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Abstract 

CIFER®-MATLAB Interfaces: Development and Application 

Brian K. Rupnik  

The Army/NASA Rotorcraft Division, Flight Controls Group, Ames Research Center, has 

developed and is maintaining a software package called CIFER® or Comprehensive Identification 

from FrEquency Responses. CIFER® allows system identification in the frequency domain and is 

considered to be one the top resources for frequency analysis. It provides methods to derive 

frequency responses, transfer functions and state-space models from a time sweep data.  

 
The interface for CIFER® was developed long enough ago that there is a significant demand for a 

modernization of the software. To address the demand in the most complete manner would 

involve updating a very complex series of programs with modern graphical and command-line 

interfaces. This project is beyond the scope of an Aerospace Master’s thesis. However, before the 

Army devotes resources to this task, they desire a ‘proof of concept.’ 

 
This thesis is that proof of concept. Many users of CIFER® agree that having CIFER® programs 

and utilities usable from the MATLAB command-line or modernized graphical interface would 

be a major benefit. The Army agreed that development of a CIFER®-MATLAB interface would 

be both a useful tool and a stepping-stone for where they would like to take CIFER® in the future. 

 
There are two main tasks that make up this thesis. The first task is the development of a CIFER®-

MATLAB interface, both at the command line and in a graphical user interface.  This interface 

covers some, but not all of the programs in CIFER® – enough to show that the interface works 

and makes use of CIFER® more efficient. The second task is to validate the new interface through 

a series of projects including analysis of a modern Unmanned Aerial Vehicle (UAV). Both tasks 

were successful in the eyes of the Army sponsors and ongoing work is being conducted to 

implement the work from this thesis into the whole of the CIFER® program suite.  
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Chapter 1: Introduction 

 

The focus of this thesis is directed towards tools that aid in system identification. System 

identification is the process of taking measured data from a physical system and analyzing it to 

develop a mathematical model of that system. This is an important aspect of control system 

design as it allows for the validation of simulated system models, optimization of existing control 

systems, and handling qualities specification compliance. Figure 1.1 shows how system 

identification fits into a design cycle. 

 

Predicted
Aircraft Motion

Assumptions                     Model                         Simulation

Measured
Aircraft Motion

Physical
Understanding             System

IdentificationModel

Predicted
Aircraft Motion

Assumptions                     Model                         Simulation

Measured
Aircraft Motion

Physical
Understanding             System

IdentificationModel
 

Figure 1.1: The Role of System Id 

 
Starting at the top left of Figure 1.1, assumptions are made that result in some form of 

mathematical model, which describes an aircraft. The model can then be applied to a simulation 

that will predict the motion of the aircraft. Once a physical model of the aircraft is constructed, 

physical measurements can be made of its actual motion and responses to input. System 

identification can then be used to extract a new mathematical model of the aircraft. The new 

model can be compared to the old model and the assumptions used to create it for greater physical 

understanding of the aircraft’s motion. 

 

The mathematical model created through system identification can either be nonparametric or 

parametric. Nonparametric models do not assume an order or structure. They can exist either in 

the time-domain as an impulse response or in the frequency-domain as a frequency response. 
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Frequency responses are typically represented using a Bode plot format that graphs magnitude on 

a log scale and phase of an input-to-output ratio against frequency. Nonparametric models are 

useful in determining characteristics such as bandwidth, time-delay, and pilot-in-the-loop 

behavior. They can also be used to validate math models and determine parametric model 

structure and order. This project will be dealing primarily with frequency response analysis. 

 

A parametric model assumes an order and structure with primary representations including 

transfer functions and state-space models. Transfer functions are pole-zero representations of 

individual input-output pairs. State-space models describe an entire system in terms of stability 

and control derivatives. Parametric models are used primarily in control system design and for 

wind tunnel or math model validation. 

1.1 About CIFER® (Comprehensive Identification from FrEquency Responses)  

 

There are many programs that offer time domain analysis1 of system response data but 

comparatively few that offer analysis in the frequency domain. One very successful frequency 

domain program, and the focus of this project, is called CIFER®, or Comprehensive Identification 

from FrEquency Responses. CIFER® was developed by the Army/NASA Rotorcraft Division at 

the Ames Research Center during from 1988-1994 and has been constantly updated, modified, 

and improved since. It is used extensively by the Army/NASA Rotorcraft Division and also by 

many commercial aerospace companies. Some of the applications at the Ames Research Center 

have included development of control laws for the UH-60, identification of the XV-15 tilt-rotor 

demonstrator, assistance in CH-47 control development, investigation of slung load dynamics, 

and a wide variety of work involving unmanned aerial vehicles (UAVs). CIFER® is considered to 

be one of the best programs available for frequency domain analysis. 
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1.1.1 What CIFER® Encompasses 

 

CIFER® contains all the programs and tools necessary to convert time history data into frequency 

responses and use those responses to identify the system in question. This analysis includes the 

identification of single transfer functions, entire state-space systems, and various properties of 

responses such as bandwidth and crossover characteristics. Systems are not limited to flight 

vehicles, and can be as simple as a single-input-single-output mass-spring-damper setup or as 

complex as a multi-input-multi-output rotorcraft model. 

 

The basic flow of the program begins with time history data. The data is generated using a 

frequency sweep maneuver in flight or simulation to excite the system over a wide range of 

frequencies. Frequency sweeps are generally characterized by a sinusoidal motion with a constant 

increase in frequency preceded and followed by a period of steady state flight as shown in Figure 

1.2. The first step in CIFER® is to transform this time data into frequency responses. More 

specifics on this step and all following steps will be discussed with more detail in Chapter 2. The 

data is divided into ‘time windows,’ which allow the algorithms to accurately extract both high 

and low frequency content from the data. The frequency responses are then calculated for each of 

the desired combination of inputs and outputs for each time window. 

 

 

Figure 1.2: Frequency Sweep Example (UAV Flight Data) 
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In the case of a multiple input system, the frequency responses can be conditioned to remove the 

effects of correlation between different inputs. After this conditioning, the frequency responses 

from each separate window are combined to form a single frequency response based on the most 

accurate segments of each window. The combination is achieved by optimizing the data that has 

useful content in both low and high frequency regions. This is the last step in the frequency 

response generation process. 

 

Less involved analysis, compared to full state-space model generation, can include calculations of 

RMS, cutoff frequencies, bandwidth, crossover characteristics, and data consistency checks using 

frequency response arithmetic. All of these tools can give useful insight to system behavior 

without generating more complex math models. CIFER® offers more complete identification 

through programs that will fit transfer functions to individual responses, and full state-space 

models to a series of responses. In addition to these powerful analysis tools, CIFER® offers 

utilities for plotting and organizing output, as well as managing the storage and organization of 

data. 

 

One last important tool is the ability to validate state-space models against other time history data. 

These validation time histories are typically generated using a doublet maneuver as opposed to a 

sweep. A doublet is a short maneuver that moves through a range of motion for a control surface, 

beginning and ending in steady level flight as shown in Figure 1.3.  
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Figure 1.3: Doublet Example (UAV Flight Data) 

1.1.2 Ames Research Center Planning Meeting 

 

Late in the summer of 2003, a meeting within the Army/NASA Rotorcraft Division, Flight 

Controls Group at Ames Research Center was held to discuss the current status of CIFER® and 

how it would be desirable to modify the program for future needs. This meeting was preceded by 

a request to industry users of CIFER® for feedback on potential changes. The result of this 

activity was a summary of positive and negative aspects of CIFER®, and a tentative plan for 

modernizing the program and addressing some of the negative issues. This section will detail 

some of the major points of the meeting that directly affected the course of this thesis. 

 

In its current form CIFER® is a collection of mathematically robust algorithms that have been 

tempered by 20 years of flight project application and experience. It can display canned results to 

a wide variety of formats including PostScript, X, Talaris and others. The textual interface was 

created in the 1980s in Curses format to run on Unix systems. It has since been ported to run on a 

Unix emulation environment for Windows and on Linux. An example of a CIFER® screen is 

shown in Figure 1.4. The user would navigate through the screen using the arrow and function 

keys. 
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Figure 1.4: Example CIFER® Screen 

 

Due to its long life and the constant work that goes into improving and updating CIFER®, it has 

many positive aspects that make it a premier frequency response analysis tool. The algorithms 

have been proven to work, providing quality results without program crashes. Much effort has 

been given to creating robust methods of analyzing time history data and creating frequency 

responses. CIFER® includes many tools and utilities to assist in the analysis of frequency 

responses once they have been created, such as frequency response arithmetic and bandwidth 

calculations. The Curses interface is consistent and linearly-driven, which helps ensure that users 

enter data correctly. 

 

Unfortunately, many of the features that make CIFER® accurate and robust contribute to making 

it difficult or tedious to use at times. There is a steep learning curve to become familiar with the 

myriad of functionality the program offers. While the program is robust, it is not always 

instructive in alerting users to the nature of a problem; error messages can often scroll too quickly 

and are cleared from the screen before they can be read. The status of running batch jobs can be 

difficult to assess. Additionally, moving data from responses and plots into modern programs 

such as MATLAB or Igor can be very challenging. 
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One almost universal concern with the program is the interface. Modern engineers are growing 

less familiar with the Unix-based Curses interface and much of the user feedback requested an 

update to the interface. Even to experienced users the same linear interface that gives CIFER® its 

power and robustness can be a serious hamper; data fields must be retyped for new cases with 

limited cut and paste functionality. Another major concern is that there is no way to script the 

processes of CIFER®; setting up a series of multiple cases for an involved flight test can take days 

of repetitive data entry. 

 

One conclusion of this meeting was that a modern graphical user interface (GUI) and a way to 

use command-line calls to script CIFER® processes should be developed. A thoughtfully laid out 

GUI should be able to retain all the robustness of its Curses counterpart while offering new 

features that make modern GUIs versatile such as browsing capability and easy navigation. It was 

determined that the work encompassed by this thesis would be a prototype or test bed for these 

capabilities that will result in modernized functionality for CIFER®.  

1.2 Project Scope 

 

The goal of this project was primarily to develop a command-line interface and a modernized 

GUI layout for CIFER®. It was decided to use The Mathworks’ MATLAB2 as a medium for this 

development as many users of CIFER® also use MATLAB and a more developed communication 

between the two programs would be very useful. The ultimate goal of CIFER® modernization 

would be to make it independent of other programs so users do not have to purchase additional 

and potentially unnecessary software licenses to benefit from the upgrades.  
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Some CIFER® users did express concern with the development of the MATLAB functionality 

because they were not also MATLAB users. This concern can be addressed by a compiler 

developed by The Mathworks that allows MATLAB files to be compiled and run independently 

of MATLAB itself. The MATLAB compiler that is available allows MATLAB M-files to be 

compiled into C code, which removes the necessity to have a MATLAB license to run the M-

files. The capability for scripting and the modern GUI on which this thesis is based will be a 

significant benefit to CIFER® users when it is fully developed. It was deemed acceptable to use 

MATLAB as a base to develop prototypes of these new interfaces as many companies already use 

it and the compiler addresses the concerns of those that do not.  

 

CIFER® is a large collection of programs and to develop command-line functions to mimic the 

entirety of its capability is well beyond the scope of a thesis project. It was agreed that functions 

to drive three of the major programs and several of the supporting analysis utilities would be a 

sufficient demonstration of a command-line interface. The goal is to create a function that can be 

called with a single-line command that will perform all of the data input and error checking of its 

equivalent CIFER® counterpart. Development of the GUI was also limited in scope for the same 

reasons as for the command-line functions. The goal of the GUI is to show how a modern 

interface can enhance the functionality of CIFER®. Thus only one program will be used as a 

demonstrator.  

 

In order to further tie the project into aerospace applications, the code developed will be validated 

using real-world problems. In addition to checks verifying that results run in MATLAB are 

equivalent to those run from CIFER®, the MATLAB functions will be used to aid in a NASA 

research project. Validations will include a simple mass-spring-damper system, data from XV-15 

tilt rotor aircraft flight tests, UH-60 simulation data from a training course, and finally a project 
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involving handling qualities analysis of Shadow 200, a small reconnaissance UAV, all of which 

are shown in Figure 1.5 and Figure 1.6. 

  

Figure 1.5: Mass-Spring-Damper (Left), XV-153 (Right)  

     

Figure 1.6: NASA Sikorsky UH-60 RASCAL3 (Left), Shadow 200 TUAV4 (Right) 

A final important aspect of the project is that the code must be developed and structured such that 

developers at Ames Research Center can continue the work beyond the scope of this project with 

the final goal of distributing it to CIFER® users. This translates into creating the appropriate 

documentation and code structure to allow this project to be integrated into the existing CIFER® 

code structure efficiently.  
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Chapter 2: System Identification using CIFER® 

 

This chapter primarily contains information found in the CIFER® user’s manual5 and is intended 

to give readers a solid understanding of how CIFER® generates a frequency response. This will 

help provide insight into the analysis of the validations described in Chapter 4. 

 

CIFER® produces both nonparametric and parametric models for systems in the frequency 

domain. The nonparametric frequency response should be considered the core of this thesis, 

however parametric modeling is still very relevant to CIFER® as a whole. A frequency response 

is a complex-valued function that relates the Fourier Transform of system output to system input. 

The general form of a frequency response is shown in Equation 2.1. The frequency response is a 

full description of system dynamics, stable or unstable, that does not require assumptions of the 

system’s structure.  

( ) ( )
( )fX
fYfH =       [2.1] 

CIFER® uses a version of the Fast Fourier Transform (FFT) known as the Chirp-Z Transform 

(CZT). This transform removes many of the restrictions placed on the discrete Fourier 

Transforms and thus is very flexible as an algorithm. Users have greater freedom to specify 

sample rates and resolution. The algorithm only runs on a specified frequency range, thus there 

are no wasted data points. The CZT algorithm generates three important values that represent the 

energy of the system as a function of frequency: input autospectrum (Gxx), output autospectrum 

(Gyy), and cross spectrum (Gxy). The frequency response is then calculated using Equation 2.2, 

which is unbiased for output noise and biased for input noise. 

xx

xy

G
G

H =       [2.2] 
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One key feature of frequency response calculations is the coherence function, which is a measure 

of data accuracy or content. Coherence is determined by Equation 2.3, which will yield a value 

between 0 and 1.  

yyxx

xy
xy GG

G 2
2ˆ =γ      [2.3] 

Coherence represents the energy of the system or the fraction of output power that is linearly 

related to input power. When the system has high energy, or excitation, the coherence will be 

closer to 1 and the data content is considered to be more accurate. If the system does not have 

enough excitation or is low energy, the coherence will drop, indicating that the data content is 

poor. Data is also considered poor or unreliable if the coherence is rapidly changing as illustrated 

in Figure 2.1. Poor data can result from noise, gusts, or off-axis control activity. CIFER® 

algorithms use coherence weighting to determine the frequency-ranges of a frequency response 

that have the most accurate data and only fit parametric models to these sections. It is generally 

accepted that frequency ranges with coherence equal or greater than 0.6 are considered usable if 

they are not rapidly changing. 

 
Figure 2.1: Example Coherence Plot 

 
CIFER® contains six primary programs to conduct analysis: FRESPID, MISOSA, COMPOSITE, 

NAVFIT, DERIVID, and VERIFY. In addition, there are three main analysis utilities that can 

calculate RMS values, bandwidth properties, and perform frequency response arithmetic. The 
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functionality of these programs and utilities will be discussed in the following sections along with 

a brief description of the linear screen interface that drives them. In addition to these tools there 

are a large number of other utilities for viewing results and organizing the CIFER® database. The 

primary CIFER® programs this project dealt with were the first three main programs, all three 

analysis utilities, and a small selection of other programs. 

2.1 Creating a Frequency Response – FRESPID  

 

FRESPID (Frequency Response Identification) is the first step in any CIFER® analysis. This 

program takes time history data and generates frequency responses based on the input and output 

channel measurements. A very important aspect of CIFER® occurs in FRESPID, which is the 

“windowing” of the data. The data comprises a number of discrete frequency points over a time 

duration. FRESPID uses the CZT to average the data points of a smaller time window of data. It 

breaks the full time history into segments based on this window and performs computations based 

on averages for each given window size. 

 

There is a distinct tradeoff in the selection of window lengths relative to the total time history 

length. Windows that are a smaller fraction of the total length provide a large number of averages 

that can more easily identify high-frequency responses by countering noise effects. 

Unfortunately, low-frequency identification degrades because low-frequency responses tend to 

occur in larger intervals than the small windows encompass. When the window size is enlarged, 

low-frequency identification becomes more accurate at a cost to the high-frequency end due to a 

decrease in the number of averages. 

 

CIFER® solves this trade-off issue by allowing the user to specific up to five different windows in 

FRESPID. A frequency response is generated based on each window. This ensures that both low 
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and high-frequency content is captured from the data. These preliminary responses are later 

combined together using COMPOSITE, which will be discussed below.  

 

Of the three programs to be interfaced with MATLAB, FRESPID is the most complex. There are 

a total of nine screens in the Curses interface that accept user input and one of the screens can 

lead to two sub-screens. The user must specify information about the time history data, build the 

controls and outputs using the measured data channels, determine which frequency responses to 

calculate, condition the data as desired, specify the windowing information, and set plotting and 

output options. All of this functionality is supported by robust error checking that must be 

maintained in the command-line interface. Figure 2.2 shows an example of the FRESPID screen 

that controls the windowing of data. 

 

 
Figure 2.2: Example FRESPID Screen 

2.2 Multiple Input Analysis – MISOSA 

 

Engineering problems involving flight vehicles tend to involve systems with multiple controls. 

During flight tests, frequency sweeps are performed for a single axis. However, there may be 
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secondary off-axis control inputs. This coupling has significant potential to distort the response 

identification of the system. CIFER® addresses this issue with a program called MISOSA or 

Multi-Input / Single-Output Spectral Analysis. 

 

MISOSA analysis on the user level is very straightforward. The primary control of interest is 

specified along with any other controls that are to be considered secondary. The program then 

performs spectral analysis to remove the effects of the secondary controls from the primary 

control response. It uses a matrix inversion of the input autospectrum at each frequency point to 

accomplish this. This general form is shown in Equation 2.4. Gxx is the matrix of auto and cross-

spectra for the inputs and Gxy is a vector containing the cross-spectra for each control input and 

the single output in question. 

( ) ( ) ( )fGfGfT xyxx
1−=     [2.4] 

There are much fewer screens that drive MISOSA compared to FRESPID. The primary 

information needed is details about where the frequency responses are stored (whether in a file or 

in the database), names for the controls and outputs, and the desired combinations of responses to 

calculate. There is no conditioning or windowing of data involved, which results in less error 

checking. 

2.3 Combining Windows – COMPOSITE  

 

Normally the optimization of window sizes in the FFT calculation would be a very time 

consuming process. For a four-input, nine-output system there would be thirty-six responses that 

would each have to be individually optimized. CIFER® employs COMPOSITE (for composite 

windowing) to combine the individual windowed responses from FRESPID into a single 

combined response, thus automating the optimization. It uses a nonlinear, least-squares 

optimization of a cost function based on the auto and cross-spectra to combine the window data. 
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Thus the low-frequency content of larger windows is combined with the high-frequency content 

of smaller windows into a single response. 

 

COMPOSITE is set up almost identically to MISOSA in terms of the screen interface. There are 

some very slight differences in specifying the sources of data, but otherwise the interfaces for the 

two programs gather the same information. Since the required input information for each of the 

three main programs is of similar nature, it was easy to standardize the general layout of the 

command-line interface created to drive them in MATLAB in terms of variable names, structure 

and error checking. 

2.4 Analysis Utilities 

 

There are three primary analysis utilities included in CIFER®. The first is the RMS program 

which is used to integrate the autospectrum over a desired frequency range to determine the 

mean-square value of a signal. In addition, it can locate a frequency where the integrated RMS is 

a specific fraction of the full-range value. This is useful for determining properties such as cutoff 

frequency. 

 

The second utility allows both the calculation of handling qualities and crossover characteristics. 

The handling quality analysis looks for –180-degree, –135-degree, and 6dB bandwidth 

frequencies. It provides values for the gain and phase margins at these frequencies. Bandwidth is 

a useful indication of handling quality that can be identified from the nonparametric frequency 

response without first fitting a parametric model to the data. The crossover calculation examines 

the magnitude of the response for sign changes and is useful for determining broken-loop 

characteristics. The bandwidth utility also provides some useful plotting features that will allow 

users to include a least squares fit over a portion of the phase curve and to solve for phase delay. 



 16

 

The RMS and bandwidth utilities are driven by an interface different from that of the main 

programs described above. Rather than using screens, they use a linear prompt-based interface. 

Users are prompted for various data and results are then posted to the screen. These programs 

were more challenging to capture in a command-line format because the inputs had to be entered 

at one time and the outputs displayed at one time. Figure 2.3 shows an example of an RMS 

calculation and the prompts that drive it. 

 

 

Figure 2.3: Example RMS Prompts 

 

The last function performs frequency response arithmetic. Responses can be modified 

individually using scale factors and powers of s and then combined with basic arithmetic 

operations. The utility will perform these operations for magnitude, phase, coherence, and the 

auto and cross-spectra as desired. The option to perform this arithmetic allows users to check data 
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consistency by reconstructing responses for various signals based on kinematic laws of motion. 

Examples of this type of analysis can be found in Chapter 4. 

 

The arithmetic function uses the screen interface from the main programs but only has two 

screens. Thus the conversion to command-line interface was reasonably straightforward. 

2.5 Parametric Modeling – NAVFIT, DERIVID, VERIFY 

 

The three remaining main programs of CIFER® will be covered in less detail as this project does 

not involve them. It is important to note their use as this constitutes a major portion of CIFER®’s 

potential and the direction that future work on modernizing the interface will take. 

 

NAVFIT allows users to fit a transfer function to a single frequency response. The interface uses 

a cost function to give the user an indication of how closely a particular fit matches the response 

data. The user specifies the order of the transfer function desired and then the program iterates to 

find an optimum fit.  

 

The interface used by NAVFIT is similar to the RMS and bandwidth utilities except it has many 

more input options and more loops at certain segments. Additionally, it was built up on code that 

was originally created by McDonnell Douglas Aircraft outside of NASA. Thus, it would be 

particularly challenging to adapt to a command-line format. This was one major factor for not 

including NAVFIT within the scope of this project. 

 

DERIVID constructs a state-space system based on a series of related frequency responses. It 

generates the appropriate control derivatives for the coefficient matrices of a state-space system. 

This is a very powerful ability as it enables the creation or validation of math models for 
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simulation and wind tunnel testing. DERIVID works in a fashion similar to NAVFIT, using a cost 

function to notify the user of the accuracy of the fit. 

 

The final main program, VERIFY, allows users to validate a state-space model found in 

DERIVID with new time history data in the time domain. Typically the validation employs flight 

data taken from a doublet maneuver as opposed to a frequency sweep. VERIFY will run the state-

space model using the time history inputs and compare the model outputs to the measured 

outputs. This is an important step to provide confidence in the state-space solution. 

 

DERIVID and VERIFY use a combination of the screen interface and the prompt interface. There 

are 17 and 18 screens, respectively, that accept user input and a lengthy series of prompts that 

guide the user through the calculations of the state-space model. Due to this complexity they were 

excluded from the scope of the current feasibility project. 
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Chapter 3: Programming and Code Development 

 

The programming requirements set by the Army for this project included the development of a 

command-line interface for three main CIFER® programs: FRESPID, MISOSA, and 

COMPOSITE, and an additional seven utilities: RMS, Bandwidth, Frequency Response 

Arithmetic, plotting, case listing, data storage and data retrieval. These programs constitute a 

“light” version of CIFER® that takes the user through all the frequency response conditioning and 

allows assorted manipulation and analysis of the responses. The goal was to generate functional 

building blocks that had stand alone capability and upon which further development could take 

place. 

  

In addition to the command-line interface, development of a GUI interface was also required. The 

goal of the GUI development was to create a feasibility study to show how advances in GUIs 

could improve on the existing Curses interface. Thus, the development was focused on one main 

program, COMPOSITE. The primary concern was the layout and interface, thus once one 

program was shown to work as a GUI, others could be adapted fairly quickly. This chapter 

discusses the process of development of both new interfaces for CIFER® and the major problems 

encountered during the development process.  

3.1 Command-Line Development  

 

A function in MATLAB accepts a list of inputs, returns a list of outputs, and typically is called 

from a single line, often referred to as “command-line.” The key advantage of creating such an 

interface for CIFER® is the ability to script multiple calls to the function. The scripting ability 

greatly reduces the amount of time needed to create and run the large numbers of CIFER® cases 

typical of any detailed analysis. The error checking associated with the data entry process for 
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CIFER® inputs from the old interface, which was split up over a long series of screens, provided 

significant challenge. The command line function had to emulate all of that error checking 

structure at one time. Appendix A contains example screen shots of all the screens for the 

COMPOSITE program within CIFER®. Each screen is navigated through using the keyboard, and 

error checking occurs when the user progresses from one screen to another. 

3.1.1 Development Process 

 

The first step in the development process was to determine the best method to get information 

from the CIFER® database into the MATLAB workspace. The solution lay in MATLAB’s ability 

to create “mex” functions that can interface with Fortran or C code. CIFER®’s original Fortran 

code is structured such that it has internal functions and subroutines to access important 

information. By making the appropriate calls in the mex code, these functions were successful in 

passing data from the CIFER® Fortran into the MATLAB workspace and vice versa. The mex 

functions became the building blocks of all the CIFER®-MATLAB interface code. 

 

The concept of using internal CIFER® functions with mex code was initially tested with some 

very basic functions designed purely to retrieve a few specific pieces of data from CIFER®, such 

as a frequency response name and description, and display them in MATLAB. Modifications 

were made to the data in MATLAB and fed back into CIFER®. Accessing the frequency response 

in CIFER® verified whether or not the change was successful.  

 

When data is first processed in CIFER® it becomes known as a ‘case.’ which encompasses a 

series of measurements from a system. For example, one of the sample cases included with 

CIFER® is called XVLATSWP, which is for lateral responses from the XV-15 research vehicle in 

hover. The case structure has all the information that dictates where data is located, how to 
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interpret it, how to condition it, and how to window it. It is this information that must be passed 

into MATLAB in order to facilitate running a case from a command-line interface.  

 

The mex building blocks were expanded upon to read and write the full gamut of information 

CIFER® uses to create and run its cases. The problem with these building blocks is that they have 

many required inputs or outputs (depending on read or write) and no inherent error checking. This 

made use of the initial code blocks themselves very difficult. It was necessary to create higher 

level MATLAB M-files that would call the mex building blocks. These functions were designed 

with the full range of error checking found in the CIFER® screens and could format input data to 

be fed into the mex code blocks. 

 

Designing the final interface for the M-files was an iterative process in which several Ames 

engineers and programmers were included. Initial concepts were presented to the engineers on 

paper and the layout was refined based on their critiques. When those providing input were 

largely satisfied, the design was implemented in code. Once the M-files were finished they were 

distributed back to the engineers for evaluation. The evaluation process was constantly in place 

for the duration of the code development phase of the project. 

 

The final result was the desired series of command-line functions that could successfully mimic 

their CIFER® counterparts. The various codes encompassed 49 functions and spanned 14,000 

lines of code. Extensive testing on the part of Ames engineers and the developer facilitated more 

robust code than might otherwise have been achieved. One example of the success of the code 

was from one engineer running a series of CIFER® cases in a few hours that might have 

otherwise taken two to three days to finish. Suffice it to say that the engineers who regularly 

interact with CIFER® were very enthusiastic about this new capability.  
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3.1.2 Problems Encountered and Solutions 

 

The first, and perhaps most fundamental, problem encountered while developing this code was 

the structure of the interface itself. Creating an interface is difficult because no one knows exactly 

what is desired until they see and interact with it. Additionally, no solution is necessarily the right 

or best solution. On one hand, there was a significant drive to have the interface of new code 

mimic the old CIFER® interface. On the other hand, it made equal sense to update older CIFER® 

methods to more modern implementation, and to make more drastic changes to the layout. This 

question was more an issue for the GUI, but still affected the command-line interface. 

 

One method that MATLAB uses to gather large amounts of input is through a series of name-

value pairs. Essentially, the name of a variable is given as input immediately followed by its 

value. The pros are that the lists of variables do not have to be provided in a particular order, and 

variables meant to retain default values need not be specified. The con is that inputs are twice as 

long as they might otherwise need to be. Figure 3.1 shows a simple example of name-value input 

to a fictional function. Another possible input method is to use a structure. Structures are a 

‘parent’ data type in which various other data types can be stored. Thus one structure might 

contain integers, arrays, and strings organized in the ‘fields’ of the structure. Structures are 

reasonably well organized, and easy to deal with from a programming standpoint; however the 

format can be intimidating to non-programmers. Figure 3.1 also shows a simple structure layout, 

and how one structure used as input could replace name-value pairs. 
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Figure 3.1: Name-value Pairs and Structures 

 

The final interface for the command-line code combined both name-value pairs with the structure 

data type. The structure was used in the background to track and store all the information from a 

CIFER® case. The functions accepted input as either a series of name-value pairs or a structure. 

Output had to be presented as a structure; any other method would have produced too much 

clutter in the MATLAB workspace, especially when multiple CIFER® cases were considered. 

The use of the structure helped streamline the internal error checking process. Essentially, for 

each field in the structure, there was a series of checks run that mimicked the checks run in 

between each CIFER® screen. 

3.1.2.1 Precision Errors 

 

During the earlier phases of development a small error caused by the transfer of data between 

CIFER® and MATLAB was discovered. The cause of this error was likely numeric precision 

discrepancies, probably due to MATLAB using double precision compared to Fortran’s usual 

single precision. The result of these errors was that the same number stored in the CIFER® 

database would return to MATLAB with variation in the ten or hundred thousandths decimal 
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place. To date no major discrepancy has been observed in the overall results generated by 

CIFER®.  

 

Several tests were conducted to locate a more exact cause of the error. The first method was to 

create a case in MATLAB using the interface functions and then create a second identical case 

(except in name) the traditional way from within CIFER®. From here the frequency response 

results could be extracted and compared. This was how the error was initially discovered. 

 

Comparisons of the errors in magnitude and phase were plotted as shown in Figure 3.2, which 

revealed that slightly larger errors occurred at high or low frequency, regions that tend to exhibit 

low coherence. The trend was not completely true in all cases, but most plots tended to exhibit 

that behavior. Several different cases including the XV-15 data, Shadow 200 data (Figure 3.2), 

UH-60 simulation data, and an example mass-spring-damper system were examined in this 

manner, with the results generally being the same. Figure 3.2 is a plot of the percent error; as 

such, it can be seen that these errors are small in magnitude. 
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Figure 3.2: Percent Error Comparisons 

 

In order to determine if the error was originating in MATLAB, another set of tests was 

conducted. First, a case was set up in CIFER® and run (using different case names) in CIFER® 

and in MATLAB. Then, an identical case was constructed in MATLAB and again run in CIFER® 

and MATLAB. The results compared identically between either set of cases created using the 

same program. However, comparison of any combination of cases from differing setup methods 

resulted in the minuscule numeric error. When overlaid in a plot, there was no visual difference in 

the plots and thus no significant discrepancy between the two methods of creating a case. The 

origin of the error was not located, but suspected to result from MATLAB’s use of double 

precision. 

 

The conclusion was that, unless time permitted, or more significant discrepancy between results 

was found, the problem would be considered minor. For the most part, the errors occurred in 
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regions of low coherence where less weight would be assigned to the results, regardless of small 

numeric error. The short-term solution was to document the existence of the issue as a warning to 

users. 

3.1.2.2 Retaining Structure of Code 

 

A major concern of the project was to create new code that would be relatively easy to maintain 

and modify. In order for the functions created for the MATLAB-CIFER® interface to be 

maintainable by CIFER® lead programmers, the code was written to mimic existing Fortran code 

wherever possible. In other cases, such as the MATLAB M-files, code was made uniform both in 

structure and in naming conventions so as to facilitate both ease of use and ease of maintenance.  

 

Several specific methods were employed in this endeavor. First, in dealing with the Fortran mex 

files, the names of variables transferring data from MATLAB into the CIFER® common blocks 

were made identical to the common block variables but with an ‘x’ appended on the end. This 

notation would allow easy identification of variables by programmers already familiar with the 

old Fortran code. Second, the variables were renamed when they were passed into the MATLAB 

workspace because the Fortran variables have names suited to programming that may not be 

meaningful to an engineering user. Last, the various Makefiles which create the Fortran mex files 

were condensed and grouped according to the utilities and programs they created. Thus, all the 

functions that facilitate FRESPID use are created using a single Makefile. 

 

CIFER® programs and utilities vary slightly in their method of interfacing with the user, as 

described in Chapter 2. Some use a screen interface where the user fills in fields and advances 

using the function keys. When the end of the screens is reached, the screen programs may call 

additional programs that send information to be processed by CIFER®. Other programs use a 
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command-line-based interface that runs calculations and returns results as the user steps through 

via prompting.  

 

The three main programs for this project, FRESPID, MISOSA, and COMPOSITE, when run in 

CIFER® use the screen interface and have separate functions to store, retrieve, and compute 

information. The MATLAB interface uses these same functions, however, to provide CIFER® the 

information without using the screen interface. The MATLAB structure that holds the case 

information is set up to collect the same information that the user would normally provide 

through the screens. All of this functionality was accomplished without modifying any original 

CIFER® code, thus no provisions will be necessary in order to maintain that original code when 

the new interface is added to the full CIFER® software package. 

 

Other utilities such as the RMS, plotting, and arithmetic calculations have the screen interface 

embedded within the functions that run the calculations. For the MATLAB interface to work, the 

original CIFER® functions had to be altered to disable the screen interface. These alterations are 

well marked with comments as CIFER® lead programmers will ultimately need to incorporate 

new methods within existing code to accommodate the changes and prevent the need to maintain 

two separate source files. The utilities that use the command-line interface (RMS, plotting, and 

handling qualities) were dealt with much the same as the screen-based utilities due to the 

command-line prompts being embedded within the code for calculations. 

3.1.3 Complexity of Use 

 

A side effect of the command-line interface was that it required users to be reasonably familiar 

with CIFER®. The interface is not as intuitive as a graphical interface because everything happens 

at once. There are no screens with helpful notes and error checking to step through. If a case has 
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errors, they are all displayed at once when the program finishes. Thus, a new CIFER® user could 

get more lost and confused by starting off with the command-line interface. The power of the 

interface, as mentioned before, is the ability to script multiple cases, which is something 

beginning users would find less beneficial than experienced users. 

 

A detailed help document was created for the command-line interface to help users understand 

how to employ it. The text of this document can be found in Appendix B, and Appendices C 

through I contain the appendices from the original document. Ames engineers were provided 

copies of the document along with the software when they employed the new interface in their 

projects. The document was written with the assumption that a reader would already be familiar 

with CIFER®.  

3.2 Graphical User Interface Development 

 

COMPOSITE was selected as the test program around which to develop a MATLAB GUI. It was 

deemed sufficiently complex to make a useful example, and it is one of the more commonly used 

CIFER® programs from those selected for this project. The primary goal of the GUI development 

was to show that, first, it could be done, and second, the process of data entry could be enhanced 

using more modern GUI tools. An important secondary goal was to create the GUI as a rough 

template that could be efficiently applied to the rest of the CIFER programs in the future. The 

GUI was written to work with the command-line interface, using graphics to gather the 

information to be sent to the command-line functions without the user needing to know how the 

command-line functions work. It is important to note that the GUI programming does not stand 

alone as the command-line does and is to demonstrate how advances in GUI programming can 

make CIFER® more user friendly. 
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3.2.1 Development Process 

 

The most difficult aspect of developing the GUI was adjusting the look and feel to appeal to the 

widest audience of potential users. The iterative method used for the command-line development 

was employed for the GUI as well, with NASA engineers and programmers included during the 

design process. Several initial concepts were sketched on paper before any code was written.  

 

When ideas were put into code, the first programs were designed only around the layout of the 

GUI, lacking any real functionality. This allowed reviewers a clear idea of what the finished 

product might look like. Once the design for the layout was sufficiently refined, the functionality 

was written into the code. As the functionality was based on the command-line interface, the 

focus of the GUI development was the layout. 

 

The GUI was largely built up around the command-line code that already could interface with 

CIFER®. Data entry in the GUI was largely handled by toggles and text fields. The error checking 

from the command line was superseded by similar checks within the GUI to make its use closely 

resemble the old CIFER® interface. Appendix A shows the COMPOSITE screens from both the 

old interface and the new GUI. 

3.2.2 Modern Updates to the Original Interface 

 

Perhaps the most visible change between the original interface and the new MATLAB GUI was 

the added navigational features. CIFER® was originally designed to run on VAX/VMS systems 

and as a result, uses the keyboard function keys for navigation. There were menus that could be 

accessed for navigation within each program; however they are not always intuitive in use. Thus 

two primary navigation bars were added to the GUI interface. The left bar, found in Appendix A, 
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Figures A6 through A10, offers users a visual description of each screen in the COMPOSITE 

program and allows users to access any of those screens with a mouse click. The bottom menu, 

displayed on the bottom of Figure 3.3, is a re-creation of the original CIFER® menu, shown on 

top in Figure 3.3, and offers quick access to simple navigation and save or exit options. 

 

 

Figure 3.3: Comparison of Navigation Menus 

 

Aside from the new navigation, the largest change to the first screen, Figure A1 and Figure A6, is 

the addition of a browse feature. This button opens the first window shown in Figure A11 and 

allows the users to browse the database for CIFER® cases. When a case is selected from the list, 

its description is provided to aid in selecting the desired case. The case name can then be loaded 

into the text field on screen one. 

 

Screen 2, Figure A2 and Figure A7, originally completely consisted of text field entries. Many of 

these fields corresponded to data that could only be one of two choices – yes or no, for example. 

The MATLAB GUI uses toggle buttons to simplify this process and reduce the amount of error 

checking necessary. Additional browsing capacity has been added to help data entry; inputs and 

outputs can be selected from a list of all inputs or outputs in that case. For example, a user might 

load a case into COMPOSITE and not remember which inputs and outputs were used in previous 

FRESPID cases. The “input” and “output” buttons (Figure A7) call up a new screen, the second 

window in Figure A11, that displays all the inputs or outputs that exist in a particular case by 

querying previous MISOSA or FRESPID cases. The desired inputs or outputs can be selected and 

then loaded back into screen 2. 
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The third screen is used to match which input and output pairs the program will operate on. 

Originally these pairs were selected through an asterisk, as shown in Figure A3. The new 

interface, Figure A8, is toggle button-based, and more features have been added to allow an entire 

row or column to be selected by clicking on the heading button. Similarly, toggle buttons were 

used for screen 4 as shown in Figure A4 and Figure A9. 

 

The last screen in the original code offers three choices to exit, save and exit, or save and run the 

batch job. If a batch job is run, the output information is displayed to screen, shown in Figure A5, 

but users can press a key to continue using CIFER®, which will remove the information from the 

screen. Once the batch job is completed, additional information is displayed which can disrupt 

work if one has moved on while the batch job was running. 

 

The final screen in the new interface, Figure A10, has the three options from the original code as 

well as several new features. There is now a dedicated window to display the output from the 

batch job, ensuring that the information will not be lost. Additionally, an option to view the 

output log file has been added. The log file contains a summary of the information from 

processing the case and is very useful for debugging a case that generated errors. 

3.2.3 Problems Encountered and Solutions 

 

The most challenging aspect of the GUI development was creating a layout that the largest 

number of engineers were comfortable with. It was ultimately made a requirement for the new 

layout to mimic the old interface as closely as possible. Before this requirement was set, several 

layouts were considered that would have been a significant change to the old look and feel. The 

driving factor was to keep the interface similar so longtime users would not have to make major 
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adjustments to their understanding of the program, while adding the modern GUI features that 

might shorten the learning curve for new users.  

 

The second major challenge lay in generalizing the code structure to allow other programmers to 

easily adapt the code to work for other CIFER® programs, which was accomplished using the 

aforementioned added navigation functionality. These navigation tools were set up to work for a 

general series of windows. For this project, these were for COMPOSITE, but if windows for 

another program were created, they could be easily linked. This concept was illustrated by the 

lead programmer for CIFER® at NASA, who was able to adapt the code to the MISOSA program 

in a few days as opposed to the initial development, which spanned several weeks.  

 

The development of the GUI was a significantly smaller undertaking than the development of the 

command line. The GUI largely added to and enhanced the already present functionality of the 

command line.  Thus there were fewer technical problems associated with development. The 

practices set in place from the work on the command-line interface continued to be employed for 

the GUI development. 
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Chapter 4: Validation and Application 

 

In order to confirm that the new code would accurately move information between CIFER® and 

MATLAB, many tests were conducted. In the early stages of the code development, various 

sample cases provided with CIFER® installations, such as the XVLATSWP case mentioned 

previously, were used. Also at this stage, a simple mass-spring-damper system was modeled as a 

potential example to new users of CIFER®. Once the codes were more developed, more 

complicated validations were employed. The first was a closed-loop investigation of a UH-60 

simulation, and the second was a series of data consistency checks and cutoff frequency analysis 

on the Shadow 200 Tactical Unmanned Aerial Vehicle (TUAV)6. 

4.1 Sample CIFER Cases 

 

CIFER® installations come with a series of time histories for the XV-15, and its documentation5 

uses related sample cases as examples. New users of CIFER® typically learn the interface by 

working through the set-up of these cases. Thus, the cases made excellent initial comparisons to 

determine if the MATLAB interface was working correctly. At this stage, the analysis was 

essentially creating plots of cases set up and run from CIFER® and cases set up and run from 

MATLAB. The only major problem found was the numeric precision error discussed in Chapter 

3. Examples of the scripts used to set up one example case can be found in Appendix I.  

 

A series of example comparisons for the lateral sweep are shown in Figure 4.1. The aileron input 

is plotted against roll rate, yaw rate, lateral acceleration, and vertical velocity perturbation. The 

important aspect of the figure is that the plots comparing the results set up and run from 

MATLAB, to those set up and run from CIFER® match. Additional plots and analysis for the XV-
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15 cases have not been included as the analysis is largely the subject matter of the CIFER® 

documentation. 

 
Figure 4.1: XVLATSWP Validation Examples 

4.2 Mass-Spring-Damper System 

 

A second elementary check on the MATLAB interface was conducted using a single-input-

single-output (SISO) mass-spring-damper system as an example. The primary goal for the 

example was to provide students with a simple system to analyze using CIFER®. The system used 

is shown in Figure 4.2, and its transfer function was solved from the governing differential 

equations in the form of Equation 4.1. 

( )
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++
= 2     [4.1] 
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Figure 4.2: SISO Mass-Spring-Damper System 

 

The system was modeled in Simulink by attaching a custom chirp signal generator to the transfer 

function as shown in Figure 4.3. The chirp generator was written to provide a frequency sweep as 

input. The spring constant K was set to 7, and variables M, and b set to 0.3 and 0.1, respectively. 

These values correspond to a natural frequency of 4.83 rad/s and a damping of 0.035. 

 
Figure 4.3: Mass-Spring-Damper Simulink Block Diagram  

 

The results of the simulation, Figure 4.4 below, were collected and formatted into a file readable 

by CIFER®. The time history then made the basis for new CIFER® case that was created entirely 

in MATLAB. The script that set up the case can be found in Appendix H.  
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Figure 4.4: Mass-Spring-Damper System Input and Output 

The frequency response of the simulation is shown in Figure 4.5 below. The natural frequency of 

the mode occurs is almost 5 rad/s, which corresponds to the calculated value of 4.83 rad/s. The 

case was also run from within CIFER® for comparison to the MATLAB case, the results of which 

are also shown in Figure 4.5, where the results overlay precisely. In addition, the CIFER® results 

were compared to the results from using the MATLAB ‘bode’ command on the transfer function 

as shown in Figure 4.6. There is a slight difference found at the mode and at high frequency, 

which correlates to the drop in coherence at those regions. 

 

Figure 4.5: Matlab to CIFER® Comparison Figure 4.6: CIFER® to ‘bode’ Comparison
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4.3 UH-60 Simulation 

 

The first in-depth validation of the CIFER®-MATLAB interface was based on UH-60 simulation 

data provided in the Combined-CIFER-CONDUIT-RIPTIDE Training course6. This course was 

designed to give engineers a brief introduction to the three programs developed and distributed by 

the Flight Controls Group, of which CIFER® is one. The second program is CONDUIT®7, which 

is designed to optimize a control system around a parametric model for a system. The third 

program is RIPTIDE®8, which is a simulation program that will allow users to fly systems 

modeled in CONDUIT®. Together, the programs constitute a very powerful control systems 

design suite. 

 

The course data was examined for crossover and bandwidth characteristics using CIFER® 

utilities. The reference values for these properties were already provided from CONDUIT® 

analysis and were used as a check to ensure the correctness of the CIFER® results. The course 

manual provided closed-loop data necessary for bandwidth analysis. In order to investigate 

crossover characteristics it was necessary to generate additional simulated flight recordings, in 

RIPTIDE®, of the feedback and error channels. Only the roll channel was examined for this 

analysis. 

 

As a first step in the analysis, frequency response arithmetic (CIFER® utility 9) was used to 

confirm the consistency of data channels used for error and feedback. Equations 4.2 and 4.3 show 

the relation of the error signal to the input and feedback signals for a conventional feedback setup 

as depicted in Figure 4.7. Figure 4.8 shows the plot of the error response to stick input compared 

to the response solved with the MATLAB version of CIFER® utility 9 using Equation 4.3. The 

results overlay precisely, which was expected given that the data comes from a simulation. 
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 fe −= δ       [4.2] 

δδδ
δ

δ
ffe

−=−= 1      [4.3] 

 

Figure 4.7: Feedback Block Diagram Figure 4.8: Error Channel Verification

Using the MATLAB version of CIFER®’s utility 8 for crossover characteristics, the feedback 

response to error in the lateral axis was analyzed. A time delay of 0.0402 was incorporated into 

the CIFER crossover analysis because the time delay was not present in the simulated flight 

recordings. This modification is not entirely correct because it puts the time delay over the entire 

system as opposed to just within the forward loop where it actually occurs. It is, however, a 

reasonable approximation. Table 4.1 shows the results from CIFER® as compared in Unix and 

from Matlab to those printed in the training course manual. There was no discrepancy between 

the two difference CIFER® calculations. 

Table 4.1: Roll Gain/Phase Margin Results 

  CIFER, From Unix CIFER, From MATLAB CONDUIT % Difference 

  Margin Frequency Margin Frequency Margin Frequency Margin Frequency 

Gain (1) -10.67 0.41 -10.67 0.41 -10.3 0.48 3.57 13.18 

Gain (2) 22.84 13.54 22.84 13.54 24.42 14.85 6.47 8.82 

Phase 56.35 2.19 56.35 2.19 57.2 2.13 1.49 2.64 
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The differences between the two calculations are very small with the exception of the first gain 

margin frequency. The difference in frequency could be a result of the time delay mentioned 

above, however this would have more effect at higher frequencies. It is reasonable that the results 

do not precisely match as they were obtained by different analytical methods. Figure 4.9 contains 

a plot of the response with the gain and phase margins called out.  

 
Figure 4.9: Broken Loop Roll Gain/Phase Margin Results 

 

In addition to the broken loop gain and phase margins, CIFER® can also determine bandwidth 

values from frequency response data. Using both the MATLAB and Unix version of CIFER® 

utility 8 for bandwidth calculations, the roll attitude response to lateral stick was examined and 

compared to results obtained from CONDUIT®. These comparisons are shown in Table 4.2, and 

the difference between the two programs is very small. There was no difference between the 

MATLAB and Unix runs of CIFER®. The ability to analyze nonparametric frequency responses 

is a useful feature of CIFER® as it allows handling qualities of a system to be determined without 

identification of the full parametric math model.  

 

 

Gain Margin 1
Gain Margin 2

Phase Margin
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Table 4.2: Roll Bandwidth Results 

  CIFER CIFER CONDUIT % Diff 

  From Unix From MATLAB     

45 deg Phase Margin 4.79 4.79 4.77 0.42 

6 db Gain Margin 6.89 6.89 7.05 2.27 

 

The response for lateral input to roll rate output was used to generate the data from Table 4.2. 

First it was integrated to yield the attitude response and then the time delay of 0.0402 was 

applied. The graph of this response with the bandwidths marked is shown in Figure 4.10. 

 
Figure 4.10: Roll Bandwidth for Lateral Stick Input to Roll Angle Response 

 
CIFER® has an RMS utility that is capable of solving for the cutoff frequency of a response based 

on the energy content of the data. Table 4.3 shows the cutoff frequencies solved for using both 

lateral actuator (LATA) and stick (LATS) inputs with roll attitude and rate responses by the Unix 

and MATLAB versions of CIFER®. The results show that the piloted input loses energy at a 

lower frequency, and the actuator picks up content and operates at a higher frequency. These 

results are confirmed by the input autospectra, shown in Figure 4.11 with cutoff frequencies 

marked. There is no difference in the results between Unix and MATLAB. 

 

6dB Bandwidth

135 deg. Bandwidth 
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Table 4.3: Cutoff Frequency Results 

 CIFER CIFER 

 from Unix from MATLAB 

Channel Cutoff Freq. Cutoff Freq. 

LATA 7.00 7.00 

 - PB 5.32 5.32 

 - PHI 2.09 2.09 

LATS 1.93 1.93 

 - PB 3.75 3.75 

 - PHI 0.57 0.57 

 

 
Figure 4.11: Stick and Actuator Input Autospectra 

 

The cutoff frequency for actuators can be indicative of the bandwidth frequency for some systems 

because the 135-degree crossover tends to occur during the phase shift that occurs at cutoff. The 

roll rate tends to have more frequency content than the attitude, as indicated by Table 4.3, which 

was why it was used for the previous bandwidth calculations and integrated to get the attitude 

response. The cutoff frequency for roll attitude compares reasonably closely to the 45-degree 

phase margin bandwidth frequency for the lateral stick to roll attitude response, 5.32 to 4.79, 

Cutoff Frequency
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respectively. Figure 4.12 shows the two frequencies marked on their respective magnitude and 

output autospectrum plots.  

 
Figure 4.12: Cutoff Frequency Compared to Bandwidth Frequency 

4.4 Analysis on Shadow 200 TUAV 

The following analysis was conducted on AAI Corporation’s Shadow 200 TUAV4 for an Ames 

Research Center research project. Shadow 200 has a wingspan of 12.75 feet, length of 11.17 feet, 

takeoff gross weight of 328 pounds, and carries 60 pounds of payload. It cruises between 65 and 

85 knots, up to a 15,000-foot ceiling, with endurance better than five hours. Figure 4.13 shows 

Shadow at launch. 

 
Figure 4.13: Shadow 200 TUAV4 

Bandwidth

Cutoff Frequency 
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Two sets of data were used: one was a simulation of the UAV, and the second from a series of 

flight tests on the vehicle. The goals of the analysis were to investigate data consistency using the 

frequency response arithmetic utility, and to explore the RMS and cross-over characteristics of 

the vehicle. The results of the analysis were compared to scaled bandwidth criteria for manned 

aircraft. This analysis was the final, most involved, validation of the CIFER®-MATLAB 

interface. 

4.4.1 Data Consistency checks: 

 

Checking data for kinematic consistency assures that measured data obeys kinematic laws and 

does not contain hidden scale factors or delays. The frequency arithmetic feature of CIFER® 

allows reconstruction of parameters not measured during flight tests from the responses of those 

that were measured. Additionally, it can be used to show whether or not data is consistent with 

kinematic laws. There are several relations among commonly measured rates and attitudes for 

aircraft as shown in Equations 4.4 through 4.85. Herein, it was assumed that V0 and W0 were 

small. 

φ=p        [4.4] 

θ=q        [4.5] 

rVqWgau x 00 +−−= θ     [4.6] 

φβ gpWrUaUv y ++−=−= 000    [4.7] 

pVqUaUw ozo 0−+== α     [4.8] 

The simulation data includes measurements of phi and theta as well as the rates and accelerations 

in all axes, however, alpha and beta channels were not provided. Velocity perturbations were 

reconstructed from the time domain data in the FRESPID program using Equations 4.6 through 

4.8. The frequency responses could then be calculated for the velocity perturbations. Using 
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frequency response arithmetic, data consistency can be examined for all five of the above 

relations. The arithmetic feature in CIFER® allows a single, basic operation (addition, subtraction, 

multiplication, and division) to be performed on two frequency responses. Each individual 

response can be modified by a scale factor and a power of s if desired. 

 

In the frequency domain Equations 4.4 and 4.5 can be rearranged into Equations 4.9 and 4.10 

respectively, thus allowing the comparison of the measured responses to the exact value of 1/s in 

the frequency domain. Frequency response arithmetic was used to calculate the pφ  and qθ  

responses from the on-axis responses for rates and attitudes. Figure 4.14 and Figure 4.15 show the 

arithmetic results for Equations 4.9 and 4.10 and compare these responses to the theoretical value 

of 1/s. 

spp
ail

ail 1
==

φ

δ

δ
φ

     [4.9] 

 
sqq
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ele 1
==

θ

δ

δ
θ

     [4.10] 

Both plots compare very well, which is to be expected as the measured values from the 

simulation should be kinematically correct to start with. At low frequency there is a more 

significant difference, primarily due to the low coherence. The difference suggests that the values 

from the CIFER® response are unreliable due to little or no input at those frequencies. This is true 

of the higher frequencies where coherence also degrades. Another cause of these discrepancies 

could be a result of the hardware in the loop, which could introduce sensor and actuator noise and 

biases.  
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Figure 4.14: Roll Angle to Rate Comparison Figure 4.15: Pitch Angle to Rate Comparison

 

The next check using the simulation data was performed for Equations 4.6 through 4.8. 

Frequency response arithmetic was used to combine the on-axis responses of rates and attitudes to 

calculate the velocity perturbations in the frequency domain from the appropriate frequency 

responses. These were compared to the corresponding velocity perturbation responses that were 

initially reconstructed in the FRESPID program using the same math on the time history data. 

Equation 4.11 shows an example of how the frequency responses were combined using 

arithmetic. 

eleele

x

ele

q
s

g
au

δδδ
1

−=      [4.11] 

These comparisons are shown in Figure 4.16 through Figure 4.18 using a forward velocity of 65 

knots. Both methods of calculation overlay nearly precisely, which makes sense as both plots are 

based on the same data, one created straight from the time domain and one built through 

frequency response arithmetic. Even in regions of low coherence, both calculations include the 

same errors and thus arrive at the same answers. The coherence plots vary due to a convention in 
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the arithmetic utility that applies the coherence from one or the other of the constituent responses 

to the resulting response. 

 
 

Figure 4.16: Longitudinal Velocity Perturbations Figure 4.17: Lateral Velocity Perturbations

 
Figure 4.18: Vertical Velocity Perturbations 

 

Performing consistency checks on the simulation was useful to ascertain that the models were 

correctly set up and identify any discrepancies that may have resulted from hardware in the loop. 
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The same checks were run on the flight data as well. Measurement instruments in flight are not 

inherently bound by the math that makes a simulation correct, and it is worthwhile to confirm that 

kinematic laws still hold true for them. Analyzing spurious results allows engineers to accurately 

correct flight data or fix the instruments in order to acquire, hopefully, more accurate data. The 

flight data includes measurements for the rates and accelerations, with the addition of alpha and 

beta measurements taken from a nose boom. These allow consistency checks for Equations 4.7 

and 4.8.  

 

Measurements of phi and theta were not included in the flight time history files and thus there is 

no benchmark with which to compare Equations 4.4 and 4.5. However, as phi and theta can be 

reconstructed from p and q, Equations 4.6 through 4.8 could be used to generate responses for the 

velocity perturbations. Equation 4.6 was not used with the flight data as there would only be one 

source of u  calculations for comparison. However, as alpha and beta were included in the time 

histories, v  and w could be calculated by two methods and those results compared to check the 

data consistency of the time histories. 

 

Figure 4.19 shows v  comparisons, where the solid line is the calculation of v  using yaw rate, roll 

angle, and lateral acceleration, and the dotted line is v  solved using the beta response for a 

forward velocity of 85 knots. The coherence drops rapidly at a very low frequency, just over 2 

rad/s, however the trends of the two calculations still match up closely. There appears to be a 

small offset in phase between the two after the 180-degree phase shift. The offset could be due to 

the low coherence or possibly due to a hysteresis effect. 
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Figure 4.19: Lateral Velocity Perturbations, Flight Data 

 
The second and final consistency check on the flight data was for w  calculations for pitching 

motion. Direct comparison of the two methods of calculation can be seen in Figure 4.20. Both 

calculated responses appear to have the same trend. For a more exact comparison of the measured 

data to the theoretical solution, Equation 4.8 can be rearranged to relate alpha, az and q to 1/s as 

shown in Equation 4.12. 

sqUa
U

oz

o 1
=

+
α

      [4.12] 

A series of frequency response arithmetic operations were used to generate the left side of 

Equation 4.12, which was then compared to the plot of 1/s as shown in Figure 4.21. Overall the 

data matches the 1/s value quite well. Discrepancies in the magnitude plots can be directly 

correlated to spikes in the coherence. The most noticeable difference occurs in the phase plot; 

there is a small phase offset from -90o. The offset is fairly constant with frequency, which 

suggests a hysteresis effect. The result is typical of airboom measurements such as were used in 

the flight test, which tend to exhibit some amount of hysteresis.  
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Figure 4.20: Vertical Velocity Perturbations, 

Flight Data 

Figure 4.21: Comparisons with Exact 1/s 

Value

4.4.2 RMS and crossover comparisons: 

 

CIFER® has utilities which calculate the root mean squared (RMS) value and some handling 

qualities metrics for a given frequency response. The results of these calculations can be 

compared to handling qualities specifications such as those laid out in MIL-STD 1797A9 or the 

Neal-Smith Criteria10. The values between both simulation and flight data can be compared to 

check consistency of the simulation. Additionally, RMS calculations can be made on the time 

history data and compared to the equivalent frequency domain RMS values. 

 
The first check was a comparison between flight and simulation full-range RMS values for 

control inputs and output responses from the main on-axis channels. These results are tabulated in 

Table 4.4. It should be noted that RMS values are based on the input or output autospectrum for a 

given response and are a measure of the energy or excitation of the system. 

 

 



 50

Table 4.4: Full Range RMS Values 

  Flight: Sim: 

AIL 6.05 9.07 

   P 0.350 0.330 

ELE 2.66 3.98 

   Q 0.193 0.281 

RUD 2.36 2.94 

   R 0.064 0.075 

WHL 1.10 1.77 

   R 0.064 0.075 

   Beta 0.047 none 

 
The RMS values for the aileron, elevator, and wheel inputs from the simulation are higher in 

magnitude than the flight RMS. The likely explanation is that the simulation operators gave larger 

inputs to the control system than the flight operators to the flight test. The rudder RMS values 

compare more closely between flight and simulation, however simulation is still larger in 

magnitude. The RMS comparisons of the pitch and yaw rates have the same trend as their 

respective inputs. The values for the roll rate are almost the same, which is not consistent to the 

difference in the magnitudes of the aileron inputs.  

 

Figure 4.22 shows the comparison between the flight and simulation roll rate responses. For 

additional comparison, Figure 4.23 shows the same comparison in the pitch axis. The results for 

the roll axis show a discrepancy in magnitude which could be due to the x-axis moment of inertia 

estimated too large or the aileron control power derivative being estimated too small in the 

simulation. Additionally, the phase roll-off is steeper at high frequency for the simulation which 

suggests there might be a time delay error. The pitch response also shows an anomaly in the 

phase slope at high frequency, which could be a time delay error as well. 
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Figure 4.22: Aileron - Roll Rate Responses Figure 4.23: Elevator - Pitch Rate Responses

 

RMS values for the time history data were manually calculated in MATLAB and compared to the 

equivalent values from CIFER® calculations as based on the frequency responses. These 

comparisons were conducted for both flight and simulation data. Table 4.5 shows the results of 

the study. The time RMS values were obtained from the pure control input data. The two 

calculations compare well between the two domains.  

Table 4.5: Frequency RMS compared to Time RMS 

  Flight   Simulation   

  Freq. Time Freq. Time 

Ail: 6.05 5.83 9.07 9.01 

Ele: 2.66 2.79 3.98 3.77 

Rud: 2.36 1.96 2.95 2.85 

Whl: 1.10 1.05 1.77 1.74 

 

The crossover frequencies can also be examined by using the CIFER® RMS calculations. Flight 

and simulation results of the same on-axis responses are shown in Table 4.6. All of the cutoff 

frequencies based on inputs agree well, which means the flight control performance is consistent 

between the simulation and flight.  
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Table 4.6: Cutoff Frequencies via RMS 

  Flight: Sim: 

AIL 4.82 4.43 

   P 3.53 3.70 

ELE 7.03 6.82 

   Q 5.62 4.87 

RUD 6.21 6.03 

   R 2.53 3.89 

WHL 6.04 5.59 

   R 2.53 3.83 

   Beta .85 none 

 
The differences in the rudder and wheel output calculations between simulation and flight are 

greater. The phase slopes are different at the mode, which suggests the simulation is more highly 

damped. The outcome is surprising because the responses are very similar as shown in 

Figure 4.24. The primary difference is in the spike in the flight data around 2 rad/s, which is due 

to the poor coherence. When the output autospectrum is plotted, Figure 4.25, the difference 

between the flight and the simulation data is more pronounced. This is the data that is integrated 

in the RMS calculation. The plot of simulation data begins to roll off, losing energy, around 4 

rad/s, which corresponds to the frequency from Table 4.6. The flight data begins to roll off just 

above 2 rad/s, also corresponding to Table 4.6; these autospectrum plots are the source of the 

discrepancy in the table. 

 

Figure 4.24: Rudder to Yaw Rate Response Figure 4.25: Rudder Output Autospectrum
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CIFER® offers a utility for analyzing bandwidth and crossover properties of frequency responses. 

Use of the handling qualities portion of the Bandwidth utility allows identification of –180-degree 

and –135-degree bandwidth frequencies and gains. Table 4.7 shows the –135-degree bandwidth 

frequencies for the main on-axis responses in flight and simulation. The attitude bandwidths were 

determined by integrating the corresponding rate response. 

Table 4.7: -135-Degree Bandwidth Frequencies 

  Flight: Sim: 

PHI/AIL 2.75 2.33 

THETA/ELE 5.86 4.27 

PSI/RUD 2.32 2.39 

PSI/WHL 2.62 3.78 

BETA/WHL 1.53 none 

 
These results compare reasonably well between flight and simulation. As the cutoff frequency can 

be indicative of the bandwidth frequency it is useful to show comparisons between the two. 

Figures 4.26 through 4.28 show these comparisons for each axis on the attitude response for the 

aircraft. The results for the roll and pitch axes as well as the yaw flight data compare reasonably 

well. The cutoff and bandwidth frequencies for the yaw simulation data do not compare as well, 

which likely is a result of the differing output autospectra. 

  
 

Figure 4.26: Aileron to Roll Attitude Response Figure 4.27: Elevator to Pitch Attitude Response
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Figure 4.28: Rudder to Yaw Attitude Response 

 

Bandwidth can be a useful indication of aircraft handling qualities and thus can be used to assist 

in control system optimization. Classically, bandwidth criteria for fixed-wing aircraft are 

discussed in MIL-STD 1797A and several subsequent studies. These criteria use both bandwidth 

and phase delay to determine handling qualities. Phase delay is based on the twice 180-degree 

frequency as shown in Equation 4.13.  

( )
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1802

2*3.57
180
ω

φ
τ ω

o

p
+

−=      [4.13] 

One concern with comparing the Shadow 200 data to the specifications as defined in these reports 

is that the studies were conducted for much larger, piloted aircraft. MIL-STD 1797A uses 

AFFDL-TR-70-7410 as a basis for its bandwidth criteria. This study was conducted to examine 

control system design criteria for fighter aircraft. Thus the criteria from these documents will be 

scaled to Shadow as though it were a scaled down fighter. Compared to the average fighter 

wingspan, Shadow has a scale factor of about 3. Equations 4.14 through 4.16 show the form of 

the dynamic similarity laws11 that govern scaling where subscripts a and m denote actual and 

model, respectively, and N is scale factor. 
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Length:  
N
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L a
m =      [4.14] 

Time Constant: 
N
a

m
τ

τ =      [4.15] 

Frequency: Nam ωω =      [4.16] 
 
 

Figure 4.29 shows results for the roll axis plotted on the scaled WL-TR-84-316212 handling 

specification for roll attitude. The flight bandwidth is within the level 1 handling qualities 

boundary while the simulation result is level 2. Though the bandwidths of the two tests are 

similar, the phase delay is significantly different: 0.093 for simulation and 0.001 for flight. This is 

a result of the differences in the phase curve of the frequency response, shown in Figure 4.30 with 

the 180-degree and twice 180-degree frequencies marked. The simulation data rolls off much 

more quickly than the flight data. The discrepancy between the two tests would need to be cleared 

up before a solid conclusion on the handling qualities could be reached. 

 
 

Figure 4.29: Scaled Roll Bandwidth Criteria Figure 4.30: On Axis Roll Attitude Response

 
The analogous scaled specification for pitch attitude bandwidth is shown in Figure 4.31. Only 

flight data was calculated as the simulation data did not exhibit a –180-degree phase crossing at 

Level 3

Level 2

Level 1
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high frequency, as shown on Figure 4.32. Flight data with marks for the 180-degree and twice 

180-degree frequencies is also shown. This handling specification is for Category C flight which 

covers terminal flight phases that typically involve non-aggressive maneuvers and accurate flight-

path control such as takeoff, approach, and landing. The results predict level 1 handling qualities. 

The phase delay, 0.009, is fairly small. As the calculations had to be conducted on a low 

coherence portion of the phase plot, it is probable that the phase delay is higher, though cleaner 

data would be required for verification. 

 

Figure 4.31: Scaled Pitch Category C Flight Criteria Figure 4.32: On Axis Pitch Attitude Response

 

A third bandwidth criterion for Category A flight encompasses non-terminal phases that require 

rapid maneuvering, precision tracking or precise flight-path control. Examples include air-to-air 

combat, weapon delivery/launch, reconnaissance or terrain-following. While Shadow 200 is not a 

combat aircraft, it might be expected to perform aggressive maneuvers during its transit to and 

from observation targets. Figure 4.33 shows Shadow to be well into the level 2 region for 

Category A flight. The level 1 region scales up to a very high bandwidth, which may be 

unreasonable. Given that the spec is derived from fighter aircraft data, a scaled down fighter style 

Level 3 
Level 2

Level 1
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UAV might conceivably achieve bandwidths necessary to yield level 1 handling qualities by 

these scaled criteria.  

 

Figure 4.33: Scaled Pitch Category A Flight Criteria 

4.5 Summary of Validations 

 

The extensive series of validation examples suggest that the CIFER®-MATLAB interface from 

the command line works very well. No major fundamental errors are still present in the code. The 

validations were central to the programming development as they allowed problems with 

interface structure to be fixed by the programmer as seen from the viewpoint of a user. In addition 

to the validations conducted by the author discussed in this chapter, engineers at NASA were 

supplied preliminary and completed versions of the interface to test in their own projects. This 

allowed the engineers more input to the layout of the interface and provided additional testing for 

the new code.  

Level 3

Level 2

Level 1



 58

Chapter 5: Conclusions 

5.1 Code Development 

 

The primary goal of this thesis was to create a modernized interface for CIFER® that utilized both 

command-line functions and a GUI interface within MATLAB. Command-line functionality was 

introduced for CIFER® programs FRESPID, MISOSA, COMPOSITE, the utilities for RMS, 

Bandwidth, and Frequency Response Arithmetic as well as additional plotting and data 

storage/retrieval utilities. This library of functions will provide a base from which further 

modernizations of CIFER® can take place. The command-line functions proved to be complex 

enough that only an experienced user should employ them, however, the time savings to that user 

are significant. In-house users of CIFER® at Ames Research Center were pleased with the new 

capability to script the set-up and running of cases.  

 

The development of the GUI as a feasibility study also proved successful; the general look and 

feel of the CIFER® screen interface was preserved while adding various elements that enhanced 

and accelerated the case set-up process over the previous Curses interface. The introduction of 

modern navigation tools such as browsers and menus will afford users more awareness of where 

they are in the set-up process and improve the learning curve of new users. 

 

The last important aspect of the programming was the attention to the fact that the code will be 

built upon by other programmers at NASA. Thus the code was well commented and documented. 

The general structure of the code was made to be as uniform as possible. While the author’s 

development of this code has ceased, programmers at Ames are continuing development and 

report that the efforts made to create an easily modifiable code were successful. GUIs for both 
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FRESPID and MISOSA have been created with a minimum hassle. Much of this success is due to 

the reviews of in-house users and programmers. 

5.2 Analysis 

 

The most important conclusion from the analysis was that the code developed for this thesis 

worked. Numerous comparisons between cases run in CIFER® and cases run in MATLAB were 

made, and no appreciable difference was found. Slight discrepancies were discovered, but careful 

examination of these suggested that they were caused by machine precision issues, probably 

because MATLAB automatically makes all numeric variables double precision. The differences 

due to precision error were both negligible and tended to occur in portions of the data that would 

not be used in analysis, due to low coherence values. 

 

The analysis provided a good illustration of the capability introduced with the ability to script the 

functionality of CIFER®. The scripts that ran most of the analysis and generated the plots would 

have taken far longer to enter by hand into the CIFER® interface. Many bugs and errors with the 

MATLAB code that might not have been found till much later, or at all, were uncovered by the 

extensive use of the functions during the analysis. 

 

In addition to validating to the programming efforts, the analysis tasks provided valuable 

experience to the author in real-world application of controls and handling analysis. The UH-60 

example provided important insight into open and closed-loop handling qualities. The work on 

Shadow illustrated the need to verify that measurement devices are correctly installed and 

provided good experience in determining the accuracy of a simulation as compared to flight data.  
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5.3 Future Work 

 

The functions created for this thesis are a significant step forward for CIFER®, but there is 

significant work that must still be completed in order to ready the command-line and modern GUI 

capability for commercial release, which is the ultimate intended goal. Command-line primitives 

for the remaining programs and utilities need to be created as well as a full graphical interface. 

While DERIVID and VERIFY are too interactive and complex to be encompassed by a single 

command-line call, combined functions could still allow experienced users to efficiently script 

setting up cases. Both of these programs would benefit greatly from updated GUI interfaces, 

which could easily run multiple command-line functions behind the screens.  

 

In addition to finishing development on the remaining CIFER® functionality, the code will need 

to be production tested to assure that it is robust. Engineers at Ames Research Center are making 

the first steps towards this process by applying the current code to larger, more involved tasks. 

Once the code is fully developed and its capacity verified to the satisfaction of industry users the 

new code can be released as a standard feature of the CIFER® suite. The work accomplished in 

this thesis goes far towards realizing the possibilities of the new interfaces as a reality that will 

greatly benefit all users of CIFER®. 
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Appendix A: Screen Layout Comparison 
 

This Appendix contains a series of screen shots that show each screen in COMPOSITE for both 

the original CIFER® screen interface and the new GUI interface. A more detailed description of 

the differences can be found in Chapter 3. 

 

Old Interface:  

 
Figure A1: Original Interface: Screen 1 

 
Figure A2: Original Interface: Screen 2 
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Figure A3: Original Interface: Screen 3 

 
Figure A4: Original Interface: Screen 4 

 
Figure A5: Original Interface: Final Screen 
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New GUI Interface: 

 
Figure A6: MATLAB GUI: Screen 1 

 

Figure A7: MATLAB GUI: Screen 2 
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Figure A8: MATLAB GUI: Screen 3 

 
Figure A9: MATLAB GUI: Screen 4 
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Figure A10: MATLAB GUI: Final Screen 

 

   

Figure A11: MATLAB GUI: Two Data Loading Screens 
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Appendix B: Help Documentation for Command-Line Interface 
 

Introduction: 

 

This document details the use of the command-line functions included in the CIFER®-MATLAB 

interface developed by NASA Ames. CIFER® is a tool, also developed by NASA Ames, for 

system identification using frequency responses. This document has been written assuming the 

user has background in using CIFER®. Any questions concerning the operation of CIFER® should 

be directed to the appropriate CIFER® user manual. 

 

This interface is designed as a tool to allow users to run CIFER® programs and utilities from the 

command line of MATLAB. This enables easy retrieval of information in CIFER® to the 

MATLAB workspace for analysis and allows the scripting of multiple batch jobs. The command 

line functions will perform all the operations and checks contained in each screen of a CIFER® 

program at one time. While this allows the user great flexibility, the linear setup of the CIFER® 

screens is bypassed. Thus new users are encouraged to verify the data entered in the command 

line by running the corresponding program within CIFER® and checking each screen. 

 

Contained within this document are a series of short examples detailing the various features and 

layout of the command-line functions. These examples are supplemented by the online help 

information (accessed using the command ‘help functionname’ in MATLAB) and two extended 

examples, all of which are contained in this document’s appendices. 
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CIFER® main programs 

 
The three main CIFER®-MATLAB interface functions are designed to give users the 

functionality of the CIFER® programs FRESPID, MISOSA and COMPOSITE by making calls 

from the MATLAB workspace. All the functions are structured in the same manner with two 

required inputs. The first input is either the name of the desired CIFER® case or a MATLAB 

structure that contains information representing a CIFER® case. The second input is the flag to 

execute a particular command on that case. The commands that can be performed are to open a 

case, save data to a case or run a case as a batch job.  

 

CIFER® #       CIFER® Program   MATLAB Function 
    1   FRESPID       frespid 
    2   MISOSA       misosa 
    3   COMPOSITE             composite 
 

To facilitate the organization of information that goes into a CIFER® case, MATLAB structures 

are used to store case data. The fields in these structures correlate to the field entries of the 

CIFER® screen interface. The MATLAB interface has optional inputs that allow users to specify 

values for a particular field using name-value pairs. This allows the user to modify parts of the 

structure without dealing with the entire structure. Invoking the ‘help functionname’ command 

from MATLAB will display examples of using each function as well as a detailed list of the 

CIFER® information each field stores. The contents of these help commands can also be found in 

Appendix C. 

 

CIFER® should be set to the database to be used (by selecting the appropriate SIFDEF file) prior 

to using these MATLAB functions. If the database is changed by changing the SIFDEF file, 

MATLAB must be restarted.  

Features common to all three main programs: 
 

The structures for each of the programs contain many fields, thus the functions have been set up 

to do as much of the work of filling the fields in as possible for the user. Each function can be 

called with no inputs or outputs to return a list of what type of data is contained in each field; 

integers, cell arrays, scalar arrays, etc. The default value for each field is also specified in this 

call. This information can also be found in Appendix D. Users can initialize a mostly empty 
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structure by calling the functions with no inputs and a single output. This template contains all the 

correct fields with arrays specified to the correct size and many fields set to a default value. For 

instance, the option in FRESPID to cross-correlate controls is set to ‘yes.’ Fields that require 

case-specific information, such as the case name, are not given default values. These functions 

make extensive use of cell arrays to store string information and users unfamiliar with cell arrays 

should review the topic. 

 

The following examples detail the basics of using the functions: opening, saving, and running 

cases. Details specific to individual functions will be covered in following sections. In addition to 

the short examples presented inline with the text, detailed examples of setting up and running a 

simple second order mass-spring-Damper system and the XVLATSWP case from the XV-15 

sample database “703” are presented in Appendices H and I, respectively. (This database should 

be provided with the installation of CIFER®.) 

 

It is very important to keep in mind that the MATLAB calls can only save frequency responses 

into the CIFER® database at this time. Due to complications with suppressing prompts from 

CIFER® for information, the option to save frequency responses as files has not been 

implemented in the MATLAB command line.  

Creating a template structure: 
 

The call to create a template structure is very simple as shown below. After the calls, each of the 

‘out_x’ variables contains the basic skeleton used to create CIFER® cases. This feature is useful 

to ensure that the field names and data types are correctly specified and the various arrays are the 

correct length. The fields are all initialized to the same defaults as found in a new case of the 

appropriate CIFER program with the exception of plotting which defaults off for all three. 
 
>> out_f = frespid; 
>> out_m = misosa; 
>> out_c = composite; 

Opening Cases (1 as second input): 
 

Retrieving case information from the CIFER® database is accomplished by calling the MATLAB 

functions with the case name specified as the first input and ‘1’ for the second input as shown 

below. All of these calls would write the information from the CIFER® case XVLATSWP to the 

appropriate MATLAB structure ‘out_x’. ‘out_x’ can then be viewed and modified as needed.  
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>> out_f = frespid('XVLATSWP',1); 
>> out_m = misosa('XVLATSWP',1); 
>> out_c = composite('XVLATSWP',1); 

Saving Cases (2 as second input): 
 

Saving a case works much the same as opening cases. A simple call to save a case might involve 

specifying an existing case to be renamed as a new case. This call is shown below; the existing 

XVLATSWP case is opened, renamed to ‘TEST’, and then saved back into the database as a new 

case. The ‘out_x’ variable retains the information about the new case.  
 
>> out_f = frespid('XVLATSWP',2,'casename', 'TEST', 'caseout', 'TEST'); 
>> out_m = misosa('XVLATSWP',2,'casename','TEST','casein','TEST', 

'caseout','TEST'); 
>> out_c = composite('XVLATSWP',2,'casename','TEST','casein','TEST',  

'caseout','TEST'); 
 
Cases can also be specified using the appropriate structure as the first input. Shown below are 

calls using frespid that mimic the above example. In both examples, the output name (and input 

name for misosa and composite) is also specified; if it had not, then the output name would still 

be ‘XVLATSWP’. The MATLAB functions do not assume the user wants to change the output 

name. If the output field is blank, then the functions assume the output name to be the same as the 

case name. 
 
>> out_f   = frespid('XVLATSWP',1); 
>> out_f.casename = 'TEST'; 
>> out_f.caseout = 'TEST'; 
>> frespid(out_f,2); 
 
Users should be careful when using old cases as a template. If the number of controls, outputs, 

data files, or other such parameters changes, old values can remain in the arrays of both the 

MATLAB structure and in the CIFER® database. Therefore it is good practice to carefully zero 

out unused fields in arrays when making changes. This will prevent unwanted information from 

being retained as changes are made. 

Running a batch job (3 as second input): 
 

Specifying a case to run can be as straightforward as opening a case. The three calls below will 

execute the batch job for the appropriate program (FRESPID, MISOSA or COMPOSITE) for the 

‘XVLATSWP’ case. The batch call will pause MATLAB until the batch job has finished, display 

information about the job and log files, and report if there are potential errors with the batch job. 

Only the screen output for the frespid call is shown to conserve space. 
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>> frespid('XVLATSWP',3); 
Job file: /usr/cifer/jobs/FRE_XVLATSWP.COM.01 submitted 
Waiting for batch to finish... 
  
Batch completed. 
The log file is:/usr/cifer/jobs/FRE_XVLATSWP.OUT.01 
No error detected. 
>> misosa('XVLATSWP',3); 
>> composite('XVLATSWP',3); 
 

The example below will take the XVLATSWP case, copy it to TEST and then run it as a batch 

job all with a single command. The batch command always saves the case before it sends it to the 

batch job. To verify the name change was correct, the structure, which will contain information 

for TEST, is returned. 
 
>> out_f = frespid('XVLATSWP',3,'casename','TEST','caseout','TEST'); 

frespid: 
 

This section contains information specific to the frespid function and will primarily cover the 

mechanics that mimic the functionality of FRESPID screens 7 and 8: conditioning and 

windowing of data.  

 

Data conditioning in screen 7 is handled with two fields in the frespid structure. The first field, 

‘conditioning,’ contains two rows; the first row stores a flag for the type of conditioning desired 

and the second row stores the value. The convention is that ‘1’ denotes expansion of data, ‘2’ 

denotes decimation, and ‘3’ denotes filtering. The second field, ’condunit,’ contains the units to 

use in the case of filtering. The example below illustrates these variables. 
 
>> in     = frespid; 
>> in.conditioning(1:2,1:2)   = [3, 2; 4, 25]; 
>> in.condunit(1)   = 'Hz'; 
 

The data in the example will be filtered at 4 Hertz and decimated to 25 Hertz. These operations 

are lumped into one somewhat ungainly variable because of how CIFER® internally processes the 

data. The default value for ‘condunit’ is Hertz so it need not be specified unless Radians or non-

dimensional values are used. When returning conditioning output from CIFER® to MATLAB, the 

function also defaults the units to Hertz. If cases created using conditioning are opened in 

CIFER®, there may appear to be a small error in the ten or hundred thousandth decimal place. 

This is due to MATLAB using double precision while Fortran uses a combination of precisions. 

Numerous checks have verified that the end results are the same. 
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The variables that support screen 8 are analogous to the fields in that FRESPID screen. The 

general convention is that if a window length is specified as zero, then automatic calculations on 

it will not be performed. However, if any of the other related variables, such as numbers of input 

and output points, are set to zero while a window is turned on, they will be automatically 

calculated using the same logic that CIFER® employs. If only window lengths are specified and 

all other related fields set to zero, then the function will generate the same values that CIFER® 

would if the screen were stepped through manually. Thus the following call would achieve the 

same result as entering the window lengths in CIFER® screen 8 and pressing the PF1 key until 

CIFER® finished filling in the fields. 

 
>> in = frespid('NOWINS',1); 
>> frespid(in, 2, 'name', 'NEWWINS', 'winlen', [45,40,30,20,15]) 
 
The example retrieves a theoretical template case that has no window data entered and copies it to 

a case that now has fully specified window data. Users can specify their own values to fields such 

as maximum frequency and the automatic calculations will not occur unless the specified values 

violate the rules governing the variables. For instance, if the numbers of input and output points 

do not add to a power of two, the function will adjust them and issue a warning. Care should be 

used when using one case as a template for another and modifying the window lengths to make 

sure that old values are not written into the new case. 

misosa and composite: 
 

The CIFER® programs MISOSA and COMPOSITE are less complicated than FRESPID. 

Accordingly, the corresponding MATLAB functions have far fewer field entries and automatic 

corrections. The main issue to be alert for is in specifying the input case name. The warning is 

much the same as for the output case name previously stated. If the field is empty, it will be filled 

in to match the case name. Otherwise it retains the old entry. Thus to fully change names from 

one case to another, all three variables ‘casename,’ ‘caseout,’ and ‘casein’ must be modified. 
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CIFER® analysis utilities 

 

The CIFER®-MATLAB interface includes three frequency response analysis utilities: RMS, 

Handling Qualities/Stability Margin, and response arithmetic. Access to CIFER®’s handling 

qualities utility has been split into two parts: handling qualities and crossover characteristics. The 

current implementation allows full use of the various CIFER® options for each utility from the 

MATLAB command line. In addition to these analysis utilities, the CIFER® frequency response 

plotting utility may also be used from the MATLAB command line. Below is a list of the utilities 

and their corresponding MATLAB calling function. Appendix E contains the help files for each 

of these functions. 

 

CIFER® #       CIFER® Utility   MATLAB Function 
    7   RMS        cifrms 
    8   Handling Qualities      cifhq 
    8   Handling Qualities           cifxover 
    9   Frequency Response Arithmetic      cifarith 
   19   Plot Frequency Response     cifplot 
 

All five utilities use MATLAB structures to organize the input variables and work almost the 

same as the three main programs. They all use the same basic interface to convey information and 

run their respective utilities. Input can be specified either using a pre-initialized structure, or by 

passing in a flag, which generates a template structure, and a list of name-value pairs to fill in the 

fields of the template. The sections describing the individual functions have examples of both 

styles. Each function can be called with no inputs or outputs, causing a list of the information that 

each field requires along with its default setting to be displayed. This information is provided in 

Appendix F. Finally, if the functions are called with a single output and no inputs, a template 

structure will be returned initialized to the default settings. Examples of all these commands 

follow in the next sections and a detailed overview of the online help information for each 

function can be found in Appendix E. 

cifrms: 
 

The CIFER® RMS utility is a straightforward calculation for the mean square and root mean 

squared values of a frequency response. The MATLAB cifrms function is called using a structure 
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as input and up to five outputs to collect the desired information. The least complex call and the 

corresponding output are shown below: 
 
>> in = cifrms; 
>> in.name = 'XVLATSWP_FRE_A0000_AIL_P'; 
>> cifrms(in); 
 
**** Frequency Response Information **** 
First Freq:   0.13963 
Last Freq:  31.41590 
Number of values in frequency response:    923 
 
**** Mean-square value results **** 
 Mean Square Value   =  9.244088 
 Root Mean Squared Value  =  3.040409 
 
In this example the name of a frequency response is specified; when the structure is created it 

assumes defaults for inputs such as source and input/output integration selection. These defaults 

are defined in Appendix F and can be accessed by an empty call to the function as mentioned 

above. Single-character inputs such as those for source are not case-sensitive. No outputs need be 

specified; the function will print all the results to the screen. A more complex call is shown below 

without the printed output, and using name-value pairs for input. The name-value pairs do not 

have to be specified in a particular order as long as they occur in pairs. 
 
>> in = cifrms; 
>> name = 'XVLATSWP_FRE_A0000_AIL_P'; 
>> scorrect = 2; 
>> minfreq  = 10; 
>> maxfreq  = 30; 
>> 
[msv,rms,pts,min,max]=cifrms(in,'name',name,'spower',scorrect,'minfreq', 
  minfreq,'maxfreq',maxfreq,'toscrn','off'); 
 
This example specifies limits to the frequency range examined and sets the ‘power of s’ 

correction factor to 2. The default values can be used for these variables by assigning the inputs a 

value of 0. The output variables store the information that results from the function call; ‘msv’ 

and ‘rms’ store the mean square value and root mean squared value, respectively. The variable 

'pts' stores the number of points in the response, and ‘min’ and ‘max’ store the minimum and 

maximum frequencies in the response. Fewer outputs can be specified if desired. Finally, the 

printed output can be turned off by the ‘toscrn’ field in the structure. 

 

One other feature of the cifrms function is the ability to calculate a fraction of a full range rms 

value. The ‘minfreq’ and ‘maxfreq’ fields must be set equal to use this option. The printed output 

is slightly different and the variable outputs change slightly. ‘msv’ stores the full range rms value, 
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‘rms’ stores the rms value for the partial range, and ‘freq’ stores the frequency where that partial 

value occurs. An example call is shown below: 
 
>> 
[msv,rms,pts,min,max,freq]=cifrms(0,'name','XVLATSWP_FRE_A0000_AIL_P', 
 'minfreq',0.707,'maxfreq',0.707); 
 
**** Frequency Response Information **** 
First Freq:      0.13963 
Last Freq:      31.41590 
Number of values in frequency response:    923 
 
**** Mean-square value results **** 
Full range root mean square value is:    3.040409 
        Located frequency where RMS value is 
                0.707000 * 3.040409 = 2.149569 
        At frequency 3.837147 rad/sec the RMS is 2.158710 

cifhq: 
 

The cifhq function is comprises all of the handling qualities calculations from CIFER®’s utility 8 

as well as the utility’s quick plotting, linearized plotting, and least squares fits. There are several 

output variables available to store the information resulting from the function. The most basic call 

to cifhq is shown below where the function is called to set up a template structure which is then 

modified for the specific response. The full list of field names can be found in Appendix C. 
 
>> in = cifhq; 
>> in.name = 'XVLATSWP_FRE_A0000_AIL_P'; 
>> cifhq(in); 
 
  Start Freq      Start Mag     Start Phase 
  End Freq         End Mag       End Phase 
   0.1396   -34.5106     2.6104 
  31.4159  -39.9538    96.0240 
 
Number of values in frequency response:    923  
 
***** Handling Qualities Characteristics ***** 
 
Start freq:    0.1396 
Start phase:   2.6104 
 
 -180 deg frequency =    29.478342 (Rad/sec) 
         DB-Gain =   -63.286926 (dB) 
         Linear gain =     0.000685 (Hz) 
 -135 deg BW freq =    29.463261 (Rad/sec) 
         DB-Gain =   -61.210114 (dB) 
         Linear gain =     0.000870 (Hz) 
 6 dB Bandwidth frequency =    29.437544 (Rad/Sec) 
 Another 6 dB Bandwidth frequency =    27.796064 (Rad/sec) 
 Another 6 dB Bandwidth frequency =    27.782501 (Rad/sec) 
 Another 6 dB Bandwidth frequency =    24.950647 (Rad/sec) 
 Another 6 dB Bandwidth frequency =    24.890440 (Rad/sec) 
 Another 6 dB Bandwidth frequency =    17.924093 (Rad/sec) 
 Another 6 dB Bandwidth frequency =    17.860493 (Rad/sec) 
 TWICE 180 FREQUENCY NOT FOUND 
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All the information is displayed to the screen, however, output variables can be used to preserve 

these numbers. There are two variables for storing cifhq output, one for purely numeric values, 

and a second that stores the words associated with each number. Information about the frequency 

response can be saved to two additional variables. Shown below is the function call with all 

outputs specified. 
 
>> [words,num,pts,frinfo]=cifhq(in,'toscrn','off'); 
>> disp(words) 
             '' 
    ' -180 deg frequency =    29.478342 (Rad/sec)' 
    '         DB-Gain =   -63.286926 (dB)' 
    '         Linear gain =     0.000685 (Hz)' 
             '' 
    ' -135 deg BW freq =    29.463261 (Rad/sec)' 
    '         DB-Gain =   -61.210114 (dB)' 
    '         Linear gain =     0.000870 (Hz)' 
             '' 
    ' 6 dB Bandwidth frequency =    29.437544 (Rad/Sec)' 
    ' Another 6 dB Bandwidth frequency =    27.796064 (Rad/sec)' 
    ' Another 6 dB Bandwidth frequency =    27.782501 (Rad/sec)' 
    ' Another 6 dB Bandwidth frequency =    24.950647 (Rad/sec)' 
    ' Another 6 dB Bandwidth frequency =    24.890440 (Rad/sec)' 
    ' Another 6 dB Bandwidth frequency =    17.924093 (Rad/sec)' 
    ' Another 6 dB Bandwidth frequency =    17.860493 (Rad/sec)' 
    ' TWICE 180 FREQUENCY NOT FOUND' 
 
The above call has turned off the screen output using the ‘toscrn’ field. The variable 'num' 

contains only the resultant frequencies and gains that are shown in the 'words' variable. (Those 

values on the right side of the equals sign.) 'pts' saves the number of points in the response and 

'frinfo' is an array containing the starting and ending frequency, magnitude, and phase of the 

response. It also contains starting frequency and phase for reference if modified using correction 

factors for ‘power of s,’ gain, phase shift, or time delay. The correction factors can be used with a 

slightly more complex call, shown below. 
 
>> name = 'XVLATSWP_FRE_A0000_AIL_P'; 
>> corrections = [2,5,90,0.5]; 
>> cifhq(0,'name',name,'cor_list',corrections,'toscrn','off'); 
 
This call utilized the name-value pair style of input. The name-value pairs do not have to be 

specified in a particular order as long as they occur in pairs. Note that the flag of 0 for the first 

variable makes the function automatically use the default structure set up in cifhq. If the 0 flag is 

used, any response-specific inputs must be specified or the call will result in errors. The template 

does not assume default input or output response names. 
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The cifhq function supports the utility 8 ability to create plots and perform a least squares fit on 

the data. There are a number of options for turning on the plots and setting their ranges. The call 

below implements the full series of plotting available from utility 8. 
 
>> name = 'XVLATSWP_FRE_A0000_AIL_P'; 
>> plot = 'Y'; 
>> linplot = 'Y'; 
>> leastsquare = 'Y'; 
>> 
cifhq(0,'name',name,'mpcplt',plot,'lpcplt',linplot,'lsfit',leastsquare,  

'toscrn','off'); 
 
This call would display a total of three CIFER® plots to the computer screen. The values for the 

ranges on all the plots are initialized to a default value, which can be modified by changes to the 

appropriate fields (see Appendix E) in the structure. 

cifxover: 
 

The second half of the handling qualities utility in CIFER® allows the user to find crossover 

properties for a frequency response. This ability has been split out into a separate function call for 

the MATLAB interface. It works nearly the same as the cifhq function. The most basic call and 

the resulting output are shown below. 
 
>> in = cifxover; 
>> in.name = 'XVLATSWP_FRE_A0000_AIL_P'; 
>> cifxover(in); 
 
Search Range: 
Min freq:   0.139626   Max freq:  31.415899  
 
No 0dB crossing found 
 
-180*n deg crossings for gain margin determination 
 
First -180*n crossover in selected range is: 
Freq. =  27.818336 for   180.0000 deg 
Gain Margin =  54.728527 dB 
 
First -180*n crossover in selected range is: 
Freq. =  29.478342 for  -180.0000 deg 
Gain Margin =  63.286926 dB 
 
First -180*n crossover in selected range is: 
Freq. =  30.105280 for  -180.0000 deg 
Gain Margin =  52.274651 dB 
 

The name-value pair method of input works the same as described above for cifhq. The call 

below shows an example of this used to run the utility with correction factors, generate a plot of 

the output, and save the new response. The crossover characteristics portion of utility 8 is not tied 
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to either the linearized phase and coherence plot or the least squares fit in CIFER® so those 

options are not available to the cifxover function. 
 
>> name = 'XVLATSWP_FRE_A0000_AIL_P'; 
>> corrections = [2,5,90,0.5]; 
>> plot = 'Y'; 
>> save = 'Y'; 
>> savename = 'XVLATSWP_BAN_A0000_AIL_P'; 
>> cifxover(0,'name',name,'cor_list',corrections,'mpcplt',plot,'save', 

save,'savename',savename,'toscrn','off'); 
 
Again it should be noted that care should be used when employing the 0 flag for inputs as 

response names are not assumed by the code. Output information is stored in the same fashion as 

cifhq. The first two variables contain the numeric values for the crossover characteristics, and the 

last variable has the frequency range of the response. 
 
>> [X0db,Xn180db,frng]=cifxover(0,'name','XVLATSWP_FRE_A0000_AIL_P',
 'toscrn','off'); 
 
>> disp(X0db) 
     0     0 
 
>> disp(Xn180db) 
   27.8183  180.0000   54.7285 
   29.4783 -180.0000   63.2869 
   30.1053 -180.0000   52.2747 
 
>> disp(frng) 

0.1396 31.4159 
 
 

cifarith: 
 

This utility allows basic arithmetic (+,-,*,/) to be performed on two frequency responses. The 

results are saved to a new response file. A very simple example of running the arithmetic function 

is shown below: 
 
 
>> in=cifarith; 
>> in.names = {'XVLATSWP_FRE_A0000_AIL_P','XVLATSWP_FRE_A0000_AIL_R'}; 
>> in.outname = 'test'; 
>> in.outid = 'arith resp from Matlab'; 
>> cifarith(in) 
 
Response test written to the database. 
*** Arithmetic operation successful *** 
 
 Minimum Frequency is:   0.1396 
 Maximum Frequency is:  31.4159 
 1000 Values in Output Response 
 Units are in RAD  
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The template sets all values to the defaults found when the arithmetic utility in CIFER® is first 

run. For example, all scale factors are set to 1, the operation is multiplication, and the source and 

destination point to the database. Any of these values can be modified either by changes to the 

appropriate field in the structure or by using the field name and value as a pair of inputs. The 

above example could be compressed into one call as follows. There are no output variables for 

this function, and as before the ‘toscrn’ field allows the user to turn off the printed return 

information. 
 
>> cifarith(0,'names',{'XVLATSWP_FRE_A0000_AIL_P', 

'XVLATSWP_FRE_A0000_AIL_R'},'outname','test','outid','arith resp 
 from Matlab','toscrn','off') 

cifplot: 
 

The cifplot function is the MATLAB command line call for CIFER's utility 19, the frequency 

response plotting. A basic set of calls to cifplot are shown below: 
 
>> in = cifplot; 
>> in.array(1:3) = [1,2,3]; 
>> in.names(1) = {'XVLATSWP_FRE_A0000_AIL_P'}; 
>> cifplot(in); 
 Reading data ....... 
Plotting successful 
 
After this call, the standardized CIFER® plot would be displayed to the screen. As with the 

previous functions, the call can be simplified using name-value pairs as input. The previous 

example could be reduced as follows. There are no output variables for this function. 
 
>> cifplot(0,'array',[1,2,3,0,0],'names', 

{'XVLATSWP_FRE_A0000_AIL_P','','','','',''}) 
 Reading data ....... 
Plotting successful 
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CIFER® support utilities: 

 

Three functions are available to facilitate the retrieval of data from the CIFER® database. The 

getfr function, when given a frequency response name, will return arrays for frequency, 

magnitude, phase and so on. The other function, writefr, allows the user to change values in these 

arrays and pass them back in to be saved to the CIFER® database. The third function is called 

caselist and allows the user to query the database for which cases are stored for a particular 

program. 

 

Due to the simplicity of these functions, structures are not used to input data as is done for the 

other CIFER® programs and utilities. Thus, these functions do not have the empty call feature that 

returns a list of structure field data types. They do still include help documentation which can also 

be found in Appendix G. 

getfr and writefr: 
 

The getfr function is designed to give users access to all the arrays that make up a full frequency 

response. The most complete call, shown below, will bring back arrays of all 10 frequency 

response fields. The order in which these are returned is fixed; therefore if only coherence were 

desired, variables to hold information for frequency, magnitude and phase would still be required 

as shown in the second function call, which only returns four of the frequency response data 

fields. 
 
>> name = 'XVLATSWP_COM_ABCDE_AIL_P'; 
>> [frq,mag,pha,coh,gxx,gyy,gxy,rel,img,err] = getfr(name); 
>> [frq,mag,pha,coh] = getfr(name);   
 
Frequency responses can also be written back into the CIFER® database through the writefr 

function. The example below shows the creation of a new frequency response with all 10 data 

arrays. Again, the order is fixed and, as above in the getfr example, not all the inputs need be 

provided. If all inputs are not provided the user should keep in mind that CIFER® will not have 

access to any unspecified information in the event it must make calculations with the new 

responses. The response names do not have to conform to CIFER® naming conventions, though 

doing so will help track new responses. 
 
>> name = 'NEW_FREQUENCY_RESPONSE'; 
>> writefr(name, frq, mag, pha, coh, gxx, gyy, gxy, rel, img, err); 
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caselist: 
 

Lists of cases present for any of the CIFER® programs can be obtained using the caselist 

function. The three calls below return a cell array list of FRESPID, MISOSA and COMPOSITE 

cases that are present in the database. The input code follows the same numbering convention 

found in the delete utility of CIFER® (Utility 13). This information can also be found by making a 

‘help’ call for the function and is printed in Appendix G. 
 
>> names_f = caselist(1);   % Returns FRESPID cases 
>> names_m = caselist(2);   % Returns MISOSA cases 
>> names_c = caselist(3);   % Returns COMPOSITE cases 
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Appendix C: Online Help for Main Programs 
 

This Appendix contains the information that is displayed when the ‘help functionname’ command 

is used in MATLAB. 
 
    FUNCTION: frespid 
  
    DESCRIPTION: Function to open, save and run a FRESPID case.     
        Function may be called with no arguments to return a template,  
   mostly blank structure. 
  
        [out] = frespid(id,cmd,options) 
  
    INPUTS: 
        id      - either frespid structure or string with case name 
                      Information on the details of the structure can  
                      be found with an empty call: 
                        >> frespid 
        cmd     - command to have function perform a process 
                    1 - open FRESPID case 
                    2 - save a FRESPID case 
                    3 - save case and run batch job 
  
        options – name-value pairs to set individual data  
                    fields (optional)  
                    e.g.: ...,'casename','XVLATSWP',... 
  
    OUTPUTS: 
        out   - return structure for frespid data structure.  A  
                    template structure can be returned using 
                    an empty call: 
                        >> out = frespid 
  
    EXAMPLE CALLS: 
        [out] = frespid 
                returns a mostly blank template frespid structure 
  
        [out] = frespid('TEST',1) 
                opens case named 'TEST', returns frespid structure 
  
        [out] = frespid('TEST',2,'casename','TEST2','winlen', 

       [45,40,30,20,15]) 
                saves TEST as TEST2 and changes window lengths; the  
                structure is returned 
  
        frespid(new_struct,3) 
            sends new_struct, a new FRESPID case, to batch; nothing is  
  returned 
  
    NOTES: 
        - A totally new case must be specified via a structure, not by  

the desired new name.  (i.e., frespid('NEWNAME',2) will NOT  
save a blank case entitled 'NEWNAME' into the database) 

  
  
----------------------------------------------------------------------- 
    DESCRIPTION OF FIELDS IN INPUT STRUCTURE 
  
  SCREEN 2 
    id.casename     FRESPID case name 
    id.comments     FRESPID case identifier string 
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    id.controls     Control names (user-specified) 
    id.outputs      Output names 
    id.caseout      Case name for freq responses (may be 
                        different from the case name) 
    id.crosscor     Cross-correlate controls? ('Y' or 'N') 
    id.savdb        Save frequency response in the database('Y' or 'N') 
    id.plot         Generate plots?  ('Y' or 'N') 
  
  SCREEN 3 
    id.evntnum      Event list (i=1,10) 
    id.flghtnum     Flight list (corresponds to eventnum) 
    id.strttim      Start time for each time history 
    id.stoptim      Stop times 
    id.source       Code for where time histories come from: 
                        1 for stand-alone ASCII files 
                        2 for TRENDS 
                        3 for FLYTE 
                        4 for READMIS 
                        >4 other sources as defined by source code 
    id.thdt         Time interval between samples 
    id.biasflag     Bias and drift removal? ('Y' or 'N') 
    id.thfile       Array to store time history file names 
  
  SCREEN 4 
    id.conchnl      Primary channel names for each control 
    id.conunit      Engineering units for control channels 
    id.conscfac     Scale factors for each channel 
  
  SCREEN 5 
    id.outchnl      Primary channel names for each output 
    id.outunit      Engineering units for output channels 
    id.outscfac     Scale factors for each channel 
  
  SCREEN 6 
    id.frall        Compute all frequency responses? ('Y' or 'N') 
    id.frcalc       Table indicating which responses to compute. 
                        (Blank if not to be computed; '*' to compute.) 
  
  SCREEN 7 
    id.conditioning Array to store conditioning information.  The  
                        first row contains the code for the type 
                        of conditioning: 
                            1 for expansion 
                            2 for decimation 
                            3 for filter 
                    The second row stores the actual value 
    id.condunit     If the filtering option is used, this field 
                        stores the unit that the value is provided in. 
                        If left blank, Hertz is assumed. 
    id.savconth     Save files of conditioned time histories?  
                        'N' no files, 'A' ASCII format only, 
                        'U' unformatted only, 'Y' both types 
  
  SCREEN 8 
    id.winon        Entry for each window: blank not to compute, 
                        '*' to compute 
    id.winid        Window descriptor 
    id.winlen       Window Lengths 
    id.wininpt      Number of t.h. points input to the FFT 
    id.winoutpt     Number of points returned by the FFT 
                        (wininpt + winoutpt = power of 2) 
                        (winoutpt must be .le. wininpt) 
    id.windec       Output decimation factor for frequency responses 
    id.minfft       Min FFT freq for this window 
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    id.maxfft       Max FFT freq for this window 
  
  SCREEN 9 
    id.plotopt      For each possible plot: 0 not to plot, 1 to plot 
    id.plotdev      Device for plotting: Q(MS),C(omprs),V(er),S(creen), 
                        T(alaris),P(ostScript) 
    id.grid         Use grid? ('Y' or 'N') 
    id.lrgplot      Large plots? ('Y' or 'N') 
    id.plotdec      Decimate plots ('Y' or 'N') 
 
 
    FUNCTION: misosa 
  
    DESCRIPTION: Function to open, save and run a MISOSA case.     
        Function may be called with no arguments to return a template,  
   mostly blank structure. 
 
  
        [out] = misosa(id,cmd,options) 
  
    INPUTS: 
        id      - either misosa structure or string with case name 
                      Information on the details of the structure can  
                      be found with an empty call: 
                        >> misosa 
        cmd     - command to have function perform a process 
                     1 - open MISOSA case 
                     2 - save a MISOSA case 
                     3 - save case and run batch job 
        options – name-value pairs to set individual data  
                    fields (optional)  
                    e.g.: ...,'casename','XVLATSWP',... 
  
    OUTPUTS: 
        out    - return structure for misosa data structure.  A  
                    template structure can be returned using 
                    an empty call: 
                        >> out = misosa 
  
    EXAMPLE CALLS: 
        [out] = misosa 
                returns a mostly blank template misosa structure 
  
        [out] = misosa('TEST',1)     
                opens case named 'TEST', returns misosa structure 
  
        [out] = misosa('TEST',2,'casename','TEST2','winon', 

    {'*','','','',''})                      
    saves TEST as TEST2 and the window selection is  
    changed; the structure is returned 

  
        misosa('TEST2',3) 
                sends case 'TEST2' to batch; nothing is returned 
     
    NOTES: 
        - A totally new case must be specified via a structure, not by  

the desired new name. (i.e., misosa('NEWNAME',2) will NOT  
save a blank case entitled 'NEWNAME' into the database) 

 
----------------------------------------------------------------------- 
    DESCRIPTION OF FIELDS IN INPUT STRUCTURE 
  
  SCREEN 2 
      id.casename   Composite case name 
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      id.caseid   Descriptive text for this case 
      id.casein     Frequency response prefix (input) 
      id.caseout    'Case' part of freq resp name for output 
      id.source     Source for input frequency responses: 
                        'F' for ASCII files; 'D' for database 
      id.savdb      Write results to the database? ('Y' or 'N')  
      id.plot       Generate plots? ('Y' or 'N')  
      id.controls   Control names  
      id.outputs    Output names  
      id.winon      Code for windows to combine 
                        ('*' indicates a window to include, 
                        '' indicates not to include a window) 
  
  SCREEN 3 
      id.frall      Code indicating whether to clear/set frcalc matrix 
      id.frcalc     Table indicating which responses to compute 
                        ('*' requests a new response computation, 
    '' indicates not to calculate a response) 
  
  SCREEN 4 
      id.plotopt    Integer array indicating which plots to generate. 
      id.grid       Draw a grid on the plots? ('Y' or 'N') 
      id.lrgplot    Large plot? ('Y' or 'N') 
      id.plotdev    Selected plot device: Q(MS),C(omprs),V(er), 

S(creen), T(alaris),P(ostScript) 
      id.pltminfrq  Minimum frequency of each window 
      id.pltmaxfrq  Maximum frequency of each window 
 
 
    FUNCTION: composite 
  
    DESCRIPTION: Function to open, save and run a COMPOSITE case.     
        Function may be called with no arguments to return a template,  
   mostly blank structure. 
 
  
        [out] = composite(id,cmd,options) 
  
    INPUTS: 
        id      - either composite structure or string with case name 
                      Information on the details of the structure can  
                      be found with an empty call: 
                        >> composite 
        cmd     - command to have function perform a process 
                      1 - open COMPOSITE case 
                      2 - save a COMPOSITE case 
                      3 - save case and run batch job 
        options – name-value pairs to set individual data  
                    fields (optional)  
                    e.g.: ...,'casename','XVLATSWP',... 
  
    OUTPUTS: 
        out   - return structure for composite data structure.  A  
                    template structure can be returned using 
                    an empty call: 
                        >> out = composite 
  
    EXAMPLE CALLS: 
        [out] = composite 
                returns a mostly blank template composite structure 
  
        [out] = composite('TEST',1)     
                opens case named 'TEST', returns composite structure 
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        [out] = composite('TEST',2,'casename','TEST2','winon', 
 {'*','','','',''})   

                saves TEST as TEST2 and the window selection is  
    changed; the structure is returned 

  
        composite('TEST2',3) 
                sends case 'TEST2' to batch; nothing is returned 
     
    NOTES: 
        - A totally new case must be specified via a structure, not by  

the desired new name.  (i.e., composite('NEWNAME',2 will  
NOT save a blank case entitled 'NEWNAME' into the database) 

 
----------------------------------------------------------------------- 
    DESCRIPTION OF FIELDS IN INPUT STRUCTURE 
  
  SCREEN 2 
      id.casename   Composite Case name 
      id.caseid   Descriptive text for this case 
      id.casein     Frequency response prefix (input) 
      id.caseout    'Case' part of freq resp name for output 
      id.inpgm      Input program, 'FRE' or 'MIS' 
      id.source     Source for input frequency responses: 
                        'F' for ASCII files; 'D' for database 
      id.savdb      Write results to the database? ('Y' or 'N')  
      id.plot       Generate plots? ('Y' or 'N')  
      id.outpts   Number of points in each resultant freq resp 
      id.controls   Control names  
      id.outputs    Output names  
      id.winon      Code for windows to combine 
                       ('*' indicates a window to include, 
                        '' indicates not to include a window) 
      id.winlen     Window length, in seconds 
  
  SCREEN 3 
      id.frall      Code indicating whether to clear/set ICOMP matrix 
      id.frcalc     Table indicating which responses to compute 
                        ('*' requests a new response computation, 
    '' indicates not to calculate a response) 
  
  SCREEN 4 
      id.plotopt    Integer array indicating which plots to generate. 
      id.grid       Heavy grid on the plots? ('Y' or 'N') 
      id.lrgplot    Large plot? ('Y' or 'N') 
      id.plotdev    Selected plot device: Q(MS),C(omprs),V(er), 
    S(creen), T(alaris),P(ostScript) 
 
 



 88

Appendix D: Structure Field Specifics for Main Programs 
 

 This Appendix contains the information displayed through an empty call to any of the functions. 

Default settings are shown within a curly brace. 
 
>> frespid 
 
Structure fields are: 
 
     casename: [ string, 8 characters {''} ] 
       caseid: [ string, 60 characters {''} ] 
     controls: [ cell array(10) of strings { '' } ] 
      outputs: [ cell array(20) of strings { '' } ] 
      caseout: [ string, 8 characters {''} ] 
     crosscor: [ 'Y' | { 'N' } ] 
        savdb: [ { 'Y' } | 'N' ] 
         plot: [ 'Y' | { 'N' } ] 
      evntnum: [ scalar array(10) { 0 } ] 
     flghtnum: [ scalar array(10) { 0 } ] 
      strttim: [ positive scalar array(10) { 0 } ] 
      stoptim: [ positive scalar array(10) { 0 } ] 
       source: [ integer value { 1 } ] 
         thdt: [ positive scalar { 0 } ] 
     biasflag: [ { 'Y' } | 'N' ] 
       thfile: [ cell array(10) of strings { '' } ] 
      conchnl: [ cell array(10,5) of strings { '' } ] 
      conunit: [ cell array(10) of strings { '' } ] 
     conscfac: [ positive scalar array(10,5) { 1 } ] 
      outchnl: [ cell array(20,5) of strings { '' } ] 
      outunit: [ cell array(20) of strings { '' } ] 
     outscfac: [ positive scalar array(20,5) { 1 } ] 
        frall: [ 'Y'  | { 'N' } ] 
       frcalc: [ cell array(20,10) of strings { '' } | '*' ] 
 conditioning: [ scalar array(2,10) { 0 } ] 
     condunit: [ cell array(10) of strings { '' } ] 
     savconth: [ 'Y' | { 'N' } | 'A' | 'U' ] 
       outpts: [ positive scalar { 1000 } ] 
        winon: [ cell array(5) of strings { '' } | '*' ] 
        winid: [ cell array(5) of strings { '' } ] 
       winlen: [ positive scalar array(5) { 0 } ] 
      wininpt: [ positive scalar array(5) { 0 } ] 
     winoutpt: [ positive scalar array(5) { 0 } ] 
       windec: [ positive scalar array(5) { 0 } ] 
       minfft: [ positive scalar array(5) { 0 } ] 
       maxfft: [ positive scalar array(5) { 0 } ] 
      plotopt: [ positive scalar array(12) { 0 } ] 
      plotdev: [ 'Q' | 'C' | 'V' | 'T' | { 'P' } ] 
         grid: [ { 'Y' } | 'N' ] 
      lrgplot: [ { 'Y' } | 'N' ] 
      plotdec: [ { 'Y' } | 'N' ] 
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>> misosa 
 
Structure fields are: 
 
  casename: [ string, 8 characters {''} ] 
    caseid: [ string, 60 characters {''} ] 
    casein: [ string, 8 characters {''} ] 
   caseout: [ string, 8 characters {''} ] 
    source: [ { 'D' } | 'F' ] 
     savdb: [ { 'Y' } | 'N' ] 
      plot: [ 'Y' | { 'N' } ] 
    outpts: [ positive scalar { 1000 } ] 
  controls: [ cell array(10) of strings { '' } ] 
   outputs: [ cell array(20) of strings { '' } ] 
     winon: [ cell array(5) of strings { '' } | '*' ] 
     frall: [ 'Y'  | { 'N' } ] 
    frcalc: [ cell array(20) of strings { '' } | '*' ] 
   plotopt: [ positive scalar array(12) { 0 } ] 
      grid: [ { 'Y' } | 'N' ] 
   lrgplot: [ { 'Y' } | 'N' ] 
   plotdev: [ 'Q' | 'C' | 'V' | 'T' | { 'P' } ] 
 pltminfrq: [ positive scalar array(5) { 0 } ] 
 pltmaxfrq: [ positive scalar array(5) { 0 } ] 
 
>> composite 
 
Structure fields are: 
 
 casename: [ string, 8 characters {''} ] 
   caseid: [ string, 60 characters {''} ] 
   casein: [ string, 8 characters {''} ] 
  caseout: [ string, 8 characters {''} ] 
    inpgm: [ { 'FRE' } | 'MIS' {''} ] 
   source: [ { 'D' } | 'F' ] 
    savdb: [ { 'Y' } | 'N' ] 
     plot: [ 'Y' | { 'N' } ] 
   outpts: [ positive scalar { 1000 } ] 
 controls: [ cell array(5) of strings { '' } ] 
  outputs: [ cell array(20) of strings { '' } ] 
    winon: [ cell array(5) of strings { '' } | '*' ] 
   winlen: [ positive scalar array(5) { 0 } ] 
    frall: [ 'Y'  | { 'N' } ] 
   frcalc: [ cell array of strings { '' } | '*' ] 
  plotopt: [ positive scalar array(7) { 0 } ] 
     grid: [ { 'Y' } | 'N' ] 
  lrgplot: [ { 'Y' } | 'N' ] 
  plotdev: [ 'Q' | 'C' | 'V' | 'T' | { 'P' } ] 
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Appendix E: Online Help for Analysis Utilities 
 

This Appendix contains the information that is displayed when the ‘help functionname’ command 

is used in MATLAB. 
 
 
      Function: cifrms 
 
      Description:  This mex file allows the user to use the RMS 
           utility of CIFER.  Function returns mean square value 
           and root mean squared value as well as information about 
           the frequency response if desired. 
  
  
      [msv,rms,npts,lowfreq,highfreq,rmsfrq] = cifrms(in, varargin) 
  
      Inputs:  
         in       - input structure, fields defined below.  
                      Information on the details of the structure can  
                      be found with an empty call: 
                        >> cifrms 
  
         options  - name-value pairs to set individual data  
                     fields (optional)  e.g.: ...,'io','I',... 
   
      Outputs: 
        rms      - optional output allows user to set up a template 
                      structure using this call with no inputs: 
                        >> out = cifrms 
  
     *** OR *** 
  
        rms       - root mean squared value 
        msv       - Mean square value (or full range RMS if  
                        percentage of range is specified)  
        npts      - number of points in response 
        lowfreq   - smallest value in response 
        highfreq  - highest value in response 
        rmsfrq    - frequency where RMS is desired fraction of 
                        full RMS value 
  
    NOTES:   
        This function can run with no outputs specified; the results 
        will be displayed in the Matlab command window. 
  
  --------------------------------------------------------------- 
    DESCRIPTION OF FIELDS IN INPUT STRUCTURE 
  
     in.name      - Name of Frequency Response (string) 
                     ex: name = 'XVLATSWP_FRE_A0000_AIL_P' 
     in.source    - Source: 'F' for file, 'D' for database 
     in.io        - 'I' to integrate input-auto, 'O' for output-auto 
     in.spower    - value for power of s correction, positive or 
                     negative integer (0 for none) 
     in.minfreq   - start frequency for calculations (0 for default) 
     in.maxfreq   - end frequency for calculations (0 for default) 
  
    NOTE: set minfreq equal to maxfreq for a fraction of the 
            full range RMS. 
  
     in.toscrn    - turn printed screen output 'ON' or 'OFF' 
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      Function: cifhq 
  
      Description: This function calls the first half of CIFER's 
            utility 8, the handling quality calculations. 
  
      [output_s,output_n,npts,FR_info] = cifhq(in,options) 
  
      Inputs:  
         in       - input structure, fields defined below.  
                      Information on the details of the structure can  
                      be found with an empty call: 
                        >> cifhq 
  
         options  - name-value pairs to set individual data  
                     fields (optional)  e.g.: ...,'save','Y',... 
     
      Outputs: 
        output_s  - optional output allows user to set up a template 
                      structure using this call with no inputs and 
                      a single output: 
                        >> out = cifhq 
  
            *** OR *** 
  
        output_s  - Cell array containing the resulting output 
                        from CIFER for handling qualities 
        output_n  - array containing numeric output 
                        from CIFER for handling qualities 
        npts      - number of points in response 
        FRinfo    - array containing information about the  
                        frequency response. 
  
                FRinfo = [sF,sM,sP,sFm 
                          eF,eM,eP,sPm] 
  
           the elements are starting and ending (s,e) values for 
             frequency, magnitude and phase (F,M,P).  (m) denotes 
             value after modification by correction factors. 
  
        NOTE: This function can be called with no outputs specified; 
                the results will output to the command window. 
  
  --------------------------------------------------------------- 
    DESCRIPTION OF FIELDS IN INPUT STRUCTURE 
  
     in.name     - Name of Frequency Response (string) 
                     ex: name = 'XVLATSWP_FRE_A0000_AIL_P' 
     in.source   - Source: 'F' for file, 'D' for database 
     in.minfreq  - Minimum frequency for search range for  
                        handling qualities calculations.  Enter 
                        0 for the default range. 
     in.cor_list - Array with values as follows: (optional) 
  
                in.cor_list = [scor, gcor, ps, td] 
  
            scor      - value for power of s correction 
            gcor      - value for gain correction, >= 0 
            ps        - value for phase shift 
            td        - value for time delay 
  
          NOTE: an entry of 0 for any of these values is assumed 
            to mean no correction, shift, etc. 
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     in.save    - 'Y' to save response, 'N' not to save 
     in.savename - name to save response as.  (optional) 
                    ex: 'XVLATSWP_BAN_A0000_AIL_P' 
  
        NOTE: If save='Y' and savename is left blank, the  
          program portion of the filename will automatically 
          be changed to 'BAN'. 
  
     in.mpcplt   - create a magnitude,phase,(coherence) plot 
     in.mpcmin   - minimum frequency for mpc plot 
     in.mpcmax   - maximum frequency for mpc plot 
     in.mpcdev   - output device Q(MS),C(omprs),V(er),S(creen), 
                        T(alaris),P(ostScript) 
     in.lpcplt   - create a linear phase and coherence plot 
     in.lpcmin   - minimum frequency for lpc plot 
     in.lpcmax   - maximum frequency for lpc plot 
     in.lpcdev   - output device Q(MS),C(omprs),V(er),S(creen), 
                        T(alaris),P(ostScript) 
     in.lsfit    - perform least squares fit? 
  
    NOTE: Must create linear phase and coherence plot in order 
        to use least squares fitting. 
  
     in.lslow    - lower fitting frequency 
     in.lsup     - upper fitting frequency 
     in.lscoh    - use coherence weighting? 
     in.lsdev    - output device Q(MS),C(omprs),V(er),S(creen), 
                        T(alaris),P(ostScript) 
     in.toscrn   - turn printed screen output 'ON' or 'OFF' 
 
 
      Function: cifxover 
  
      Description: This function calls the second half of CIFER's 
            utility 8, the crossover calculations. 
  
            [X0db,Xn180db,FRrng] = cifxover(in,options) 
  
      Inputs:  
         in       - input structure, fields defined below.  
                      Information on the details of the structure can  
                      be found with an empty call: 
                        >> cifxover 
  
         options  - name-value pairs to set individual data  
                     fields (optional)  e.g.: ...,'save','Y',... 
     
      Outputs: 
        X0db      - optional output allows user to set up a template 
                      structure using this call with no inputs and 
                      a single output: 
                        >> out = cifxover 
  
            *** OR *** 
  
        X0db      - Array with results for 0 deg crossovers 
        Xn180db   - Array with results for -180 deg crossovers 
        FRrng     - array containing information about the  
                        frequency response. (optional) 
  
                FRrng = [minFreq,maxFreq] 
  
        NOTE: This function may be called with no outputs specified; 
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                the results will be displayed in the command window. 
  
  --------------------------------------------------------------- 
    DESCRIPTION OF FIELDS IN INPUT STRUCTURE 
  
     in.name      - Name of Frequency Response (string) 
                     ex: name = 'XVLATSWP_FRE_A0000_AIL_P' 
     in.source    - 'F' for file, 'D' for database 
     in.minfreq   - Minimum frequency for search range for  
                        crossover calculations.  Enter 
                        0 for the default range. 
     in.maxfreq   - Maximum frequency for search range for  
                        crossover calculations.  Enter 
                        0 for the default range. 
  
    NOTE: Set minfreq equal to maxfreq to search for a desired 
            fraction of full-range RMS 
  
     in.cor_list  - Array with values as follows: (optional) 
  
                cor_list = [scor, gcor, ps, td] 
  
             scor      - value for power of s correction 
             gcor      - value for gain correction, >= 0 
             ps        - value for phase shift 
             td        - value for time delay 
  
        NOTE: an entry of 0 for any of these values is assumed 
          to mean no correction, shift, etc.  Leaving this  
          input out will default the entries to 0. 
  
     in.save     - 'Y' to save response, 'N' not to save 
     in.savename  - name to save response as.  (optional) 
                      ex: 'XVLATSWP_BAN_A0000_AIL_P' 
  
        NOTE: If save='Y' and savename is left blank, the  
          program portion of the filename will automatically 
          be changed to 'BAN'. 
  
     in.mpcplt   - create a magnitude,phase,(coherence) plot 
     in.mpcmin   - minimum frequency for mpc plot 
     in.mpcmax   - maximum frequency for mpc plot 
     in.mpcdev   - output device Q(MS),C(omprs),V(er),S(creen), 
                        T(alaris),P(ostScript) 
     in.toscrn    - turn printed screen output 'ON' or 'OFF' 
 
     Function: cifarith 
   
     Description:  This function allows the user to call CIFER  
         utility 9 from the Matlab command screen.  This utility  
         performs arithmetic operations on frequency responses.   
         The results are saved to a new frequency response. 
  
     [out] = cifarith(in,options) 
   
     Inputs: 
         in       - input structure, fields defined below.  
                      Information on the details of the structure can  
                      be found with an empty call: 
                        >> cifarith 
  
         options  - name-value pairs to set individual data  
                     fields (optional)  e.g.: ...,'op','/',... 
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     Outputs: 
         out      - optional output allows user to set up a template 
                      structure using this call with no inputs: 
                        >> out = cifarith 
  
  --------------------------------------------------------------- 
    DESCRIPTION OF FIELDS IN INPUT STRUCTURE 
  
  SCREEN 1 
      in.names(2)    input names 
      in.scalefac(2) scale factor 
      in.spower(2)   power of s 
      in.op          operation (*,/,-,+) 
      in.outname     Resultant Response Name 
      in.outid       Resultant Response Description 
      in.cohopt      'N'->COH = 1.0, 'Y' -> COH = COH of first response 
      in.isource     Source of input responses ('D' - database, 
                        'F' - file) 
      in.osource     Destination for output ('D' - database, 'F' - file 
  
  SCREEN 2 
      in.minfreq     Minimum frequency to include (0 for default) 
      in.maxfreq     Maximum frequency to include (0 for default) 
      in.nvalue      Number of values in output response (0 for  

default) 
      in.unit        'RAD' or 'Hz' (0 for default) 
      in.toscrn      Turn printed screen output 'ON' or 'OFF' 
 
 
     Function: cifplot 
  
     Description:  This function allows the user to call CIFER  
         utility 19 from the Matlab command screen.  This utility  
         generates a 'canned' plot for frequency responses. 
   
     [out] = ciplot(in,options) 
   
     Inputs: 
         in       - input structure, fields defined below.  
                      Information on the details of the structure can  
                      be found with an empty call: 
                        >> cifplot 
         options  - name-value pairs to set individual data  
                      fields (optional) e.g.: ...,'source','F',... 
   
     Outputs: 
         out      - optional output allows user to setup a template 
                      structure using this call with no inputs: 
                        >> out = cifplot 
       
  --------------------------------------------------------------- 
    DESCRIPTION OF FIELDS IN INPUT STRUCTURE 
  
  SCREEN 1 
   in.array(5)    - which arrays (1:mag, 2:phas, 3:coh, 4:GXX,  
       5:GYY, 6:GXY, 7:err, 8:pcoh2,   
       9:pcoh3, 10:pcoh4, 11:pcoh5,  
       12:pcoh6, 13:pcoh7, 14:pcoh8,  
       15:pcoh9, 16:mcoh) 
   in.correct(5)  - use corrections (0 to skip, 1 to apply) 
   in.names(5)    - response names 
   in.gain(5)     - gain correction 
   in.phase(5)    - phase shift correction 
   in.spower(5)   - s power correction 
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   in.source      - source of data 'F' - File, 'D' - Database 
  
  SCREEN 2 
   in.pminfrq     - plot min freq (0 for default) 
   in.pmaxfrq     - plot max freq (0 for default) 
   in.pmin(1:5)   - plot y axis mins 
   in.pmax(1:5)   - plot y axis maxs 
   in.pinc(1:5)   - plot increments 
   in.device      - output device Q(MS),C(omprs),V(er),S(creen), 
                        T(alaris),P(ostScript) 
   in.grid        - grid lines ('Y' or 'N') 
   in.thick       - line thickness (1 - Default, 2 - double, etc.) 
   in.land_port   - L(andscape) or P(ortrait) 
   in.xaxis       - length of x axis 
   in.yaxis       - length of y axis 
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Appendix F: Structure Field Specifics for Analysis Utilities 
 

 This Appendix contains the information displayed through an empty call to any of the functions.  

Default settings are shown within a curly brace. 
 
>> cifrms 
 
Structure fields are: 
 
     name: [ string {''} ] 
   source: [ { 'D' } | 'F' ] 
       io: [ { 'I' } | 'O' ] 
   spower: [ scalar {0} ] 
  minfreq: [ positive scalar {0} ] 
  maxfreq: [ positive scalar {0} ] 
   toscrn: [ { 'ON' } | 'OFF' ] 
 
>> cifhq 
 
Structure fields are: 
 
      name: [ string {''} ] 
    source: [ { 'D' } | 'F' ] 
   minfreq: [ positive scalar {0} ] 
  cor_list: [ scalar array(4) { [0,0,0,0] } ] 
      save: [ { 'N' } | 'Y' ] 
  savename: [ string {''} ] 
    mpcplt: [ { 'N' } | 'Y' ] 
    mpcmin: [ positive scalar {0} ] 
    mpcmax: [ positive scalar {0} ] 
    mpcdev: [ { 'S' } | 'Q' | 'P' | 'T' | 'C' | 'V' ] 
    lpcplt: [ { 'N' } | 'Y' ] 
    lpcmin: [ positive scalar {0} ] 
    lpcmax: [ positive scalar {0} ] 
    lpcdev: [ { 'S' } | 'Q' | 'P' | 'T' | 'C' | 'V' ] 
     lsfit: [ { 'N' } | 'Y'  ] 
     lslow: [ positive scalar {0} ] 
      lsup: [ positive scalar {0} ] 
     lscoh: [ { 'N' } | 'Y'  ] 
     lsdev: [ { 'S' } | 'Q' | 'P' | 'T' | 'C' | 'V' ] 
    toscrn: [ { 'ON' } | 'OFF' ] 
 
>> cifxover 
 
Structure fields are: 
 
      name: [ string {''} ] 
    source: [ { 'D' } | 'F' ] 
   minfreq: [ positive scalar {0} ] 
   maxfreq: [ positive scalar {0} ] 
  cor_list: [ scalar array(4) { [0,0,0,0] } ] 
      save: [ { 'N' } | 'Y' ] 
  savename: [ string {''} ] 
    mpcplt: [ { 'N' } | 'Y' ] 
    mpcmin: [ positive scalar {0} ] 
    mpcmax: [ positive scalar {0} ] 
    mpcdev: [ { 'S' } | 'Q' | 'P' | 'T' | 'C' | 'V' ] 
    toscrn: [ { 'ON' } | 'OFF' ] 
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>> cifarith 
 
Structure fields are: 
 
    names: [ cell array(2) of strings {''} ] 
 scalefac: [ scalar array(2) {1} ] 
   spower: [ scalar array(2) {0} ] 
       op: [ {'*' } | '/' | '-' | '+' ] 
  outname: [ string {''} ] 
    outid: [ string {''} ] 
   cohopt: [ { 'N' } | 'Y' ] 
  isource: [ { 'D' } | 'F' ] 
  osource: [ { 'D' } | 'F' ] 
  minfreq: [ scalar {0} ] 
  maxfreq: [ scalar {0} ] 
   nvalue: [ positive scalar {0} ] 
     unit: [ {0} | 'RAD' | 'Hz' ] 
   toscrn: [ { 'ON' } | 'OFF' ] 
 
>> cifplot 
 
Structure fields are: 
 
     array: [ positive scalar array(5) {0} ] 
   correct: [ integer array(5)  {0} | 1 ] 
     names: [ cell array(5) of strings {''} ] 
      gain: [ scalar array(5) {1} ] 
     phase: [ scalar array(5) {0} ] 
    spower: [ scalar array(5) {0} ] 
    source: [ { 'D' } | 'F' ] 
   pminfrq: [ positive scalar {0} ] 
   pmaxfrq: [ positive scalar {0} ] 

pmin: [ positive scalar array(5) {0} ] 
      pmax: [ positive scalar array(5) {0} ] 
      pinc: [ positive scalar array(5) {0} ] 
    device: [ { 'S' } | 'Q' | 'C' | 'V' | 'T' | 'P' ] 
      grid: [ { 'Y' } | 'N' ] 
     thick: [ positive scalar { 1 } ] 
 land_port: [ { 'L' } | 'P' ] 
     xaxis: [ positive scalar { 0 } ] 
     yaxis: [ positive scalar { 0 } ] 
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Appendix G: Online Help for Support Functions 
 

This Appendix contains the information that is displayed when the ‘help functionname’ command 

is used in Matlab. 

 

      Function: getfr 
  
      Description:  This function allows the user to access the  
          CIFER frequency response database and retrieve information 
          from the arrays stored there.   
         
      [frq,mag,pha,coh,gxx,gyy,gxy,rel,img,err] = getfr(name) 
  
      Inputs:  
        name    - Name of Freqency Response (string) 
                   ex: name = 'XVLATSWP_FRE_A0000_AIL_P' 
     
      Outputs: 
        Arrays of values: (lengths depend on database) 
          frq  - frequency 
          mag  - magnitude 
          pha  - phase 
          coh  - coherence 
          gxx  - gxx 
          gyy  - gyy 
          gxy  - gxy       
          rel  - real 
          img  - imaginary 
          err  - error 
 
 
      Function: writefr 
  
      Description:  The user is allowed to place frequency response 
        data back into the CIFER database. 
       
      Minimum Input Requirements: 
        writefr(name, frq, mag) 
  
      Maximum Input: 
        writefr(name, frq, mag, pha, coh, gxx, gyy, gxy, rea, ima, err) 
  
      Inputs:  
        name  - Name of Frequency Response (string) 
                  ex: name = 'XVLATSWP_FRE_A0000_AIL_P' 
          
        arrays to put into database: 
          frq  - frequency 
          mag  - magnitude 
          pha  - phase 
          coh  - coherence 
          gxx  - gxx 
          gyy  - gyy 
          gxy  - gxy       
          rea  - real 
          ima  - imaginary 
          err  - error 
     
      NOTES:  There must be between 3 and 11 inputs.  Frequency 
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         and magnitude must be included.  Other arrays can be 
         included, but they must be included in the order shown. 
 
 
      Function: caselist 
  
      Purpose: Allow user to list present CIFER cases by 
          program 
  
      names = caselist(pgm) 
  
      Inputs: 
          pgm      - program to check cases for 
              1  - FRESPID 
              2  - MISOSA 
              3  - COMPOSITE 
              4  - DERIVID 
              5  - model 
              6  - F matrix 
              7  - G matrix 
              8  - tau matrix 
              9  - H matrix 
              10 - M matrix 
              11 - VERIFY 
              12 - DERIVID results 
              13 - VERIFY results 
              14 - frequency response 
  
      Outputs: 
          names    - cell array containing names of cases for  
                        specified program 
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Appendix H: Mass-Spring-Damper Case Example 
 

This example is for a simple second order mass-spring-damper system modeled in Simulink as a 

transfer function. A frequency sweep simulating noise was run through the model and the input 

and output data recorded into a time history file. One case was set up entirely in CIFER and then 

a second was set up and run from MATLAB. The commands shown below were used to run the 

case from MATLAB. Calls to the CIFER-MATLAB interface functions have been highlighted in 

red. This example is provided to give a very simple scenario to set up cases using the MATLAB 

interface. CIFER does not come with this example so the simulation would have to be created and 

run in order to generate the data necessary. 
 
 
% Assign a blank frespid structure 
   f_in     = frespid;    
   thename  = 'MASSSPRG'; 
    
% Fill in all the necessary information to make the case    
   f_in.casename                 = thename; 
   f_in.comments                 = 'mass spring system'; 
   f_in.caseout                  = thename; 
   f_in.crosscor                 = 'Y'; 
   % Time history selection parameters: 
   f_in.source                   = 5; 
   f_in.evntnum(1)               = 1; 
   f_in.flghtnum(1)              = 1; 
   f_in.thdt                     = 0.01; 
   f_in.thfile(1)                = {'massspring.CIFERTEXT'}; 
   % channel definition parameters: 
   f_in.controls(1)              = {'IN'}; 
   f_in.outputs(1)               = {'OUT'}; 
   f_in.conchnl(1,1)             = {'IN'}; 
   f_in.outchnl(1,1)             = {'OUT'}; 
   % Frequency response selection parameters 
   f_in.frcalc(1,1) = {'*'}; 
 
% NOTE: The file 'massspring.CIFERTEXT' was created for this example, 
%     in order to run the example this file must be created. 
    
% Save the structure into the database    
   frespid(f_in,2); 
% Change the window sizes and turn them on. 
   
frespid('MASSSPRG',2,'winlen',[30,25,20,15,10],'winon',{'*','*','*','*',
'*'}, 

'maxfft',[125,125,125,125,125]); 
    
% Set up blank composite case 
   c_in = composite; 
    
% Fill in appropriate values 
   c_in.casename           = thename;  
   c_in.comments           = 'mass spring system'; 
   c_in.casein             = thename; 
   c_in.caseout            = thename; 
   c_in.inpgm              = 'FRE'; 
   c_in.controls(1)        = {'IN'}; 
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   c_in.outputs(1)         = {'OUT'}; 
   c_in.frcalc(1,1)        = {'*'};  
   c_in.winon              = {'*','*','*','*','*'}; 
 
    
% Save case into database 
   composite(c_in,2); 
 
% Run both cases 
   frespid('MASSSPRG',3) 
   composite('MASSSPRG',3) 
 
 

The figure below shows the results from the analysis. The response is very clean with a drop in 

coherence at the mode. Both the MATLAB and CIFER results overlay closely. There is a small 

difference due to machine precision; however this error tends to be on the order of a thousandth 

of a percent or less.  
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Appendix I: XVLATSWP Case Example 
 

This example shows the MATLAB commands used to fully set up and run the XVLATSWP 

sample case provided with installations of CIFER. 
 
% Assign a blank frespid structure 
   f_in = frespid;    
   thename = 'XVLATSP2'; 
 
% Fill in all the necessary information to make the case    
   f_in.casename                 = thename; 
   f_in.comments                 = 'Matlab-created XVLATSWP case, new 
functions'; 
   f_in.caseout                  = thename; 
   f_in.crosscor                 = 'Y'; 
   f_in.plot                     = 'N'; 
   % Time history selection parameters: 
   f_in.source                   = 1; 
   f_in.evntnum(1:2)             = [883,884]; 
   f_in.flghtnum(1:2)            = [150,150]; 
   f_in.thdt                     = 0.004; 
   % channel definition parameters: 
   f_in.controls(1:2)            = {'AIL','RUD'}; 
   f_in.conunit(1:2)             = {'deg','deg'}; 
   f_in.outputs(1:4)             = {'P','R','AY','VDOT'}; 
   f_in.outunit(1:4)             = {'deg/s','deg/s','ft/sec2', 

'ft/sec2'}; 
   f_in.conchnl(1:2,1)           = {'D645','D284'}; 
   f_in.outchnl(1:4,1)           = {'V012','V014','A300','VDOT'}; 
   f_in.outscfac(1:3,1)          = [0.0175,0.0175,32.1740]; 
   % Conditioning parameters 
   f_in.conditioning(1,1:2)      = [3,2]; 
   f_in.conditioning(2,1:2)      = [4,25]; 
   % Frequency response selection parameters 
   f_in.frcalc(1:4,1:2)          = {'*'}; 
   % Window Parameters 
   f_in.winid                    = {'45 SECOND WINDOW' 
                                    '40 SECOND WINDOW' 
                                    '30 SECOND WINDOW' 
                                    '20 SECOND WINDOW' 
                                    '15 SECOND WINDOW'}; 
   f_in.winlen                   = [45,40,30,20,15]; 
   f_in.winon(1:5)               = {'*'}; 
% Save the structure into the database    
   frespid(f_in,2); 
 
% Set up blank misosa case    
   m_in = misosa; 
    
% Fill in appropriate values    
   m_in.casename        = thename;  
   m_in.comments        = 'Matlab-created XVLATSWP case'; 
   m_in.casein          = thename; 
   m_in.caseout         = thename;  
   m_in.controls(1:2)   = {'AIL','RUD'}; 
   m_in.outputs(1:4)    = {'P','R','AY','VDOT'}; 
   m_in.winon(1:5)      = {'*'}; 
   m_in.frcalc(1:4)     = {'*'}; 
 
% save case to database 
   misosa(m_in,2); 
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% Set up blank composite case 
   c_in = composite; 
    
% Fill in appropriate values 
   c_in.casename        = thename;  
   c_in.comments        = 'Matlab-created XVLATSWP case'; 
   c_in.casein          = thename; 
   c_in.caseout         = thename;  
   c_in.inpgm           = 'MIS';    
   c_in.controls(1)     = {'AIL'}; 
   c_in.outputs(1:4)    = {'P','R','AY','VDOT'}; 
   c_in.winon(1:5)      = {'*'}; 
   c_in.frcalc(1,1)     = {'*'}; 
    
% Save case into database 
   composite(c_in,2); 
 
% Run both cases 
   frespid('XVLATSP2',3); 
   misosa('XVLATSP2',3); 
   composite('XVLATSP2',3); 
 
The following figure shows a plot of the original XVLATSWP case as created and run in CIFER 

overlaid by the same case set up and run from MATLAB. There is no appreciable difference 

between the two results. 

 


