
NPMC5023-2104

Nippon Pulse Motor Co., Ltd.

USER’S MANUAL

1

COPYRIGHT © 2000 Nippon Pulse Motor Company, Ltd. ALL RIGHTS
RESERVED

First edition, August 2000

This document is copyrighted by Nippon Pulse Motor, Ltd. You may not
reproduce or translate into any language in any form and means any part of
this publication without the written permission from NPM.

NPM makes no representations or warranties regarding the content of this
document. We reserve the right to revise this document any time without
notice and obligation.

Hardware Information Revision: 1.53
Software Information Revision: 2.0

2

Table of Contents

1. Introduction to NPMC 5023-2104 Board.. 3

2. Getting Started .. 4

3. Connector and Jumper Location... 5

4. Connector Information... 6

4.1. Connector J1 – Stepper Control ... 6

5. Jumper Information.. 7

5.1. Jumper J4 to J1 – Bus Address Selection .. 7

5.2. Jumper JP5-JP9 – Interrupt Number Selection... 8

5.3. Jumper JP10, JP11 – Limit Input Polarity Selection 8

6. Electrical Information... 9

6.1. +Limit,-Limit, Home, Alarm Inputs.. 9

6.2. Pulse, Direction, Enable Outputs... 9

7. Introduction to NPMC Software (NPMC-S) .. 10

8. Installing NPMC-S .. 11

9. Running NPMC-S ... 14

10. Writing Your Application .. 23

11. Stepper Access Functions ... 24

11.1. Move Command Functions .. 24

11.2. Setup Command Functions .. 28

11.3. Get Command Functions ... 30

11.4. Driver Output Command Functions .. 33

11.5. Digital IO Command Functions... 34

3

1. Introduction to NPMC5023-2104

NPMC5023-2104 is a PC104 BUS 2 axis stepper controller card.
Utilizing the most powerful stepper pulse generation chip PCL5023,
NPMC5023-2104 controller board is packed with advanced features
found only in high-end stepper controller boards:

- 2 axis stepper pulse/direction control
- Maximum output Frequency of 4.9M pulse per second
- Linear and S-Curve Acceleration/Deceleration
- Encoder input for position verification with +/- 134M pulse range
- Opto-isolated inputs for +/- Limits, Home, and Alarm
- Driver enable output
- Interrupt capability for error and move finish

NPMC5023-2104 can be plugged into any PC104 control system. If
the control system has Windows 3.1, 95, 98 operating system, getting
the controller up and running can be done in a few minutes using the
user friendly graphical interface. You can quickly check all the
available functions of the controller. The graphical user interface
program also has a programming environment which you can use to
cycle motion routines.

Writing an application specific program is an easy task with all the
driver functions provided in C source code.

4

2. Getting Started

NPMC5023-2102 requires PC104 BUS. The controller is shipped with
the following default jumper settings:

Controller Base Address: 0x200 (hex)
Interrupt Number: Disabled
Limit Switch Polarity: Normally Open

If this is the first time using the board, you can quickly test the board by
installing the card and running the test program.

To install the stepper card:

1) Turn off the power to the system.
2) Select the jumper setting and attach the cables to the card.
3) Plug the card to the PC104 BUS.
4) Turn on the power to the PC104 setup.

To install the Software:

1) The floppy that comes with the controller contains the install program.
Go to Windows and run the setup program from the floppy.

2) All the programs and files will be copied to the specified directory.

To run the Software:

Double click on the stepper motor icon to start the test program. For
detailed information, see page 10.

5

3. Connector and Jumper Location

J1 - 30 pin IDC connector
for stepper control

JP1-JP4 - Bus address select jumper
JP5-JP9 - Interrupt select jumper
JP11 - Limit switch polarity select jumper

for normally open or normally closed
limit sensor configuration.

(Home and Alarm sensor polarity can be set by software)

6

4. Connector Information

4.1 Connector: J1- Stepper Motor Control

Description Pin Description
+5 1 2 GND
Pulse 1 3 4 Dir 1
Enable 1 5 6 Encoder Z 1
Encoder A1 7 8 Encoder B 1
Home 1 9 10 +Lim1
-Lim 1 11 12 Alarm 1
+5V 13 14 GND
Pulse 2 15 16 Dir 2
Enable 2 17 18 Encoder Z2
Encoder A2 19 20 Encoder B2
Home 2 21 22 +Lim 2
-Lim 2 23 24 Alarm2
Vss 25 26 Vss
NC 27 28 NC
NC 29 30 NC
NC 31 32 NC
STP 33 34 STA

NOTE: For detailed information on STA and STP, please refer
to NPMC5023 chip manual.

7

5. Jumper Information

5.1 Jumpers JP4 to JP1 – Bus Address Selector

JP4 JP3 JP2 JP1 Base Address
0x3E0 (hex)

X 0x3C0 (hex)
X 0x3A0 (hex)

X X 0x380 (hex)
X 0x360 (hex)

X X 0x340 (hex)
X X 0x320 (hex)

X X X 0x300 (hex)
X 0x2E0 (hex)

X X 0x2C0 (hex)
X X 0x2A0 (hex)

X X X 0x280 (hex)
X X 0x260 (hex)

X X X 0x240 (hex)
X X X 0x220 (hex)

X X X X 0x200 (hex)

8

5.2 Jumpers JP5-JP9 – Interrupt Number Selector

JP5 JP6 JP7 JP8 JP9 Interrupt #
X IRQ 7

X IRQ 6
X IRQ 5

X IRQ 4
X IRQ 3

5.3 Jumper JP11 – Limit input polarity selector

JP11 Description
LEFT For Normally Closed Switches
RIGHT For Normally Open Switches

X – jumper installed
LEFT – Left two pins are jumped
RIGHT – Right two pins are jumped

9

6. Electrical Information

6.1 + Limit, -Limit, Home, and Alarm Inputs:

6.2 Pulse, Direction, Enable Outputs

 Driver +5v NPMC5023-2104

 Pulse,
 Dir,
 Enable

 R

 7406

PCL5023

10

7. Introduction to NPMC Software

NPMC-S is user friendly graphical program for quickly testing all the
features of the following stepper controller cards:

NPMC-2ISA– ISA BUS 2 axis + 48 DIO
NPMC-4ISA– ISA BUS 4 axis + 48 DIO
NPMC-2104– PC104 BUS 2 axis stepper

Program can be run in Windows 3.1, 95, and 98.

Once the testing is done, you can quickly move on to your application
using the C source code drivers.

11

8. Installing NPMC-S

1. Insert the NPMC-S installation disk into the floppy drive.

2. Run or double click the install.exe program in the floppy disk:

3. The installation will show the following dialog box:

4. Select the default directory C:\NPMCS and click on Continue button.

12

5. Following dialog box will pop up to indicate that the installation is
progressing:

6. After successful copy to the directory following dialog box will pop
up:

7. Select the program group to be added to your Windows selection.
Click on Create button.

13

8. After creating the program group following dialog box will pop up:

9. Any last minute information will be included here. Click Continue
after reading the information.

10. Final dialog box will show to indicate that the installation was
successful.

14

9. Running NPMCS

1. From the Windows program manager, click on the following icon:

2. Following opening screen will pop up:

15

3. From dialog box, select the controller model and enter the base
address.

4. After selecting the model number click on the Start button. Depending
on which model you selected one of the following screens will pop up:

16

For NPMC-2ISA

For NPMC-4ISA

17

For NPMC-2104

Depending on the model you can control Axis 1 and 2, Axis 3 and 4, and
48 Digital IO’s.

18

5. For NPMC-2ISA and NPMC-4ISA there are 48 Digital IO’s which can
be configured as inputs or outputs. To configure the Digital IO’s, select
the Digital IO radio button and click on configure button:

Following screen will appear:

You will not be able to change the address of the digital IO’s since the
base address selection was done on the first screen. The two addresses
are shown for your application development.

There are two sets of digital IO’s: Set A and Set B. Each set contains 3
ports. Each port has 8 bits of digital IO’s. Click on the either the in or
out configuration or each port. When you are done, click on OK and you
will return to the previous dialog box.

19

6. To control the Digital IO’s, select the digital IO and click on the control
button:

Following screen will appear:

From the DIO control dialog box, you can set and view all the digital
IO’s.

7. Hit OK button when you are done and you will return to the previous
dialog box.

20

8. To configure the stepper controller select the Stepper and click on
Configure button:

9. Following setup dialog box will appear:

From the stepper configuration, setup the polarity of the pulse/dir output
signal, polarity of the Home and Alarm inputs. For Pulse/Dir outputs, two
pulse trains can be set by CW/CCW. For the limit switch polarity settings,
hardware jumpers are used. Refer to the Hardware manual on limit polarity
setting. Click on OK after configuration.

10. To control the stepper motors select the stepper selection and click on
Control button.

21

11. Following dialog box will appear:

From this screen, you can do full control of the stepper motors. Most of the
buttons and descriptions should be intuitive and self-explanatory. The
Datum button means return the motor back to zero position. There is also a
Check Registers button that will allow low level access to the stepper
control chip. It is recommended that you do not access the Registers unless
you are familiar with the low levels of the stepper chip. Refer to the 5023
chip manual for details.

12. RSTP program has a powerful built in programming environment to test
motion sequences. To access this environment click on the Program
button:

22

13. Following dialog box will appear:

From the programming environment you can load, create, edit, save, and run
simple motion sequences.

23

10. Writing your Application

To write your own application, use the source code provided in the C
language. You can directly access the stepper control functions using C
driver source code. You would need to add to your application project and
compile and link to your application. Sample C programs using the C driver
source is provided in the floppy diskette.

24

11. Stepper Access Functions

11.1. Move Command Functions
(Note: All motion command speed and accelerations are set by the
set_speed_accel() functions)

Move to Absolute Position
int movea (int base, int axis, long pos, long encoder_per_rev, long
pulse_per_rev);

Arguments:
base – base address of the controller card
axis – axis number starting from 0 as axis 1.
pos – target position with range of +/- 134M
encoder_per_rev – encoder resolution per revolution.

Set to 0 if encoder is not used.
pulse_per_rev – stepper pulse resolution. This is used

with encoder. If encoder is not used, set it to 0.

Linear Interpolated Move to Absolute Position
int dual_movea(int base, long pos1, long pos2, long encoder_per_rev1, long
encoder_per_rev2, long pulse_per_rev1, long pulse_per_rev2)

Arguments:
base – base address of the controller card
pos1 – target position of axis 1
pos2 – target position of axis 2
encoder_per_rev1 – axis 1 encoder resolution.

Set to 0 if encoder is not used.
encoder_per_rev2 – axis 2 encoder resolution.

Set to 0 if encoder is not used.
pulse_per_rev1 – axis 1 stepper pulse resolution.

This is used with encoder. If encoder is not
used, set it to 0.

pulse_per_rev2 – axis 2stepper pulse resolution.
This is used with encoder. If encoder is not
used, set it to 0.

25

Move to Incremental Position
int movei(int base, int axis, long pos);

Arguments:
base – base address of the controller card
axis – axis number starting from 0 as axis 1.
pos – relative move amount. Use negative value for

negative direction.

Linear Interpolated Move to Incremental Position
int dual_movei(int base, long pos1, long pos2, long encoder_per_rev1, long
encoder_per_rev2, long pulse_per_rev1, long pulse_per_rev2)

Arguments:
base – base address of the controller card
pos1 – incremental position of axis 1
pos2 – incremental position of axis 2
encoder_per_rev1 – axis 1 encoder resolution.

Set to 0 if encoder is not used.
encoder_per_rev2 – axis 2 encoder resolution.

Set to 0 if encoder is not used.
pulse_per_rev1 – axis 1 stepper pulse resolution.

This is used with encoder. If encoder is not
used, set it to 0.

pulse_per_rev2 – axis 2stepper pulse resolution.
This is used with encoder. If encoder is not
used, set it to 0.

26

Home Low Speed
int home_fl(int base, int axis, int dir);

Arguments:
base – base address of the controller card
axis – axis number starting from 0 as axis 1.
dir – 1 for positive and 0 for negative direction.

Home High Speed
int home_fh(int base, int axis, int dir);

Arguments:
base – base address of the controller card
axis – axis number starting from 0 as axis 1.
dir –1 for positive and 0 for negative direction

Home with Acceleration Profile
int home_ac(int base, int axis, int dir);

Arguments:
base – base address of the controller card
axis – axis number starting from 0 as axis 1.
dir – 1 for positive and 0 for negative direction.

Jog Low Speed
int jog_fl(int base, int axis, int dir);

Arguments:
base – base address of the controller card
axis – axis number starting from 0 as axis 1.
dir – 1 for positive and 0 for negative direction

Jog High Speed
int jog_fh(int base, int axis, int dir);

Arguments:
base – base address of the controller card
axis – axis number starting from 0 as axis 1.
dir – 1 for positive and 0 for negative direction

27

Jog with Acceleration Profile
int jog_accel(int base, int axis, int dir);

Arguments:
base – base address of the controller card
axis – axis number starting from 0 as axis 1.
dir – 1 for positive and 0 for negative direction

Immediate Stop
int immed_stop(int base,int axis);

Arguments:
base – base address of the controller card
axis – axis number starting from 0 as axis 1.

Decelerate Stop
int decel_stop(int base,int axis);

Arguments:
base – base address of the controller card
axis – axis number starting from 0 as axis 1.

28

11.2. Setup Command Functions

Set Low Speed, Low Speed, Acceleration, and S-Curve
int set_speed_accel_time(int base, int axis, unsigned long high_speed,
unsigned long low_speed,unsigned long accel, int enable_scurve);

Arguments:
base – base address of the controller card
axis – axis number starting from 0 as axis 1.
high_speed – high speed. Range from 1 to 4M
low_speed – low speed. Range 1 to 4M
accel – acceleration time in milliseconds.
enable_scurve – 1 for enable S-curve and 0 for disable

Set current position
int setup_updown_counter(int base, int axis, long value);

Arguments:
base – base address of the controller card
axis – axis number starting from 0 as axis 1.
value – position value +/- 134M

Set Position Counter Input from Encoder or Pulse
int setup_pulse_counter_input_type(int base, int axis, int type);

Arguments:
base – base address of the controller card
axis – axis number starting from 0 as axis 1.
type – 0 for pulse input, 1 for encoder input

Set Encoder Multiplication Factor
int setup_encoder_mult(int base, int axis, int type);

Arguments:
base – base address of the controller card
axis – axis number starting from 0 as axis 1.
type – 0 for 1X, 1 for 2X, 2 for 4X encoder

29

Set Direction Output Signal Polarity
int setup_dir_logic(int base, int axis, int type);

Arguments:
base – base address of the controller card
axis – axis number starting from 0 as axis 1.
type – 0 or 1

Set Pulse Output Signal Polarity
int setup_pulse_logic(int base, int axis, int type);

Arguments:
base – base address of the controller card
axis – axis number starting from 0 as axis 1.
type – 0 or 1

Set Home Input Signal Polarity
int setup_home_sensor_logic(int base, int axis, int type);

Arguments:
base – base address of the controller card
axis – axis number starting from 0 as axis 1.
type – 0 for normally open, 1 for normally closed

Set Alarm Input Signal Polarity
int setup_alarm_sensor_logic(int base, int axis, int type);

Arguments:
base – base address of the controller card
axis – axis number starting from 0 as axis 1.
type – 0 for normally open, 1 for normally closed

30

11.3. Get Command Functions

Check Communication with the Controller Card
int check_com(int base);

Arguments:
base – base address of the controller card

Return:
0 – communication OK
-1 – no communication

Get Low Speed, High Speed, Acceleration, S-Curve
int get_speed_accel_time(int base, int axis, unsigned long *high_speed,
unsigned long *low_speed,unsigned long *accel, int *enable_scurve);

Arguments:
base – base address of the controller card
axis – axis number starting from 0 as axis 1
*high_speed – high set speed
*low_speed – low set speed
*accel – acceleration time in milliseconds
*enable_scurve – 1 for S-curve, 0 for no Trapezoidal

Get Current Position Counter
long get_current_updown_counter(int base, int axis);

Arguments:
base – base address of the controller card
axis – axis number starting from 0 as axis 1

Return:
Current Position value

Get Current Pulse Rate
long get_current_pulse_rate(int base, int axis);

Arguments:
base – base address of the controller card
axis – axis number starting from 0 as axis 1

Return:
Current Pulse Rate value

31

Get Limit, Home, Alarm Input Status
int get_limits_home_state(int base,int axis);

Arguments:
base – base address of the controller card
axis – axis number starting from 0 as axis 1

Return:
Bit 0 - + Limit
Bit 1 - - Limit
Bit 4 – Home
Bit 6 - Alarm

Get Motor Status
int moving_state(int base,int axis);

Arguments:
base – base address of the controller card
axis – axis number starting from 0 as axis 1

Return:
1 – idle, not moving
3 – acceleration in progress
4 – Moving at High Speed
5 – Deceleration in Progress
6 – Moving at Low Speed

Get Position Counter Input either Encoder or Pulse
int get_pulse_counter_input_type(int base, int axis);

Arguments:
base – base address of the controller card
axis – axis number starting from 0 as axis 1

Return:
0 – pulse
1 – encoder

32

Get Direction Output Polarity
int get_dir_logic(int base, int axis);

Arguments:
base – base address of the controller card
axis – axis number starting from 0 as axis 1

Return:
0 or 1

Get Pulse Output Polarity
int get_pulse_logic(int base, int axis);

Arguments:
base – base address of the controller card
axis – axis number starting from 0 as axis 1

Return:
0 or 1

Get Alarm Input Polarity
int get_alarm_sensor_logic(int base, int axis);

Arguments:
base – base address of the controller card
axis – axis number starting from 0 as axis 1

Return:
0 or 1

Get Home Input Polarity
int get_home_sensor_logic(int base, int axis);

Arguments:
base – base address of the controller card
axis – axis number starting from 0 as axis 1

Return:
0 or 1

33

11.4. Driver Output Command Functions

Get Driver Enable Output State
int get_driver_enable_state(int base,int axis);

Arguments:
base – base address of the controller card
axis – axis number starting from 0 as axis 1

Return:
0 or 1

Set Driver Enable High
int driver_enable_high(int base,int axis);

Arguments:
base – base address of the controller card
axis – axis number starting from 0 as axis 1

Set Driver Enable Low
int driver_enable_low(int base,int axis);

Arguments:
base – base address of the controller card
axis – axis number starting from 0 as axis 1

Enable the output Driver Enable
int enable_driver(int base, int axis);

Arguments:
base – base address of the controller card
axis – axis number starting from 0 as axis 1

34

11.5. Digital IO Command Functions

Configure Digital IO as Inputs or Outputs
int config_dio(int base,int value);

Arguments:
base – base address of the controller card
value – 0x80 all outputs , 0x9B all inputs

Set Digital Output Port
int output_do_port(int base,int port, int value);

Arguments:
base – base address of the controller card
port – 0 to 2
value – 0x00 to 0xFF

Set Digital Output Bit
int output_do_bit(int base,int port, int bit, int state);

Arguments:
base – base address of the controller card
port – 0 to 2
bit – 0 to 7
value – 0x00 to 0xFF

Get Digital Input Port
int input_di_port(int base,int port);

Arguments:
base – base address of the controller card
port – 0 to 2

Get Digital Input Bit
int input_di_bit(int base,int port,int bit);

Arguments:
base – base address of the controller card
port – 0 to 2
bit – 0 to 7

