOFTUNE Workbench Command Reference Manual". 

• Dialog

- Break point setting dialog [code] tab

Refer to "4.6.4 Break Point" of "SOFTUNE Workbench Operation Manual". 

• Window

- Source window/disassemble window

Refer to "3.7 Source Window" or "3.9 Disassemble Window" of "SOFTUNE Workbench Operation

Manual". 
mber 1, 2014, CM25-00324-6Ea 181



CHAPTER 2  DEPENDENCE FUNCTIONS
2.5  Emulator Debugger (MB2146-07)

S u p p o r t  S o f t  M a n u a l

182
2.5.7.2 Forced Break

This function forcibly aborts program execution.

■ Forced Break
This function forcibly aborts program execution.

When program is stopped by a forced break, the following message appears on the status bar.

Break at address by command abort request

■ Setting Method
A forced break is controlled as follows.

• Command

- ABORT

Refer to section "2.4 ABORT" of "SOFTUNE Workbench Command Reference Manual.

• Menu

- [Debug] - [Stop] menu

Refer to "4.6.2 ABORT" of "SOFTUNE Workbench Operation Manual".
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.5  Emulator Debugger (MB2146-07)

S u p p o r t  S o f t  M a n u a l

Septe
2.5.8 RAM Monitoring

RAM Monitoring function monitors memory contents at a specific address while 
executing a user program.

■ RAM Monitoring
This function monitors memory contents at a specific address while executing a user program.

The monitoring function reads for each sampling cycle (refer to Figure 2.5-1 ); therefore, a user program

stops at periodical intervals.

Up to 16 addresses can be specified on a 16-bit basis.

The specified addresses can be monitored on the RAM monitoring window.

■ Use Conditions
RAM monitoring is available when the following conditions are satisfied.

SOFTUNE Workbench: V30L33 or later

BGM adapter (MB2146-07):MB2146-07

■ Setting Method
RAM monitoring is controlled as follows.

• Command

- SET RAMMONITOR

Refer to section "4.29 SET RAM MONITOR" of "SOFTUNE Workbench Command Reference

Manual".

• Dialog

- RAM Monitoring Setup Dialog

Refer to "4.4.15 RAM Monitoring" of "SOFTUNE Workbench Operation Manual".

■ Stop Time during Monitoring
The RAM monitoring function temporarily stops executing a user program when reading, and restarts it

after reading.

The stop time at reading varies depending on the following values.

• Operating frequency of user program

• Number of specified addresses
mber 1, 2014, CM25-00324-6Ea 183



CHAPTER 2  DEPENDENCE FUNCTIONS
2.5  Emulator Debugger (MB2146-07)

S u p p o r t  S o f t  M a n u a l

184
Figure 2.5-1  User Program StopTime (Tstp)

The stop time at reading can be obtained in the following formula.

User program stop time (Tstp) = Program stop processing time (Tp) 

+ (1-address reading time (Tr) * Number of addresses (N)) 

+ Program restart processing time (Ts)

Sampling cycle (Tcyc): Default: 1 sec., Allowable range: 100 to 65535 ms

For details of the optimization of response speed, refer to "2.5.1.1  Optimization of Response Speed".

To check Target Version, refer to "2.5.9  Confirming the Debugger's State".

Tstp

Tstp

Tp Ts(Tr * N)

Tcyc Tcyc

Tstp Tstp

Table 2.5-1 Approximate time the user program stops

CPU product 
(Target 
Version)

Operating 
frequency

Stop time
Remarks

Minimum (N=1) Maximum (N=16)

MB95F636 
(From 3.1)

8 MHz Approx. 55 ms Approx. 60 ms

1 MHz (*) Approx. 55 ms Approx. 60 ms * When the optimization of response speed is disabled

MB95F564 
(2.x)

8 MHz Approx. 58 ms Approx. 65 ms

1 MHz (*) Approx. 76 ms Approx. 83 ms * When the optimization of response speed is disabled

MB95F264 
(1.x)

8 MHz Approx. 78 ms Approx. 105 ms

1 MHz (*) Approx. 84 ms Approx. 120 ms * When the optimization of response speed is disabled
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.5  Emulator Debugger (MB2146-07)

S u p p o r t  S o f t  M a n u a l

Septe
Notes:
• This function reads memory while temporarily stopping the execution of a user program. If a

number of addresses are registered, it requires a longer program execution stop time.

• When a user program operates in the sub clock mode, it stops for a long time (1 sec. or more). Do
not use the RAM monitoring function to avoid influence caused by stopping user program for a
long time while running performance measurement, etc.

• The sampling cycle can be changed; however, if it is shorter than the stop time, a user program
remains stopped. Specify the appropriate sampling cycle.
mber 1, 2014, CM25-00324-6Ea 185



CHAPTER 2  DEPENDENCE FUNCTIONS
2.5  Emulator Debugger (MB2146-07)

S u p p o r t  S o f t  M a n u a l

186
2.5.9 Confirming the Debugger's State

This section explains how to confirm debugger information.

■ Confirming the Debugger's State
This emulator debugger allows you to confirm the following information at startup.

• File information of SOFTUNE Workbench

• Hardware information

"If problems are encountered with SOFTUNE Workbench and its behavior, this file information can be

referred when contacting the Sales/Support Division."

■ Confirmation Method
Use the following methods to confirm debugger information.

• Command

- SHOW SYSTEM

Refer to section "1.12 SHOW SYSTEM" of "SOFTUNE Workbench Command Reference Manual". 

• Dialog

- Version information dialog

Refer to section "4.9.3 Version Information" of "SOFTUNE Workbench Operation Manual".

■ Content to be Displayed
The debugger information is displayed as shown below.

F2MC-8L/8FX Family SOFTUNE Workbench VxxLxx

(c) Copyright Spansion, All Rights Reserved 1997-2014

=======================================================

Cpu information file path :Path to the CPU information file

Cpu information file version :Version of the CPU information file

=======================================================

Add in DLLs

-------------------------------------------------------

SiCmn

Product name : SOFTUNE Workbench

File Path : Path to SiC896.dll

Version : Version of SiC896.dll

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

SiiEd

File Path : Path to SiiEd3.ocx

Version : Version of SiiEd3.ocx

-------------------------------------------------------

SiM896

Product name : SOFTUNE Workbench

File Path : Path to SiM896.dll

Version : Version of SiM896.dll

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

Language Tools

- Compiler

File Path : Path to fcc896s.exe

- Assembler

File Path : Path to fasm896s.exe

- Linker

File Path : Path to flnk896s.exe
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.5  Emulator Debugger (MB2146-07)

S u p p o r t  S o f t  M a n u a l

Septe
- Librarian

File Path : Path to flib896s.exe

- FJ-OMF to S-FORMAT Converter

File Path : Path to f2ms.exe

- FJ-OMF to INTEL-HEX Converter

File Path : Path to f2is.exe

- FJ-OMF to INTEL-EXT-HEX Converter

File Path : Path to f2es.exe

- FJ-OMF to HEX Converter

File Path : Path to f2hs.exe

-------------------------------------------------------

SiOsM

Product name : Softune Workbench

File Path : Path to SiOsM896.dll

Version : Version of SiOsM896.dll

-------------------------------------------------------

F2MC-8L/8FX Family Debugger DLL

Product name : SOFTUNE Workbench

File Path : Path to SiD896.dll

Version : Version of SiD896.dll

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

Debugger type : Current debugger type

MCU type : Currently selected target MCU

VCpu dll name : Path and name of currently selected virtual debugger section DLL

VCpu dll version : Version of currently selected virtual debugger section DLL

Adapter type : BGM adapter currently used

Adapter version : Version of the BGM adapter

Target type : BGM target currently used

Target version : BGM target version

Communication device : Device type

-------------------------------------------------------

SiIODef

Product name : Softune Workbench

File Path : Path to SiIODef.dll

Version : Version of SiIODef.dll

=======================================================

Current path : Currently specified project path

Language : Currently selected language

Help file path : Path to the help files
mber 1, 2014, CM25-00324-6Ea 187



CHAPTER 2  DEPENDENCE FUNCTIONS
2.6  Monitor Debugger

S u p p o r t  S o f t  M a n u a l

188
2.6 Monitor Debugger

This section describes the functions of the monitor debugger for the F2MC-8FX family.

■ Monitor Debugger
The monitor debugger works by incorporating a monitor program into the target system which provides

debugging functions via communication with a host computer.

Before it can be used, the monitor program must be ported to the target hardware. Refer to the "Appendix E

Incorporating the Monitor Debugger" of "SOFTUNE Workbench Operation Manual" for details.

Note:
The BGM adapter (MB2146-09A or later) is required to use the monitor debugger. The monitor
debugger cannot be used with the old BGM adapter (MB2146-09). Attempting to use the old BGM
adapter (MB2146-09) as a monitor debugger may cause a system fault.
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.6  Monitor Debugger

S u p p o r t  S o f t  M a n u a l

Septe
2.6.1 Writing to the FLASH memory

The monitor debugger supports writing to the FLASH memory.

■ Writing to the FLASH memory
The monitor debugger writes to the FLASH memory. Writing is only performed when loading the file.

The following dialog is displayed while writing to the FLASH memory.

■ Error Message if Loading Fails
The following error messages may be displayed depending on the content of the file being loaded to the

FLASH memory. Refer to "Appendix B Debugger Related Error Messages" in the "SOFTUNE Workbench

Command Reference".

1. If access to the FLASH memory occurs other than for loading:

"The FLASH area can only be accessed by the LOAD command."

2. If a file that includes ROM or RAM areas is loaded:

"Loading of files that include ROM or RAM areas is not permitted."

Notes:
• The FLASH memory is only written to when loading a file. The FLASH memory cannot be

modified directly using the memory window or other memory manipulation commands.

• Only load files for the FLASH memory range to the FLASH memory. If a file contains data for
other areas, it will not be written to the FLASH memory.

• Chip erasing is automatically executed for 1-sector device.
mber 1, 2014, CM25-00324-6Ea 189



CHAPTER 2  DEPENDENCE FUNCTIONS
2.6  Monitor Debugger

S u p p o r t  S o f t  M a n u a l

190
2.6.2 Fast downloading

Monitor debugger can shorten the download time to FLASH memory.

■ Fast downloading
When loading programs to FLASH memory, load time can be shorten to 1/6.

However, the Workbench automatically performs the following operations.

• Complete erasing of flash memory

• Resetting target files

• Rewriting RAM area

■ Conditions for Use
Fast downloading can be used under the following conditions.

SOFTUNE Workbench: Version V30L32 or later

BGM adapter:  Model MB2146-09B-E

■ Setting Method
Set fast downloading as follows.

• Command 

- LOAD

Refer to Section "7.1 LOAD" of "SOFTUNE Workbench Command Reference Manual".

• Dialog 

- [Load] tab of setup debug environment dialog

Refer to Section "4.7.2.3 Debug Environment" of "SOFTUNE Workbench Operation Manual".
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.6  Monitor Debugger

S u p p o r t  S o f t  M a n u a l

Septe
2.6.3 Points to Note when Executing Programs

Take note of the following points when using this emulator to execute a program.

■ Code Break Settings when Using Step Execution
The wild register is used temporarily when using the monitor debugger in step-in mode at the machine

language level. As it is not possible to set code breakpoints during this time, code breakpoints are disabled.

In particular, when using step execution with the "interrupt mask" set to disable interrupts, you need to take

note of this point in situations such as when a breakpoint is set in an interrupt handler. As breakpoints set in

interrupt handlers are disabled, execution will not break even if the breakpoint code is executed.
mber 1, 2014, CM25-00324-6Ea 191



CHAPTER 2  DEPENDENCE FUNCTIONS
2.6  Monitor Debugger

S u p p o r t  S o f t  M a n u a l

192
2.6.4 Break

This Debugger provides two types of break functions.  When by each break function 
aborts program execution, the address where a break occurred and the break factor are 
displayed.

■ Break Functions
This Debugger provides the following two types of break functions;

- Code break

- Forced break
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.6  Monitor Debugger

S u p p o r t  S o f t  M a n u a l

Septe
2.6.4.1 Code Break

This function aborts the program execution by monitoring a specified address by 
software. A break occurs before executing an instruction at the specified address.

■ Code Break 
This function aborts the program execution by monitoring a specified address by software. A break occurs

before executing an instruction at the specified address.

Up to 2 addresses can be set for this debugger.

When the code break occurs, the following message appears at the status bar.

Break at address by breakpoint

■ Setting Method
Set code break as follows.

• Command 

- SET BREAK

Refer to "3.1 SET BREAK (type 1)" of "SOFTUNE Workbench Command Reference Manual".

• Dialog 

- "Code" tab in breakpoint setting dialog

Refer to "4.6.4 Breakpoint" of "SOFTUNE Workbench Operation Manual".

• Window

- Source window/disassemble window

Refer to "3.7 Source Window" or "3.9 Disassemble Window" of "SOFTUNE Workbench Operation

Manual".
mber 1, 2014, CM25-00324-6Ea 193



CHAPTER 2  DEPENDENCE FUNCTIONS
2.6  Monitor Debugger

S u p p o r t  S o f t  M a n u a l

194
2.6.4.2 Forced Break

This function forcibly aborts the program execution to generate a break.

■ Forced Break 
This function forcibly aborts the program execution to generate a break.

When the forced break occurred, the following message appears at the status bar.

Break at address by command abort request
CM25-00324-6Ea, September 1, 2014



CHAPTER 2  DEPENDENCE FUNCTIONS
2.6  Monitor Debugger

S u p p o r t  S o f t  M a n u a l

Septe
2.6.5 Confirming the Debugger's State

This section explains methods of confirming the debugger's state and its information. 

■ Debugger Information
With this monitor debugger, the following information can be obtained at the time of startup. 

- File information of SOFTUNE Workbench 

- Hardware-related information 

If problems are encountered with SOFTUNE Workbench and its behavior, refer to the information before

contacting the Sales Representatives. 

■ Confirmation Method
Debugger's information can be confirmed as follows. 

• Command 

- SHOW SYSTEM

Refer to section "1.12 SHOW SYSTEM" of "SOFTUNE Workbench Command Reference Manual". 

• Dialog

- Version information dialog

Refer to section "4.9.3 Version Information" of "SOFTUNE Workbench Operation Manual". 

■ Content to be Displayed
The debugger information is displayed as shown below.

F2MC-8L/8FX Family SOFTUNE Workbench VxxLxx 

(c) Copyright Spansion, All Rights Reserved 1997-2014

=======================================================

Cpu information file path : Path to the CPU information file 

Cpu information file version : Version of the CPU information file 

=======================================================

Add in DLLs 

-------------------------------------------------------

SiCmn 

Product name : SOFTUNE Workbench 

File Path : Path to SiC896.dll 

Version : Version of SiC896.dll 

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

SiiEd 

File Path : Path to SiiEd3.ocx 

Version : Version of SiiEd3.ocx 

-------------------------------------------------------

SiM896 

Product name : SOFTUNE Workbench 

File Path : Path to SiM896.dll 

Version : Version of SiM896.dll 

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

Language Tools 

 - Compiler 

File Path : Path to fcc896s.exe 

 - Assembler 

File Path : Path to fasm896s.exe 

 - Linker 

File Path : Path to flnk896s.exe 
mber 1, 2014, CM25-00324-6Ea 195



CHAPTER 2  DEPENDENCE FUNCTIONS
2.6  Monitor Debugger

S u p p o r t  S o f t  M a n u a l

196
 - Librarian 

File Path : flib896s.exe 

 - FJ-OMF to S-FORMAT Converter 

File Path : Path to flib896s.exe 

 - FJ-OMF to INTEL-HEX Converter 

File Path : Path to f2is.exe 

 - FJ-OMF to INTEL-EXT-HEX Converter 

File Path : Path to f2es.exe 

 - FJ-OMF to HEX Converter 

File Path : Path to f2hs.exe 

-------------------------------------------------------

SiOsM 

Product name : SOFTUNE Workbench 

File Path : Path to SiOsM896.dll 

Version : Version of SiOsM896.dll 

-------------------------------------------------------

F2MC-8L/8FX Family Debugger DLL 

Product name : SOFTUNE Workbench 

File Path : Path to SiD896.dll 

Version : Version of SiD896.dll 

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

Debugger type : Current debugger type 

MCU type : Currently selected target MCU 

VCpu dll name : Path and name of currently selected virtual debugger section DLL 

VCpu dll version : Version of currently selected virtual debugger section DLL 

Adapter type : BGM adapter currently used 

Adapter version : Version of the BGM adapter 

Target type : BGM target currently used 

Target version : BGM target version 

Clock mode : Main clock / sub clock 

Communication device : Device type 

-------------------------------------------------------

SiIODef 

Product name : SOFTUNE Workbench 

File Path : Path to SiIODef.dll 

Version : Version of SiIODef.dll 

=======================================================

Current path : Currently specified project path 

Language : Currently selected language 

Help file path : Path to the help files 
CM25-00324-6Ea, September 1, 2014



Septe

S u p p o r t  S o f t  M a n u a l
APPENDIX

These appendixes describe the Manager-Related 
Messages, Error Message for Debuggers, and Execution 
Suspension Messages List.

APPENDIX A  Major Changes
mber 1, 2014, CM25-00324-6Ea 197



APPENDIX
APPENDIX A  Major Changes

S u p p o r t  S o f t  M a n u a l

198
APPENDIX A Major Changes

Page Section Change Results 

Revision 6.1

- - Company name and layout design change
CM25-00324-6Ea, September 1, 2014



INDEX
  

S u p p o r t  S o f t  M a n u a l

Septe
INDEX

Symbols

/CYCLE
Display All Bus Cycles (Specify/CYCLE.)......... 104

/INSTRUCTION
Display in Only Instruction Execution 

(Specify/INSTRUCTION.) .................. 105
/SOURCE

Display in Source Line Units (Specify/SOURCE.)
.......................................................... 105

A

Access Attributes
Access Attributes for Memory Areas ................... 61
Memory Area Access Attributes.......................... 36

Active Project
Active Project...................................................... 2
Active Project Configuration ................................ 4

Assembly
Line Assembly .................................................. 27

Automatic Update
Automatic Update of Firmware ......................... 172

B

Break
Break at Standby Mode ............................ 144, 157
Break by Sequencer ........................................... 88
Break Functions........... 42, 67, 133, 161, 180, 192
Buffer-full Break ............................................... 54
Code Break ......................... 43, 68, 134, 162, 193
Code Break Settings 

when Using Step Execution ................. 191
Data Break .......................................... 44, 70, 135
Forced Break....................... 47, 75, 138, 163, 194
Monitoring Data Break..................................... 136
Notes on Instruction Execution Break .................. 68
Performance Buffer-full Break ............................ 74
Sequential Break........................................ 71, 137
Specify Performance-Buffer-Full Break ............. 111
Trace Buffer-full Break ................................ 46, 73

Breaks
Guarded Access Breaks ................................ 45, 72

Build
Build Function..................................................... 6
Customize Build Function .................................... 7

Bus Cycles
Display All Bus Cycles (Specify/CYCLE.) ........ 104

C

C Language
Notes on Symbols of C Language........................ 31
Specifying Variables of C Language.................... 31

Clock
Main Clock Oscillation .................................... 130
Setting Main Clock Oscillation Frequency ......... 153

Clock-up Mode
Clock-up Mode................................................ 129
mber 1, 2014, CM25-00324-6Ea 199



INDEX

S u p p o r t  S o f t  M a n u a l

200
Code Break
Code Break ................. 43, 68, 134, 162, 181, 193
Code Break Settings 

when Using Step Execution ................. 191
Commands

Commands for External Probe Data................... 122
On-the-fly Executable Commands ....................... 64

Coverage
Coverage Measurement Function ...................... 115
Coverage Measurement Operation..................... 115
Coverage Measurement Procedures ................... 115
Displaying Coverage Measurement Result ......... 116
Measuring Coverage ........................................ 116
Setting Range for Coverage Measurement.......... 116

Customize
Customize Build Function .................................... 7

D

Data Break
Data Break .......................................... 44, 70, 135

Debug
Debug the End................................................. 160
When Ending the Debug................................... 179

Debugger
Emulator Debugger.............................. 24, 57, 151
Emulator Debugger 

(MB2146-09/09A/09B) ....................... 125
Monitor Debugger ..................................... 24, 188
Simulator Debugger ..................................... 24, 34
Type of Debugger .............................................. 24
When Starting Debugger .................................. 159
When Starting the Debugger ............................. 178

Debugger’s
Confirming the Debugger’s State ...................... 186

Dependence
Project Dependence ............................................. 5

Disassembly
Disassembly ...................................................... 27

E

Editor
External Editor .................................................. 14
Standard Editor.................................................. 13

Emulator
Emulator Debugger.............................. 24, 57, 151
Emulator Debugger 

(MB2146-09/09A/09B) ....................... 125
Emulator Debugger

Emulator Debugger...................... 24, 57, 151, 166
Emulator Debugger 

(MB2146-09/09A/09B) ....................... 125
Erasing

Erasing/Programming FLASH Memory
................................................. 131, 154

Writing to or Erasing Flash Memory ..................173
Writing to or Erasing FRAM .............................175

Error
Error ...............................................................148

Error Jump
Error Jump Function ...........................................11

Error Message
Error Message if Loading Fails ..................189, 190

Event
Event Modes......................................................77
Event-related Commands in Multi Trace Mode

............................................................81
Event-related Commands in Normal Mode ...........79
Event-related Commands in Performance Mode

............................................................83
Event Mode

Setting Event Mode ..........................................111
Event Modes

Event Modes......................................................77
Events

Setting Events ............................................76, 112
External Editor

External Editor...................................................14
External Probe

Commands for External Probe Data ...................122
Displaying and Setting External Probe Data

..........................................................122
External Probe Sampling Timing .......................121
Sampling by External Probe ..............................121

External Tools
External Tools....................................................16

F

Firmware
Automatic Update of Firmware..........................172

FLASH
Using the FLASH Area.....................................190

FLASH Memory
Erasing/Programming FLASH Memory

..................................................131, 154
FLASH Memory Synchronization Setting...........171
Writing to the FLASH memory .........................189

Flash Memory
Writing to or Erasing Flash Memory ..................173

FLASH Security
FLASH Security...............................................158

Flash Security
Flash Security ..................................................177

Forced Break
Forced Break ...............47, 75, 138, 163, 182, 194

Format
Display Format of Trace Data............................141
CM25-00324-6Ea, September 1, 2014



INDEX
  

S u p p o r t  S o f t  M a n u a l

Septe
FRAM
For FRAM product........................................... 177
Writing to or Erasing FRAM ............................. 175

Frame Number
Frame Number and Step Number in Single Trace

............................................................ 96
Multi Trace Frame Number................................. 99

Frame number
Frame number.................................................. 140

G

Guarded Access Breaks
Guarded Access Breaks ................................ 45, 72

I

I/O Port
I/O Port Settings ................................................ 37
I/O Port Simulation ............................................ 37

Include Dependencies
Analyzing Include Dependencies ........................... 9

Instruction
Display in Only Instruction Execution 

(Specify/INSTRUCTION.) .................. 105
Instruction Simulation ........................................ 35

Instruction Execution Break
Notes on Instruction Execution Break .................. 68

Interrupt
Interrupt Simulation ........................................... 38

L

Line Assembly
Line Assembly................................................... 27

Line Number
Line Number Information ................................... 29

Low-Power Consumption Mode
Low-Power Consumption Mode Simulation ......... 40

M

Macro
Examples of Macro Expansion ............................ 20
Macro List..................................................... 7, 17

Macros
Macros .............................................................. 17

Main Clock Oscillation
Main Clock Oscillation ..................................... 130
Setting Main Clock Oscillation Frequency

.......................................................... 153
Make

Make Function..................................................... 6
MCU

MCU Operation Mode ........................................ 59

Measurement Range
How to Extend the Measurement Range............. 147

Measurement Result
Clearing the Measurement Result ...................... 148
Displaying the Measurement Result................... 147

Memory
Access Attributes for Memory Areas ................... 61
Functions for Memory Operations ....................... 25
Memory Area Access Attributes.......................... 36
Memory Area Types .......................................... 60
Memory Simulation ........................................... 36
Read/Write Memory while On-the-fly ................. 65
Simulation Memory Space.................................. 36

Memory Map
Creating and Displaying Memory Map ................ 61

Minimum Measurement Unit
Setting Minimum Measurement Unit for Timer

......................................................... 111
Mode

Break at Standby Mode ............................ 144, 157
Clock-up Mode................................................ 129
Event-related Commands in Multi Trace Mode

........................................................... 81
Event-related Commands in Performance Mode

........................................................... 83
Low-Power Consumption Mode Simulation ......... 40
MCU Operation Mode ....................................... 59
Operation in Multi Trace Mode ........................... 80
Operation in Normal Mode ................................. 78
Operation in Performance Mode.......................... 82
Setting Event Mode ......................................... 111

Monitor
Monitor Debugger ..................................... 24, 188

Monitor Debugger
Monitor Debugger ..................................... 24, 188

Monitoring
Halt Time During Monitoring ........................... 145
RAM Monitoring............................................. 183
Stop Time during Monitoring............................ 183

Monitoring Data Break
Monitoring Data Break..................................... 136

Multi Trace
Multi Trace Frame Number ................................ 99
Multi Trace Function ......................................... 99
Reading Trace Data On-the-fly in the Multi Trace

......................................................... 107
Setting Multi Trace .......................................... 101

Multi Trace Mode
Event-related Commands in Multi Trace Mode

........................................................... 81
Operation in Multi Trace Mode ........................... 80
mber 1, 2014, CM25-00324-6Ea 201



INDEX

S u p p o r t  S o f t  M a n u a l

202
N

Normal Mode
Event-related Commands in Normal Mode........... 79
Operation in Normal Mode ................................. 78

O

On-the-fly
On-the-fly Executable Commands ....................... 64
Read/Write Memory while On-the-fly ................. 65
Reading Trace Data On-the-fly in Single Trace

......................................................... 106
Reading Trace Data On-the-fly in the Multi Trace

......................................................... 107
Operating Environment

Operating Environment ................................ 23, 58
Setting Operating Environment ......... 128, 152, 167

Operation Mode
MCU Operation Mode ....................................... 59

Optimization of Response Speed
Optimization of Response Speed ....................... 168

Optional Settings
Example of Optional Settings.............................. 15

Options
Function of Setting Tool Options ........................ 10
Setting Options........................................ 7, 14, 16
Tool Options ..................................................... 10

Oscillation
Main Clock Oscillation .................................... 130
Setting Main Clock Oscillation Frequency ......... 153

Oscillation Frequency
Setting Oscillation Frequency ........................... 169

P

Performance Buffer-full Break
Performance Buffer-full Break ............................ 74

Performance Measurement Data
Clearing Performance Measurement Data .......... 112
Displaying Performance Measurement Data

......................................................... 112
Performance Measurement Function

Performance Measurement Function.................. 110
Performance Mode

Event-related Commands in Performance Mode
........................................................... 83

Operation in Performance Mode.......................... 82
Performance-Buffer-Full Break

Specify Performance-Buffer-Full Break ............. 111
Port

I/O Port Settings ................................................ 37
I/O Port Simulation ............................................ 37
I/O Port Simulation (Input Port) .......................... 38

Power Supply
Power Supply Setting ....................................... 170

Program
Executing Program ...........................................112

Programming
Erasing/Programming FLASH Memory

..................................................131, 154
Project

Active Project ......................................................2
Active Project Configuration .................................4
Project.................................................................2
Project Configuration............................................4
Project Dependence ..............................................5
Project format ......................................................3
Project Management Function ...............................3

Project Configuration
Active Project Configuration .................................4
Project Configuration............................................4

Projects
Restrictions on Storage of Two or More Projects

..............................................................2

R

RAM
RAM Monitoring .............................................183

Reference
Reference Section...............................................23

Register
Register Operations ............................................26

Reset
Reset Simulation ................................................39

S

Sample Flow
Sample Flow of Time Measurement by Sequencer

............................................................92
Sampling

External Probe Sampling Timing .......................121
Trace Sampling Control by Sequencer..................89

Scope
Scope ................................................................30

Search Procedure
Specifying Symbol and Search Procedure .............30

Section
Reference Section...............................................23

Sequence
Sequence Function .............................................84

Sequencer
Break by Sequencer ............................................88
Control by Sequencer .........................................84
Sample Flow of Time Measurement by Sequencer

............................................................92
Setting Sequencer...............................................86
Time Measurement by Sequencer ........................91
Trace Sampling Control by Sequencer..................89
CM25-00324-6Ea, September 1, 2014



INDEX
  

S u p p o r t  S o f t  M a n u a l

Septe
Sequential Break
Sequential Break ........................................ 71, 137

Setting
Setting Method ................... 41, 43, 44, 45, 46, 68, 

70, 71, 72, 73, 74, 129, 130, 134, 135, 
136, 137, 145, 153, 162, 169, 170, 171, 
172, 193

Simulation
I/O Port Simulation ............................................ 37
Instruction Simulation ........................................ 35
Interrupt Simulation ........................................... 38
Low-Power Consumption Mode Simulation

............................................................ 40
Memory Simulation............................................ 36
Reset Simulation ................................................ 39
Simulation Memory Space .................................. 36
Simulation Range............................................... 34

Simulator
Simulator Debugger ..................................... 24, 34

Simulator Debugger
Simulator Debugger ..................................... 24, 34

Single Trace
Frame Number and Step Number in Single Trace

............................................................ 96
Function of Single Trace..................................... 95
Reading Trace Data On-the-fly in Single Trace

.......................................................... 106
Setting Single Trace ........................................... 97

Source Line Units
Display in Source Line Units (Specify/SOURCE.)

.......................................................... 105
Standard Editor

Standard Editor .................................................. 13
Standby Mode

Break at Standby Mode............................. 144, 157
Break in Standby Mode .................................... 176

Step Number
Frame Number and Step Number in Single Trace

............................................................ 96
Storage Information

Displaying Trace Data Storage Information
.......................................................... 141

Storage Status
Displaying Trace Data Storage Status ................ 102

STUB
Outline of STUB Function .................................. 41

Subproject
Subproject ........................................................... 2

Symbol
Setting Symbol Information ................................ 28
Specifying Symbol and Search Procedure............. 30

Symbols
Notes on Symbols of C Language........................ 31
Types of Symbols .............................................. 28

Syntax
Syntax .............................................................. 11

T

Time Measurement
Sample Flow of Time Measurement by Sequencer

........................................................... 92
Time Measurement by Sequencer ........................ 91

Timer Minimum Measurement Unit
Setting Timer Minimum Measurement Unit ......... 63

Tool Options
Function of Setting Tool Options ........................ 10
Tool Options ..................................................... 10

Trace
Trace .............................................................. 139
Trace Functions ................................................. 49
Trace Sampling Control by Sequencer ................. 89

Trace Buffer-full Break
Trace Buffer-full Break ................................ 46, 73

Trace Data
Clearing Trace Data ......................................... 141
Display Format of Trace Data ........................... 141
Displaying Trace Data Storage Information........ 141
Displaying Trace Data Storage Status ................ 102
Reading Trace Data On-the-fly in Single Trace

......................................................... 106
Reading Trace Data On-the-fly in the Multi Trace

......................................................... 107
Sampling Trace Data........................................ 139
Saving Trace Data ................................... 108, 142
Searching of Trace Data ................................... 109
Specify Displaying Trace Data Position ............. 103
Trace Data ...................................................... 139

V

Variables
Specifying Variables of C Language.................... 31

W

Workspace
Workspace .......................................................... 2
Workspace Management Function......................... 2

Writing
Writing to or Erasing Flash Memory.................. 173
Writing to or Erasing FRAM ............................ 175
mber 1, 2014, CM25-00324-6Ea 203



INDEX

S u p p o r t  S o f t  M a n u a l

204
 CM25-00324-6Ea, September 1, 2014



S u p p o r t  S o f t  M a n u a l

Septe
Colophon

CM25-00324-6Ea

Spansion • SOFTWARE SUPPORT MANUAL

F2MC-8L/8FX FAMILY 

SOFTUNETM Workbench 

USER'S MANUAL

September 2014 Rev. 6.1

Published Spansion Inc.
Edited Communications
mber 1, 2014, CM25-00324-6Ea 205



S u p p o r t  S o f t  M a n u a l

206
Colophon
The products described in this document are designed, developed and manufactured as contemplated for general use, 
including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, 
developed and manufactured as contemplated (1) for any use that includes fatal risks or dangers that, unless extremely high 
safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical 
damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport 
control, medical life support system, missile launch control in weapon system), or (2) for any use where chance of failure is 
intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not be liable to you and/or any third 
party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices 
have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety 
design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels 
and other abnormal operating conditions. If any products described in this document represent goods or technologies subject 
to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration 
Regulations or the applicable laws of any other country, the prior authorization by the respective government entity will be 
required for export of those products.

Trademarks and Notice
The contents of this document are subject to change without notice. This document may contain information on a Spansion 
product under development by Spansion. Spansion reserves the right to change or discontinue work on any product without 
notice. The information in this document is provided as is without warranty or guarantee of any kind as to its accuracy, 
completeness, operability, fitness for particular purpose, merchantability, non-infringement of third-party rights, or any other 
warranty, express, implied, or statutory. Spansion assumes no liability for any damages of any kind arising out of the use of 
the information in this document. 
Copyright © 2004 - 2014 Spansion All rights reserved. Spansion®, the Spansion logo, MirrorBit®, MirrorBit® EclipseTM, 
ORNANDTM and combinations thereof, are trademarks and registered trademarks of Spansion LLC in the United States and 
other countries. Other names used are for informational purposes only and may be trademarks of their respective owners.
CM25-00324-6Ea, September 1, 2014


	CHAPTER 1 BASIC FUNCTIONS
	1.1 Workspace Management Function
	1.2 Project Management Function
	1.3 Project Dependence
	1.4 Make/Build Function
	1.4.1 Customize Build Function

	1.5 Include Dependencies Analysis Function
	1.6 Functions of Setting Tool Options
	1.7 Error Jump Function
	1.8 Editor Functions
	1.9 Storing External Editors
	1.10 Storing External Tools
	1.11 Macro Descriptions Usable in Manager
	1.12 Setting Operating Environment
	1.13 Debugger Types
	1.14 Memory Operation Functions
	1.15 Register Operations
	1.16 Line Assembly and Disassembly
	1.17 Symbolic Debugging
	1.17.1 Referring to Local Symbols
	1.17.2 Referring to Variables of C Language


	CHAPTER 2 DEPENDENCE FUNCTIONS
	2.1 Simulator Debugger
	2.1.1 Instruction Simulation
	2.1.2 Memory Simulation
	2.1.3 I/O Port Simulation
	2.1.4 Interrupt Simulation
	2.1.5 Reset Simulation
	2.1.6 Low-Power Consumption Mode Simulation
	2.1.7 STUB Function
	2.1.8 Break
	2.1.8.1 Code Break
	2.1.8.2 Data Break
	2.1.8.3 Guarded Access Break
	2.1.8.4 Trace Buffer-full Break
	2.1.8.5 Forced Break

	2.1.9 Measuring the Number of Execution Cycles
	2.1.10 To Refer to a Program Execution History, Use [TRACE]
	2.1.10.1 Displaying Trace Data
	2.1.10.2 Saving Traced Data
	2.1.10.3 Searching Traced Data
	2.1.10.4 To Terminate Trace Obtention

	2.1.11 Confirming the Debugger's State

	2.2 Emulator Debugger (MB2141)
	2.2.1 Setting Operating Environment
	2.2.1.1 MCU Operation Mode
	2.2.1.2 Memory Area Types
	2.2.1.3 Memory Mapping
	2.2.1.4 Timer Minimum Measurement Unit

	2.2.2 On-the-fly Executable Commands
	2.2.3 On-the-fly Memory Access
	2.2.4 Break
	2.2.4.1 Code Break
	2.2.4.2 Data Break
	2.2.4.3 Sequential Break
	2.2.4.4 Guarded Access Break
	2.2.4.5 Trace Buffer-full Break
	2.2.4.6 Performance Buffer-full Break
	2.2.4.7 Forced Break

	2.2.5 Events
	2.2.5.1 Operation in Normal Mode
	2.2.5.2 Operation in Multi Trace Mode
	2.2.5.3 Operation in Performance Mode

	2.2.6 Control by Sequencer
	2.2.6.1 Setting Sequencer
	2.2.6.2 Break by Sequencer
	2.2.6.3 Trace Sampling Control by Sequencer
	2.2.6.4 Time Measurement by Sequencer
	2.2.6.5 Sample Flow of Time Measurement by Sequencer

	2.2.7 To Refer to a Program Execution History, Use [TRACE]
	2.2.7.1 Single Trace
	2.2.7.2 Setting Single Trace
	2.2.7.3 Multi Trace
	2.2.7.4 Setting Multi Trace
	2.2.7.5 Displaying Trace Data Storage Status
	2.2.7.6 Specify Displaying Trace Data Position
	2.2.7.7 Display Format of Trace Data
	2.2.7.8 Reading Trace Data On-the-fly
	2.2.7.9 Saving Trace Data
	2.2.7.10 Searching of Trace Data

	2.2.8 Measuring Performance
	2.2.8.1 Performance Measurement Procedures
	2.2.8.2 Display Performance Measurement Data

	2.2.9 Measuring Coverage
	2.2.9.1 Coverage Measurement Procedures

	2.2.10 Execution Time Measurement
	2.2.11 Sampling by External Probe
	2.2.12 Confirming the Debugger's State

	2.3 Emulator Debugger (MB2146-09/09A/09B)
	2.3.1 Setting Operating Environment
	2.3.1.1 Clock-up Mode
	2.3.1.2 Main Clock Oscillation

	2.3.2 Programming to FLASH Memory
	2.3.3 Break
	2.3.3.1 Code Break
	2.3.3.2 Data Break
	2.3.3.3 Monitoring Data Break
	2.3.3.4 Sequential Break
	2.3.3.5 Forced Break

	2.3.4 Real-time Trace
	2.3.4.1 Displaying Trace Data
	2.3.4.2 Saving Trace Data
	2.3.4.3 Searching Trace Data

	2.3.5 Notes on Executing Program
	2.3.6 RAM Monitoring
	2.3.7 Measuring the Number of Execution Cycles
	2.3.8 Confirming the Debugger's State

	2.4 Emulator Debugger (MB2146-08)
	2.4.1 Setting Operating Environment
	2.4.1.1 Main Clock Oscillation Frequency

	2.4.2 Erasing/Programming FLASH Memory
	2.4.3 Erasing/Programming FRAM Area
	2.4.4 Notes on Executing Program
	2.4.5 FLASH Security
	2.4.6 Notes on Starting/Stopping Debugger
	2.4.7 Break
	2.4.7.1 Code Break
	2.4.7.2 Forced Break

	2.4.8 Confirming the Debugger's State

	2.5 Emulator Debugger (MB2146-07)
	2.5.1 Setting Operating Environment
	2.5.1.1 Optimization of Response Speed
	2.5.1.2 Oscillation Frequency
	2.5.1.3 Power Supply to BGM Adapter
	2.5.1.4 Synchronization of FLASH memory at Startup of Debugger
	2.5.1.5 For this setting, use the setup wizard.

	2.5.2 Writing to or Erasing FLASH Memory
	2.5.3 Writing to or Erasing FRAM Area
	2.5.4 Precautions on Program Execution
	2.5.5 Flash Security Detection Function
	2.5.6 Precautions on Starting and Ending the Debugger
	2.5.7 Break
	2.5.7.1 Code Break
	2.5.7.2 Forced Break

	2.5.8 RAM Monitoring
	2.5.9 Confirming the Debugger's State

	2.6 Monitor Debugger
	2.6.1 Writing to the FLASH memory
	2.6.2 Fast downloading
	2.6.3 Points to Note when Executing Programs
	2.6.4 Break
	2.6.4.1 Code Break
	2.6.4.2 Forced Break

	2.6.5 Confirming the Debugger's State


	APPENDIX
	APPENDIX A Major Changes

	INDEX
	Symbols
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W


