

DEUTSCHES ELEKTRONEN-SYNCHROTRON

USER MANUAL

C Event Display (CED)

Author: Hauke HÖLBE Supervisor: Dr. Frank GAEDE

2011

Contents

1	Overview 2						
2	Quickstart	2					
	2.1 menu	$\frac{3}{3}$					
3	Save settings	3					
4	Views 4.1 Rotate	3 3 3					
	4.3 Move	$ \begin{array}{c} 3 \\ 4 \\ 4 \\ 4 \\ 4 \end{array} $					
5	Projections5.1Side view projection5.2Front view projection5.3Fisheye view	$ \begin{array}{c} 4 \\ 4 \\ $					
6	Layer6.1Data Layer6.2Detector components	5 6 6					
7	Cuts 7.1 Longitudinal cuts 7.2 Phi cuts	6 6 6					
8	Background color 8.1 Change background color	7 7					
9	Graphical options9.1Differences between classic and new view9.2Perspective setting9.3Transparency or mesh view9.4Visibility of coordinate axes9.5Transparency value9.6Frames per seconds	8 8 9 9 9 9					
10	Picking 10.1 Quickstart 10.2 Install your own print function	11 11 11					
11	1 Work with CED from remote 12						
12	12 Change the CED port 1						
13	CED2go	13					

14 Viewer	13
15 MarlinUtil::MarlinCED	14
16 Shortcuts	15

Figure 1: ced2go after the first start

1 Overview

The C Event Display (CED) and is a client server based tool to draw objects into a dynamic 3D picture. CED is a graphical application which uses OpenGL to display the 3D environment. It is possible to draw individual objects with CED (see section ??) but for common use it is well integrated into the ilcsoft framework:

The common use for CED is to display events. To do this several steps are necessary. A data file which contains the LCIO objects to be drawn is needed. This object gets processed with Marlin, which sends the data of the events over a TCP/IP connection to CED. In order to do this, Marlin needs a steering file. This XML file can be written by hand or can be generated with MarlinGUI. The steering file decides which data file is read and also which viewer is used, the viewer decides which datatype is on what layer (see layer section), which color will be used etc. Example viewers are: Generic-, CED- and DST-Viewer.

2 Quickstart

Generating a Marlin steering file can be time consumming, but there is a tool in the CED package which displays the event using a default configuration. For a simple first look, source the ini ilcsoft script and use the command:

ced2go <your datafile>

A window which contains the graphical interpretation of your event will open. To view the next event press enter in the terminal where you have committed the ced2go command.

All possible options are available from the menu at the top. Additional you are able to use shortcuts (see appendix). You are also able to change objects by the popup menu by clicking with the right mouse button at one object.

2.1 menu

All CED options are accessible from the main menu. Splitted into seven submenus:

- Layers: Toggle the visable of data or detector layers.
- Transparency: Change the transparency of the detector components.
- Camera: Change the possition of view, reset view or selecting projections.
- Cuts: Different cuts of the detector.
- Graphic: Graphic options. You can also save your prefered settings here.
- Tools: Additional functions like making high resolution screenshots.
- Help: Getting help.

2.2 Pop-up menu

Right-click on any object displayed in CED open the popup menu. This menu allows you to configure or select the selected object. For example to change the color of the background simply click on it and change a different one.

3 Save settings

You are able to save your favorite settings and switch between the saved ones. The settings are stored under \sim /.glced_cfg/. The save function store the current background color, view, transparency, cuts, layers visibility etc. But the current event or other Marlin settings is not saved, because these depend on the Marlin steering file and not on CED.

The config file is human readable but it is not recommended to change the settings by hand.

4 Views

4.1 Rotate

To change the view, simply left-click into the CED window, hold the mouse button and pull in any direction to rotate the view.

4.2 Zoom factor

To increase the magnification press '+', to decrease press '-'. If you are on Linux zooming with the mousewheel works too.

4.3 Move

To move the center of view to any direction, press and hold the middle mouse button and pull.

To move the detector on the z-axis, press arrow key \uparrow or \downarrow .

4.4 Center

It is possible to center any data object drawn within CED. Simply put your mouse cursor over that object and press 'c'

4.5 Side view

To view the detector from the side press 's', or choose it from the pop-up menu under 'View \rightarrow Side view'.

4.6 Front view

To view the detector from front press 'f', or choose it from the pop up-menu under 'View \rightarrow Front view'.

4.7 Reset view settings

To reset the view and cut settings press 'r', or choose it from the pop up menu under 'View \rightarrow Reset view'. This option resets: perspective, cutting, projections and zoom level.

5 Projections

There is a big difference between views and projections: View options show the same objects at a different angle, in contrast to projections which change the objects.

5.1 Side view projection

To enable side view projection press capital 'S', or choose it from the pop-up menu under 'View \rightarrow Toggle side view projection'. This projection turns the view into side view, and transforms all data (hits, tracks, etc) so that the distance from the beamline to the object are the same as in 3D mode.

 $\begin{array}{l} y_{proj} = \pm \sqrt{x^2 + y^2} \\ x_{proj} = 0 \\ z_{proj} = y \end{array}$

The detector is cut at $\phi = 0$ to enable a view into it. The ability to rotate will be disabled. To exit this projection and get back to the previous view choose the side view projection mode again, or press 'S'.

5.2 Front view projection

To enable front view projection press capital 'F', or choose it from the pop-up menu under 'View \rightarrow Toggle front view projection'. This projection turns the view into front view, and transforms all data (hits, tracks etc) ($z_{proj} = 0$). The perspective is turned off and the detector is cut at z=0 to enable a view into the detector. The ability to rotate is disabled. To exit this projection, press 'F' or choose the front view projection mode again.

Figure 2: Side view projection

Figure 3: Front view projection

5.3 Fisheye view

This projection enlarges the inner region of the detector, to give a clearer view to the inner tracks and hits of the event. To enable fisheye press 'v' or select it from the pop-up menu under 'View \rightarrow Toggle fisheye projection'. To turn this projection off, press 'v', or select it from the pop-up menu again. The fisheye projection is usable together with the front or side view projection.

Figure 4: Fisheye projection

6 Layer

With CED it is possible to draw different data on different layers. This allows to show or hide specific types of data while working with CED. Both data and detector components are placed on layers. CED supports 100 different layers, but you are only able to toggle the visibility of the first 25 data layers and the first 20 detector layers at runtime.

6.1 Data Layer

To show which data is actually on which layer, open the overlaying help by pressing 'h', or choose 'Data layers' from the pop-up menu. To toggle the visibility of data layers quickly, there are shortcuts for the first 25 data layers. See section 'Shortcuts'.

It is possible to turn all data layers simultaneously on or off by selecting 'Data layers \rightarrow Show/Hide all data layers', or by pressing ''

6.2 Detector components

Also detector components can lie on layers. To toggle the visibility of detector components choose the corresponding component from 'Detector layers' in the pop up menu. It is possible to turn all components simultaneously on/off by selecting 'Detector components \rightarrow Show/Hide all detector components'.

Figure 5: Detector components: Some detector layers are turned off

7 Cuts

In CED it is possible to cut a given range of phi out of the detector, or cut data and detector at a specific z-axes value.

7.1 Longitudinal cuts

To cut down the detector in length, press and hold capital 'Z', to enlarge the detector back, press and hold 'z'.

7.2 Phi cuts

To cut off a pie slice from the detector, select 'Detector cuts \rightarrow Angle' from the pop-up menu. Available angles are: 0, 30, 90, 135, 180, 270 and 360 degrees.

Figure 6: *Phi cut 0*

Figure 7: Phi cut 30

Figure 8: Phi cut 90

Figure 9: Phi cut 135

8 Background color

Changing the background color is not only a setting to increase the aesthetic of the picture, it can also be used to increase the visibility of the drawn data.

8.1 Change background color

To toggle the background color choose a color from the pop-up menu under 'Background color', or press 'b' to change the color from blue to black, over gray to white.

glced -bgcolor 0xXXXXXX

X stands for a number from 0 till F. For some examples see Figure 14 $\,$

Figure 10: Background color: darkgray Figure 11: Background color: green

Figure 12: Background color: blue

Figure 13: Background color: black

9 Graphical options

There are a lot of options to customize the look of CED.

9.1 Differences between classic and new view

To toggle between classic and new view chose 'Graphics options \rightarrow Classic view' or 'Graphics options \rightarrow New view' from the pop up menu. There are two graphical settings which are affected by this option:

	Classic view	New view			
Detector look	mesh	transparency			
perspective	flat	3D			

9.2 Perspective setting

To turn the perspective on or off, select 'Graphics options \rightarrow Graphic details \rightarrow Perspective' from pop-up menu. Perspective on means, that objects which are further away from the viewer appear smaller. Perspective off means, all objects have the same size, however far away they are.

								0x008000	0x008040	0x008080	0x0080C0	0x00C000	0x00C040	0x00C080	0x00C0C0
0x100000							0x1040C0	0x108000	0x108040	0x108080	0x1080C0	0x10C000	0x10C040	0x10C080	0x10C0C0
0x200000						0x204080	0x2040C0	0x208000	0x208040	0x208080	0x2080C0	0x20C000	0x20C040	0x20C080	0x20C0C0
0x300000					0x304040	0x304080	0x3040C0	0x308000	0x308040	0x308080	0x3080C0	0x30C000	0x30C040	0x30C080	0x30C0C0
0x400000					0x404040	0x404080	0x4040C0	0x408000	0x408040	0x408080	0x4080C0	0x40C000	0x40C040	0x40C080	0x40C0C0
0x500000				0x504000	0x504040	0x504080	0x5040C0	0x508000	0x508040	0x508080	0x5080C0	0x50C000	0x50C040	0x50C080	0x50C0C0
0x600000				0x604000	0x604040	0x604080	0x6040C0	0x608000	0x608040	0x608080	0x6080C0	0x60C000	0x60C040	0x60C080	0x60C0C0
0x700000				0x704000	0x704040	0x704080	0x7040C0	0x708000	0x708040	0x708080	0x7080C0	0x70C000	0x70C040	0x70C080	0x70C0C0
0x800000				0x804000	0x804040	0x804080	0x8040C0	0x808000	0x808040	0x808080	0x8080C0	0x80C000	0x80C040	0x80C080	0x80C0C0
0x900000				0x904000	0x904040	0x904080	0x9040C0	0x908000	0x908040	0x908080	0x9080C0	0x90C000	0x90C040	0x90C080	0x90C0C0
0xA00000			0xA000C0	0xA04000	0xA04040	0xA04080	0xA040C0	0xA08000	0xA08040	0xA08080	0xA080C0	0xA0C000	0xA0C040	0xA0C080	0xA0C0C0
0xB00000	0xB00040		0xB000C0	0xB04000	0xB04040	0xB04080	0xB040C0	0xB08000	0xB08040	0xB08080	0xB080C0	0xB0C000	0xB0C040	0xB0C080	0xB0C0C0
0xC00000	0xC00040	0xC00080	0xC000C0	0xC04000	0xC04040	0xC04080	0xC040C0	0xC08000	0xC08040	0xC08080	0xC080C0	0xC0C000	0xC0C040	0xC0C080	0xC0C0C0
0xD00000	0xD00040	0xD00080	0xD000C0	0xD04000	0xD04040	0xD04080	0xD040C0	0xD08000	0xD08040	0xD08080	0xD080C0	0xD0C000	0xD0C040	0xD0C080	0xD0C0C0
0xE00000	0xE00040	0xE00080	0xE000C0	0xE04000	0xE04040	0xE04080	0xE040C0	0xE08000	0xE08040	0xE08080	0xE080C0	0xE0C000	0xE0C040	0xE0C080	0xE0C0C0
0xF00000	0xF00040	0xF00080	0xF000C0	0xF04000	0xF04040	0xF04080	0xF040C0	0xF08000	0xF08040	0xF08080	0xF080C0	0xF0C000	0xF0C040	0xF0C080	0xF0C0C0

Figure 14: Some HTML color codes

Figure 15: New view

Figure 16: Classic view

9.3 Transparency or mesh view

To change the way the detector is drawn, select 'Graphics options \rightarrow Graphic details \rightarrow Transparency/mesh' from pop up-menu.

9.4 Visibility of coordinate axes

Per default at x=0, y=0, z=0 three arrows are drawn standing for the three axes, to turn this off select 'Graphics options \rightarrow Graphic details \rightarrow Toggle visible of axes' from pop-up menu

9.5 Transparency value

While not in mesh view, it is possible to change the value of detector transparency by selecting 'Graphics options \rightarrow Transparency value \rightarrow percent of transparency' from pop-up menu. Possible values are: 0, 40, 60, 70, 80, 90, 95 and 100%.

Figure 17: Transparency 0%

Figure 19: Transparency 90%

Figure 20: Transparency 100%

9.6 Frames per seconds

To measure the performance of CED, there is a build-in function called 'FPS' (Frames per seconds). Normally CED only renders a new image after changes, such as toggleing the visibility of a layer, or changing the view. In contrast, in FPS mode CED renders so many images as possible and prints out, how many images there were rendered in the last second. This is a good way, to compare the performance of CED in different circumstances, for instance different versions, different viewers, or different machines.

Notice: This function is disabled under Mac OSX.

10 Picking

10.1 Quickstart

Simply double click on the object in which you are interested in, Marlin will print out information about the selected object.

Figure 21: CED window

Figure 22: Terminal where Marlin runs

10.2 Install your own print function

First, the following code has to be inserted into the processEvent function of the viewer (if you use your own viewer):

CEDPickingHandler &pHandler=CEDPickingHandler::getInstance(); pHandler.update(evt);

The purpose of this code is, that the singleton class CEDPickingHandler knows all objects of the event and therefore assigns a print function for every object. There are predefined default output functions which can be overwritten by the user. To use your own output functions, it is necessary to register them, before calling the update function. That can be done by calling the register function. The first argument is a collection name or type and the second argument is a pointer to the print function. Example:

CEDPickingHandler &pHandler=CEDPickingHandler::getInstance(); pHandler.registerFunction(LCIO::MCPARTICLE, &MyMCParticlePrintFunction); //...more printfunctions for other types pHandler.update(evt);

Note: For a proper use of picking, it is essential that the IDs of every object drawn in CED are communicated to CED. This is done by using the functions ced_line_ID instead of ced_line and ced_hit_ID instead of ced_hit.

Within the project, print functions have been designed for a number of LCIO objects. The work of Jan Engels served as a basic principle. This allows to send LCIO objects directly to output streams. It is possible to print LCIO objects in a short or long style. The long form:

```
Vertex *vertex = (Vertex *) YourLCIOVertexObjekt;
cout << vertex;</pre>
```

The short form:

Vertex *vertex = (Vertex *) YourLCIOVertexObjekt; cout << lc_short(vertex);</pre>

The short form allows to print objects as tables:

```
Vertex *vertex1 = (Vertex *) YourLCIOVertexObjekt1;
Vertex *vertex2 = (Vertex *) YourLCIOVertexObjekt2;
cout << header(vertex) << tail(vertex) << lcshort(vertex1) << lcshort(vertex2)
<< tail(vertex);</pre>
```

or:

```
cout << header(EVENT::Vertex) << tail(EVENT::Vertex) << lcshort(vertex1)
<< lcshort(vertex2) << tail(EVENT::Vertex);</pre>
```

This method of printing is available for the following LCIO types: MCParticle, TrackerHit, SimTrackerHit, CalorimeterHit, SimCalorimeterHit, ReconstructedParticle, Track and Cluster.

11 Work with CED from remote

For a smooth and quick workflow it is always recommended to start CED on the local computer. How to connect which Marlin from a remote computer to your local running CED will be described hereafter.

To allow incoming remote connections, CED must be started with the option 'trust'. The arguments of this option are a hostname or IP address.

#On the local computer
glced -trust <the name of the remote host>

On the computer on which you will start Marlin, you need to tell Marlin where to connect to by setting the environment variable CED_HOST.

#On the remote computer
export CED_HOST=<your local hostname>
Marlin <your datafile>

12 Change the CED port

CED binds to a TCP/IP socket to receive data that will be drawn. By default it uses port number 7286. To change it, save the portnumber you want to use in the environment variable CED_PORT.

```
export CED_PORT=<Portnumber>
```

Ensure that the environment variable is set to the same value for Marlin and CED.

13 CED2go

This tool is designed to enable a quick and simple view into the events of a data file. To start ced2go type:

ced2go <LCIO File>

Marlin and CED will be started.

CED2go will determine which gearfile has been used by generating the LCIO file and configure the viewer(s). If you use your very own gearfile you must tell ced2go where to find it, use the -d <Gearfile>option. The default viewer is the CEDViewer, use the -v option to change it, more than one viewer at the same time is supported. This information has to be written in a XML file to configure Marlin. Secondly ced2go search for a free TCP/IP port, so its possible to start ced2go several times. After that, CED will start and Marlin connects.

14 Viewer

To draw an event with Marlin into CED, Marlin needs a configuration file, written in XML. This file is called the Marlin-Steeringfile, see its documentation for details. In this file one or more viewers are configured. There a a number of different viewers available in ilcsoft: CEDViewer, DSTViewer, Generic Viewer, and Vertex Viewer. The difference between these viewers is how the event gets drawn. The detector geometry does not depend on with viewer is used.

A sample viewer configuration section could be:

```
<execute>
     <processor name="MyGenericViewer"/>
  </execute>
<processor name="MyGenericViewer" type="GenericViewer">
 <!--Sim Calo Hit Collection Names-->
  <parameter name="SimCaloHitCollections" type="StringVec"</pre>
       lcioInType="SimCalorimeterHit">
       BeamCalCollection EcalBarrelCollection
       EcalBarrelPreShowerCollection EcalEndcapCollection
       {\tt EcalEndcapPreShowerCollection} \ {\tt EcalEndcapRingCollection}
       EcalEndcapRingPreShowerCollection HcalBarrelRegCollection
       HcalEndCapRingsCollection HcalEndCapsCollection LHcalCollection
       LumiCalCollection MuonEndCapCollection
  </parameter>
  <!--Sim Tracker Hit Collection Names-->
  <parameter name="SimTrackerHitCollections" type="StringVec"</pre>
       lcioInType="SimTrackerHit">
       ETDCollection FTDCollection SETCollection SITCollection
      TPCCollection TPCSpacePointCollection VXDCollection
  </parameter>
```

```
<!--Layer for Sim Calo Hits-->
  <parameter name="LayerSimCaloHit" type="int" value="5"/>
  <!--Layer for Sim Tracker Hits-->
   <parameter name="LayerSimTrackerHit" type="int" value="6"/>
</processor>
```

A viewer is used from Marlin as a library and to specify the style, color and layer of things which get drawn into CED.

Examples of different viewers are shown in Figure 23 - 26.

Figure 23: CEDViewer

Figure 24: DSTViewer

Figure 25: GenericViewer

Figure 26: User defined

15 MarlinUtil::MarlinCED

MarlinUtil::MarlinCED is a library used by Marlin, which provides the functions to draw data into CED. This function simply calls the ced draw functions. It also provides the client part of picking, which means the mapping between LCIO objects and LCIO ID, and calling the output function of the selected object. For details of the picking part see chapter 10.2.

16	Shortcuts

Shortcut	Option	Shortcut	Option
0	Toggle layer 0	b	Toggle background color
1	Toggle layer 1	h	Toggle help frame
2	Toggle layer 2	r or R	Reset view settings
3	Toggle layer 3	f	Front view
4	Toggle layer 4	F	Front view projection
5	Toggle layer 5	s	Side view
6	Toggle layer 6	S	Side view projection
7	Toggle layer 7	c or C	Center object at mouseover
8	Toggle layer 8	v or V	Toggle fisheye view
9	Toggle layer 9	۲	Toggle the visible of all data layers
)	Toggle layer 10		
!	Toggle layer 11		
0	Toggle layer 12		
#	Toggle layer 13		
#	Toggle layer 14		
%	Toggle layer 15		
^	Toggle layer 16		
&	Toggle layer 17		
*	Toggle layer 18		
(Toggle layer 19		
t	Toggle layer 20		
у	Toggle layer 21		
u	Toggle layer 22		
i	Toggle layer 23		
0	Toggle layer 24		