
The FITTEST Tool Suite for Testing Future
Internet Applications

Tanja E. J. Vos1, Paolo Tonella2, Wishnu Prasetya3, Peter M. Kruse4, Onn
Shehory5, Alessandra Bagnato6, and Mark Harman7

1Universidad Politécnica de Valencia, Spain
2Fondazione Bruno Kessler, Trento, Italy

3Universiteit van Utrecht, Utrecht, Netherlands
4Berner & Mattner, Berlin, Germany

5IBM research Haifa, Israel
6Softeam, Paris, France

7University College London, UK

Abstract. Future Internet applications are expected to be much more
complex and powerful, by exploiting various dynamic capabilities For
testing, this is very challenging, as it means that the range of possible
behavior to test is much larger, and moreover it may at the run time
change quite frequently and significantly with respect to the assumed
behavior tested prior to the release of such an application. The traditional
way of testing will not be able to keep up with such dynamics. The Future
Internet Testing (FITTEST) project1, a research project funded by the
European Comission (grant agreement n. 257574) from 2010 till 2013,
was set to explore new testing techniques that will improve our capacity
to deal with the challenges of testing Future Internet applications. Such
techniques should not be seen as replacement of the traditional testing,
but rather as a way to complement it. This paper gives an overview of
the set of tools produced by the FITTEST project, implementing those
techniques.

1 Introduction

The Future Internet (FI) will be a complex interconnection of services, appli-
cations, content and media running in the cloud. In [1] we describe the main
challenges associated with the testing of applications running in the FI. There
we present a research agenda that has been defined in order to address the test-
ing challenges identified. The Future Internet Testing (FITTEST) project1, a
research project funded by the European Comission (grant agreement n. 257574)
from 2010 till 2013 to work on part of this research agenda. A whole range of
techniques were developed within the project, which are then implemented as
tools; this paper gives an overview of these tools. These tools, and the kinds of
challenges that they can mitigate are listed below.

1 http://crest.cs.ucl.ac.uk/fittest/

Dynamism and self-adaptation. The range of behaviours of an FI applica-
tion with such properties is very hard to predict in advance. We propose to
complement traditional testing with continous testing where the testwares
are evolved together with the application. We have a set of tools to support
this. These tools automatically infer behavioural models and oracles from
monitored executions and uses these models to automate test case gener-
ation. This can be run in cycles and unattended, between the traditional
pre-release testing rounds.

Large scale and rapid evolution of components. To meet rapid technol-
ogy and business changes, components of FI appliations will have to evolve
even quicker than what now already is. Each time we integrate components,
we face a critical decision of either to use the new components, or to simply
stay with the old ones, knowing that they might have issues, risks, and lim-
ited support. Unfortunately, more often than not, the latter is the preferred
choice since the incurred regression testing activities are too time consum-
ing since there are too many tests. We therefore propose to prioritizate the
tests, according to the available time and budget. The FITTEST regression
testing approach aims at automatically prioritizing a set of test cases based
on their sensitivity to external changes. The key idea is to give priority to
the tests that can detect a high number of artificial changes.

Large Feature-configuration Space. FI applications will be highly customis-
able; it offers a whole range of features that can be configured, as well as
configurations that depend on the user’s context and environment. As the
result, the space of possible comfigurations is combinatorically large. To deal
with this, we developed and/or improved three different approaches for com-
binatorial testing: (1) The CTE XL Professional by Berner & Mattner is a
context-sensitive graphical editor and a very powerful tool for the system-
atic specification and design of test cases using a combinatorial approach
based on Classification Trees; (2) The IBM Focus tool is a comprehensive
tool for test-oriented system modelling, for model based test planning, and
for functional coverage analysis. Its system modelling and test planning are
based on computing Cartesian products of system or test aspects, with re-
strictions applied to the models and henceforth to the computation; (3) The
Hyper Heuristic Search Algorithm that uses a hyperheuristic search based
algorithm to generate test data. Hyperheuristics are a new class of Search
Based Software Engineering algorithms, the members of which use dynamic
adaptive optimisation to learn optimisation strategies without supervision.

Low observability. FI applications have low observability: their underlying
internal states are complex, but we are limited in how we can inspect them.
This makes it problematical for a test case to infer that an application has
done something incorrect. However, quite often an incorrect state, when
interacted on, can eventually trigger an observable failure, enabling us to
at least observe that something has gone wrong. Our rogue user testing
tool is a fully automatic testing framework, that tests FI applications at
the GUI level. It uses the operating systems Accessibility API to recognize
GUI controls and their properties and enables programmatic interaction with

them. It derives sets of possible actions for each state that the GUI is in and
automatically selects and executes appropriate ones in order to drive the GUI
and eventually crash it. After starting the target application, it proceeds to
scan the GUI in order to obtain the state of all control elements on the
screen from which it generates a hierarchical representation called a widget
tree. This tree enables it to derive a set of sensible actions. According to
the Rogue User’s internal search state, it now selects promising actions and
executes these to test the system with rogue user behaviour.

Asynchronous, time and load dependent behaviour. Testing the concur-
rent part of an application is made difficult by dependency on factors like
communication noise, delays, message timings, and load conditions. The re-
sulting behavior is highly non-deterministic. Errors that only happen under
specific schedules are very difficult to trigger. We have enhanced IBM’s Con-
currency Testing tool (ConTest), which is based on the idea of selectively
inserting noises in the application to increase the likelihood to trigger con-
currency errors.

The following sections (2 - 6) will describe these tools; they can be down-
loaded from FITTEST software site2. Effort has also been taken to evaluate the
tools against a number of industrial case studies. These case studies are listed
in Section 7, with references to the papers or reports that describe the studies
in more details.

2 Continuous Testing

We envisage FI applications to be much more dynamic. They are capable of
self-modifications, context and environment dependent autonomous behaviours,
as well as allowing user defined customisation and dynamic re-configurations.
Services and components could be dynamically added by customers and the in-
tended use could change significantly. Moreover, these self-adaption and dynamic
changes can be expected to happen frequently while the application is alive. The
range of possible classes of behavior is thus much larger; and it is just very hard
to anticipate them all during the testing, which traditionally happens before we
release the software. The resulting traditional testwares might thus be already
inadequate for a specific executing instance of the system.

Indeed, some parts of such applications may remain fairly static, so tradi-
tional testing will still play an important part in the overall testing of an FI
application. But the testwares of the dynamic parts of the application will need
to evolve together with the system: new test cases may need to be added, some to
be removed, and some to be adapted to the changed functionalities. We therefore
propose to complement traditional testing with continous testing.

Continous testing is carried out in cycles, throughout the lifetime of the cur-
rent release of the System Under Test (SUT), until at least its next release. Each
cycle consists of the activities shown in Figure 1. Before the SUT is deployed,

2 https://code.google.com/p/fittest

RUN SUT

SUT
INSTRUMENT

COLLECT &
PREPROCESS LOGS

LO
G

G
IN

G
TE

ST
-W

AR
E

G
EN

ER
AT

IO
N

TE
ST

 E
VA

LU
AT

IO
N

TE
ST

 E
XE

CU
TI

O
N

End-users

ORACLES

MODEL BASED
ORACLES

HUMAN ORACLES

FREE ORACLES

PROPERTIES
BASED ORACLES

PATTERN BASED
ORACLES

GENERATE
TEST CASES

AUTOMATE
TEST CASES

ANALYSE & INFER
MODELS

ANALYSE &
INFER ORACLES

Model based
oracles

Log based
oracles

Domain Input
Specifications

Domain experts

EXECUTE
TEST CASES

EVALUATE TEST
CASES

MANUALLY

TEST
RESULTS

Fig. 1. Activities performed in each testing cycle

a logger is first attached to it; if necessary by instrumenting the SUT. Logs are
then collected and then analyzed to infer a behavior model of the SUT, in the
form of a finite state machine, as well as properties to be used as test oracles.
Fresh logs from the current cycle are used for this analysis, but also logs from
previous cycles up to some time in the past, which we consider to still represent
the current SUT. Test cases are then generated from the model by traversing it
according to proper criteria, such as transition coverage. Each test case is basi-
cally a path of transitions through the finite state machine. Since self adaptation
or other forms of dynamic changes will be visible on the logs, the inferred model
can keep up with them. However, using a model inferred like this to test the SUT
is only meaningful if the generated test cases do not simply replay the logged
executions. We therefore apply e.g. a combinatoric approach over the parameters
of the execution in order to trigger fresh executions. Test cases generated from
a model are typically still abstract. They are then refined to concrete test cases

and then executed. Since the used test oracles are also inferred from logs, they
are not guaranteed to be sound nor complete. Therefore, violations reported also
need to be inspected to check if they really represent errors. After all errors are
fixed, the current cycle ends. After some period of time, or if we have a reason
to believe that the SUT has changed, the next cycle is started. Importantly, ev-
ery cycle is mostly automatic (and it is, except for the errors analysis and bugs
fixing part). Such a log-based approach may not be as strong as it would be if
we have the ground truth (which we don’t), but at least now we do not leave
the dynamic parts of the SUT completely untested.

In FITTEST we have developed a set of tools to support the activities in Fig-
ure 1. Most of these tools are integrated in an Integrated Testing Environment
(ITE). This ITE is a distributed test environment, with the main component, in
charge of model/oracle inference and test case generation, running at the tester’s
workstation. Through remote agents it monitors and collects data from the SUT
running in its production environment. The SUT may in turn consist of a server
part and users’ clients, running the application within a Web browser. ITE’s
agents are deployed to monitor them. The inference of models from logs can be
done from the ITE, as well as the generation and execution of test cases. The
inference and checking of oracles use separate tools. To execute the generated
test-cases the ITE can also control a version of the SUT that runs in a dedicated
testing environment. Tools and libraries for logging and test case execution de-
pend on the technologies used by the SUT. Currently the ITE supports PHP
and Flash applications.

2.1 Logging and Instrumentation

Loggers intercept events representing top level interactions with the application
under test (this way programmers do not need to explicitly write any logging
code). The used technology determines what constitutes a top level interaction.
For a PHP application, top level interactions are the HTTP requests sent by
the client to the application. For a Flash application, these are GUI events,
such as the user filling a textfield or clicking on a button. The produced logs
are in the text-based FITTEST format [2]. The format is compact, but deeply
structured, allowing deep object serialization into the logs. In the Flash logger,
we can register serialization delegates. They specify how instances of the classes
they delegate are to be serialized. Using such a delegate one can also specify an
abstract projection of the application’s concrete state and log it. Although the
delegates have to be manually specified, they are ‘transparent’ (the application
is not even aware them).

The PHP logger does not currently log state information, hence models in-
ferred from PHP logs are purely event-based. For Flash, the ITE also includes
a bytecode instrumentation tool called abci [3], to instrument selected methods
and instruction-blocks for logging, thus allowing much more detailed logs to be
produced. Abci is implemented with the AG attribute grammar framework [4],
allowing future extensions, such as adding more instrumentation types, to be
programmed more abstractly.

2.2 Model Inference

Model inference is a key activity in continuous testing [5, 6]. Based on execution
traces, it infers models that describe structure and behaviour of a SUT using
either event-sequence abstraction or state abstraction [7–9]. One of the most
frequently used models is the Finite State Machine (FSM). In an FSM, nodes
represent states of the SUT, and transitions represent an application event/ac-
tion (e.g., a method call, an event handler) that can change the application state,
if executed. Additionally, guards and conditions can enrich the model to capture
the context in which events and actions are executed.

In the ITE, models are automatically inferred from logs using either event-
sequence abstraction or state abstraction. The outcome are FSM models that
can be fed to the successive phases of the ITE cycle (specifically, event sequence
generation and input data generation). Models are updated continuously and
incrementally [10] as the software evolves and new behaviours appear in the
execution logs.

The events in the model often have input parameters. From the log we extract
concrete input values for such parameters. We have implemented a data mining
technique to infer input classes (for combinatorial testing, used later in test
generation) for these parameters [11].

2.3 Oracle inference

The tool Haslog and Lopi are used to infer oracles from logs. Hashlog can infer
pre- and post-conditions for each type of high level event; it uses Daikon [12] at
the back-end. In Figure 1 these are called properties based oracles. If the logged
(abstract) state consists of many variables, simply passing them all to Daikon
will cause Daikon to try to infer all sorts of relations between them, most of
which are actually not interesting for us. The ITE allows groups of variables to
be specified (using regular expressions) and constrains Daikon to only infer the
oracles for each group separately.

Lopi infers so-called pattern-based oracles [13]. These are algebraic equations
of common patterns over high level events, e.g. a = ε or bb = b, saying that on
any state, executing the event b twice will lead to the same state as executing
just one b. Additionally, such equations are also useful to reduce a failing log
(log produced by a failing execution) when we diagnose the failure [14].

Finally, through instrumentation we can also log the entry and exit points
of selected methods, allowing pre- and post-conditions to be inferred for them.
Furthermore, so-called sub-cases oracles can also be inferred [15]. This requires
”instructions blocks” to be instrumented as well —for each method, transitions
between these blocks form the method’s control flow graph. Visit patterns over
these blocks can be specified and used as a form of splitters [16], yielding stronger
oracles.

2.4 Test case generation

Two methods for input data generation are available: classification trees and
search-based input generation. Classification trees require one additional input:
a partitioning of the possible inputs into equivalence classes, represented as clas-
sification trees. When such classification trees are available, the tool combines
event sequence generation with pairwise coverage criteria to produce concrete,
executable test cases (combinatorial-model-based test generation). The search-
based input data generation method can be used when classification trees are
unavailable or as a complementary method with respect to classification trees. It
uses evolutionary, search-based testing, to automatically produce concrete test
cases (including input values), which achieve transition coverage of the model
inferred through dynamic model inference.

Combinatorial-model-based test generation This method [17] starts from
a finite state model and applies model-based testing to generate test paths that
represent sequences of events to be executed against the SUT. Several algorithms
are used to generate test paths, ranging from simple graph visit algorithms, to
advanced techniques based on maximum diversity of the event frequencies, and
semantic interactions between successive events in the sequence.

Such paths are, then, transformed to classification trees using the CTE XL3

format, enriched with domain input classifications such as data types and parti-
tions. Then, test combinations are generated from those trees using t-way combi-
natorial criteria. Finally, they are transformed to an executable format depend-
ing on the target application (e.g., using Selenium 4). Note that although these
test cases are generated from models learned from the SUT’s own behaviour, the
combinatorial stage will trigger fresh behaviour, thus testing the SUT against
the learned patterns.

Thanks to the integration with CTE XL, other advanced analysis can be
performed on the classification trees. For example, we can impose dependencies
on the input classifications and filter the test combinations that violate the
dependencies to remove invalid tests.

Search-model-based test generation In this approach [18] the ITE trans-
forms the inferred models and the conditions that characterize the states of the
models into a Java program. It then uses evolutionary, search-based testing, to
automatically produce test cases that achieve branch coverage on the Java repre-
sentation. Specifically, we use Evosuite [19] for this task. Branch coverage solved
by Evosuite has been theoretically shown to be equivalent to transition coverage
in the original models. Finally, the test cases generated by Evosuite require a
straightforward transformation to be usable to test our SUT.

3 http://www.cte-xl-professional.com
4 http://seleniumhq.org

2.5 Test evaluation

The generated test-cases are executed and checked against oracles. If an oracle
is violated, the corresponding test case has then failed, Further investigation
is needed to understand the reason behind the failure. Support for automatic
debugging is currently beyond our scope. As depicted in Figure 1, various oracles
can be used for test evaluation. The most basic and inexpensive oracles detect
SUT crashes; the most effective but expensive are human oracles. The ITE offers
several other types of oracles that are automatically inferred from the logs or
the models.

Model-based oracles The test cases produced by the ITE are essentially paths
generated from the FSM models. If these models can be validated as not too
much under-approximating, then any path through them can be expected to be
executable: it should not the SUT to crash or become stuck in the middle, which
can be easily checked. In Figure 1 this is called model-based oracles.

Properties- and pattern-based oracles The executions of the test cases are
also logged. The ITE then analyzes the produced logs to detect violations to
the inferred pre- and post-conditions as well as the pattern-based oracles. The
checking of the latter is done at the suite level rather than at the test case level.
E.g. to check bb = b the ITE essentially looks for a pair of prefix sequences σbb
and σb in the logs produced by the test suite that contradicts the equation.

3 Regression Testing

Audit testing of services is a form of regression testing [20, 21] that aims at
checking the compliance of a new service, including a new version of an existing
service or a newly-discovered service from a new provider, with a FI System
Under Test (SUT) that integrates the service and currently works properly. In
such a context, test case prioritization has the goal of giving an order to the test
cases, so that the key ones (e.g., those that reveal faults) are executed earlier.

Audit testing of services differs from traditional regression testing because
the testing budget is typically much more limited (only a very small subset of
the regression test suite can be executed) and because the kind of changes that
are expected in the service composition is known and quite specific. In fact,
audit testing is used to check the proper functioning of a service composition
when some external services change. Some adaptations of the service composition
that are required to make the composition work are trivially detected at the
syntactical level, by the compiler which will immediately report any interface
change that needs adaptation on the composition side. It is only those semantic
changes that do not affect the service API description (for example WSDL[22])
that may go undetected and require audit testing. The FITTEST approach to
test case prioritization for audit testing of services, called Change Sensitivity
Test Prioritization (CSTP), is based on the idea that the most important test

cases are those that can detect mutations of the service responses, when such
mutations affect the semantics, while leaving the WSDL syntax unchanged. More
details about CSTP, including its empirical validation, are available in a previous
publication [23].

Let s be the service under consideration, snew be a candidate that can sub-
stitute s. snew is the subject of audit testing. Let TS be the set of available test
cases that are selected as candidate for audit testing. These are the test cases
whose executions result in the invocation of s. TS is used in audit testing of snew
with respect to the composition under consideration. In practice, execution of
the full suite TS might involve too much time or might require a big monetary
budget, if only a limited number of invocations of snew is available for testing
purposes (i.e., invocations in test mode) or if the invocation of snew requires
payment. Hence, the service integrator has to minimize and prioritize the test
cases from TS that are actually run against snew during audit testing. The goal
is then to prioritize the test cases in such a way that issues, if any, are detected
by an initial small subset of the ranked test cases.

CSTP determines the change sensitivity of the test cases and uses this met-
rics to rank the test cases, from the most sensitive to service changes to the least
sensitive one. Change sensitivity measures how sensitive a test case is to changes
occurring to the service under consideration. The rationale underlying this ap-
proach is that new versions of services may produce service responses that are
still compliant with the service interface (WSDL), but violate some assumptions
made (often implicitly) by the service integrator when building the service com-
position. Thus, test cases that are more sensitive to these changes are executed
first.

Specifically, we have defined a set of new mutation operators and we apply
them to the service responses to inject artificial changes. Our mutation operators
are based on a survey of implicit assumptions commonly made on Web service
responses and on manual inspection of those parts of the service API which is
described only informally (usually by comments inside the WSDL document).
After applying our mutations, we measure change sensitivity for each test case
by comparing the outputs of each test case in two situations: with the original
response, and with the mutated responses. A change is detected if the behaviour
of the service composition differs when the original service is used as compared
to the mutated response. Similarly to the mutation score, the change sensitivity
score is the number of changes detected (mutants killed) over all changes.

The measuring of change sensitivity is divided into six steps (see Figure 2):
(1) executing the SUT on the regression test suite TS; (2) monitoring the service
requests and collecting the response messages; (3) generating mutated responses
by means of mutation operators, based on service assumptions; (4) for each
test case, running the SUT and comparing the behaviour of the SUT when
receiving the original response and when the mutated ones are received. Then,
(5) the sensitivity (mutation) score is calculated and (6) test cases are ranked
by mutation score.

DEVELOPER

REGRESSION
TestSuite TS RUN SUT

SERVICE
ASSUMPTIONS

(XML)

COLLECT
RESPONSES

MUTATE
RESPONSES

MUTATED
RESPONSESRUN SUT

MUTANT
KILLED?

INCREMENT
MUTATION

SCORE

MUTATION
SCORES

RANK TS BY
MUTATION

SCORE

MUTATION
OPERATORS

EXTERNAL
SERVICES

WSDL

YES

WSDL

Ranked TS

SUT

Fig. 2. Activities performed when applying CSTP

3.1 Change Sensitivity Measure

In the context of Webservices, service clients communicate with services via mes-
sage passing: clients send requests to services and receive responses. During an
audit testing session at the client side, test inputs are provided to the client
system, which, then, sends requests to services, and receives and processes the
responses. Finally, the outputs from the system are evaluated (the test oracle
takes usually the form of assertions, the default assertions being that the appli-
cation should not crash or raise exceptions). Since the client lacks controllability
and observability over the service, and SLA (Service Level Agreement) [24] con-
cerns only high-level quality contracts (e.g. performance, response time), the
developer of the client (service integrator) has to make assumptions about tech-
nical details regarding the format of the responses. We call these assumptions as
service integrator’s assumptions. For example, the integrator might expect a list
of phone numbers, separated by commas, from the service, when searching for
a phone number. Changes in the data format of the response (e.g., using colon
instead of comma as phone number separator) may break the assumptions of
the service integrator, which may lead the client to misbehave, thus making the
test cases not to pass.

It is worth noticing that we focus on data changes (e.g. format, range, etc.).
Changes regarding the structure of the service responses can be easily detected,
because they require the interface definition of the service, written for instance
in the Web Service Definition Language (WSDL) [22], to be changed. Adopting
a new service interface involves rebinding and recompiling, and the compiler is
able to detect syntactic incompatibilities. What the compiler cannot detect is

(subtle) semantic incompatibilities (such as the change of a list item separator).
This requires regression (audit) testing and test prioritization.

In CSTP, service integrators specify their service assumptions explicitly, in
order to simplify and automate audit testing of integrated services. For the spec-
ification of the integrator’s assumptions, we propose an XML based assumption
specification language. A service assumption consists of an XPath reference [25]
to an element in the response under consideration and it can include data re-
strictions regarding that element. Data restrictions have the same format as
those defined in the W3C XML Schema [26]. Service assumptions specify what a
client expects from a service for its own purposes. Therefore, the data restrictions
specified by one service integrator may differ from those in the service definition
(e.g. in the WSDL interface of the service) or from those specified by another
integrator.

The mutation operators that we propose use service assumptions to inject
artificial changes into service responses. The changed responses (also called mu-
tated responses) and the original ones are, then, used to measure change sensi-
tivity of test cases. In the following sections we discuss mutation operators and
how change sensitivity is measured.

3.2 Mutation Operators

Based on a survey of service assumptions commonly made on Web service re-
sponses and on manual inspection of those parts of the service interface which is
described only informally, usually by annotations or comments inside the WSDL
document, we identified 9 main data restriction types and their corresponding
mutation operators, showed in Table 1.

The Enumeration mutation operator randomly generates a new item, added
to the finite set of items admitted in the response according to the service as-
sumption. The Length mutation operator changes the size of a response ele-
ment, so as to make it differ from the integrator’s assumptions. Similarly, the
MaxLength and MinLength mutation operators make the size of a response ele-
ment respectively greater than or lower than the limit admitted in the integra-
tor’s assumptions. When the numeric value of a response element is constrained
to be within boundaries, the MinInclusive, MaxInclusive, MinExclusive, Max-
Exclusive mutation operators produce values that lie beyond the integrator’s
assumed boundaries. The RegEx mutation operators can be used when the con-
tent of a response element is supposed to follow a pattern specified by means
of a regular expression. Such regular expression is mutated (e.g., by replacing
a constant character with a different one; by making a mandatory part of the
expression optional; by concatenating an additional subexpression) and mutated
responses are generated by means of the mutated regular expression. For exam-
ple, the regular expression specifying a list of phone numbers as a list of comma
separated digit sequences can be mutated by replacing the constant character ’,’
with ’:’.

Taking a data restriction specified in a service assumption as an input, the
corresponding mutation operator can generate new data that are not acceptable

Operator Description

Enumeration Enumeration restriction limits the content of an XML element to a
set of acceptable values. Using this restriction Enumeration opera-
tor generates a new value which is not accepted by the restriction
to replace the original one.

Length Length restriction limits the precise length of the content of an
XML element. Using this restriction Length operator generates a
new content having its length differs from the required one.

MaxLength Length restriction limits the length of the content of an XML el-
ement to be inferior than a specific value. Using this restriction
MaxLength operator generates a new content having its length
greater than the allowed one.

MinLength Length restriction requires the length of the content of an XML ele-
ment to be greater than a specific value. Using this restriction Min-
Length operator generates a new content having its length smaller
than the allowed one.

MinInclusive,
MaxInclusive,
MinExclusive,
MaxExclusive

These restrictions are specified on numeric types, e.g. double, inte-
ger. The corresponding mutation operators generate new numeric
numbers that are smaller or greater than the acceptable minimum
or maximum values.

RegEx Regular expression restriction requires the content of an XML el-
ement to follow a specific pattern. RegEx based operators change
slightly the original regular expression and generates new values
based on the mutated expression. CSTP implements six RegEx
based operators [23].

Table 1. Mutation operators to inject changes in service responses

according to the service assumption. This is to simulate the fact that when we
plan to substitute s with snew, snew may have data that violate the current
service integrator’s assumptions.

3.3 Measuring Change Sensitivity

Let us assume that the original responses are monitored and collected locally
(see Figure 2); at the next step, we apply the mutation operators discussed in
previous section (based on the service integrator’s assumption specifications)
to generate mutated responses. For each response and for each assumption, we
select a mutation operator based on the type of restriction specified. The XPath
is used to query the elements in the response to be injected with new contents
generated by the mutation operator. Eventually, we obtain a set of N mutated
responses, each of them containing one change.

Then, each test case in the regression test suite is executed offline against
the N mutated responses. Instead of querying s to get the response, the system
receives a mutated response and processes it. In this way we can conduct test pri-
oritization without any extra cost for accessing s, if applicable, and without any
time delay, due to the network connection with external services. The behaviour
of the system reacting to the mutated responses is compared to its behaviour
with the original response. Any deviation observed (i.e., different outputs, as-
sertions violated, crash or runtime exceptions reported) implies the change is
detected (or the mutant is killed). Change sensitivity of a test case is measured
as the proportion of mutants that are killed by each test case.

The change sensitivity metrics is then used to prioritize the test cases. Only
those at higher priority will be run against the real, external services, during
online audit testing. The monetary and execution costs associated with such
kind of testing make it extremely important to prioritize the test cases, such
that the top ranked ones are also the most important, in terms of capability of
revealing actual problems due to service changes that are not managed at the
purely syntactic level. We conducted a case study to assess the effectiveness of our
prioritization method in terms of fault revealing capability, under the assumption
that the resources for online audit testing are extremely scarce, hence the fault
revealing test cases should be ranked very high in the prioritized list produced
by our method, in order for them to have a chance of being actually executed
during real audit testing. Results show that using only a subset of around 10%
of the available test cases (those top-ranked by our approach), most injected
faults can be detected [23]. Moreover, CSTP outperformed coverage-based test
case prioritization.

4 Combinatorial Testing

Combinatorial testing, also called combinatorial interaction testing [27] or com-
binatorial test design, is a technique that designs tests for a system under test
by combining input parameters. For each parameter of the system, a value is

chosen. This collection of parameter values is called test case. The set of all test
cases constitutes the test suite for the system under test. Combinatorial testing
can be a good approach to achieve software quality. The t-wise combination is
a good compromise between effort of testing and fault detection rate [28].

The most common coverage criterion is 2-wise (or pairwise) testing, that is
fulfilled if all possible pairs of values are covered by at least one test case in the
result test set.

4.1 The classification tree method

The classification tree method [29] offers a well studied approach for combi-
natorial testing. Applying the classification tree method involves two steps—
designing the classification tree and defining test cases.

Designing the classification tree. In the first phase, all aspects of inter-
ests and their disjoint values are identified. Aspects of interests, also known as
parameters, are called classifications, their corresponding parameter values are
called classes.

Each classification can have any number of disjoint classes, describing the
occurrence of the parameter. All classifications together form the classification
tree. For semantic purpose, classifications can be grouped into compositions. Ad-
ditionally, all classes can be refined using new classifications with classes again.
In Figure 3 this activity is called Specification of Test Frame and to be found
in the upper part. Afterwards, the specification of constraints (or dependency
rules as they are called in the classification tree method) [30] follows.

Definition of test cases. Having composed the classification tree, test cases
are defined by combining classes of different classifications. For each classifica-
tion, a significant representative (class) is selected. Classifications and classes of
classifications are disjoint.

The Classification Tree Editor (CTE) is a graphical editor to create and
maintain classification trees [31]. During the FITTEST project the CTE XL
Professional by Berner&Mattner has received substantial improvement.

Started as a graphical editor [32] for combinatorial test design [33], the tool
now features the following leading edge functionalities: Prioritized test case gen-
eration using weights in the classification tree on the combinatorial aspects allows
automatically generating test suites ordered by the importance of each test case,
easing the selection of valuable subsets [34, 35] (lower left part of Figure 3). Im-
portant classes (or class tuples) are combined into early test cases while less
important classes (or tuples) are used later in the resulting test suite. The pri-
oritization allows the tester to optimize a test suite by selecting subsets and,
therefore, to reduce test efforts. The weights can also be used for statistical
testing (e.g. in fatigue test).

The other new generation technique goes beyond conventional functional
black-box testing by considering the succession of individual test steps. The
automated generation of test sequences uses a multi-agent system to trigger the
system under test with input values in a meaningful order, so that all possible
system states are reached [36] (as seen in the bottom center part of Figure 3).

GENERATE TEST SPECIFICATIONS

SPECIFY TEST
FRAME

SPECIFY
CONSTRAINTS

SELECT TEST
COVERAGE
CRITERION

PRIORTIIZATION
REQUIRED?

QUANTIFY ALL
CLASSES IN THE

TREE

PERFORM
PRIORITIZED TEST
CASE GENERATION

OPTIMIZE TEST SUITE

SPECIFY ALLOWED
TRANSITION BETWEEN

CLASSES

PERFORM TEST
SEQUENCE GENERATION

IS SYSTEM
CONTINUOUS?

PERFORM
CONVENTIONAL

TEST CASE
GENERATION

YES

NO

YES NO

SPECIFICATION
OF SUT

CLASSIFICATION
TREE

CLASSIFICATION
TREE WITH
WEIGHTS

CONVENTIONAL
TEST SUITE

SMALL
OPTIMIZED TEST

SUITE

TEST
SEQUENCE

SUITE
ALLOWED

TRANSITIONS

Domain experts

CRITICALITY OF
SYSTEM GENERAL

TEST PLAN

Fig. 3. The CTE workflow

Coverage criteria for both generation techniques are also available. New
mechanisms for describing numerical dependencies [30] have been established
as well as part of the FITTEST project. For all generation techniques available,
the use of search based techniques [37] has been considered as part of controlled
benchmarks [38].

4.2 Focus CTD

The IBM Focus tool is a comprehensive tool for test-oriented system modeling,
for model based test planning, and for functional coverage analysis. Its system
modeling and test planning are based on computing Cartesian products of system
or test aspects, with restrictions applied to the models and henceforth to the
computation. The generated test plans are combinatorial, thus placing the IBM
Focus tool in the family of combinatorial test design tools [32, 39], including
CTE.

The Focus tool also provides advanced code coverage analysis capabilities. It
imports code coverage data from other tools and analyzes various coverage as-
pects. In particular it excels in identifying system parts which are poorly covered,
and in planning tests to optimally cover those system parts.

Focus provides advanced reports, independent of the programming language
and the platform. The Focus graphical user interface (GUI) allows manual acti-
vation, viewing and manipulation of its modeling and combinatorial test design
capabilities and of its coverage analysis. Additionally, the GUI can be bypassed
to facilitate automatic or semi-automatic test planning and coverage analysis.
The results of the tool and its reports can be exported into HTML, spreadsheet,
and text files.

The main functionality of the Focus tool is depicted in Figure 4. Given a
system under test (SUT), system attributes and attribute values are extracted.

EXTRACT
ATTRIBUTES

SUT

GENERATE
MODEL

EXISTING TEST

Combinatorial
Model

GENERATE TEST
PLAN

GENERATE TEST
CASES

PLAN GOOD
ENOUGH?OPTIMIZED

TEST PLAN

OPTIMIZE AND
REFINE TEST PLAN

DEFINE
RESTRICTIONS

YES

Attribute
Values

Restrictions

Raw Test
Plan

Quality & Priority
Requirements

Test Cost
Requirements

Domain experts

Test Suite

NO

Fig. 4. Focus’ flow

Additionally, restrictions are placed on the attributes, their values, and the de-
pendencies among them. Based on these, a combinatorial model of the system
is generated by Focus. Focus may be stopped at this stage, however the com-
mon usage proceeds to test plan generation. The tool can generate a plan from
scratch, or alternatively start from an existing plan. Either way, the plan is op-
timized to meet coverage, cost and functional requirements. Manual changes are
allowed via the GUI, supporting ”what-if” style modifications. Once the test plan
is optimized and meets user requirements, Focus can automatically generate the
needed test cases.

4.3 Hyperheuristic Search Algorithm

Much research in the literature of combinatorial testing has been focused on
the development of bespoke algorithms tailored for specific combinatorial prob-
lems. For example, some algorithms have been designed for solving unconstrained
problems [40–43], while others have been tuned for constrained interaction prob-
lems [44, 45]. This leaves tester many different algorithms which have very dif-
ferent properties. Problem occurs when testers are not familiar with these tech-
niques, because an algorithm designed for one type of combinatorial problem
may perform poorly when applied to another.

To address this problem we introduce a simulated annealing hyperheuris-
tic search based algorithm[46]. Hyperheuristics are a new class of Search Based
Software Engineering algorithms, the members of which use dynamic adaptive
optimisation to learn optimisation strategies without supervision [47, 48]. Our

Reinforcement
Learning Agent

Extract
Configurations

SUT Define
Constrants

Combinatorial
Model

Covering Array

Test Suite

Domain experts

Fitness
Evaluation

Refined
SolutionHeuristic

Selection

Reward
Assignment

Heuristic 1

Heuristic 2

Heuristic 3

Heuristic n

...

Heuristic Library

Inner search Outer search

H
yp

er
 H

eu
ris

tic
 A

lg
or

ith
m

Fig. 5. The Hyperheuristic Search Algorirhtm workflow

hyperheuristic algorithm learns the combinatorial strategy to apply dynamically,
as it is executed. This single algorithm can be applied to a wide range of com-
binatorial problem instances, regardless of their structure and characteristics.

There are two subclasses of hyperheuristic algorithms: generative and se-
lective [48]. Generative hyperheuristics combine low level heuristics to generate
new higher level heuristics. Selective hyperheuristics select from a set of low level
heuristics. In our work, we use a selective hyperheuristic algorithm. Selective hy-
perheuristic algorithms can be further divided into two classes, depending upon
whether they are online or offline. We use online selective hyperheuristics, since
we want a solution that can learn to select the best combinatorial heuristic to
apply, unsupervised, as it executes.

The overall workflow of our hyperheuristic algorithm is depicted in Figure 5.
The algorithm takes a combinatorial model generated from system under test as
a input. It outputs a covering array model which can be converted to a test suite
with the help of domain experts. The hyperheuristic algorithm contains a set of
lower level heuristics and two layer of heuristic search. The first (or outer) layer
uses a normal metaheuristic search to find solutions directly from the solution
space of the problem. The inner layer heuristic, searches for the best candidate

lower heuristics for the outer layer heuristics in the current problem state. As
a result, the inner search adaptively identifies and exploits different strategies
according to the characteristics of the problems it faces. A full explanation and
evaluation of the algorithm can be found in our technical report [46].

5 Rogue User Testing

Graphical User Interfaces (GUIs) represent the main connection point between a
software’s components and its end users and can be found in almost all modern
applications. Vendors strive to build more intuitive and efficient interfaces to
guarantee a better user experience, making them more powerful but at the same
time much more complex. Especially since the rise of smartphones and tablets,
this complexity has reached a new level and threatens the efficient testability
of applications at the GUI level. To cope with this challenge, it is necessary to
automate the testing process and simulate the rogue user.

In the FITTEST project, we have developed the Rogue User tool (RU), a Java
application which allows to write automated robustness tests for FI applications
at the User Interface level and from the user’s perspective [49, 50]. In Figure 6
the approach that the RU tool uses is depicted.

Fig. 6. The Rogue User testing approach

Basically, the Rogue User tool works as follows:

1. Obtain the GUI’s state (i.e. the visible widgets and their properties like
position, size, focus ...). The RU can determine the current GUI state of the
SUT in the form of a widget tree. A widget tree is a hierarchical composition
of the widgets currently visible on the screen, together with the values of
associated widget attributes. Figure 7 shows an example of such a tree for
some user interface .

2. Derive a set of sensible default actions: Enabled buttons, icons and hyperlinks
can be tapped, text fields can be tapped and filled with text, the screen,

type: Screen

type: Button
text: "Contacts"
x: 20
y: 20
width: 80
...

type: Button
text: "Game Center"
x: 120
y: 20
width: 80
...

type: Button
text: "Settings"
x: 220
y: 20
width: 80
...

type: Button
text: "Safari"
x: 120
y: 20
width: 80
...

type: Button
text: "Photos"
x: 220
y: 20
width: 80
...

Fig. 7. Widget Tree

Fig. 8. The Rogue User testing tools simple interface

scrollbars and sliders may be dragged, etc. RU allows to simulate simple
(clicks, keystrokes) as well as complex actions (drag and drop operations,
handwriting and other gestures, etc.) and can thus drive even sophisticated
GUIs.

3. Select and execute an action.
4. Apply an oracle to check whether the state is valid. If it is invalid, stop se-

quence generation and save the suspicious sequence to a dedicated directory,
for later replay.

5. If a determined given amount of sequences has been generated, stop sequence
generation, else go to step 1.

The tool offers the user a simple user interface (see Figure 8), there are mainly
four buttons, which start the RU into its four main modes:

1. Start in Spy-Mode: This mode does not execute any actions. It will start
the System under Test (SUT) and allows you to inspect the GUI. Simply
use the mouse cursor to point on a widget and the Rogue User will display
everything it knows about it. The Spy-Mode will also visualize the set of
actions that the Rogue User recognizes, so that you can see which ones will
be executed during a test.

2. Start in Generation-Mode: This mode will start the SUT and execute a full
test on the SUT.

3. Start in Replay-Mode: This mode replays a previously recorded sequence.
The Rogue User will ask you for the sequence to replay.

4. Start in View-Mode: The View-Mode allows you to inspect all steps of a
previously recorded sequence. Contrary to the Replay-Mode, it will not ex-
ecute any actions, but only show you the screenshots that were recorded
during sequence generation. This is ideal if a sequence turns out not to be
reproducible.

Then there are various tabs that allow the tester to configure the tool. The
general settings tab enables the tester to specifiy where the SUT is, how many
sequences to generate, the maximum length of the sequences, etc.

The Oracle tab helps in specifying simple oracles based on the state of the
GUI of the SUT. For example, we can enter a regular expression that describes
those messages that you consider to be related to possible errors. The RU will
apply this expression to each title of each widget on the screen. If it matches
any widgets title, the RU will report an error and save the sequence for later
inspection. Moreover, this tab allows us to configure the “freeze time”. The RU
is able to detect crashes automatically, because it realizes when the SUT is not
running anymore. However, if the SUT does not really crash, but just freezes
(is unresponsive) for a long time, then the RU does not know whether it is just
carrying out heavy computations or hangs. If the SUT is unresponsive for more
than the set freeze time, the RU will consider it to be crashed and mark the
current sequence as erroneous.

The filter tab provides the tester an easy way to specifiy actions that should
not be execucted (e.g. because they are undesirable or dangerous), or processes
that can be killed during test generation (i.e. help windows, document viewers,
etc.).

The time tab provides a means to define: Action Duration (The higher this
value, the longer the execution of actions will take. Mouse movements and typing
become slower, so that it is easier to follow what the Rogue User is doing. This
can be useful during Replay-Mode, in order to replay a recorded sequence with
less speed to better understand a fault); Time to wait after execution of an action
(This is the time that the Rogue User pauses after having executed an action in
Generation-Mode. Usually, this value is set to 0. However, sometimes it can make
sense to give the GUI of the SUT more time to react, before executing the next
action. If this value is set to a value > 0, it can greatly enhance reproducibility
of sequences at the expense of longer testing times.); SUT startup time (This
is the time that the Rogue User waits for the SUT to load. Large and complex
SUTs might need more time than small ones. Only after this time has expired,
the Rogue User will start sequence generation.); Maximum test time in seconds
(The RU will cease to generate any sequences after this time has elapsed. This
is useful for specifying a test time out, e.g. 1 hour, one day, one week.) Use
Recorded Action Timing during Replay (This option only affects Replay-Mode.
If checked, the RU will use the action duration and action wait time that was

TEST CASES

INSTRUMENT
SUT

RE-ORDER
TEST CASES

TEST
RESULTS

CONCURRENCY
COVERAGE

FIX BUG
RE-TEST

FAILURE

SUCCESS

ENOUGH

NOT
ENOUGH

SUT

RUN WITH
NEW

INTERLEAVING

INSTRUMENTED
SUT

DONE

EXECUTION
TRACE

ORDERING

Fig. 9. The ConTest flow

used during sequence generation. If you uncheck the option, you can specify your
own values.)

6 Concurrency Testing

Many concurrency bugs originate from the need for shared resources, e.g., local
memory for multi-threaded applications or network storage for FI applications.
Shared memory requires access protection. Inadequate protection results in data
corruption or invalid data reads (races). The protection mechanisms themselves
can lead to further bugs, notably deadlocks. Other bugs result from broken
assumptions about order of actions, or about completion time of actions.

The IBM Concurrency Testing tool (ConTest in short) facilitates various
aspects of handling concurrency bugs of FI applications and is capable of iden-
tifying concurrency bugs [51]. We have improved this tool. We have extended
ConTest with a number of new capabilities. Whereas before it works on mono-
lithic software, it is now significantly extended to support the special concurrency
testing and debugging needs of internet-based applications. Such applications
are typically distributed, componentized, interact in high level protocols (such
as http), and in times are composed in an ad hoc manner. The main idea is
that concurrency bugs, either local ones or distributed across an internet-wide
system, can be expressed in terms of event or message ordering. Changes in the
ordering of messages and events can expose bugs which are otherwise dormant.
This is exactly what ConTest does to expose concurrency bugs. While execut-

ing the application with multiple orderings can expose bugs, it does not isolate
them. Within FITTEST, ConTest was enhanced with bug isolation capabilities,
which allows learning which component or components of the system contain
the bug. This is of paramount importance in internat applications, which are
componentized and distributed.

Another FITTEST addition to ConTest is a high-level record-and-replay ca-
pability, which enables debugging the ”suspicious” component in isolation while
maintaining the communication patterns that manifest the bug. This, again, is
very important in internet applications where communication is commonly cen-
tral to the system, yet there is a need to debug specific components in isolation.

Yet another FITTEST extension to ConTest is an orange box facility. The
orange box allows replay of the series of messages and events which took place
just ahead of a concurrency bug manifestation. This provide much help to con-
currency debugging of FI applications. Deadlock analysis and lock history were
also added to the FITTEST version of ConTest to further improve concurency
testing and debuggiing capabilities.

The ConTest flow is depicted in Figure 9. Given an SUT and a set of test cases
(pre-existing or generated by a test generation tool), ConTest first instruments
the SUT to allow noise/delay to be injected to relevant program points. The test-
cases are ordered using a heuristic, and then run. For each test case, different
schedules will be tried. In case that a bug was exposed it is fixed (externally to
ConTest) and the system can later be re-tested under ConTest. The ordering is
saved, and every execution produces a trace. Both are used to replay a failing test
case, to the point where the bug is exposed. In case that no bug was exposed,
the ordering is changed by ConTest to cause new interleavings. Thes cycle is
repeated until some concurrency-relevant coverage is reached, or until we run
out of time.

7 Case studies

Within the FITTEST project we have carried out case studies at four different
companies, comprising of in total eight studies, in order to evaluate all the tools
presented in the previous sections (2 - 6). The section gives an overview of the
case studies; for the details of these studies we will refer to their respective re-
ports. The companies (IBM, SOFTEAM, Sulake, and Clavei) indicated different
needs for our tools, as shown below:

IBM SOFTEAM Sulake Clavei

continous testing tools
√ √

regression testing tool
√

combinatoric testing tools
√ √ √

rogue user testing tool
√ √

concurrency testing tool
√

We did not manage to complete the evaluation of the concurrency tool at Sulake,
as the company left the project before we could finish the study.

7.1 Evaluation framework

To be able to evaluate the FITTEST testing tools in such a way as to assure
that the resulting body of evidence can yield the right guidelines for software
testing practitioners about which tool fits his or her needs and which does not,
the evaluative case studies should:

– involve realistic systems and subjects, and not toy-programs and students
as is the case in most current work [52, 53].

– be done with thoroughness to ensure that any benefit identified during the
evaluation study is clearly derived from the testing technique studied

– ensure that different studies can be compared

In order to simplify the design of case studies for comparing software test-
ing techniques while ensuring that the many guidelines and check-list for doing
empirical work have been met, we have defined a general methodological frame-
work in FITTEST that can be found in [54]. The framework we have developed
has evolved throughout the past years by doing case studies to evaluate testing
techniques. The need to have a framework as described in this paper emerged
some years ago during the execution of the EU funded project EvoTest (IST-
33472, 2007-2009, [55]) and continued emerging during the EU funded project
FITTEST (ICT-257574, 2010-2013, [56]). Both these are projects whose objec-
tives are the development of testing tools that somewhere in the project need to
be evaluated within industrial environments. Searching in the existing literature
to find a framework that could be applied in our situation, did not result in
anything that exactly fit our need: a methodological framework that is specific
enough for the evaluation of software testing techniques and general enough and
not make any assumptions about the testing technique that is being evaluated
nor about the subjects and the pilot projects. We needed a framework that can
be instantiated for any type of treatment, subject and object and simplifies the
design of evaluative studies by suggesting relevant questions and measures. Since
such a framework did not exist, we defined our own making sure that the guide-
lines and checklist that can be found in the literature are satisfied. We have
successfully used the framework for the various case studies executed during
EvoTest and during FITTEST.

7.2 The case studies

IBM Research Lab in Haifa. Three case studies are executed at IBM Re-
search Lab in Haifa: (1) automated test cases generation with the FITTEST
ITE [57], (2) regression testing [58], and (3) combinatorial testing with the
CTE [59]. The studies were done amongst the research team responsible for
building the testing environment for future developments of an IT Manage-
ment Product (IMP) (similar to [60]), a resource management system in
a networked environment. At IBM Research Lab, the developers conduct
limited amount of testing, the testing itself is conducted by this designated

research team. It is working to enable the testing of new versions of the IMP
by developing a simulated environment in which the system is executed.

The testing activities, related to the studies, have been done on IMP but
in a simulated testing environment. The objective of the team was to iden-
tify whether current testing practices could be improved or complemented
by using some of the new testing techniques that were introduced by the
FITTEST EU project. For this purpose, the IBM Research team has used
the FITTEST tools and compared the results with the testing practices cur-
rently used during the initial steps of the Systems Verification Test (SVT).
Only this level of tests was considered, since the next stage of the SVT test-
ing is conducted elsewhere in IBM and so is beyond the case studies.

Finally, since the IMP is a mature system, and in order to be able to measure
fault-finding capability, several faults were injected into it within the simu-
lated environment to mimic potential problems that had can be surfaced in
such a system.

Details and results of these studies can be found in: [59, 57, 58].

SOFTEAM is a private software vendor and engineering company with about
700 employees located in Paris, France. Three case studies are conducted
in this company: (1) automated test cases generation with the FITTEST
ITE [61], (2) combinatorial testing with the CTE [62, 63], and (3) rogue user
testing [64]. The studies were done within the development team responsible
for Modelio Saas, a rather new SOFTEAM product. The team is composed
of 1 project manager, 2 software developers and 3 software analysts.

Modelio SaaS is a web application written in PHP that allows for the easy
configuration of distributed environments. It runs in virtualized environ-
ments on different cloud platforms presenting a high number of configura-
tions and hence presents various challenges to testing [9]. We focus on the
Web administration console, which allows administrators to manage projects
created with the Modelio modeling tool [10], and to specify allowed users for
working on projects. The source code is composed of 50 PHP files with a
total of 2141 lines of executable code.

Currently at SOFTEAM, Modelio SaaS test cases are designed manually.
The process is based on a series of specified use-cases to support exploratory
testing. As indicated before, the objective of test design is to maximize use-
case coverage. Each test case describes a sequence of user interactions with
the graphical user interface.

Details and results of these studies can be found in: [62, 63, 61, 64].

Sulake is a Finnish company that develops social entertainment games and
communities whose main product is Habbo Hotel2. The case study executed
at Sulake was related to combinatorial testing with the CTE of Habbo is the
world’s largest virtual community for teenagers. Localized Habbo commu-
nities are visited by millions of teenagers every week all around the world [65].

Habbo Hotel can be accessed via the local Habbo sites, and through Face-
book, where all 11 of Habbo Hotel’s language versions are also available.
Through Facebook Connect, Habbo users around the world can easily find
their Facebook friends in the virtual world and share their in-world experi-
ences. Some quick Habbo facts (from 2011): 11 language versions; Customers
in over 150 countries; Registered users: 218.000.000; Unique visitors: more
than 11.000.000 per month; 90% of the users between the age of 13-18.
Combinatorial testing for a system such a Habbo is a challenging task, since
there exists a wide variety of operating systems and browsers (and their dif-
ferent versions) used by players. Currently, at Sulake, testing new features is
planned using high level feature charters to support exploratory testing and
automated regression tests are designed for most critical use cases identified
during exploratory testing. Teams make sure that the developed features
have automated regression tests. Besides feature coverage, test engineers
(and their teams) are provided user information that contains for example
% of users using each browser, operating system and flash player version.
This information is used to take combinatorial aspects into account and de-
sign the tests in such a way that user variables that cover most users’ setups
are tested. For example, when a test is being designed that needs more than
one browser (e.g. a friend request from user A to B), this user information
is used to make sure that two different user set-up (one for A and one for
B) are configured in such a way that most popular user configurations are
tested.

Habbo is built on highly scalable client-server technology. The ActionScript
3 client communicates with a Java server cluster to support tens of thousands
of concurrent, interactive users. The server cluster is backed by a MySQL
database and intensive caching solutions to guarantee performance under
heavy load. The game client is implemented with AS3 and takes care of
room rendering, user to user interactions, navigation, purchasing UIs etc.
Client performance is challenging as it has to handle up to 50 moving, danc-
ing, talking characters with disco balls, fireworks and user defined game logic
running real time in AS3. The game server is a standalone JavaSE with game
logic fully implemented in server side. The server handles 10K+ messages
/ second and Habbo runs as highly distributed system with dedicated role-
based clusters, the largest instances having over 100 JVMs. Habbo website
and tools are built on Java/Struts2 with AJAX, CSS etc and run on Tomcats.

Details and results of this study can be found in [65].

Clavei is a private software vendor from Alicante (Spain), which specializes in
Enterprise Resource Planning (ERP) systems. One of their main products is
called ClaveiCon and is used in small and medium-sized companies within
Spain.
Due to their many clients, it is of fundamental importance to Clavei to
thoroughly test their application before releasing a new version. Currently,
this is done manually. Due to the complexity and size of the application
this is a time-consuming and daunting task. Therefore, Clavei is eager to
investigate alternative, more automated approaches to reduce the testing
burden for their employees and hence participated in an evaluation of the
FITTEST Rogue User Testing tool,
The company, not being part of the FITTEST consortium, expressed explicit
interest in the FITTEST Rogue User Tool and requested to carry out a
trial period to investigate the applicability of the tool for testing their ERP
products; details and results of this study can be found in [66].

8 Conclusion and future work

With our continous testing tools it is possible to log the execution of an appli-
cation, and from the gathered logs to infer a behavior model of the application,
and properties that can be used as test oracles. Combinatoric test sequences can
be generated from the model to be used as test cases. Strategies, e.g. a search-
based approach, can be applied if these sequences need non-trivial reachability
predicates to be solved. The usage of these tools can in principle be scripted so
that they work in unattended cycles. However, the challenge is then to evolve the
previously obtained models and properties when we advance to the new cycle,
rather than to just discard them. This is not just a matter of efficiency. The new
cycle may not cover all functionalities covered in the previous cycles; we lose
information if we simply discard previous models. On the other hand, it is also
possible that some old functionalities have been removed. This calls for some
strategy in evolving the models, e.g. based on some assumption on expiration
time of the models [10]; this is left as future work.

Our CSTP tool can be used to inject artificial mutations on service responses,
and then used to rank test-cases based on their sensitivity to the mutations. This
is useful in regression testing, to prioritize test cases when time and budget are
limited. In the case study at IBM, the resulting prioritization is as good as a
manual prioritization made by an expert [58]. In a separate case study, just using
10% of the test cases (in total 159) ranked by CSTP we can detect four out of
five injected faults [23].

We have improved the combinatoric testing tool CTE XL with new features,
e.g. ability to prioritize its test cases generation based on weight assigned to
elements of the used classification tree [35], and ability to generate sequences of
elementary test cases [36]. The latter is also essential for Internet applications,
which are often event-based. An execution of such an application is a sequence of
user events, each may have parameters. So, a test case for such an application is

also a sequence. The case studies at IBM, SOFTEAM, and Sulake indicated that
test cases generated by CTE can find errors that were not discovered by manual
test cases [63, 59]. However CTE test cases also left some features uncovered
[65]. In a way, this is as expected. A domain expert would know how to activate
a given set of target features, whereas CTE would do better in systematically
exploring patches in the search space. A possible future work is to use available
manual test cases as directives when generating combinatoric test cases.

Generating the specified kinds of combinations can however be non-trivial,
in particular when there are constraints on which combinations are valid. There
are various heuristics to do this, but their performance also depends on the kind
of problem we have at hand. Our Hyperheuristic Search-based tool generates
combinations by learning the right composition of its lower level heuristics. A
study has been carried out, showing that this approach is general, effective, and
is able to learn as the problem set changes [46]. This approach is however not
yet incorporated in either CTE nor Focus CTD; this is future work.

Our rogue user tool can do robustness testing on Internet applications from
their GUIs. The tool is fully automatic; it explores the GUI to try to crash the
target application, or to make it violates some pre-specified oracles. In the case
studies at Clavei and SOFTTEAM the tool was able to find critical errors that
were not found before [64, 66].

For concurency testing, we have improved ConTest with a number of impor-
tant features: it can now be used to test at the system level, it can generate
load, and it can record and replay. It is now thus suitable to test Internet appli-
cations, which often form distributed systems (e.g. multiple servers with multiple
clients). Using the new record-and-replay functionality we can first record events
and messages, and then replay them at desired levels of intensity to generate load
that can expose concurrency bugs at a network level.

When an execution fails, it may still be non-trivial to find the root cause of
the failure. This is especially true for Internet applications which are often event-
based. An execution of such an application can be long, driven by a sequence
of top-level events. When the execution fails, simply inspecting the content of
the call stack, as we usually do when debugging, may not reveal the root cause,
since the stack only explained what the last top-level event did. In the FITTEST
project we have also investigated this problem. In [14] we use the pattern-based
oracles inferred by the continous testing tools to reduce the log belonging to a
failing execution, thus making it easier to be inspected. The reduction tries to
filter out events irrelevant to the failure, and preserves the last logged abstract
state of the execution, where the failure is observed. The approach works off-
line; it is fast, but is inherently inaccurate. We then investigated if combining
it with an on-line approach such as delta debugging [67] will give us a better
result. Our preliminary investigation shows a promising result [68]. Ultimately,
the performance depends on how well the chosen state abstraction used by the
logger is related to the failure. Deciding what information to be included in the
state abstraction is not trivial, and is left as future work. The above approaches
help us in figuring out which top-level events are at least related to the failure.

A more refined analysis can be applied, e.g. spectra analysis [69], if we also know
e.g. which lines of code are passed by the failing execution. This requires tracing;
but when applied on a production system we should also consider the incured
overhead. In [70] we proposed a novel tracing approach with very low overhead,
at least for single threaded executions. Extending the approach to multi threads
setup is future work.

Acknowledgments

This work has been funded by the European Union FP7 project FITTEST (grant

agreement n. 257574). The work presented in this paper is due to the contributions of

many researchers, among which Sebastian Bauersfeld, Nelly O. Condori, Urko Rueda,

Arthur Baars, Roberto Tiella, Cu Duy Nguyen, Alessandro Marchetto, Alex Elyasov,

Etienne Brosse, Alessandra Bagnato, Kiran Lakhotia, Yue Jia, Bilha Mendelson, Daniel

Citron and Joachim Wegener.

References

1. Vos, T., Tonella, P., Wegener, J., Harman, M., Prasetya, I.S.W.B., Ur, S.: Testing of
future internet applications running in the cloud. In Tilley, S., Parveen, T., eds.:
Software Testing in the Cloud: Perspectives on an Emerging Discipline. (2013)
305–321

2. Prasetya, I.S.W.B., Elyasov, A., Middelkoop, A., Hage, J.: FITTEST log format
(version 1.1). Technical Report UUCS-2012-014, Utrecht University (2012)

3. Middelkoop, A., Elyasov, A., Prasetya, I.S.W.B.: Functional instrumentation of
ActionScript programs with asil. In: Proc. of the Symp. on Implementation and
Application of Functional Languages (IFL). Volume 7257 of LNCS. (2012)

4. Swierstra, S.D., et al.: UU Attribute Grammar System. www.cs.uu.nl/foswiki/

HUT/AttributeGrammarSystem (1998)
5. Dias Neto, A.C., Subramanyan, R., Vieira, M., Travassos, G.H.: A survey on model-

based testing approaches: a systematic review. In: 1st ACM Int. ws. on Empirical
assessment of software engineering languages and technologies, NY, USA, ACM
(2007) 31–36

6. Shafique, M., Labiche, Y.: A systematic review of model based testing tool support.
Technical Report Technical Report SCE-10-04, Carleton University, Canada (2010)

7. Marchetto, A., Tonella, P., Ricca, F.: Reajax: a reverse engineering tool for ajax
web applications. Software, IET 6(1) (2012) 33–49

8. Babenko, A., Mariani, L., Pastore, F.: AVA: automated interpretation of dynam-
ically detected anomalies. In: proceedings of the International Symposium on
Software Testing and Analysis. (2009)

9. Dallmeier, V., Lindig, C., Wasylkowski, A., Zeller, A.: Mining object behavior
with ADABU. In: proceedings of the International Workshop on Dynamic Systems
Analysis. (2006)

10. Mariani, L., Marchetto, A., Nguyen, C.D., Tonella, P., Baars, A.I.: Revolution:
Automatic evolution of mined specifications. In: ISSRE. (2012) 241–250

11. Nguyen, C.D., Tonella, P.: Automated inference of classifications and dependencies
for combinatorial testing. In: Proceedings of the 28th IEEE/ACM International
Conference on Automated Software Engineering. ASE (2013)

12. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. (2007) 35–45

13. Elyasov, A., Prasetya, I.S.W.B., Hage, J.: Guided algebraic specification mining
for failure simplification. In: accepted in the 25th IFIP International Conference
on Testing Software and System (ICTSS). (2013)

14. Elyasov, A., Prasetya, I.S.W.B., Hage, J.: Log-based reduction by rewriting. Tech-
nical Report UUCS-2012-013, Utrecht University (2012)

15. Prasetya, I.S.W.B., Hage, J., Elyasov, A.: Using sub-cases to improve log-based
oracles inference. Technical Report UUCS-2012-012, Utrecht University (2012)

16. Anon.: The daikon invariant detector user manual. groups.csail.mit.edu/pag/

daikon/download/doc/daikon.html (2010)

17. Nguyen, C.D., Marchetto, A., Tonella, P.: Combining model-based and combi-
natorial testing for effective test case generation. In: Proceedings of the 2012
International Symposium on Software Testing and Analysis, ACM (2012) 100–110

18. Tonella, P.: FITTEST deliverable D4.3: Test data generation and UML2 profile
(2013)

19. Fraser, G., Arcuri, A.: EvoSuite: automatic test suite generation for object-oriented
software. In: Proceedings of the 13th conference on Foundations of Software En-
gineering. ESEC/FSE, New York, NY, USA, ACM (2011) 416–419

20. Rothermel, G., Harrold, M.J.: A safe, efficient regression test selection technique.
ACM Trans. Softw. Eng. Methodol. 6(2) (1997) 173–210

21. Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Prioritizing test cases for
regression testing. IEEE Transactions on Software Engineering 27 (2001) 929–948

22. W3C: Web service description language (WSDL). http://www.w3.org/tr/wsdl20.
Technical report (Accessed December 2010)

23. Nguyen, D.C., Marchetto, A., Tonella, P.: Change sensitivity based prioritization
for audit testing of webservice compositions. In: Proc. of the 6th Int. Workshop
on Mutation Analysis (co-located with ICST). (2011) 357–365

24. Ludwig, H., Keller, A., Dan, A., King, R., Franck, R.: A service level agreement
language for dynamic electronic services. Electronic Commerce Research 3 (2003)
43–59 10.1023/A:1021525310424.

25. W3C: XML path language (XPath). http://www.w3.org/tr/xpath/. Technical
report (1999)

26. W3C: XML schema. http://www.w3.org/xml/schema. Technical report (Accessed
December 2010)

27. Cohen, M.B., Snyder, J., Rothermel, G.: Testing across configurations: implications
for combinatorial testing. SIGSOFT Softw. Eng. Notes 31 (2006) 1–9

28. Kuhn, D.R., Wallace, D.R., Gallo, A.M.: Software fault interactions and implica-
tions for software testing. IEEE Transactions on Software Engineering 30 (2004)
418–421

29. Grochtmann, M., Grimm, K.: Classification trees for partition testing. Softw.
Test., Verif. Reliab. 3(2) (1993) 63–82

30. Kruse, P.M., Bauer, J., Wegener, J.: Numerical constraints for combinatorial inter-
action testing. In: Proceedings of ICST 2012 Workshops (ICSTW 2012), Montreal,
Canada (2012)

31. Grochtmann, M., Wegener, J.: Test case design using classification trees and the
classification-tree editor cte. In: Proceedings of the 8th International Software
Quality Week, San Francisco, USA (1995)

32. Lehmann, E., Wegener, J.: Test case design by means of the CTE XL. In: Proceed-
ings of the 8th European International Conference on Software Testing, Analysis
& Review (EuroSTAR 2000), Kopenhagen, Denmark, Citeseer (2000)

33. Nie, C., Leung, H.: A survey of combinatorial testing. ACM Comput. Surv. 43
(2011) 11:1–11:29

34. Kruse, P.M., Luniak, M.: Automated test case generation using classification trees.
Software Quality Professional 13(1) (2010) 4–12

35. Kruse, P.M., Schieferdecker, I.: Comparison of Approaches to Prioritized Test
Generation for Combinatorial Interaction Testing. In: Federated Conference on
Computer Science and Information Systems (FedCSIS) 2012, Wroclaw, Poland
(2012)

36. Kruse, P.M., Wegener, J.: Test sequence generation from classification trees. In:
Proceedings of ICST 2012 Workshops (ICSTW 2012), Montreal, Canada (2012)

37. Kruse, P.M., Lakhotia, K.: Multi objective algorithms for automated generation
of combinatorial test cases with the classification tree method. In: Symposium On
Search Based Software Engineering (SSBSE 2011). (2011)

38. Ferrer, J., Kruse, P.M., Chicano, J.F., Alba, E.: Evolutionary algorithm for prior-
itized pairwise test data generation. In: Proceedings of Genetic and Evolutionary
Computation Conference (GECCO) 2012, Philadelphia, USA (2012)

39. Prasetya, I.S.W.B., Amorim, J., Vos, T., Baars, A.: Using Haskell to script combi-
natoric testing of web services. In: 6th Iberian Conference on Information Systems
and Technologies (CISTI), IEEE (2011)

40. Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG system: an
approach to testing based on combinatorial design. IEEE Transactions on Software
Engineering 23(7) (1997) 437–444

41. Cohen, M.B., Gibbons, P.B., Mugridge, W.B., Colbourn, C.J.: Constructing test
suites for interaction testing. In: Proceedings of the 25th International Confer-
ence on Software Engineering. ICSE ’03, Washington, DC, USA, IEEE Computer
Society (2003) 38–48

42. Hnich, B., Prestwich, S., Selensky, E., Smith, B.: Constraint models for the covering
test problem. Constraints 11 (2006) 199–219

43. Lei, Y., Tai, K.: In-parameter-order: a test generation strategy for pairwise testing.
In: High-Assurance Systems Engineering Symposium, 1998. Proceedings. Third
IEEE International. (1998) 254–261

44. Garvin, B., Cohen, M., Dwyer, M.: Evaluating improvements to a meta-heuristic
search for constrained interaction testing. Empirical Software Engineering 16(1)
(2011) 61–102

45. Calvagna, A., Gargantini, A.: A formal logic approach to constrained combinatorial
testing. Journal of Automated Reasoning 45 (2010) 331–358

46. Jia, Y., Cohen, M.B., Harman, M., Petke, J.: Learning combinatorial interaction
testing strategies using hyperheuristic search. Technical Report Technical Report
RN/13/17, Department of Computer Sciences, University of College London (2013)

47. Harman, M., Burke, E., Clark, J., Yao, X.: Dynamic adaptive search based soft-
ware engineering. In: Proceedings of the ACM-IEEE international symposium on
Empirical software engineering and measurement. ESEM ’12 (2012) 1–8

48. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu,
R.: Hyper-heuristics: a survey of the state of the art. Journal of the Operational
Research Society (2013) to appear.

49. Bauersfeld, S., Vos, T.E.J.: GUITest: a Java library for fully automated GUI ro-
bustness testing. In: Proceedings of the 27th IEEE/ACM International Conference

on Automated Software Engineering. ASE 2012, New York, NY, USA, ACM (2012)
330–333

50. Bauersfeld, S., Vos, T.E.: A reinforcement learning approach to automated gui
robustness testing. In: 4 th Symposium on Search Based-Software Engineering.
(2012) 7

51. Edelstein, O., Farchi, E., Goldin, E., Nir, Y., Ratsaby, G., Ur, S.: Framework for
testing multithreaded java programs. Concurrency and Computation: Practice &
Experience 15(3-5) (2003) 485–499

52. Juristo, N., Moreno, A., Vegas, S.: Reviewing 25 years of testing technique exper-
iments. Empirical Softw. Engg. 9(1-2) (2004) 7–44

53. Hesari, S., Mashayekhi, H., Ramsin, R.: Towards a general framework for eval-
uating software development methodologies. In: Proc of 34th IEEE COMPSAC.
(2010) 208–217

54. Vos, T.E.J., Maŕın, B., Escalona, M.J., Marchetto, A.: A methodological frame-
work for evaluating software testing techniques and tools. In: 12th International
Conference on Quality Software, Xi’an, China, August 27-29. (2012) 230–239

55. Vos, T.E.J.: Evolutionary testing for complex systems. ERCIM News 2009(78)
(2009)

56. Vos, T.E.J.: Continuous evolutionary automated testing for the future internet.
ERCIM News 2010(82) (2010) 50–51

57. Nguyen, C., Mendelson, B., Citron, D., Shehory, O., Vos, T., Condori-Fernandez,
N.: Evaluating the fittest automated testing tools: An industrial case study. In:
Empirical Software Engineering and Measurement, 2013 ACM / IEEE Interna-
tional Symposium on. (2013) 332–339

58. Nguyen, C., Tonella, P., Vos, T., Condori, N., Mendelson, B., Citron, D., She-
hory, O.: Test prioritization based on change sensitivity: an industrial case study.
Technical Report UU-CS-2014-012, Utrecht University (2014)

59. Shehory, O., Citron, D., Kruse, P.M., Fernandez, N.C., Vos, T.E.J., Mendelson,
B.: Assessing the applicability of a combinatorial testing tool within an industrial
environment. In: Proceedings of the 11th Workshop on Experimental Software
Engineering (ESELAW 2014), CiBSE. (2014)

60. : (http://pic.dhe.ibm.com/infocenter/director/pubs/index.jsp?topic=
%2Fcom.ibm.director.vim.helps.doc%2Ffsd0_vim_main.html)

61. Brosse, E., Bagnato, A., Vos, T., N., C.: Evaluating the FITTEST automated
testing tools in SOFTEAM: an industrial case study. Technical Report UU-CS-
2014-009, Utrecht University (2014)

62. Kruse, P., Condori-Fernandez, N., Vos, T., Bagnato, A., Brosse, E.: Combinato-
rial testing tool learnability in an industrial environment. In: Empirical Software
Engineering and Measurement, 2013 ACM / IEEE International Symposium on.
(2013) 304–312

63. Condori-Fernndez, N., Vos, T., Kruse, P., Brosse, E., Bagnato, A.: Analyzing the
applicability of a combinatorial testing tool in an industrial environment. Technical
Report UU-CS-2014-008, Utrecht University (2014)

64. Bauersfeld, S., Condori-Fernandez, N., Vos, T., Brosse, E.: Evaluating rogue user
an industrial case study at softeam. Technical Report UU-CS-2014-010, Utrecht
University (2014)

65. Puoskari, E., Vos, T.E.J., Condori-Fernandez, N., Kruse, P.M.: Evaluating appli-
cability of combinatorial testing in an industrial environment: A case study. In:
Proc. JAMAICA, ACM (2013) 7–12

66. Bauersfeld, S., de Rojas, A., Vos, T.: Evaluating rogue user testing in industry: an
experience report. Technical Report UU-CS-2014-011, Utrecht University (2014)

67. Zeller, A.: Isolating cause-effect chains from computer programs. In: 10th ACM
SIGSOFT symposium on Foundations of Software Engineering (FSE). (2002) 1–10

68. Elyasov, A., Prasetya, I., Hage, J., A., N.: Reduce first, debug later. In: to appear
in the proceedings of ICSE 2014 Workshops – 9th International Workshop on
Automation of Software Test (AST 2014), Washington, DC, USA, ACM-IEEE
(2014)

69. Naish, L., Lee, H.J., Ramamohanarao, K.: A model for spectra-based software
diagnosis. ACM Trans. Softw. Eng. Methodol 20(3) (2011)

70. Prasetya, I.S.W.B., Sturala, A., Middelkoop, A., Hage, J., Elyasov, A.: Compact
traceable logging. In: 5th International Conference on Advances in System Testing
and Validation (VALID). (2013)

71. Tonella, P., Marchetto, A., Nguyen, C.D., Jia, Y., Lakhotia, K., Harman, M.:
Finding the optimal balance between over and under approximation of models
inferred from execution logs. In: Proc of the Fifth IEEE International Conference
on Software Testing, Verification and Validation (ICST). (2012) 21–30

