

Personal Mechatronics Lab

Microcontroller Board User Manual

©2012 by M.R. Emami

Microcontroller Board User Manual

Personal Mechatronics Lab 2

Table of Contents

1. Introduction ... 3

1.1 Overview ... 3
1.2 Features ... 4
1.3 Included in the Box .. 4

2. Operation ... 5
2.1 Operational Modes ... 5
2.2 Connecting to the PC for Programming .. 5
2.3 Customizing Board Operation .. 6
2.4 Interfacing with External Circuits .. 6

3. Board Modules .. 7
3.1 Power Supply ... 7
3.2 On-board USB Programmer ... 7
3.3 Debugging Module ... 8
3.4 HD44780 Based LCD .. 9
3.5 4x4 KEYPAD .. 9
3.6 RS-232 DB-9 Communication... 10
3.7 A2D Reference ... 10
3.8 Real Time Clock ... 10

3.8.1 Using the Real Time Clock ... 11
3.9 Main I/O BUS ... 13
3.10 I2C BUS... 14
3.11 Main PIC Device ... 14

4. Programming Software... 15
4.1 Overview ... 15
4.2 Quick Start ... 15
4.3 Operations ... 16
4.4 Additional Features of PICusb .. 17
4.5 Sample Code .. 19

5. Advanced Programming Topics ... 21
5.1 Overview ... 21
5.2 Coding Firmware Modifications ... 21

5.2.1 Modifying Run-Mode ... 21
5.3 Re-Imaging the PIC18F2550 ... 23

5.3.1 User Code Considerations ... 24
5.3.2 Restoring to Original State .. 25

6. I2C PIC to PIC Communication .. 27
6.1 I2C Overview ... 27
6.2 Using the I2C ... 27

6.2.1 PIC-RTC Communication ... 28
6.2.2 PIC-to-PIC Communication for Parallel Processing .. 28
6.2.3 PIC-to-PIC Extending I/O Set Programming .. 28
6.2.4 PIC16-PIC18 Communication for PIC16 Register Watching 29
6.2.5 PIC- I2C Bus Communication ... 31

6.3 Important Note About i2c_common.asm and Its Macros .. 31

Microcontroller Board User Manual

Personal Mechatronics Lab 3

1. Introduction

1.1 Overview

The PIC Microcontroller board development board was designed as a complete mobile

solution to the PIC development, including a full-speed USB programmer and a number

of peripheral modules, such as LCD, Keypad, Real Time Clock, A2D, and RS232 and I2C

serial ports. One especially useful feature of the board is the debugging module, which

monitors all pin states and allows the user to emulate inputs to the PIC. The board is

ideal for students, as it can be used to develop and test codes quickly and effectively. It

is also easy to track down and repair all components on the board. Applications can vary

from an exclusive development platform to a full-scale embedded processing/control

system used in a final design.

Figure 1: The PIC Microcontroller board

Microcontroller Board User Manual

Personal Mechatronics Lab 4

1.2 Features

 Open, modular, and simple design for learning purposes

 Supports a wide range of implementations, from simple MCU operation to

parallel processing, memory extension, serial communication, etc.

 Supports 18-, 28-, and 40-pin packages for PIC16 and 18 families

 In-circuit USB High Voltage Programmer (compatible with MPLAB® IDE)

 Dual USB-adaptor power supply (ranging from 7.5VDC to 17VDC)

 Debugging Module with 32 indicator LEDs and signal-emulation switches

 Programmer firmware can be modified for extra memory, parallel processing,

and/or I/O pin extension

 Real Time Clock peripheral with 32.768khz crystal and battery socket

 On-board HD44780 LCD socket with contrast and backlight controls

 On-board 4x4 keypad socket and signal encoder

 40-pin I/O bus with ribbon cable connector

 Changeable oscillator clock (10MHz crystal included)

 On-board RS232 peripheral including female socket and level converter

 I2C bus expansion socket

 On-board A2D voltage reference setting

1.3 Included in the Box

The development kit should come with the following items:

 PIC Microcontroller development board

 CD/URL from which to download necessary software, drivers, and sample codes

 2 USB cables

 40-pin I/O bus cable with header

 40-pin I/O bus cable without header

 HD44780-controlled LCD display

 4x4 matrix keypad

 AC-DC adaptor unit

 USB AC-DC Adaptor

Microcontroller Board User Manual

Personal Mechatronics Lab 5

2. Operation

2.1 Operational Modes

The PIC Microcontroller board has three modes of operation, as follows:

Programming: Used to load compiled HEX code onto the main PIC device. To

enter this mode, flip the slide switch of the programmer module

to the PRG position. In this mode, the VPP, PGC and PGD pins of

the main PIC device are disconnected from the main I/O bus, and

connected instead to the programmer module. A PC application,

such as MPLAB® IDE or PICusb, can be used to control the

execution of code in this mode.

Executing: This is the primary operational mode of the board. To enter this

mode, flip the slide switch of the programmer to the RUN

position. In this mode, All I/O pins of the main PIC device are

connected to the I/O bus, and code executes freely. In addition, if

the parallel processing firmware is used, the user-defined code on

the programmer PIC begins to execute simultaneously to main

PIC.

Bootloader: For advanced users only. This mode allows the user to re-program

the firmware of the programmer module via the USB link. The

bootloader mode also allows the user to restore the programmer

firmware in case it becomes corrupt. This mode can be entered

either from the PC application or manually. To enter this mode

manually, turn off the board power supply, then hold the

BOOTLOAD button on the programmer module while turning the

power supply back on. More details on using the bootloader

feature can be found in Section 5.3.2.

2.2 Connecting to the PC for Programming

In order to load HEX code to the PIC device, the Microcontroller board must connect to a

PC:

1. Install the PICusb programming software before connecting the board:

a. Run the PICusb setup program.

Microcontroller Board User Manual

Personal Mechatronics Lab 6

Figure 2:
 Jumper

An alternative option is to use MPLAB® IDE. In this case, PICusb installation is not

required, and the Microcontroller board is recognized as PICkit™ 2 in MPLAB®

IDE. (In this manual, it is assumed that PICusb is used.)

2. Connect the Microcontroller board to the PC using the included USB cable.

3. Power the board and turn it on. The board can be powered by the USB cable.

However, use of the wall adaptor is recommended for powering the board.

4. Set the board to Programming mode. (Section 2.1)

5. Flip the power switch to the ON position. (Section 3.1)

6. The PC should detect the Microcontroller board as a Human Interface Device and

install the driver automatically.

7. The PIC device on the board is now ready to be programmed. (Section 4)

2.3 Customizing Board Operation

The Microcontroller board was designed with versatility in mind. To customize the

operation of the board, several configuration jumpers and switches have been included,

which must be set by the user. Before using the board for the first time, please ensure

that the jumpers for each module have been configured as desired. More information

about jumper settings for individual modules can be found in Section 3.

For those unfamiliar with jumpers, a jumper is a set of 2 or more exposed

pins that can be connected adjacently in pairs, using a ‘shunt’. When two

pins of the jumper are connected to each other, they are ‘shorted’. As ann

example, if pins 1 and 2 in the figure are connected using a shunt, then we

say we have ‘shorted’ pins 2+3, and we have configured the board for use

with a P18F type microcontroller as labeled above the jumper.

2.4 Interfacing with External Circuits

While the board is operating in Executing mode, all I/O pins of the PIC microcontroller

are directly connected to the main I/O bus socket. Using the provided ribbon cable, this

bus can be used to interface directly with external circuitry, since it provides a +5V

supply and ground reference in addition to direct access to the pins of the main PIC.

Also, note that the Keypad peripheral adds an extra pin to the bus, for on-the-fly

enable/disable control, as described in Section 3.5. A detailed description of the pin

connections on the ribbon cable is given in Section 3.9.

WARNING: the 5V supply on the bus is NOT intended as an alternate method of

powering the Microcontroller board, and NO guarantee is made for the continued

integrity of the board in cases of such usage.

Microcontroller Board User Manual

Personal Mechatronics Lab 7

Figure 3: Power Supply

Figure 4: USB Programmer

3. Board Modules

3.1 Power Supply

The Power Supply module is designed to take DC input of

7.5V to 17V, and output a regulated 5V for all modules to

share including the I/O bus. It also receives a regulated 5V

from the USB as a power source for all modules. Either of

these sources can be used as power supply, although the

former is recommended. The max current capacity for all

modules combined is 1A, enforced by a small replaceable

fuse (1.25A, TR5 size).

The input connector is a female 5.5×2.1mm jack, which is

compatible with many commonplace adaptors, and wall

adaptors of any polarity may be used since the input is

rectified.

A single two-pole slide switch controls power to the entire board by interrupting the

positive power terminal immediately after rectification, as well as interrupting the

positive power terminal from the USB. In the ON position, the board is powered, as

indicated by a red LED; in the OFF position, all modules are unpowered.

3.2 On-board USB Programmer

The Microcontroller board includes an on-

board USB PIC programmer. The

programmer operates in High Voltage

Programming (HVP) mode given a supply

voltage of 5V. It incorporates an internal

voltage converter that boosts the 5V

supply to 12V needed for HVP.

To enter Programming Mode, set the

slide switch to the PRG position, and to

enter Executing mode, set the slide switch

to the RUN position. To enter bootloader

mode (see Section 5.3.2), turn off the board power supply, hold the BOOTLOAD button,

and turn the power supply back on.

Microcontroller Board User Manual

Personal Mechatronics Lab 8

Figure 5: Indicator LEDs

Figure 6: Signal Switches

For advanced users wishing to modify the programmer source code in order to take

advantage of parallel computing, an I2C link may be established between the

PIC18F2550 of the programmer module and the main PIC device. To physically establish

the electrical connection between the two devices, jumpers JP14 and JP15 must be

shorted.

Users who want to use the PIC18F2550’s I/O pins from the main PIC during runtime also

need to short jumpers JP14 and JP15. This function also makes use of the I2C bus

implemented on the Microcontroller board between the main PIC and the programmer

PIC. Please refer to Section 6.2 for more information on these capabilities.

3.3 Debugging Module

The Debugging module allows the user to monitor

the states of the I/O pins of the main PIC device via

32 indicator LEDs. These indicators are fully

buffered, so they do not impact the voltage levels of

the signals they are monitoring – in other words,

they can safely monitor the logic states of low-

power sensor signals. However, it should be noted

that unless specific lines are connected to signals or

driven by the I/O ports, their indicators may flash

unpredictably since they are floating.

The indicators can be disabled in four columns

through the included DIP switch, in order to reduce

current draw.

To control the LEDs (refer to Figure 5):

Slide switch 1 for PORTA/PORTE

Slide switch 2 for PORTB

Slide switch 3 for PORTC

Slide switch 4 for PORTD

The Microcontroller board also comes with 32 DIP

switches to provide input to the pins of the main PIC

for debugging purposes. Each switch corresponds to

an indicator LED. Each DIP switch has 3 states – 5V,

Ground, and Disconnected. The middle position of

Microcontroller Board User Manual

Personal Mechatronics Lab 9

Figure 7: LCD

Figure 8: Keypad

each switch disconnects it from its corresponding

pin. The user can choose to set each pin high or low

by switching the switch to its corresponding state.

3.4 HD44780 Based LCD

This peripheral module allows a

HD44780-based LCD display to be easily

connected to the board. Controls are

provided for backlight and contrast, and

two equivalent headers have been

provided to support different LCD

orientations (Up/Down facing).

Since the HD44780 protocol supports

either 8-bit or 4-bit data transfer modes,

the Microcontroller board has been

configured to use 4-bit mode in the

interest of conserving I/O pins. The

HD44780 interface pins have been

mapped to the PIC I/O ports as shown in

Table 1.

3.5 4x4 KEYPAD

Since 4x4 keypads are commonly used in

microcontroller applications, this module was

included to simplify the required interface. Two

equivalent headers provide a socket for the

keypad in different orientations, and a

MM74C922 hex encoder simplifies the polling

process while reducing pin requirements. The

data pins for the encoder are connected to

PORTB<7:4> and the ‘data available’ pin (active

high) is connected to RB1.

JP3 allows the user to enable or disable the

keypad:

Short pins 1 and 2 to disable keypad

Short pins 2 and 3 to enable keypad

HD44780 PIC I/O Pin

RS RD2

R/W GND

E RD3

D4 RD4

D5 RD5

D6 RD6

D7 RD7
Table 1: HD44780 I/O Map

Microcontroller Board User Manual

Personal Mechatronics Lab 10

Figure 9: RS232 Module

Figure 10: A2D

Figure 11: RTC

The Keypad module can also be enabled or disabled on-the-fly through the special KPD

pin on the I/O bus. If this is desired, JP3 should be left unconnected. If KPD is set high,

the keypad will be disabled, and if set low, the keypad will be enabled. Note that KPD

can be controlled either by external circuitry or directly by the PIC by connecting it to

one of the ports on the I/O bus.

3.6 RS-232 DB-9 Communication

This peripheral module allows the user to communicate

with a PC through a serial port, using the PIC’s USART

module. A MAX232 chip is used as a level converter since

the USART and the serial port use different voltage levels,

and a built-in DB9 connector allows easy connection to

other RS232-compatible devices. Note that this module is

connected to pins RC6 and RC7 when enabled.

 To enable this module, short JP10

3.7 A2D Reference

The Microcontroller board has been equipped with two

potentiometers, R12 and R13 to set the voltage reference

levels for the Analog to Digital Converter (ADC). To enable

these references, short JP4 and JP5; if they are both left

unconnected, the references are disabled.

Short JP4 to enable Vref on RA2

Short JP5 to enable Vref on RA3

3.8 Real Time Clock

A Real Time Clock (RTC) and disk battery allow for off-chip

timekeeping, even when the rest of the board is unpowered. The

circuit is designed for a DS1307 RTC chip, interfaced through I2C on

pins RC3 and RC4.

To enable, short JP6 and JP7

Note 1: The DS1307, 3V lithium disk battery, and jumper shunts are

not included with the board.

Microcontroller Board User Manual

Personal Mechatronics Lab 11

Note 2: The RTC module was designed to be used with backup power (the 3V disk

battery) and therefore must have the battery in the socket to ensure consistent

operation.

3.8.1 Using the Real Time Clock

The DS1307 real time clock can be used to keep track of time in seconds, minutes,

hours, days, months, and years. The numbers of days in months are automatically

adjusted, including leap years. The hours function allows the chip to keep time in either

12 or 24 hour format with AM/PM indicator for 12 hour format. The advantage of the

off-chip timekeeping functionality of the RTC is to free the microcontroller from the task

so that it may focus on other tasks. For more detail on the DS1307 real time clock,

please refer to Chapter 7 of the AER201 course notes.

The RTC communicates with the main PIC microcontroller through the I2C protocol and

acts as a slave device with a 7-bit address of 1101 000X (where X denotes if the

transaction is a read or a write). In order to use the RTC, the main PIC must be

configured as a MSSP device or master device for I2C. The master device is responsible

for initiating and controlling the clock pulse for all slave devices, including the RTC. The

configuration code for I2C is available to students as two files: i2c_common.asm and

rtc_macros.inc. Note that these two files were written for PIC16 devices. Users may

need to modify the source code in order to use these files for PIC18.

i2c_common.asm: This source file contains the lowest level algorithm to deal directly

with the I2C protocol. It also contains the algorithm to deal with communication

between the microcontroller and RTC as well as for the PIC-to-PIC I2C communication.

This file must be included in the user’s MPLAB project.

rtc_macros.inc: This file must be included in the MPLAB project as well as the user code

wherever these macros are called. This file contains three primary macros that can

access all the timekeeping functions of the RTC. These are:

 Macro: rtc_resetAll

 Input parameters: none

 Output: none

Description: When invoked, this macro resets all the time keeping

registers on the RTC memory or resets time to zero.

 Macro: rtc_set address , data

Microcontroller Board User Manual

Personal Mechatronics Lab 12

Input parameters: Takes in 2 literal parameters, the address of the

register being written to and the data which will be written

Output: none

Description: This macro will initiate a write event to the RTC. The user

must specify the address which will be written to (i.e. the seconds

register which holds the time in seconds) and the data which will be

written to the specified address.

 Macro: rtc_read address

 Input parameters: address to be read from

 Output: DOUT (0x75), dig10 (0x77), dig1 (0x78)

Description: This macro will initiate a read event to the RTC and read

data from the specified address. The data from the RTC will be saved to

data memory general purpose register 0x75 or DOUT as an 8-bit binary

number. For the convenience of the user, this data will also be converted

into a two digit ASCII number and the tens digit will be stored in 0x77 or

dig10 and the ones digit will be stored in 0x78 or dig1. This is

advantageous because HD447780 based LCDs only display ASCII numbers.

In order to use these files, simply add them to your existing MPLAB project (If you do

not know how to make a project in MPLAB, use the MPLAB Project Wizard under Project

to generate a project). To do this, follow these steps:

1. Copy i2c_common.asm and rtc_macros.inc into your project directory.

2. Open MPLAB and load the project where the RTC is to be used.

3. Go to View and make sure Project is checked.

4. In the Project window where all the files in the project are listed. Right click

Source File and select Add Files… Select and add i2c_common.asm in your

project directory.

5. In the Project window where all the files in the project are listed. Right click

Header Files and select Add Files… Select and add rtc_macros.inc in your

project directory.

6. In any source files in which the user code calls the RTC macros, you must use

the include directive at the top of the page to include rtc_macros.inc. Simply

type at the top: include <rtc_macros.inc>.

7. Before using the RTC macros, you must enable and configure the main PIC as

a master I2C device. To do this, simply call i2c_common_setup subroutine

(this subroutine is located in i2c_common.asm). Simply type: call

Microcontroller Board User Manual

Personal Mechatronics Lab 13

Figure 13: IO Bus Pin-Outs, Top View

i2c_common_steup. It is suggested that this subroutine to be called at the

top of the main source file. You only need to call this subroutine once.

NOTE: Call this subroutine before initializing the LCD.

8. Invoke the RTC macros when needed in the user code to use the RTC.

Here is the memory map of the RTC registers:

Figure 12: RTC memory map. Register 00h to 07h are used for timekeeping. 07h is used to generate
square waves but this function is not included. 08h to 3fh are general purpose registers and can act as
extra memory.

To reset register 00h to 07h to zero, simply invoke the rtc_resetAll macro. To set a

register invoke rtc_set macro with the address of the register and the data to be set as

parameters to the macro (i.e. setting seconds to zero: rtc_set 00h , 00h). To read from

these registers, invoke the rtc_read

macro with the address of the register

to be read from (i.e. reading seconds

register: rtc_read 00h). The result will

be saved in bank0 0x75 of PIC16F877/A

or as a two digit BCD number in 0x77

(tens digit) and 0x78 (ones digit).

3.9 Main I/O BUS

A 40-pin bus has been provided to

allow direct access to each I/O pin

available on the PIC, as well as a special

purpose pin for enabling/disabling the

keypad at runtime (see Section 3.5).

The pin-outs for the socket and the

Microcontroller Board User Manual

Personal Mechatronics Lab 14

Figure 14: I2C

Figure 16: Main PIC Module

provided protoboard adaptor cable are shown to the left.

It is important to note that to access RA6 and RA7, jumpers JP8 and JP9 must be
properly set, as described in Section 3.11.

Also the user needs to note that RA6 and RA7 do not exist for PIC16. These pins in the
I/O bus are intended to be used by PIC18.

3.10 I2C BUS

An I2C bus socket has also been provided to allow a separate I2C bus

to a peripheral device. A 10-bin ribbon cable connector (not supplied

with board) should be used for this purpose. The pinouts of the

socket are shown to the left.

3.11 Main PIC Device

This section of the board has several sockets for PIC devices of different sizes. Only one

socket may be occupied at a time, otherwise bus conflicts will arise. The Microcontroller

board is primarily intended to be used with a PIC16F877(A) or a PIC18F4620, although

most other PIC devices in the PIC16F and PIC18F families are currently supported.

Additionally, some PIC16F and PIC18F devices allow the user to employ an internal

oscillator and configure RA6 and RA7 as general purpose I/O pins. If this is intended,

jumpers JP9 and JP8 must be set as follows:

Short pins 1 and 2 to use external oscillator
Short pins 2 and 3 to enable RA6, RA7

Of course, the appropriate
configurations must also be
set from within the code.

Figure 15: Jumper

Microcontroller Board User Manual

Personal Mechatronics Lab 15

4. Programming Software

4.1 Overview

A Windows application called PICusb is provided with the Microcontroller board, which

is designed specifically to communicate with the Microcontroller board hardware. Note

that Microcontroller board is also fully compatible with MPLAB® IDE, and PICusb is not

needed (although recommended) except for some advanced applications, such as

appending a user code to the firmware on the programmer PIC for parallel processing.

PICusb currently supports all devices in the PIC10, PIC12, PIC16 and PIC18 families, and

it is compatible with all Windows platforms.

4.2 Quick Start

The user interface for PICusb is fairly intuitive, with reasonable defaults for all settings.

For those without prior experience with PIC programming software, the following steps

can generally be used to load the HEX code onto the device:

Figure 17: PICusb Application

Microcontroller Board User Manual

Personal Mechatronics Lab 16

1. Connect the Microcontroller board to the PC as described in Section 2.2.

2. Flip the programming switch to PRG mode.

3. Turn on the Microcontroller board.

4. Click “Check Connection” on the PICusb window shown above. Wait for the

application to detect the Microcontroller board and the PIC device.

5. Click “Import” or go to FileImport Hex to load a HEX file.

6. Press the Write button to download the HEX file to the PIC device. If no error

message occurs, then the PIC should have been programmed successfully.

Note if the USB connection is disconnected at any point or the programming switch is

flipped to RUN mode, the Microcontroller board must be reconnected to the application

by pressing the “Check Connection” button before programming.

Any time that the “Check Connection” button is pressed, the HEX file must be reloaded.

4.3 Operations

The following is a description of common operations that may be performed on the PIC

device used in the Microcontroller board.

Import loads a HEX file into memory, for loading onto a PIC device or for verification

against the code already loaded onto a PIC device.

Read is used to read the current program loaded into the target PIC device. This

program can be retrieved and stored in a HEX file.

Write programs the currently loaded HEX code into the target device. Several options

for this operation are available. By default, all aspects of the HEX file are programmed

into the device; however, checkboxes in the Program Memory tab and the EEPROM

Memory tab can allow sections of the HEX file to be programmed.

Verify reads the contents of the PIC device and compares it against the loaded HEX file.

If any differences are observed, an error is given and the operation fails.

Erase performs a bulk erase of the device, effectively returning it to its factory state. In

some cases, this may fix a device that appears faulty.

Check Blank is used to verify that the chip is indeed ‘blank’. This is useful after

performing an Erase chip operation to verify that the operation succeeded.

Microcontroller Board User Manual

Personal Mechatronics Lab 17

4.4 Additional Features of PICusb

The PICusb application incorporates a number of additional features designed to
increase efficiency and speed up the code development process, as well as to provide
advanced functionality.

Write after Import: This checkbox, when checked, will automatically download the code

onto the target PIC device after a successful import. The user will no longer have to

manually press the Write button.

Update HEX Automatically: When this checkbox is first checked, it prompts the user to

load a HEX file to download to the PIC. After the code is downloaded, the PICusb

application continuously monitors that HEX file. If the HEX file is modified in any way (if

the HEX file was updated after a successful build in MPLAB), PICusb detects this change

and automatically writes the new updated version onto the PIC. This function will

continue to work as long as the programming switch is set to PRG and the USB

connection is not severed. This is a useful debugging feature for users who are

programming the PIC multiple times in succession. After the code is downloaded, the

user may test the code without flipping the programming switch to RUN mode using the

Set MCLR function. The only drawback is that the bottom two rows of the keypad will be

disabled in this mode.

Set MCLR: This function is a software reset for the target PIC. It is useful when

debugging and especially when used with the Update HEX Automatically function. This

feature allows the code on the main PIC to run without flipping the programming switch

to RUN mode. When checked, the PIC18F2550 programmer PIC holds the main PIC in a

reset state. When unchecked, the programmer releases the reset and the main PIC

device will begin to execute code. Note that this reset, when the programming switch is

set to PRG, will override the pushbutton reset switch. This function can also be reached

from ProgrammerHold Device in Reset.

Export Hex: This function, located under the File menu, allows the user to save the HEX

code currently loaded onto PICusb into a HEX file. To check what HEX code is currently

loaded onto PICusb, go to the Program Memory or EEPROM Memory tabs. This feature

is mainly used in conjunction with the Read function for saving the HEX code read from

the PIC device into a file.

Recent Files: PICusb preserves the 4 most recently loaded HEX files for faster access

under the File menu.

Microcontroller Board User Manual

Personal Mechatronics Lab 18

Manual Device Select: This function is used for some PIC10 and PIC12 devices that do

not support automatic device detection. This function is found under the Programmer

menu. Once activated, a device family must be chosen from the Device Family menu

and a particular device must be selected from the “Select Part” dropdown box. To exit

this mode, a device must be selected.

Enable Code Protect and Enable Data Protect: These two functions are found under the

Tools menu. These functions set the configuration data to enable code or data

protection. During development, do not enable these features as they may be

permanent.

Use VPP First Program Entry: This function is used when the configuration or ID of the

target PIC device becomes corrupt and the programmer is unable to identify the device.

This function forces the programmer to program the target PIC, which may correct the

code on the target PIC.

Append Hex to Firmware: This feature is an advanced peripheral feature of the

application that allows custom user code to be added to the programmer firmware. It is

used for PIC-to-PIC parallel processing and is further described in section 5.2.1.

Download Firmware: This function allows firmware to be downloaded onto the

programmer PIC18F2550. The firmware may be the default firmware or a custom

firmware modified with custom user code. It evokes the bootloader to allow the

PIC18F2550 to program itself. This feature will corrupt the programmer firmware if used

improperly and is therefore recommended for advanced users only.

Configuration: This feature allows the user to view the configuration settings for the

target PIC device and change them if the user wishes. It does not provide any

information about the function of each configuration bit. It is not recommended for

most users to change the configuration settings through this function – all configuration

settings should be specified in the code. Modifying the configuration settings in this

fashion should be done by advanced users only.

View Program Memory and EEPROM Memory: The Program Memory and EEPROM

memory are shown in their respective tabs below the menu bar. Once a HEX code is

loaded, the contents of the HEX code can be viewed through these tabs. There is an

Enable checkbox on each of these panels that is used for enabling writing the HEX code

to the PIC. If unchecked, the code will not be downloaded to the target PIC upon

pressing the Write button. Only one of the two checkboxes can be unchecked at any

time. The user may also modify the HEX code in these tabs, although this is not

Microcontroller Board User Manual

Personal Mechatronics Lab 19

recommended for most users. The HEX code may be viewed in HEX format or ASCII

format.

4.5 Sample Code

The PICusb package contains 12 sample projects, located in the Samples folder where

the application is installed. There are four sets of sample codes – one for each one of

PIC16F877, PIC16F887, PIC16F1937, and PIC18F4620. Some PIC18 samples may use the

internal oscillator block. All the PIC16 samples are assumed to run with a 10MHz crystal

oscillator. The samples are described below.

PIC16 Samples:

DS1307 RTC This project demonstrates the code necessary to interface with

the DS1307 real-time clock IC (not included) on the

Microcontroller board, using the I2C module of the main PIC

device. Also, it demonstrates RS232 usage; the program first

resets the RTC’s seconds to zero, and then repeatedly reads the

time and transmits over RS232 to a PC. The baud rate is 9600,

with 8-bit data and no parity.

KeyPad_LCD This project demonstrates the basics of interfacing with the

Keypad and LCD modules of the Microcontroller board; anything

that is typed on the keypad is immediately displayed on the LCD.

Port Test This project is a simple test program, which can be used to quickly

verify that MPLAB, PICusb, and the programmer module of the

board each function correctly. If this program executes correctly,

then each of the Debug LED’s should flash sequentially when the

board is placed in RUN mode. Note that RA4 on PIC16 devices will

not turn on unless pulled up by either a debug switch or an

external resistor, since it is an open-drain output.

RS232 This project demonstrates two-way RS232 communications; it

sends a welcome message to the computer, and then repeatedly

echoes any data received back to the computer. As with DS1307

RTC, the baud rate used is 9600, with 8-bit data and no parity.

LCD This is a simple project that displays a message on the LCD.

Microcontroller Board User Manual

Personal Mechatronics Lab 20

Input Test This is a project designed to test the input switches on the

debugging module. It sets all pins to input so the user can use the

DIP switches to control the LEDs on the debugging module.

ADC This is a project that demonstrates the analog to digital

conversion ability of the PIC16. It takes in a voltage input and
controls the flashing speed of an LED according to that voltage.

Extended_IO This is a project designed to test the I2C bus connection between

the PIC16 and PIC18. It allows PIC16 to toggle RB6 on PIC18

through the I2C bus.

Parallel_Processing This is a project designed to demonstrate the parallel processing

ability of the Microcontroller board. The PIC16 can be loaded with

any code, while PIC18 will toggle RB6.

PIC18 Samples:

A2D This project tests the Analog to Digital converter module on the

PIC18F4620. This sample uses the internal oscillator of the

PIC18F4620 and the Phase Locked Loop feature (PLL), which runs

at 32MHz.

PWM This project tests the PWM module of the PIC18F4620. It

generates a 20kHz signal with 50% duty cycle. The signal is output

through the CCP2 pin (RC1).

PIC18_1 This project is similar to LCD project for PIC16, with different

display messages.

Port Test PIC18 This project is the same as the PortTest project for PIC16.

PIC18LCD_Keypad This project is the same as the Keypad_LCD project for PIC16.

USART This project is the same as the RS232 project for PIC16.

Microcontroller Board User Manual

Personal Mechatronics Lab 21

5. Advanced Programming Topics

5.1 Overview

The programmer module is fully functional out of the box, and can be used to program

PIC devices of families PIC16F and PIC18F. However, since the module itself is built

around a PIC18F2550, it is capable of much more than programming the main PIC

device. To take advantage of this untapped potential, several extra features have been

implemented to give the user full control over the device. Note that to take advantage

of the following features, the parallel processing firmware must be loaded on the

PIC18F2550.

Bootloader A USB-enabled bootloader has been programmed into the device’s

firmware, allowing the user to re-load the programmer with their own

HEX code.

Mode Detect The programming firmware can detect whether the programmer switch

is set to PRG or to RUN, via pin RC7. For more details, see Section 5.2.1.

I2C Bus An I2C bus connecting the PIC18F2550 to the main PIC device may be

enabled by shorting JP14 and JP15. This allows communication between

the two devices, opening up the possibility of parallel processing.

PIC18 Bus A secondary I/O bus socket has been provided,

giving access to the unused pins on the

PIC18F2550. The pin-outs for this socket are

shown to the right. Since this is an advanced

feature of the board, no cable is provided.

5.2 Coding Firmware Modifications

There are two options for modifying the programmer module’s firmware:

1. Append user code to the programmer firmware to modify run-mode behaviour

2. Use another HVP programmer to re-image the entire PIC18F2550 chip

5.2.1 Modifying Run-Mode

Using this option, users can append their own code to the original programmer

firmware, which will only be run when the board is in RUN mode.

It is strongly recommended that the user code is written in Assembly, since the user

would have full control over the location and length of the user code. The user code will

Figure 18: PIC18 Header

Microcontroller Board User Manual

Personal Mechatronics Lab 22

be inserted into the firmware between location 0x7D70 and 0x7FEF. This means that the

user code can be no longer than 640 bytes or 320 instruction words.

To insert user code into the existing programmer firmware, follow these steps:

1. Open PICusb and go to Tools -> Append Hex to Firmware.

2. An “Open File” dialog pops up. Select the user code HEX file you would like to

insert and click “Open”.

3. A “Save File” dialog pops up. Choose a file name and the directory for the new

combined Hex file and click “Save”.

5.2.1.1 Writing the User Code

When appending custom user code to the programmer firmware, the user code must be

less than 640 bytes or 320 instructions long. The user code must not contain any

configuration words. The structure of the user code should be as follows:

#include <p18f2550.inc>
org 0x7D70 ;begin the user code at address 0x7D70
UserCode

end

The programmer firmware is built to periodically check pin RC7. When it is cleared, the

firmware automatically jumps to program memory location 0x7D70 to execute the user

code. To return to programming mode when the programming switch is set, pin RC7

must be checked periodically. This can be done with the following code:

UserCode

bsf TRISC, 7 ;set RC7 to input
UserLoop
 … … …

btfss PORTC, 7 ;test RC7
goto UserLoop
reset

 ;goto 0x2000 ;Alternatively, the code may branch to 0x2000, where
 ;the programmer firmware begins

Microcontroller Board User Manual

Personal Mechatronics Lab 23

Figure 19: ICSP_Out

5.2.1.2 Exporting the User Code

Once compiled, the user must export the custom code into the correct format in order

to append to the firmware. This is done in MPLAB by the following steps:

1. Go to File->Export…

2. A dialog opens with the title “Export Hex File”. Uncheck Configuration Bits,

EEPROM Memory and User ID.

3. Make sure the Program Memory check box is checked.

4. Set the program memory to start at 0x7D70 and end at address 0x7FEF. Note:

the end address must not exceed 0x7FEF or PICusb will reject the hex file.

5. Under the File Format tab, make sure the format selected is INHX32.

6. Click OK, and save the exported hex file.

5.2.1.3 Loading Modified Firmware onto the PIC18F2550

1. In the PICusb software, select Tools->Download Firmware.

2. A dialog opens. Select the modified (appended) hex file and click “Open”.

3. PICusb will automatically download the new firmware into the PIC18F2550 and

then reset.

5.3 Re-Imaging the PIC18F2550

It is possible to use the bootloader to load custom user code onto the PIC18F2550, but

the vectors would have to be remapped to begin at 0x2000 (where the programmer

firmware begins). Instead, if the user wishes to erase the entire

programmer code including the bootloader, a second high

voltage programmer (such as another Microcontroller board)

may be used. The Microcontroller board was designed such

that the PIC18F2550 can be programmed without taking it out of its socket. The second

row of the PIC18F2550 I/O header, shown on Figure 18, contains all the pins required to

program the PIC18F2550. A second header near the programming switch called

ICSP_OUT (shown in Figure 19) is the output from the programmer. This header will

allow the programmer to program any external PIC. To use this header to program other

boards, the basic firmware (without parallel processing) must be loaded onto the

PIC18F2550, and the programming switch must be set to “RUN” mode. This disconnects

the header from the main PIC on the Microcontroller board. Furthermore, the same

ICSP_OUT header can be used as an input to program the main PIC on the

Microcontroller board as long as the programming switch is set to PRG. The Pin-out of

this header from left to write is as follows:

1. VPP/MCLR

2. VDD
3. VSS (GND)

Microcontroller Board User Manual

Personal Mechatronics Lab 24

4. ICSPDAT/PGD
5. ICSPCLK/PGC
6. NC

If the user has another high voltage programmer at hand, and wishes to use both PICs as

parallel processors, he/she could program the PIC18F2550 using its I/O header and the

other PIC using the ICSP_OUT header. This feature demonstrates the versatility of the

PIC Microcontroller board, but is highly advanced and not recommended for most users.

5.3.1 User Code Considerations

Since the firmware requires a specific set of configuration words (already set), no

configuration information should be included in user-compiled code. It may be assumed

that the firmware uses the following configuration settings:

#pragma config FOSC = HSPLL_HS //HS osc using PLL
#pragma config PLLDIV = 5 //20mhz osc
#pragma config USBDIV = 2 //USB clk from PLL
#pragma config CPUDIV = OSC1_PLL2 //CPU=PLL/2

#pragma config IESO = OFF //Ext osc only
#pragma config FCMEN = OFF //No fallback to int-osc
#pragma config PWRT = ON //Enable power-up timer
#pragma config BOR = OFF //BOR disabled in hardware
#pragma config BORV = 3 //BOR on 2.05V (min setting)
#pragma config VREGEN = ON //USB internal vreg
#pragma config WDT = OFF

#pragma config MCLRE = OFF //enable RE3, MCLR disabled
#pragma config LPT1OSC = OFF //TMR1 low-power mode disabled
#pragma config PBADEN = OFF //PortB A/D off on reset
#pragma config CCP2MX = ON //CCP2 on RC1
#pragma config STVREN = ON //Reset on stack overflow
#pragma config LVP = OFF
#pragma config XINST = OFF //Disable extended instruction set
#pragma config DEBUG = OFF //ICD off

#pragma config CPB = ON //Code Protect Boot
#pragma config CP0 = OFF
#pragma config CP1 = OFF
#pragma config CP2 = OFF
#pragma config CPD = OFF //EEPROM not protected

#pragma config WRTB = ON //Writeprotect 000 to 7FF
#pragma config WRT0 = OFF //No other write protect
#pragma config WRT1 = OFF
#pragma config WRT2 = OFF
#pragma config WRTC = OFF //Config not protected
#pragma config WRTD = OFF //EEPROM not protected

#pragma config EBTRB = OFF //Table reads not protected

Microcontroller Board User Manual

Personal Mechatronics Lab 25

#pragma config EBTR0 = OFF
#pragma config EBTR1 = OFF
#pragma config EBTR2 = OFF

The user code should not modify the state of any I/O pins other than the ones on the

I/O header. Also, PORTC<7> is used for PRG/RUN mode detection, as described in

Section 5.2.1. As such, it must ALWAYS be set as an input.

Pins RB1 and RB0 are used for an optional PIC-to-PIC I2C bus, which can be enabled

(connected) by shorting jumpers JP14 and JP15 in the programmer module. 10K pull-up

resistors on these lines are already provided on the board. The specifics of I2C

communication between the programmer and the main PIC are left to the user.

5.3.2 Restoring to Original State

In case the firmware on the PIC18F2550 becomes corrupted by the user code, the

programmer can be restored to its original state. The PICusb software package includes

two HEX files containing the original firmware of the Microcontroller board

programmer.

These are located in the Programmer Firmware folder of the installation directory:

 btldr.hex – HEX file containing the original bootloader

 btldr_pgmr.hex – HEX file containing the original bootloader and programmer

firmware. This is the basic firmware without support for parallel processing.

 btldr_pgmr_I2C.hex – This file contains the bootloader, programmer firmware,

as well as the default user code containing the I2C functions for extended I/O

capabilities. This part can be replaced by another user code using PICusb (see

Section 5.2.1.1)

 btldr_pgmr_reg_watcher.hex – This file contains the bootloader, programmer

firmware, as well as the register watcher code containing the I2C functions for

PIC16 pin monitoring ability.

The firmware can be restored by activating the bootloader. This is done by turning off

the power switch and holding the BOOTLOAD pushbutton switch while turning the

power switch back on. The programmer is in bootloader mode if the BUSY LED flashes at

just below 1Hz. The PICusb application will automatically detect that the Microcontroller

board is in bootloader mode. At this time, the original firmware may be downloaded

with the Download Firmware function.

If the bootloader is corrupt, another high voltage programmer is needed to restore the

PIC18F2550 to its original state. The PIC18F2550 can be programmed in circuit through

Microcontroller Board User Manual

Personal Mechatronics Lab 26

its I/O header as described in section 5.3, or taken out of its socket and put on another

Microcontroller board.

Microcontroller Board User Manual

Personal Mechatronics Lab 27

6. I2C PIC to PIC Communication

6.1 I2C Overview

The I2C is a widely used serial bus specification that allows communication between one

or more master devices with one or more slave devices. The master is the device that

selects the receiver by transmitting the address of the slave device and initiates all

transactions (read or write) between itself and the slave. The I2C implementation on the

Microcontroller board includes one master – the main PIC – and three slave devices –

the RTC chip, the PIC18F2550, and the I2C female header pins at the top right corner of

the board which can connect to an external I2C slave device.

6.2 Using the I2C

The hierarchical chart below shows the possible applications of the I2C bus, as it is

implemented on the Microcontroller board.

As shown above, there are four ways in which the I2C bus on the Microcontroller board

can be used: First, one can access the RTC module for timing purposes through the I2C

Application
Slave

device
Master
device

PIC16

RTC chip External timer

PIC18
(programmer)

Parallel
processing

PIC18 I/O pin
access

PIC16 Pin
Monitoring

I2C bus
module

Custom
application

Figure 20: Using I
2
C Bus

Microcontroller Board User Manual

Personal Mechatronics Lab 28

bus. Second, one can set up PIC-to-PIC communication for parallel processing. This is for

advanced users only, as it requires that both the master and the slave be programmed.

Third, one can enable PIC-to-PIC I2C communication to enable the usage of PIC18F2550

I/O pins by the master PIC during runtime. This effectively adds 7 to the main PIC I/O pin

count. Finally, an I2C capable slave device can be connected to the I2C header pins at the

top right corner of the board, to communicate with the PIC master device.

6.2.1 PIC-RTC Communication

For information on how to use the RTC from the main PIC, please refer to section 3.8.

6.2.2 PIC-to-PIC Communication for Parallel Processing

To implement parallel processing, the user must write the necessary code not just for

the master PIC device, but also for the PIC18F2550 as the slave device. From the master

PIC’s standpoint, programming is greatly simplified by the i2c_common.asm file

developed for RTC communication and the extended I/O pin usage protocol. This file is a

collection of macros that execute instructions on the hardware level for the I2C – for

instance, start transaction, write, check acknowledge, read, send acknowledge, and stop

transaction. From the PIC18F2550’s standpoint, the programming is more involved as

the user must develop the code from scratch. The slave code polls or waits for an

interrupt, signaling the start of an event (always initiated by the master device), figures

out what type of event it is based on the value of an I2C status register, handles it, and

then loops back to the beginning. Microchip’s AN735 and AN734 documents are

excellent resources for programming and understanding the I2C protocol, as is Chapter 7

of the AER201 course text, where more detailed information can be found on the I2C.

6.2.3 PIC-to-PIC Extending I/O Set Programming

The I2C can be used to enable use of the PIC18F2550’s I/O pins from the main PIC as if

they were its own pins. These pins can be controlled using macros available in an

include file, which are designed to look and behave similar to regular I/O control

operations in the PIC instruction set. This effectively adds 7 additional I/O pins for the

master PIC, but the only downside is the roughly 250 μs operation time for write

operations and 500 μs for read operations, compared to 400 ns for regular operations.

Follow the four basic steps below to use the extended I/O pin set:

1. Add i2c_common.asm and p2p_macros.inc to the project (Separate include files

are included for PIC18F4620)

2. Add #include <p2p_macros.inc> in the code

3. Add call i2c_common_setup in the code

Microcontroller Board User Manual

Personal Mechatronics Lab 29

4. Call the macros as needed

The firmware called btldr_pgmr_I2C.hex is set up to handle the I/O instructions. This

firmware must be loaded into the programmer before the extended I/O set can be used.

Below is the list of macros available in the macros include file. The function and usage of

these macros do not require explanation as they behave almost identically to their

counterparts in the PIC instruction set, except there are no input parameters.

Write to PIC18 pins/ports Write to PIC18 TRIS Read from PIC18 pins/ports

 bcf_PORTA_4

 bcf_PORTB_3

 bcf_PORTB_4

 bcf_PORTB_6

 bcf_PORTB_7

 bcf_PORTC_2

 bcf_PORTC_6

 bsf_PORTA_4

 bsf_PORTB_3

 bsf_PORTB_4

 bsf_PORTB_6

 bsf_PORTB_7

 bsf_PORTC_2

 bsf_PORTC_6

 clrf_PORTA

 clrf_PORTB

 clrf_PORTC

 setf_PORTA

 setf_PORTB

 setf_PORTC

 bcf_TRISA_4

 bcf_TRISB_3

 bcf_TRISB_4

 bcf_TRISB_6

 bcf_TRISB_7

 bcf_TRISC_2

 bcf_TRISC_6

 bsf_TRISA_4

 bsf_TRISB_3

 bsf_TRISB_4

 bsf_TRISB_6

 bsf_TRISB_7

 bsf_TRISC_2

 bsf_TRISC_6

 clrf_TRISA

 clrf_TRISB

 clrf_TRISC

 setf_TRISA

 setf_TRISB

 setf_TRISC

 btfsc_PORTA_4

 btfsc_PORTB_3

 btfsc_PORTB_4

 btfsc_PORTB_6

 btfsc_PORTB_7

 btfsc_PORTC_2

 btfsc_PORTC_6

 btfss_PORTA_4

 btfss_PORTB_3

 btfss_PORTB_4

 btfss_PORTB_6

 btfss_PORTB_7

 btfss_PORTC_2

 btfss_PORTC_6

 movf_PORTA_W

 movf_PORTB_W

 movf_PORTC_W

6.2.4 PIC16-PIC18 Communication for PIC16 Register Watching

This application of the I2C can be thought of as an example of how one can use PIC to

PIC communication. It is a finished product which can be used without any actual

programming on the user’s part. The design is simple:

1) PIC16: The user calls one of a number of macros to update the contents of a port

or register during the running of their PIC16 code.

2) PIC18: The data is sent to the PIC18 through I2C, which is sent to the USB.

3) PC: The application (available through the website) displays this information.

There are four easy steps to set up this functionality.

1. Add i2c_common.inc and Register_Watcher_macros.inc to the PIC16 project

2. Add #include < Register_Watcher_macros.inc> in the code

3. Add i2c_common_setup in the code

4. Call the macros as needed

Table 2: Macros available in the include file to handle extended I/O

Microcontroller Board User Manual

Personal Mechatronics Lab 30

5. Make sure the programmer PIC18 has the firmware with register watching

Below is a table listing the macros contained in p2p_macros.inc which must be called by

the user’s code.

Macro Description

watch_PORTA Sends the value of PORTA to the PORTA field in the application

watch_PORTB Sends the value of PORTB to the PORTB field in the application

watch_PORTC Sends the value of PORTC to the PORTC field in the application

watch_PORTD Sends the value of PORTD to the PORTD field in the application

watch_PORTE Sends the value of PORTE to the PORTE field in the application

watch_TRISA Sends the value of TRISA to the TRISA field in the application

watch_TRISB Sends the value of TRISB to the TRISB field in the application

watch_TRISC Sends the value of TRISC to the TRISC field in the application

watch_TRISD Sends the value of TRISD to the TRISD field in the application

watch_TRISE Sends the value of TRISE to the TRISE field in the application

watch_register_0 These macros have an input parameter representing the address
of the file register the user wants to monitor. This address is
displayed along with the value of the register on the PC
application. One can monitor up to 8 registers (registers 0 to 7).

Example: watch_register_0 0x05

- The PC application displays 00000101 and the value of PORTA
beside it (0x05 is the address of PORTA).

watch_register_1

watch_register_2

watch_register_3

watch_register_4

watch_register_5

watch_register_6

watch_register_7

There are two things to keep in mind: First, the USB sends a packet every 10 ms, so this

is the time-resolution for data updates on the PC application. Secondly, calling one of

these macros is a one-time update of the value of the register. For registers with

regularly changing values, it is necessary to call the macro repeatedly either in a loop or

at crucial junctures in the code. Even so, most of the processing in one’s code takes

place in a matter of microseconds, since one operation on the PIC16 takes 400 µs – thus,

one cannot actually see and monitor the contents of file registers that change this

quickly.

One solution is to use breakpoints. Using the I2C, it is easy to implement a breakpoint

subroutine that stops the PIC16’s operation and waits for the user to press the

programmer module’s bootloader switch before continuing. Presented below is the

implementation:

 breakpoint
 <call whatever watching macros you want here, for e.g. watch_PORTA>
 bsf_TRISA_0 ; sets pin the bootloader switch is connected to, to input

Table 3: Macros available in p2p_macros.inc

Microcontroller Board User Manual

Personal Mechatronics Lab 31

 btfsc_PORTA_0 ; waits for the user to press the switch and pull RA0 low
 goto $-1 ; if RA0 is not low, keep looping

<put a bit of a delay here> ; so that the PIC is not at the next breakpoint
by the time you release the switch

 return ; continue with the program

The user should call this subroutine at key junctures in the code to stop execution,

transmit register values, read them from the PC, and then push the bootloader switch

when ready to continue operation.

6.2.5 PIC- I2C Bus Communication

Implementing communication between the PIC as the master and an external slave

device is for advanced users only. The user would have to program both the master and

slave codes, in addition to ensuring that the hardware for the bus connection is set-up

properly.

6.3 Important Note About i2c_common.asm and Its Macros

The RTC and PIC-to-PIC macros call subroutines in i2c_common.asm and will need to

access SFRs on the main PIC. Therefore it will require switching memory banks. Invoking

these functions will not guarantee that the user will remain in the same bank after the

macros are invoked. It is strongly advised to re-select the memory bank after calling the

macros or use the banksel directive in MPLAB®. The i2c_common.asm and the macros

are for PIC16F877 and will not work directly with PIC18F4620. However, these files can

be ported to PIC18 code with minimal modification.

The I2C communication code does take up some of the user’s resources. Since the

macros call subroutines, one stack level will be taken. The I2C code will be stored in

program memory and will take about 200 to 300 memory slots of the available 8192

slots on the PIC16 without any macro calls. This includes both the real time clock I2C

algorithm as well as the PIC-to-PIC algorithm. Keep in mind that macros are simply

directives in MPLAB and macro code can be thought of as “copied and pasted” into the

user’s code whenever invoked. This will result in the user code being much longer than

anticipated especially if these macros are invoked linearly (or not in loops) over and over

again.

The RTC code will take up 8 general registers in the PIC16 data memory (0x71 to 0x78 in

bank0) to store data used during operation. These registers are defined as a cblock in

Microcontroller Board User Manual

Personal Mechatronics Lab 32

i2c_common.asm and the corresponding names are for convenience’s sake. The actual

code uses the actual register address. The main registers that are relevant to the user

are 0x75 (DOUT), 0x77 (dig10), and 0x78 (dig1) where data from the RTC are stored. It is

important to not overwrite the data in these registers to ensure proper operation.

Likewise, the PIC-to-PIC communication code uses register 0x70 should not be accessed

or modified by the user.

Sample code is provided to the students which use i2c_common.asm and rtc_macros.inc

as well as p2p_macros.inc.

