User Manual

TigersharkTM

PCI/Pentium® CPU Board with SCSI

TigersharkTM PCI/Pentium[®] CPU Board with SCSI User Manual, 095-20046-00 Rev.Y3. Copyright ©1996 by I-Bus, Inc., a Maxwell Technologies Company, printed and bound in the United States. All rights reserved. No part of this manual may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the written permission of I-Bus. All trademarks are the property of their respective companies.

Customer Service

Mailing Address: I-Bus, Inc.

A Maxwell Technologies Company

P.O. Box 84239

San Diego, CA 92123

Telephone: (619) 974-8400

(800) 382-4229 (in the U.S.)

FAX: (619) 268-7863

E-mail: info@ibus.com

Visit our site at: http://www.ibus.com

LIMITED WARRANTY

I-Bus warrants this product to be free of defects in material and workmanship for an initial period of two (2) years from date of delivery to the original purchaser from I-Bus.

During this period, I-Bus will, at its option, repair or replace this product at no additional charge to the purchaser, except as set forth in this warranty agreement.

I-Bus will, at its option, repair or replace this product at no additional charge to the purchaser, if the defect is related to the I-Bus manufactured product, such as power supply, backplanes, other chassis components, or CPUs. I-Bus is not liable for any defects in material or workmanship of any peripherals, products or parts which I-Bus does not design or manufacture. However, I-Bus will honor the original manufacturer's warranty for these products.

I-Bus will analyze the defective component and the customer will be charged in the following instances:

- No problem found: \$75 (U.S. dollars).
- Damage: parts and labor at \$75 per hour with a \$100 minimum charge (U.S. dollars). Receipt of damaged goods voids the I-Bus warranty.

Repair parts and replacement products will be furnished on an exchange basis and will be either new or reconditioned. All replacement parts and products shall become the property of I-Bus, if such parts or products are provided under this warranty agreement. In the event a defect is not related to the I-Bus manufactured product, I-Bus shall repair or replace the defective parts at purchaser's cost and deliver the defective parts to the purchaser.

This Limited Warranty shall not apply if the product has been misused, carelessly handled, defaced, modified or altered, or if unauthorized repairs have been attempted by others.

The above warranty is the only warranty authorized by I-Bus and is in lieu of any implied warranties, including implied warranty of merchantability and fitness for a particular purpose.

In no event will I-Bus be liable for any such damage as lost business, lost profits, lost savings, downtime or delay, labor, repair or material cost, injury to person or property or any similar or dissimilar consequential loss or damage incurred by purchaser, even if I-Bus has been advised of the possibility of such losses or damages.

In order to obtain warranty service, the product must be delivered to the I-Bus facility, or to an authorized I-Bus service representative, with all included parts and accessories as originally shipped, along with proof of purchase and a Returned Merchandise Authorization (RMA) number. The RMA number is obtained, in advance, from I-Bus Customer Service Department and is valid for 30 days. The RMA number must be clearly marked on the exterior of the original shipping container or equivalent. Purchaser will be responsible and liable for any missing or damaged parts. Purchaser agrees to pay shipping charges one way, and to either insure the product or assume the liability for loss or damage during transit. Ship to:

I-Bus

ATTENTION: RMA REPAIR DEPT.
RMA ####
9174 Sky Park Court
San Diego, CA 92123

I-Bus may issue, at its own discretion, an advanced replacement (AR) on a product if it fails within fifteen (15) days from the date of delivery from I-Bus.

Chapter 1 Introduction
About this manual
reatures1-3
Chapter 2 Jumpers and Connectors
Jumpers
Connectors
Chapter 3 Specifications
System Components
Environmental Specifications
Chapter 4 BIOS
Starting and Exiting the BIOS Setup
Setup Screens
Appendix 1 Technical Reference
Standard PC-AT I/O Map
DMA Channel I/O Addresses
DMA Channel Assignments
DMA Controller Register Functions
Interrupts
CMOS RAM Address Map
Real-Time Clock Information (Addresses 00-0D)A1-6
ISA Connector Pin Assignments
PCI Connector Pin Assignments

Appendix 2 Glossary of Terms
Appendix 3 Illustration
Tigershark PCI/Pentium™ CPU Board
Index ————
macx
List of Tables
Table 1-1 DRAM Configurations1-6
Table 2-1 Jumpers
Table 2-2 J6, IDE IRQ14 Disable2-2
Table 2-3 J9, Cache Size
Table 2-4 J12, Cache Size
Table 2-5 J14, Internal Clock Multiplier
Table 2-6 J32, Internal Clock Multiplier
Table 2-7 J22, CPU Clock Speed2-5
Table 2-8 J26, CPU Voltage Regulator2-5
Table 2-9 Jumper Settings, J14, J22, J26, J32 2-5
Table 2-10 J16, Stop Clock
Table 2-11 J17, Cache Policy
Table 2-12 J19, Floppy Selection
Table 2-13 J21, Watchdog Enable/Disable
Table 2-14 J24, Security Password Enable2-7
Table 2-15 J29, CMOS Clear
Table 2-16 J30, Mouse IRQ Enable
Table 2-17 J31, Parallel Port DMA
Table 2-18 J33, IRQ11 Usage
Table 2-19 Connectors

Lis	st of Tabl	es (Continued)
	Table 2-23	J4, COM2 Port2-13
	Table 2-24	J5, COM1 Port
	Table 2-25	Serial Port Cable Wire List2-15
	Table 2-26	J7, SCSI Connector
	Table 2-27	J8, Keyboard Connector - 10-pin
	Table 2-28	J10, Reset Connector
	Table 2-29	J11, Speaker Connector
	Table 2-30	J13, CPU Fan Connector
	Table 2-31	J20, Keyboard mini-DIN Connector2-19
	Table 2-32	J25, Mouse mini-DIN Connector
	Table 2-33	J27, External Hard Drive LED Connector 2-20
	Table 2-34	J28, External Battery Connector2-20
	Table 3-1	Environmental Specifications
	Table 4-1	Standard CMOS Setup Screen Entry Fields 4-7
	Table 4-2	BIOS Features Setup Screen Entry Fields 4-10
	Table 4-3	Chipset Features Setup Screen Entry Fields4-14
	Table 4-4	Power Management Setup Screen Entry Fields .4-18
	Table 4-5	PCI Configuration Setup Screen Entry Fields4-22
	Table A1-1	Standard PC-AT I/O Map
	Table A1-2	DMA Channel Page Register and I/O Addresses A1-2
	Table A1-3	DMA Channel Assignments
	Table A1-4	DMA Controller Register Functions
	Table A1-5	Interrupts
	Table A1-6	CMOS RAM Address Map
	Table A1-7	Real-Time Clock Information
	Table A1-8	ISA Connector Pin Assignments
	Table A1-9	PCI Connector Pin Assignments

List of Tabi	les (Continued)
Table 2-21	J2, Floppy Disk Drive Connector2-11
Table 2-22	J3, Parallel Port
Table A1-1	0 Post Codes
Table A1-1	1 Hard Disk Parameters
List of Figu	ıres
	Tigershark CPU Board Jumpers, Connectors, and ts
Figure 4-1	CMOS Setup Utility Screen
Figure 4-2	Standard CMOS Setup Screen
Figure 4-3	BIOS Features Setup Screen
Figure 4-4	Chipset Features Setup Screen
Figure 4-5	Power Management Setup Screen4-17
Figure 4-6	PCI Configuration Setup Screen4-21

Chapter 1 Introduction

Welcome to the I-Bus family of passive backplane CPU (Central Processing Unit) boards. This manual contains information necessary to configure your CPU board to your specific needs.

The Tigershark™ PCI/Pentium® CPU board is IBM PC-AT compatible, utilizing the 3.3 V Pentium processor. It provides a passive backplane interface for both PCI and ISA expansion. It also provides a SCSI II on-board controller and interface as well as providing conventional CPU board peripherals.

This chapter

is divided

into three sections:

About this manual

explains how this manual is laid out and what you can expect to find in it.

Preparing the board

describes the procedure for unpacking the Tigershark CPU board and preparing it for use in your system.

Features of the board

provides a brief overview of the major components of the Tigershark accompanied by an illustration showing its jumpers, connectors, and components. For convenient reference, a fold-out illustration is also provided at the back of this manual.

This manual contains four chapters pertaining specifically to your CPU board. The appendices contain technical reference material, a glossary of terms, and a fold-out illustration of the board, followed by an index.

Chapter 1 Introduction

introduces you to this manual and to the Tigershark CPU board.

Chapter 2 Jumpers and Connectors

describes the jumpers and connectors on the Tigershark CPU board. First, each jumper is described. A table shows where to place the jumper for your specific configuration. An illustration of the jumper indicates the pin numbers. Then, each connector is described. A table shows the pin-out descriptions and an illustration shows the pin numbers of each connector.

Chapter 3 Specifications

provides the component data and environmental characteristics of the Tigershark CPU board.

· Chapter 4 BIOS

explains how to use the BIOS setup utility firmware of the Tigershark CPU board.

Appendix 1 Technical Reference

provides additional information to help you configure your CPU board and attach external peripheral devices. Included are I/O Maps, I/O Channels, Interrupts and Address Maps and ISA and PCI connector pin assignments.

• Appendix 2 Glossary of Terms

contains definitions of terms used in this manual as well as terms that refer to items discussed.

Appendix 3 Illustration

provides a convenient fold-out illustration of the Tigershark CPU

board.

Index

provides easy access to page numbers of items discussed.

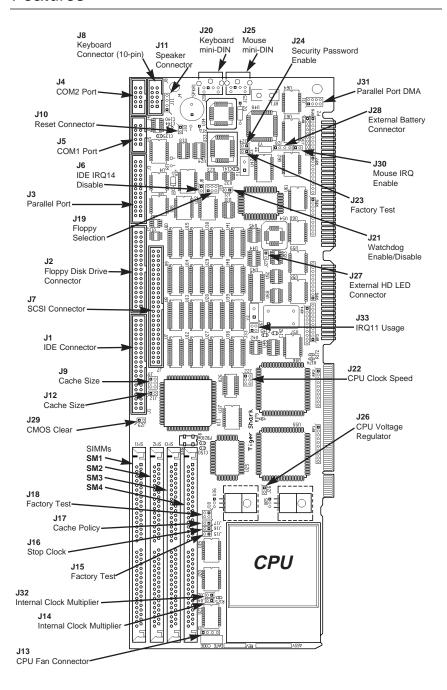
Preparing the board

Unpacking your CPU board

The Tigershark CPU board is shipped in a sealed anti-static, shielded bag.

- Open the bag at a static-free workstation while observing proper Electrostatic Discharge (ESD) practices.
- When not installed in a computer chassis, this board must be sealed in an ESD approved shielded bag.
- This board must be shipped in a sealed ESD approved shielded bag and protected with anti-static packaging material (e.g. bubble wrap).

 I-Bus reserves the right to refuse warranty service on units not properly packaged to protect against ESD damage.


CAUTION!

Components on this board are sensitive to damage from Electrostatic Discharge (ESD). Handling of this board should ONLY be done by a properly trained technician in an approved ESD work area!

Packaged with your Tigershark CPU board is:

- Tigershark PCI/Pentium® CPU Board with SCSI User Manual
- · Optional memory
- Keyboard adapter cable
- Optional cables

If any of the items have been damaged in shipping, notify the transit company and initiate an insurance claim. If any items are missing, contact I-Bus. Refer to the *Limited Warranty* in the back of this manual for further instructions.

Chapter 1 Introduction

Figure 1-1: Tigershark CPU Board Jumpers, Connectors and Components

Features

The key features of the Tigershark CPU board are:

- Supports the Pentium® Central Processing Unit (CPU)
- 512K standard cache memory
- Supports up to 256MB DRAM
- PCI interface (PICMG Compatible)
- Fast PCI SCSI II on-board controller and interface
- Two high speed serial ports with 16550 UARTs
- · One bidirectional parallel port with DMA access
- · Floppy disk interface
- PCI Integrated Drive Electronics (IDE) hard disk interface
- · Real-time clock with on-board battery backup
- · Keyboard, mouse, speaker, and reset ports
- · Watchdog timer

The following are detailed descriptions of some of the above features:

Pentium CPU

The Tigershark features the Pentium CPU operating at 75, 90, 100, 120, 133, 150, 166 or 200MHz. This 32-bit CPU with a 64-bit bus of the same speed operates twice as fast as 486 CPUs for common operations.

Cache

The Pentium CPU is equipped with two separate 8K caches, one for storing code and the other for storing data. In addition, the Tigershark is equipped with 512K second level cache that can be configured in the BIOS to be write-back or write-through.

DRAM

The Tigershark CPU board supports 8MB to 256MB of 70 ns x 36

DRAM SIMMs located in four sockets labeled SM1, SM2, SM3, and SM4. The Pentium CPU has a 64-bit bus which requires

Total	SM1	SM2	SM3	SM4
8MB	4MB (1MB x 36)	4MB (1MB x 36)		
16MB	8MB (2MB x 36)	8MB (2MB x 36)		
32MB	16MB (4MB x 36)	16MB (4MB x 36)		
64MB	32MB (8MB x 36)	32MB (8MB x 36)		
128MB	64MB (16MB x 36)	64MB (16MB x 36)		
16MB	4MB (1MB x 36)			
24MB	4MB (1MB x 36)	4MB (1MB x 36)	8MB (2MB x 36)	8MB (2MB x 36)
40MB	4MB (1MB x 36)	4MB (1MB x 36)	16MB (4MB x 36)	16MB (4MB x 36)
72MB	4MB (1MB x 36)	4MB (1MB x 36)	32MB (8MB x 36)	32MB (8MB x 36)
136MB	4MB (1MB x 36)	4MB (1MB x 36)	64MB (16MB x 36)	64MB (16MB x 36)
32MB	8MB (2MB x 36)			
48MB	8MB (2MB x 36)	8MB (2MB x 36)	16MB (4MB x 36)	16MB (4MB x 36)
80MB	8MB (2MB x 36)	8MB (2MB x 36)	32MB (8MB x 36)	32MB (8MB x 36)
144MB	8MB (2MB x 36)	8MB (2MB x 36)	64MB (16MB x 36)	64MB (16MB x 36)
64MB	16MB (4MB x 36)			
96MB	16MB (4MB x 36)	16MB (4MB x 36)	32MB (8MB x 36)	32MB (8MB x 36)
160MB	16MB (4MB x 36)	16MB (4MB x 36)	64MB (16MB x 36)	64MB (16MB x 36)
128MB	32MB (8MB x 36)			
192MB	32MB (8MB x 36)	32MB (8MB x 36)	64MB (16MB x 36)	64MB (16MB x 36)
256MB	64MB (16MB x 36)			

Table 1-1: DRAM Configurations

SIMMs to be installed in matched pairs.

The following table shows some of the possible memory module configurations. For other possible configurations, contact I-Bus.

• Multifunction Controller (XIO)

The multifunction controller provides two high speed serial ports, one bidirectional parallel port, and a floppy disk controller.

• IDE Controller

The Tigershark CPU board provides a PCI Integrated Drive Electronics (IDE) interface for up to two IDE hard disk drives through the header at J1. J1 accepts a forty-pin IDE connector.

SCSI II Controller

The Tigershark features the 53C810A SCSI processor. It has a high-performance SCSI core and an intelligent 32-bit bus master

Chapter 1 Introduction

DMA core integrated with a SCSI SCRIPTS processor.

The 53C810A is connected to internal SCSI devices through a 50 pin connector. It can be directed to an external connector via one of several I-Bus adapter assemblies.

Serial I/O Interface

There are two RS232-compatible serial communication ports with 16550 type UARTS: a primary serial port located at J5 and a secondary serial port at J4.

Parallel I/O Interface

The Tigershark CPU board provides a parallel I/O interface at J3. While it is conventionally a printer port, it can be reconfigured by software to be a bidirectional parallel port. Contact I-Bus for information.

Floppy Disk Drive Interface

Three configurations are available:

two 2.88MB floppy drives,

two 1.2MB or two 1.44MB floppy drives,

one 1.2 MB and one 1.44 MB floppy drive.

OPTi 82C556, 82C557, 82C558

The OPTi 82C556, 82C557 and 82C558 provide the major portion of the system controller. Its features include cache interface, buffer controller, memory interface, system and cache controllers.

Integrated Peripheral Controller (IPC)

The 82C558 integrates two 8237 DMA controllers, two 8259 interrupt controllers and one 8254 timer/counter.

Programmable Interrupt Controller

The 82C558 provides 15 user-selectable interrupt channels.

Counter/Timer

The 82C558 provides three independent counter channels. Counter

Features

0 is used as a system timer. Counter 1 is used to generate pulses for DRAM refresh. Counter 2 is a full function counter/timer.

Direct Memory Access (DMA)

The 82C558 provides seven DMA channels. The first four DMA channels are used for eight-bit DMA transfers. The remaining three channels are used for sixteen-bit DMA transfers. The sixteen-bit DMA channels function identically to the eight-bit DMA channels except that bit 0 of the address and the length fields are assumed to be zero. (All transfers must begin on an even address boundary and the length must be an even number of bytes.) The sixteen-bit DMA channels transfer up to 128 KB while the eight-bit DMA channels transfer up to 64 KB.

PCI

The Tigershark CPU board is designed to drive up to, but no more than, 3 PCI slots.

Controller

OPTi 82C556 and 82C557 PCI Bridge Chip set provides:

• up to three PCI masters are available (slots 1, 2, and 3 on the backplane).

CAUTION!

- a central arbiter to arbitrate the bus requests between host CPU, PCI masters, DMA/ISA masters and refresh,
- a programmable priority scheme for both central arbiter and DMA channels; fixed, rotating or a combination of the two, and
- combine host CPU sequential writes into PCI burst write cycles.

Keyboard Interface

The Tigershark uses the 8042 keyboard controller. This interface is disabled when no keyboard is present on the system. A six-pin

Chapter 1 Introduction

mini-DIN connector is provided at J20. A ten-pin header is also provided at J8. A keyboard adapter cable is provided for keyboards with a five-pin DIN connector to connect to the PS/2 mini-DIN.

Real-time Clock/Calendar

The Tigershark has a real-time clock/calendar backed by an onboard battery. It has 114 bytes of CMOS RAM included with the clock. The battery has a two year life and is field replaceable.

Reset

An external reset can be attached to the Tigershark at J10.

Speaker

The Tigershark provides an on-board speaker and the capability of adding an external speaker at connector J11.

EPROM

The 27C010 EPROM contains the BIOS for the system. The system BIOS is mapped from EF000h to FFFFFh.

Bus Drivers

The Tigershark uses buffered bus drivers capable of driving nineteen additional expansion cards.

Watchdog Timer

The dual stage watchdog timer is enabled in 2 steps:

Step 1. The 2 Hz clock must first be started by writing the following values to the indicated addresses:

0x0A to address 0x70 0x2F to address 0x71 0x0B to address 0x70 0x0A to address 0x71

Step 2. Next, a 1 must be written to I/O address 0x160. Once the watchdog timer is enabled, it will generate an IRQ11 after sixteen seconds. After another sixteen seconds the board will reset. To prevent these exceptions from being generated, the timer is required to

This chapter describes the jumpers and connectors on the Tigershark CPU board. Jumpers and connectors are identified by the label shown beside them on the board (e.g. J1), followed by the description (e.g. IDE Connector). A table shows the jumper settings or connector pin-outs for each jumper and connector. Illustrations of jumpers and connectors are shown from the component side of the board. Pin 1 is identified by the black pin.

All of the jumpers and connectors are shown on the illustration on page 1-4, *Figure 1-1, Tigershark CPU Board Jumpers, Connectors, and Components* and on the fold-out illustration on page A3-1.

Pin 1 can be identified on the solder side of the board by the square pad in a connector or jumper.

CAUTION!

Components on this board are sensitive to damage from Electrostatic Discharge (ESD). Handling of this board should ONLY be done by a properly trained technician in an approved ESD work area!

The following jumpers are factory-set. If the system is reconfigured, some of the jumpers may need to be reconfigured.

Jumper	Description	No. of Pins
J6	IDE IRQ14 Disable	2
J9	Cache Size	6
J12	Cache Size	2
J14	Internal Clock Multiplier	2
J15	Factory Test	2
J16	Stop Clock	2
J17	Cache Policy	2
J18	Factory Test	4
J19	Floppy Selection	6
J21	Watchdog Enable/Disable	2
J22	CPU Clock Speed	6
J23	Factory Test	2
J24	Security Password Enable	2
J26	CPU Voltage Regulator	2
J29	CMOS Clear	2
J30	Mouse IRQ Enable	2
J31	Parallel Port DMA	8
J32	Internal Clock Multiplier	2
J33	IRQ11 Usage	4

Table 2-1: Jumpers

J6, IDE IRQ14 Disable

Placing a jumper on J6 enables IRQ14 for an IDE drive. If no jumper is installed on J6, IRQ14 is available for other system use.

Position	Function
*1 & 2	IDE on IRQ14
OFF	IRQ14 available

Table 2-2: J6, IDE IRQ14 Disable

^{*} factory default setting

J9, Cache Size

Placing jumpers on pins 1 and 3 and pins 2 and 4 enables the 512 K cache. Jumpers placed on pins 3 and 5 and pins 4 and 6 enables the 256 K cache. This cache size setting *must be the same as* jumper J12.

Position	Cache Size
1 & 3, 2 & 4	512 K
3 & 5, 4 & 6	256 K

Table 2-3: J9, Cache Size

J12, Cache Size

Placing a jumper on J12 sets the cache size at 512 K. If no jumper is placed on J12, the cache size is set at 256 K. This cache size setting *must be the same as* jumper J9.

Position	Cache Size
1 & 2	512 K
OFF	256 K

Table 2-4: J12, Cache Size

J15, Factory Test

For factory use only. Do not use. For standard operation, no jumper is installed.

J18, Factory Test

For factory use only. Do not use. For standard operation, jumpers are installed on pins 1 & 4 and 2 & 3.

J23, Factory Test

For factory use only. Do not use. For standard operation, no jumper is installed.

• J14, Internal Clock Multiplier (see Table 2-9)

Placing a jumper *only* on J14 sets the CPU speed at 2 x the speed of the board. If no jumper is installed on either J14 or J32 (standard operation), the CPU operates at 1.5 x the speed of the board. To set the CPU speed at 2.5 x the speed of the board, place jumpers on both J14 and J32.

Position	Function
OFF (J14 & J32)	1.5 x CPU speed
1 & 2 (J14 only)	2 x CPU speed
1 & 2 of J14 & J32	2.5 x CPU speed
OFF (J14 only)	3 x CPU speed

Table 2-5: J14, Internal Clock Multiplier

• J32, Internal Clock Multiplier (see Table 2-9)

Placing a jumper *only* on J32 sets the CPU speed at 3 x the speed of the board. If no jumper is installed on either J32 or J14 (standard operation), the CPU operates at 1.5 x the speed of the board. To set the CPU speed at 2.5 x the speed of the board, place jumpers on both J32 and J14.

Position	Function
OFF (J32 & J14)	1.5 x CPU speed
OFF (J32 only)	2 x CPU speed
1 & 2 of J32 & J14	2.5 x CPU speed
1 & 2 (J32 only)	3 x CPU speed

Table 2-6: J32, Internal Clock Multiplier

J22, CPU Clock Speed (see Table 2-9)

For a 50MHz CPU no jumpers are placed on J22. For a 60MHz CPU, place jumpers on pins 1 and 2 and pins 3 and 4. For a 66MHz CPU place a jumper on pins 1 and 2.

Position	Base Speed
None	50 MHz
1 & 2, 3 & 4	60 MHz
1 & 2	66 MHz

Table 2-7: J22, CPU Clock Speed

J26, CPU Voltage Regulator (see Table 2-9)

When using a 75-100MHz CPU, install a jumper on pins 1 and 2. When using a 120-200MHz CPU, no jumper is installed.

Position	Function
1 & 2	75 - 100 MHz
OFF	120 - 200 MHz

Table 2-8: J26, CPU Voltage Regulator

Use the following table to determine the proper jumper settings for your specific board.

CPU Internal	Clock Multiplier		Multiplian	Clock Speed	CPU Voltage Regulator
Speed	J14	J32	J22	J26	
75	OFF	OFF	None	1 & 2	
90	OFF	OFF	1 & 2, 3 & 4	1 & 2	
100	OFF	OFF	1 & 2	1 & 2	
120	1 & 2	OFF	1 & 2, 3 & 4	OFF	
133	1 & 2	OFF	1 & 2	OFF	
150	1 & 2	1 & 2	1 & 2, 3 & 4	OFF	
166	1 & 2	1 & 2	1 & 2	OFF	
180	OFF	1 & 2	1 & 2, 3 & 4	OFF	
200	OFF	1 & 2	1 & 2	OFF	

Table 2-9: Jumper Settings, J14, J22, J26, J32

• J16, Stop Clock

Select the following jumper positions for extra power savings during the Green Mode. Upon entering the Green Mode, the CPU will be stopped. It will resume operation when exiting the Green Mode.

Position	Function
1 & 2	Extra power savings
OFF	Standard

Table 2-10: J16, Stop Clock

J17, Cache Policy

J17 selects whether a cache line is to be invalidated on every DMA bus master cycle or on DMA bus cycle writes only. In normal operation a jumper is placed on pins 1 and 2.

Position	Function
1 & 2	Invalidate on writes
* OFF	Always invalidate

Table 2-11: J17, Cache Policy

• J19, Floppy Selection

Select the density of the floppy disk drive enabled in the BIOS. Three configurations are available:

two 2.88MB floppy drives,

two 1.2MB or two 1.44MB floppy drives,

one 1.2 MB and one 1.44 MB floppy drive.

2.88 MB floppy drives cannot be configured with either a 1.2 MB or 1.44 MB floppy drive.

Position	Density
1 & 2	1.2MB/1.44 MB
3 & 4, 5 & 6	2.88 MB

Table 2-12: J19, Floppy Selection

^{*} factory default setting

• J21, Watchdog Enable/Disable

To enable the watchdog timer, place a jumper on pins 1 and 2. The address of the watchdog timer is I/O 160 and cannot be relocated. To free I/O 160 for use with other devices, the watchdog timer must be disabled. To disable the watchdog timer, remove the jumper from J21.

Position	Function
*1 & 2	Enabled
OFF	Disabled

Table 2-13: J21, Watchdog Enable/Disable

• J24, Security Password Enable

Placing a jumper on pins 1 and 2 of J24 enables the security password option in the BIOS Setup Utility. With this jumper installed, the password selection is available in the BIOS.

Position	Function
1 & 2	Enable Password
OFF	Password not required

Table 2-14: J24, Security Password Enable

J29, CMOS Clear

To clear CMOS with power ON, install a jumper on 1 and 2, wait five seconds, remove the jumper from 1 and 2, and reset.

Position	Function
1 & 2	Clear CMOS
* OFF	Normal

Table 2-15: J29, CMOS Clear

^{*} factory default setting

^{*} factory default setting

• J30, Mouse IRQ Enable

Placing a jumper on J30 enables IRQ12 for the mouse. If no jumper is placed on J30, IRQ12 is available for other use.

Position	Function
1 & 2	Mouse on IRQ12
OFF	IRQ12 available

Table 2-16: J30, Mouse IRQ Enable

J31, Parallel Port DMA

Using DMA channels enables high speed transfers from memory to the parallel port. Select DMA channels 1 or 3 to be used for the

Position	Function
1 & 2, 5 & 6	LPT1 uses DRQ3/DACK3
3 & 4, 7 & 8	LPT1 uses DRQ1/DACK1

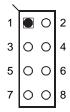


Table 2-17: J31, Parallel Port DMA

parallel port.

J33, IRQ11 Usage

IRQ11 can be configured to share with the ISA bus and the Watchdog timer. To facilitate this sharing technique, the IRQ11 signal on the backplane is pulled down to ground through a 10k resis-

Position	Function
1 & 3	IRQ11 for Watchdog timer only
*1 & 3, 2 & 4	Share IRQ11 with ISA bus & Watchdog timer
3 & 4	IRQ11 for ISA bus only

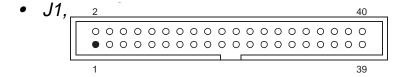
Table 2-18: J33, IRQ11 Usage

^{*} factory default setting

tor. If any cards in the ISA backplane have a pullup resistor on IRQ11, this sharing technique cannot be used.

Connectors

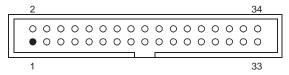
The following connectors can be located in Figure 1-1: Tigershark


Jumper	Description	No. of Pins
J1	IDE Connector	40
J2	Floppy Disk Drive Connector	34
J3	Parallel Port	26
J4	COM2 Port	10
J5	COM1 Port	10
J7	SCSI Connector	50
J8	Keyboard Connector	10
J10	Reset Connector	2
J11	Speaker Connector	4
J13	CPU Fan Connector	4
J20	Keyboard mini-DIN Connector	6
J25	Mouse mini-DIN Connector	6
J27	External HD LED Connector	2
J28	External Battery Connector	4

CPU Board Jumpers, Connectors, and Components on page 1-4, and the fold-out illustration on page A3-1.

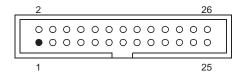
Table 2-19: Connectors

Pin #	Name	Pin #	Name
1	RST	21	N/C
2	GND	22	GND
3	D7	23	IOW
4	D8	24	GND
5	D6	25	IOR
6	D9	26	GND
7	D5	27	N/C
8	D10	28	BALE
9	D4	29	N/C
10	D11	30	GND
11	D3	31	IRQ14
12	D12	32	IO16
13	D2	33	SAI
14	D13	34	N/C
15	D1	35	SA0
16	D14	36	SA2
17	D0	37	CS0
18	D15	38	CS1
19	GND	39	HDIND
20	N/C	40	N/C


Table 2-20: J1, IDE Connector

Pin #	Name
2	RMP/LC
4	N/C
6	ID0
8	INDEX
10	MTRO
12	DRV1
14	DRV0
16	MTR1
18	DIR
20	STEP
22	WDATA
24	WGATE
26	TRK0
28	WPRT
29	ID0
30	RDATA
32	HDSEL
33	GND
34	DSKCHG
*	GND

Table 2-21: J2, Floppy Disk Drive Connector


• *12heFtoppyeDiskeDtivenCompotore GND.

J3, Parallel Port

Pin #	Name	Pin #	Name
1	Strobe	2	AutoFeed
3	+ Data bit 0	4	Error
5	+ Data bit 1	6	Init
7	+ Data bit 2	8	SLCT IN
9	+ Data bit 3	10	GND
11	+ Data bit 4	12	GND
13	+ Data bit 5	14	GND
15	+ Data bit 6	16	GND
17	+ Data bit 7	18	GND
19	ACK	20	GND
21	Busy	22	GND
23	Paper Empty	24	GND
25	GND	26	N/C

Table 2-22: J3, Parallel Port

The optional parallel port cable connects to J3. Its DB25 connector attaches to the I/O panel on the back of the chassis.

• J4, COM2 Port

The secondary serial port is a ten-pin header located at J4. The secondary serial port can be terminated in a DB9 connector by obtaining the optional serial port cable from I-Bus. A wire list is also provided on page 2-15 for a third-party cable.

Another optional cable from I-Bus is

Pin #	Name
1	DCD
2	DSR
3	RXD
4	RTS
5	TXD
6	CTS
7	DTR
8	RI
9	GND
10	N/C

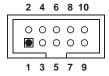


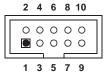
Table 2-23: J4, COM2 Port

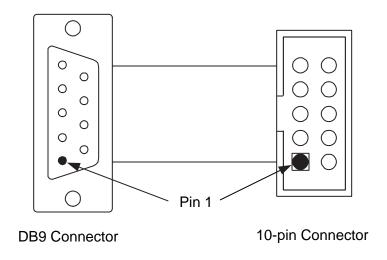
equipped with a retaining bracket mounting a DB9 and a DB25 connector terminating in a ten-pin and twenty-six pin header, respectively.

• J5, COM1 Port

The primary serial port is a ten-pin header located at J5. The primary serial port can be terminated in a DB9 connector by obtaining the optional serial port cable from I-Bus. A wire list is also provided on page 2-15 for a third-party cable.

Pin #	Name
1	DCD
2	DSR
3	RXD
4	RTS
5	TXD
6	CTS
7	DTR
8	
9	GND
10	N/C



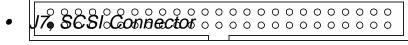

Table 2-24: J5, COM1 Port

Another optional cable from I-Bus is equipped with a retaining bracket mounting a DB9 and a DB25 connector terminating in a ten-pin and twenty-six pin header, respectively.

• Serial Port Cable Wire List

Signal	Connector		
Name	Onboard 10 Pin Connectors (J4 & J5)	25 Pin	9 Pin
DCD	1	8	1
DSR	2	6	6
RXD	3	3	2
RTS	4	4	7
TXD	5	2	3
CTS	6	5	8
DTR	7	20	4
RI	8	22	9
GND	9	2	5
N/C	10	N/C	N/C

Table 2-25: Serial Port Cable Wire List



Connectors

The following wire list is provided for users who want to make a

Pin #	Name	Pin #	Name
2	DB0	1	GND
4	DB1	3	GND
6	DB2	5	GND
8	DB3	7	GND
10	DB4	9	GND
12	DB5	11	GND
14	DB6	13	GND
16	DB7	15	GND
18	DBP	17	GND
20	GND	19	GND
22	GND	21	GND
24	GND	23	GND
26	TRMPWR	25	N/C
28	GND	27	GND
30	GND	29	GND
32	ĀTN	31	GND
34	GND	33	GND
36	BSY	35	GND
38	ACK	37	GND
40	RST	39	GND
42	MSG	41	GND
44	SEL	43	GND
46	C/D	45	GND
48	REQ	47	GND
50	Ī/O	49	GND

cable that conne**Table 2-26**ia**17**p**GCS**h**Gerne¢16**ror J5) and terminates with either a DB9 or DB25 (RS232) connector.

Pin#	Name
1	CLOCK
2	GND
3	DATA
4	N/C
5	N/C
6	N/C
7	+5 V
8	Key
9	N/C
10	GND

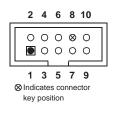


Table 2-27: J8, Keyboard Connector - 10-pin

• J8, Keyboard Connector - 10-pin

Pin#	Name
2	Reset
1	GND

• J1DabResset Connector

An external reset cable can be attached to the Tigershark at J10.

• J11, Speaker Connector

Pin #	Name
1	External Speaker
2	Internal Speaker
3	Vcc
4	Vcc

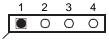


Table 2-29: J11, Speaker Connector

Placing a jumper on pins 1 and 2 of J11 enables the on-board speaker. An external speaker can be used with the Tigershark CPU board by installing a four-pin connector on J11.

Pin #	Name
1	+12 V
2	N/C
3	N/C
4	GND

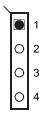


Table 2-30: J13, CPU Fan Connector

J13, CPU Fan Connector

To connect a CPU fan to the board, install a 4-pin connector on J13.

J20, Keyboard mini-DIN Connector

Pin #	Name	
1	DATA	
2	N/C	
3	GND	
4	+5 V	
5	CLOCK	
6	N/C	

View from end of board

Table 2-31: J20, Keyboard mini-DIN Connector

J20 is a six-pin mini-DIN keyboard connector located on the retaining bracket. A standard PC-AT compatible keyboard can be used when fitted with the keyboard adapter cable furnished with the CPU board. The ten-pin keyboard header at J8 can also be used.

Pin #	Name	
1	DATA	
2	N/C	
3	GND	
4	+5 V	
5	CLOCK	
6	N/C	

View from end of board

Table 2-32: J25, Mouse mini-DIN Connector

• J25, Mouse mini-DIN Connector

The mouse and keyboard mini-DIN connectors are identical. Make sure the correct accessory is plugged into it's proper connector.

J25 is a six-pin mini-DIN mouse connector located on the retaining bracket.

CAUTION!

Pin #	Name
2	Anode
1	Cathode

Table 2-33: J27, External Hard Drive LED

• J27, External Hard Drive LED Connector

An LED can be connected at J27 to indicate IDE or SCSI hard-drive activity.

Pin #	Name	
1	Positive Terminal	
2	N/C	
3	N/C	
4	Negative Terminal	

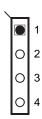


Table 2-34: J28, External Battery Connector

• J28, External Battery Connector

If specific safety restrictions prevent the use of the on-board lithium battery, an external battery can be connected at J28.

Chapter 3 Specifications

System Components

CPU: 3.3V Pentium[®]

Form Factor: Standard full length AT

Interrupts: 15 levels available

Power Requirements: Input Power

+5V @ 3.5A +12V @ 50mA -12V @ 50mA

Cache: 512K write-back /write-through

cache

Dynamic RAM: Supports up to 256MB on-board 36-bit

DRAM SIMM using 70ns x 36

SIMMs

System ROM: Contains system BIOS

Clock/Calendar: Real-time clock backed by an on-

board lithium battery

External Connections: IDE & floppy (shrouded headers)

Bidirectional parallel port (shrouded

header)

Serial port 1 (shrouded header) Serial port 2 (shrouded header) Keyboard (mini-DIN on retaining

bracket)

Mouse (mini-DIN on retaining

bracket)

Keyboard (Ten-pin header)

Speaker (header) Reset (header)

Hard Drive LED (header)

Watchdog Timer: Two-stage, software programmable

Environmental Specifications

Environmental	Operating	Non-operating
Temperature	0° to +55°C	-40° to +65°C
Humidity	5 to 95% @ 40°C non-condensing	5 to 95% @ 40°C non-condensing
Shock	2.5 g @ 10 ms	10 g @ 10 ms
Vibration	0.25 g @ 5-100 Hz	5 g @ 5-100 Hz

Table 3-1: Environmental Specifications

The BIOS Setup Utility allows you to configure your CPU board to your system. The BIOS, or Basic Input/Output System, is the on-board firmware that communicates with the display, keyboard, printers and other peripheral devices.

Starting and Exiting the BIOS Setup

When you turn on your computer, a test is conducted called the Power On Self Test, or POST. During this test the system checks for certain hardware configurations and compares them to the BIOS Setup Utility. If, at boot, the system status does not match the system configuration stored in CMOS, you will be prompted to start the BIOS Setup Utility.

To Start the BIOS Setup:

• During a cold boot, press when prompted.

To Exit the BIOS Setup and boot the computer:

While in any utility screen, press <Esc> to return to the CMOS Setup Utility Screen. If SAVE & EXIT SETUP is selected, all configuration changes edited in the various screens are recorded in CMOS memory at this time. If EXIT WITHOUT SAVING is selected, or if power is turned off, or the front-panel reset button is pressed, the changes made in the BIOS will not be saved and the original configuration will remain unchanged.

All BIOS screens contain:

- **body** consisting of the **entry fields** containing the utility's parameters.
- **bottom line** indicating the keystrokes that you can use to manipulate the cursor in that screen.

Manipulating the screens

Basically, the arrow keys are used to highlight items, **Enter** is used to select, the **PageUp** and **PageDown** keys are used to change entries, **F1** is pressed for help and **Esc** is pressed to quit.

- <Up arrow> Move to previous item
 <Down arrow> Move to next item
 - <Left arrow> Move to the item on the left <Right arrow> Move to the item on the right
- Esc key CMOS Setup Utility Screen Quit and do not save changes into CMOS. All other screens, return to CMOS Setup Utility Screen.
- PgUp key Increase the numeric value or make changes.
 PgDn key Decrease the numeric value or make changes.
- + key Increase the numeric value or make changes.
 key Decrease the numeric value or make changes.
- F1 key General help Press F1 to pop up a small help window that describes the appropriate keys to use and the possible selections for the highlighted item. To exit, press Esc or the F1 key again.
- F2 key Change color from total 16 colors. F2 to select color forward, (Shift) F2 to select color backward.
- F3 key Calendar, only for Standard CMOS Setup Screen.
- F5 key Restore the previous CMOS value from CMOS, only for BIOS Features Setup Screen.
- F6 key Load the default CMOS value from BIOS default table, only for BIOS Features Setup Screen.
- F7 key Load Setup defaults.
- F10 key Save all CMOS changes, only for CMOS Setup

Utility Screen.

This section describes each setup screen in the CMOS Setup Utility.

Screens and Commands identified on the CMOS Setup Utility Menu are:

• Standard CMOS Setup

Load Setup Defaults

• BIOS Features Setup

Password Setting

• Chipset Features Setup

• IDE HDD Auto Setting

• Power Management Setup

Save & Exit Setup

• PCI Configuration Setup

Exit Without Saving

In this section each utility is represented by:

- Screen Illustration
- Explanation
- Entry Fields

Screen Illustration

The screens presented in this manual reflect the same format as your screens. However, entry values and selections shown on these screens are *examples only*.

Explanation

The Explanation following each screen illustration describes the utility and the available choices.

Entry Fields

Each entry field in the body of the screen is described and all available choices, or parameters, are listed.

CMOS Override

If the system fails to boot after changes are made to the BIOS Setup, a CMOS override can be invoked by pressing the **Insert** key when the computer is rebooted. This resets the system to its defaults.

The system can be restarted by power-cycling the computer (turning the power switch OFF and then ON), or by pressing the RESET

button or by pressing Ctrl, Alt and Delete.

ROM PCI/ISA BIOS CMOS SETUP UTILITY AWARD SOFTWARE, INC.

STANDARD CMOS SETUP	INTEGRATED PERIPHERALS	
BIOS FEATURES SETUP	SUPERVISOR PASSWORD	
CHIPSET FEATURES SETUP	USER PASSWORD	
POWER MANAGEMENT SETUP	IDE HDD AUTO DETECTION	
PNP/PCI CONFIGURATION SETUP	HDD LOW LEVEL FORMAT	
LOAD BIOS DEFAULTS	SAVE & EXIT SETUP	
LOAD SETUP DEFAULTS	EXIT WITHOUT SAVING	
Esc : Quit	: Select Item	
F10 : Save & Exit Setup (Shift) F2 : Change Color		
Time, Date, Hard Disk Type		

CMOS Setup Utility Screen

Figure 4-1: CMOS Setup Utility Screen

Explanation

The CMOS Setup Utility screen allows selection of eight setup screens and two exit choices. Use the arrow keys to move between choices and press Enter to select the highlighted choice.

Entry Fields

Standard CMOS Setup

This setup screen allows you to configure the calendar, hard drives, floppy drives, video mode and the "Halt On" command.

BIOS Features Setup

This setup screen allows you to configure virus warning, cache, boot sequence, keyboard, security, shadowing and SCSI.

Chipset Features Setup

This setup screen allows you to configure the system memory.

Power Management Setup

This setup screen only displays if the system supports Power Management (Green PC) standards.

PCI Configuration Setup

This setup screen is available only on systems that support PCI.

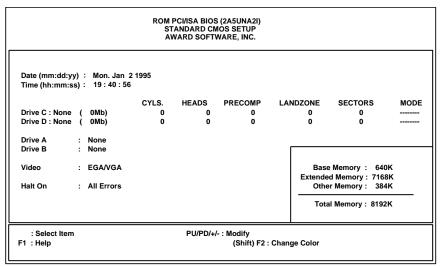
Load Setup Defaults

This screen allows you to load the chipset defaults for maximum system performance.

Password Setting

This screen allows you to configure the change, set, or disable functions of the password option.

IDE HDD Auto Detection


Functions on this screen automatically detect and configure the hard disk parameters.

Save Exit Setup

Save CMOS changes and exit setup.

Exit Without Saving

Abandon all CMOS value changes and exit setup.

Standard CMOS Setup Screen

Figure 4-2: Standard CMOS Setup Screen

Explanation

The parameters in the Standard CMOS Setup Screen are divided into groups. Each group includes one or more setup items. Use the arrow keys to highlight the item and then use the PgUp or PgDn keys to select the value for each item.

Date: The month is highlighted first, then the date and year. Day is automatically calculated when the month and year are entered.

Drives C/D. C: and D: identify the hard disk drives installed on the system. When numbers 1 to 46 are selected, the drive parameters are automatically configured. When Type User is selected the drive parameters must be entered directly from the keyboard. Press Enter when the entry is complete.

Drives A/B. A: and B: identify the types of floppy disk drives installed on the system.

Video. This selection pertains to the primary system monitor. Secondary system monitors are supported but do not have to be selected in Setup.

Halt On. After boot up and during POST (Power On Self Test), the system will stop when it encounters an error or device not present. Select the the way the system will boot up.

Memory. The memory is auto-sensed during POST. **No user entry is allowed.** Base Memory is the amount of memory at or about the 640K boundary. Extended Memory is above the 1MB boundary. Other Memory is the portion of memory, usually 384K, allocated for Shadow RAM or remapped to the Extended Memory pool.

ntry Field	s	
Fields	Description	Choices
Date	Format is day, month, day, year.	1. Jan - Dec 2. 1 - 31 3. 1990 - 2099
Time	Format is hour, minute, second on 24-hour clock.	1. 1 - 24 2. 1 - 60 3. 1 - 60
Drive C Drive D	Press PgUp or PgDn to move between numbers. Press Enter to select type. Select Type User to define individual parameters. See Table A1-11 on page A1-12.	 1. 1-46 2. Type User 3. None
Drive A Drive B	Press PgUp or PgDn to move between choices. Press Enter to select type.	1. None 2. 360, 5.25 in 3. 1.2M, 5.25 in 4. 720K, 3.5 in 5. 1.44M, 3.5 in

6. 2.88M, 3.5 in

Table 4-1: Standard CMOS Setup Screen Entry Fields

Setup Screens

Fields	Description	Choices
Video	Select the type of video adapter used for the primary system monitor.	1. EGA/VGA 2. CGA40 3. CGA80 4. MONO
Halt On	Select the condition that would cause the system to stop at boot up.	1. No errors 2. All errors 3. All, but keyboard 4. All, but diskette 5. All, but disk/key

Table 4-1: Standard CMOS Setup Screen Entry Fields Cont'

BIOS Features Setup Screen

	ROM PCI/ISA BIO BIOS FEATUI AWARD SOFT	RES SETUP
Virus Warning CPU Internal Cache External Cache	: Disabled : Enabled : Enabled	Video BIOS Shadow : Enabled C8000-CBFFF Shadow : Disabled CC000-CFFFF Shadow : Disabled
Boot Sequence Swap Floppy Drive	: A,C : Disabled	D0000-D3FFF Shadow : Disabled D4000-D7FFF Shadow : Disabled D8000-DBFFF Shadow : Disabled DC000-DFFFF Shadow : Disabled
Boot Up NumLock Status	: On : Fast	Onboard SCSI Controller : Enabled
Gate A20 Option Typematic Rate Setting Typematic Rate (Char/Sec) Typematic Delay (Msec) Security Option	: Disabled	Delay For SCSI/HDD (Secs) : 0
Select Item PCI/VGA Palette Snoop	: Disabled	F1 : Help PU/PD/+/-: Modify F5 : Old Values (Shift)F2 : Color F6 : Load BIOS Defaults F7 : Load Setup Defaults

Figure 4-3: BIOS Features Setup Screen

Explanation

This setup screen contains parameters that configure the system for basic operation. Use the arrow keys to highlight the item and then use the PgUp or PgDn keys to select the value for each item.

Virus Warning. You will need to disable this option while using certain fixed disk maintenance programs (e.g., DOS FDISK), because their actions would be interpreted as a violation.

Boot Sequence. The BIOS assumes that Drive C is the hard disk drive and Drive A is the floppy disk drive.

Security Option. To disable the Security Option, select PASSWORD SETTING from the CMOS Setup Utility screen. When prompted to enter a new password, do not enter anything, just press Enter. This disables security. Once security is disabled, the system will boot and Setup can be entered.

Shadow RAM. Shadow RAM is a mechanism that copies Read Only Memory into main memory, then substitutes that memory image for the original ROM. This increases the execution speed of programming that resides in ROM. BIOS and VGA Adapters are two main examples of ROMs that demonstrate significant performance gains when they are shadowed.

Since ROMs are by definition Read-Only, it is usually desirable to write protect the Shadow RAM. However, Shadow RAM can also be used as general purpose memory by certain programs. In this case, it should be enabled as Read-Write memory. While most Adapter ROMs can be shadowed either way, some permit only the RW or WP option, and a rare few cannot be shadowed at all. You may need to experiment a little.

Shadow RAM is obtained from a gap in the otherwise contiguous memory space of the computer. The 384K region between the 640K and 1MB boundaries is occupied not by memory, but instead by ROMs, video memory, and possibly other system-level devices. The memory that should appear there is simply inaccessible and unused. One way to make use of this lost memory is to activate it as Shadow RAM. Certain designs can also remap a portion of this 384K into the Extended Memory pool, provided it is not already enabled as Shadow RAM. In most designs with this capability, remap will be prevented if any Shadow segment is enabled in the D000 through E000 regions.

Entrv	Fields

		
Fields	Description	Choices
Virus	Enable to activate automatically when	1. Enabled
Warning	system boots, causing message to display.	2. Disabled
CPU Internal	Enable to allow access to CPU internal	1. Enabled
Cache	cache.	2. Disabled
Boot	Enter the drive sequence used to boot the	1. C, A
Sequence	system.	2. A, C (default)
Swap Floppy	Enable to reassign floppy drive designation	1. Enabled
Drive	if more than one floppy drive is installed in	2. Disabled
	the system.	

Chapter 4 BIOS

Fields	Description	<u>Choices</u>
Boot Up NumLock	Enter the default state of the numeric keypad at boot up.	1. On (default) 2. Off
Gate A20 Option	"Normal" handles A20 gate through the keyboard. Fast handles A20 gate through the chipset.	1. Normal 2. Fast
Typematic Rate Setting	Enable to allow a key to repeat when pressed. Disable to keep a key from repeating when it is pressed.	1.Enabled 2. Disabled
Typematic Rate (Char/Sec)	Enter the rate at which a key repeats when pressed. (Typematic Rate Setting must be enabled.)	1-8. 6, 8, 10, 12, 15, 20, 24, 30
Typematic Delay (msec)	Enter the length of time a key can be pressed before it will begin to repeat. (Typematic Rate Setting must be enabled.)	1. 250 2. 500 3. 750 4. 1000
Security Option	Enter "System" to require password to access system. Enter "Setup" to require password to enter Setup.	1. System 2. Setup
PCI/VGA Palette Snoop	Enable the VGA feature connector port.	1. Enabled 2. Disabled (default)
Video BIOS Shadow	Enabling video shadow copies video shadow to RAM, increasing video speed.	1. Enabled 2. Disabled
C8000-CFFFF/ D0000-DFFFF Shadow	Enable optional ROM to RAM in each of the defined areas	1. Enabled 2. Disabled
Onboard SCSI	Enable the onboard SCSI controller. Disable if a high-performance SCSI controller board is installed.	1. Enabled 2. Disabled
Delay For	Enter the delay time, in seconds to allow	1. 0 - 60

SCSI/HDD for hard drive spin-up.

Table 4-2: BIOS Features Setup Screen Entry Fields Cont'

	ROM PCI/ISA BIO CHIPSET FEAT AWARD SOF	URES SETUP	
Auto Configuration AT Bus Clock Hidden Refresh DRAM Posted Write DRAM Slow Refresh	: Disabled	1st Fast DMA Channel 2nd Fast DMA Channel Onboard FDC Controller Onboard Serial Port 1 Onboard Serial Port 2 Onboard Parallel Port	: NONE : Enabled : COM1 : COM2
CPU Addr. Pipelining Byte Merger Support			
Tag RAM Size Tag/Dirty implement Dirty pin selection L1 Cache Policy L2 Cache Write Policy	: IN : Write Back		
Cache Write Burst Video BIOS Cacheable System BIOS Cacheable DRAM Timing	: 4-2-2-2 : Enabled : Enabled	F1 : Help PU/I F5 : Old Values (Shi F6 : Load BIOS Defaults F7 : Load Setup Defaults	ft)F2 : Color

· Chipset Features Setup Screen

Figure 4-4: Chipset Features Setup Screen

Explanation

The Chipset Features Setup screen manages bus speeds and access to system memory resources, such as DRAM and the external cache. It also coordinates communications between the conventional ISA bus and the PCI bus. Normally, these items never need to be altered. The default settings provide optimum conditions for the system. The only time changes would be warranted is if data was being lost during system use.

AT Bus Clock. The AT bus clock speed is the local speed at which the CPU communicates with memory. The speed is measured in terms of a fraction of LCLK, the timing of the local clock of the PCI bus.

DRAM Settings. The first chipset settings deal with CPU access to DRAM (dynamic random access memory).

Hidden Refresh. When enabled, a cycle is eliminated by "hiding" the refresh in the Hidden mode. Not only is the Hidden mode faster and more efficient, but it also allows the CPU to maintain the status of the cache even if the system goes into a power management "suspend" mode.

DRAM Posted Write. When enabled, a CPU write cycle to DRAM will not require the CPU to wait during the external DRAM cycle.

Byte Merge Support. When enabled, this allows 8- or 16-bit data sent from the CPU to the PCI bus to be held in a buffer where it is accumulated, or merged, into 32-bit data for faster performance. The chipset will then write the data in the buffer to the PCI bus when appropriate.

Tag RAM Size. Tag bits are used by the system to determine the status of data contained in the cache.

Tag/Dirty implement. The system cache controller supports two methods of determining the state of data in the cache. One implementation separates the tag signal from the "dirty" signal while the other combines the two to a single 8- (if 7 bits are selected in *Tag RAM Size*) or 9-bit (8 bits selected) signal.

L1 Cache Policy. This parameter sets the write policy for the CPU's internal or Level 1 cache.

L2 Cache Write Policy. This parameter sets the write policy for the Level 2 cache (cache not located in the CPU).

1st/2nd Fast DMA Channels. The chipset provides a form of compressed timing on the DMA called Type F DMA. This mode provides ISA compatible timing for fast DRAM slave devices. Type F timing basically runs at 360ns/cycle or three ISA clock cycles during the repeated portion of a Block or Demand mode transfer.

Setup Screens

Entry Fields

Fields	Description	Choices
Auto Configuration	Enable to reset most of the chipset setup parameters to their defaults preventing them from being changed individually. Disable to change the chipset setup parameters individually.	1. Enabled 2. Disabled
AT Bus Clock	LCLK/1 = same rate as the PCI clock. LCLK/2 = 1/2 the rate of the PCI clock. LCLK/3 = 1/3 the rate of the PCI clock. LCLK/2 = 1/4 the rate of the PCI clock.	1. LCLK/1 2. LCLK/2 3. LCLK/3 4. LCLK/4
Hidden Refresh	Enable allows DRAM refresh to use hidden CPU cycles. Disabled, the DRAM refresh uses normal CPU cycles.	1. Enabled 2. Disabled (default)
DRAM Posted Write	Enable to eliminate a wait state to DRAM. Disable for CPU write cycles to wait for DRAM cycle.	1. Enabled 2. Disabled (default)
DRAM Slow Refresh	Enable to allow a slower refresh rate providing a marginal increase in system performance.	1. Enabled 2. Disabled (default)
CPU Address Pipelining	Enable results in increased throughput. Disable for no address pipelining.	1. Enabled 2. Disabled (default)
Byte Merge Support	Enable buffers CPU to PCI writes. When disabled, writes are not buffered.	1. Enabled 2. Disabled
Tag RAM Size	Enter 7 or 8 bits to be used for tag RAM information.	1. 7 bit (default) 2. 8 bit
Tag/Dirty Implement	Combine Tag and Dirty signals into a single signal or Separate Tag and Dirty signals.	Combine Separate
Dirty pin selection	I/O selects bi-directional input/output. IN selects input only.	1. I/O 2. IN

Table 4-3: Chipset Features Setup Screen Entry Fields

Chapter 4 BIOS

Fields	Description	Choices
L1 Cache Policy	"Write Back" causes memory to be updated only under certain conditions such as read requests to the memory whose contents are currently in the cache, allowing the CPU to operate with fewer interruptions and increasing its efficiency. "Write Through" means that memory is updated with data held in the cache whenever the CPU issues a write cycle.	1. Write Back 2. Write Through
L2 Cache Policy	Same as L1 Cache Policy.	1. Write Back 2. Write Through
Cache Write Burst	Select the precise timing used during burst writes to the cache by scrolling though the choices.	1. 2-1-1-1 to 5-4-4-4
Video BIOS Cacheable	When enabled, the Video BIOS cache will cause access to video BIOS addressed at C0000H to C7FFFH to be cached, if the cache controller is also enabled. When disabled, the video BIOS access is not cached.	1. Enabled 2. Disabled (default)
System BIOS Cacheable	As with caching the Video BIOS above, enabling allows accesses to the system BIOS ROM addressed at F0000H-FFFFH to be cached, provided that the cache controller is enabled.	1. Enabled 2. Disabled (default)
DRAM Timing	Set to the type of DRAM SIMMs installed in the system.	1. 60ns 2. 70ns
1st/2nd Fast DMA Channels	Two DMA channels, "0" or "1", can be selected to support Type F timing.	1. None 2. 0 3. 1

Table 4-3: Chipset Features Setup Screen Entry Fields Cont'

Setup Screens

Fields	Description	Choices
Onboard FDC Controller	Enable to use the system onboard floppy disk controller. Disable if FDC board is installed in system.	1. Enabled (default) 2. Disabled
Onboard Serial Port 1	Select the IRQ for serial port 1 or disable it COM1 = 3F8 IRQ4 / COM2 = 2F8 IRQ3 COM3 = 2E8 IRQ3 / COM4 = 3E8 IRQ4	1. COM1 (default) 2. COM2 3. COM3 4. COM4 5. Disabled
Onboard Serial Port 2	Select the IRQ for serial port 2 or disable it COM1 = 3F8 IRQ4 / COM2 = 2F8 IRQ3 COM3 = 2E8 IRQ3	1. COM1 (default) 2. COM2 3. COM3 4. Disabled
Onboard Parallel Port	Change the default port address of the onboard parallel (printer) port or disable it. 1. = standard LPT1 address 2. = standard LPT2 address 3. = alternate LPT1 address	1. 378/IRQ7 (default) 2. 278/IRQ5 3. 3BC/IRQ7 4. Disabled

Table 4-3: Chipset Features Setup Screen Entry Fields Cont'

• Power Management Setup Screen

ROM PCI/ISA BIOS (2A5UNA2I) POWER MANAGEMENT SETUP AWARD SOFTWARE, INC.					
Power Management PM Control by APM Video Off Option Video Off Method ** PM Timers ** HDD Off After Doze Mode Standby Mode Suspend Mode ** PM Events ** DMA Request Video Activity	: Disable : Disable : Disable : Disable : Disable : Enable : Disable	Local Devices : Enable IRQ3 (COM 2) : Enable IRQ4 (COM 1) : Enable IRQ5 (LPT 2) : Enable IRQ7 (LPT 1) : Enable IRQ7 (LPT 1) : Enable IRQ9 (IRQ2 Redir) : Disable IRQ10 (Reserved) : Enable IRQ11 (Reserved) : Enable IRQ12 (PS/2 Mouse) : Enable IRQ13 (Coprocessor) : Enable IRQ14 (Hard Disk) : Disable IRQ15 (Reserved) : Enable			
HDD Port (1F0,170) Select Item LPT (3BC,378,278) COM Port (3F8,3E8) COM Port (2F8,2E8) PCI Masters	: Enable : Enable	F1 : Help PU/PD/+/- : Modify F5 : Old Values (Shift)F2 : Color F6 : joad BIOS Defaults F7 : joad Setup Defaults			

Figure 4-5: Power Management Setup Screen

Explanation

The Power Management Setup screen allows you to configure the system to most effectively save energy.

Power Management. The type of power saving selected here is directly related to the four PM Timers: HDD Off After, Doze Mode, Standby Mode, and Suspend Mode. You can choose one of the fixed mode choices or disable it. Min. Power Saving = HDD Off After = 15 min., Doze Mode = 1 hr., Standby Mode = 1 hr., Suspend Mode = 1 min. Max. Power Saving is only available for SL CPUs. HDD Off After = 1 min., Doze Mode = 1 min., Standby Mode = 1 min., Suspend Mode = 1 min. User Defined allows each mode to be set individually. When not disabled, each of the ranges are from 1 min. to 1 hr. except for HDD Off After which ranges from 1 min. to 15 min. and disable.

PM Timers. The four parameters are Green PC power saving functions that are user configureable when User Defined is selected from the *Power Management* parameter.

Setup Screens

PM Events. PM events are I/O events whose occurrence can prevent the system from entering a power saving mode or can awaken the system from a power saving mode. In effect, the system remains alert for any device configured as Enable, even when the system is in a power down mode.

Entry Fields

Fields	Description	Choices
Power Management	See Explanation, page 4-17.	1. Disable (default) 2. Min Pwr. Sav 3. Max Pwr. Sav. 4. User Defined
PM Control by APM	Yes to activate Advanced Power Mgmnt., enhancing the Max. Pwr. Sav mode and stop the CPU internal clock.	1. Yes 2. No
Video Off Option	Selects which combination of the PM Timers modes causes video to turn off. (Selection 3, Always On, means none). See page 4-17 an explanation.	1. Susp,Stby -> Off 2. All Modes -> Off 3. Always On 4. Suspend -> Off
Video Off Method	Selecting "1" causes the system to turn off the vertical and horizontal synchronization ports and write blanks to the video buffer. Selecting "2" causes the system to only write blanks to the video buffer.	Blank
HDD Off After	When enabled, and after a set time of system inactivity, the hard disk drive will be powered down while all other devices remain active.	1. Enabled 2. Disabled
Doze Mode	When enabled and after the set time of system inactivity, the CPU clock will run at a slower speed while all other devices still operate at full speed.	1. Enabled 2. Disabled

Table 4-4: Power Management Setup Screen Entry Fields

Chapter 4 BIOS

Fields	Description	Choices
Standby Mode	When enabled and after the set time of system inactivity, the fixed disk drive and the video would be shut off while all other devices still operate at full speed.	1. Enabled 2. Disabled
Suspend Mode	When enabled and after the set time of system inactivity, all devices except the CPU will be shut off.	1. Enabled 2. Disabled
DMA Request	When Enabled is selected, any request to the DMA controller will awaken the system.	1. Enabled (default) 2. Disabled
Video Activity	If this is enabled, any video activity will awaken the system.	1. Enabled 2. Disabled (default)
HDD Port (1F0,170)	When set to Enable, any event occurring at a hard disk drive will awaken the system.	1. Enabled (default) 2. Disabled
LPT (3BC,378,278)	When set to Enable, any event occurring at a printer port (LPT 1-3) will awaken the system.	1. Enabled (default) 2. Disabled
COM Port (3F8, 3E8)	When set to Enable, any event occurring at a COM 1 or COM 3 port will awaken the system.	1. Enabled (default) 2. Disabled
COM Port (2F8, 2E8)	When set to Enable, any event occurring at a COM 2 or COM 4 port will awaken the system.	1. Enabled (default) 2. Disabled
PCI Masters	When set to Enable, any event from a PCI bus master will awaken the system.	1. Enabled (default) 2. Disabled

Table 4-4: Power Management Setup Screen Entry Fields Cont'

Setup Screens

Fields	Description	Choices
Local Devices IRQ3 (C2) IRQ4 (C1) IRQ5 (LPT2) IRQ6 (Floppy) IRQ7 (LPT1) IRQ9 (IRQ2) IRQ10 (Rsvd) IRQ11 (Rsvd) IRQ12 (Mouse) IRQ13 (Coproc) IRQ14 (HD) IRQ15 (Rsvd)	When set to Enable (default), any event at any of these local devices will awaken the system. Enable is the default for all except IRQ14.	1. Enabled 2. Disabled

Table 4-4: Power Management Setup Screen Entry Fields Cont'

• PCI Configuration Setup Screen

	ROM PCI/ISA BIOS PCI CONFIGURATI AWARD SOFTW	ÌON SETUP	
PnP BIOS Auto-Config Slot 1 Using INT# Slot 2 Using INT# Slot 3 Using INT# Slot 4 Using INT#	: Disabled : AUTO : AUTO : AUTO : AUTO	Onboard IDE IDE HDD Block Mode IDE Primary Master PI0 IDE Primary Slave PI0	: Enabled : Enabled : AUTO : AUTO
1st Available IRQ 2nd Available IRQ 3rd Available IRQ 4th Available IRQ	: 15 : 10 : 9 : 5		
PCI Read burst WS PCI Write burst WS Master Retry Timer	: 2 Cycles : 2 Cycles : 10 PCICLKs		
PCI Pre-Snoop Select Item PCI Preempt Timer CPU to PCI POST/BURST PCI CLK	: Disabled : Disabled : POST/CON.BURST : Async	F1 : Help PU/PD/+/- F5 : Old Values (Shift)F2 F6 : Load BIOS Defaults F7 : Load Setup Defaults	: Modify : Color

Figure 4-6: PCI Configuration Setup Screen

Explanation

This screen is for configuring the PCI bus. PCI, or Peripheral Component Interconnect, is a local bus that provides a high-speed data path between the CPU and peripheral devices such as graphic adapters, disk controllers, and network cards.

PnP BIOS Auto-Config. This parameter supports the "Plug and Play" Microsoft/Intel standard for operating systems (Windows® 95) and expansion boards. This feature should only be enabled when using an operating system that supports "Plug and Play."

IDE Primary Master/Slave PIO. This parameter controls the data transfer rate of the IDE drive(s). Selections are from Mode 0 to Mode 4 and AUTO. Mode 0 is the slowest, Mode 4 the fastest. AUTO allows the BIOS to query the drive(s) and select the optimum speed.

Setup Screens

Entry Fields

Fields	Description	Choices
PnP BIOS Auto-Config	Enables or Disables the "Plug and Play" feature.	1. Enabled 2. Disabled (default)
Slot x Using INT#	Each PCI slot is capable of activating up to four interrupts, INT#A, INT#B, INT#C and INT#D. Selecting AUTO allows the PCI controller to automatically allocate the interrupts.	1. AUTO (default) 2. A 3. B 4. C 5. D
1st/2nd/3rd/4th Available IRQ	Select which interrupt is associated with each PCI slot. By default, IRQ's 9 and 10 are mapped to PCI devices. The IRQ settings must be the same as the jumper settings on the CPU board. "NA" means the IRQ has been assigned to the ISA bus and is not available.	1. NA 2. 5 3. 9 4. 10 5. 11 6. 14 7. 15
PCI Read burst WS	Determine how long (in CPU cycles) the system will wait for completion of a PCI burst read.	1. 4 CYCLES (default) 2. 3 CYCLES 3. 2 CYCLES
PCI Write burst WS	Determine how long (in CPU cycles) the system will wait for completion of a PCI burst write.	1. 4 CYCLES (default) 2. 3 CYCLES 3. 2 CYCLES
Master Retry Timer	Determine how long the CPU master attempts a PCI cycle before the cycle is unmasked (terminated).	 1. 10 PCICLKs (default) 2. 18 PCICLKs 3. 34 PCICLKs 4. 66 PCICLKs

Table 4-5: PCI Configuration Setup Screen Entry Fields

Chapter 4 BIOS

Fields	Description	Choices
PCI Pre-Snoop	Enable allows you to use external video boards using frame grabbers to "snoop" VGA activity on the PCI bus.	1. Enabled 2. Disabled (default)
PCI Preempt Timer	Sets the length of time before one PCI master preempts another when a service request is pending. See page 4-12 for an explanation of LCLK.	1. Disabled (default) 2. 260 LCLKs 3. 132 LCLKs 4. 68 LCLKs 5. 36 LCLKs 6. 20 LCLKs 7. 12 LCLKs 8. 5 LCLKs
CPU to PCI POST/BURST	Data from the CPU to the PCI bus can be posted and/or burst.	1. POST/ CON.BURST (default) 2. NONE/NONE 3. POST/NONE
PCI CLK	Select "Sync" to synchronize the PCI clock with the CPU clock.	1. Async (default) 2. Sync
Onboard IDE	Enable to use the system onboard IDE controller. Disable if an IDE board is installed in the system.	1. Enable 2. Disable
IDE HDD Block Mode	By enabling the block mode for hard drive data transfer, the system can read and write to the drive using large blocks of data instead of individual bytes.	1. Enabled 2. Disabled
IDE Primary Master/Slave PIO	Select the data transfer rate of the primary master/slave IDE drive. Auto allows the BIOS to query the drive(s) and select the optimum speed.	1. Auto 2. Mode 0 3. Mode 1 4. Mode 2 5. Mode 3 6. Mode 4 (fastest)

Table 4-5: PCI Configuration Setup Screen Entry Fields Cont'

Password Setting

When this function is selected, the following message will be displayed at the center of the screen:

ENTER PASSWORD:

Type the password, up to eight characters in length, and press **Enter.**The entered password will clear any previously entered password from CMOS memory. A statement will be displayed requesting confirmation. Type the password again and press **Enter**. To abort this process, press **Esc.**

To disable a password, press **Enter** when prompted to enter the password. The following message will be displayed at the center of the screen:

PASSWORD DISABLED

Once the password is disabled, the system will boot and Setup can be entered.

When a password has been enabled, it will have to be entered every time Setup is entered. This prevents an unauthorized person from changing any part of the system configuration.

Additionally, when a password is enabled, you can also require the BIOS to request a password every time your system is rebooted. This would prevent unauthorized use of your computer.

You determine when the password is required within the BIOS Features Setup Menu and its Security option. If the Security option is set to "System," the password will be required both at boot and at entry to Setup. If set to "Setup," prompting only occurs when trying to enter Setup.

POST Messages

During the Power On Self Test (POST), if the BIOS detects an error requiring a fix, it will either sound a beep code or display a message. However, there is only one beep code in BIOS. This code indicates that a video error has occurred and the BIOS cannot initialize the video screen to display any additional information. This beep code consists of a single long beep followed by two short beeps.

When a POST message is displayed, it will be accompanied by:

PRESS F1 TO CONTINUE, DEL TO ENTER SETUP

Error Messages

One or more of the following messages may be displayed if the BIOS detects an error during the POST.

CMOS BATTERY HAS FAILED CMOS battery is no longer functional. It should be replaced.

CMOS CHECKSUM ERROR Checksum of CMOS is incorrect. This can indicate that CMOS has become corrupt. This error may have been caused by a weak battery. Check the battery and replace if necessary.

DISK BOOT FAILURE, INSERT SYSTEM DISK AND PRESS ENTER No boot device was found. This could mean that either a boot drive was not detected or the drive does not contain proper system boot files. Insert a system disk into Drive A: and press Enter. If you assumed the system would boot from the hard drive, make sure the controller is inserted correctly and all cables are properly attached. Also be sure the disk is formatted as a boot device. Then reboot the system.

DISKETTE DRIVES OR TYPES MISMATCH ERROR - RUN SETUP Type of diskette drive installed in the system is different from the CMOS definition. Run Setup to reconfigure the drive type correctly.

DISPLAY SWITCH IS SET INCORRECTLY Display switch on the CPU board can be set to either monochrome or color. This indicates the switch is set to a different setting than indicated in Setup. Determine which setting is correct, and then either turn off the system and change the jumper, or enter Setup and change the VIDEO selection.

DISPLAY TYPE HAS CHANGED SINCE LAST BOOT Since last powering off the system, the display adapter has been changed. You must configure the system for the new display type.

ERROR ENCOUNTERED INITIALIZING HARD DRIVE Hard drive cannot be initialized. Make sure the adapter is installed correctly and all cables are correctly and firmly attached. Also make sure the correct hard drive type is selected in Setup.

ERROR INITIALIZING HARD DISK CONTROLLER Cannot initialize controller. Make sure the cord is correctly and firmly installed in the bus. Be sure the correct hard drive type is selected in Setup. Also check to see if any jumper needs to be set correctly on the hard drive.

FLOPPY DISK CNTRLR ERROR OR NO CNTRLR PRESENT Cannot find or initialize the floppy drive controller.
make sure the controller is correctly installed. If there are no floppy drives installed, make sure the Diskette Drive selection in Setup is set to NONE.

KEYBOARD ERROR OR NO KEYBOARD PRESENT

Cannot initialize the keyboard. Make sure the keyboard is attached correctly and no keys are being pressed during the boot.

If you are purposely configuring the system without a keyboard, set the error halt condition in Setup to HALT ON ALL, BUT KEY-BOARD. This will cause the BIOS to ignore the missing keyboard and continue to boot.

Memory Address Error at ... Indicates a memory address error at a specific location. You can use this location along with the memory map for your system to find and replace the bad memory chips.

Memory parity Error at ... Indicates a memory parity error at a specific location. You can use this location along with the memory map for your system to find and replace the bad memory chips.

Memory Verify Error at ... Indicates an error verifying a value already written to memory. Use the location along with your system's memory map to locate the bad chip.

OFFENDING ADDRESS NOT FOUND This message is used in conjunction with the I/O CHANNEL CHECK and RAM PARITY ERROR messages when the segment that has caused the problem cannot be isolated.

OFFENDING SEGMENT: This message is used in conjunction with the I/O CHANNEL CHECK and RAM PARITY ERROR messages when the segment that has caused the problem has been isolated.

PRESS A KEY TO REBOOT This will be displayed at the bottom screen when an error occurs that requires you to reboot. Press any key and the system will reboot.

PRESS F1 TO DISABLE NMI, F2 TO REBOOT When BIOS detects a Non-maskable Interrupt condition during boot, this will allow you to disable the NMI and continue to boot, or you can reboot the system with the NMI enabled.

RAM PARITY ERROR - CHECKING FOR SEGMENT ... Indicates a parity error in Random Access Memory.

SYSTEM HALTED, (CTRL-ALT-DEL) TO REBOOT ... Indicates the present boot attempt has been aborted and the system must be rebooted. Press and hold down the CTRL and ALT keys and press DEL.

Troubleshooting

This section contains questions that are most frequently asked of our Customer Support Department about the BIOS setup utility. You may be able to diagnose any difficulty you have by referring to them prior to calling our Customer Support.

- Q1 I've made BIOS changes and saved them and now the system won't boot. What can I do?
 - A A CMOS override can be invoked by pressing the **Insert** key when the computer is rebooted. This resets the system to its defaults.
- Q2 Do I have to use the on board IDE or floppy disk controllers?
 - A No.
- Q3 Do you have to use the serial or parallel ports built onto the CPUs?
 - A No, you may relocate or disable them.
- Q4 What if you are using a different controller other than the one built into the CPU?
 - A This is not a problem if you adjust the BIOS to use an off-board controller.
- Q5 Can I use a SCSI controller and where should I set the address?
 - A1 You can use a SCSI controller. You must set the card address for the primary controller in the system. Then find an available appropriate address to set the SCSI BIOS to.
 - A2 YOU MUST DISABLE THE ON-BOARD IDE CONTROLLER IF YOU WANT THE SCSI CONTROLLER TO BE THE BOOT DEVICE.
- Q6 Can I use an ESDI controller and where should I set the address?
 - You can use an ESDI controller. The address should be set for the primary controller in the system, Then find an available appropriate address to set the ESDI BIOS to.

- A2 YOU MUST DISABLE THE ON-BOARD IDE CONTROLLER IF YOU WANT THE ESDI CONTROLLER TO BE THE BOOT DEVICE.
- Q7 What preventive maintenance steps can I take?
 - **A** Ensure all fans in the chassis are working.

Clean the filter with warm water or compressed air.

Replace brittle or torn filters.

Allow ample air circulation behind the chassis.

Keep all cables free from tangles.

CAUTION!

Electrostatic Discharge (ESD) may damage memory chips, programmed devices and other electrical components. ESD can be prevented by wearing a wrist strap attached to a ground post on a static mat. Grounding can also occur by touching a chassis that is plugged into a power outlet.

Appendix 1 Technical Reference

Standard PC-AT I/O Map

Address (Hex)	Device	
000 - 01F	DMA Controller	
020 - 03F	Interrupt Controller 1	
040 - 05F	Timer	
060 - 06F	Keyboard Controller	
070 - 07F	Real Time Clock (non-maskable interrupt)	
080 - 09F	DMA Page Registers	
0A0 - 0BF	Interrupt Controller 2	
0C0 - 0DF	DMA Controller 2	
0F8 - 0FF	Math Co-processor	
1F0 - 1FF	Hard Disk Controller	
200 - 207	Game I/O	
278 - 27F	Prototype Card	
2F8 - 2FF	Serial Port 2	
300 - 31F	Prototype Card	
360 - 36F	(Reserved)	
378 - 37F	Parallel Printer Port	
380 - 38F	SDLC Bisynchronous 2	
3A0 - 3AF	Bisynchronous 1	
3B0 - 3BF	Monochrome Display/Printer	
3C0 - 3CF	(Reserved)	
3D0 - 3DF	Color Graphics Display Adapter	
3F0 - 3F7	Floppy Disk	
3F8 - 3FF	Serial Port COM1	

Table A1-1: Standard PC-AT I/O Map

DMA Channel Page Register and I/O Addresses

Controller 1: 8-bit (ports 000-00F)		
Page Register	I/O Hex Address	
Channel 0	087	
Channel 1	083	
Channel 2	081	
Channel 3	082	
Controller 2: 16-bit (AT Only - ports 0C0-0DF)		
Channel 5	08B	
Channel 6	089	
Channel 7	08 A	
Refresh (AT)	08 F	

Table A1-2: DMA Channel Page Register and I/O Addresses

DMA Channel Assignments

Channel	Function
0	Reserved
1	SDLC
2	Floppy Disk
3	Spare
4	Cascade for CTRL
5	Spare (Reserved)
6	Spare (Reserved)
7	Spare (Reserved)

Table A1-3: DMA Channel Assignments

DMA Controller Register Functions

DM	A#	Description		
1	2	Description		
000	0C0	CH0 base and current address		
001	0C2	CH0 base and current word count		
002	0C4	CH1 base and current address		
003	0C6	CH1 base and current word count		
004	0C8	CH2 base and current address		
005	0CA	CH2 base and current word count		
006	0CC	CH3 base and current address		
007	0CE	CH3 base and current word count		
008	0D0	Read status register/write command register		
009	0D2	Write request register		
00A	0D4	Write single mask register bit		
00B	0D6	Write mode register		
00C	0D8	Clear byte pointer flip-flop		
00D	0DA	Read temporary register/write master clear		
00E	0DC	Clear mask register		
00F	0DE	Write all mask register bits		

Table A1-4: DMA Controller Register Functions

Interrupts

Channel	Name	Function	
NMI	NMI	Parity	
0	IRQ0	System Timer Output 0*	
1	KYBIRQ	Keyboard Output Buffer Full	
2	IRQ2	CTRL2 Interrupt (IRQ8 - IRQ15)	
3	IRQ3	Serial Port 2 (COM2)	
4	IRQ4	Serial Port 1 (COM1)	
5	IRQ5	Parallel Port 2	
6	IRQ6	Floppy Disk Controller	
7	IRQ7	Parallel Port 1	
8	RTCIRQ	Real Time Clock	
9	IRQ9	Software redirected to INT 0Ah	
10	IRQ10	External ISA Bus Device (Reserved)	
11	IRQ11	External ISA Bus Device (Reserved)	
12	IRQ12	External ISA Bus Device (Reserved)	
13	IRQ13	Math Coprocessor	
14	IRQ14	Hard Disk Controller	
15	IRQ15	External ISA Bus Device (Reserved)	

Table A1-5: Interrupts

^{*} These interrupts exist on the system board and are not available on the ISA Bus Connectors.

CMOS RAM Address Map

Address	Description
00 - 0D	*Real Time clock information
0E	*Diagnostic status byte
0F	*Shutdown status byte
10	Floppy disk drive type byte - drives A & B
11	Reserved
12	Hard disk type byte - drives C & D
13	Reserved
14	Equipment byte
15	Low base memory size below 1 MB
16	High base memory size below 1 MB
17	Low expansion memory size above 1 MB
18	High expansion memory size above 1 MB
19 - 2D	Reserved
2E - 2F	Checksum for bytes 10 - 2D
30	*Low memory size determined by Pwr Up
31	*High memory size determined by Pwr Up
32	*BCD century byte
33	Information flags (set during power on)
34 - 3F	Reserved

Table A1-6: CMOS RAM Address Map

^{*} These addresses are not verified by CHECKSUM.

Real-Time Clock Information (Addresses 00-0D)

Byte	Function	Address
0	Seconds 00	
1	Seconds alarm	01
2	Minutes	02
3	Minutes alarm	03
4	Hours	04
5	Hours alarm	05
6	Day of week	06
7	Day of month 07	
8	Month 08	
9	Year	09
10	Status Register B	0A
11	Status Register C	0B
12	Status Register D	0C
13	Status Register E 0D	

Table A1-7: Real-Time Clock Information

ISA Connector Pin Assignments

Pin#	Assign.	Pin #	Assign.	Pin#	Assign.	Pin #	Assign.
A01	IOCHCHK#	B01	GND	C01	SBHE#	D01	EMCS16#
A02	SD7	B02	RESETDRV	C02	LA23	D02	IOCS16#
A03	SD6	B03	+5 V	C03	LA22	D03	IRQ10
A04	SD5	B04	IRQ9	C04	LA21	D04	IRQ11
A05	SD4	B05	+5 V	C05	LA20	D05	IRQ12
A06	SD3	B06	DRQ2	C06	LA19	D06	IRQ15
A07	SD2	B07	-12 V	C07	LA18	D07	IRQ14
A08	SD1	B08	ENDXFR#	C08	LA17	D08	DACK0#
A09	SD0	B09	+12 V	C09	MEMR#	D09	DRQ0
A10	IOCHRDY	B10	GND	C10	MEMW#	D10	DACK5#
A11	AEN	B11	SMEMW#	C11	SD8	D11	DRQ5
A12	SA19	B12	SMEMR#	C12	SD9	D12	DACK6#
A13	SA18	B13	IOW#	C13	SD10	D13	DRQ6
A14	SA17	B14	IOR#	C14	SD11	D14	DACK7#
A15	SA16	B15	DACK3#	C15	SD12	D15	DRQ7
A16	SA15	B16	DRQ3	C16	SD13	D16	+5 V
A17	SA14	B17	DACK1#	C17	SD14	D17	MASTER#
A18	SA13	B18	DRQ1	C18	SD15	D18	GND
A19	SA12	B19	REFRSH#				
A20	SA11	B20	SYSCLK				
A21	SA10	B21	IRQ7				
A22	SA9	B22	IRQ6				
A23	SA8	B23	IRQ5				
A24	SA7	B24	IRQ4				
A25	SA6	B25	IRQ3				
A26	SA5	B26	DACK2#				
A27	SA4	B27	TC				
A28	SA3	B28	BALE				
A29	SA2	B29	+5 V				
A30	SA1	B30	osc				
A31	SA0	B31	GND				

Table A1-8: ISA Connector Pin Assignments

PCI Connector Pin Assignments

Pin #	Assign.	Pin #	Assign.	Pin#	Assign.	Pin#	Assign.
A01	TRST#	A32	AD16	B01	-12 V	B32	AD17
A02	+12 V	A33	+3.3 V	B02	тск	B33	C/BE2#
A03	TMS	A34	FRAME#	B03	GND	B34	GND
A04	TDI	A35	GND	B04	TDO	B35	IRDY#
A05	+5 V	A36	TRDY#	B05	+5 V	B36	+3.3 V
A06	INTA#	A37	GND	B06	+5 V	B37	DEVSEL#
A07	INTC#	A38	STOP#	B07	INTB#	B38	GND
A08	+5 V	A39	+3.3 V	B08	INTD#	B39	LOCK#
A09	CLKC	A40	SDONE	B09	REQ3#	B40	PERR#
A10	+5 V (I/O)	A41	SB0#	B10	REQ1#1	B41	+3.3 V
A11	CLKD	A42	GND	B11	GNT3#	B42	SERR#
A12	GND	A43	PAR	B12	GND	B43	+3.3 V
A13	GND	A44	AD15	B13	GND	B44	C/BE1#
A14	GNT1#	A45	+3.3 V	B14	CLKA	B45	AD14
A15	RST#	A46	AD13	B15	GND	B46	GND
A16	+5 V (I/O)	A47	AD11	B16	CLKB	B47	AD12
A17	GNT0#	A48	GND	B17	GND	B48	AD10
A18	GND	A49	AD09	B18	REQ0#	B49	GND
A19	REQ2#	A50	KEY	B19	+5 V (I/O)	B50	KEY
A20	AD30	A51	KEY	B20	AD31	B51	KEY
A21	+3.3 V	A52	C/BE0#	B21	AD29	B52	AD08
A22	AD28	A53	+3.3 V	B22	GND	B53	AD07
A23	AD26	A54	AD06	B23	AD27	B54	+3.3 V
A24	GND	A55	AD04	B24	AD25	B55	AD05
A25	AD24	A56	GND	B25	+3.3 V	B56	AD03
A26	GNT2#	A57	AD02	B26	C/BE3#	B57	GND
A27	+3.3 V	A58	AD00	B27	AD23	B58	AD01
A28	AD22	A59	+5 V (I/O)	B28	GND	B59	+5 V (I/O)
A29	AD20	A60	REQ64#	B29	AD21	B60	ACK64#
A30	GND	A61	+5 V	B30	AD19	B61	+5 V
A31	AD18	A62	+5 V	B31	+3.3 V	B62	+5 V

Table A1-9: PCI Connector Pin Assignments

Post Code #	Name	Description
C0	Turn Off Chipset	OEM Specific-Cache control Cache
01	Processor Test 1	Processor Status (1FLAGS) verification. Tests the following processor status flags: carry, zero, sign, overflow The BIOS will set each of these flags, verify they are set, then turn each flag off and verify it is off.
02	Processor Test 2	Read/Write/Verify all CPU registers except SS, SP, and BP with data pattern FF and 00.
03	Initialize Chips	Disable NMI, PIE, AIE, UEI, SQWV Disable video, parity checking, DMA Reset math coprocessor Clear all page registers, CMOS shutdown byte Initialize timer 0, 1, and 2, including set EISA timer to a known state. Initialize DMA controllers 0 & 1 Initialize interrupt controllers 0 & 1 Initialize EISA extended registers
04	Test Memory Refresh Toggle	RAM must be periodically refreshed in order to keep the memory from decaying. This function assures that the memory refresh function is working properly.
05	Blank video, Initialize keyboard	Keyboard controller initialization
06	Reserved	
07	Test CMOS Interface & Battery Status	Verifies CMOS is working correctly, detects bad battery.
BE	Chipset Default Initialization	Program chipset registers with power-on BIOS defaults.
C1	Memory Presence Test	OEM Specific, Test to size on-board memory.
C5	Early Shadow	OEM Specific, Early Shadow enable for fast boot.
C6	Cache Presence Test	External Cache size detection
08	Setup Low Memory	Early chip set initialization Memory presence test OEM chip set routines Clear low 64K of memory Test first 64K of memory

Table A1-10: Post Codes

Post Codes

Post Code #	Name	Description
09	Early Cache Initialization	Cyrix CPU Initialization, Cache Initialization.
0A	Setup Interrupt Vector Table	Initialize first 120 interrupt vectors with SPURIOUS_INT_HDLR and initialize INT 00h-1Fh according to INT_TBL.
0B	Test CMOS RAM Checksum	Test CMOS RAM Checksum, if bad, or insert key pressed, load defaults.
0C	Initialize Keyboard	Detect type of keyboard controller (optional). Set NUM_LOCK status.
0D	Initialize Video Interface, Detect CPU clock	Read CMOS location 14h to find out type of video in use.
0E	Test Video Memory	Test video memory, write sign-on message to screen. Setup shadow RAM, Enable shadow according to Setup.
0F	Test DMA Controller 0	BIOS checksum test. Keyboard detect and initialization.
10	Test DMA Controller 1	
11	Test DMA Page Registers.	Test DMA Page Registers.
12 - 13	Reserved	
14	Test Timer Counter 2	Test 8254 Timer 0 Counter 2.
15	Test 8259-1 Mask Bits	Verify 8259 Channel 1 masked interrupts by alternately turning off and on the interrupt lines.
16	Test 8259-2 Mask Bits	Verify 8259 Channel 2 masked interrupts by alternately turning off and on the interrupt lines.
17	Test Stuck 8259's Interrupt Bits	Turn off interrupts then verify no interrupt mask register is on.
18	Test 8259 Interrupt Functionality	Force an interrupt and verify the interrupt occurred.
19	Test Stuck NMI Bits (Parity I/O Check)	Verify NMI can be cleared.
1A	Display CPU Clock	
1B - 1E	Reserved	

Table A1-10: Post Codes (continued)

Post Code #	Name	Description	
46	Reserved		
47	Reserved		
48 - 4D	Reserved		
4E	Manufacturing POST Loop or Display Messages	Reboot if Manufacturing POST Loop pin is set. Otherwise display any messages (i.e., any non-fatal errors that were detected during POST) and enter setup.	
4F	Security Check	Ask password security (optional)	
50	Write CMOS	Write all CMOS values back to RAM and clear screen.	
51	Pre-boot Enable	Enable parity checker, enable NMI, enable cache before boot.	
52	Initialize Option ROMs	Initialize any option ROMs present from C8000h to EFFFFh. NOTE: When FSCAN option is enabled, will initialize from C8000h to F7FFFh.	
53	Initialize Time Value	Initialize time value in 40h: BIOS area.	
60	Setup Virus Protect	Setup virus protect according to Setup.	
61	Set Boot Speed	Set system speed for boot.	
62	Setup NumLock	Setup NumLock status according to Setup.	
63	Boot Attempt	Set low stack boot via INT 19h.	
В0	Spurious	If interrupt occurs in protected mode.	
B1	Unclaimed NMI	In unmasked NMI occurs, display Press F1 to disable NMI, F2 reboot.	
E1 - EF	Setup Pages	E1 - Page 1, E2 - Page 2 EF - Page 16.	
FF	Boot		

Table A1-10: Post Codes (continued)

Туре	Size (MB)	Cylinders	Heads	Sectors/ Track	Write Precomp	Landing Zone
1	10	306	4	17	128	305
2	20	615	4	17	300	615
3	30	615	6	17	300	615
4	62	940	8	17	512	940
5	46	940	6	17	512	940
6	20	615	4	17	None	615
7	30	462	8	17	256	511
8	30	733	5	17	None	733
9	112	900	15	17	None	901
10	20	820	3	17	None	820
11	35	855	5	17	None	855
12	49	855	7	17	None	855
13	20	306	8	17	128	319
14	42	733	7	17	None	733
15	0	0	0	0	None	0
16	20	612	4	17	0	663
17	40	977	5	17	300	977
18	56	977	7	17	None	977
19	59	1024	7	17	512	1023
20	30	733	5	17	300	732
21	42	733	7	17	300	732
22	30	306	5	17	300	733
23	10	977	4	17	0	336
24	40	1024	5	17	None	976
25	76	1224	9	17	None	1023
26	71	1224	7	17	None	1223
27	111	1224	11	17	None	1223
28	152	1024	15	17	None	1223
29	68	1024	8	17	None	1023
30	93	918	11	17	None	1023
31	83	925	11	17	None	1023
32	69	1024	9	17	None	926
33	85	1024	10	17	None	1023
34	102	1024	12	17	None	1023
35	110	1024	13	17	None	1023
36	119	1024	14	17	None	1023
37	17	1024	2	17	None	1023
38	136	1024	16	17	None	1023
39	114	918	15	17	None	1023
40	40	820	6	17	None	820
41	42	1024	5	17	None	1023
42	65	1024	5	26	None	1023
43	40	809	6	17	None	852
44	61	809	6	26	None	852
45	100	776	8	33	None	775
46	203	684	16	38	None	685

Table A1-11: Hard Disk Parameter Table

B
bidirectional parallel port: An eight-bit port that can be used for an input as well as an output device.
BIOS (Basic Input/Output Systems): The on-board firmware which communicates with the display, keyboard, printers and other peripheral devices.
bus: A common pathway, or channel, between multiple devices consisting of one or more electrical conductors that transmit power or binary data to the various sections of a computer.
C
cache: A collection of the most recently accessed data or instructions.
CMOS (Complementary Metal Oxide Semiconductor): A technique of using PMOS and NMOS transistors in a complementary fashion where power is consumed only during the switching phase. With the input statically high or low, the power dissipation is essentially zero.
CMOS RAM: Random Access Memory made from CMOS transistors
·
D —

DMA (**Direct Memory Access Channel**): A channel for transferring data from host main memory to and from peripherals without direct involvement of the CPU resources.

DRAM (Dynamic Random-Access Memory): The main memory in your computer. It needs to be refreshed by a memory controller or it will lose its information.

F
EPROM (Erasable Programmable Read-Only Memory): A programmable device which stores information regardless of power. The information can be erased and new information written.
F
Floating Point Unit (FPU): A device which can perform calculations on numbers in floating point format as opposed to simple integers.
1
IDE (Integrated Drive Electronics): A standard of signalling and communicating with a device.
interleave: Multiple banks of memory that overlap to reduce the access time and eliminate wait states.
interrupt: Temporarily halting the operation of a digital computer to respond to (service) an external event.
interval timer: A device that can generate a pulse at a defined interval for background tasks.
IRQ (Interrupt Request): A signal channel used to trigger the CPU to temporarily change tasks.
IZ
Kilobyte (KB): 1,024 bytes.
N
ns (nano seconds): 1 x 10 ⁻⁹ seconds. (There are one billion nanoseconds in one second.)

P

page mode: The ability to read a whole line (page) of memory to reduce access time.

parity: A way to detect corrupted data in DRAM.

parallel port: An eight-bit port usually used for connecting a printer.

PCI (Peripheral Component Interconnect): Local bus for PCs that provide a high-speed data path between the CPU and peripher als (video, disk, network, etc.). The PCI bus coexists in the PC with the ISA or EISA bus. ISA and EISA boards still plug into an ISA or EISA slot, while high-speed PCI controllers plug into a PCI slot. The PCI bus runs at 33 MHz, supports 32-bit and 64-bit data paths and bus mastering. The first PCs with PCI buses became available toward the end of 1993.

port: Ports are used to connect peripheral devices such as external drives and printers to your computer.

R

RAM (**Random Access Memory**): The memory used to execute applications while your computer is turned ON. When you turn your computer OFF, all data stored in RAM is lost.

real-time clock (RTC): A CMOS counter used to maintain local time.

retaining bracket: The bracket on the end of the board that attaches to the back of the chassis and contains connectors, usually key board, mouse, serial port, and/or parallel port.

S

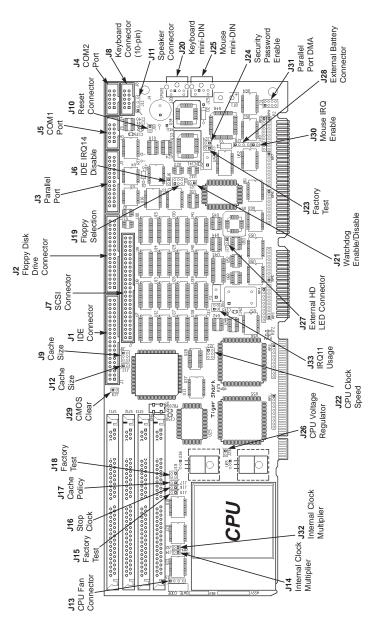
serial port: A two channel port, one channel used for "In" transmissions and one for "Out" transmissions.

SCSI (Small Computer System Interface): A high speed, general purpose interface to storage devices.

SRAM (**Static Random Access Memory**): As opposed to DRAM, this memory does not need to be refreshed by a controller and holds its information as long as the power is on.

Τ

tag comparator: A memory that tells whether an address is available in the cache.


W

wait states: Extra time inserted to allow access to slower devices (e.g. DRAM) or EPROMS.

watchdog timer: A device that watches for CPU inactivity and then resets the CPU after a specified duration of inactivity.

write-back cache: The process where the CPU updates the cache and the DRAM simultaneously but does not wait for the DRAM to complete the update.

write-through cache: The process where the CPU updates the cache and the DRAM simultaneously but the CPU waits for the DRAM to complete the update, resulting in more time being consumed than in write-back.

Tigershark TM PCI/Pentium® CPU Board