

September 2013

www.dialogic.com

Dialogic® DSI Diameter Stack
Diameter Functional API Manual

Section 1 Introduction

2

Copyright and Legal Notice
Copyright © 2012-2013 Dialogic Inc. All Rights Reserved. You may not reproduce this document in whole or in part

without permission in writing from Dialogic Inc. at the address provided below.

All contents of this document are furnished for informational use only and are subject to change without notice and do not

represent a commitment on the part of Dialogic Inc. and its affiliates or subsidiaries ("Dialogic"). Reasonable effort is made

to ensure the accuracy of the information contained in the document. However, Dialogic does not warrant the accuracy of

this information and cannot accept responsibility for errors, inaccuracies or omissions that may be contained in this

document.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH DIALOGIC® PRODUCTS. NO LICENSE, EXPRESS

OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

EXCEPT AS PROVIDED IN A SIGNED AGREEMENT BETWEEN YOU AND DIALOGIC, DIALOGIC ASSUMES NO LIABILITY
WHATSOEVER, AND DIALOGIC DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF

DIALOGIC PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,

MERCHANTABILITY, OR INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT OF A THIRD PARTY.

Dialogic products are not intended for use in certain safety-affecting situations. Please see

http://www.dialogic.com/company/terms-of-use.aspx for more details.

Due to differing national regulations and approval requirements, certain Dialogic products may be suitable for use only in

specific countries, and thus may not function properly in other countries. You are responsible for ensuring that your use of

such products occurs only in the countries where such use is suitable. For information on specific products, contact Dialogic

Inc. at the address indicated below or on the web at www.dialogic.com .

It is possible that the use or implementation of any one of the concepts, applications, or ideas described in this document,

in marketing collateral produced by or on web pages maintained by Dialogic may infringe one or more patents or other

intellectual property rights owned by third parties. Dialogic does not provide any intellectual property licenses with the sale

of Dialogic products other than a license to use such product in accordance with intellectual property owned or validly

licensed by Dialogic and no such licenses are provided except pursuant to a signed agreement with Dialogic. More detailed

information about such intellectual property is available from Dialogic's legal department at 6700 de la Cote-de-Liesse

Road, Suite 100, Borough of Saint-Laurent, Montreal, Quebec, Canada H4T 2B5. Dialogic encourages all users of its

products to procure all necessary intellectual property licenses required to implement any concepts or

applications and does not condone or encourage any intellectual property infringement and disclaims any

responsibility related thereto. These intellectual property licenses may differ from country to country and it is
the responsibility of those who develop the concepts or applications to be aware of and comply with different

national license requirements.

Dialogic, Dialogic Pro, Dialogic Blue, Veraz, Brooktrout, Diva, BorderNet, PowerMedia, ControlSwitch, I-Gate, Mobile

Experience Matters, Network Fuel, Video is the New Voice, Making Innovation Thrive, Diastar, Cantata, TruFax, SwitchKit,

Eiconcard, NMS Communications, SIPcontrol, Exnet, EXS, Vision, inCloud9, NaturalAccess and Shiva, among others as well

as related logos, are either registered trademarks or trademarks of Dialogic Inc. and its affiliates or subsidiaries. Dialogic's

trademarks may be used publicly only with permission from Dialogic. Such permission may only be granted by Dialogic's

legal department at 6700 de la Cote-de-Liesse Road, Suite 100, Borough of Saint-Laurent, Montreal, Quebec, Canada H4T

2B5. Any authorized use of Dialogic's trademarks will be subject to full respect of the trademark guidelines published by
Dialogic from time to time and any use of Dialogic's trademarks requires proper acknowledgement.

The names of actual companies and products mentioned herein are the trademarks of their respective owners.

This document discusses one or more open source products, systems and/or releases. Dialogic is not responsible for your

decision to use open source in connection with Dialogic products (including without limitation those referred to herein), nor

is Dialogic responsible for any present or future effects such usage might have, including without limitation effects on your

products, your business, or your intellectual property rights.

Publication Date: September 2013

Document Number: U02DMR

http://www.dialogic.com/company/terms-of-use.aspx
http://www.dialogic.com/

Dialogic® DSI Diameter Stack – Diameter Functional API User Manual Issue 4

3

Revision History

Issue Date Description

4 20-Sep-13 Addition of C++ API

3 22-Feb-13 Revised Java jar definitions and minor API name changes.

2 10-Jan-13 Updated to include support for Ro and Rf interfaces.

1 09-Nov-12 Initial Release for use during Dialogic
®
 DSI Diameter Stack beta trial.

Note: The current version of this guide can be found at:
http://www.dialogic.com/support/helpweb/signaling

Contents

Revision History ... 3

1 Introduction .. 5

1.1 Applicability ... 5
1.2 Related Documentation .. 5

2 Stack Overview ... 6

3 Component Overview .. 7

3.1 Java Development Package Components .. 7
3.2 C++ Development Package Components ... 8
3.3 Message Passing Environment (GCTLIB) API .. 8
3.4 DMR Access API .. 8

3.4.1 DmrContext ... 8
3.4.2 DMR UserApi and Message Encoders .. 9

3.5 Diameter Command API .. 10

4 Functional API Illustration .. 12

4.1 Generating a Diameter Session ... 12
4.1.1 Building the session/request object ... 13

4.2 Handling a received Diameter Request... 14
4.3 AVP Handling.. 15

4.3.1 Adding and Retrieving an AVP .. 15
4.3.2 Adding an AVP list .. 15
4.3.3 Retrieving an AVP list .. 15
4.3.4 Adding an unknown AVP .. 16
4.3.5 Retrieving an unknown AVP ... 16
4.3.6 Handling enum AVPs with unknown values... 16

4.4 Result Code .. 17
4.5 Error Command .. 18
4.6 Exception Handling ... 18

5 Command and Message Dictionaries ... 20

5.1 DMS Utility ... 21
5.2 Namespace .. 22

http://www.dialogic.com/support/helpweb/signaling

Section 1 Introduction

4

6 Example Java Applications .. 23

6.1 DTU Diameter Test Utility .. 23
6.1.1 Command line output ... 26
6.1.2 Command line examples ... 27

6.2 DTR Diameter Test Responder .. 27
6.2.1 Command line output ... 28
6.2.2 Command line examples ... 28

7 Example C++ Applications ... 29

7.1 Installation .. 29
7.2 Building and running the example code ... 29
7.3 C++ Example Overview ... 30

7.3.1 Generating a Diameter Session .. 30
7.3.2 Handling a received Diameter Request .. 31

Figures
Figure 1. Diameter Module and Functional APIs ... 6
Figure 2. Functional APIs ... 7
Figure 3. DmrContext Static Class Hierarchy.. 9
Figure 4. Diameter Command API Static Class Hierarchy .. 10
Figure 5. DMS Class generation and encoders ... 20
Figure 6. DTU/DTR Message Sequence Chart (Mode 0 – Update Location) 23
Figure 7. DTU/DTR Message Sequence Chart (Mode 1 – Credit Control) 24

Tables
Table 1. Result Code Values .. 17

Dialogic® DSI Diameter Stack – Diameter Functional API User Manual Issue 4

5

1 Introduction

The Dialogic® DSI Diameter Stack is a software implementation of the IETF
Diameter Base Protocol which is intended to facilitate development of user
applications that interface to LTE and IMS networks for the implementation of
services in the areas of: Mobility, Online Charging and Offline Charging.

The Dialogic® DSI Diameter Stack includes a message based binary Diameter
Module, a Functional API Library and utility components and header files for
use when developing a User Application.

Dialogic’s Diameter Module (DMR) implements the Diameter Base Protocol
offering a message based API to the User Application to control Diameter

sessions. DMR is a member of the family of Dialogic® DSI Components and
offers similar message-based interfaces and management capabilities to
those offered for other SS7 and SIGTRAN protocol layers. DMR uses the
services provided by the SCTP layer of the Dialogic® DSI SIGTRAN Stack for

the transfer of messages between Diameter Peers.

Dialogic’s DMR Functional API is for use within user applications interfacing
with the DMR module. The messages defined by DMR as part of its user
interface contain network formatted Diameter commands. The functional API
allows for the easy encoding and decoding of these DMR messages to support
quick application development and maintenance.

This manual is intended for use by Application Developers who intend to write

or maintain applications which use the Functional API for the Dialogic® DSI
Diameter Stack. It provides an overview of the Functional API and other
related software components. Users needing to configure and maintain the
Diameter Module (DMR) should refer to the Diameter Programmer’s Manual.

1.1 Applicability
This manual is applicable to the following software:

Dialogic® DSI Development Package for Solaris – Release 5.3.1 or later (Java
API only – check for availability of C++ API).

Dialogic® DSI Development Package for Linux – Release 6.6.1 or later

1.2 Related Documentation
Current software and documentation supporting Dialogic® DSI components is
available at: http://www.dialogic.com/support/helpweb/signaling

Video tutorials are available at: http://www.dialogic.com/den/media

The following User Documentation relates to the use of the Dialogic® DSI
Diameter Stack:

 Dialogic® DSI Diameter Stack - Diameter Functional API Manual

 Dialogic® DSI Components - Software Environment Programmer’s Manual

 Dialogic® DSI SIGTRAN Stack - SCTP Programmer’s Manual

http://www.dialogic.com/support/helpweb/signaling
http://www.dialogic.com/den/media

Section 2 Stack Overview

6

2 Stack Overview

There are a number of components supplied as part of the Dialogic® DSI
Diameter Stack. These include APIs for interfacing to the Dialogic message
passing environment in general as well as APIs specific for use with the
Diameter Module within the Dialogic® DSI Diameter Stack.

The User Application will be built using the supplied Functional APIs described
in this manual. These APIs facilitate the generation and handling of messages
sent to or received from the Diameter Module.

The Diameter Module (DMR) implements the Diameter Base Protocol offering
a message based API to the User Application to control Diameter sessions and

is discussed further in the DMR Programmer’s Manual.

The Diameter Module can be configured via messages using a Management
Module. This Management Module may be the s7_mgt utility included within
the DSI Development Package or optionally it may be replaced by a User

generated module.

The Diameter Module interfaces to the network via the SCTPN module to send
the appropriate payload messages and for control of SIGTRAN associations.

Kernel SCTP

Application Module

Message-
Passing

API

DMR
Access API

Diameter
Command

API

Diameter Module (DMR)

SCTPN Module

M
an

agem
en

t
M

o
d

u
le

 Figure 1. Diameter Module and Functional APIs

Dialogic® DSI Diameter Stack – Diameter Functional API User Manual Issue 4

7

3 Component Overview

This section provides an overview of the functional APIs used by an
Application to interface with the Diameter Module (DMR). The APIs are shown
below in Figure 2.

The Message Passing API allows C++ and Java users to interface with the
underlying DSI message-passing mechanism by providing access to the
GCTLIB library. The DMR Access API provides the methods to control and
manage the messages that access the functionality provided in the Diameter

Module. The Diameter Command API provides functionality to build Diameter
Command and AVP objects to permit them to be encoded using the DMR
Access API.

Application Module

Message-
Passing

API

DMR
Access API

Diameter
Command

API

Diameter Module (DMR)

Figure 2. Functional APIs

3.1 Java Development Package Components
The required functionality and components for use in Java are stored in the
following Java Jar files within the DSI Development Package.

API Package Jar

Message Passing
Library

com.dialogic.signaling.gct gctApi.jar

DMR Access API com.dialogic.signaling.dmr dmrApr.jar

Diameter
Command API

com.dialogic.signaling.diameter dmrApr.jar

com.dialogic.signaling.diameter.* dmtrCmds.jar

Section 3 Component Overview

8

3.2 C++ Development Package Components
The required functionality and components for use with C++ are stored in the
following files within the DSI Development Package.

API Package/Namespace Library

Message
Passing Library

gctlib libgctlib.so

DMR Access
API

com_dialogic_signaling::dmr

com_dialogic_signaling::dmr::user

dmrApr.lib

Diameter
Command API

com_dialogic_signaling::diameter dmrApr.lib

com_dialogic_signaling::diameter::* dmtrCmds.lib

3.3 Message Passing Environment (GCTLIB) API
The functional API is supplied together with Java extensions to the DSI
Signaling Products Development Package to support access to the ‘C’ based
GCTLIB message-passing library. C++ users can make direct use of the
existing GCTLIB library. The message passing environment is the same
environment as used by the Diameter Module and most parts of the
Development Package. This is shown in Figure 2.

3.4 DMR Access API
These are a set of classes which enable Diameter encoding/decoding, session
handling and co-ordination independent of any individual Diameter message
or specific encoding rules.

3.4.1 DmrContext

The focus of the DmrContext is APIs to encode and decode messages sent to
and from the Diameter Module. This includes messages defined within the
DMR Programmer’s Manual and also Diameter requests and answers
embedded within these messages. This class may be considered the top level

class for your application interfacing with the Diameter module.

The DmrContext class is also used to set-up and define settings and
parameters appropriate to a Diameter user. This means it can be created
once and used multiple times to encode or decode Diameter Command
Requests and Answers using the UserApi class it contains.

The DmrContext class includes a method to permit Diameter Command API

classes to be registered with that context object. This then permits later calls
to the UserAPI encode/decode methods of a DmrContet object to be made.

Dialogic® DSI Diameter Stack – Diameter Functional API User Manual Issue 4

9

+DmrSessionReqEncoder
+DmrSessionIndEncoder

UserApi

1

1

+encode()
+decode()
+calculateLength()

DmrSessionReqEncoder

1
1

+encode()
+decode()
+calculateLength()

DmrSessionIndEncoder

1

1

+registerDiameterCommand()

-dmrTaskId
-srcTaskId
+userApi

DmrContext

Figure 3. DmrContext Static Class Hierarchy

3.4.2 DMR UserApi and Message Encoders

This class provides access methods for the encoders and decoder classes that
perform the conversion between instances of the message classes and a well
formed GCT message.

DMRSessionIndEncoder

Provides encode, decode and length calculation for DMR Session Indication
GCT messages.

DMRSessionReqEncoder

Provides encode, decode and length calculation for DMR Session Indication
GCT messages.

Section 3 Component Overview

10

3.5 Diameter Command API
This component provides the classes to encode and decode specific Diameter
commands and AVPs. These are derived from a definition dictionary to permit

extensions and modifications to be supported.

For the Java these are packaged in
com.dialogic.signaling.diameter.<specname>.

For the C++ these use the namespace
com_dialogic_signaling::diameter::<specname>.

For example com.dialogic.signaling.diameter.rfc3588 or

com_dialogic_signaling::diameter::rfc3588.

Shown in Figure 4 is a simplified overview of the class heirachy of the
Diameter Command API with a single command (UpdateLocationRequest)
shown. Each specific command request or answer required for an application
should be registered against the DmrContext object being used.

IDiameterCommand

UpdateLocationRequest

IAvpList

IAvp

GroupedAvp

OctetStringAvp

Utf8StringAvp

IAvpList

1

0..*

ProxyInfoAvp ProxyHostAvp

1 0..1

Figure 4. Diameter Command API Static Class Hierarchy

IDiameterCommand

This is an interface representing a Diameter Command. This class includes
attributes for the Diameter Command Header such as Command Code, Hop

by Hop Id, it extends from IAvpList.

Dialogic® DSI Diameter Stack – Diameter Functional API User Manual Issue 4

11

IAvpList

Abstract interface which stores a list one or more AVPs.

IAvp

Abstract class that models a single AVP object.

GroupedAvp

Models an AVP which contains one more other AVPs.

OctetStringAvp

Standard primitive AVP representing an array of octet data. Other primitive
AVP types exist.

Utf8StringAvp

Pre-defined primitive AVP representing an array of UTF8 data – sub-classed
from OctetStringAvp.

ProxyInfoAvp

An example GroupedAvp which has at least one sub-AVP.

ProxyHostAvp

An example member of the ProxyInfoAvp GroupedAvp.

UpdateLocationRequest

An example of a concrete Diameter Command class used to encode or decode
an Update Location Request. Other classes exist for other commands. It
provides the real methods for adding the correct AVPs to the command or

retrieving AVPs on decode.

Section 4 Functional API Illustration

12

4 Functional API Illustration

This section provides a description of the various API calls appropriate to
permit development of applications making use of the Functional API. Unless
otherwise stated the source code examples are for Java. For C++ Users
further example code can be found in Section 7 - Example C++ Applications.

4.1 Generating a Diameter Session
The following code samples and description show a simplified example of
building and sending a Diameter Update Location Request. Exception handling
and other error handling has been removed to show the core functionality

more closely.

//Step 1

dmrContext = new DmrContext();

//Step 2

dmrContext.registerDiameterCommand(UpdateLocationRequest.class);

dmrContext.registerDiameterCommand(UpdateLocationAnswer.class);

dmrContext.setDmrTaskId(config.DstMID);

dmrContext.setSrcTaskId(config.SrcMID);

//Step 3

DmrSessionReq dmrSsnReq =

DmrSessionReqFactory.buildDmrSessionReq(dmrContext, Config);

dmrSsnReq.SessionId = dmrSsnReq.SessionId % Config.MaxSsnNum;

//Step 4

int len =

dmrContext.userApi.dmrSessionReqEncoder.calculateLength(dmrSsnReq);

GctMsg gctMsg = GctLib.getm(len);

//Step 5

dmrContext.userApi.dmrSessionReqEncoder.encode(dmrSsnReq, gctMsg);

//Step 6

GctLib.send((short) Config.DstMID, gctMsg);

Step 1: Generate a diameter context

The diameter context object is used to store and initialize factory and encoder
objects required by the user application.

Step 2: Register a command with the context

In order to define which commands are valid with the diameter context, the
required requests and answer commands need to be registered into the
context object. You can also set the module ids for the application and
Diameter module here too.

Dialogic® DSI Diameter Stack – Diameter Functional API User Manual Issue 4

13

Step 3: Create and populate the session/request object

This step builds up a structured form of the request object which is to be
encoded and is covered in further detail in section 4.1.1 Building the
session/request object. This uses methods from the Diameter Command
Specific API.

Step 4: Allocate a GCT message

From the context object, a method can be used to calculate the encoded
length for the message, allowing the GCT message structure to be allocated.

Step 5: Encode the command request into a GCT message

The context object also contains the encoder method to format the
DmrSessionReq into a GCT message.

Step 6: Send the GCT Message

Takes the GCT message and sends it to the DSI Diameter Module

4.1.1 Building the session/request object

The diameter context object has factory methods that allow a session request
object to be built. The request can then have the Network Context, Session Id
and Primitive type values set as appropriate to the request as shown below.

DmrSessionReq req = new DmrSessionReq();

req.primitiveType = req.primitiveType.OPEN;

req.diameterCommand = UpdateLocationRequestFactory.buildUpdateLocationRequest

 (dtuConfig);

req.sessionId = sessionId;

return req;

As shown above the example method UpdateLocationRequestFactory

includes calls to create a new Update Location Request. This object has a
number of methods one to add each of the AVPs included in the request. An
example of this is shown below.

Section 4 Functional API Illustration

14

UpdateLocationRequest ulr = new UpdateLocationRequest();

ulr.addUlrFlagsAvp(new UlrFlagsAvp((long) 0x1234));

ulr.addUserNameAvp(new UserNameAvp("UserName"));

return ulr;

4.2 Handling a received Diameter Request

//Step 1

dmrContext = new DmrContext();

//Step 2

dmrContext.registerDiameterCommand(UpdateLocationRequest.class);

dmrContext.registerDiameterCommand(UpdateLocationAnswer.class);

dmrContext.setDmrTaskId(config.DstMID);

dmrContext.setSrcTaskId(config.SrcMID);

//Step 3

GctMsg rxedMsg = GctLib.receive(Config.SrcMID);

//Step 4

if (rxedMsg.getType() ==

dmrContext.MsgType.DMR_MSG_SESSION_IND.getValue()) {

 DmrSessionInd decodedInd =

 dmrContext.UserApi.DmrSessionIndEncoder.decode(gctmsg);

}

//Step 5

if (ind.DiameterCommand.getCommandCode() ==

UpdateLocationRequest.StandardCommandCode) {

 UpdateLocationRequest ulr = (UpdateLocationRequest) ind.DiameterCommand;

 try {

 System.out.println("Command code matches");

 System.out.println(ulr.getOriginHostAvp().getString());

 System.out.println(ulr.getOriginRealmAvp().getString());

 } catch (UnsupportedEncodingException ex) {

 System.out.println("Failed to recover AVP" + ex.toString());

 }

}

Step 1: Generate a diameter context

The diameter context object is used to store and initialize factory and
encoder/decoder objects required by the user application.

Step 2: Register a command with the context

In order to define which commands are valid with the diameter context the
required requests and answer commands need to be registered into the

Context Object.

Step 3: Receive the GCT message

This call will block until a message for the requested module ids is returned.

Dialogic® DSI Diameter Stack – Diameter Functional API User Manual Issue 4

15

Step 4: Decode the Session Indication

As with encoding functionality, the diameter context object provides methods
which will decode the GCT message into a structured object representing the
indication.

Step 5: Decode the Command

The command code of the received indication can be compared against the

expected command code and used to create a command object of the correct
class. The various getXYZAVP() methods that are supplied can then be used.

4.3 AVP Handling

4.3.1 Adding and Retrieving an AVP

For AVPs at the top level of a Diameter command, there are a series of
methods which allow AVPs to be added or retrieved. In the example, below a
new OriginHoatAvp object is created and added to an Update Location
Request object.

ulr.addOriginHostAvp(new OriginHostAvp("OriginHost"));

There is a matching getOriginHostAvp() method for retrieving the values –

in this case returning an OriginHostAvp object.

4.3.2 Adding an AVP list

AVPs which are permitted to have multiple instances within a single command

request or answer can be supported by calling the appropriate AVP
addXYXAvp() multiple times.

//First Subscriber Data

SubscriptionDataAvp sda = new SubscriptionDataAvp();

sda.addAccessRestrictionDataAvp(new AccessRestrictionDataAvp((long)

0x55555));

ula.addSubscriptionDataAvp(sda);

//Second Subscriber Data

SubscriptionDataAvp sda2 = new SubscriptionDataAvp();

sda2.addAccessRestrictionDataAvp(new AccessRestrictionDataAvp((long)

0x44444));

ula.addSubscriptionDataAvp(sda2);

4.3.3 Retrieving an AVP list

When retrieving an AVP which may have multiple instances, it is necessary to

use an iterator. AVPs which may have multiple instances have two forms of
the getters, one with and one without an iterator parameter. The form
without the iterator will return the first instance of that AVP. The form with
the iterator will return the first instance of the AVP the first time it is called
and then the next each extra time it is called.

Section 4 Functional API Illustration

16

ListIterator<IAvp> li = ulr.listIterator();

while (li.hasNext()) {

 ProxyInfoAvp pia = ulr.getProxyInfoAvp(li);

 if ((pia != null) && (pia.getProxyHostAvp() != null)) {

 System.out.println(pia.getProxyHostAvp().getString());

 }

}

4.3.4 Adding an unknown AVP

To add an unknown AVP, a new AVP needs to be created of the appropriate

AVP type. The unknown AVP can then be marked as unknown with the
setIsUnknown() method and added using the add() method on the request or
answer.

IAvp unknownAvp = new OctetStringAvp(999L, 0L, ByteBuffer.wrap(new

byte[]{1, 2, 3, 4}));

ulr.add(unknownAvp);

4.3.5 Retrieving an unknown AVP

When retrieving one or more unknown AVPs, it may be necessary to use an
iterator. There may be one or more unknown AVPs; therefore. there are two
forms of getters: one with and one without an iterator parameter. The form
without the iterator will return the first instance of an unknown AVP. The form

with the iterator will return the first instance of an unknown AVP the first time
it is called and then the next each extra time it is called.

ListIterator<IAvp> li = ulr.listIterator();

while (li.hasNext()) {

 IAvp ua = ulr.getUnknownAvp(li);

 if (ua != null){

 System.out.println("Unknown Avp:" + ua.getCode());

 }

}

4.3.6 Handling enum AVPs with unknown values

If enumerated values are encountered that do not correspond to explicitly
defined enumerated values, then their value can be returned by integer value
instead.

Dialogic® DSI Diameter Stack – Diameter Functional API User Manual Issue 4

17

System.out.println("Unknown enum val:" +

ulr.getUESrvccCapabilityAvp().getInteger());

4.4 Result Code
Diameter Answers include the ResultCode AVP. This AVP is an Integer value
indicating the success or failure code of the Diameter Command. The
commands support getResultCodeAvp() and addResultCodeAvp() methods

to allow the value to be retrieved from an Answer Indication.

In addition, there is an enumerated type which can be used to generate
standard values.

ResultCode.DIAMETER_SUCCESS.getValue();

Values valid for this AVP are included in the table below.

Table 1. Result Code Values

Result Code Mnemonic Value

DIAMETER_MULTI_ROUND_AUTH 1001

DIAMETER_SUCCESS 2001

DIAMETER_LIMITED_SUCCESS 2002

DIAMETER_COMMAND_UNSUPPORTED 3001

DIAMETER_UNABLE_TO_DELIVER 3002

DIAMETER_REALM_NOT_SERVED 3003

DIAMETER_TOO_BUSY 3004

DIAMETER_LOOP_DETECTED 3005

DIAMETER_REDIRECT_INDICATION 3006

DIAMETER_APPLICATION_UNSUPPORTED 3007

DIAMETER_INVALID_HDR_BITS 3008

DIAMETER_INVALID_AVP_BITS 3009

DIAMETER_UNKNOWN_PEER 3010

DIAMETER_AUTHENTICATION_REJECTED 4001

DIAMETER_OUT_OF_SPACE 4002

DIAMETER_ELECTION_LOST 4003

DIAMETER_AVP_UNSUPPORTED 5001

DIAMETER_UNKNOWN_SESSION_ID 5002

DIAMETER_AUTHORIZATION_REJECTED 5003

DIAMETER_INVALID_AVP_VALUE 5004

DIAMETER_MISSING_AVP 5005

DIAMETER_RESOURCES_EXCEEDED 5006

DIAMETER_CONTRADICTING_AVPS 5007

Section 4 Functional API Illustration

18

Result Code Mnemonic Value

DIAMETER_AVP_NOT_ALLOWED 5008

DIAMETER_AVP_OCCURS_TOO_MANY_TIMES 5009

DIAMETER_NO_COMMON_APPLICATION 5010

DIAMETER_UNSUPPORTED_VERSION 5011

DIAMETER_UNABLE_TO_COMPLY 5012

DIAMETER_INVALID_BIT_IN_HEADER 5013

DIAMETER_INVALID_AVP_LENGTH 5014

DIAMETER_INVALID_MESSAGE_LENGTH 5015

DIAMETER_INVALID_AVP_BIT_COMBO 5016

DIAMETER_NO_COMMON_SECURITY 5017

4.5 Error Command
The Diameter Command API includes the ErrorCommand class to represent
Error notifications sent in response to Command Requests. These are built,
encoded and decoded in the same way as other command objects with the
exception that they do not need to be registered against the DmrContext
object.

The addresultCodeAvp() method can be used to set the result code on an
Error Command to send. For received Error Commands, they can be checked

to confirm they are really ErrorCommand objects and then processed
appropriately.

if (ind.diameterCommand.getCommandCode() ==

ErrorCommand.StandardCommandCode) {

 ErrorCommand ec = (ErrorCommand) ind.DiameterCommand;

 // Do something with the Error Command ‘ec’ object,

 // e.g. check the Result Code

}

4.6 Exception Handling
There are two main groups of exceptions that may need to be handled by
application using the API.

GctException

Generated by the GctLib classes to indicate issues when allocating messages,

sending messages, retrieving messages or releasing messages. The class

includes a getMessage() method to allow further details to be returned as a

String.

Dialogic® DSI Diameter Stack – Diameter Functional API User Manual Issue 4

19

EncoderException

Generated by the dmrApi classes when encoding or decoding commands. The
class includes a getMessage() method to allow further details to be returned

as a String.

The example below shows both of these kinds of exceptions being handled for
some sample Java:

try {

 DmrSessionReq dmrSsnReq = DmrSessionReqFactory.BuildDmrSessionReq (dmrContext,

Config);

 int len = dmrContext.userApi.dmrSessionReqEncoder.calculateLength(dmrSsnReq);

 gctMsg gctMsg = GctLib.getm(len);

 dmrContext.userApi.dmrSessionReqEncoder.encode(dmrSsnReq, gctMsg);

 if (Config.TraceOn) {

 DtuMsgUtil.traceMsg("DTU>>", gctMsg);

 }

 GctLib.send((short) Config.DstMID, gctMsg);

 } catch (EncoderException eEx) {

 System.out.println("Problem with Encode/Decode" + eEx.getMessage());

 } catch (GctException gctEx) {

 System.out.println("Problem with message handling: " + gctEx.getMessage());

 } catch (Exception ex) {

 System.out.println(ex.toString());

}

Section 5 Command and Message Dictionaries

20

5 Command and Message Dictionaries

The functional API provides a set of class files which are supplied to greatly
simplify the generation and handling of specific Diameter commands and
parameters. These class files are generated from a set of Dictionary files to
allow extensions and modifications to the class sets as new services,
interfaces or parameters are required.

Figure 5. DMS Class generation and encoders

In the figure above, the Diameter definition files are used by the DMS utility
(part of the Dialogic® DSI Diameter Stack) to generate encoder libraries for

use with the Functional API. This generation happens prior to compiling the
application.

At application start-time, the application the Encoder Factory classes can be
used to create an instance of the DmrContext class in advance of sessions
needing to be handled.

‘.dms’
Diameter
Definition

File

DMS Class
generation

utility

Encodable
Classes

DmrContext
Instance

Encoder
Factory

Encoded
Message

(GCT MSG)

Decoded
Message

(Class
instances)

Dialogic® DSI Diameter Stack – Diameter Functional API User Manual Issue 4

21

After the initial start-up phase of run-time, the DmrContext User API methods
can be used to encode Diameter request or answer objects into GCT Message.
The same DmrContext object can also be used to decode messages from GCT
Messages into Diameter request or answer objects.

5.1 DMS Utility
The DMS utility is a supporting component to the Dialogic® DSI Diameter
Stack. It is used to convert the structured definitions of the Diameter
commands and AVPs into class libraries for use with the Functional API.

Syntax

java –jar dms [-input <path>] [-output <path>] [-namespace <ns>]

[-l <language>] [-ver] [-q] [-v] [-h]

Example

java –jar //opt/DSI/java/dms.jar -output “src” –l CPP

Parameters

-input <path>

Path to *.dms Diameter specification definition files. Short form is '-i'"

-output <path>

Path to which generated files should be written. Short form is '-o'

-namespace <ns>

The root namespace for generated class files. The default namespace is
com.dialogic.signaling.diameter. Short form is '-n'

-language <JAVA|CPP>

The required language, default is CPP. Short form is '-l'

-quiet

Suppress output and don't ask for user prompts. Short form is '-q'

-verbose

Display verbose output. Short form is '-verb'

-version

Display DMS version information. Short form is '-v'

-help

Display DMS help information. Short form is '-h'

Section 5 Command and Message Dictionaries

22

5.2 Namespace
The classes generated by DMS using the XML definition files make use of
appropriate package names to differentiate the namespace of the classes.

Typically each specification will produce a package with its name derived from
the specification title (for example rfc3588).

Dialogic® DSI Diameter Stack – Diameter Functional API User Manual Issue 4

23

6 Example Java Applications

6.1 DTU Diameter Test Utility

Description

The Diameter test Utility (DTU) is a simple example application that illustrates

the use of the Funational API and can be configured to implement specific
operations.

By default, the DTU example application simulates the sending of an Update
Location Request Message and waits for the corresponding Update Location

Answer. The utility can be used with the DTR example listed in section 6.1.2.

MME HSS

Update Location Request

Update Location Answer

Figure 6. DTU/DTR Message Sequence Chart (Mode 0 – Update Location)

Section 6 Example Java Applications

24

DTU can also generate a message sequence flow for demonstration of a
Credit Control message flow appropriate for the Ro Diameter interface.

Example Service Node Online Charging Service

Credit Control Request (Initial)

Credit Control Answer (Initial)

Credit Control Request (Term)

Credit Control Answer (Term)

Service Completed

Figure 7. DTU/DTR Message Sequence Chart (Mode 1 – Credit Control)

Syntax

java –jar dtu [-m<modid> –dmr<dmr modid> –dsth<dest host>

 –dstr<dest realm> –numreq<num requests>

 –maxin<max in flight> –maxssn<max session number>

 -basessn<base session id> -nc<Network Context>

 -mode<Mode> -traceoff]

Parameters

-m<modid>

Set to define the module id used by DTU. If not set then DTU will default to
0x1d.

-dmr<dmr modid>

Set to define the module id used by the Diameter module (DMR). If not set
then DTU will default to 0x74.

Dialogic® DSI Diameter Stack – Diameter Functional API User Manual Issue 4

25

–dsth<dest host>

–dstr<dest realm>

Set the destination host and realm values to be used.

–numreq<num requests>

Defines the total number of requests to send.

–maxin<max in flight>

Set to limit the number of requests that will be outstanding at any one time.

–maxssn<max session number>

Set to define the maximum session number to use.

-basessn<base session number>

Set to define the base session number to use.

–nc<Network Context>

Set to define the Network Context value to use, defaults to 0.

–mode<Mode value>

Set to 0 for Update Location Request (S6a) example session message flow.
This mode is also the default mode.

Set to 1 for Credit Control (Ro) example session message flow.

–traceoff

Disable message tracing

Section 6 Example Java Applications

26

6.1.1 Command line output

Help Screen

DSI DTU Diameter Test Utility Release 1.01

Part of the Dialogic(R) DSI Development Package

Copyright (C) 2012 Dialogic Inc. All Rights Reserved.

Syntax: dtu.jar [-m<> -dmr<> -dsth<> -dstr<>

 -numreq<> -maxin<> -maxssn<> -traceoff]

 DTU Sends Diameter Session Requests

Example: java -jar dtu.jar -numreq1000

Options: -m[] DTU Module Id

 Sets the module id for DTU

 -dmr[] DMR Module Id

 Sets the module id for the Diameter Module (DMR)

 -dsth[] Dest Host

 -dstr[] Dest Realm

 Set the Destination Host and Realm addresses

 -numreq[] Number of requests

 Sets the total number of Update Location Requests to send

 -maxin[] Max sessions in flight

 Sets the maximum number of session active at once

 -maxssn[] Max session

 Sets the maximum number of session ids to use

 -basessn[] Base session id

 Sets the base session id to use (default 0)

 -nc[] NetworkContext

 Sets the Network Context value

 -mode[] Mode

 Sets the mode for the sessions to use:

 Send ULR: Set mode to 0 (default)

 Send CCR: Set mode to 1

 -traceoff Turn Trace Off

Typical Output

DSI DTU Diameter Test Utility Release 1.01

Part of the Dialogic(R) DSI Development Package

Copyright (C) 2012 Dialogic Inc. All Rights Reserved.

Dialogic® DSI Diameter Stack – Diameter Functional API User Manual Issue 4

27

DTU module id: 0x1d

DMR module id: 0x74

NumReq: 1

MaxSsnNum: 1024

MaxInFlight: 1

Dest Host: dmr02.lab.dialogic.com

Dest Realm: dialogic.com

6.1.2 Command line examples

If host based or realm based routing is used then the host and realm options

should be selected as shown below.

java -Djava.library.path=/opt/DSI/32 -jar /opt/DSI/JAVA/dtu.jar -

dsthdmr02.lab.dialogic.com -dstrdialogic.com –numreq10

An example set of command line options for Credit Control session handling
(Ro) is as follows.

java -Djava.library.path=/opt/DSI/32 -jar /opt/DSI/JAVA/dtu.jar -

dsthdmr02.lab.dialogic.com -dstrdialogic.com –numreq10 –mode1

6.2 DTR Diameter Test Responder

Description

The DTR example application simulates the response to the sending of an

Update Location Request Message and sends an Update Location Answer in
reply.

Syntax

java –jar dtr [-m<modid> –dmr<dmr modid> -traceoff]

Parameters

-m<modid>

Set to define the module id used by DTR. If not set, then DTR will default to
0x2d.

-dmr<dmr modid>

Set to define the module id used by the Diameter module (DMR). If not set,

then DTU will default to 0x74.

–traceoff

Disable message tracing

Section 6 Example Java Applications

28

6.2.1 Command line output

Help Screen

DSI DTR Diameter Test Responder Release 1.01

Part of the Dialogic(R) DSI Development Package

Copyright (C) 2012 Dialogic Inc. All Rights Reserved.

Syntax: dtr.jar [-m<> -dmr<> -lossrate<> -traceoff]

 DTR Receives Diameter Session Requests and Answers them

Example: java -jar dtr.jar -m0x2d

Options: -m[] DTR Module Id

 Sets the module id for DTR

 -dmr[] DMR Module Id

 Sets the module id for the Diameter Module (DMR)

 -delay[] Delay Rate

 If set, the module will insert a 10 msec delay

 every 1 in n ULR received.

 -traceoff Turn Trace Off

Typical Output

DSI DTR Diameter Test Responder Release 1.01

Part of the Dialogic(R) DSI Development Package

Copyright (C) 2012 Dialogic Inc. All Rights Reserved.

DTR module id: 0x2d

DMR module id: 0x74

6.2.2 Command line examples

The example DTR system.txt file included within the DSI Development
Package starts the dtr example automatically with default options. This is
likely appropriate for most normal systems and situations. The command line
used is as shown below. Unlike DTU, it is not necessary select a specific mode

to handle different session message flows.

java -Djava.library.path=/opt/DSI/32 -jar /opt/DSI/JAVA/dtr.jar

Dialogic® DSI Diameter Stack – Diameter Functional API User Manual Issue 4

29

7 Example C++ Applications

The DSI Development Package includes an example application for the C++
Functional API. This section provides further details and explanation of the
example.

7.1 Installation
The development package should be installed in the normal manner following
the instructions in the Dialogic® DSI Software Environment Programmer's
Manual.

The package installs the following directories and files

Directory Files Detail

32 dmrapi.lib

dmrCmds.lib

The libraries contains the DMR Access API
and the Diameter command specific
functionality appropriate for the supported
interfaces and commands. It also includes the
encoding support used by other parts of the
library.

INC/dmtrcmd

INC/dmtrcmd/rfc3588

INC/dmtrcmd/rfc4006

etc

(Supplied include
files)

Include files to support building against the
Diameter Commands.

UPD/SRC/DMRAPI dmr_api_tests.cpp Sample code example to demonstrate use of
the API

UPD/RUN/DMRAPI system.txt Simple system configuration file for use with the
source code example

7.2 Building and running the example code
The sample API code in the file dmr_api_tests.cpp provides a simple
application that sends a single Diameter command request to the s7_log
utility and then simulates a reply by sending a Diameter command answer to
itself and displaying it.

The example test application can be built together with the other parts of the
User Development Package by calling the makeall.sh script in the UPD/SRC
sub-directory.

cd /opt/DSI/UPD/SRC

./makeall.sh

To run the example application the user can make use of the supplied simple
application loop-back system configuration in the UPD/RUN/DMRAPI
directory. Change to the appropriate directory and start the message passing
environment.

Section 7 Example C++ Applications

30

cd /opt/DSI/UPD/RUN/DMRAPI

/opt/DSI/gctload

In another console window start the test application.

../../BIN/dmrapitest

DMR API Test Application

Result Code = 2000

Origin Host = origin.host.avp

Origin Realm = origin.realm.avp

Accuracy Fulfilment Indicator = 0

Vendor ID = 67

Feature List = 45

Feature List ID = 56

7.3 C++ Example Overview
The following sections give a more detailed overview of the C++ Functional

API as used in the example code supplied.

7.3.1 Generating a Diameter Session

Step 1: Generate a diameter context

The diameter context object is used to store and initialize factory and encoder
objects required by the user application. This is demonstrated in the

DMR_API_TEST_build_dmr_context() function within the supplied example.

Step 2: Register a command with the context

In order to define which commands are valid with the diameter context, the
required requests and answer commands need to be registered into the
context object. You can also set the module ids for the application and
Diameter module here too. The function
DMR_API_TEST_build_dmr_context() mentioned in step 1 also shows the

commands being registered.

Step 3: Create and populate the session/request object

This step builds up a structured form of the request object which is to be

encoded. This uses methods from the Diameter Command Specific API.

The creation of a request object is shown in the
DMR_API_TEST_build_dmr_session_open_req() function. An example of this

then being used to build up a Provide Subscriber Location request command
is covered in DMR_API_TEST_build_provide_location_request().

Dialogic® DSI Diameter Stack – Diameter Functional API User Manual Issue 4

31

Step 4: Allocate a GCT message

From the context object, a method can be used to calculate the encoded
length for the message, allowing the GCT message structure to be allocated
using the getm() function from the normal C based message passing API
(GCTLIB shared object libgct). This allocation is shown in
DMR_API_TEST_transmit_dmr_session_req().

Step 5: Encode the command request into a GCT message

The context object also contains the encoder method to format the

DmrSessionReq into a GCT message. The function referenced in Step 4 also
shows and example of encoding the request.

Step 6: Send the GCT Message

Takes the GCT message and sends it to the DSI Diameter Module using the
GCT_send() function from the normal C based message passing API (GCTLIB
shared object libgct). The function referenced in Step 4 also shows the GCT

message being sent.

7.3.2 Handling a received Diameter Request

Step 1: Generate a diameter context

The diameter context object is used to store and initialize factory and
encoder/decoder objects required by the user application. This step is

common with the code required for the Request generation.

Step 2: Register a command with the context

In order to define which commands are valid with the diameter context the
required requests and answer commands need to be registered into the
Context Object. This step is common with the code required for the Request
generation.

Step 3: Receive the GCT message

This uses the GCT_receive() call which will block until a message for the
requested module ids is returned. This function is from the normal C based
message passing API (GCTLIB shared object libgct).

The function DMR_API_TEST_receive_dmr_sesson_ind() in the example

code shows call to receive the next incoming messages using the same
mechanism as other modules in the stack.

Step 4: Decode the Session Indication

As with encoding functionality, the diameter context object provides methods

which will decode the GCT message into a structured object representing the
indication. This is also shown in the
DMR_API_TEST_receive_dmr_sesson_ind() function.

Section 7 Example C++ Applications

32

Step 5: Release the GCT message

Once handling is complete a call to relm() can be used to free the message
structure. As with the GCT_receive() this function is from the normal C based
message passing API (GCTLIB shared object libgct).

	Revision History
	1 Introduction
	1.1 Applicability
	1.2 Related Documentation

	2 Stack Overview
	3 Component Overview
	3.1 Java Development Package Components
	3.2 C++ Development Package Components
	3.3 Message Passing Environment (GCTLIB) API
	3.4 DMR Access API
	3.4.1 DmrContext
	3.4.2 DMR UserApi and Message Encoders
	DMRSessionIndEncoder
	DMRSessionReqEncoder

	3.5 Diameter Command API
	IDiameterCommand
	IAvpList
	IAvp
	GroupedAvp
	OctetStringAvp
	Utf8StringAvp
	ProxyInfoAvp
	ProxyHostAvp
	UpdateLocationRequest

	4 Functional API Illustration
	4.1 Generating a Diameter Session
	Step 1: Generate a diameter context
	Step 2: Register a command with the context
	Step 3: Create and populate the session/request object
	Step 4: Allocate a GCT message
	Step 5: Encode the command request into a GCT message
	Step 6: Send the GCT Message
	4.1.1 Building the session/request object

	4.2 Handling a received Diameter Request
	Step 1: Generate a diameter context
	Step 2: Register a command with the context
	Step 3: Receive the GCT message
	Step 4: Decode the Session Indication
	Step 5: Decode the Command

	4.3 AVP Handling
	4.3.1 Adding and Retrieving an AVP
	4.3.2 Adding an AVP list
	4.3.3 Retrieving an AVP list
	4.3.4 Adding an unknown AVP
	4.3.5 Retrieving an unknown AVP
	4.3.6 Handling enum AVPs with unknown values

	4.4 Result Code
	4.5 Error Command
	4.6 Exception Handling
	GctException
	EncoderException

	5 Command and Message Dictionaries
	5.1 DMS Utility
	Syntax
	Example
	Parameters

	5.2 Namespace

	6 Example Java Applications
	6.1 DTU Diameter Test Utility
	Description
	Syntax
	Parameters
	6.1.1 Command line output
	Help Screen
	Typical Output

	6.1.2 Command line examples

	6.2 DTR Diameter Test Responder
	Description
	Syntax
	Parameters
	6.2.1 Command line output
	Help Screen
	Typical Output

	6.2.2 Command line examples

	7 Example C++ Applications
	7.1 Installation
	7.2 Building and running the example code
	7.3 C++ Example Overview
	7.3.1 Generating a Diameter Session
	Step 1: Generate a diameter context
	Step 2: Register a command with the context
	Step 3: Create and populate the session/request object
	Step 4: Allocate a GCT message
	Step 5: Encode the command request into a GCT message
	Step 6: Send the GCT Message

	7.3.2 Handling a received Diameter Request
	Step 1: Generate a diameter context
	Step 2: Register a command with the context
	Step 3: Receive the GCT message
	Step 4: Decode the Session Indication
	Step 5: Release the GCT message

