

CIFER®-MATLAB Interfaces:

Development and Application

A Thesis
Presented to the Faculty of

California Polytechnic State University
San Luis Obispo

In Partial Fulfillment
Of the Requirements for the Degree of

Master of Science in Aerospace Engineering

By
Brian K. Rupnik

April 2005

 ii

© Copyright 2005

Brian K. Rupnik

All Rights Reserved

 iii

Approval Page

TITLE: CIFER®-MATLAB Interfaces: Development and Application

AUTHOR: Brian K. Rupnik

DATE SUBMITTED: April 2005

Dr. Daniel J. Biezad (AERO) ____________________________________

Advisor & Committee Chair

Dr. Mark B. Tischler (NASA/Army) ____________________________________

Committee Member

Dr. Eric Mehiel (AERO) ____________________________________

Committee Member

Dr. Lanny V. Griffin (CENG) ____________________________________

Committee Member

 iv

Abstract

CIFER®-MATLAB Interfaces: Development and Application

Brian K. Rupnik

The Army/NASA Rotorcraft Division, Flight Controls Group, Ames Research Center, has

developed and is maintaining a software package called CIFER® or Comprehensive Identification

from FrEquency Responses. CIFER® allows system identification in the frequency domain and is

considered to be one the top resources for frequency analysis. It provides methods to derive

frequency responses, transfer functions and state-space models from a time sweep data.

The interface for CIFER® was developed long enough ago that there is a significant demand for a

modernization of the software. To address the demand in the most complete manner would

involve updating a very complex series of programs with modern graphical and command-line

interfaces. This project is beyond the scope of an Aerospace Master’s thesis. However, before the

Army devotes resources to this task, they desire a ‘proof of concept.’

This thesis is that proof of concept. Many users of CIFER® agree that having CIFER® programs

and utilities usable from the MATLAB command-line or modernized graphical interface would

be a major benefit. The Army agreed that development of a CIFER®-MATLAB interface would

be both a useful tool and a stepping-stone for where they would like to take CIFER® in the future.

There are two main tasks that make up this thesis. The first task is the development of a CIFER®-

MATLAB interface, both at the command line and in a graphical user interface. This interface

covers some, but not all of the programs in CIFER® – enough to show that the interface works

and makes use of CIFER® more efficient. The second task is to validate the new interface through

a series of projects including analysis of a modern Unmanned Aerial Vehicle (UAV). Both tasks

were successful in the eyes of the Army sponsors and ongoing work is being conducted to

implement the work from this thesis into the whole of the CIFER® program suite.

 v

Acknowledgements

The author would like to recognize and thank Dr. Daniel J. Biezad, Department Chair at Cal Poly,

San Luis Obispo, CA, and Dr. Mark B. Tischler, Flight Control Group Leader, Army/NASA

Rotorcraft Division, Ames Research Center, CA, for their invaluable support, guidance and

encouragement throughout this project. Dexter Hermstad was instrumental in providing

knowledge and input throughout the programming development process and deserves many

thanks. The efforts of Dr. Colin Theodore, Dr. Jeff Lusardi, Kenny Cheung, Chad Frost, and

Rendy Cheng on behalf of this endeavor are also greatly appreciated. Everyone in the Flight

Control Group was highly supportive of the effort, and they all deserve recognition for their

assistance at various stages of this thesis.

 vi

Table of Contents

TABLE OF FIGURES ..VIII

LIST OF TABLES.. IX

NOMENCLATURE ...X

NOMENCLATURE ...X

CHAPTER 1: INTRODUCTION ... 1

1.1 ABOUT CIFER® (COMPREHENSIVE IDENTIFICATION FROM FREQUENCY RESPONSES) 2
1.1.1 What CIFER® Encompasses ... 3
1.1.2 Ames Research Center Planning Meeting .. 5

1.2 PROJECT SCOPE ... 7

CHAPTER 2: SYSTEM IDENTIFICATION USING CIFER® ... 10

2.1 CREATING A FREQUENCY RESPONSE – FRESPID.. 12
2.2 MULTIPLE INPUT ANALYSIS – MISOSA.. 13
2.3 COMBINING WINDOWS – COMPOSITE .. 14
2.4 ANALYSIS UTILITIES.. 15
2.5 PARAMETRIC MODELING – NAVFIT, DERIVID, VERIFY... 17

CHAPTER 3: PROGRAMMING AND CODE DEVELOPMENT... 19

3.1 COMMAND-LINE DEVELOPMENT ... 19
3.1.1 Development Process ... 20
3.1.2 Problems Encountered and Solutions... 22

3.1.2.1 Precision Errors... 23
3.1.2.2 Retaining Structure of Code.. 26

3.1.3 Complexity of Use... 27
3.2 GRAPHICAL USER INTERFACE DEVELOPMENT... 28

3.2.1 Development Process ... 29
3.2.2 Modern Updates to the Original Interface ... 29
3.2.3 Problems Encountered and Solutions... 31

CHAPTER 4: VALIDATION AND APPLICATION ... 33

4.1 SAMPLE CIFER CASES .. 33
4.2 MASS-SPRING-DAMPER SYSTEM ... 34
4.3 UH-60 SIMULATION .. 37

 vii

4.4 ANALYSIS ON SHADOW 200 TUAV.. 42
4.4.1 Data Consistency checks: ... 43
4.4.2 RMS and crossover comparisons: .. 49

4.5 SUMMARY OF VALIDATIONS.. 57

CHAPTER 5: CONCLUSIONS .. 58

5.1 CODE DEVELOPMENT .. 58
5.2 ANALYSIS .. 59
5.3 FUTURE WORK .. 60

BIBLIOGRAPHY .. 61

APPENDIX A: SCREEN LAYOUT COMPARISON... 63

APPENDIX B: HELP DOCUMENTATION FOR COMMAND-LINE INTERFACE 68

APPENDIX C: ONLINE HELP FOR MAIN PROGRAMS .. 83

APPENDIX D: STRUCTURE FIELD SPECIFICS FOR MAIN PROGRAMS 88

APPENDIX E: ONLINE HELP FOR ANALYSIS UTILITIES .. 90

APPENDIX F: STRUCTURE FIELD SPECIFICS FOR ANALYSIS UTILITIES 96

APPENDIX G: ONLINE HELP FOR SUPPORT FUNCTIONS .. 98

APPENDIX H: MASS-SPRING-DAMPER CASE EXAMPLE... 100

APPENDIX I: XVLATSWP CASE EXAMPLE .. 102

 viii

Table of Figures

Figure 1.1: The Role of System Id .. 1
Figure 1.2: Frequency Sweep Example (UAV Flight Data).. 3
Figure 1.3: Doublet Example (UAV Flight Data) ... 5
Figure 1.4: Example CIFER® Screen .. 6
Figure 1.5: Mass-Spring-Damper (Left), XV-15 (Right) .. 9
Figure 1.6: NASA Sikorsky UH-60 RASCAL (Left), Shadow 200 TUAV (Right) 9
Figure 2.1: Example Coherence Plot... 11
Figure 2.2: Example FRESPID Screen ... 13
Figure 2.3: Example RMS Prompts... 16
Figure 3.1: Name-value Pairs and Structures .. 23
Figure 3.2: Percent Error Comparisons ... 25
Figure 3.3: Comparison of Navigation Menus .. 30
Figure 4.1: XVLATSWP Validation Examples .. 34
Figure 4.2: SISO Mass-Spring-Damper System.. 35
Figure 4.3: Mass-Spring-Damper Simulink Block Diagram... 35
Figure 4.4: Mass-Spring-Damper System Input and Output ... 36
Figure 4.5: Matlab to CIFER® Comparison .. 36
Figure 4.6: CIFER® to ‘bode’ Comparison ... 36
Figure 4.7: Feedback Block Diagram.. 38
Figure 4.8: Error Channel Verification ... 38
Figure 4.9: Broken Loop Roll Gain/Phase Margin Results... 39
Figure 4.10: Roll Bandwidth for Lateral Stick Input to Roll Angle Response.............................. 40
Figure 4.11: Stick and Actuator Input Autospectra... 41
Figure 4.12: Cutoff Frequency Compared to Bandwidth Frequency .. 42
Figure 4.13: Shadow 200 TUAV... 42
Figure 4.14: Roll Angle to Rate Comparison .. 45
Figure 4.15: Pitch Angle to Rate Comparison... 45
Figure 4.16: Longitudinal Velocity Perturbations... 46
Figure 4.17: Lateral Velocity Perturbations .. 46
Figure 4.18: Vertical Velocity Perturbations... 46
Figure 4.19: Lateral Velocity Perturbations, Flight Data .. 48
Figure 4.20: Vertical Velocity Perturbations, Flight Data... 49

 ix

Figure 4.21: Comparisons with Exact 1/s Value ... 49
Figure 4.22: Aileron - Roll Rate Responses .. 51
Figure 4.23: Elevator - Pitch Rate Responses ... 51
Figure 4.24: Rudder to Yaw Rate Response.. 52
Figure 4.25: Rudder Output Autospectrum ... 52
Figure 4.26: Aileron to Roll Attitude Response .. 53
Figure 4.27: Elevator to Pitch Attitude Response ... 53
Figure 4.28: Rudder to Yaw Attitude Response.. 54
Figure 4.29: Scaled Roll Bandwidth Criteria .. 55
Figure 4.30: On Axis Roll Attitude Response... 55
Figure 4.31: Scaled Pitch Category C Flight Criteria.. 56
Figure 4.32: On Axis Pitch Attitude Response.. 56
Figure 4.33: Scaled Pitch Category A Flight Criteria ... 57
Figure A1: Original Interface: Screen 1 .. 63

Figure A2: Original Interface: Screen 2 .. 63
Figure A3: Original Interface: Screen 3 .. 64
Figure A4: Original Interface: Screen 4 .. 64
Figure A5: Original Interface: Final Screen .. 64
Figure A6: MATLAB GUI: Screen 1.. 65
Figure A7: MATLAB GUI: Screen 2.. 65
Figure A8: MATLAB GUI: Screen 3.. 66
Figure A9: MATLAB GUI: Screen 4.. 66
Figure A10: MATLAB GUI: Final Screen.. 67
Figure A11: MATLAB GUI: Two Data Loading Screens .. 67

List of Tables

Table 4.1: Roll Gain/Phase Margin Results .. 38
Table 4.2: Roll Bandwidth Results.. 40
Table 4.3: Cutoff Frequency Results... 41
Table 4.4: Full Range RMS Values... 50
Table 4.5: Frequency RMS compared to Time RMS.. 51
Table 4.6: Cutoff Frequencies via RMS.. 52
Table 4.7: -135-Degree Bandwidth Frequencies... 53

 x

Nomenclature

ax Longitudinal Acceleration

ay Lateral Acceleration

az Vertical Acceleration

b Damping Coefficient

e Error Channel

f Feedback Channel

G Autospectrum

k Spring Coefficient

L Length

M Mass

N Scale Factor

p Roll Body Rate

q Pitch Body Rate

r Yaw Body Rate

s Frequency Domain Variable

U0 Longitudinal Velocity

u Longitudinal Body Acceleration

V0 Lateral Velocity

v Lateral Body Acceleration

W0 Vertical Velocity

w Vertical Body Acceleration

Y Output

X Input

α Angle of Attack

β Sideslip

δ Command Channel

φ Roll Attitude

φ Phase Angle

γ Coherence

θ Pitch Attitude

τ Time Constant

τp Phase Delay

ω180 180-Degree Frequency

ψ Yaw Attitude

Subscripts

a Actual Vehicle

ail Aileron

dot Time Derivative

ele Elevator

m Model Vehicle

rud Rudder

whl Wheel

xx Input

xy Cross

yy Output

 1

Chapter 1: Introduction

The focus of this thesis is directed towards tools that aid in system identification. System

identification is the process of taking measured data from a physical system and analyzing it to

develop a mathematical model of that system. This is an important aspect of control system

design as it allows for the validation of simulated system models, optimization of existing control

systems, and handling qualities specification compliance. Figure 1.1 shows how system

identification fits into a design cycle.

Predicted
Aircraft Motion

Assumptions Model Simulation

Measured
Aircraft Motion

Physical
Understanding System

IdentificationModel

Predicted
Aircraft Motion

Assumptions Model Simulation

Measured
Aircraft Motion

Physical
Understanding System

IdentificationModel

Figure 1.1: The Role of System Id

Starting at the top left of Figure 1.1, assumptions are made that result in some form of

mathematical model, which describes an aircraft. The model can then be applied to a simulation

that will predict the motion of the aircraft. Once a physical model of the aircraft is constructed,

physical measurements can be made of its actual motion and responses to input. System

identification can then be used to extract a new mathematical model of the aircraft. The new

model can be compared to the old model and the assumptions used to create it for greater physical

understanding of the aircraft’s motion.

The mathematical model created through system identification can either be nonparametric or

parametric. Nonparametric models do not assume an order or structure. They can exist either in

the time-domain as an impulse response or in the frequency-domain as a frequency response.

 2

Frequency responses are typically represented using a Bode plot format that graphs magnitude on

a log scale and phase of an input-to-output ratio against frequency. Nonparametric models are

useful in determining characteristics such as bandwidth, time-delay, and pilot-in-the-loop

behavior. They can also be used to validate math models and determine parametric model

structure and order. This project will be dealing primarily with frequency response analysis.

A parametric model assumes an order and structure with primary representations including

transfer functions and state-space models. Transfer functions are pole-zero representations of

individual input-output pairs. State-space models describe an entire system in terms of stability

and control derivatives. Parametric models are used primarily in control system design and for

wind tunnel or math model validation.

1.1 About CIFER® (Comprehensive Identification from FrEquency Responses)

There are many programs that offer time domain analysis1 of system response data but

comparatively few that offer analysis in the frequency domain. One very successful frequency

domain program, and the focus of this project, is called CIFER®, or Comprehensive Identification

from FrEquency Responses. CIFER® was developed by the Army/NASA Rotorcraft Division at

the Ames Research Center during from 1988-1994 and has been constantly updated, modified,

and improved since. It is used extensively by the Army/NASA Rotorcraft Division and also by

many commercial aerospace companies. Some of the applications at the Ames Research Center

have included development of control laws for the UH-60, identification of the XV-15 tilt-rotor

demonstrator, assistance in CH-47 control development, investigation of slung load dynamics,

and a wide variety of work involving unmanned aerial vehicles (UAVs). CIFER® is considered to

be one of the best programs available for frequency domain analysis.

 3

1.1.1 What CIFER® Encompasses

CIFER® contains all the programs and tools necessary to convert time history data into frequency

responses and use those responses to identify the system in question. This analysis includes the

identification of single transfer functions, entire state-space systems, and various properties of

responses such as bandwidth and crossover characteristics. Systems are not limited to flight

vehicles, and can be as simple as a single-input-single-output mass-spring-damper setup or as

complex as a multi-input-multi-output rotorcraft model.

The basic flow of the program begins with time history data. The data is generated using a

frequency sweep maneuver in flight or simulation to excite the system over a wide range of

frequencies. Frequency sweeps are generally characterized by a sinusoidal motion with a constant

increase in frequency preceded and followed by a period of steady state flight as shown in Figure

1.2. The first step in CIFER® is to transform this time data into frequency responses. More

specifics on this step and all following steps will be discussed with more detail in Chapter 2. The

data is divided into ‘time windows,’ which allow the algorithms to accurately extract both high

and low frequency content from the data. The frequency responses are then calculated for each of

the desired combination of inputs and outputs for each time window.

Figure 1.2: Frequency Sweep Example (UAV Flight Data)

 4

In the case of a multiple input system, the frequency responses can be conditioned to remove the

effects of correlation between different inputs. After this conditioning, the frequency responses

from each separate window are combined to form a single frequency response based on the most

accurate segments of each window. The combination is achieved by optimizing the data that has

useful content in both low and high frequency regions. This is the last step in the frequency

response generation process.

Less involved analysis, compared to full state-space model generation, can include calculations of

RMS, cutoff frequencies, bandwidth, crossover characteristics, and data consistency checks using

frequency response arithmetic. All of these tools can give useful insight to system behavior

without generating more complex math models. CIFER® offers more complete identification

through programs that will fit transfer functions to individual responses, and full state-space

models to a series of responses. In addition to these powerful analysis tools, CIFER® offers

utilities for plotting and organizing output, as well as managing the storage and organization of

data.

One last important tool is the ability to validate state-space models against other time history data.

These validation time histories are typically generated using a doublet maneuver as opposed to a

sweep. A doublet is a short maneuver that moves through a range of motion for a control surface,

beginning and ending in steady level flight as shown in Figure 1.3.

 5

Figure 1.3: Doublet Example (UAV Flight Data)

1.1.2 Ames Research Center Planning Meeting

Late in the summer of 2003, a meeting within the Army/NASA Rotorcraft Division, Flight

Controls Group at Ames Research Center was held to discuss the current status of CIFER® and

how it would be desirable to modify the program for future needs. This meeting was preceded by

a request to industry users of CIFER® for feedback on potential changes. The result of this

activity was a summary of positive and negative aspects of CIFER®, and a tentative plan for

modernizing the program and addressing some of the negative issues. This section will detail

some of the major points of the meeting that directly affected the course of this thesis.

In its current form CIFER® is a collection of mathematically robust algorithms that have been

tempered by 20 years of flight project application and experience. It can display canned results to

a wide variety of formats including PostScript, X, Talaris and others. The textual interface was

created in the 1980s in Curses format to run on Unix systems. It has since been ported to run on a

Unix emulation environment for Windows and on Linux. An example of a CIFER® screen is

shown in Figure 1.4. The user would navigate through the screen using the arrow and function

keys.

 6

Figure 1.4: Example CIFER® Screen

Due to its long life and the constant work that goes into improving and updating CIFER®, it has

many positive aspects that make it a premier frequency response analysis tool. The algorithms

have been proven to work, providing quality results without program crashes. Much effort has

been given to creating robust methods of analyzing time history data and creating frequency

responses. CIFER® includes many tools and utilities to assist in the analysis of frequency

responses once they have been created, such as frequency response arithmetic and bandwidth

calculations. The Curses interface is consistent and linearly-driven, which helps ensure that users

enter data correctly.

Unfortunately, many of the features that make CIFER® accurate and robust contribute to making

it difficult or tedious to use at times. There is a steep learning curve to become familiar with the

myriad of functionality the program offers. While the program is robust, it is not always

instructive in alerting users to the nature of a problem; error messages can often scroll too quickly

and are cleared from the screen before they can be read. The status of running batch jobs can be

difficult to assess. Additionally, moving data from responses and plots into modern programs

such as MATLAB or Igor can be very challenging.

 7

One almost universal concern with the program is the interface. Modern engineers are growing

less familiar with the Unix-based Curses interface and much of the user feedback requested an

update to the interface. Even to experienced users the same linear interface that gives CIFER® its

power and robustness can be a serious hamper; data fields must be retyped for new cases with

limited cut and paste functionality. Another major concern is that there is no way to script the

processes of CIFER®; setting up a series of multiple cases for an involved flight test can take days

of repetitive data entry.

One conclusion of this meeting was that a modern graphical user interface (GUI) and a way to

use command-line calls to script CIFER® processes should be developed. A thoughtfully laid out

GUI should be able to retain all the robustness of its Curses counterpart while offering new

features that make modern GUIs versatile such as browsing capability and easy navigation. It was

determined that the work encompassed by this thesis would be a prototype or test bed for these

capabilities that will result in modernized functionality for CIFER®.

1.2 Project Scope

The goal of this project was primarily to develop a command-line interface and a modernized

GUI layout for CIFER®. It was decided to use The Mathworks’ MATLAB2 as a medium for this

development as many users of CIFER® also use MATLAB and a more developed communication

between the two programs would be very useful. The ultimate goal of CIFER® modernization

would be to make it independent of other programs so users do not have to purchase additional

and potentially unnecessary software licenses to benefit from the upgrades.

 8

Some CIFER® users did express concern with the development of the MATLAB functionality

because they were not also MATLAB users. This concern can be addressed by a compiler

developed by The Mathworks that allows MATLAB files to be compiled and run independently

of MATLAB itself. The MATLAB compiler that is available allows MATLAB M-files to be

compiled into C code, which removes the necessity to have a MATLAB license to run the M-

files. The capability for scripting and the modern GUI on which this thesis is based will be a

significant benefit to CIFER® users when it is fully developed. It was deemed acceptable to use

MATLAB as a base to develop prototypes of these new interfaces as many companies already use

it and the compiler addresses the concerns of those that do not.

CIFER® is a large collection of programs and to develop command-line functions to mimic the

entirety of its capability is well beyond the scope of a thesis project. It was agreed that functions

to drive three of the major programs and several of the supporting analysis utilities would be a

sufficient demonstration of a command-line interface. The goal is to create a function that can be

called with a single-line command that will perform all of the data input and error checking of its

equivalent CIFER® counterpart. Development of the GUI was also limited in scope for the same

reasons as for the command-line functions. The goal of the GUI is to show how a modern

interface can enhance the functionality of CIFER®. Thus only one program will be used as a

demonstrator.

In order to further tie the project into aerospace applications, the code developed will be validated

using real-world problems. In addition to checks verifying that results run in MATLAB are

equivalent to those run from CIFER®, the MATLAB functions will be used to aid in a NASA

research project. Validations will include a simple mass-spring-damper system, data from XV-15

tilt rotor aircraft flight tests, UH-60 simulation data from a training course, and finally a project

 9

involving handling qualities analysis of Shadow 200, a small reconnaissance UAV, all of which

are shown in Figure 1.5 and Figure 1.6.

Figure 1.5: Mass-Spring-Damper (Left), XV-153 (Right)

Figure 1.6: NASA Sikorsky UH-60 RASCAL3 (Left), Shadow 200 TUAV4 (Right)

A final important aspect of the project is that the code must be developed and structured such that

developers at Ames Research Center can continue the work beyond the scope of this project with

the final goal of distributing it to CIFER® users. This translates into creating the appropriate

documentation and code structure to allow this project to be integrated into the existing CIFER®

code structure efficiently.

 10

Chapter 2: System Identification using CIFER®

This chapter primarily contains information found in the CIFER® user’s manual5 and is intended

to give readers a solid understanding of how CIFER® generates a frequency response. This will

help provide insight into the analysis of the validations described in Chapter 4.

CIFER® produces both nonparametric and parametric models for systems in the frequency

domain. The nonparametric frequency response should be considered the core of this thesis,

however parametric modeling is still very relevant to CIFER® as a whole. A frequency response

is a complex-valued function that relates the Fourier Transform of system output to system input.

The general form of a frequency response is shown in Equation 2.1. The frequency response is a

full description of system dynamics, stable or unstable, that does not require assumptions of the

system’s structure.

() ()
()fX
fYfH = [2.1]

CIFER® uses a version of the Fast Fourier Transform (FFT) known as the Chirp-Z Transform

(CZT). This transform removes many of the restrictions placed on the discrete Fourier

Transforms and thus is very flexible as an algorithm. Users have greater freedom to specify

sample rates and resolution. The algorithm only runs on a specified frequency range, thus there

are no wasted data points. The CZT algorithm generates three important values that represent the

energy of the system as a function of frequency: input autospectrum (Gxx), output autospectrum

(Gyy), and cross spectrum (Gxy). The frequency response is then calculated using Equation 2.2,

which is unbiased for output noise and biased for input noise.

xx

xy

G
G

H = [2.2]

 11

One key feature of frequency response calculations is the coherence function, which is a measure

of data accuracy or content. Coherence is determined by Equation 2.3, which will yield a value

between 0 and 1.

yyxx

xy
xy GG

G 2
2ˆ =γ [2.3]

Coherence represents the energy of the system or the fraction of output power that is linearly

related to input power. When the system has high energy, or excitation, the coherence will be

closer to 1 and the data content is considered to be more accurate. If the system does not have

enough excitation or is low energy, the coherence will drop, indicating that the data content is

poor. Data is also considered poor or unreliable if the coherence is rapidly changing as illustrated

in Figure 2.1. Poor data can result from noise, gusts, or off-axis control activity. CIFER®

algorithms use coherence weighting to determine the frequency-ranges of a frequency response

that have the most accurate data and only fit parametric models to these sections. It is generally

accepted that frequency ranges with coherence equal or greater than 0.6 are considered usable if

they are not rapidly changing.

Figure 2.1: Example Coherence Plot

CIFER® contains six primary programs to conduct analysis: FRESPID, MISOSA, COMPOSITE,

NAVFIT, DERIVID, and VERIFY. In addition, there are three main analysis utilities that can

calculate RMS values, bandwidth properties, and perform frequency response arithmetic. The

 12

functionality of these programs and utilities will be discussed in the following sections along with

a brief description of the linear screen interface that drives them. In addition to these tools there

are a large number of other utilities for viewing results and organizing the CIFER® database. The

primary CIFER® programs this project dealt with were the first three main programs, all three

analysis utilities, and a small selection of other programs.

2.1 Creating a Frequency Response – FRESPID

FRESPID (Frequency Response Identification) is the first step in any CIFER® analysis. This

program takes time history data and generates frequency responses based on the input and output

channel measurements. A very important aspect of CIFER® occurs in FRESPID, which is the

“windowing” of the data. The data comprises a number of discrete frequency points over a time

duration. FRESPID uses the CZT to average the data points of a smaller time window of data. It

breaks the full time history into segments based on this window and performs computations based

on averages for each given window size.

There is a distinct tradeoff in the selection of window lengths relative to the total time history

length. Windows that are a smaller fraction of the total length provide a large number of averages

that can more easily identify high-frequency responses by countering noise effects.

Unfortunately, low-frequency identification degrades because low-frequency responses tend to

occur in larger intervals than the small windows encompass. When the window size is enlarged,

low-frequency identification becomes more accurate at a cost to the high-frequency end due to a

decrease in the number of averages.

CIFER® solves this trade-off issue by allowing the user to specific up to five different windows in

FRESPID. A frequency response is generated based on each window. This ensures that both low

 13

and high-frequency content is captured from the data. These preliminary responses are later

combined together using COMPOSITE, which will be discussed below.

Of the three programs to be interfaced with MATLAB, FRESPID is the most complex. There are

a total of nine screens in the Curses interface that accept user input and one of the screens can

lead to two sub-screens. The user must specify information about the time history data, build the

controls and outputs using the measured data channels, determine which frequency responses to

calculate, condition the data as desired, specify the windowing information, and set plotting and

output options. All of this functionality is supported by robust error checking that must be

maintained in the command-line interface. Figure 2.2 shows an example of the FRESPID screen

that controls the windowing of data.

Figure 2.2: Example FRESPID Screen

2.2 Multiple Input Analysis – MISOSA

Engineering problems involving flight vehicles tend to involve systems with multiple controls.

During flight tests, frequency sweeps are performed for a single axis. However, there may be

 14

secondary off-axis control inputs. This coupling has significant potential to distort the response

identification of the system. CIFER® addresses this issue with a program called MISOSA or

Multi-Input / Single-Output Spectral Analysis.

MISOSA analysis on the user level is very straightforward. The primary control of interest is

specified along with any other controls that are to be considered secondary. The program then

performs spectral analysis to remove the effects of the secondary controls from the primary

control response. It uses a matrix inversion of the input autospectrum at each frequency point to

accomplish this. This general form is shown in Equation 2.4. Gxx is the matrix of auto and cross-

spectra for the inputs and Gxy is a vector containing the cross-spectra for each control input and

the single output in question.

() () ()fGfGfT xyxx
1−= [2.4]

There are much fewer screens that drive MISOSA compared to FRESPID. The primary

information needed is details about where the frequency responses are stored (whether in a file or

in the database), names for the controls and outputs, and the desired combinations of responses to

calculate. There is no conditioning or windowing of data involved, which results in less error

checking.

2.3 Combining Windows – COMPOSITE

Normally the optimization of window sizes in the FFT calculation would be a very time

consuming process. For a four-input, nine-output system there would be thirty-six responses that

would each have to be individually optimized. CIFER® employs COMPOSITE (for composite

windowing) to combine the individual windowed responses from FRESPID into a single

combined response, thus automating the optimization. It uses a nonlinear, least-squares

optimization of a cost function based on the auto and cross-spectra to combine the window data.

 15

Thus the low-frequency content of larger windows is combined with the high-frequency content

of smaller windows into a single response.

COMPOSITE is set up almost identically to MISOSA in terms of the screen interface. There are

some very slight differences in specifying the sources of data, but otherwise the interfaces for the

two programs gather the same information. Since the required input information for each of the

three main programs is of similar nature, it was easy to standardize the general layout of the

command-line interface created to drive them in MATLAB in terms of variable names, structure

and error checking.

2.4 Analysis Utilities

There are three primary analysis utilities included in CIFER®. The first is the RMS program

which is used to integrate the autospectrum over a desired frequency range to determine the

mean-square value of a signal. In addition, it can locate a frequency where the integrated RMS is

a specific fraction of the full-range value. This is useful for determining properties such as cutoff

frequency.

The second utility allows both the calculation of handling qualities and crossover characteristics.

The handling quality analysis looks for –180-degree, –135-degree, and 6dB bandwidth

frequencies. It provides values for the gain and phase margins at these frequencies. Bandwidth is

a useful indication of handling quality that can be identified from the nonparametric frequency

response without first fitting a parametric model to the data. The crossover calculation examines

the magnitude of the response for sign changes and is useful for determining broken-loop

characteristics. The bandwidth utility also provides some useful plotting features that will allow

users to include a least squares fit over a portion of the phase curve and to solve for phase delay.

 16

The RMS and bandwidth utilities are driven by an interface different from that of the main

programs described above. Rather than using screens, they use a linear prompt-based interface.

Users are prompted for various data and results are then posted to the screen. These programs

were more challenging to capture in a command-line format because the inputs had to be entered

at one time and the outputs displayed at one time. Figure 2.3 shows an example of an RMS

calculation and the prompts that drive it.

Figure 2.3: Example RMS Prompts

The last function performs frequency response arithmetic. Responses can be modified

individually using scale factors and powers of s and then combined with basic arithmetic

operations. The utility will perform these operations for magnitude, phase, coherence, and the

auto and cross-spectra as desired. The option to perform this arithmetic allows users to check data

 17

consistency by reconstructing responses for various signals based on kinematic laws of motion.

Examples of this type of analysis can be found in Chapter 4.

The arithmetic function uses the screen interface from the main programs but only has two

screens. Thus the conversion to command-line interface was reasonably straightforward.

2.5 Parametric Modeling – NAVFIT, DERIVID, VERIFY

The three remaining main programs of CIFER® will be covered in less detail as this project does

not involve them. It is important to note their use as this constitutes a major portion of CIFER®’s

potential and the direction that future work on modernizing the interface will take.

NAVFIT allows users to fit a transfer function to a single frequency response. The interface uses

a cost function to give the user an indication of how closely a particular fit matches the response

data. The user specifies the order of the transfer function desired and then the program iterates to

find an optimum fit.

The interface used by NAVFIT is similar to the RMS and bandwidth utilities except it has many

more input options and more loops at certain segments. Additionally, it was built up on code that

was originally created by McDonnell Douglas Aircraft outside of NASA. Thus, it would be

particularly challenging to adapt to a command-line format. This was one major factor for not

including NAVFIT within the scope of this project.

DERIVID constructs a state-space system based on a series of related frequency responses. It

generates the appropriate control derivatives for the coefficient matrices of a state-space system.

This is a very powerful ability as it enables the creation or validation of math models for

 18

simulation and wind tunnel testing. DERIVID works in a fashion similar to NAVFIT, using a cost

function to notify the user of the accuracy of the fit.

The final main program, VERIFY, allows users to validate a state-space model found in

DERIVID with new time history data in the time domain. Typically the validation employs flight

data taken from a doublet maneuver as opposed to a frequency sweep. VERIFY will run the state-

space model using the time history inputs and compare the model outputs to the measured

outputs. This is an important step to provide confidence in the state-space solution.

DERIVID and VERIFY use a combination of the screen interface and the prompt interface. There

are 17 and 18 screens, respectively, that accept user input and a lengthy series of prompts that

guide the user through the calculations of the state-space model. Due to this complexity they were

excluded from the scope of the current feasibility project.

 19

Chapter 3: Programming and Code Development

The programming requirements set by the Army for this project included the development of a

command-line interface for three main CIFER® programs: FRESPID, MISOSA, and

COMPOSITE, and an additional seven utilities: RMS, Bandwidth, Frequency Response

Arithmetic, plotting, case listing, data storage and data retrieval. These programs constitute a

“light” version of CIFER® that takes the user through all the frequency response conditioning and

allows assorted manipulation and analysis of the responses. The goal was to generate functional

building blocks that had stand alone capability and upon which further development could take

place.

In addition to the command-line interface, development of a GUI interface was also required. The

goal of the GUI development was to create a feasibility study to show how advances in GUIs

could improve on the existing Curses interface. Thus, the development was focused on one main

program, COMPOSITE. The primary concern was the layout and interface, thus once one

program was shown to work as a GUI, others could be adapted fairly quickly. This chapter

discusses the process of development of both new interfaces for CIFER® and the major problems

encountered during the development process.

3.1 Command-Line Development

A function in MATLAB accepts a list of inputs, returns a list of outputs, and typically is called

from a single line, often referred to as “command-line.” The key advantage of creating such an

interface for CIFER® is the ability to script multiple calls to the function. The scripting ability

greatly reduces the amount of time needed to create and run the large numbers of CIFER® cases

typical of any detailed analysis. The error checking associated with the data entry process for

 20

CIFER® inputs from the old interface, which was split up over a long series of screens, provided

significant challenge. The command line function had to emulate all of that error checking

structure at one time. Appendix A contains example screen shots of all the screens for the

COMPOSITE program within CIFER®. Each screen is navigated through using the keyboard, and

error checking occurs when the user progresses from one screen to another.

3.1.1 Development Process

The first step in the development process was to determine the best method to get information

from the CIFER® database into the MATLAB workspace. The solution lay in MATLAB’s ability

to create “mex” functions that can interface with Fortran or C code. CIFER®’s original Fortran

code is structured such that it has internal functions and subroutines to access important

information. By making the appropriate calls in the mex code, these functions were successful in

passing data from the CIFER® Fortran into the MATLAB workspace and vice versa. The mex

functions became the building blocks of all the CIFER®-MATLAB interface code.

The concept of using internal CIFER® functions with mex code was initially tested with some

very basic functions designed purely to retrieve a few specific pieces of data from CIFER®, such

as a frequency response name and description, and display them in MATLAB. Modifications

were made to the data in MATLAB and fed back into CIFER®. Accessing the frequency response

in CIFER® verified whether or not the change was successful.

When data is first processed in CIFER® it becomes known as a ‘case.’ which encompasses a

series of measurements from a system. For example, one of the sample cases included with

CIFER® is called XVLATSWP, which is for lateral responses from the XV-15 research vehicle in

hover. The case structure has all the information that dictates where data is located, how to

 21

interpret it, how to condition it, and how to window it. It is this information that must be passed

into MATLAB in order to facilitate running a case from a command-line interface.

The mex building blocks were expanded upon to read and write the full gamut of information

CIFER® uses to create and run its cases. The problem with these building blocks is that they have

many required inputs or outputs (depending on read or write) and no inherent error checking. This

made use of the initial code blocks themselves very difficult. It was necessary to create higher

level MATLAB M-files that would call the mex building blocks. These functions were designed

with the full range of error checking found in the CIFER® screens and could format input data to

be fed into the mex code blocks.

Designing the final interface for the M-files was an iterative process in which several Ames

engineers and programmers were included. Initial concepts were presented to the engineers on

paper and the layout was refined based on their critiques. When those providing input were

largely satisfied, the design was implemented in code. Once the M-files were finished they were

distributed back to the engineers for evaluation. The evaluation process was constantly in place

for the duration of the code development phase of the project.

The final result was the desired series of command-line functions that could successfully mimic

their CIFER® counterparts. The various codes encompassed 49 functions and spanned 14,000

lines of code. Extensive testing on the part of Ames engineers and the developer facilitated more

robust code than might otherwise have been achieved. One example of the success of the code

was from one engineer running a series of CIFER® cases in a few hours that might have

otherwise taken two to three days to finish. Suffice it to say that the engineers who regularly

interact with CIFER® were very enthusiastic about this new capability.

 22

3.1.2 Problems Encountered and Solutions

The first, and perhaps most fundamental, problem encountered while developing this code was

the structure of the interface itself. Creating an interface is difficult because no one knows exactly

what is desired until they see and interact with it. Additionally, no solution is necessarily the right

or best solution. On one hand, there was a significant drive to have the interface of new code

mimic the old CIFER® interface. On the other hand, it made equal sense to update older CIFER®

methods to more modern implementation, and to make more drastic changes to the layout. This

question was more an issue for the GUI, but still affected the command-line interface.

One method that MATLAB uses to gather large amounts of input is through a series of name-

value pairs. Essentially, the name of a variable is given as input immediately followed by its

value. The pros are that the lists of variables do not have to be provided in a particular order, and

variables meant to retain default values need not be specified. The con is that inputs are twice as

long as they might otherwise need to be. Figure 3.1 shows a simple example of name-value input

to a fictional function. Another possible input method is to use a structure. Structures are a

‘parent’ data type in which various other data types can be stored. Thus one structure might

contain integers, arrays, and strings organized in the ‘fields’ of the structure. Structures are

reasonably well organized, and easy to deal with from a programming standpoint; however the

format can be intimidating to non-programmers. Figure 3.1 also shows a simple structure layout,

and how one structure used as input could replace name-value pairs.

 23

Figure 3.1: Name-value Pairs and Structures

The final interface for the command-line code combined both name-value pairs with the structure

data type. The structure was used in the background to track and store all the information from a

CIFER® case. The functions accepted input as either a series of name-value pairs or a structure.

Output had to be presented as a structure; any other method would have produced too much

clutter in the MATLAB workspace, especially when multiple CIFER® cases were considered.

The use of the structure helped streamline the internal error checking process. Essentially, for

each field in the structure, there was a series of checks run that mimicked the checks run in

between each CIFER® screen.

3.1.2.1 Precision Errors

During the earlier phases of development a small error caused by the transfer of data between

CIFER® and MATLAB was discovered. The cause of this error was likely numeric precision

discrepancies, probably due to MATLAB using double precision compared to Fortran’s usual

single precision. The result of these errors was that the same number stored in the CIFER®

database would return to MATLAB with variation in the ten or hundred thousandths decimal

 24

place. To date no major discrepancy has been observed in the overall results generated by

CIFER®.

Several tests were conducted to locate a more exact cause of the error. The first method was to

create a case in MATLAB using the interface functions and then create a second identical case

(except in name) the traditional way from within CIFER®. From here the frequency response

results could be extracted and compared. This was how the error was initially discovered.

Comparisons of the errors in magnitude and phase were plotted as shown in Figure 3.2, which

revealed that slightly larger errors occurred at high or low frequency, regions that tend to exhibit

low coherence. The trend was not completely true in all cases, but most plots tended to exhibit

that behavior. Several different cases including the XV-15 data, Shadow 200 data (Figure 3.2),

UH-60 simulation data, and an example mass-spring-damper system were examined in this

manner, with the results generally being the same. Figure 3.2 is a plot of the percent error; as

such, it can be seen that these errors are small in magnitude.

 25

Figure 3.2: Percent Error Comparisons

In order to determine if the error was originating in MATLAB, another set of tests was

conducted. First, a case was set up in CIFER® and run (using different case names) in CIFER®

and in MATLAB. Then, an identical case was constructed in MATLAB and again run in CIFER®

and MATLAB. The results compared identically between either set of cases created using the

same program. However, comparison of any combination of cases from differing setup methods

resulted in the minuscule numeric error. When overlaid in a plot, there was no visual difference in

the plots and thus no significant discrepancy between the two methods of creating a case. The

origin of the error was not located, but suspected to result from MATLAB’s use of double

precision.

The conclusion was that, unless time permitted, or more significant discrepancy between results

was found, the problem would be considered minor. For the most part, the errors occurred in

 26

regions of low coherence where less weight would be assigned to the results, regardless of small

numeric error. The short-term solution was to document the existence of the issue as a warning to

users.

3.1.2.2 Retaining Structure of Code

A major concern of the project was to create new code that would be relatively easy to maintain

and modify. In order for the functions created for the MATLAB-CIFER® interface to be

maintainable by CIFER® lead programmers, the code was written to mimic existing Fortran code

wherever possible. In other cases, such as the MATLAB M-files, code was made uniform both in

structure and in naming conventions so as to facilitate both ease of use and ease of maintenance.

Several specific methods were employed in this endeavor. First, in dealing with the Fortran mex

files, the names of variables transferring data from MATLAB into the CIFER® common blocks

were made identical to the common block variables but with an ‘x’ appended on the end. This

notation would allow easy identification of variables by programmers already familiar with the

old Fortran code. Second, the variables were renamed when they were passed into the MATLAB

workspace because the Fortran variables have names suited to programming that may not be

meaningful to an engineering user. Last, the various Makefiles which create the Fortran mex files

were condensed and grouped according to the utilities and programs they created. Thus, all the

functions that facilitate FRESPID use are created using a single Makefile.

CIFER® programs and utilities vary slightly in their method of interfacing with the user, as

described in Chapter 2. Some use a screen interface where the user fills in fields and advances

using the function keys. When the end of the screens is reached, the screen programs may call

additional programs that send information to be processed by CIFER®. Other programs use a

 27

command-line-based interface that runs calculations and returns results as the user steps through

via prompting.

The three main programs for this project, FRESPID, MISOSA, and COMPOSITE, when run in

CIFER® use the screen interface and have separate functions to store, retrieve, and compute

information. The MATLAB interface uses these same functions, however, to provide CIFER® the

information without using the screen interface. The MATLAB structure that holds the case

information is set up to collect the same information that the user would normally provide

through the screens. All of this functionality was accomplished without modifying any original

CIFER® code, thus no provisions will be necessary in order to maintain that original code when

the new interface is added to the full CIFER® software package.

Other utilities such as the RMS, plotting, and arithmetic calculations have the screen interface

embedded within the functions that run the calculations. For the MATLAB interface to work, the

original CIFER® functions had to be altered to disable the screen interface. These alterations are

well marked with comments as CIFER® lead programmers will ultimately need to incorporate

new methods within existing code to accommodate the changes and prevent the need to maintain

two separate source files. The utilities that use the command-line interface (RMS, plotting, and

handling qualities) were dealt with much the same as the screen-based utilities due to the

command-line prompts being embedded within the code for calculations.

3.1.3 Complexity of Use

A side effect of the command-line interface was that it required users to be reasonably familiar

with CIFER®. The interface is not as intuitive as a graphical interface because everything happens

at once. There are no screens with helpful notes and error checking to step through. If a case has

 28

errors, they are all displayed at once when the program finishes. Thus, a new CIFER® user could

get more lost and confused by starting off with the command-line interface. The power of the

interface, as mentioned before, is the ability to script multiple cases, which is something

beginning users would find less beneficial than experienced users.

A detailed help document was created for the command-line interface to help users understand

how to employ it. The text of this document can be found in Appendix B, and Appendices C

through I contain the appendices from the original document. Ames engineers were provided

copies of the document along with the software when they employed the new interface in their

projects. The document was written with the assumption that a reader would already be familiar

with CIFER®.

3.2 Graphical User Interface Development

COMPOSITE was selected as the test program around which to develop a MATLAB GUI. It was

deemed sufficiently complex to make a useful example, and it is one of the more commonly used

CIFER® programs from those selected for this project. The primary goal of the GUI development

was to show that, first, it could be done, and second, the process of data entry could be enhanced

using more modern GUI tools. An important secondary goal was to create the GUI as a rough

template that could be efficiently applied to the rest of the CIFER programs in the future. The

GUI was written to work with the command-line interface, using graphics to gather the

information to be sent to the command-line functions without the user needing to know how the

command-line functions work. It is important to note that the GUI programming does not stand

alone as the command-line does and is to demonstrate how advances in GUI programming can

make CIFER® more user friendly.

 29

3.2.1 Development Process

The most difficult aspect of developing the GUI was adjusting the look and feel to appeal to the

widest audience of potential users. The iterative method used for the command-line development

was employed for the GUI as well, with NASA engineers and programmers included during the

design process. Several initial concepts were sketched on paper before any code was written.

When ideas were put into code, the first programs were designed only around the layout of the

GUI, lacking any real functionality. This allowed reviewers a clear idea of what the finished

product might look like. Once the design for the layout was sufficiently refined, the functionality

was written into the code. As the functionality was based on the command-line interface, the

focus of the GUI development was the layout.

The GUI was largely built up around the command-line code that already could interface with

CIFER®. Data entry in the GUI was largely handled by toggles and text fields. The error checking

from the command line was superseded by similar checks within the GUI to make its use closely

resemble the old CIFER® interface. Appendix A shows the COMPOSITE screens from both the

old interface and the new GUI.

3.2.2 Modern Updates to the Original Interface

Perhaps the most visible change between the original interface and the new MATLAB GUI was

the added navigational features. CIFER® was originally designed to run on VAX/VMS systems

and as a result, uses the keyboard function keys for navigation. There were menus that could be

accessed for navigation within each program; however they are not always intuitive in use. Thus

two primary navigation bars were added to the GUI interface. The left bar, found in Appendix A,

 30

Figures A6 through A10, offers users a visual description of each screen in the COMPOSITE

program and allows users to access any of those screens with a mouse click. The bottom menu,

displayed on the bottom of Figure 3.3, is a re-creation of the original CIFER® menu, shown on

top in Figure 3.3, and offers quick access to simple navigation and save or exit options.

Figure 3.3: Comparison of Navigation Menus

Aside from the new navigation, the largest change to the first screen, Figure A1 and Figure A6, is

the addition of a browse feature. This button opens the first window shown in Figure A11 and

allows the users to browse the database for CIFER® cases. When a case is selected from the list,

its description is provided to aid in selecting the desired case. The case name can then be loaded

into the text field on screen one.

Screen 2, Figure A2 and Figure A7, originally completely consisted of text field entries. Many of

these fields corresponded to data that could only be one of two choices – yes or no, for example.

The MATLAB GUI uses toggle buttons to simplify this process and reduce the amount of error

checking necessary. Additional browsing capacity has been added to help data entry; inputs and

outputs can be selected from a list of all inputs or outputs in that case. For example, a user might

load a case into COMPOSITE and not remember which inputs and outputs were used in previous

FRESPID cases. The “input” and “output” buttons (Figure A7) call up a new screen, the second

window in Figure A11, that displays all the inputs or outputs that exist in a particular case by

querying previous MISOSA or FRESPID cases. The desired inputs or outputs can be selected and

then loaded back into screen 2.

 31

The third screen is used to match which input and output pairs the program will operate on.

Originally these pairs were selected through an asterisk, as shown in Figure A3. The new

interface, Figure A8, is toggle button-based, and more features have been added to allow an entire

row or column to be selected by clicking on the heading button. Similarly, toggle buttons were

used for screen 4 as shown in Figure A4 and Figure A9.

The last screen in the original code offers three choices to exit, save and exit, or save and run the

batch job. If a batch job is run, the output information is displayed to screen, shown in Figure A5,

but users can press a key to continue using CIFER®, which will remove the information from the

screen. Once the batch job is completed, additional information is displayed which can disrupt

work if one has moved on while the batch job was running.

The final screen in the new interface, Figure A10, has the three options from the original code as

well as several new features. There is now a dedicated window to display the output from the

batch job, ensuring that the information will not be lost. Additionally, an option to view the

output log file has been added. The log file contains a summary of the information from

processing the case and is very useful for debugging a case that generated errors.

3.2.3 Problems Encountered and Solutions

The most challenging aspect of the GUI development was creating a layout that the largest

number of engineers were comfortable with. It was ultimately made a requirement for the new

layout to mimic the old interface as closely as possible. Before this requirement was set, several

layouts were considered that would have been a significant change to the old look and feel. The

driving factor was to keep the interface similar so longtime users would not have to make major

 32

adjustments to their understanding of the program, while adding the modern GUI features that

might shorten the learning curve for new users.

The second major challenge lay in generalizing the code structure to allow other programmers to

easily adapt the code to work for other CIFER® programs, which was accomplished using the

aforementioned added navigation functionality. These navigation tools were set up to work for a

general series of windows. For this project, these were for COMPOSITE, but if windows for

another program were created, they could be easily linked. This concept was illustrated by the

lead programmer for CIFER® at NASA, who was able to adapt the code to the MISOSA program

in a few days as opposed to the initial development, which spanned several weeks.

The development of the GUI was a significantly smaller undertaking than the development of the

command line. The GUI largely added to and enhanced the already present functionality of the

command line. Thus there were fewer technical problems associated with development. The

practices set in place from the work on the command-line interface continued to be employed for

the GUI development.

 33

Chapter 4: Validation and Application

In order to confirm that the new code would accurately move information between CIFER® and

MATLAB, many tests were conducted. In the early stages of the code development, various

sample cases provided with CIFER® installations, such as the XVLATSWP case mentioned

previously, were used. Also at this stage, a simple mass-spring-damper system was modeled as a

potential example to new users of CIFER®. Once the codes were more developed, more

complicated validations were employed. The first was a closed-loop investigation of a UH-60

simulation, and the second was a series of data consistency checks and cutoff frequency analysis

on the Shadow 200 Tactical Unmanned Aerial Vehicle (TUAV)6.

4.1 Sample CIFER Cases

CIFER® installations come with a series of time histories for the XV-15, and its documentation5

uses related sample cases as examples. New users of CIFER® typically learn the interface by

working through the set-up of these cases. Thus, the cases made excellent initial comparisons to

determine if the MATLAB interface was working correctly. At this stage, the analysis was

essentially creating plots of cases set up and run from CIFER® and cases set up and run from

MATLAB. The only major problem found was the numeric precision error discussed in Chapter

3. Examples of the scripts used to set up one example case can be found in Appendix I.

A series of example comparisons for the lateral sweep are shown in Figure 4.1. The aileron input

is plotted against roll rate, yaw rate, lateral acceleration, and vertical velocity perturbation. The

important aspect of the figure is that the plots comparing the results set up and run from

MATLAB, to those set up and run from CIFER® match. Additional plots and analysis for the XV-

 34

15 cases have not been included as the analysis is largely the subject matter of the CIFER®

documentation.

Figure 4.1: XVLATSWP Validation Examples

4.2 Mass-Spring-Damper System

A second elementary check on the MATLAB interface was conducted using a single-input-

single-output (SISO) mass-spring-damper system as an example. The primary goal for the

example was to provide students with a simple system to analyze using CIFER®. The system used

is shown in Figure 4.2, and its transfer function was solved from the governing differential

equations in the form of Equation 4.1.

()
() kbsMs

k
sIN
sOUT

++
= 2 [4.1]

 35

Figure 4.2: SISO Mass-Spring-Damper System

The system was modeled in Simulink by attaching a custom chirp signal generator to the transfer

function as shown in Figure 4.3. The chirp generator was written to provide a frequency sweep as

input. The spring constant K was set to 7, and variables M, and b set to 0.3 and 0.1, respectively.

These values correspond to a natural frequency of 4.83 rad/s and a damping of 0.035.

Figure 4.3: Mass-Spring-Damper Simulink Block Diagram

The results of the simulation, Figure 4.4 below, were collected and formatted into a file readable

by CIFER®. The time history then made the basis for new CIFER® case that was created entirely

in MATLAB. The script that set up the case can be found in Appendix H.

 36

Figure 4.4: Mass-Spring-Damper System Input and Output

The frequency response of the simulation is shown in Figure 4.5 below. The natural frequency of

the mode occurs is almost 5 rad/s, which corresponds to the calculated value of 4.83 rad/s. The

case was also run from within CIFER® for comparison to the MATLAB case, the results of which

are also shown in Figure 4.5, where the results overlay precisely. In addition, the CIFER® results

were compared to the results from using the MATLAB ‘bode’ command on the transfer function

as shown in Figure 4.6. There is a slight difference found at the mode and at high frequency,

which correlates to the drop in coherence at those regions.

Figure 4.5: Matlab to CIFER® Comparison Figure 4.6: CIFER® to ‘bode’ Comparison

 37

4.3 UH-60 Simulation

The first in-depth validation of the CIFER®-MATLAB interface was based on UH-60 simulation

data provided in the Combined-CIFER-CONDUIT-RIPTIDE Training course6. This course was

designed to give engineers a brief introduction to the three programs developed and distributed by

the Flight Controls Group, of which CIFER® is one. The second program is CONDUIT®7, which

is designed to optimize a control system around a parametric model for a system. The third

program is RIPTIDE®8, which is a simulation program that will allow users to fly systems

modeled in CONDUIT®. Together, the programs constitute a very powerful control systems

design suite.

The course data was examined for crossover and bandwidth characteristics using CIFER®

utilities. The reference values for these properties were already provided from CONDUIT®

analysis and were used as a check to ensure the correctness of the CIFER® results. The course

manual provided closed-loop data necessary for bandwidth analysis. In order to investigate

crossover characteristics it was necessary to generate additional simulated flight recordings, in

RIPTIDE®, of the feedback and error channels. Only the roll channel was examined for this

analysis.

As a first step in the analysis, frequency response arithmetic (CIFER® utility 9) was used to

confirm the consistency of data channels used for error and feedback. Equations 4.2 and 4.3 show

the relation of the error signal to the input and feedback signals for a conventional feedback setup

as depicted in Figure 4.7. Figure 4.8 shows the plot of the error response to stick input compared

to the response solved with the MATLAB version of CIFER® utility 9 using Equation 4.3. The

results overlay precisely, which was expected given that the data comes from a simulation.

 38

 fe −= δ [4.2]

δδδ
δ

δ
ffe

−=−= 1 [4.3]

Figure 4.7: Feedback Block Diagram Figure 4.8: Error Channel Verification

Using the MATLAB version of CIFER®’s utility 8 for crossover characteristics, the feedback

response to error in the lateral axis was analyzed. A time delay of 0.0402 was incorporated into

the CIFER crossover analysis because the time delay was not present in the simulated flight

recordings. This modification is not entirely correct because it puts the time delay over the entire

system as opposed to just within the forward loop where it actually occurs. It is, however, a

reasonable approximation. Table 4.1 shows the results from CIFER® as compared in Unix and

from Matlab to those printed in the training course manual. There was no discrepancy between

the two difference CIFER® calculations.

Table 4.1: Roll Gain/Phase Margin Results

 CIFER, From Unix CIFER, From MATLAB CONDUIT % Difference

 Margin Frequency Margin Frequency Margin Frequency Margin Frequency

Gain (1) -10.67 0.41 -10.67 0.41 -10.3 0.48 3.57 13.18

Gain (2) 22.84 13.54 22.84 13.54 24.42 14.85 6.47 8.82

Phase 56.35 2.19 56.35 2.19 57.2 2.13 1.49 2.64

 39

The differences between the two calculations are very small with the exception of the first gain

margin frequency. The difference in frequency could be a result of the time delay mentioned

above, however this would have more effect at higher frequencies. It is reasonable that the results

do not precisely match as they were obtained by different analytical methods. Figure 4.9 contains

a plot of the response with the gain and phase margins called out.

Figure 4.9: Broken Loop Roll Gain/Phase Margin Results

In addition to the broken loop gain and phase margins, CIFER® can also determine bandwidth

values from frequency response data. Using both the MATLAB and Unix version of CIFER®

utility 8 for bandwidth calculations, the roll attitude response to lateral stick was examined and

compared to results obtained from CONDUIT®. These comparisons are shown in Table 4.2, and

the difference between the two programs is very small. There was no difference between the

MATLAB and Unix runs of CIFER®. The ability to analyze nonparametric frequency responses

is a useful feature of CIFER® as it allows handling qualities of a system to be determined without

identification of the full parametric math model.

Gain Margin 1
Gain Margin 2

Phase Margin

 40

Table 4.2: Roll Bandwidth Results

 CIFER CIFER CONDUIT % Diff

 From Unix From MATLAB

45 deg Phase Margin 4.79 4.79 4.77 0.42

6 db Gain Margin 6.89 6.89 7.05 2.27

The response for lateral input to roll rate output was used to generate the data from Table 4.2.

First it was integrated to yield the attitude response and then the time delay of 0.0402 was

applied. The graph of this response with the bandwidths marked is shown in Figure 4.10.

Figure 4.10: Roll Bandwidth for Lateral Stick Input to Roll Angle Response

CIFER® has an RMS utility that is capable of solving for the cutoff frequency of a response based

on the energy content of the data. Table 4.3 shows the cutoff frequencies solved for using both

lateral actuator (LATA) and stick (LATS) inputs with roll attitude and rate responses by the Unix

and MATLAB versions of CIFER®. The results show that the piloted input loses energy at a

lower frequency, and the actuator picks up content and operates at a higher frequency. These

results are confirmed by the input autospectra, shown in Figure 4.11 with cutoff frequencies

marked. There is no difference in the results between Unix and MATLAB.

6dB Bandwidth

135 deg. Bandwidth

 41

Table 4.3: Cutoff Frequency Results

 CIFER CIFER

 from Unix from MATLAB

Channel Cutoff Freq. Cutoff Freq.

LATA 7.00 7.00

 - PB 5.32 5.32

 - PHI 2.09 2.09

LATS 1.93 1.93

 - PB 3.75 3.75

 - PHI 0.57 0.57

Figure 4.11: Stick and Actuator Input Autospectra

The cutoff frequency for actuators can be indicative of the bandwidth frequency for some systems

because the 135-degree crossover tends to occur during the phase shift that occurs at cutoff. The

roll rate tends to have more frequency content than the attitude, as indicated by Table 4.3, which

was why it was used for the previous bandwidth calculations and integrated to get the attitude

response. The cutoff frequency for roll attitude compares reasonably closely to the 45-degree

phase margin bandwidth frequency for the lateral stick to roll attitude response, 5.32 to 4.79,

Cutoff Frequency

 42

respectively. Figure 4.12 shows the two frequencies marked on their respective magnitude and

output autospectrum plots.

Figure 4.12: Cutoff Frequency Compared to Bandwidth Frequency

4.4 Analysis on Shadow 200 TUAV

The following analysis was conducted on AAI Corporation’s Shadow 200 TUAV4 for an Ames

Research Center research project. Shadow 200 has a wingspan of 12.75 feet, length of 11.17 feet,

takeoff gross weight of 328 pounds, and carries 60 pounds of payload. It cruises between 65 and

85 knots, up to a 15,000-foot ceiling, with endurance better than five hours. Figure 4.13 shows

Shadow at launch.

Figure 4.13: Shadow 200 TUAV4

Bandwidth

Cutoff Frequency

 43

Two sets of data were used: one was a simulation of the UAV, and the second from a series of

flight tests on the vehicle. The goals of the analysis were to investigate data consistency using the

frequency response arithmetic utility, and to explore the RMS and cross-over characteristics of

the vehicle. The results of the analysis were compared to scaled bandwidth criteria for manned

aircraft. This analysis was the final, most involved, validation of the CIFER®-MATLAB

interface.

4.4.1 Data Consistency checks:

Checking data for kinematic consistency assures that measured data obeys kinematic laws and

does not contain hidden scale factors or delays. The frequency arithmetic feature of CIFER®

allows reconstruction of parameters not measured during flight tests from the responses of those

that were measured. Additionally, it can be used to show whether or not data is consistent with

kinematic laws. There are several relations among commonly measured rates and attitudes for

aircraft as shown in Equations 4.4 through 4.85. Herein, it was assumed that V0 and W0 were

small.

φ=p [4.4]

θ=q [4.5]

rVqWgau x 00 +−−= θ [4.6]

φβ gpWrUaUv y ++−=−= 000 [4.7]

pVqUaUw ozo 0−+== α [4.8]

The simulation data includes measurements of phi and theta as well as the rates and accelerations

in all axes, however, alpha and beta channels were not provided. Velocity perturbations were

reconstructed from the time domain data in the FRESPID program using Equations 4.6 through

4.8. The frequency responses could then be calculated for the velocity perturbations. Using

 44

frequency response arithmetic, data consistency can be examined for all five of the above

relations. The arithmetic feature in CIFER® allows a single, basic operation (addition, subtraction,

multiplication, and division) to be performed on two frequency responses. Each individual

response can be modified by a scale factor and a power of s if desired.

In the frequency domain Equations 4.4 and 4.5 can be rearranged into Equations 4.9 and 4.10

respectively, thus allowing the comparison of the measured responses to the exact value of 1/s in

the frequency domain. Frequency response arithmetic was used to calculate the pφ and qθ

responses from the on-axis responses for rates and attitudes. Figure 4.14 and Figure 4.15 show the

arithmetic results for Equations 4.9 and 4.10 and compare these responses to the theoretical value

of 1/s.

spp
ail

ail 1
==

φ

δ

δ
φ

 [4.9]

sqq

ele

ele 1
==

θ

δ

δ
θ

 [4.10]

Both plots compare very well, which is to be expected as the measured values from the

simulation should be kinematically correct to start with. At low frequency there is a more

significant difference, primarily due to the low coherence. The difference suggests that the values

from the CIFER® response are unreliable due to little or no input at those frequencies. This is true

of the higher frequencies where coherence also degrades. Another cause of these discrepancies

could be a result of the hardware in the loop, which could introduce sensor and actuator noise and

biases.

 45

Figure 4.14: Roll Angle to Rate Comparison Figure 4.15: Pitch Angle to Rate Comparison

The next check using the simulation data was performed for Equations 4.6 through 4.8.

Frequency response arithmetic was used to combine the on-axis responses of rates and attitudes to

calculate the velocity perturbations in the frequency domain from the appropriate frequency

responses. These were compared to the corresponding velocity perturbation responses that were

initially reconstructed in the FRESPID program using the same math on the time history data.

Equation 4.11 shows an example of how the frequency responses were combined using

arithmetic.

eleele

x

ele

q
s

g
au

δδδ
1

−= [4.11]

These comparisons are shown in Figure 4.16 through Figure 4.18 using a forward velocity of 65

knots. Both methods of calculation overlay nearly precisely, which makes sense as both plots are

based on the same data, one created straight from the time domain and one built through

frequency response arithmetic. Even in regions of low coherence, both calculations include the

same errors and thus arrive at the same answers. The coherence plots vary due to a convention in

 46

the arithmetic utility that applies the coherence from one or the other of the constituent responses

to the resulting response.

Figure 4.16: Longitudinal Velocity Perturbations Figure 4.17: Lateral Velocity Perturbations

Figure 4.18: Vertical Velocity Perturbations

Performing consistency checks on the simulation was useful to ascertain that the models were

correctly set up and identify any discrepancies that may have resulted from hardware in the loop.

 47

The same checks were run on the flight data as well. Measurement instruments in flight are not

inherently bound by the math that makes a simulation correct, and it is worthwhile to confirm that

kinematic laws still hold true for them. Analyzing spurious results allows engineers to accurately

correct flight data or fix the instruments in order to acquire, hopefully, more accurate data. The

flight data includes measurements for the rates and accelerations, with the addition of alpha and

beta measurements taken from a nose boom. These allow consistency checks for Equations 4.7

and 4.8.

Measurements of phi and theta were not included in the flight time history files and thus there is

no benchmark with which to compare Equations 4.4 and 4.5. However, as phi and theta can be

reconstructed from p and q, Equations 4.6 through 4.8 could be used to generate responses for the

velocity perturbations. Equation 4.6 was not used with the flight data as there would only be one

source of u calculations for comparison. However, as alpha and beta were included in the time

histories, v and w could be calculated by two methods and those results compared to check the

data consistency of the time histories.

Figure 4.19 shows v comparisons, where the solid line is the calculation of v using yaw rate, roll

angle, and lateral acceleration, and the dotted line is v solved using the beta response for a

forward velocity of 85 knots. The coherence drops rapidly at a very low frequency, just over 2

rad/s, however the trends of the two calculations still match up closely. There appears to be a

small offset in phase between the two after the 180-degree phase shift. The offset could be due to

the low coherence or possibly due to a hysteresis effect.

 48

Figure 4.19: Lateral Velocity Perturbations, Flight Data

The second and final consistency check on the flight data was for w calculations for pitching

motion. Direct comparison of the two methods of calculation can be seen in Figure 4.20. Both

calculated responses appear to have the same trend. For a more exact comparison of the measured

data to the theoretical solution, Equation 4.8 can be rearranged to relate alpha, az and q to 1/s as

shown in Equation 4.12.

sqUa
U

oz

o 1
=

+
α

 [4.12]

A series of frequency response arithmetic operations were used to generate the left side of

Equation 4.12, which was then compared to the plot of 1/s as shown in Figure 4.21. Overall the

data matches the 1/s value quite well. Discrepancies in the magnitude plots can be directly

correlated to spikes in the coherence. The most noticeable difference occurs in the phase plot;

there is a small phase offset from -90o. The offset is fairly constant with frequency, which

suggests a hysteresis effect. The result is typical of airboom measurements such as were used in

the flight test, which tend to exhibit some amount of hysteresis.

 49

Figure 4.20: Vertical Velocity Perturbations,

Flight Data

Figure 4.21: Comparisons with Exact 1/s

Value

4.4.2 RMS and crossover comparisons:

CIFER® has utilities which calculate the root mean squared (RMS) value and some handling

qualities metrics for a given frequency response. The results of these calculations can be

compared to handling qualities specifications such as those laid out in MIL-STD 1797A9 or the

Neal-Smith Criteria10. The values between both simulation and flight data can be compared to

check consistency of the simulation. Additionally, RMS calculations can be made on the time

history data and compared to the equivalent frequency domain RMS values.

The first check was a comparison between flight and simulation full-range RMS values for

control inputs and output responses from the main on-axis channels. These results are tabulated in

Table 4.4. It should be noted that RMS values are based on the input or output autospectrum for a

given response and are a measure of the energy or excitation of the system.

 50

Table 4.4: Full Range RMS Values

 Flight: Sim:

AIL 6.05 9.07

 P 0.350 0.330

ELE 2.66 3.98

 Q 0.193 0.281

RUD 2.36 2.94

 R 0.064 0.075

WHL 1.10 1.77

 R 0.064 0.075

 Beta 0.047 none

The RMS values for the aileron, elevator, and wheel inputs from the simulation are higher in

magnitude than the flight RMS. The likely explanation is that the simulation operators gave larger

inputs to the control system than the flight operators to the flight test. The rudder RMS values

compare more closely between flight and simulation, however simulation is still larger in

magnitude. The RMS comparisons of the pitch and yaw rates have the same trend as their

respective inputs. The values for the roll rate are almost the same, which is not consistent to the

difference in the magnitudes of the aileron inputs.

Figure 4.22 shows the comparison between the flight and simulation roll rate responses. For

additional comparison, Figure 4.23 shows the same comparison in the pitch axis. The results for

the roll axis show a discrepancy in magnitude which could be due to the x-axis moment of inertia

estimated too large or the aileron control power derivative being estimated too small in the

simulation. Additionally, the phase roll-off is steeper at high frequency for the simulation which

suggests there might be a time delay error. The pitch response also shows an anomaly in the

phase slope at high frequency, which could be a time delay error as well.

 51

Figure 4.22: Aileron - Roll Rate Responses Figure 4.23: Elevator - Pitch Rate Responses

RMS values for the time history data were manually calculated in MATLAB and compared to the

equivalent values from CIFER® calculations as based on the frequency responses. These

comparisons were conducted for both flight and simulation data. Table 4.5 shows the results of

the study. The time RMS values were obtained from the pure control input data. The two

calculations compare well between the two domains.

Table 4.5: Frequency RMS compared to Time RMS

 Flight Simulation

 Freq. Time Freq. Time

Ail: 6.05 5.83 9.07 9.01

Ele: 2.66 2.79 3.98 3.77

Rud: 2.36 1.96 2.95 2.85

Whl: 1.10 1.05 1.77 1.74

The crossover frequencies can also be examined by using the CIFER® RMS calculations. Flight

and simulation results of the same on-axis responses are shown in Table 4.6. All of the cutoff

frequencies based on inputs agree well, which means the flight control performance is consistent

between the simulation and flight.

 52

Table 4.6: Cutoff Frequencies via RMS

 Flight: Sim:

AIL 4.82 4.43

 P 3.53 3.70

ELE 7.03 6.82

 Q 5.62 4.87

RUD 6.21 6.03

 R 2.53 3.89

WHL 6.04 5.59

 R 2.53 3.83

 Beta .85 none

The differences in the rudder and wheel output calculations between simulation and flight are

greater. The phase slopes are different at the mode, which suggests the simulation is more highly

damped. The outcome is surprising because the responses are very similar as shown in

Figure 4.24. The primary difference is in the spike in the flight data around 2 rad/s, which is due

to the poor coherence. When the output autospectrum is plotted, Figure 4.25, the difference

between the flight and the simulation data is more pronounced. This is the data that is integrated

in the RMS calculation. The plot of simulation data begins to roll off, losing energy, around 4

rad/s, which corresponds to the frequency from Table 4.6. The flight data begins to roll off just

above 2 rad/s, also corresponding to Table 4.6; these autospectrum plots are the source of the

discrepancy in the table.

Figure 4.24: Rudder to Yaw Rate Response Figure 4.25: Rudder Output Autospectrum

 53

CIFER® offers a utility for analyzing bandwidth and crossover properties of frequency responses.

Use of the handling qualities portion of the Bandwidth utility allows identification of –180-degree

and –135-degree bandwidth frequencies and gains. Table 4.7 shows the –135-degree bandwidth

frequencies for the main on-axis responses in flight and simulation. The attitude bandwidths were

determined by integrating the corresponding rate response.

Table 4.7: -135-Degree Bandwidth Frequencies

 Flight: Sim:

PHI/AIL 2.75 2.33

THETA/ELE 5.86 4.27

PSI/RUD 2.32 2.39

PSI/WHL 2.62 3.78

BETA/WHL 1.53 none

These results compare reasonably well between flight and simulation. As the cutoff frequency can

be indicative of the bandwidth frequency it is useful to show comparisons between the two.

Figures 4.26 through 4.28 show these comparisons for each axis on the attitude response for the

aircraft. The results for the roll and pitch axes as well as the yaw flight data compare reasonably

well. The cutoff and bandwidth frequencies for the yaw simulation data do not compare as well,

which likely is a result of the differing output autospectra.

Figure 4.26: Aileron to Roll Attitude Response Figure 4.27: Elevator to Pitch Attitude Response

 54

Figure 4.28: Rudder to Yaw Attitude Response

Bandwidth can be a useful indication of aircraft handling qualities and thus can be used to assist

in control system optimization. Classically, bandwidth criteria for fixed-wing aircraft are

discussed in MIL-STD 1797A and several subsequent studies. These criteria use both bandwidth

and phase delay to determine handling qualities. Phase delay is based on the twice 180-degree

frequency as shown in Equation 4.13.

()
180

1802

2*3.57
180
ω

φ
τ ω

o

p
+

−= [4.13]

One concern with comparing the Shadow 200 data to the specifications as defined in these reports

is that the studies were conducted for much larger, piloted aircraft. MIL-STD 1797A uses

AFFDL-TR-70-7410 as a basis for its bandwidth criteria. This study was conducted to examine

control system design criteria for fighter aircraft. Thus the criteria from these documents will be

scaled to Shadow as though it were a scaled down fighter. Compared to the average fighter

wingspan, Shadow has a scale factor of about 3. Equations 4.14 through 4.16 show the form of

the dynamic similarity laws11 that govern scaling where subscripts a and m denote actual and

model, respectively, and N is scale factor.

 55

Length:
N
L

L a
m = [4.14]

Time Constant:
N
a

m
τ

τ = [4.15]

Frequency: Nam ωω = [4.16]

Figure 4.29 shows results for the roll axis plotted on the scaled WL-TR-84-316212 handling

specification for roll attitude. The flight bandwidth is within the level 1 handling qualities

boundary while the simulation result is level 2. Though the bandwidths of the two tests are

similar, the phase delay is significantly different: 0.093 for simulation and 0.001 for flight. This is

a result of the differences in the phase curve of the frequency response, shown in Figure 4.30 with

the 180-degree and twice 180-degree frequencies marked. The simulation data rolls off much

more quickly than the flight data. The discrepancy between the two tests would need to be cleared

up before a solid conclusion on the handling qualities could be reached.

Figure 4.29: Scaled Roll Bandwidth Criteria Figure 4.30: On Axis Roll Attitude Response

The analogous scaled specification for pitch attitude bandwidth is shown in Figure 4.31. Only

flight data was calculated as the simulation data did not exhibit a –180-degree phase crossing at

Level 3

Level 2

Level 1

 56

high frequency, as shown on Figure 4.32. Flight data with marks for the 180-degree and twice

180-degree frequencies is also shown. This handling specification is for Category C flight which

covers terminal flight phases that typically involve non-aggressive maneuvers and accurate flight-

path control such as takeoff, approach, and landing. The results predict level 1 handling qualities.

The phase delay, 0.009, is fairly small. As the calculations had to be conducted on a low

coherence portion of the phase plot, it is probable that the phase delay is higher, though cleaner

data would be required for verification.

Figure 4.31: Scaled Pitch Category C Flight Criteria Figure 4.32: On Axis Pitch Attitude Response

A third bandwidth criterion for Category A flight encompasses non-terminal phases that require

rapid maneuvering, precision tracking or precise flight-path control. Examples include air-to-air

combat, weapon delivery/launch, reconnaissance or terrain-following. While Shadow 200 is not a

combat aircraft, it might be expected to perform aggressive maneuvers during its transit to and

from observation targets. Figure 4.33 shows Shadow to be well into the level 2 region for

Category A flight. The level 1 region scales up to a very high bandwidth, which may be

unreasonable. Given that the spec is derived from fighter aircraft data, a scaled down fighter style

Level 3
Level 2

Level 1

 57

UAV might conceivably achieve bandwidths necessary to yield level 1 handling qualities by

these scaled criteria.

Figure 4.33: Scaled Pitch Category A Flight Criteria

4.5 Summary of Validations

The extensive series of validation examples suggest that the CIFER®-MATLAB interface from

the command line works very well. No major fundamental errors are still present in the code. The

validations were central to the programming development as they allowed problems with

interface structure to be fixed by the programmer as seen from the viewpoint of a user. In addition

to the validations conducted by the author discussed in this chapter, engineers at NASA were

supplied preliminary and completed versions of the interface to test in their own projects. This

allowed the engineers more input to the layout of the interface and provided additional testing for

the new code.

Level 3

Level 2

Level 1

 58

Chapter 5: Conclusions

5.1 Code Development

The primary goal of this thesis was to create a modernized interface for CIFER® that utilized both

command-line functions and a GUI interface within MATLAB. Command-line functionality was

introduced for CIFER® programs FRESPID, MISOSA, COMPOSITE, the utilities for RMS,

Bandwidth, and Frequency Response Arithmetic as well as additional plotting and data

storage/retrieval utilities. This library of functions will provide a base from which further

modernizations of CIFER® can take place. The command-line functions proved to be complex

enough that only an experienced user should employ them, however, the time savings to that user

are significant. In-house users of CIFER® at Ames Research Center were pleased with the new

capability to script the set-up and running of cases.

The development of the GUI as a feasibility study also proved successful; the general look and

feel of the CIFER® screen interface was preserved while adding various elements that enhanced

and accelerated the case set-up process over the previous Curses interface. The introduction of

modern navigation tools such as browsers and menus will afford users more awareness of where

they are in the set-up process and improve the learning curve of new users.

The last important aspect of the programming was the attention to the fact that the code will be

built upon by other programmers at NASA. Thus the code was well commented and documented.

The general structure of the code was made to be as uniform as possible. While the author’s

development of this code has ceased, programmers at Ames are continuing development and

report that the efforts made to create an easily modifiable code were successful. GUIs for both

 59

FRESPID and MISOSA have been created with a minimum hassle. Much of this success is due to

the reviews of in-house users and programmers.

5.2 Analysis

The most important conclusion from the analysis was that the code developed for this thesis

worked. Numerous comparisons between cases run in CIFER® and cases run in MATLAB were

made, and no appreciable difference was found. Slight discrepancies were discovered, but careful

examination of these suggested that they were caused by machine precision issues, probably

because MATLAB automatically makes all numeric variables double precision. The differences

due to precision error were both negligible and tended to occur in portions of the data that would

not be used in analysis, due to low coherence values.

The analysis provided a good illustration of the capability introduced with the ability to script the

functionality of CIFER®. The scripts that ran most of the analysis and generated the plots would

have taken far longer to enter by hand into the CIFER® interface. Many bugs and errors with the

MATLAB code that might not have been found till much later, or at all, were uncovered by the

extensive use of the functions during the analysis.

In addition to validating to the programming efforts, the analysis tasks provided valuable

experience to the author in real-world application of controls and handling analysis. The UH-60

example provided important insight into open and closed-loop handling qualities. The work on

Shadow illustrated the need to verify that measurement devices are correctly installed and

provided good experience in determining the accuracy of a simulation as compared to flight data.

 60

5.3 Future Work

The functions created for this thesis are a significant step forward for CIFER®, but there is

significant work that must still be completed in order to ready the command-line and modern GUI

capability for commercial release, which is the ultimate intended goal. Command-line primitives

for the remaining programs and utilities need to be created as well as a full graphical interface.

While DERIVID and VERIFY are too interactive and complex to be encompassed by a single

command-line call, combined functions could still allow experienced users to efficiently script

setting up cases. Both of these programs would benefit greatly from updated GUI interfaces,

which could easily run multiple command-line functions behind the screens.

In addition to finishing development on the remaining CIFER® functionality, the code will need

to be production tested to assure that it is robust. Engineers at Ames Research Center are making

the first steps towards this process by applying the current code to larger, more involved tasks.

Once the code is fully developed and its capacity verified to the satisfaction of industry users the

new code can be released as a standard feature of the CIFER® suite. The work accomplished in

this thesis goes far towards realizing the possibilities of the new interfaces as a reality that will

greatly benefit all users of CIFER®.

 61

Bibliography

Works Cited:

1.) Hamel, P.G. (Editor), “Rotorcraft System Identification,” AGARD-AR-280, 1991.

2.) The Mathworks, Inc., www.mathworks.com, 2004.

3.) Thompson, K.D., Ames Imaging Library Server, ails.arc.nasa.gov/

4.) AAI Corporation “Shadow TUAV” www.shadowtuav.com, Accessed 2004.

5.) Tischler, M.B., "CIFER version 2.1 - Comprehensive Identification from Frequency

Responses, Vol 1 - Class Notes; Vol 2 - User's Manual," Army TR-94-A-017/8, NASA
CP 10149/10150, September 1993.

6.) Tischler, M.B., Mansur, M.H., “Combined CIFER/CONDUIT/RIPTIDE Training,”

Moffett Field, Ames Research Center, 2004.

7.) "CONDUIT Version 4.1 User's Guide," University of California, Santa Cruz 41-071403,
July 2003.

8.) Manur, M.H., Dai, W.L., “Real-time Interactive Prototype Technology
Integration/Development Environment (RIPTIDE): Installation and User’s Guide”,
UARC, UC Santa Cruz, Ames Research Center.

9.) United States Department of Defense, “Flying Qualities of Piloted Aircraft,” MIL-STD-

1797A, 1990.

10.) Neal, T.P., Smith, R.E., “An In-Flight Investigation to Develop Control System Design
Criteria for Fighter Airplanes, Volumes 1 & 2,” AFFDL-TR-70-74, Cornell Aeronautical
Laboratory, Inc., Dec. 1970.

11.) Mettler, B., Tischler, M.B., Kanade, T., “System Identification of Small-Size Unmanned

Helicopter Dynamics,” American Helicopter Society, 1999.

12.) Mitchell, D.G., Hoh, R.H., “Proposed Incorporation of Mission-oriented Flying Qualities
into MIL-STD-1797A”, WL-TR-94-3162, 1994.

References:

1. Marchand, P., Graphics and GUIs with Matlab, Boca Raton, CRC Press, 1996.

2. McRuer, D., Irving, A., Dunstan, G., Aircraft Dynamics and Automatic Control, New
Jersey: Princeton University Press, 1973.

 62

3. Nelson, R.C. Flight Stability and Automatic Control, 2nd ed., New York: McGraw-Hill,
Inc., 1998.

4. Nise, N.S., Control Systems Engineering, New York: John Wiley & Sons, Inc., 2000.

5. Nyhoff, L.R., Leestma, S.C., Fortran 90 for Engineers and Scientists, New Jersey:
Prentice Hall, 1997.

6. Thurling, A.J., “Improving UAV Handling Qualities Using Time Delay Compensation,”
M.S. Thesis, Air Force Institute of Technology, 2000.

7. Tischler, M.B., Cauffman, M.G., "Frequency-Response Method for Rotorcraft System
Identification: Flight Applications to BO-105 Coupled Rotor/Fuselage
Dynamics," Journal of the American Helicopter Society, Vol 37, No 3, pgs 3-17, July
1992.

 63

Appendix A: Screen Layout Comparison

This Appendix contains a series of screen shots that show each screen in COMPOSITE for both

the original CIFER® screen interface and the new GUI interface. A more detailed description of

the differences can be found in Chapter 3.

Old Interface:

Figure A1: Original Interface: Screen 1

Figure A2: Original Interface: Screen 2

 64

Figure A3: Original Interface: Screen 3

Figure A4: Original Interface: Screen 4

Figure A5: Original Interface: Final Screen

 65

New GUI Interface:

Figure A6: MATLAB GUI: Screen 1

Figure A7: MATLAB GUI: Screen 2

 66

Figure A8: MATLAB GUI: Screen 3

Figure A9: MATLAB GUI: Screen 4

 67

Figure A10: MATLAB GUI: Final Screen

Figure A11: MATLAB GUI: Two Data Loading Screens

 68

Appendix B: Help Documentation for Command-Line Interface

Introduction:

This document details the use of the command-line functions included in the CIFER®-MATLAB

interface developed by NASA Ames. CIFER® is a tool, also developed by NASA Ames, for

system identification using frequency responses. This document has been written assuming the

user has background in using CIFER®. Any questions concerning the operation of CIFER® should

be directed to the appropriate CIFER® user manual.

This interface is designed as a tool to allow users to run CIFER® programs and utilities from the

command line of MATLAB. This enables easy retrieval of information in CIFER® to the

MATLAB workspace for analysis and allows the scripting of multiple batch jobs. The command

line functions will perform all the operations and checks contained in each screen of a CIFER®

program at one time. While this allows the user great flexibility, the linear setup of the CIFER®

screens is bypassed. Thus new users are encouraged to verify the data entered in the command

line by running the corresponding program within CIFER® and checking each screen.

Contained within this document are a series of short examples detailing the various features and

layout of the command-line functions. These examples are supplemented by the online help

information (accessed using the command ‘help functionname’ in MATLAB) and two extended

examples, all of which are contained in this document’s appendices.

 69

CIFER® main programs

The three main CIFER®-MATLAB interface functions are designed to give users the

functionality of the CIFER® programs FRESPID, MISOSA and COMPOSITE by making calls

from the MATLAB workspace. All the functions are structured in the same manner with two

required inputs. The first input is either the name of the desired CIFER® case or a MATLAB

structure that contains information representing a CIFER® case. The second input is the flag to

execute a particular command on that case. The commands that can be performed are to open a

case, save data to a case or run a case as a batch job.

CIFER® # CIFER® Program MATLAB Function
 1 FRESPID frespid
 2 MISOSA misosa
 3 COMPOSITE composite

To facilitate the organization of information that goes into a CIFER® case, MATLAB structures

are used to store case data. The fields in these structures correlate to the field entries of the

CIFER® screen interface. The MATLAB interface has optional inputs that allow users to specify

values for a particular field using name-value pairs. This allows the user to modify parts of the

structure without dealing with the entire structure. Invoking the ‘help functionname’ command

from MATLAB will display examples of using each function as well as a detailed list of the

CIFER® information each field stores. The contents of these help commands can also be found in

Appendix C.

CIFER® should be set to the database to be used (by selecting the appropriate SIFDEF file) prior

to using these MATLAB functions. If the database is changed by changing the SIFDEF file,

MATLAB must be restarted.

Features common to all three main programs:

The structures for each of the programs contain many fields, thus the functions have been set up

to do as much of the work of filling the fields in as possible for the user. Each function can be

called with no inputs or outputs to return a list of what type of data is contained in each field;

integers, cell arrays, scalar arrays, etc. The default value for each field is also specified in this

call. This information can also be found in Appendix D. Users can initialize a mostly empty

 70

structure by calling the functions with no inputs and a single output. This template contains all the

correct fields with arrays specified to the correct size and many fields set to a default value. For

instance, the option in FRESPID to cross-correlate controls is set to ‘yes.’ Fields that require

case-specific information, such as the case name, are not given default values. These functions

make extensive use of cell arrays to store string information and users unfamiliar with cell arrays

should review the topic.

The following examples detail the basics of using the functions: opening, saving, and running

cases. Details specific to individual functions will be covered in following sections. In addition to

the short examples presented inline with the text, detailed examples of setting up and running a

simple second order mass-spring-Damper system and the XVLATSWP case from the XV-15

sample database “703” are presented in Appendices H and I, respectively. (This database should

be provided with the installation of CIFER®.)

It is very important to keep in mind that the MATLAB calls can only save frequency responses

into the CIFER® database at this time. Due to complications with suppressing prompts from

CIFER® for information, the option to save frequency responses as files has not been

implemented in the MATLAB command line.

Creating a template structure:

The call to create a template structure is very simple as shown below. After the calls, each of the

‘out_x’ variables contains the basic skeleton used to create CIFER® cases. This feature is useful

to ensure that the field names and data types are correctly specified and the various arrays are the

correct length. The fields are all initialized to the same defaults as found in a new case of the

appropriate CIFER program with the exception of plotting which defaults off for all three.

>> out_f = frespid;
>> out_m = misosa;
>> out_c = composite;

Opening Cases (1 as second input):

Retrieving case information from the CIFER® database is accomplished by calling the MATLAB

functions with the case name specified as the first input and ‘1’ for the second input as shown

below. All of these calls would write the information from the CIFER® case XVLATSWP to the

appropriate MATLAB structure ‘out_x’. ‘out_x’ can then be viewed and modified as needed.

 71

>> out_f = frespid('XVLATSWP',1);
>> out_m = misosa('XVLATSWP',1);
>> out_c = composite('XVLATSWP',1);

Saving Cases (2 as second input):

Saving a case works much the same as opening cases. A simple call to save a case might involve

specifying an existing case to be renamed as a new case. This call is shown below; the existing

XVLATSWP case is opened, renamed to ‘TEST’, and then saved back into the database as a new

case. The ‘out_x’ variable retains the information about the new case.

>> out_f = frespid('XVLATSWP',2,'casename', 'TEST', 'caseout', 'TEST');
>> out_m = misosa('XVLATSWP',2,'casename','TEST','casein','TEST',

'caseout','TEST');
>> out_c = composite('XVLATSWP',2,'casename','TEST','casein','TEST',

'caseout','TEST');

Cases can also be specified using the appropriate structure as the first input. Shown below are

calls using frespid that mimic the above example. In both examples, the output name (and input

name for misosa and composite) is also specified; if it had not, then the output name would still

be ‘XVLATSWP’. The MATLAB functions do not assume the user wants to change the output

name. If the output field is blank, then the functions assume the output name to be the same as the

case name.

>> out_f = frespid('XVLATSWP',1);
>> out_f.casename = 'TEST';
>> out_f.caseout = 'TEST';
>> frespid(out_f,2);

Users should be careful when using old cases as a template. If the number of controls, outputs,

data files, or other such parameters changes, old values can remain in the arrays of both the

MATLAB structure and in the CIFER® database. Therefore it is good practice to carefully zero

out unused fields in arrays when making changes. This will prevent unwanted information from

being retained as changes are made.

Running a batch job (3 as second input):

Specifying a case to run can be as straightforward as opening a case. The three calls below will

execute the batch job for the appropriate program (FRESPID, MISOSA or COMPOSITE) for the

‘XVLATSWP’ case. The batch call will pause MATLAB until the batch job has finished, display

information about the job and log files, and report if there are potential errors with the batch job.

Only the screen output for the frespid call is shown to conserve space.

 72

>> frespid('XVLATSWP',3);
Job file: /usr/cifer/jobs/FRE_XVLATSWP.COM.01 submitted
Waiting for batch to finish...

Batch completed.
The log file is:/usr/cifer/jobs/FRE_XVLATSWP.OUT.01
No error detected.
>> misosa('XVLATSWP',3);
>> composite('XVLATSWP',3);

The example below will take the XVLATSWP case, copy it to TEST and then run it as a batch

job all with a single command. The batch command always saves the case before it sends it to the

batch job. To verify the name change was correct, the structure, which will contain information

for TEST, is returned.

>> out_f = frespid('XVLATSWP',3,'casename','TEST','caseout','TEST');

frespid:

This section contains information specific to the frespid function and will primarily cover the

mechanics that mimic the functionality of FRESPID screens 7 and 8: conditioning and

windowing of data.

Data conditioning in screen 7 is handled with two fields in the frespid structure. The first field,

‘conditioning,’ contains two rows; the first row stores a flag for the type of conditioning desired

and the second row stores the value. The convention is that ‘1’ denotes expansion of data, ‘2’

denotes decimation, and ‘3’ denotes filtering. The second field, ’condunit,’ contains the units to

use in the case of filtering. The example below illustrates these variables.

>> in = frespid;
>> in.conditioning(1:2,1:2) = [3, 2; 4, 25];
>> in.condunit(1) = 'Hz';

The data in the example will be filtered at 4 Hertz and decimated to 25 Hertz. These operations

are lumped into one somewhat ungainly variable because of how CIFER® internally processes the

data. The default value for ‘condunit’ is Hertz so it need not be specified unless Radians or non-

dimensional values are used. When returning conditioning output from CIFER® to MATLAB, the

function also defaults the units to Hertz. If cases created using conditioning are opened in

CIFER®, there may appear to be a small error in the ten or hundred thousandth decimal place.

This is due to MATLAB using double precision while Fortran uses a combination of precisions.

Numerous checks have verified that the end results are the same.

 73

The variables that support screen 8 are analogous to the fields in that FRESPID screen. The

general convention is that if a window length is specified as zero, then automatic calculations on

it will not be performed. However, if any of the other related variables, such as numbers of input

and output points, are set to zero while a window is turned on, they will be automatically

calculated using the same logic that CIFER® employs. If only window lengths are specified and

all other related fields set to zero, then the function will generate the same values that CIFER®

would if the screen were stepped through manually. Thus the following call would achieve the

same result as entering the window lengths in CIFER® screen 8 and pressing the PF1 key until

CIFER® finished filling in the fields.

>> in = frespid('NOWINS',1);
>> frespid(in, 2, 'name', 'NEWWINS', 'winlen', [45,40,30,20,15])

The example retrieves a theoretical template case that has no window data entered and copies it to

a case that now has fully specified window data. Users can specify their own values to fields such

as maximum frequency and the automatic calculations will not occur unless the specified values

violate the rules governing the variables. For instance, if the numbers of input and output points

do not add to a power of two, the function will adjust them and issue a warning. Care should be

used when using one case as a template for another and modifying the window lengths to make

sure that old values are not written into the new case.

misosa and composite:

The CIFER® programs MISOSA and COMPOSITE are less complicated than FRESPID.

Accordingly, the corresponding MATLAB functions have far fewer field entries and automatic

corrections. The main issue to be alert for is in specifying the input case name. The warning is

much the same as for the output case name previously stated. If the field is empty, it will be filled

in to match the case name. Otherwise it retains the old entry. Thus to fully change names from

one case to another, all three variables ‘casename,’ ‘caseout,’ and ‘casein’ must be modified.

 74

CIFER® analysis utilities

The CIFER®-MATLAB interface includes three frequency response analysis utilities: RMS,

Handling Qualities/Stability Margin, and response arithmetic. Access to CIFER®’s handling

qualities utility has been split into two parts: handling qualities and crossover characteristics. The

current implementation allows full use of the various CIFER® options for each utility from the

MATLAB command line. In addition to these analysis utilities, the CIFER® frequency response

plotting utility may also be used from the MATLAB command line. Below is a list of the utilities

and their corresponding MATLAB calling function. Appendix E contains the help files for each

of these functions.

CIFER® # CIFER® Utility MATLAB Function
 7 RMS cifrms
 8 Handling Qualities cifhq
 8 Handling Qualities cifxover
 9 Frequency Response Arithmetic cifarith
 19 Plot Frequency Response cifplot

All five utilities use MATLAB structures to organize the input variables and work almost the

same as the three main programs. They all use the same basic interface to convey information and

run their respective utilities. Input can be specified either using a pre-initialized structure, or by

passing in a flag, which generates a template structure, and a list of name-value pairs to fill in the

fields of the template. The sections describing the individual functions have examples of both

styles. Each function can be called with no inputs or outputs, causing a list of the information that

each field requires along with its default setting to be displayed. This information is provided in

Appendix F. Finally, if the functions are called with a single output and no inputs, a template

structure will be returned initialized to the default settings. Examples of all these commands

follow in the next sections and a detailed overview of the online help information for each

function can be found in Appendix E.

cifrms:

The CIFER® RMS utility is a straightforward calculation for the mean square and root mean

squared values of a frequency response. The MATLAB cifrms function is called using a structure

 75

as input and up to five outputs to collect the desired information. The least complex call and the

corresponding output are shown below:

>> in = cifrms;
>> in.name = 'XVLATSWP_FRE_A0000_AIL_P';
>> cifrms(in);

**** Frequency Response Information ****
First Freq: 0.13963
Last Freq: 31.41590
Number of values in frequency response: 923

**** Mean-square value results ****
 Mean Square Value = 9.244088
 Root Mean Squared Value = 3.040409

In this example the name of a frequency response is specified; when the structure is created it

assumes defaults for inputs such as source and input/output integration selection. These defaults

are defined in Appendix F and can be accessed by an empty call to the function as mentioned

above. Single-character inputs such as those for source are not case-sensitive. No outputs need be

specified; the function will print all the results to the screen. A more complex call is shown below

without the printed output, and using name-value pairs for input. The name-value pairs do not

have to be specified in a particular order as long as they occur in pairs.

>> in = cifrms;
>> name = 'XVLATSWP_FRE_A0000_AIL_P';
>> scorrect = 2;
>> minfreq = 10;
>> maxfreq = 30;
>>
[msv,rms,pts,min,max]=cifrms(in,'name',name,'spower',scorrect,'minfreq',
 minfreq,'maxfreq',maxfreq,'toscrn','off');

This example specifies limits to the frequency range examined and sets the ‘power of s’

correction factor to 2. The default values can be used for these variables by assigning the inputs a

value of 0. The output variables store the information that results from the function call; ‘msv’

and ‘rms’ store the mean square value and root mean squared value, respectively. The variable

'pts' stores the number of points in the response, and ‘min’ and ‘max’ store the minimum and

maximum frequencies in the response. Fewer outputs can be specified if desired. Finally, the

printed output can be turned off by the ‘toscrn’ field in the structure.

One other feature of the cifrms function is the ability to calculate a fraction of a full range rms

value. The ‘minfreq’ and ‘maxfreq’ fields must be set equal to use this option. The printed output

is slightly different and the variable outputs change slightly. ‘msv’ stores the full range rms value,

 76

‘rms’ stores the rms value for the partial range, and ‘freq’ stores the frequency where that partial

value occurs. An example call is shown below:

>>
[msv,rms,pts,min,max,freq]=cifrms(0,'name','XVLATSWP_FRE_A0000_AIL_P',
 'minfreq',0.707,'maxfreq',0.707);

**** Frequency Response Information ****
First Freq: 0.13963
Last Freq: 31.41590
Number of values in frequency response: 923

**** Mean-square value results ****
Full range root mean square value is: 3.040409
 Located frequency where RMS value is
 0.707000 * 3.040409 = 2.149569
 At frequency 3.837147 rad/sec the RMS is 2.158710

cifhq:

The cifhq function is comprises all of the handling qualities calculations from CIFER®’s utility 8

as well as the utility’s quick plotting, linearized plotting, and least squares fits. There are several

output variables available to store the information resulting from the function. The most basic call

to cifhq is shown below where the function is called to set up a template structure which is then

modified for the specific response. The full list of field names can be found in Appendix C.

>> in = cifhq;
>> in.name = 'XVLATSWP_FRE_A0000_AIL_P';
>> cifhq(in);

 Start Freq Start Mag Start Phase
 End Freq End Mag End Phase
 0.1396 -34.5106 2.6104
 31.4159 -39.9538 96.0240

Number of values in frequency response: 923

***** Handling Qualities Characteristics *****

Start freq: 0.1396
Start phase: 2.6104

 -180 deg frequency = 29.478342 (Rad/sec)
 DB-Gain = -63.286926 (dB)
 Linear gain = 0.000685 (Hz)
 -135 deg BW freq = 29.463261 (Rad/sec)
 DB-Gain = -61.210114 (dB)
 Linear gain = 0.000870 (Hz)
 6 dB Bandwidth frequency = 29.437544 (Rad/Sec)
 Another 6 dB Bandwidth frequency = 27.796064 (Rad/sec)
 Another 6 dB Bandwidth frequency = 27.782501 (Rad/sec)
 Another 6 dB Bandwidth frequency = 24.950647 (Rad/sec)
 Another 6 dB Bandwidth frequency = 24.890440 (Rad/sec)
 Another 6 dB Bandwidth frequency = 17.924093 (Rad/sec)
 Another 6 dB Bandwidth frequency = 17.860493 (Rad/sec)
 TWICE 180 FREQUENCY NOT FOUND

 77

All the information is displayed to the screen, however, output variables can be used to preserve

these numbers. There are two variables for storing cifhq output, one for purely numeric values,

and a second that stores the words associated with each number. Information about the frequency

response can be saved to two additional variables. Shown below is the function call with all

outputs specified.

>> [words,num,pts,frinfo]=cifhq(in,'toscrn','off');
>> disp(words)
 ''
 ' -180 deg frequency = 29.478342 (Rad/sec)'
 ' DB-Gain = -63.286926 (dB)'
 ' Linear gain = 0.000685 (Hz)'
 ''
 ' -135 deg BW freq = 29.463261 (Rad/sec)'
 ' DB-Gain = -61.210114 (dB)'
 ' Linear gain = 0.000870 (Hz)'
 ''
 ' 6 dB Bandwidth frequency = 29.437544 (Rad/Sec)'
 ' Another 6 dB Bandwidth frequency = 27.796064 (Rad/sec)'
 ' Another 6 dB Bandwidth frequency = 27.782501 (Rad/sec)'
 ' Another 6 dB Bandwidth frequency = 24.950647 (Rad/sec)'
 ' Another 6 dB Bandwidth frequency = 24.890440 (Rad/sec)'
 ' Another 6 dB Bandwidth frequency = 17.924093 (Rad/sec)'
 ' Another 6 dB Bandwidth frequency = 17.860493 (Rad/sec)'
 ' TWICE 180 FREQUENCY NOT FOUND'

The above call has turned off the screen output using the ‘toscrn’ field. The variable 'num'

contains only the resultant frequencies and gains that are shown in the 'words' variable. (Those

values on the right side of the equals sign.) 'pts' saves the number of points in the response and

'frinfo' is an array containing the starting and ending frequency, magnitude, and phase of the

response. It also contains starting frequency and phase for reference if modified using correction

factors for ‘power of s,’ gain, phase shift, or time delay. The correction factors can be used with a

slightly more complex call, shown below.

>> name = 'XVLATSWP_FRE_A0000_AIL_P';
>> corrections = [2,5,90,0.5];
>> cifhq(0,'name',name,'cor_list',corrections,'toscrn','off');

This call utilized the name-value pair style of input. The name-value pairs do not have to be

specified in a particular order as long as they occur in pairs. Note that the flag of 0 for the first

variable makes the function automatically use the default structure set up in cifhq. If the 0 flag is

used, any response-specific inputs must be specified or the call will result in errors. The template

does not assume default input or output response names.

 78

The cifhq function supports the utility 8 ability to create plots and perform a least squares fit on

the data. There are a number of options for turning on the plots and setting their ranges. The call

below implements the full series of plotting available from utility 8.

>> name = 'XVLATSWP_FRE_A0000_AIL_P';
>> plot = 'Y';
>> linplot = 'Y';
>> leastsquare = 'Y';
>>
cifhq(0,'name',name,'mpcplt',plot,'lpcplt',linplot,'lsfit',leastsquare,

'toscrn','off');

This call would display a total of three CIFER® plots to the computer screen. The values for the

ranges on all the plots are initialized to a default value, which can be modified by changes to the

appropriate fields (see Appendix E) in the structure.

cifxover:

The second half of the handling qualities utility in CIFER® allows the user to find crossover

properties for a frequency response. This ability has been split out into a separate function call for

the MATLAB interface. It works nearly the same as the cifhq function. The most basic call and

the resulting output are shown below.

>> in = cifxover;
>> in.name = 'XVLATSWP_FRE_A0000_AIL_P';
>> cifxover(in);

Search Range:
Min freq: 0.139626 Max freq: 31.415899

No 0dB crossing found

-180*n deg crossings for gain margin determination

First -180*n crossover in selected range is:
Freq. = 27.818336 for 180.0000 deg
Gain Margin = 54.728527 dB

First -180*n crossover in selected range is:
Freq. = 29.478342 for -180.0000 deg
Gain Margin = 63.286926 dB

First -180*n crossover in selected range is:
Freq. = 30.105280 for -180.0000 deg
Gain Margin = 52.274651 dB

The name-value pair method of input works the same as described above for cifhq. The call

below shows an example of this used to run the utility with correction factors, generate a plot of

the output, and save the new response. The crossover characteristics portion of utility 8 is not tied

 79

to either the linearized phase and coherence plot or the least squares fit in CIFER® so those

options are not available to the cifxover function.

>> name = 'XVLATSWP_FRE_A0000_AIL_P';
>> corrections = [2,5,90,0.5];
>> plot = 'Y';
>> save = 'Y';
>> savename = 'XVLATSWP_BAN_A0000_AIL_P';
>> cifxover(0,'name',name,'cor_list',corrections,'mpcplt',plot,'save',

save,'savename',savename,'toscrn','off');

Again it should be noted that care should be used when employing the 0 flag for inputs as

response names are not assumed by the code. Output information is stored in the same fashion as

cifhq. The first two variables contain the numeric values for the crossover characteristics, and the

last variable has the frequency range of the response.

>> [X0db,Xn180db,frng]=cifxover(0,'name','XVLATSWP_FRE_A0000_AIL_P',
 'toscrn','off');

>> disp(X0db)
 0 0

>> disp(Xn180db)
 27.8183 180.0000 54.7285
 29.4783 -180.0000 63.2869
 30.1053 -180.0000 52.2747

>> disp(frng)

0.1396 31.4159

cifarith:

This utility allows basic arithmetic (+,-,*,/) to be performed on two frequency responses. The

results are saved to a new response file. A very simple example of running the arithmetic function

is shown below:

>> in=cifarith;
>> in.names = {'XVLATSWP_FRE_A0000_AIL_P','XVLATSWP_FRE_A0000_AIL_R'};
>> in.outname = 'test';
>> in.outid = 'arith resp from Matlab';
>> cifarith(in)

Response test written to the database.
*** Arithmetic operation successful ***

 Minimum Frequency is: 0.1396
 Maximum Frequency is: 31.4159
 1000 Values in Output Response
 Units are in RAD

 80

The template sets all values to the defaults found when the arithmetic utility in CIFER® is first

run. For example, all scale factors are set to 1, the operation is multiplication, and the source and

destination point to the database. Any of these values can be modified either by changes to the

appropriate field in the structure or by using the field name and value as a pair of inputs. The

above example could be compressed into one call as follows. There are no output variables for

this function, and as before the ‘toscrn’ field allows the user to turn off the printed return

information.

>> cifarith(0,'names',{'XVLATSWP_FRE_A0000_AIL_P',

'XVLATSWP_FRE_A0000_AIL_R'},'outname','test','outid','arith resp
 from Matlab','toscrn','off')

cifplot:

The cifplot function is the MATLAB command line call for CIFER's utility 19, the frequency

response plotting. A basic set of calls to cifplot are shown below:

>> in = cifplot;
>> in.array(1:3) = [1,2,3];
>> in.names(1) = {'XVLATSWP_FRE_A0000_AIL_P'};
>> cifplot(in);
 Reading data
Plotting successful

After this call, the standardized CIFER® plot would be displayed to the screen. As with the

previous functions, the call can be simplified using name-value pairs as input. The previous

example could be reduced as follows. There are no output variables for this function.

>> cifplot(0,'array',[1,2,3,0,0],'names',

{'XVLATSWP_FRE_A0000_AIL_P','','','','',''})
 Reading data
Plotting successful

 81

CIFER® support utilities:

Three functions are available to facilitate the retrieval of data from the CIFER® database. The

getfr function, when given a frequency response name, will return arrays for frequency,

magnitude, phase and so on. The other function, writefr, allows the user to change values in these

arrays and pass them back in to be saved to the CIFER® database. The third function is called

caselist and allows the user to query the database for which cases are stored for a particular

program.

Due to the simplicity of these functions, structures are not used to input data as is done for the

other CIFER® programs and utilities. Thus, these functions do not have the empty call feature that

returns a list of structure field data types. They do still include help documentation which can also

be found in Appendix G.

getfr and writefr:

The getfr function is designed to give users access to all the arrays that make up a full frequency

response. The most complete call, shown below, will bring back arrays of all 10 frequency

response fields. The order in which these are returned is fixed; therefore if only coherence were

desired, variables to hold information for frequency, magnitude and phase would still be required

as shown in the second function call, which only returns four of the frequency response data

fields.

>> name = 'XVLATSWP_COM_ABCDE_AIL_P';
>> [frq,mag,pha,coh,gxx,gyy,gxy,rel,img,err] = getfr(name);
>> [frq,mag,pha,coh] = getfr(name);

Frequency responses can also be written back into the CIFER® database through the writefr

function. The example below shows the creation of a new frequency response with all 10 data

arrays. Again, the order is fixed and, as above in the getfr example, not all the inputs need be

provided. If all inputs are not provided the user should keep in mind that CIFER® will not have

access to any unspecified information in the event it must make calculations with the new

responses. The response names do not have to conform to CIFER® naming conventions, though

doing so will help track new responses.

>> name = 'NEW_FREQUENCY_RESPONSE';
>> writefr(name, frq, mag, pha, coh, gxx, gyy, gxy, rel, img, err);

 82

caselist:

Lists of cases present for any of the CIFER® programs can be obtained using the caselist

function. The three calls below return a cell array list of FRESPID, MISOSA and COMPOSITE

cases that are present in the database. The input code follows the same numbering convention

found in the delete utility of CIFER® (Utility 13). This information can also be found by making a

‘help’ call for the function and is printed in Appendix G.

>> names_f = caselist(1); % Returns FRESPID cases
>> names_m = caselist(2); % Returns MISOSA cases
>> names_c = caselist(3); % Returns COMPOSITE cases

 83

Appendix C: Online Help for Main Programs

This Appendix contains the information that is displayed when the ‘help functionname’ command

is used in MATLAB.

 FUNCTION: frespid

 DESCRIPTION: Function to open, save and run a FRESPID case.
 Function may be called with no arguments to return a template,
 mostly blank structure.

 [out] = frespid(id,cmd,options)

 INPUTS:
 id - either frespid structure or string with case name
 Information on the details of the structure can
 be found with an empty call:
 >> frespid
 cmd - command to have function perform a process
 1 - open FRESPID case
 2 - save a FRESPID case
 3 - save case and run batch job

 options – name-value pairs to set individual data
 fields (optional)
 e.g.: ...,'casename','XVLATSWP',...

 OUTPUTS:
 out - return structure for frespid data structure. A
 template structure can be returned using
 an empty call:
 >> out = frespid

 EXAMPLE CALLS:
 [out] = frespid
 returns a mostly blank template frespid structure

 [out] = frespid('TEST',1)
 opens case named 'TEST', returns frespid structure

 [out] = frespid('TEST',2,'casename','TEST2','winlen',

 [45,40,30,20,15])
 saves TEST as TEST2 and changes window lengths; the
 structure is returned

 frespid(new_struct,3)
 sends new_struct, a new FRESPID case, to batch; nothing is
 returned

 NOTES:
 - A totally new case must be specified via a structure, not by

the desired new name. (i.e., frespid('NEWNAME',2) will NOT
save a blank case entitled 'NEWNAME' into the database)

 DESCRIPTION OF FIELDS IN INPUT STRUCTURE

 SCREEN 2
 id.casename FRESPID case name
 id.comments FRESPID case identifier string

 84

 id.controls Control names (user-specified)
 id.outputs Output names
 id.caseout Case name for freq responses (may be
 different from the case name)
 id.crosscor Cross-correlate controls? ('Y' or 'N')
 id.savdb Save frequency response in the database('Y' or 'N')
 id.plot Generate plots? ('Y' or 'N')

 SCREEN 3
 id.evntnum Event list (i=1,10)
 id.flghtnum Flight list (corresponds to eventnum)
 id.strttim Start time for each time history
 id.stoptim Stop times
 id.source Code for where time histories come from:
 1 for stand-alone ASCII files
 2 for TRENDS
 3 for FLYTE
 4 for READMIS
 >4 other sources as defined by source code
 id.thdt Time interval between samples
 id.biasflag Bias and drift removal? ('Y' or 'N')
 id.thfile Array to store time history file names

 SCREEN 4
 id.conchnl Primary channel names for each control
 id.conunit Engineering units for control channels
 id.conscfac Scale factors for each channel

 SCREEN 5
 id.outchnl Primary channel names for each output
 id.outunit Engineering units for output channels
 id.outscfac Scale factors for each channel

 SCREEN 6
 id.frall Compute all frequency responses? ('Y' or 'N')
 id.frcalc Table indicating which responses to compute.
 (Blank if not to be computed; '*' to compute.)

 SCREEN 7
 id.conditioning Array to store conditioning information. The
 first row contains the code for the type
 of conditioning:
 1 for expansion
 2 for decimation
 3 for filter
 The second row stores the actual value
 id.condunit If the filtering option is used, this field
 stores the unit that the value is provided in.
 If left blank, Hertz is assumed.
 id.savconth Save files of conditioned time histories?
 'N' no files, 'A' ASCII format only,
 'U' unformatted only, 'Y' both types

 SCREEN 8
 id.winon Entry for each window: blank not to compute,
 '*' to compute
 id.winid Window descriptor
 id.winlen Window Lengths
 id.wininpt Number of t.h. points input to the FFT
 id.winoutpt Number of points returned by the FFT
 (wininpt + winoutpt = power of 2)
 (winoutpt must be .le. wininpt)
 id.windec Output decimation factor for frequency responses
 id.minfft Min FFT freq for this window

 85

 id.maxfft Max FFT freq for this window

 SCREEN 9
 id.plotopt For each possible plot: 0 not to plot, 1 to plot
 id.plotdev Device for plotting: Q(MS),C(omprs),V(er),S(creen),
 T(alaris),P(ostScript)
 id.grid Use grid? ('Y' or 'N')
 id.lrgplot Large plots? ('Y' or 'N')
 id.plotdec Decimate plots ('Y' or 'N')

 FUNCTION: misosa

 DESCRIPTION: Function to open, save and run a MISOSA case.
 Function may be called with no arguments to return a template,
 mostly blank structure.

 [out] = misosa(id,cmd,options)

 INPUTS:
 id - either misosa structure or string with case name
 Information on the details of the structure can
 be found with an empty call:
 >> misosa
 cmd - command to have function perform a process
 1 - open MISOSA case
 2 - save a MISOSA case
 3 - save case and run batch job
 options – name-value pairs to set individual data
 fields (optional)
 e.g.: ...,'casename','XVLATSWP',...

 OUTPUTS:
 out - return structure for misosa data structure. A
 template structure can be returned using
 an empty call:
 >> out = misosa

 EXAMPLE CALLS:
 [out] = misosa
 returns a mostly blank template misosa structure

 [out] = misosa('TEST',1)
 opens case named 'TEST', returns misosa structure

 [out] = misosa('TEST',2,'casename','TEST2','winon',

 {'*','','','',''})
 saves TEST as TEST2 and the window selection is
 changed; the structure is returned

 misosa('TEST2',3)
 sends case 'TEST2' to batch; nothing is returned

 NOTES:
 - A totally new case must be specified via a structure, not by

the desired new name. (i.e., misosa('NEWNAME',2) will NOT
save a blank case entitled 'NEWNAME' into the database)

 DESCRIPTION OF FIELDS IN INPUT STRUCTURE

 SCREEN 2
 id.casename Composite case name

 86

 id.caseid Descriptive text for this case
 id.casein Frequency response prefix (input)
 id.caseout 'Case' part of freq resp name for output
 id.source Source for input frequency responses:
 'F' for ASCII files; 'D' for database
 id.savdb Write results to the database? ('Y' or 'N')
 id.plot Generate plots? ('Y' or 'N')
 id.controls Control names
 id.outputs Output names
 id.winon Code for windows to combine
 ('*' indicates a window to include,
 '' indicates not to include a window)

 SCREEN 3
 id.frall Code indicating whether to clear/set frcalc matrix
 id.frcalc Table indicating which responses to compute
 ('*' requests a new response computation,
 '' indicates not to calculate a response)

 SCREEN 4
 id.plotopt Integer array indicating which plots to generate.
 id.grid Draw a grid on the plots? ('Y' or 'N')
 id.lrgplot Large plot? ('Y' or 'N')
 id.plotdev Selected plot device: Q(MS),C(omprs),V(er),

S(creen), T(alaris),P(ostScript)
 id.pltminfrq Minimum frequency of each window
 id.pltmaxfrq Maximum frequency of each window

 FUNCTION: composite

 DESCRIPTION: Function to open, save and run a COMPOSITE case.
 Function may be called with no arguments to return a template,
 mostly blank structure.

 [out] = composite(id,cmd,options)

 INPUTS:
 id - either composite structure or string with case name
 Information on the details of the structure can
 be found with an empty call:
 >> composite
 cmd - command to have function perform a process
 1 - open COMPOSITE case
 2 - save a COMPOSITE case
 3 - save case and run batch job
 options – name-value pairs to set individual data
 fields (optional)
 e.g.: ...,'casename','XVLATSWP',...

 OUTPUTS:
 out - return structure for composite data structure. A
 template structure can be returned using
 an empty call:
 >> out = composite

 EXAMPLE CALLS:
 [out] = composite
 returns a mostly blank template composite structure

 [out] = composite('TEST',1)
 opens case named 'TEST', returns composite structure

 87

 [out] = composite('TEST',2,'casename','TEST2','winon',
 {'*','','','',''})

 saves TEST as TEST2 and the window selection is
 changed; the structure is returned

 composite('TEST2',3)
 sends case 'TEST2' to batch; nothing is returned

 NOTES:
 - A totally new case must be specified via a structure, not by

the desired new name. (i.e., composite('NEWNAME',2 will
NOT save a blank case entitled 'NEWNAME' into the database)

 DESCRIPTION OF FIELDS IN INPUT STRUCTURE

 SCREEN 2
 id.casename Composite Case name
 id.caseid Descriptive text for this case
 id.casein Frequency response prefix (input)
 id.caseout 'Case' part of freq resp name for output
 id.inpgm Input program, 'FRE' or 'MIS'
 id.source Source for input frequency responses:
 'F' for ASCII files; 'D' for database
 id.savdb Write results to the database? ('Y' or 'N')
 id.plot Generate plots? ('Y' or 'N')
 id.outpts Number of points in each resultant freq resp
 id.controls Control names
 id.outputs Output names
 id.winon Code for windows to combine
 ('*' indicates a window to include,
 '' indicates not to include a window)
 id.winlen Window length, in seconds

 SCREEN 3
 id.frall Code indicating whether to clear/set ICOMP matrix
 id.frcalc Table indicating which responses to compute
 ('*' requests a new response computation,
 '' indicates not to calculate a response)

 SCREEN 4
 id.plotopt Integer array indicating which plots to generate.
 id.grid Heavy grid on the plots? ('Y' or 'N')
 id.lrgplot Large plot? ('Y' or 'N')
 id.plotdev Selected plot device: Q(MS),C(omprs),V(er),
 S(creen), T(alaris),P(ostScript)

 88

Appendix D: Structure Field Specifics for Main Programs

 This Appendix contains the information displayed through an empty call to any of the functions.

Default settings are shown within a curly brace.

>> frespid

Structure fields are:

 casename: [string, 8 characters {''}]
 caseid: [string, 60 characters {''}]
 controls: [cell array(10) of strings { '' }]
 outputs: [cell array(20) of strings { '' }]
 caseout: [string, 8 characters {''}]
 crosscor: ['Y' | { 'N' }]
 savdb: [{ 'Y' } | 'N']
 plot: ['Y' | { 'N' }]
 evntnum: [scalar array(10) { 0 }]
 flghtnum: [scalar array(10) { 0 }]
 strttim: [positive scalar array(10) { 0 }]
 stoptim: [positive scalar array(10) { 0 }]
 source: [integer value { 1 }]
 thdt: [positive scalar { 0 }]
 biasflag: [{ 'Y' } | 'N']
 thfile: [cell array(10) of strings { '' }]
 conchnl: [cell array(10,5) of strings { '' }]
 conunit: [cell array(10) of strings { '' }]
 conscfac: [positive scalar array(10,5) { 1 }]
 outchnl: [cell array(20,5) of strings { '' }]
 outunit: [cell array(20) of strings { '' }]
 outscfac: [positive scalar array(20,5) { 1 }]
 frall: ['Y' | { 'N' }]
 frcalc: [cell array(20,10) of strings { '' } | '*']
 conditioning: [scalar array(2,10) { 0 }]
 condunit: [cell array(10) of strings { '' }]
 savconth: ['Y' | { 'N' } | 'A' | 'U']
 outpts: [positive scalar { 1000 }]
 winon: [cell array(5) of strings { '' } | '*']
 winid: [cell array(5) of strings { '' }]
 winlen: [positive scalar array(5) { 0 }]
 wininpt: [positive scalar array(5) { 0 }]
 winoutpt: [positive scalar array(5) { 0 }]
 windec: [positive scalar array(5) { 0 }]
 minfft: [positive scalar array(5) { 0 }]
 maxfft: [positive scalar array(5) { 0 }]
 plotopt: [positive scalar array(12) { 0 }]
 plotdev: ['Q' | 'C' | 'V' | 'T' | { 'P' }]
 grid: [{ 'Y' } | 'N']
 lrgplot: [{ 'Y' } | 'N']
 plotdec: [{ 'Y' } | 'N']

 89

>> misosa

Structure fields are:

 casename: [string, 8 characters {''}]
 caseid: [string, 60 characters {''}]
 casein: [string, 8 characters {''}]
 caseout: [string, 8 characters {''}]
 source: [{ 'D' } | 'F']
 savdb: [{ 'Y' } | 'N']
 plot: ['Y' | { 'N' }]
 outpts: [positive scalar { 1000 }]
 controls: [cell array(10) of strings { '' }]
 outputs: [cell array(20) of strings { '' }]
 winon: [cell array(5) of strings { '' } | '*']
 frall: ['Y' | { 'N' }]
 frcalc: [cell array(20) of strings { '' } | '*']
 plotopt: [positive scalar array(12) { 0 }]
 grid: [{ 'Y' } | 'N']
 lrgplot: [{ 'Y' } | 'N']
 plotdev: ['Q' | 'C' | 'V' | 'T' | { 'P' }]
 pltminfrq: [positive scalar array(5) { 0 }]
 pltmaxfrq: [positive scalar array(5) { 0 }]

>> composite

Structure fields are:

 casename: [string, 8 characters {''}]
 caseid: [string, 60 characters {''}]
 casein: [string, 8 characters {''}]
 caseout: [string, 8 characters {''}]
 inpgm: [{ 'FRE' } | 'MIS' {''}]
 source: [{ 'D' } | 'F']
 savdb: [{ 'Y' } | 'N']
 plot: ['Y' | { 'N' }]
 outpts: [positive scalar { 1000 }]
 controls: [cell array(5) of strings { '' }]
 outputs: [cell array(20) of strings { '' }]
 winon: [cell array(5) of strings { '' } | '*']
 winlen: [positive scalar array(5) { 0 }]
 frall: ['Y' | { 'N' }]
 frcalc: [cell array of strings { '' } | '*']
 plotopt: [positive scalar array(7) { 0 }]
 grid: [{ 'Y' } | 'N']
 lrgplot: [{ 'Y' } | 'N']
 plotdev: ['Q' | 'C' | 'V' | 'T' | { 'P' }]

 90

Appendix E: Online Help for Analysis Utilities

This Appendix contains the information that is displayed when the ‘help functionname’ command

is used in MATLAB.

 Function: cifrms

 Description: This mex file allows the user to use the RMS
 utility of CIFER. Function returns mean square value
 and root mean squared value as well as information about
 the frequency response if desired.

 [msv,rms,npts,lowfreq,highfreq,rmsfrq] = cifrms(in, varargin)

 Inputs:
 in - input structure, fields defined below.
 Information on the details of the structure can
 be found with an empty call:
 >> cifrms

 options - name-value pairs to set individual data
 fields (optional) e.g.: ...,'io','I',...

 Outputs:
 rms - optional output allows user to set up a template
 structure using this call with no inputs:
 >> out = cifrms

 *** OR ***

 rms - root mean squared value
 msv - Mean square value (or full range RMS if
 percentage of range is specified)
 npts - number of points in response
 lowfreq - smallest value in response
 highfreq - highest value in response
 rmsfrq - frequency where RMS is desired fraction of
 full RMS value

 NOTES:
 This function can run with no outputs specified; the results
 will be displayed in the Matlab command window.

 DESCRIPTION OF FIELDS IN INPUT STRUCTURE

 in.name - Name of Frequency Response (string)
 ex: name = 'XVLATSWP_FRE_A0000_AIL_P'
 in.source - Source: 'F' for file, 'D' for database
 in.io - 'I' to integrate input-auto, 'O' for output-auto
 in.spower - value for power of s correction, positive or
 negative integer (0 for none)
 in.minfreq - start frequency for calculations (0 for default)
 in.maxfreq - end frequency for calculations (0 for default)

 NOTE: set minfreq equal to maxfreq for a fraction of the
 full range RMS.

 in.toscrn - turn printed screen output 'ON' or 'OFF'

 91

 Function: cifhq

 Description: This function calls the first half of CIFER's
 utility 8, the handling quality calculations.

 [output_s,output_n,npts,FR_info] = cifhq(in,options)

 Inputs:
 in - input structure, fields defined below.
 Information on the details of the structure can
 be found with an empty call:
 >> cifhq

 options - name-value pairs to set individual data
 fields (optional) e.g.: ...,'save','Y',...

 Outputs:
 output_s - optional output allows user to set up a template
 structure using this call with no inputs and
 a single output:
 >> out = cifhq

 *** OR ***

 output_s - Cell array containing the resulting output
 from CIFER for handling qualities
 output_n - array containing numeric output
 from CIFER for handling qualities
 npts - number of points in response
 FRinfo - array containing information about the
 frequency response.

 FRinfo = [sF,sM,sP,sFm
 eF,eM,eP,sPm]

 the elements are starting and ending (s,e) values for
 frequency, magnitude and phase (F,M,P). (m) denotes
 value after modification by correction factors.

 NOTE: This function can be called with no outputs specified;
 the results will output to the command window.

 DESCRIPTION OF FIELDS IN INPUT STRUCTURE

 in.name - Name of Frequency Response (string)
 ex: name = 'XVLATSWP_FRE_A0000_AIL_P'
 in.source - Source: 'F' for file, 'D' for database
 in.minfreq - Minimum frequency for search range for
 handling qualities calculations. Enter
 0 for the default range.
 in.cor_list - Array with values as follows: (optional)

 in.cor_list = [scor, gcor, ps, td]

 scor - value for power of s correction
 gcor - value for gain correction, >= 0
 ps - value for phase shift
 td - value for time delay

 NOTE: an entry of 0 for any of these values is assumed
 to mean no correction, shift, etc.

 92

 in.save - 'Y' to save response, 'N' not to save
 in.savename - name to save response as. (optional)
 ex: 'XVLATSWP_BAN_A0000_AIL_P'

 NOTE: If save='Y' and savename is left blank, the
 program portion of the filename will automatically
 be changed to 'BAN'.

 in.mpcplt - create a magnitude,phase,(coherence) plot
 in.mpcmin - minimum frequency for mpc plot
 in.mpcmax - maximum frequency for mpc plot
 in.mpcdev - output device Q(MS),C(omprs),V(er),S(creen),
 T(alaris),P(ostScript)
 in.lpcplt - create a linear phase and coherence plot
 in.lpcmin - minimum frequency for lpc plot
 in.lpcmax - maximum frequency for lpc plot
 in.lpcdev - output device Q(MS),C(omprs),V(er),S(creen),
 T(alaris),P(ostScript)
 in.lsfit - perform least squares fit?

 NOTE: Must create linear phase and coherence plot in order
 to use least squares fitting.

 in.lslow - lower fitting frequency
 in.lsup - upper fitting frequency
 in.lscoh - use coherence weighting?
 in.lsdev - output device Q(MS),C(omprs),V(er),S(creen),
 T(alaris),P(ostScript)
 in.toscrn - turn printed screen output 'ON' or 'OFF'

 Function: cifxover

 Description: This function calls the second half of CIFER's
 utility 8, the crossover calculations.

 [X0db,Xn180db,FRrng] = cifxover(in,options)

 Inputs:
 in - input structure, fields defined below.
 Information on the details of the structure can
 be found with an empty call:
 >> cifxover

 options - name-value pairs to set individual data
 fields (optional) e.g.: ...,'save','Y',...

 Outputs:
 X0db - optional output allows user to set up a template
 structure using this call with no inputs and
 a single output:
 >> out = cifxover

 *** OR ***

 X0db - Array with results for 0 deg crossovers
 Xn180db - Array with results for -180 deg crossovers
 FRrng - array containing information about the
 frequency response. (optional)

 FRrng = [minFreq,maxFreq]

 NOTE: This function may be called with no outputs specified;

 93

 the results will be displayed in the command window.

 DESCRIPTION OF FIELDS IN INPUT STRUCTURE

 in.name - Name of Frequency Response (string)
 ex: name = 'XVLATSWP_FRE_A0000_AIL_P'
 in.source - 'F' for file, 'D' for database
 in.minfreq - Minimum frequency for search range for
 crossover calculations. Enter
 0 for the default range.
 in.maxfreq - Maximum frequency for search range for
 crossover calculations. Enter
 0 for the default range.

 NOTE: Set minfreq equal to maxfreq to search for a desired
 fraction of full-range RMS

 in.cor_list - Array with values as follows: (optional)

 cor_list = [scor, gcor, ps, td]

 scor - value for power of s correction
 gcor - value for gain correction, >= 0
 ps - value for phase shift
 td - value for time delay

 NOTE: an entry of 0 for any of these values is assumed
 to mean no correction, shift, etc. Leaving this
 input out will default the entries to 0.

 in.save - 'Y' to save response, 'N' not to save
 in.savename - name to save response as. (optional)
 ex: 'XVLATSWP_BAN_A0000_AIL_P'

 NOTE: If save='Y' and savename is left blank, the
 program portion of the filename will automatically
 be changed to 'BAN'.

 in.mpcplt - create a magnitude,phase,(coherence) plot
 in.mpcmin - minimum frequency for mpc plot
 in.mpcmax - maximum frequency for mpc plot
 in.mpcdev - output device Q(MS),C(omprs),V(er),S(creen),
 T(alaris),P(ostScript)
 in.toscrn - turn printed screen output 'ON' or 'OFF'

 Function: cifarith

 Description: This function allows the user to call CIFER
 utility 9 from the Matlab command screen. This utility
 performs arithmetic operations on frequency responses.
 The results are saved to a new frequency response.

 [out] = cifarith(in,options)

 Inputs:
 in - input structure, fields defined below.
 Information on the details of the structure can
 be found with an empty call:
 >> cifarith

 options - name-value pairs to set individual data
 fields (optional) e.g.: ...,'op','/',...

 94

 Outputs:
 out - optional output allows user to set up a template
 structure using this call with no inputs:
 >> out = cifarith

 DESCRIPTION OF FIELDS IN INPUT STRUCTURE

 SCREEN 1
 in.names(2) input names
 in.scalefac(2) scale factor
 in.spower(2) power of s
 in.op operation (*,/,-,+)
 in.outname Resultant Response Name
 in.outid Resultant Response Description
 in.cohopt 'N'->COH = 1.0, 'Y' -> COH = COH of first response
 in.isource Source of input responses ('D' - database,
 'F' - file)
 in.osource Destination for output ('D' - database, 'F' - file

 SCREEN 2
 in.minfreq Minimum frequency to include (0 for default)
 in.maxfreq Maximum frequency to include (0 for default)
 in.nvalue Number of values in output response (0 for

default)
 in.unit 'RAD' or 'Hz' (0 for default)
 in.toscrn Turn printed screen output 'ON' or 'OFF'

 Function: cifplot

 Description: This function allows the user to call CIFER
 utility 19 from the Matlab command screen. This utility
 generates a 'canned' plot for frequency responses.

 [out] = ciplot(in,options)

 Inputs:
 in - input structure, fields defined below.
 Information on the details of the structure can
 be found with an empty call:
 >> cifplot
 options - name-value pairs to set individual data
 fields (optional) e.g.: ...,'source','F',...

 Outputs:
 out - optional output allows user to setup a template
 structure using this call with no inputs:
 >> out = cifplot

 DESCRIPTION OF FIELDS IN INPUT STRUCTURE

 SCREEN 1
 in.array(5) - which arrays (1:mag, 2:phas, 3:coh, 4:GXX,
 5:GYY, 6:GXY, 7:err, 8:pcoh2,
 9:pcoh3, 10:pcoh4, 11:pcoh5,
 12:pcoh6, 13:pcoh7, 14:pcoh8,
 15:pcoh9, 16:mcoh)
 in.correct(5) - use corrections (0 to skip, 1 to apply)
 in.names(5) - response names
 in.gain(5) - gain correction
 in.phase(5) - phase shift correction
 in.spower(5) - s power correction

 95

 in.source - source of data 'F' - File, 'D' - Database

 SCREEN 2
 in.pminfrq - plot min freq (0 for default)
 in.pmaxfrq - plot max freq (0 for default)
 in.pmin(1:5) - plot y axis mins
 in.pmax(1:5) - plot y axis maxs
 in.pinc(1:5) - plot increments
 in.device - output device Q(MS),C(omprs),V(er),S(creen),
 T(alaris),P(ostScript)
 in.grid - grid lines ('Y' or 'N')
 in.thick - line thickness (1 - Default, 2 - double, etc.)
 in.land_port - L(andscape) or P(ortrait)
 in.xaxis - length of x axis
 in.yaxis - length of y axis

 96

Appendix F: Structure Field Specifics for Analysis Utilities

 This Appendix contains the information displayed through an empty call to any of the functions.

Default settings are shown within a curly brace.

>> cifrms

Structure fields are:

 name: [string {''}]
 source: [{ 'D' } | 'F']
 io: [{ 'I' } | 'O']
 spower: [scalar {0}]
 minfreq: [positive scalar {0}]
 maxfreq: [positive scalar {0}]
 toscrn: [{ 'ON' } | 'OFF']

>> cifhq

Structure fields are:

 name: [string {''}]
 source: [{ 'D' } | 'F']
 minfreq: [positive scalar {0}]
 cor_list: [scalar array(4) { [0,0,0,0] }]
 save: [{ 'N' } | 'Y']
 savename: [string {''}]
 mpcplt: [{ 'N' } | 'Y']
 mpcmin: [positive scalar {0}]
 mpcmax: [positive scalar {0}]
 mpcdev: [{ 'S' } | 'Q' | 'P' | 'T' | 'C' | 'V']
 lpcplt: [{ 'N' } | 'Y']
 lpcmin: [positive scalar {0}]
 lpcmax: [positive scalar {0}]
 lpcdev: [{ 'S' } | 'Q' | 'P' | 'T' | 'C' | 'V']
 lsfit: [{ 'N' } | 'Y']
 lslow: [positive scalar {0}]
 lsup: [positive scalar {0}]
 lscoh: [{ 'N' } | 'Y']
 lsdev: [{ 'S' } | 'Q' | 'P' | 'T' | 'C' | 'V']
 toscrn: [{ 'ON' } | 'OFF']

>> cifxover

Structure fields are:

 name: [string {''}]
 source: [{ 'D' } | 'F']
 minfreq: [positive scalar {0}]
 maxfreq: [positive scalar {0}]
 cor_list: [scalar array(4) { [0,0,0,0] }]
 save: [{ 'N' } | 'Y']
 savename: [string {''}]
 mpcplt: [{ 'N' } | 'Y']
 mpcmin: [positive scalar {0}]
 mpcmax: [positive scalar {0}]
 mpcdev: [{ 'S' } | 'Q' | 'P' | 'T' | 'C' | 'V']
 toscrn: [{ 'ON' } | 'OFF']

 97

>> cifarith

Structure fields are:

 names: [cell array(2) of strings {''}]
 scalefac: [scalar array(2) {1}]
 spower: [scalar array(2) {0}]
 op: [{'*' } | '/' | '-' | '+']
 outname: [string {''}]
 outid: [string {''}]
 cohopt: [{ 'N' } | 'Y']
 isource: [{ 'D' } | 'F']
 osource: [{ 'D' } | 'F']
 minfreq: [scalar {0}]
 maxfreq: [scalar {0}]
 nvalue: [positive scalar {0}]
 unit: [{0} | 'RAD' | 'Hz']
 toscrn: [{ 'ON' } | 'OFF']

>> cifplot

Structure fields are:

 array: [positive scalar array(5) {0}]
 correct: [integer array(5) {0} | 1]
 names: [cell array(5) of strings {''}]
 gain: [scalar array(5) {1}]
 phase: [scalar array(5) {0}]
 spower: [scalar array(5) {0}]
 source: [{ 'D' } | 'F']
 pminfrq: [positive scalar {0}]
 pmaxfrq: [positive scalar {0}]

pmin: [positive scalar array(5) {0}]
 pmax: [positive scalar array(5) {0}]
 pinc: [positive scalar array(5) {0}]
 device: [{ 'S' } | 'Q' | 'C' | 'V' | 'T' | 'P']
 grid: [{ 'Y' } | 'N']
 thick: [positive scalar { 1 }]
 land_port: [{ 'L' } | 'P']
 xaxis: [positive scalar { 0 }]
 yaxis: [positive scalar { 0 }]

 98

Appendix G: Online Help for Support Functions

This Appendix contains the information that is displayed when the ‘help functionname’ command

is used in Matlab.

 Function: getfr

 Description: This function allows the user to access the
 CIFER frequency response database and retrieve information
 from the arrays stored there.

 [frq,mag,pha,coh,gxx,gyy,gxy,rel,img,err] = getfr(name)

 Inputs:
 name - Name of Freqency Response (string)
 ex: name = 'XVLATSWP_FRE_A0000_AIL_P'

 Outputs:
 Arrays of values: (lengths depend on database)
 frq - frequency
 mag - magnitude
 pha - phase
 coh - coherence
 gxx - gxx
 gyy - gyy
 gxy - gxy
 rel - real
 img - imaginary
 err - error

 Function: writefr

 Description: The user is allowed to place frequency response
 data back into the CIFER database.

 Minimum Input Requirements:
 writefr(name, frq, mag)

 Maximum Input:
 writefr(name, frq, mag, pha, coh, gxx, gyy, gxy, rea, ima, err)

 Inputs:
 name - Name of Frequency Response (string)
 ex: name = 'XVLATSWP_FRE_A0000_AIL_P'

 arrays to put into database:
 frq - frequency
 mag - magnitude
 pha - phase
 coh - coherence
 gxx - gxx
 gyy - gyy
 gxy - gxy
 rea - real
 ima - imaginary
 err - error

 NOTES: There must be between 3 and 11 inputs. Frequency

 99

 and magnitude must be included. Other arrays can be
 included, but they must be included in the order shown.

 Function: caselist

 Purpose: Allow user to list present CIFER cases by
 program

 names = caselist(pgm)

 Inputs:
 pgm - program to check cases for
 1 - FRESPID
 2 - MISOSA
 3 - COMPOSITE
 4 - DERIVID
 5 - model
 6 - F matrix
 7 - G matrix
 8 - tau matrix
 9 - H matrix
 10 - M matrix
 11 - VERIFY
 12 - DERIVID results
 13 - VERIFY results
 14 - frequency response

 Outputs:
 names - cell array containing names of cases for
 specified program

 100

Appendix H: Mass-Spring-Damper Case Example

This example is for a simple second order mass-spring-damper system modeled in Simulink as a

transfer function. A frequency sweep simulating noise was run through the model and the input

and output data recorded into a time history file. One case was set up entirely in CIFER and then

a second was set up and run from MATLAB. The commands shown below were used to run the

case from MATLAB. Calls to the CIFER-MATLAB interface functions have been highlighted in

red. This example is provided to give a very simple scenario to set up cases using the MATLAB

interface. CIFER does not come with this example so the simulation would have to be created and

run in order to generate the data necessary.

% Assign a blank frespid structure
 f_in = frespid;
 thename = 'MASSSPRG';

% Fill in all the necessary information to make the case
 f_in.casename = thename;
 f_in.comments = 'mass spring system';
 f_in.caseout = thename;
 f_in.crosscor = 'Y';
 % Time history selection parameters:
 f_in.source = 5;
 f_in.evntnum(1) = 1;
 f_in.flghtnum(1) = 1;
 f_in.thdt = 0.01;
 f_in.thfile(1) = {'massspring.CIFERTEXT'};
 % channel definition parameters:
 f_in.controls(1) = {'IN'};
 f_in.outputs(1) = {'OUT'};
 f_in.conchnl(1,1) = {'IN'};
 f_in.outchnl(1,1) = {'OUT'};
 % Frequency response selection parameters
 f_in.frcalc(1,1) = {'*'};

% NOTE: The file 'massspring.CIFERTEXT' was created for this example,
% in order to run the example this file must be created.

% Save the structure into the database
 frespid(f_in,2);
% Change the window sizes and turn them on.

frespid('MASSSPRG',2,'winlen',[30,25,20,15,10],'winon',{'*','*','*','*',
'*'},

'maxfft',[125,125,125,125,125]);

% Set up blank composite case
 c_in = composite;

% Fill in appropriate values
 c_in.casename = thename;
 c_in.comments = 'mass spring system';
 c_in.casein = thename;
 c_in.caseout = thename;
 c_in.inpgm = 'FRE';
 c_in.controls(1) = {'IN'};

 101

 c_in.outputs(1) = {'OUT'};
 c_in.frcalc(1,1) = {'*'};
 c_in.winon = {'*','*','*','*','*'};

% Save case into database
 composite(c_in,2);

% Run both cases
 frespid('MASSSPRG',3)
 composite('MASSSPRG',3)

The figure below shows the results from the analysis. The response is very clean with a drop in

coherence at the mode. Both the MATLAB and CIFER results overlay closely. There is a small

difference due to machine precision; however this error tends to be on the order of a thousandth

of a percent or less.

 102

Appendix I: XVLATSWP Case Example

This example shows the MATLAB commands used to fully set up and run the XVLATSWP

sample case provided with installations of CIFER.

% Assign a blank frespid structure
 f_in = frespid;
 thename = 'XVLATSP2';

% Fill in all the necessary information to make the case
 f_in.casename = thename;
 f_in.comments = 'Matlab-created XVLATSWP case, new
functions';
 f_in.caseout = thename;
 f_in.crosscor = 'Y';
 f_in.plot = 'N';
 % Time history selection parameters:
 f_in.source = 1;
 f_in.evntnum(1:2) = [883,884];
 f_in.flghtnum(1:2) = [150,150];
 f_in.thdt = 0.004;
 % channel definition parameters:
 f_in.controls(1:2) = {'AIL','RUD'};
 f_in.conunit(1:2) = {'deg','deg'};
 f_in.outputs(1:4) = {'P','R','AY','VDOT'};
 f_in.outunit(1:4) = {'deg/s','deg/s','ft/sec2',

'ft/sec2'};
 f_in.conchnl(1:2,1) = {'D645','D284'};
 f_in.outchnl(1:4,1) = {'V012','V014','A300','VDOT'};
 f_in.outscfac(1:3,1) = [0.0175,0.0175,32.1740];
 % Conditioning parameters
 f_in.conditioning(1,1:2) = [3,2];
 f_in.conditioning(2,1:2) = [4,25];
 % Frequency response selection parameters
 f_in.frcalc(1:4,1:2) = {'*'};
 % Window Parameters
 f_in.winid = {'45 SECOND WINDOW'
 '40 SECOND WINDOW'
 '30 SECOND WINDOW'
 '20 SECOND WINDOW'
 '15 SECOND WINDOW'};
 f_in.winlen = [45,40,30,20,15];
 f_in.winon(1:5) = {'*'};
% Save the structure into the database
 frespid(f_in,2);

% Set up blank misosa case
 m_in = misosa;

% Fill in appropriate values
 m_in.casename = thename;
 m_in.comments = 'Matlab-created XVLATSWP case';
 m_in.casein = thename;
 m_in.caseout = thename;
 m_in.controls(1:2) = {'AIL','RUD'};
 m_in.outputs(1:4) = {'P','R','AY','VDOT'};
 m_in.winon(1:5) = {'*'};
 m_in.frcalc(1:4) = {'*'};

% save case to database
 misosa(m_in,2);

 103

% Set up blank composite case
 c_in = composite;

% Fill in appropriate values
 c_in.casename = thename;
 c_in.comments = 'Matlab-created XVLATSWP case';
 c_in.casein = thename;
 c_in.caseout = thename;
 c_in.inpgm = 'MIS';
 c_in.controls(1) = {'AIL'};
 c_in.outputs(1:4) = {'P','R','AY','VDOT'};
 c_in.winon(1:5) = {'*'};
 c_in.frcalc(1,1) = {'*'};

% Save case into database
 composite(c_in,2);

% Run both cases
 frespid('XVLATSP2',3);
 misosa('XVLATSP2',3);
 composite('XVLATSP2',3);

The following figure shows a plot of the original XVLATSWP case as created and run in CIFER

overlaid by the same case set up and run from MATLAB. There is no appreciable difference

between the two results.

