Postgraduate course, Covenant University Ota, Nigeria

Oyelade, O. J., PhD | ola.oyelade@covenantuniversity.edu.ng
Isewon, L. | itunu.isewon@covenantuniversity.edu.ng

Module Two - Filesystem

2.1 Objectives

In this module, we will covers:

The Linux filesystem and directory structure.
File and directory handling commands.

How wildcard filename expansion works.

[]
[]
1 How to make symbolic and hard links.
[]
[l

What argument quoting is and when it should be used.

2.2 The Linux Filesystem

The Linux operating system is built around the concept of a filesystem which is
used to store all of the information that constitutes the long-term state of the
system. This state includes:

e the operating system kernel itself

e the executable files for the commands supported by the operating system
such as:

@)

@)
@)
@)

configuration information,
temporary workfiles,
user data, and
various special files that are used to give controlled access to system
hardware and operating system functions.

Every item stored in a Linux filesystem belongs to one of four types:

1. Ordinary files

e Ordinary files can contain text, data, or program information.

Oyelade, 0. J. and Isewon I - H3AbioNet Postgraduate course, 2014 Page 1

e They can contain any keyboard character except for '/' and be
up to 256 characters long (note that characters such as *,?,# and
& have special meaning in most shells and should not therefore
be used in filenames).

e Putting spaces in filenames also makes them difficult to
manipulate - rather use the underscore ' .

2. Directories

e Directories are containers or folders that hold files, and other
directories.

3. Devices

e To provide applications with easy access to hardware devices,
Linux allows them to be used in much the same way as
ordinary files.

e There are two types of devices in Linux:

o block-oriented devices which transfer data in blocks
(e.g. hard disks) and

o character-oriented devices that transfer data on a byte-
by-byte basis (e.g. modems and dumb terminals).

4. Links

A link is a pointer to another file. There are two types of links -
a hard link to a file is indistinguishable from the file itself. A soft
link (or symbolic link) provides an indirect pointer or shortcut to a
file. A soft link is implemented as a directory file entry containing a
pathname.

2.3 Typical UNIX Directory Structure

e The Linux filesystem is laid out as a hierarchical tree structure which is
anchored at a special top-level directory known as the root (designated by a
slash '/").

e Because of the tree structure, a directory can have many child directories,
but only one parent directory.

e Fig. 2.1 illustrates this layout.

Oyelade, 0. J. and Isewon I - H3AbioNet Postgraduate course, 2014 Page 2

ﬁmﬁ

work play

Fig. 2.1: Part of a typical UNIX filesystem tree

e To specify a location in the directory hierarchy, we must specify a path
through the tree.

e The path to a location can be defined by an absolute path from the root /, or
as a relative path from the current working directory.

e To specify a path, each directory along the route from the source to the
destination must be included in the path, with each directory in the sequence
being separated by a slash.

e To help with the specification of relative paths, Linux provides the
shorthand "." for the current directory and ".." for the parent directory.

o For example, the absolute path to the directory "play"
is /home/will/play, while the relative path to this directory from "zeb"
is ../will/play.

Fig. 2.2 below shows some typical directories you will find on Linux systems and
briefly describes their contents. Note that these subdirectories appear as part of a

Oyelade, 0. J. and Isewon I - H3AbioNet Postgraduate course, 2014 Page 3

logical filesystem, they do not need be present on the same hard disk device; some
may even be located on a remote machine and accessed across a network.

Director Typical Contents

/ The "root" directory

/bin Essential low-level system utilities

/usr/bin Higher-level system utilities and application
programs

/sbin Superuser system utilities (for performing
system administration tasks)

/1lib Program libraries (collections of system calls

that can be included in programs by a compiler)
for low-level system utilities

/usr/1lib Program libraries for higher-level user programs

/ tmp Temporary file storage space (can be used by any
user)

/home or User home directories containing personal file

/homes space for each user. Each directory is named
after the login of the user.

/etc UNIX system configuration and information files

/dev Hardware devices

/proc A pseudo-filesystem which is used as an
interface to the kernel. 1Includes a sub-

directory for each active program (or process).

Fig. 2.2: Typical Linux directories

When you log into Linux, your current working directory is your user home
directory. You can refer to your home directory at any time as "'~" and the home
directory of other users as "~<login>".So ~will/play is another way for
user jane to specify an absolute path to the directory /homes/will/play.
User will may refer to the directory as ~/play.

2.4 Directory and File Handling Commands

This section describes some of the more important directory and file handling
commands.

o pwd (print [current] working directory)

Oyelade, 0. J. and Isewon I - H3AbioNet Postgraduate course, 2014 Page 4

pwd displays the full absolute path to the your current location in the
filesystem.

So

$ pwd
/usr/bin

implies that /usr/bin is the current working directory.

o Is (list directory)

Is lists the contents of a directory. If no target directory is given, then
the contents of the current working directory are displayed. So, if the
current working directory is /,

$1s

bin dev home mnt share usr var
boot etc 1lib proc sbin tmp vol

Actually, Is doesn't show you all the entries in a directory - files and
directories that begin with a dot (.) are hidden (this includes the
directories '.' and '..' which are always present). The reason for this is
that files that begin with a . usually contain important configuration
information and should not be changed under normal circumstances.
If you want to see all files, s supports the -a option:

$1s-a+

Even this listing is not that helpful - there are no hints to properties
such as the size, type and ownership of files, just their names. To see
more detailed information, use the -1 option (long listing), which can
be combined with the -a option as follows:

$ 1s —-a -1 ¢

(or, equivalently,)
$1s -al ¢

Each line of the output looks like this:

Oyelade, 0.]. and Isewon I - H3AbioNet Postgraduate course, 2014 Page 5

permissions owner group date

@:wxr—xr—x}[| SJ[will]Efinance][40|96Jﬁqov 20 10:45]@&'11]

type finks size name

where:

o typeis a single character which is either 'd" (directory), '-'
(ordinary file), 'lI' (symbolic link), 'b' (block-oriented device) or
'c' (character-oriented device).

o permissions is a set of characters describing access rights. There
are 9 permission characters, describing 3 access types given to
3 user categories. The three access types are read ('r'), write
('w") and execute ('x"), and the three users categories are the user
who owns the file, users in the group that the file belongs to and
other users (the general public). An ', 'W' or 'x' character means
the corresponding permission is present; a '-' means it is absent.

o links refers to the number of filesystem links pointing to the
file/directory (see the discussion on hard/soft links in the next
section).

o owner is usually the user who created the file or directory.

o group denotes a collection of users who are allowed to access
the file according to the group access rights specified in the
permissions field.

o size is the length of a file, or the number of bytes used by the
operating system to store the list of files in a directory.

o dateis the date when the file or directory was last modified
(written to). The -u option display the time when the file was
last accessed (read).

o name 1s the name of the file or directory.

1s supports more options. To find out what they are, type:
$ man ls ¢

man is the online Linux user manual, and you can use it to get help
with commands and find out about what options are supported. It has

Oyelade, 0. J. and Isewon I - H3AbioNet Postgraduate course, 2014 Page 6

quite a terse style which is often not that helpful, so some users prefer
to the use the (non-standard) info utility if it is installed:

S info 1ls ¢

« cd (change [current working] directory)
$ cd path

changes your current working directory to path (which can be an
absolute or a relative path). One of the most common relative paths to
use is '.." (1.e. the parent directory of the current directory).

Used without any target directory

S cd ¢

resets your current working directory to your home directory (useful if
you get lost). If you change into a directory and you subsequently
want to return to your original directory, use

$ cd -+

« mkdir (make directory)
$ mkdir directory

creates a subdirectory called directoryin the current working
directory. You can only create subdirectories in a directory if you
have write permission on that directory.

o« rmdir (remove directory)
$ rmdir directory
removes the subdirectory directory from the current working

directory. You can only remove subdirectories if they are completely
empty (i.e. of all entries besides the '.' and '.." directories).

Oyelade, 0. J. and Isewon I - H3AbioNet Postgraduate course, 2014 Page 7

« cp (copy)

cp 1s used to make copies of files or entire directories. To copy files,
use:

$ cp source-file(s) destination

where source-file(s) and destination specify the source and destination
of the copy respectively. The behaviour of cp depends on whether the
destination is a file or a directory. If the destination is a file, only one
source file is allowed and cp makes a new file called destination that
has the same contents as the source file. If the destination is a
directory, many source files can be specified, each of which will be
copied into the destination directory. Section 2.6 will discuss efficient
specification of source files using wildcard characters.

To copy entire directories (including their contents), use
a recursive copy:

$ cp -rd source-directories destination-directory

To copy a file (e.g. Hello.txt) in oyelade directory into the
oyelade/ade directoryasHello.bak:

S cp /home/oyelade/Hello.txt /home/oyelade/ade/Hello.bak +
$ cp -r myfolder/destionation +
Here, all folders and files will be copied recursively.

Copying multiple files:

$ cp /home/usr/dir/{filel,file2,file3,filed4} /home/usr/destination/
1_|

e mv (move/rename)

mv 1s used to rename files/directories and/or move them from one
directory into another. Exactly one source and one destination must be
specified:

Oyelade, 0. J. and Isewon I - H3AbioNet Postgraduate course, 2014 Page 8

S mv source destination

N.B.: if destination 1s an existing file it will be destroyed and
overwritten by source (you can use the —1i option if you would like to
be asked for confirmation before a file is overwritten in this way).

« rm (remove/delete)
S rm target-file(s)

removes the specified files. Unlike other operating systems, it is
almost impossible to recover a deleted file unless you have a backup
(there is no recycle bin!) so use this command with care. If you would
like to be asked before files are deleted, use the -1 option:

S rm -1 myfile ¢
rm: remove 'myfile'?

rmcan also be used to delete directories (along with all of their
contents, including any subdirectories they contain). To do this, use
the -r option. To avoid rm from asking any questions or giving errors
(e.g. if the file doesn't exist) you used the -f (force) option. Extreme
care needs to be taken when using this option - consider what would
happen if a system administrator was trying to delete user will's home
directory and accidentally typed:

S rm -rf / home/will ¢

(instead of rm -rf /home/will).

$ rm —-r myfolder 4= Toremove a folder

o cat (catenate/type)

$ cat target-file(s)

Oyelade, 0. J. and Isewon I - H3AbioNet Postgraduate course, 2014 Page 9

displays the contents of target-file(s) on the screen, one after the
other. You can also use it to create files from keyboard input as
follows (> is the output redirection operator.

$ cat > hello.txt ¢
hello world!
[ctrl-d]

S 1s hello.txt ¢+
hello.txt

$ cat hello.txt ¢
hello world!

$

« more and less (catenate with pause)
$ more target-file(s)

displays the contents of farget-file(s) on the screen, pausing at the end
of each screenful and asking the user to press a key (useful for long
files). It also incorporates a searching facility (press '/' and then type a
phrase that you want to look for).

You can also use more to break up the output of commands that
produce more than one screenful of output as follows (| 1is the pipe
operator, which will be discussed in the next module):

S 1s -1 | more ¢

less is just like more, except that has a few extra features (such as
allowing users to scroll backwards and forwards through the displayed
file). 1ess not a standard utility, however and may not be present on
all Linux systems.

2.5 Making Hard and Soft (Symbolic) Links

Direct (hard) and indirect (soft or symbolic) links from one file or directory to
another can be created using the In command.

Oyelade, 0. J. and Isewon I - H3AbioNet Postgraduate course, 2014 Page 10

$ 1n filename linkname

creates another directory entry for filename called linkname (i.e. linkname is a hard
link). Both directory entries appear identical (and both now have a link count of 2).
If either filename or linkname 1s modified, the change will be reflected in the other
file (since they are in fact just two different directory entries pointing to the same
file).

$ 1n -s filename linkname

creates a shortcut called linkname (i.e. linkname is a soft link). The shortcut
appears as an entry with a special type ('1'):

$ 1In -s hello.txt bye.txt ¢
$ 1s -1 bye.txt ¢
lrwXrwxXrwx 1 will finance 13 bye.txt -> hello.txt

$

The link count of the source file remains unaffected. Notice that the permission
bits on a symbolic link are not used (always appearing as rwxrwxrwx). Instead the
permissions on the link are determined by the permissions on the target
(hello.txt in this case).

2.6 Specifying multiple filenames

Multiple filenames can be specified using special pattern-matching characters. The
rules are:

« '?'matches any single character in that position in the filename.

« '*' matches zero or more characters in the filename. A '*' on its own
will match all files. '* . *' matches all files with containing a'.".

o Characters enclosed in square brackets ('[' and '') will match any
filename that has one of those characters in that position.

o A list of comma separated strings enclosed in curly braces ("{" and
"1") will be expanded as a Cartesian product with the surrounding
characters.

For example:

Oyelade, 0. J. and Isewon I - H3AbioNet Postgraduate course, 2014 Page 11

1. ??? matches all three-character filenames.

2. 2?ell? matches any five-character filenames with 'e11' in the
middle.

he* matches any filename beginning with 'he'.

4. [m-z]*[a-1] matches any filename that begins with a letter from
'm' to 'z' and ends in a letter from 'a' to '1'.

{/usr, }{/bin, /1ib}/file expandsto /usr/bin/file
/usr/1lib/file /bin/file and /lib/file.

W

hd

Exercises Two

1. Try the following command sequence:
o cd
o de
o ls -al
o cd
o pwd (where did that get you?)
o cd ..
o de
o 1ls —-al
o cd
o de
o ls -al
o cd ..
o pwd (what happens now)
o cd /etc
o ls -al | more
o cat passwd
o cd -
o de

2. Continue to explore the filesystem tree using cd, 1s, pwd and cat.
Look in /bin, /usr/bin, /sbin, /tmp and /boot. What do you
see?

3. Explore /dev. Can you identify what devices are available? Which
are character-oriented and which are block-oriented? Can you identify
your tty (terminal) device (typing who am 1 might help); who is
the owner of your tty (use 1s -1)?

Oyelade, 0. J. and Isewon I - H3AbioNet Postgraduate course, 2014 Page 12

4. Explore /proc. Display the contents of the

files interrupts, devices, cpuinfo, meminfo and uptime

using cat. Can you see why we say /proc is a pseudo-filesystem

which allows access to kernel data structures?

Change to the home directory of another user directly, using cd

~username.

Change back into your home directory.

Make subdirectories called work and play.

Delete the subdirectory called work.

9. Copy the file /etc/passwd into your home directory.

10.Move it into the subdirectory play.

11.What is the difference between listing the contents of directory play
with 1s -1l and 1s -L?

12.Create a file called hello.txt that contains the words "hello
world". Can you use "cp" using "terminal" as the source file to
achieve the same effect?

13.Copy hello.txt to terminal. What happens?

14.Imagine you were working on a system and someone accidentally
deleted the 1 s command (/bin/1s). How could you get a list of the
files in the current directory? Try it.

15.How would you create and then delete a file called "$SHELL"? Try it.

16.How would you create and then delete a file that begins with the
symbol #? Try it.

17.How would you create and then delete a file that begins with the
symbol -? Try it.

18.Experiment with the options on the 1s command. What do
the d, i, R and F options do?

b

© =S

Oyelade, 0. J. and Isewon I - H3AbioNet Postgraduate course, 2014 Page 13

