Software Tool House Inc

Software Tool House Inc. Meta-Update

User’s Guide

© 2015 Software Tool House Inc.
Release 5.56
Updated: 2015-Sep-30

STH

Software Tool House Inc

Preface

Audience

This document is intended for Remedy ARS Administrators and developers.

It is expected that the reader will have knowledge of the Remedy ARS system and be familiar
with workflow development. It would behove the reader to be familiar with his ARS server’s
platform and scripting tools.

Limitation of Liability

This program is provided "as-is". We are in no way liable for any losses arising from your use of
this program, the sample scripts, or the documentation. It is your responsibility to evaluate this
program. It is your responsibility to backup and protect your data. It is your responsibility to
evaluate your use of this program for any particular purpose.

This manual does not represent a commitment to maintain any syntax or operation, nor is it
warranted to be complete or accurate.

Copyrights

This program and this manual are copyrighted © 1996-2015 by Software Tool House Inc.
Meta-Layer, Meta-Update, and Meta-Extract are trademarks of Software Tool House Inc.

ARS, Remedy, ITSM, CMDB are registered trademarks of BMC Corporation.

Solaris is a registered trademark of Sun Microsystems Inc.

Windows is a registered trademark of Microsoft Corporation.

PCRE (Perl Compatible Regular Expression) library is copyrighted © 1997-2006 by University of
Cambridge and is distributed under the BSD license.

Updates

This program and this manual may change from time to time. The latest version is available at
our web site: www.softwaretoolhouse.com.

Comments

Your comments are welcome! Please see: www.softwaretoolhouse.com/support and click
Comments, or email us at support@softwaretoolhouse.com. We look forward to hearing from
you!

Meta-Update -2- User’s Guide

http://www.softwaretoolhouse.com/
http://www.softwaretoolhouse.com/support
mailto:support@softwaretoolhouse.com

STH

Software Tool House Inc

Organisation

This document is divided into a sequence of ‘ . .

sections.
. . . . (4

The diagram to the right outlines which User’s t’) . +

Guide sections we recommend as you use

Meta-Update more and more. —yares Ready e

Mets-Update to Start User

Herg s an overview of the User’'s Guide l Ty] installing | Script

sections: . Reference
. Concepts Runnin ~—

Introduction ([|, m—" |

This is a short description of what Meta- | E{T_"_'“_;_]Eamq‘les_(i iamp}e’_[l

Update is and the types of problems you can
solve with it. Read it if you are new to Meta-Update, or want to learn what Meta-Update does at a
high level. You do not need to be an ARS Administrator or developer to read this section.

Concepts
In this section, you will learn about the Meta-Update commands and facilities. It introduces the

Meta-Update scripting language and gives a general understanding of what to do to implement a
script. It is required reading until familiar with Meta-Update scripting.

Installing

The installation notes for UNIX and Windows.

Running

Running Meta-Update and interpreting the output. Developing and debugging scripts.
Script Reference

This explains how to code Meta-Update scripts in detail. You will need to refer to this section
when you don’t remember how a specific setting or option is specified.

Licensing

This explains how the Meta-Update server based licensing works.

Samples

These samples, which are part of the software distribution and available on the web, are another
way to learn how to build scripts. These samples perform different functions and have detailed

explanations of the Meta-Update scripts used. Bits of these scripts may be copied and tailored to
your scripts.

Meta-Update -3- User’s Guide

STH

Software Tool House Inc

Table of Contents

L =] = Lo = TP PPPRUPP 2
O o = LTI T= Aol o B PP PU P PP PTPRPP 3
TaDIE Of CONTENTS ..ottt e e e e et e e e e e e s e s anba e e e eaaeeseannes 4

LN e Yo [0 Tox {10 o PP PRRPT 11
Data ChallENGESottt e et e e s b e e e 12
SOTUTION OPLIONS Lottt e et e et e e e st e e e st e e e e sbb e e e e sbneeeeaaes 13
Meta-Update: A New Way t0 USE The APl ...ttt e 14

(070] T od =] o] K= PSPPSR 17
OV EBIVIBW ..ttt ettt ettt et e oo 4o b ettt e e oo 4o e b bbb e et e e e e e s e s bbbe e et e e e e e e nnbbbeeeeeeeeeannbnneeeas 18
D=y] TN o) =TT PSP PP PP PPPTPPPTT 25
RETEIENCES ..ttt e e e et e et e e e e e st b e e e e e e e s e nbnbeeeaaae e s 27
ASSTONIMEINTS .ttt s et s ettt e e e bt e e e b et e s et b e e e e nb e e e e e nb e e e e e nreas 28
ASSIGNMENT RETFEIENCES ..ot e e 29
SEHNG REFEIENCES ...ttt e e st e e e s baeeeeanes 30
0 - To £ ST PRER 31
TYPES OF SECHIONS ..eeiiiiiiiii ettt e e et e e e aneeas 32
(70T 014 g ST T o £ (o] o 1= PR SR 33
Control SECHION FIOWCHAIT ..o 35
1 =T =T o] o EO PO PP TR PPRTPPPTT 36

(O U1 YRS 37
QUETY SO i 38
I ettt e e et e e et ae e e et e e e e anrreaeeanres 38
[0 Yo] I PSPPI 39
U] | PSR 40
L@ 11| 4 o] U) SO PP P PP PP PPRTP 41
Gl AL e 41
0T To b (TP PRP PP 41
L@ 11| 4 o] UL PP PP PPPPPPPRPPPN 42
= 10 o3 o PSR 43
Control SECtioN EXAMPIES ...oooiviiiiiiieiiieeeieieeeeeee ettt e e e e aeaeaeeseesesasssesannnanes 44
Example: Migrate any Table..........cccooiiii 44

Installing Meta-Update ... 47
Expanding The Distribution ... 48
Complete INSTAIALIONoiii e e e s 49
DisStribDULION CONTENES ..oiiiieiiiciiiiec e e e e e e e st e e e e e e s nnnnrereneaeeeas 50

RUNNING MELa-UPAALE.......eiiiiiiiie et ettt et e e e s e e e e 55
RUN TiMeE ENVIFONMENT...iii ittt ee e e e e e e s s s e e e e e e s s snnb e eeeaeeesnnnsntneeeaaeneas 56
BMC REMEAY AP VEISIONS .. .uiiiiiiiiiee ettt ettt e e et e s 57
PrOgram VEISIONSeiiiiiiiii ettt ettt e et e e e et et e e e anbe e e e e anbeeeeenneeas 58
THE LICEBNSE KBY ...ttt ettt e e s ettt e e s e e e e e e nbe e e e e nnbeas 59
ENVIrONMENt VAriablescoooiiiiiiie et 60

Script Path Environment variable........cooi 60
APl Retry Environment variable ... 61
License Environment Variable ... 62
The COMMANTA LIN@...eiiiiiiiiiiieie ettt e e e e e e e e e e e e e e s e e nbabeeeaaaeeeas 63
SWITCRES ettt et e e st e et b e et e e e abae e e et 64
U LSF= o [N =T T =) APPSR 65
Using Positional Arguments (Deprecated)........ccccvvueieieeeiiiiiiieiieee e csiiieee e e e e e s 66

Meta-Update -4 - User’s Guide

STH

Software Tool House Inc

Program RETUIN VAIUES ...ttt e e e s e e e e e e s e st e e e e e e e s nnnnraeeeaaeaeas 67
Program OULPUL ...t e ettt e e e e e e ee s s e e e e e e s ta b aeeeaeeenabananaeeaaees 68
I Te1 1 1 PO P PP PP PUPPP P 71
(o Tox=1 I I 7= Yol o T E O PP UPEPPOPPPP 72

ST V=] g I - (o1 o [PO P PP PP PPPPPPPPPPRPT 73
TrACE FOIMAL. ... s 75
Firing from WOTKFIOWooiiiiiii e 77
DEVEIOPING SCIIPES .eiiieiiiiiiei ittt ettt e e et e e e abr e e e e anens 78
S Yod] o1 A 1T o 10 o o 11 2o PR 82
What IS SCript DEBUGQING evriiiiiiee e e e e e e e e e 83
Entering Debug COMMANASuuuiiiiie it e e e e e e e e e e e e e s s s e e e e e e e s s nanrareeaaeaean 84
Meta-Update Line NUMDEIS ..., 85
About Meta-Update Break POINTScccooiiiiiicic s 86
DebUG COMMEANTS ...eiiiiiiiiie ettt e et e e e e abn e e e e 87
T3 PP PRRP 87

I ES3 A = SO PRRP 88

2 7= 1o QI - 1o PP PERPR 88

o 1 0 SO PRRP 89
LS TP PPUPPPPPTPPN 89
(70] 01 41 o[V L= TP PO PPPPPPPPPP 90

@ T PP TPURPOUPPRR 90
BIrRAK ...t et e e e e e s r e e e e e e e aaaae 91
Yo BT oL L] = =T o= PPt 95
Script File: General FOrMAL........ooiiviiiiiiiiiiiiiiiiicieeeeeeeeeeeee et eeee e e eee e aeeeeeesessssssssesannnnne 96
Including Other SCript FIleS ..o 98
S T=To (o] Y] ¢ LT SR PP PRPPOPPPN 99
[=T g ST o3 Ao o PP ORP PP 100
REAU SEIVEIN SECHIONS ..eeiiiiii it e et e e e e s st e e e e e s s s b aeeeeeeeseannenneees 107
(@0 14 o] ST =T o f [0 4 1= O PPRRR 108
ADOUL CONLIOl SECHIONS ...t e e e e e e e e e ennenes 108
Keywords and StatEMENTSooiiiiiiiiiiiiee et 109
(o= To IS = 1= 0 1= o] £ PP PP P PPPPUPRPPTN 117

(@ BT VAR = 10=T 0 4 1= o | TSP 118
QuerySql StatemeNnt ... 122

FIlE STAtEMENT ... et e e e e r e e e e e e e e anaes 124
(o Yo o IS =1 =] 0 0 1=] o | APPSR 125
Create StatemMeNT 131
LT 1 S =1 1= 0 =T 0 SO USEE 131
UPAate STALEMENT.....oiiiiiiiie it e et e e et e e e abaeeeeenes 133
OULPUL STAEEMIENT ...t e e e s s eeeee s 135
MEIQE SEATEMENT ...t e e e e e s r e e e e e e nnnee 137
StAtUS STAtEMENT ..o 137
SIEEP SEALEMENT .ttt e e e bbb e e e e e e s nbebaeeaeaaeeas 138
LAUNCH SEALEMENT ... e e e ee e e e e e 138
IALOQG STAtEMENT ... e et e e e e e s e e e e e e e s e annes 139

LIS =To] A o] o K= TP PUP TP 142
(L= Lo BT =T ot £ o] 1< TP PUP TP 146
About Fields and FOIMAtSuuiiiieiiiiiiiiiiii e e e e e e e e e s e senree e e e e e e s nnnnnes 146
Copying Fields from SCheMaS.......cuuiiiiiiiiiii e 147

[T T=T Lo I o T - SRS 148
Automatic SQL SeleCt GENEIAtIONuuuui s 149
DALE FIEIAS vttt ettt e e et e e abb e e e breeeeaae 150
NUMEIIC FIEIAS ..t e e e e e s et e e e e e e e e aannes 152
Quotes in Field Values.........ooooiiiiii 153

Meta-Update -5- User’s Guide

STH

Software Tool House Inc

ASSIGNMENT REFEIENCE ... e e e s s e e e e e e s e s nabaeeeeeeeesaannes 157
ADOUt ASSIGNMENT SECHIONS ..viiiiiiiii e e e e e s rrre e e e e e s 158
USING ASSIGNMENT SECTIONS ...eiiiiiiiiiiiiiiie ettt e et e et e e e e sbneeeeanes 160
ASSIGNMENT TAINGELS ..ieeiieiiiiie ettt et e e s bt e e e an b e e e e anbr e e e e anbr e e e e annns 162
STeTo o] o =T L] A Y o1 OO P PP PPPPPTOPPP 163
ASSTONIMEINTS .ottt e e e e bt e e e s a b et e e e aa b et e e e aa b et e e e anbr e e e e anbe e e e e nreas 164

Conditional ASSIGNMENToiiiiiiiii ittt e s 165
IF StALEMENT ... 167
LOOKUP ASSIGNMENTS ..iiiiiiiiiiiiiiiee ettt ee e e e s st e e e e s s s e e e e e e s e s nnranneeeeeesannnnes 168
ASSIgNMENt COMMEANASuviiiiiiei e e e e e e s s r e e e e s s s aenbrrereaeeesaannnes 169
ASSIgGNMENT COMMEANASuiiiiiiiie e e s e e e e e e s e e e e e e s ssnnrnrereeaaeaeas 170
Copy COMMAN ..., 170
INCIUAE COMMANT ...ttt e e e e et e e e e e e s e s nnbaeeeeeeeeeannnnes 173
7Y o o Y G @o] 121 o' =T o o PSRRI 174
AttachSave COMMANGc.c.uuiiiiiiie e e e e e e e e e e eeneees 174
MSG COMMEANT ...ttt ettt e e e sbr e e e sbr e e e e sabreeeeanes 175
SPAWN COMMEANT ...ttt e e e s e e s bbb e e e s anneee s 175
Reference COMMANGoooiiiiiiiiii e e e e er e e e e s s e eeeeeeeesennnee 176
Using Regular EXPresSSioNS ..o, 191
Using Arithmetic EXPresSionS ..., 193
Set SChema COMMEANTcoooiiiiiiiii e e e e e e e e e as 196
Trace COMIMEANTuuiiiiiiee ittt e e e e e e s e bbb e et e e e e e s s anbnbreeeeaeeesaannnes 197
LOOKUD SECHONS ..o 199
OVEBIVIBW ..eiiiiieiee e e ettt e e e e sttt et e e e e e e ettt e e e e e s s ats e e eeeeeeesaantsbeeeeeaeeeaanbstaeeaaaenean 199
o To] U o T Y] ¢ 1T TP PPPPTPPPPPPIN 199
AULOMALIC TAGS . eveeeeiitiiee ittt et e e et e e e st e e e e snbe e e e e nnees 200
KBYWOTTS ettt ettt ettt e e st e e e s bb e e e e sabb e e e e abbeeeeaaes 201
USING FIlES ettt e e et e e e s bbeeeeeaes 205
USING @ QUETY ittt ettt ettt e e e st bt e e e st bt e e e sabb e e e e anbbeeeeabbeeeeanes 209
Using an SQL QUETY ..cooei e, 210
Caching LOOKUpP RECOIdScooviiiiiiieeeeee 213
Using different LOOKUP LiStS ..o, 213

Field TYPe NOLES oo 215
Diary Fields ... 216
CUIMTENCY FIEIAS ..ottt sttt e et e e s annre e s 217
N TU 0 =T ol =T o £ PSS 218
ENUM OF SElECHION FIEIAS ..o e e e e e e e e neee e 219
7= L= 1= Lo S 220
(2= L= T L= =Y [F S 221
F 4 = o] T 0= o) = o PR 224

Predefined REfEIENCE TaAUS ...ttt e e e e e et e e e e e s e snnbeaeeeaaeeaaannnes 226
CTL — Meta-Update INfOrMation ... 227
Arg — Program AFQUIMENTS ... s 228
ENV — The ENVIFONMENT ..ottt e e et e e e e e e s e nnb e eas 228
AR_INFO — ARS Server INfOrmationccoooooiiiiiiiicicccc s 228
RdASvr_AR_INFO — ARS Server Information.............ccccc 228
AR_INFO — Table of Fields and ValUesccooviiiiiiiiiiie e 229
(O3 I S Tod s 1= 1 1 - T I T IR PP 236

I To =7 o = 1 o SRS 240
HOW T WOTKS Lottt ettt ettt e e sttt e e e st e e e snbb e e e snbbeeeeanbeeeeeane 241
SPEeCIfYiNG The LICENSE KBY ...coeiiieiiei ettt s s e e e e e e ree e e e e e e nnnnnes 243
INStAlliNg the def File ... 245

Meta-Update -6- User’s Guide

STH

Software Tool House Inc

ST 1001 1SR 255
F R S Tod aT=1 1 = W =] oo | PSPPSR 258
AR Server INfO REPOIT ...oiiiiiiiie et 261
Ticket Creation Batch COMMANTueiiiiiiiii i 264
Closed TiCKEt REPICALONiiiiiiiiieiiiiie ettt 268
SEIVET DEITA COPY cuteieieitiiee ettt ettt ettt s et e sttt e s bbbt e e s bnr e e e s anbe e e e s annreee s 274
ARS Table BaCKUP @nNd RESTOTEccciiiiiieiiiiiee ettt 279
Lo G TP PPRRRR 292

Meta-Update -7- User’s Guide

STH

Software Tool House Inc

Introduction

Meta-Update -9- User’s Guide

STH

Software Tool House Inc

Meta-Update -10- User’s Guide

STH

Software Tool House Inc

Introduction

Thank you for selecting Meta-Update. With Meta-Update, creating repeatable imports,
migrations and batch operations on your ARS data is a snap.

Don’t bother with the API! Meta-Update provides a quick, robust, reliable, auditable method
of harnessing the power of the API without any programming at all.

Legacy

Data Migration New AS app
— TP~

Meta-Update -11- User’s Guide

Softwa Tool ouse Inc

Data Challenges

> Ever had trouble setting up an ARS data migration?

v

4 44

From one server version to another?

From one release of ITSM to another?

FromITSM6or5or4toITSM 7?

From a bespoke ticketing and asset system to another different bespoke
application, to an ITSM implementation?

> Ever had trouble importing data into an ARS application?

v

-

44

v

From a series of CSV files representing complex data trees?

From CSV files that Excel or the import tool can’t handle: containing embedded
new-lines, and field values with embedded, undoubled quotes?

From CSV files where the query to determine the update record is complex?
From CSV files where the target update form changes for each row in the data?
From fixed length transactional files / records?

> Ever had trouble getting data transformations right?

w

v

Assigning the right Status values based upon a different set of incoming values
and more complex conditions?

Selecting the fields to be updated based upon incoming transaction data, queried
data, read data?

Setting the values based upon incoming transaction data, queried data, read
data?

Assigning values to reserved fields like Create Date, and Submitter.

> Ever wanted to adjust, correct, merge, and change the ARS data that you have?

w
w

Ever needed to combine two clients’ foundation data records?
Ever wanted to rename or split up support groups?

w+ Ever needed to automate the importing of foundation data into the ITSM suite?

> Ever had trouble creating an ARS API program?

w
b

Ever wasted time talking with a non-ARS programmer?
Waited when making assignment or form logic changes for the programming
development cycle before seeing the results?

Meta-Update -12 - User’s Guide

™
Software Tool House Inc

Solution Options

There are four basic choices to solving the types of problems listed above. All are error
prone, involved and expensive to develop. Changes to mappings and value interpretations
are expensive and slow. In order of performance and efficacy, they are:

1 SQL
Very dangerous to the integrity of the ARS database and workflow. Bypasses all ARS
security, safety and workflow mechanisms. Difficult and costly to develop. Requires a
specialised resource.

By far the highest performance.

2 AP
Given a competent API programmer, this method yields performance approaching the
direct SQL option and far better than the next options.
Drawbacks are that ARS API programmers are a rare resource, time between changes
and delivery are typically quite long, communications between the ARS developer and the
API developer may be difficult.

3 Export, Import, Merge filters
This method should yield reasonable performance though slower than the API.

It is generally a complex ARS development project in and of itself and may rival the API in
development expenses.

Much manual effort is needed in the extraction and importing of the data and this is prone
to error.

Failures are difficult to track and resolve. Record creation and modification dates are set
to current run times and not the historical times required. The same is true of status
history and modification users.

There is no facility for parsing through a diary field’'s entries.

4 User Tool
The fact that this can be done is amazing in and of itself!

Performance alone makes this option not usable. It will have a higher development cost
than Export, Import and easily rival or surpass API.

Meta-Update -13- User’s Guide

Softwa Tool ouse Inc

Meta-Update: A New Way to Use The API

With Meta-Update, these types of problems are handled quickly, with ease and confidence!
There is no need for an API programmer or any programmer at all.

The ARS Administrator / Developer scripts complex functions in the language he already
knows in minutes. He fine tunes mappings and assignments and gets his feedback
immediately. His runs are fully logged allowing complete resolution and recovery.

Devehlopment efforts for any migration or file import requirements are reduced to at least
1/10",

That’s an order of magnitude savings on the initial development effort compounded by fewer
resources required to maintain or enhance scripts from the deployment on.

Compound that development savings with the confidence you get by using Meta-Update:

The performance is that of the API run on the server or client.

Jobs complete with “Log and Continue” error processing.

Errors produce complete resolution and retry information logs.

Jobs can be broken up in batches and run simultaneously on one or more machines.
Core fields can be easily assigned on both primary and secondary forms.

CSV files that fail on the import tool can be handled easily.

Transactional files can be handled.

Dates, times, users, status history can be set to any desired value.

Diary fields’ entries can be looped through creating records in other forms.

All ARS permissions and workflow is respected.

LYY L4444

Meta-Update -14 - User’s Guide

Meta-Update

QuerySay
Wory 1
Filg ~ “Fatnvik
3 Oulp
" Lok gf’ E‘;’pdaia
ﬁ&{gﬁ-ﬂﬁm)

ﬁﬁf{i‘fﬁlﬂﬂ.&.ﬁ

-15 -

STH

Software Tool House Inc

Concepts

User's Guide

STH

Software Tool House Inc

Meta-Update -16 - User’s Guide

STH

Software Tool House Inc

Concepts

Meta-Update -17 - User’s Guide

STH

Software Tool House Inc

Overview

Meta-Update is an Extract Transform Load (ETL) scripting tool for the BMC Remedy data.
Meta-Update uses the BMC Remedy API.

With Meta-Update, you can create any repeatable, programmable import, migration, or, batch
job in 1/10" the time it would take to develop a similar function using the ARS API with Perl,
Java, or c.

Meta-Update gives an ARS Administrator the power of the ARS API without having to know
the API or programming at all!

With Meta-Update, your ARS Administrator can create complex imports and migrations
himself, in a language he already speaks, easily and directly.

He tries out his ideas, executes a job, and sees the results. He makes assignment changes
and tries and checks again. All in minutes!

Meta-Update gives you a window into the Remedy ARS API. As such, all workflow is fired

and all ARS permissions are respected. It does no direct database manipulation at all. It
cannot bypass workflow.

Meta-Update -18- User’s Guide

Meta-Update Scripting

STH

Software Tool House Inc

A Meta-Update run specifies a script file to run. That script can take arguments, load
configuration records, load value translate tables, and perform operations on your Remedy

data.

A script file is a sectioned INI file similar to Windows and Linux INI files. Data operations and
assignments are specified in named sections.

Control sections
specify assignment
sections where you
can assign values to
your fields in a simple
and feature rich way.

With Meta-Update,
you have many
different ARS records
available that you
can use to make your
assignments and
decisions in your
assignments.

Meta-Update

[UpdCpy]

Update the Company Name
Use SQL to get the list

(only)

in any TT
(fields not indexed),

then Load and update the ARS record.

°g)

QuerySgql = TT-ID, @na, &
select instanceid from hpd help desk
where company = ‘SArg, Cpy’ or
contactcompany = ‘Arg, Cpy or
supportcompany = ‘SArg, Cpy

LoadQ = TT,

HPD:Help Desk,
'179' = "$TT-ID, 1$"

Update = TT-Upd,

HPD:Help Desk,
'179' = "S$TT-ID, 18"

Merge Yes, NoWorkflow

Update = TT-Upd

-19 -

User’'s Guide

STH

Software Tool House Inc

A Meta-Update script comprises a number of linked together Control Sections

“Control Sections” or work elements.

This image summarises the basic flow of a Meta-Update script's Control Section:

Assignments Initial Once on section start, Launch

fteration?

and transformation rules

<@ﬁ>- @%i> gGerysal> <File=> Loop=
Apply value interprétatiGn
ad

Assignments assignClose—

| N Lo
Zgﬁ/ nothing next ARS record next SQL row next File row next Value
Assignments Pre-output After Load, before Output
Output . L e Submit S
. K K K 2
Mer
B N — =
Create a new Create a new Create or modify
File / record ARS record an ARS record
Assign= icn=
Qutput Ass igngpen= Assign= ASASSj_Sl W=

Reload created or updated record

Assignments Post-output After output; success, fail
Launch invoke other control sections iteratively —T——=> >
| Assignments PostLaunch After all Launches are don
s ,@ration |_
Iteration?
Assignments AssignTerm Done once at Termination
Each “Control Section” follows a simple structure as depicted in the image above:
A Control Section may choose to iterate by issuing an ARS Query or :
: . Iteration
processing a CSV file for example.

A Meta-Update control section can iterate through

an ARS Query,

an SQL Query,

an ASCII column file like a CSV,

a delimited string’s values,

a diary field’s entries,.

while a condition is true

a set of fields defined in a schema, file, or SQL query,
Or a command section can be run through exactly once.

YYYYVYYY

Within each iteration, Meta-Update loads the next iteration value or record, performs any
assignment sections you specify, setting variables, transforming values, and loading

additional ARS records or SQL rows.

Meta-Update -20 - User’s Guide

Software Tool House Inc

A section can then optionally perform an output: Creating or Updating
an ARS record, appending data to a CSV or text file, or generating the
next text file in a pattern of files.

Output

For ARS output, you specify an output form or schema. You can choose to always create a
record, or you can specify a query for an update record, and create new records when no
records match, and/or update matching records.

You can use Merge if desired, even optionally turning off filters set to fire on Merge.
Of course, you specify your assignments for any outputs and for any script variables.
After the output record is updated or created, it is reread if needed. This loads a fresh copy

after ARS workflow has fired. This then enables subsequent
references to use any fields of the updated record. Launch

Finally, after a newly updated or created record is reread, you can launch other, nested
control sections. That control section’s statements can use the data loaded, queried, created,
or updated in the previous sections in all of its substitutions. Because output records are
reread, you can use fields like Request IDs, Instance Ids, Group Lists, Diaries, or even
attachments

This nesting of sections — which can be made conditional — is what gives Meta-Update its
power over the API with significantly simplified development. For each record of an import
file, any number of output records in any number of different forms may be created. Each
import record can select which form to create a record in.

With a few simple words, your ARS administrator can create chained, nested, data scripts
that can be used in automated imports, migrations, or operations, on your ARS data.

Throughout each section, different assignments are processed at
different events. All assignments can be conditional and many
assignment commands are available to allow your administrator exquisite control over the
assignment process.

Assignments

You can programmatically, based on all data in memory, decide to do an update or not,
decide which schema and which record to update, decode which fields are to be updated and
which values are to be assigned, to which schemas.

The assignments are feature rich. They

v Are fully conditional supporting a structured if facility.

v/ Can use local script variables.

v' Use arithmetic operations;

v' Use pattern matching regular expressions to split up values.

v' Copy matching field ids across two records.

v Fire external processes on the local processor.

v Fire special ARS Run Processes on the server, for example, to generate a Guid, or
use Business Time.

v/ Can use lookup translation facility from internal lists, spreadsheets. SQL, or Remedy
forms.

v' Issue Messages and abort processes when detecting data errors.

v' Have full, rich, robust, logging and error tracking facilities.

v' Reference external pattern files to build long text strings using a set of data records

across different servers and ARS schemas and ARS SQL rows, or files, or script
variables.

Meta-Update -21- User’s Guide

W ‘_
Software Tool House Inc

All assignments are automatically converted to the right type. ARS keywords can be used.
Attachments are no problem. They can be loaded from files or from record references.

With the BMC ARS Administrator Tool, you specify references by
wrapping a field id or database name in dollar signs. For example: References

SRequest ID$

Meta-Update extends the concept of a reference so that you can refer to many different
records at once. A Meta-Update reference has two parts: a Tag that identifies the desired
record and a field within that record. For example:

$SrcTbl, Request ID$
$TgtTbl, Request ID$

SArg, Operation$

The Tag portion can refer to and the field portion can refer to:

a Remedy record a field “database” name or field id

an interpreted SQL row a column or interpreted field

an interpreted File record a file’s interpreted field

a Diary field entry the string User, Date, Text

a named collection of strings assigned variables
When processing files, SQL queries, regular expression pattern
extractions, value interpretations may be applied. For example, in an Value
SQL query, ARS date fields, which are integers, can be interpreted as Interpretation
date fields.

You can request and validate parameters passed as arguments. You can interpret, validate,
and transform data from files or SQL queries, pattern extraction Regular Expressions.

When processing columnar files, any source records resulting in

errors can be written into a new file so that that new file can be then Logging and
processed by Meta-Update once the data errors are corrected. problem
resolution

Each ARS record read, loaded, created, or updated is optionally
written into an “id” log file. You can request and validate parameters passed as arguments.
You can interpret, validate, and transform data from files or SQL queries, pattern extraction
Regular Expressions.

Meta-Update processes your assignments. You can apply conditionals in the assignments or

even in determining to make an update. You can programmatically, based on all data in
memory, decode which fields are to be updated and which values are to be assigned.

Meta-Update -22- User’s Guide

STH

Software Tool House Inc

This image outlines what Meta-Update lets you do:

ARS SQL
Queries

Query /File !/ SQL / Loop:

r lj A
m L7 l_/ lterate thrqugh J-\RS SQL, or file
Progr A records, Diary entries, parsed
Arguments, \ n strings, loading and creating
Environment : PA ARS records,
Variables L U”D;qleta S
Layer <=1 Update
R and Script
/ ~1 Meta-Updat
Q/] Loads:
éc}? ot ol Load and tag records using
A put: or 1es lcaded ARS data. In your
W ; u pd reate Query
ﬁ' ity Assignments:
Database Assign constants, passed program
-- File arguments, script variables,
A: -, ord locaded records’ fields. Use full

cenditionals, changetarget
schemas, translate values.

Meta-Update processes Meta-Update Command Scripts. These are simple Ascli files that
resemble Windows 3.1 “INI” files.

In them, with a few simple words and the powerful concept of a “Reference”, you tell Meta-
Update what to do. You create or update records using Merge Submit, Modify API calls by
specifying an update query.

“References” are used throughout a Meta-Update command script.

With the Remedy Administrator, a reference is a field name or id. Meta-Update extends
references to include a record identifier, or a “Tag”. Within a Meta-Update script that is
creating a Ticket, you may have two different people records loaded: one for the requester
and one for the requester’s manager. The data from both are available when making
assignments, running further queries, or in conditional expressions.

A simple Meta-Update command script has a single “command section”. In it, there is no

Query, SQL Query. or File processed. A Create is coded. So the command will always
output a single ARS record. The command script may take a couple of program arguments.

Meta-Update -23- User’s Guide

STH

Software Tool House Inc

These could be assigned to the new record or used in conditions within the new record
assignments.

A Meta-Update command can also be made to iterate, Creating or Updating as many records
as the number of times the command section loops. If a Query is coded and it returns 12
records, then 12 records will be output by the Create or Update of the command.

A Meta-Update command can Launch another, different, Meta-Update command. When this
is done, the record created or updated in the first command is reloaded, and the new section
is run with all References available to it.

So for example, the Launched section could use data in the newly created record to fill in
linking information in dependent records.

Meta-Update -24 - User’s Guide

Definitions

References

Iteration

Query

QuerySql

File

Loop
1.
2.
3.
4.
5.

Assignments

Meta-Update

Software Tool House Inc

References are the key to the power and ease of Meta-Update scripting.
In ARS, references are a form’s field name or id between dollar signs.
Only a single form and record may be so referenced.

Within a Meta-Update, you have many different records in memory at the
same time. Each record is identified by a Tag that you chose. So,

references comprise two parts:
$ Tag, Field $

Meta-Update lets you execute a script command once or iterate though a
sequence of “records”. Each iteration can load records, make
assignments, produce output, and launch other commands.

Allows you to iterate through the results of an ARS query, specified as
per the Advanced Query Bar in the BMC User Tool. Of course, the full
power of Meta-Update references is available to your query.

Similarly, you can issue a direct SQL query through the ARS API,
iterating through the resulting rows, and, naming, interpreting,
transforming the resulting columns.

Any type of columnar file can be iterated through. Values can be
transformed or interpreted. CSV’s that Excel or the BMC Import Tool
can’t handle, are not a problem. CSV'’s with values having embedded
new lines, stray, undoubled quotes, or different delimiters.

Loops may be based on:

diary entries of a diary field, allowing you to create records for each diary
entry for example.

Delimited strings, for example, looping through a User’s Group
Permissions field, allowing you to validate and generate individual ITSM
People Permission Records

A set of defined fields of a schema, for example, looping through all
attachment fields to place the attachments on the file system.

An arbitrary condition being true — a “while” to process data until a
condition is met in any of a set of records

The set of schemas making up a join.

Assignments are made to create or update ARS records, and in more
complex scripts, to use references as variables. Meta-Update has a rich
set of assignment commands including a fully nested if — then — else, a
Look Up facility, regular expression pattern matching and extraction, an
include facility, and other commands.

-25- User’'s Guide

W ‘_
Software Tool House Inc

Output

Update

Create

Output

Launch

Meta-Update

A Meta-Update command does not have to, but can make, an ARS
output, that is, an ARS data record change. A non-iterating command
can output a single record. An iterating command can output a single
record in each iteration. Output can use either:
. the Merge API (like the BMC Import Tool), firing (or choosing
not to fire) all Merge filters, or,
. the Submit and Modify API, like the BMC User Tool minus all
Active Links.

Update allows you to specify a query to determine the update record.
You can specify different assignment to create a record and to update a
record. Once the record is updated, it is reread if it will be needed further
in the script.

Create causes a new record to be added to a form. You specify the
assignments to be applied. Once the record is created, it is reread if it
will be needed further in the script.

You may also choose to create columnar or pattern files as an output of a
section. The full power of Meta-Update may be used to load multiple
records and use data from all these loaded records in the files you
create. Pattern files are text files and can be emails, XML files, or
formatted reports. Columnar files can be fixed length or CSVs.

A Meta-Update command can Launch other commands. For example, a
command may iterate through a Query, after each record from the Query
is read, and after each output record is reread, it can then Launch
another command which can data from the current query record and
current output record to query and output more records.

- 26 - User’'s Guide

STH

Software Tool House Inc

References

With the BMC Visual Studio or the former Remedy Administrator tools, you specify field

references by wrapping either the field id or the field’s database name in dollar signs.
$Status$
$75

Meta-Update can hold many records in memory when it is time to update a Remedy record
with assignments. So, a reference comprises two parts, the first specifies the loaded record

of an ARS form and the second specifies a field database name or field id from that form.
SRecTag, Statuss$
SRecTag, 7%
The first part is called a “Tag”. You declare in a Meta-Update statement, such as a Query= or
File=. As each record in the query is processed, the Tag that you declare refers to the
current record’s data. There are also two tags that are set up by Meta-Update.

The second part of a reference is the “field name” as
defined in an ARS form’s field’s database name,
declared in a File=, QuerySql=,
as filled by regular expression extracts.
as assigned in a string list,
as implied by field names in the first row of a CSV file,
as set in the environment in the ENV tag,
as set by Meta-Update in the CTL tag.

The “records” that Meta-Update can hold in memory can come from sources other than
Remedy forms. Of course, field ids only apply to Remedy forms. In addition to Remedy ARS
record references, a Tag may refer to

A CSV or other columnar file’s field values
An SQL query column
A named collection of string variables

You can use strings to hold variables allowing you to make complex scripts. There are a set
of Meta-Update assigned string variables under the Tag, CTL. Examples are:

S$SCTL, Pids
$CTL, O0S$

You can also use pattern matching and extraction regular expressions to set up a series of
named string variables under a tag corresponding to the extracted values. For example, you
could split a status history field into its individual components and generate dated records
from those components.

Finally, when assigning references and through the use of assignment commands reference

tags may be used as arrays. For example, a configuration file or query may be completely
stored in an array of tags and that array may then be processed over and over again.

Meta-Update - 27 - User’s Guide

STH

Software Tool House Inc

Assignments

Meta-Update performs field assignments that you code and uses them to update or submit a
new record in an ARS form.

[cmdl-asg-new]

Status = Assigned
Assignment Group+ = “Web Team”
Description = “Automated ticket entry”

STIMESTAMPS

Assigned Date

You tell Meta-Update the target form for the field assignments in the Update= 0Or Create=
statement of the command section. Meta-Update then uses the schema to convert the
assignments as needed. You specify the assignment sections to process in the command
section as well:

[Cmdl]

Update = HpdUpd, HPD:HelpDesk, ‘1’ = “Arg, Id”
AssignNew = cmdl-asg-new, cmdl-asg

Assign cmdl-asg

[Cmd2]

Create = HpdNew, HPD:HelpDesk

Assign = cmdl-asg-new

In the assignment section, the left side of an assignment is a Remedy field name or “id”. The
right side is a reference to the value you want to assign.

In the above examples, we've assigned three constants and one ARS keyword. Two were
text fields; the last, a date field.

The first, Status, was actually assigned the value 1. “Assigned” is validated against the
definition of the “Status” field in the target schema, “HPD:HelpDesk”. These assignment
statements would be equivalent if the default view of form HPD:HelpDesk defined attribute
“Assigned” for field “Status” as the second value:

Status = Assigned
7 = Assigned
Status = 0
7 = 0

The “7” is the ARS field id for the reserved Status field. The value “1” is the normal value
associated with “Assigned” in the Attributes tab of the Status field’s properties in the ARS
Admin Tool.

Only those fields that you code in your assignments are used to update or create the target
form’s record. When you create new records, you'll need to ensure that all required fields are
assigned values.

Of course, Remedy server workflow fires. On submits especially, workflow may cause

additional fields to be updated. In addition, workflow may reject the update with an error
message.

Meta-Update -28 - User’s Guide

STH

Software Tool House Inc

Assignment References

In addition to constants, Meta-Update can use “references” in assignments.

These are references to data loaded from possibly different ARS schemas, from fields in an
ASCII file, from LookUps, from parameters passed on the command line, from environment
variables, or from references assigned during the Meta-Update session..

ARS and file records are tagged with a name. For example, the requester of a ticket may be
tagged PplrReq. Then fields from these forms can be referenced in assignments to the target
form. For example:

Requester email = PplReq, Email address
Requester name = PplReq, Surname
Requester name = N,

Requester name = PplReq, GivenName

The above example shows concatenation of a text field’s assignment.

A reference for an ARS record is the Tag that identifies the record (and defines the Schema
of that record) and either a field id or a field’s ARS database name.

Meta-Update -29 - User’s Guide

STH

Software Tool House Inc

String References

A string reference is used in queries and other control statements. It comprises a mixture of
text and assignment references wrapped in dollar signs.
‘Requester email’ = “$PplReq, Email address$”
‘Requester Name’ LIKE “$$File, Surname$, $File, Firstname$%”
‘Requester Name’ LIKE “$$File, Surname$$File, Firstname$%”
‘Requester Name’ LIKE “%$$File, Surname%”

Server = $ ENV, ArsServer $

Meta-Update -30- User’s Guide

STH

Software Tool House Inc

Loads

You tell Meta Update what data records to load and what names you want to use for these
records.

LoadQ = PplReq, CTM: People, w1’ = “000000000041306"

Loads are processed based on a Query. In this case, the query must result in one and only
one record.

LoadQ = PplReq, SHR:People, ‘People ID’ = “$Arg, PplIds$™

Loads are processed in the order that they are coded and all the loads are completed before
the assignment process begins.

Note that Loads may be replaced by LookUp assignments. These allow multiple records,
default values in case of no matches, and cache records in memory.

Meta-Update -31- User’s Guide

STH

Software Tool House Inc

Types of Sections

This list summarises the types of sections used by Meta-Update.

Main Gives the update ARS server and sign on information and the Meta-
Update licensing information.

Read Servers Specifies additional read ARS servers and sign on information.

Control Specifies the operations you want Meta-Update to perform. These
are the heart of Meta-Update scripting.

File Defines the format of an external Ascll file.

Field Specifies the fields and field interpretation / transformation rules of an
external Ascil file, an SQL row, a regular expression extract.

Assignment Contains the actual field assignments to be made to the target form.
Also used to assign script variables and control script execution.

LookUp Used in an @LookUp assignment to provide a mechanism for
translating data values.

Meta-Update -32- User’s Guide

Software Tool House Inc

Control Sections

When you fire Meta-Update, you tell it which section is the first section to read in the script
file. This is like a “Main” in a program.

A Meta-Update control section and gives information about the operation you want Meta-
Update to perform, ultimately causing records to be added, updated, or merged, in an ARS
server.

Iteration

A section can perform its function exactly once or can iterate through a set of records or
values applying its output each iteration. Iteration may be based on:

An ARS query

A Direct SQL Query through the ARS API
A columnar, Ascli file

A list of values in a string

A diary field value

The set of fields in a Tag or record

A while loop

VVVVVYY

In the cases of Files and SQL you can set up interpretation and translations of the data. For
example, an ARS time field from a direct SQL column or a file column can be interpreted and
assigned to time and character fields resulting in a proper time stamp value.

An lteration may be terminated prematurely when an Until= condition is true.

The control section specifies the ARS output operation Meta-Update Output
will perform: Each section’s iteration will cause exactly zero or one output: an update, create,
or merge of an ARS record, or file. A sections output:
» May do nothing, so that it’'s assignment sections can fire,
» May always create a new ARS record,
» May create a record or update an ARS record based on a query, creating one if the
update query returns no records.
» May output a new file of a multi-pattern file, or a new record in a single pattern file, or
a new record in a columnar file.

Control sections specify sets of assignment sections that are called at
different times during the control sections iteration or to handle the
output assignments. Assignment sections are listed with different
keywords and a control section. They:

specify the assignment sectionss to be applied to the target update record for create
or update, or for the file output

fire once when the section starts

fire after the next iteration record or value is loaded but before an output is applied
fire if an update is applied successfully

fire if an update had an error

fire after an update is applied but before other sections are launched

fire after all Launches are processed

fire once on section termination.

Assignment
Sections

Y

YVVVYVYVVYY

Assignment sections can load records, SQL data, files, and transform data. They can launch
client or server processes. They offer nested ifs, includes, regular expressions, arithmetic,
date operators. In short, they offer a rich facility for transforming data.

Meta-Update -33- User’s Guide

STH

Software Tool House Inc

Finally, a section can launch other sections. All previously loaded Launching
references are available to the inner, launched section. These or
launches can be conditional. Nesting

The Launch is the key to the power of Meta-Update scripting. When you launch a section, all
of the references in all the previous sections is available to the launched section.

The update record is reread after the update to ensure all workflow results are available to the
launched section.

Meta-Update -34- User’s Guide

STH

Software Tool House Inc

Control Section Flowchart

This flowchart summarises a Meta-Update control section’s operation.

Assignments AssignInit
I |

<>

| Iteration? |

Do Loop Loop Loop Loop

one for each for each for each for each

time Query= QuerySgl= File= Loop=

only result record record record diary or string value

Apply value interpretation
Load and transformation rules
/;D nothing next ARS record next SQL row next File row next Value
| Assignments AssignPre |
» | Output A P P :Iu%“fiyt P l .
: None mt;m% rea‘% oai pda ;
; < > < < Merge ﬁ % '
. ignm Assi Assi Assign=)
. Assigriments Wy gn—= AssignNew— '
3 AssignClose=
. Create a new Create a new Create or modify
. record or file ARSrecord [e /\ anARSrecord
. iL | Reload created or updated record |
: N7 .
5 Assignments AssignPostOk AssignPostFail 2
3 AssignPost]
Launch invoke other control sections iteratively —) .
5 8 Assignments. . « « « ASSIigNPOSELAUNCR + + + + ¢ ¢ s e s 0000 e e e e e ;
| teration?
Qration
<
Assignments

Meta-Update -35- User’s Guide

Software Tool House Inc

lteration

A Control Section may either iterate or not. If it does not iterate, it performs its cycle once and
once only. If it does iterate, it loops, picking up a new record during each iteration, and
performing the actions specified, which can include creating or updating other records, and
launching other control sections.

The absence of an iteration statement, tells Meta-Update that the control section wants to
execute once and once only.

This control section may itself be launched from a control section that iterates. In that case, it
will perform operations once each time it is launched.

A control section can iterate on at most one of the following statements:

Query Allows you to iterate through the results of an ARS query, specified as
per the Advanced Query Bar in the BMC User Tool. Of course, the full
power of Meta-Update references is available for your query.

All records returned by the Query will be processed no matter what the
server limit is set to. If the Query returns more records than the server
limit, the Query itself will be chunked. The records are retrieved in blocks
of 100.

One can control the starting record number and the maximum number of
records of the Query results to process.

QuerySql Similarly, you can issue a direct SQL query through the ARS API,
iterating through the resulting rows, and, naming, interpreting,
transforming the resulting columns.

Remedy imposes no limit on SQL queries and returns all results when
the query is returned.

File Any type of columnar file can be iterated through. Values can be
transformed or interpreted.

CSV’s that Excel or the BMC Import Tool can’t handle, are not a problem.
For example, CSV’s with values having embedded new lines, stray,
undoubled quotes, or different delimiters, are all supported.

Loop Loops may be based on:
> the entries of a diary field, allowing you to create records for each
diary entry for example
> delimited strings, allowing you to process a Group List, or other
encoded value, such as lists of tables
> any arbitrary condition being true
> the set of fields in any Tag or Remedy record
the set of forms that make up a Join form

¥

A control section’s iteration can be stopped before the next iteration begins with an Until
statement. If an Until statement is coded, the iteration continues while the until condition
evaluates to true.

Meta-Update - 36 - User’s Guide

STH

Software Tool House Inc

Query

You can tell Meta Update to perform a query. Meta-Update will then iterate through the
results of the query, loading the records one at a time, and create or update the same number
of target records. If your query returns six results, you can update or create six records in the
target form.

A query is similar to a Load. You tag or name the loaded record so that you can use its data
in assignments, you name the query’s source form, and you specify a query string.

A query may refer to the target server (as specified in the Main section) or to any read
servers.

Query = PrdCode, ProductCode, &
‘Product’ = “Pkgl” AND ‘Status’ = “Active”

You can also use references in your queries.

Query = PrdCode, ProductCode, &
‘Product’ = “$\$001$” AND ‘Status’ = “Active”
Or:
Query = PrdCode, ProductCode, &
‘Product’ = “$SrcMasterProductSale, ProductCode$”
AND ‘Status’ = “Active”

Any query acceptable to the Remedy User Tool can be used. With Remedy, you must
specify field labels or field ids and not field names when describing fields within single
apostrophes.

With Meta-Update you can use field labels, ids, or names in ARS Queries. When using Meta-
Update references, only field names or ids are used.

The query is always done after all the load statements that precede it in the control section.
Any loads following the Query statement are done after the record from the query statement
is loaded but before the Update record is determined.

Other loads are possible during the processing of the assignments.

The number of query records returned are loaded one by one and can be referenced by the
tag, “PrdCode” in the above example. As many new target records are created as there are
results returned by the query.

Loads processed during the assignments are done during the results iteration, after the
current query result record is loaded and associated with the query tag. These loads and the
assignments may reference the query tag.

The placement of the guery= or File= specification within the control section is significant.
Only loads specified before the rile= or Query= can be referenced in the File= or Query=
statements. Only loads coded after the File= or Query== can reference items from the

File= and Query= records.

Note that only one of Query=, QuerySql= or File= may be used in any single control
section.

Meta-Update -37- User’s Guide

STH

Software Tool House Inc

QuerySql

You can also tell Meta Update to perform a query using direct SQL. Meta-Update passes the
query you code to the Remedy Server. Meta-Update will then iterate through the results of
the query, loading the records one at a time, and create or update the same number of target
records. If your query returns six results, you will update or create six records in the target
form.

SQL Columns can be named and interpreted. For example, ARS Date fields can act as
integers (un-interpreted) or as dates.

QuerySgl = BseGuid, @na, &
select instanceid &
from bmc.core bmc baseelement &
where modified date > $Vars, ArgDateEpochs$”

Or:

QuerySgl= TskCnt, @na, &
Select count (*) from ctm task &
where RootRequestInstanceID = ‘$IncSrc, InstancelID$’

File

A File= can be used instead of a query. Meta-Update will iterate through the records of the
file, loading the records one at a time, and create or update the same number of target
records. If your file has six records, you will attempt to update or create six records in the
target form.

A file is an Ascii file with columns separated by delimiters or in fixed positions. An example
could be a .csv file created by Excel, or an Exchange Post Office dump.

Using a rile= looks like this:

File = ExchSrc, ExchangeFileDef, File Name
[ExchangeFileDef]

File = d:\dta\ArsTemp\exchange.dat

Type = Delimited, “\t”

Fields = 1

In this example, each record of the file is loaded and tagged with ExchSrc. The column
names are taken from the first record in the file.

The data in the file can then be used as references.

The file name can be a reference or a constant. It must evaluate to a file name valid for the
OS. The OS user running Meta-Update must have read access to the specified file.

Meta-Update -38- User’s Guide

éST_fl

Software Tool House Inc

Loop

A Loop= can be used instead of a query or file. Meta-Update will iterate through the values
specified, loading those values one at a time into a reference tag you specify, and create or
update the same number of target records. If your loop value is parsed into six separate
values, you will attempt to update or create six records in the target form.

Loops can be performed

on string values that are separated by a delimiter
while a condition is true

on Diary field values

on the set of fields and values in a Tag

on the set of forms that make up a Join form

YYYYY

An example of a string value separated by a delimiter could be the User Group List of the
user form. You could, for example, create a record for each group in a user’s group list.

A Loop= looks like this

LoadQ = SrcTT, HPD:HelpDesk, ‘17 = “Arg, IDS”
Loop = Diary, sTag, $SrcTT, Notes$

LoadQ = Usr, User, ‘17 = “$Arg, IDS”
Loop = String, sTag, “;”, $Usr, Group List$
Loop = While, (exp)

Loop = Fields, sTag, SrcTag

Loop = Join, sTag, BMC.CORE:BMC Mainframe

In the first example, a Help Desk ticket is loaded into the Tag SrcTT. The Notes field, a diary
field, is parsed, and each entry in that diary field is iterated through. When the entry is
loaded, the following references are made available to the section:

sTag User the login name of the user who made the diary entry
sTag Date the date of the entry: yyyy/mm/dd hh:mm:ss
sTag DateMdy the date of the entry: mm/dd/yyyy hh:mm:ss
sTag DateDmy the date of the entry: dd/mm/yyyy hh:mm:ss
sTag Text the entry text

The Date value is useful for assignments. This is the format that Meta-Update expects for

date variables. The DateXxx values are useful for ARS Queries which require that the date
be formatted according to the machine’s locale. In Windows, this is set at a machine level.

On Unix, the local may be controlled by environment variables. The “C” locale, a default, is
refernced by DateMdy.

In the second example, a User record is loaded into the tag Usr. The Group List field is
parsed (based on the semi-colon seperator specified) into a set of single groups. Each of
those groups is interated through. When each group is loaded, the following references are
made available :

sTag Text the single group id as a string

Meta-Update -39- User’s Guide

STH

Software Tool House Inc

A sort may be specified if desired otherwise the entries will be processed in whatever order
they are specified in. In the case of a Diary field, that order is from least recent to most
recent. In the case of a string, it is simply the natural order of the contents of that string.

In the third example, the expression is evaluated and if true the the sections assigments and
outputs are executed. In this case, no tag is specified and no values are loaded.

In the fourth example, the Loop is executed for every field defined by the SrcTag. An @info
reference command is assigned to the sTag.

In the final example, the Loop is executed for each form defined by the specified Join form.
An @info reference command is assigned to sTag.

Until

Any iteration statement may be controlled with an Until statement.

An Until statement specifies a condition that, if true, causes the section to stop processing
the iteration.

The iteration is stopped without an error as though the end of the iteration was reached.

If you need to stop with an error, issue an Abort command in an assignment section such as
the AssignTerm.

So, for example, a While loop can be an Until loop:

[Loop]
Loop = @if (1)
Until = (“$V, quit$”)

Meta-Update -40 - User’s Guide

STH

Software Tool House Inc

Output

Create

You must tell Meta Update whether you want to update an existing record, or create a new
record.

If you are always creating a new record, in every iteration of a section, you code a Create-=.
The create= specified the schema for the record to be created in and the Tag that the re-
read record will be referenced as. Because the record is reread after creation, the Request
ID field will be available.

The assignment section is applied to a new record in the create= form.

If you want to create a new record or update an extant record depending on a query, you can
use the Update= statement.

Update

You may code a query to determine the update record. This query is coded in the Update=
statement.

Assignment sections can be coded for both updating and creating a new record when the
Update query returned no records.

When you do use guery= the record you want to update can be the result of that query, or, a
new record loaded from a query that returns one and only one record.

The simplest case is: the result of the query is the update target.

Query = Tgt, HPD:HelpDesk, ‘Master Ticket Id’ = “$$001$”
Update = Tgt

Here, an update will occur for each ticket satisfying the query condition.
In other cases, you’d need to load the update target record by issuing a different query based

on data in the results of the guery=. This second query is meant to find the target record ID.
It must return exactly one or zero records.

Load = Src, SalesProduct, “$5001%”

Query = Cat, ProductCat, ‘Product’ = “$Arg, Product$”

Update = Tgt, SalesItem, ‘SaleId’ = “$Src, SaleId$” AND &
‘Item’ = “$Cat, Item$”

Here, an update will occur for each Salesltem satisfying the query condition on the
ProductCat form. Running the update= query during the iteration of the results from the
ProductCat form will retrieve the actual Salesltem ID to be updated.

When you use a File= the record you want to update must be loaded from a query.

You'll need to load the update target record by issuing a query based on data in current
record of the rile=. This query is meant to find the target record ID. It must return one and

Meta-Update -41 - User’s Guide

STH

Software Tool House Inc

only one record.

File = ExSrc, ExchangeFileDef

Update = Tgt, SHR:People, ‘Email Address’ = “$ExSrc, email$”
Assign = UpdPeople

AssignNew = AsgNewPeople

[ExchangeFileDef]

File = d:\dta\ArsTemp\exchange.dat

Type = Delimited, “\t”, FldHdr

Here, an MS Exchange Post Office extract will be processed. Each SHR:People record with
the same email address as in the extract - with changes in the data basing assigned - will be
updated. If there is no SHR:People record with the email address, one will be created.

The r1dadr in the file definition section’s Type= indicates that the first file record contains the
field names. This is typical in Excel spreadsheets and in Exchange server extracts.

Output

A Meta-Update control section can also be used to create output ASCII files, either columnar,
like a CSV for example, or text files like emails, XML, or, HTML pages.

A single Output statement may
2 create a single file always appended to
> create a set of files appended to at different times
> create a new file on each iteration of the section

Fields can be defined for columnar files as well as field transformations. Fields can be copied
from Schema.

This is useful for generating complex reports where data is gathered from multiple forms and
records.

Meta-Update -42 - User’s Guide

STH

Software Tool House Inc

Launch

Meta Update allows you to follow chains of linked records. One control section can launch
other control sections, which can, in turn, launch still others.

For example, let’s say you have the following tables

Organisation 1:many Sites 1:many Services
You want to write a script to invalidate all Services belonging to an Organisation.
You write a Meta-Update control section that queries for the single Organisation record you
wish to invalidate services for. This control section launches a second control section that
queries for all sites associated with this Organisation.
That second control section processes a set of Site records and for each of those Site
records, launches a third control section that queries for all services associated with that
single Site record being processed.

That third control section invalidates the Services records for each Site of the Organisation.

Here is a simple file that will do this:

[Org]

Query = Org, Organisation, ‘1’ = $001

Launch = Site

[Site]

Query = Site, Site, ‘Organisation ID’ = “$Org, 1$”
Launch = Services

[Services]

Query = Service, Services, ‘Site ID’ = “$Site, 1$”
Assign = Servicelnvalidate

[ServiceInvalidate]
Status = TInactive

Launches can be conditional. That is, a separate section can be launched if a condition is
satisfied. That condition may be dependent on any of the data held in memory at the time the
launch condition is evaluated. This includes data from any previous control sections, the
current record from a query or file and the updated record. Further, the section name to be
launched can be derived.

Multiple launches can be coded for any section and a launched section can in turn launch
more sections.

Meta-Update -43 - User’s Guide

W ‘_
Software Tool House Inc

Control Section Example

Two rather contrived examples may help to illustrate.

Example 1

In this simple example, we want a command line script that will raise a new ticket. We’d like
the script to take one argument, a key to a configuration table that would give the details of
the ticket to be raised.

Example 2

In this update, we process a Query of an “Update” with five columns: Schema, Key value,
Key field label, field name, and field value. We want a script that processes that file, updating
only that field in the right schema record and ensuring no workflow fires or modification dates
are touched..

Example: Migrate any Table

This example will migrate any data table from a source server to a target server. The table
name is an argument to the script.

The configuration specified things like ticket CTI, Priority, Summary and Description and so
on. The script was passed the key value (a word) to look up in the configuration table. It
would do the look up, and if specified, build a ticket as configured.

SthMupd.exe Egl-TT-Create Reqg -p Tkt-Cfg-Typ-1"
[Main] The [Main] section identifies
ReadServers = ReadServer the ARS server and sign on
Server = ArsDev parameters. It also gives the
User = Demo script argument names and
usage information.
Arg = FormName
[ReadServer] The [ReadServer] section
Tag = SrcServer identifies the “Source” ARS
Server = ArsSourceServer.com server and sign on parameters.
User = Demo
[Do]
Query = (@SrcServer, The [Do] section is passed on
SrcRecord, the Meta-Update command. It
SArg, FormName$, .
1-1 queries the source server for all
Update - Upd, record in the passed ARS Form
$Arg, FormName, Name and migrates the data — as
‘1’ = “$SrcRecord, 18”7 is - using the Merge API.
Merge = Yes, No Workflow
Assign - Dorasg The [Do-asg] section holds the
AssignNew = Do-asg L . .
individual field assignments for
[asg] the updated record. In this case,
@Cmd = Copy, SrcRecord, we will copy all the data fields
CoreAssign from the source record into the

target record.

Meta-Update -44 - User’s Guide

STH

Software Tool House Inc

Installing

Meta-Update -45 - User’s Guide

STH

Software Tool House Inc

Meta-Update -46 - User’s Guide

STH

Software Tool House Inc

Installing Meta-Update

Meta-Update -47 - User’s Guide

STH

Software Tool House Inc

Expanding the Distribution

Meta-Update is distributed as a single zip or g-zip file.
The file may be expanded in your applications area. For example,
On Windows, you could unzip the distribution in:
“C:\Program Files\STH\”
Or

“C:\Program Files\SoftwareToolHouse\”

The zip creates a single directory containing all Meta-Update software, documentation, and
samples as described below.

The root directory is called Mupd_Xxx where X.xx is the Meta-Update release. This allows
you to test different versions and APIs of Meta-Update easily.

Meta-Update -48 - User’s Guide

STH

Software Tool House Inc

Complete Installation

There is no formal installation for Meta-Update. Meta-Update is meant to be run from a
command line or shell or fired by ARS workflow, or other automated processes.

By expanding the distribution file, you have completed the installation of Meta-Update.

You may choose to include the Meta-Update distribution directory on you path and your
library path. See Runtime Environment below for more information.

Meta-Update -49 - User’s Guide

W ‘_
Software Tool House Inc

Distribution Contents

The Meta-Update distribution has a single directory at the root.

The single directory is called Mupd_X_xx where Mupd_X_xx is the Meta-Update release. This
allows you to test different versions and APIs of Meta-Update easily.

This directory contains directories and files that is the Meta-Update distribution.

Directory Contents

docs This directory contains the Meta-Update user manual and the
Trace Facility Administration Guide. These are distributed as
two PDF files.

samples Contains sample Meta-Update scripts and a sample Trace
configuration file.

bin Contains all required binaries (.exe) and libraries (.dll) for Meta-

Update and bundled utilities.

This is the 32 bit path. It is the only path that can be used on
computers that have a 32 bit architecture. For computers with
64 bit architectures, Software Tool House recommends that the
64 bit binaries be used. See below for the bin64 directory.

It is recommended that this path be added to the system
Environment Variables for use by a Server, and in the User’s
Environment Variables for workstations.
bin64 This contains the x64 bit versions of binaries (.exe) and libraries

(.dll) for Meta-Update and bundled utilities.
This can only be used on x64 architectures.
It is recommended that this path be added to the system
Environment Variables for use by a Server, and in the User’s
Environment Variables for workstations.

The Meta-Update distribution includes a “bin” and “bin64” directory.

“C:\Program Files\SoftwareToolHouse\Mupd 5 56\bin”
“C:\Program Files\SoftwareToolHouse\Mupd 5 56\bin64”

This “bin” and “biné4” directories contain all required binaries (.exe) and libraries (.dll) for
Meta-Update and associated utilities.

You must use the “bin” directory on 32 bit computers and we recommend you use the
“bin64” directory on 64 bit computers.

It is recommended that this path be added to the system Environment Variables for use by a
Server, and in the User’s Environment Variables for workstations.

All Meta-Update binaries print usage instructions when entered with no arguments.

Meta-Update -50 - User’s Guide

STH

Software Tool House Inc

The Meta-Update distribution contains the following binaries for both 32 bit and 64 bit
architectures:

File Contents
SthMupd.exe Meta-Update. - using local trace.

This single executable is Meta-Update. It appends to a single
log file — sthMupd. 1og — On each run.
SthMupdTrc.exe Meta-Update. - using global trace.

This single executable is also Meta-Update with a
communication based for logging facility.

It will either behave as sthMupd.exe, Or, if the SthTrcDaem. exe
process is running (see below), will send its logs and messages
to that process. sthTrcDaem.exe can be configured and
controlled.

Note that Meta-Query, Meta-Delete, Meta-Schema are also
offered in this trace facility by suffixing “Trc” to the binary
names.

SthMqry .exe Meta-Query

This tool allows you to issue ARS and SQL queries through the

ARS API and print or create CSVs from the results. Please See

the Meta-Query User’s Guide for more information.
SthMsch.exe Meta-Schema

This tool allows you to find information about the ARS forms
and fields on your server and print or create CSVs from the
results. Please See the Meta-Schema User’s Guide for more
information.

SthMdel .exe Meta-Delete

This tool allows you to delete records from ARS tables on your
server. Please See the Meta-Schema User’s Guide for more
information.

SthLicUpd.exe License Updater and Password Encryptor
This utility is used to generate an SthLic.cmd or SthLic.sh
file that sets environment variables for ARS server,
authentication and Meta-Update licensing.
Itis also used to encrypt ARS authentication passwords.

SthTrcDaem.exe The Trace facility daemon.

This binary can be started when the machine powers on and left
to run until the powers off.

See the Software Tool House, Trace Facility Administration
Guide for more information.

Meta-Update -51- User’s Guide

STH

Software Tool House Inc

SthTrcCtl.exe
SthTrcEcho.exe

SthArsTime.exe
SthSiniGet.exe

Meta-Update

The Trace daemon control program.

This program is used to control the trace levels, files, sizes, and
S0 on. It communicates with the sthTrcDaem.exe process.

The Tracy utility that can be used to write messages to the trace
facility.

Allows easy conversion of Remedy time stamp values.

Allows extracts of script files to be used in batch files and
performs a simple validity test on scripts.

-52 - User's Guide

STH

Software Tool House Inc

Running Meta-Update

Meta-Update -53- User’s Guide

STH

Software Tool House Inc

Meta-Update -54 - User’s Guide

STH

Software Tool House Inc

Running Meta-Update

In this section, we will cover:

Setting up the run time environment
BMC Remedy API versions
Meta-Update program versions

Using the license keys

Environment variables

The Meta-Update command line usage
Meta-Update output and return values
Meta-Update Tracing

YYYYVYYYY

Meta-Update -55- User’s Guide

W ‘_
Software Tool House Inc

Run Time Environment

Meta-Update runs in a Windows "Command Prompt" or UNIX shell.

Scripts and files developed and referenced may be interchanged freely between Window and
UNIX.

Meta-Update scripts can be run
» manually in a shell or command prompt
> in a filter with the $PROCESS$ actions
» through a batch file or shell or Perl script
» through an OS scheduler like cron or at.

The runtime environment is the same for workflow, script, and manual operation.

The Meta-Update “bin” and “bin64” directories contain all required Meta-Update binaries or
execuable programs, shared objects and dlls. The Meta-Update bin directory should be on
the path.

On Windows, one of the two the Meta-Update “bin” and “bin64” directories needs to be in
the PATH= environment variable.

Set PATH=D:\Apps\Sth\Meta-Update-5.56\;%PATH%
The program operates in a Command Prompt, or “DOS Box”, or as a fired process. Local

trace files are written in the current working directory by default.

On Solaris or Linux, one of the two the Meta-Update “bin” and “bin64” directories needs to
be in the PATH= and LD_LIBRARY_PATH= environment variables.

export PATH=D:\Apps\Sth\Meta-Update-5.56\:$PATH
export LD _LIBRARY PATH=D:\Apps\Sth\Meta-Update-
5.56\:$LD_LIBRARY PATH

The program operates under any of the available shells or as a spawned or background
process. Local trace files are written in the current working directory when not specified.

Meta-Update - 56 - User’s Guide

STH

Software Tool House Inc

BMC Remedy API Versions

Meta-Update is generally compiled against the most current BMC supplied version of the
BMC Remedy API. The Meta-Update distribution includes all BMC supplied dlIs that are

required.

The Meta-Update API version does not need to match the version of the servers that Meta-
Update establishes with. Meta-Update can establish multiple connections to different
Remedy servers of different releases.

Software Tool House always recommends that the highest API version is used no matter
what your server version is.

Meta-Update -57 - User’s Guide

W ‘_
Software Tool House Inc

Program Versions

There are two versions of Meta-Update and bundled utilities with different names. One is
used for local tracing and the other includes tracing through a trace server. These programs
have different names. They are the same name in all operating systems:

SthMupd.exe Local trace version
SthMupdTrc.exe Trace server version

Logging is controlled by the Meta-Update —d switch in the same way across versions. See
The Command Line below for more information on the —d switch.

The local trace version always appends to a file named SthMupd. log in the current directory
unless the trace file is named with the —d switch.

With the Trace server version, traces are sent to the trace server. The trace server is
administered to record selected levels of traces and discard other levels. The trace server
version, needs both the —d switch, and the trace daemon set correctly for debugging traces to
be captured

The trace server must be running on the same machine as Meta-Update. Communication to
the trace server is with the standard message queue facility under Unix or with Named Pipes
under Windows.

If the Trace Server version of Meta-Update is run, and the trace server is not started, Meta-
Update will act as though the local trace version was run. That is: a file named

SthMupd. log in the current directory is appended to unless the trace file is named with the -
d switch.

More information can be found on the Trace facility in Server Tracing below, and the
document, The Common Trace facility.

Meta-Update -58 - User’s Guide

STH

Software Tool House Inc

The License Key

You need a license key to run Meta-Update. Please see Licensing below for more
information on licensing Meta-Update and obtaining License Keys.

You can tell Meta-Update the license key in one of three ways:

2 Code it in the script itself.
2 Set an environment variable with it as done with SthLic.cmd and in the samples.
> Setitin a special form and record on the target ARS server.

In the latter case, the STH: License form must have a valid licence key. This form needs to
be on the Script’'s Target ARS server. In the first two cases, the overhead of an extraneous
Query and Get from the Remedy ARS server will have been avoided.

The environment variable to be set is sthMupdLic. In the script, you can specify License= in
the [Main] section.

A utility is used to generate an SthLic.cmd Windows batch file, or SthLic.sh bash shell script.
This is a convenient way to set licensing, server and authentication parameters. It also allows
ARS User passwords to be encrypted. See SthLicUpd Maintenance Utility below.

Meta-Update -59 - User’s Guide

STH

Software Tool House Inc

Environment Variables

Both Meta-Update and the BMC Remedy API can be affected by using Environment
Variables®. This section defines the Meta-Update environment variables and the values and
behaviours associated with them.

BMC Remedy documentation is the accurate source for documentation on the BMC API
environment variables. We summarize them here because they affect Meta-Update
behaviour.

Meta-Update environment variables are fully defined below:

Environment Variable Description

SthScriptPath A path-like environment variable for finding Meta-
Update scripts and files.
SthApiRetry Allows Meta-Update to retry API operations on any

BMC Remedy API errors or during server outages.

SthMupdLic Specifies the Meta-Update license key for the main
server.

BMC Remedy API environment variables are specified in the BMC provided documentation.
The usage of these variables may be changed at any time. This list is included for
convenience and because it affects and overrides Meta-Update behaviours. Validate all
usage of these variables with your Remedy documentation.

Environment Variable Description

ARAPILOGGING Generates two files in the current working directory of
the running Meta-Update process. Conflicts will occur
when multiple Meta-Update processes with this
environment variable are run.

ARTCPPORT Sets all connections TCP Port to the servers.
Overrides the Meta-Update port= keyword which can
be different for different servers.

Specifies a private RPC port for all server connections.

Script Path Environment Variable

Scripts may be specified on the command line or may be found by searching an
SthScriptPath environment variable.

SthScriptPath is set the same way as PATH according to the OS that Meta-Update is running
on.

,.' On Windows, one could set the script path like this:

set SthScriptPath=E:\Projects\ITSM\Scripts;D:\Apps\STH\samples\;

L “Environment variables are a set of dynamic named values that can affect the way running

processes will behave on a computer.” - Wikipedia

Meta-Update - 60 - User’s Guide

http://en.wikipedia.org/wiki/Value_(computer_science)
http://en.wikipedia.org/wiki/Computer_process
http://en.wikipedia.org/wiki/Environment_variable

Software Tool House Inc

On LINUX, one could set the path like so:
export SthScriptPath=/Projects/ITSM/Scripts/:/Apps/STH/samples:
Note the difference in the path and directory separators.

Subdirectories in the paths are not searched. However if the script passed to the command
line contains a relative path, that relative path will be checked against the SthScriptPath
and the first matching file will be opened.

API Retry Environment Variable

A Meta-Update job normally returns any errors received from the ARS server during any of its
API calls and cancels the single record it was processing. It would then continue with the
next record.

It is useful to protect the Meta-Update run from a server timeout, crash, or restart. Meta-
Update can retry some API calls to the server based on configurable ARERR codes, a
maximum number of retries, and a delay between retries.

The environment variable SthApiRetry= may be used to specify these retry settings.
Without this environment variable, all API calls that fail cause an error in Meta-Update that
can result in a record being lost, not found, or the Meta-Update job terminating before
processing all records of a query.

The SthApiRetry= string is either a single or multiple sets of three numbers:

start ARERR number [- stop ARERR number] Retries Delay

start ARERR number Single or ranges of ARERR numbers can be specified.
[-
stop ARERR number]

Retries A Retry count of 0 means infinite number of retries.
Delay The Delay is in seconds. A Delay of O means no
delay.

The following example illustrates its use to protect against servers crashes and servers that
have timed out.

set SthApiRetry=90-92 0 60 93 0 30

export SthApiRetry=90-92 0 60 93 0 30
These examples retry API calls resulting in error 90, 91, 92, 93, retrying an infinite number of
times, with a 30 second delay on ARERR 93 (timeout due to busy server) and a 60 second
delay for ARERR 90, 91, 92.
Note that for Query timeouts (94), retries will generally not resolve the problem. Instead use

the TimeOutLong= keyword of the [Main] section.

fs

Meta-Update -61- User’s Guide

STH

Software Tool House Inc

License Environment variable

SthMupdLic = license-key

If this environment variable is defined, the license check is made against the value associated
and no read is performed on the ARS server.

This is primarily used on the server and also in high performance situations.
AnyVar = Value

Any environment variable may be used in a Meta-Update script. All defined environment
variables are referenced by the reserved tag, ENv. The field name is the environment variable

name.
Environment variables, like all other field names are case sensitive.

Loop = String, Pth, ”;”, SENV, PATHS
The above example loops for every directory in the PATH environment variable.

As another example, the environment variable, ArsGlobals = 5, could be used to load a
site-specific set of values and keys to other records.

LoadQ = Tag, Schema, ‘1’ = S$ENV, ArsGlobals$

Meta-Update - 62 - User’s Guide

Software Tool House Inc

The Command Line

A Meta-Update command at a minimum specifies the Meta-Update script and the starting
section within that script.

That script may require arguments and Meta-Update accepts built-in switches — for example
to run the debugger or increase logging detail.

To maintain compatibility there are two forms of Meta-Update command lines that can be
given.

The older, deprecated, command line uses unnamed positional script arguments coded in the
order of the script’'s Arg= statements and following a —p place marker.

>>> SthMupd.exe 090-SvrAdmin\220-SwLogs.ini Do -p tstl
I terminating successfully in 2 sec.

The new command line uses named arguments that can be coded in any order before or after
the script and section.

>>> SthMupd.exe 090-SvrAdmin\220-SwLogs.ini Do -log tstl
I terminating successfully in 2 sec.

Either form of the command line may be used on any script. Software Tool House
recommends the use of switch based arguments for clarity.

By convention, in this document and in our samples, script arguments are specified after the
script file and section name.

>>> SthMupd.exe 090-SvrAdmin\221-SwLogs.ini Do
Line 28 - required argument -log not on command line; no default

specified

E Function:

E This is a Meta-Update script that switches the ARserver log files
E

E Usage

E SthMupd 221-SwlLogs Do -log =xxx

E where XXX is a log file name without a path

E and without the .log

E The path and ".log" are configurable
E in the script

E Examples

E SthMupd 221-SwlLogs Do -log my

E . will set all log files to:

"/apps/bmc/ARSystem/db/my.log"
E .
E terminating unsuccessfully in 2 sec.

Meta-Update has a set of switches that may be specified on the command line. Each script
can also define a set of arguments that may be set on the command line.

Entering the Meta-Update command with no arguments yields usage help. Entering the
Meta-Update command with the single —help switches yields more detailed help.

SthMupd. exe
SthMupd.exe -help | more

Meta-Update -63- User’s Guide

STH

Software Tool House Inc

Switches

Entering the Meta-Update command with no arguments or the single -help switch yields

usage help.

SthMupd. exe

SthMupd. exe | more

Logging

-d Specifies logging.
By itself, all specified full debugging logs to the default log file
with no ARS Server logging and no Debug?2 logging.

--d As above but includes Debug? logging and ignores any Trace
assignment commands in the script.

-q Inhibits echoing of specific logs to the console but does not

affect the logging file.

Verbose. Equivalent to —d:gas
All field structures, queries, and data values are logged.

Development switches

-e

Single error mode.
Stops execution of the script when the first error is encountered.

-9

Debugging more.
Enters the Meta-Update debugger.

Server switches

file.

Note that servers and authentication may be specified on the command line, in
the script, or default to the environment variables set by the SthLic. emd batch

Defaults for the Main server when not coded on the command line or in the script
are the environment variables:

ArsSvrAdmin | The server name or IP.

ArsPort The server port. Use of the port mapper is

the default and can be specified with zero.

ArsUsr The ARS user that Meta-Update will be

running under. Note that this user
generally has administrator rights.

ArsPwd The encrypted or plain text password of the

ARS user that Meta-Update will be running
under.

—server XXX

Specified the main ARS server.
May be an IP or machine name. May also point to a specific
server of a load-balanced server group.

-port XXX

Specified the main ARS server’s port number.
Zero is the default and indicates that the port mapper is used.

—user XXX

Specified the main ARS server’s login user that Meta-Update will
be running under.
Note that this user is generally an administrator.

-password XXX

Specified the ARS user’s password.
May be plain text or encrypted with SthLicUpd. cmd.

Other switches

-help

Summary usage instructions.

Meta-Update

- 64 - User’'s Guide

STH

Software Tool House Inc

Usage Help Text

Meta-Update Version 5.56 (x64) for ARS 1lib 8.1.2
(c) Copyright 1996-2015 by Software Tool House Inc.
www.softwaretoolhouse.com

Function:
SthMupd runs a Meta-Update script at the specified section
against a BMC Remedy Server.

Function:
SthMupd runs a Meta-Update script at the specified section
against a BMC Remedy Server.
See: http://www.softwaretoolhouse.com for the User's Guide and Licensing.

Synopsis:
SthMupd [switches] script-file section [script-arguments]

The script-file and section must follow each other.

Switches and arguments have the form: -switch [value]

The script can include named arguments which are specified by using the script's
argument name as the switch followed by the value for that argument. The script
should explain its usage when run with Meta-Update with no switch arguments.

script-file is the Meta-Update script to run; may be found in the path-like
Environment Variable: SthScriptPath
section a section to process in the script file ("Do" for samples)

switches for logging; Warning: Produces large output and slows throughput.

-d Full tracing into SthMupd.log with no '2' or ARS server tracing
--d Full tracing like -d, plus: '2' and ignores script Trace commands
-d:x,y, f Tracing: x specifies tracing levels: gsad2flp

y ARS client tracing flags: fsap
f is the tracing file name (local or Caution: global)
-q, —quiet Quiet: inhibit all output to stdout (not log!)
-v Verbose: same as -d:gsa
switches for script development:
-g Debug Mode: enter script debugger; "help" for commands.
-e single Error: terminate job on first error (for script dev/test)
switches for specifying servers Note that servers must be licensed.
Set defaults with SthLic.cmd

-server server the [Main] server default: ENV, ArsSvrAdmin

-user user the [Main] server's ARS user default: ENV, ArsUsr

-password Enc:xxx the [Main] ARS User's password default: ENV, ArsPwd

-port port the [Main] server's ARS Port or 0 default: ENV, ArsPort

other switches
-help more detailed help (pipe to more)

Deprecated positional argument synopsis:
SthMupd [switches] script-file section [-p script-argl [arg2 [arg3 [
111

For more details, execute:
SthMupd -help

143704.690 i terminating successfully in 0 sec.

In the local trace version, the -d switch causes a high level of tracing. This data is appended
to a file that will grow if not deleted occasionally. Without the -4, the file will still be continually
added to, but at a much reduced volume. Only Error, and other informational messages will
be written. See Tracing below for more information.

Meta-Update - 65 - User’s Guide

Software Tool House Inc

In the Trace Server version, the -d switch causes a lot of message traffic between Meta-
Update and the Trace daemon. The trace files are cycled through and do not grow beyond
the limits specified in the trace configuration. See Tracing for more information.

The -g switch indicates quiet operation. No messages will be echoed to the stdout or stderr
files at all. This includes all Error and Info messages as well as the copyright notice. These
messages will still appear in the logs.

The -n switch indicates a null operation. No database writes are performed but all queries
and loads are processed. The assignments are also processed and the updating data is
printed to the console. This may be very useful when you are developing a new script file.
Note that with complex scripts, because no database writes are performed, references
needed may not exist.

The -e switch indicates a “single error” operation. The first error that occurs will stop the run.

Normally, a file or query is processed and sections that are launched may succeed or fail. If a
launched section fails, then the remaining records in the file or query continue to be
processed. Using the —e switch changes that behaviour so that the job is ends when the first
error happens.

When developing scripts, this allows the developer to sort out each section in sequence
quickly.

The script-file parameter is the name of the file containing the Meta-Update controls and
the target record assignments. It must exist and read access must be permitted for the user
running Meta-Update.

The Arsvr, ArUsr, ArPwd, and, ArPort parameters will override similar parameters in the
Main section of the script file. If they are not coded in the assignment file, they are required
on the command line.

If Arsvr is coded, the ArUsr, ArPwd, are also required, and Arport is required if the listed
server does not use Port Mapper. The command line arguments cause the equivalent script
file keywords to be overridden and ignored.

Generally, one would code these in the file and let the operating system'’s file security prevent
unauthorised access to that file. This would keep the ARS User and password secure. In the
script, these may be set to environment variables or other references.

The —p is simply a separator from the previous server, user parameters, and all the following
parameters. These next parameters can be referenced in the script file. They can be
referred to as $001, $002, and so on, or they can be named and referenced by those names.
These passed arguments can be used as keys in loads, or as text in queries and
assignments. Wrap long values in quotes according to your shell as needed.

Using Positional Arguments (Deprecated)

Following the script and section a —p switch is used as a script Argument place holder. This
is followed by the argument values specified in the same order as the Arg= or ArgNm=
statements in the script.

As this is deprecated, Software Tool House recommends updating any batch files or
$PROCESSS$ filters to use the new switch based command line syntax.

Meta-Update - 66 - User’s Guide

STH

Software Tool House Inc

Program Return Values

The program returns a zero upon successful completion. If any errors occur, the program
returns 1. This value may be used in scripts to decide a course of action.

Errors and important informational messages are reported the trace file. They are also
echoed to stderr, generally the console.

stderr may be redirected. On UNIX and Windows, the syntax is the same:
SthMupd.exe P 2>>errors.txt

Or
SthMupd.exe Coe . 2>errors.txt

The first command appends between runs. The second creates a new file each time.

This file may be examined with any Ascll editor such as Notepad, Word, vi... The format of
the trace messages are explained further in Tracing below.

Note that error messages are also always written to stderr, which is generally the console

window. If redirected as in the above example command invocations, Errors and Warnings
may be grep’d or find’d from this file. See Tracing below for more information.

Meta-Update - 67 - User’s Guide

S/ \H

T

Software Tool House Inc

Program Output

Unless the —q switch is used, Informational, Warning, and Error messages are echoed to the
console. These messages tell you what section is working on what record and lists outputs to
ARS tables. These messages are also captured in the trace logs.

An example:

E:\Dta_wrk\ > SthMupd.exe AAA-Create-Launch.ini Do -p 426 429

Meta-Update

153544.
153544.

153544.

153544.
153544.
153544.
153544.
153544.
153545.
153545.
153545.

153545.

153545.
153545.

153545.
153545.

153545.
153545
153545
153545
153545
153545
153545
153545
153545
153545
153545
153545
153545
153545
153545
153545
153545
153545

312
312

781

781
890
921
968
968
031
031
031

031

031
125

125
187

187

.234
.234
.234
.234
.234
.234
.234
.234
.234
.234
.250
.250
.250
.250
.250
.250
.250

Version 5.56 (x64) for ARS 1lib 8.1.2

(c) Copyright 1996-2015 by Software Tool House Inc.

i
i

W

I SR o PR TR A

=

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

E:\Dta_wrk\

Meta-Update

www.softwaretoolhouse.com

[Do] One:

[Do] One: Launching: 1 of 2 [CreRec2] from Qif ("$Arg, Id2$" == "",
CreRec, CreRec?)

[Do] One: Schema= in file: AAA-Create-Launch.ini [CreRec2] Schema=

line: 103 1is deprecated; ignored

[CreRec2] Qry: 1 of 3: A first record

[CreRec2] Qry: 1 of 3: Merged schema: Test, Id: 000000000004474 0OldId=
[CreRec2] Qry: 2 of 3: and now, only seconds lat

[CreRec2] Qry: 2 of 3: Merged schema: Test, Id: 000000000004475 OldId=
[CreRec2] Qry: 3 of 3: A second entry made a few

[CreRec2] Qry: 3 of 3: Merged schema: Test, Id: 000000000004476 OldId=

[CreRec2] Qry: eof 3 record OK; 0 records with errors; total: 3.
[Do] One: Launching: 2 of 2 [CopyRec2] from Q@if ("$Arg, Id2s$" == "",
CopyRec, CopyRec?2)

[Do] One: UpdateO= in file: AAA-Create-Launch.ini [CopyRec?2] Update0=
line: 98 1is deprecated. Use AssignNew=

[CopyRec2] Qry: 1 of 3: A first record

[CopyRec2] Qry: 1 of 3: Merged schema: Test, Id: 000000000004477
0ldId=

[CopyRec2] Qry: 2 of 3: and now, only seconds lat

[CopyRec2] Qry: 2 of 3: Merged schema: Test, Id: 000000000004478
0ldId=

[CopyRec2] Qry: 3 of 3: A second entry made a few

[CopyRec2] Qry: eof 3 record OK; 0 records with errors; total: 3.
[Do] One: 1 record OK; 0 records with errors; total: 1.

Statistics:
Sections:
Maximum section depth:
Assignment Sections:
Singleton Sections:
Queries:
Query records:
Output Schemas:
Output Schema records:
Output Schema records:
Outputs OK:
Outputs Errors:
Outputs Aborts:
Input Errors:
terminating successfully in 1 sec.

errors: 0
errors: 0

created
updated (with 0 skipped)

OO OO0 OoOoaNEFE N W

>

- 68 - User's Guide

The 24h local time Message type:

STH

Software Tool House Inc

to the millisecond. E Error
W Warning
i Information Section’s iteration type and
count, and for Loops, the
Control Section Loo%type:
. ne:
being processed. Ory: n of m:
Sgl: n of m:
Fle: rec n:
Lp: n of m: Dry:
JV v l
153544.312 i [Do] One:
153544.312 i [Do] One: Launiching: 1 of 2 [CreRec2] from @if ("$Arg, Id2s$" == "",
CreRec, CreRec?)
153544.781 W [Do] One: Schema= in file: AAA-Create-Launch.ini [CreRec2] Schema=
line: 103 is ﬁeprecated; ignored
153544.781 1 [CreRec2] Qry: 1 of 3: A first record

Each iteration shows data from the Query,
Sql, File, Loop record, row, or data. For
Queries, this is the Administrator
programmed, query results — generally the
Short Description field.

Meta-Update - 69 -

A script source file reference
giving the section, keyword,
and line number.

User’'s Guide

STH

Software Tool House Inc

Ideal Command Prompt Properties

Software Tool House recommends that for the convenience of the Meta-Update script
developer, the Command Prompt have a wider and deeper buffer and that Quick Edit mode
be set. This applies to the UNIX shell as well.

=+ “Cmd Box” Properties ?) _ <\ "Cmd Box" Properties
Optiang] Fort] Lapout] Colors] Options] Fomt Lawout l Colors]
Cursor Size Display Optionz Window Preview Screen Buffer Size
: * Window Wwidth: =
" Full Screen Height: m
Command History Edit Options Window Size
Buffer Size: = ¥ QuickEdit Made idth: 10
Murmber af Buffers: m ¥ Inzert Mode Height: £9 3‘
v Discard Old Duplicates }‘:unFil[r:I1Naésocrr;lzr;n2$;f;;?ize will |~ Window Position
wirdaw Left:
Tep: 2 =
[v Let spstern position window
,Tl Cancel | ,Tl Cancel |

On Windows, click the Command Prompt Icon on the Title Bar, select Properties and ensure
that QuickEdit Mode is on and then increase your Buffer Size Width and Height.

In addition, we highly recommend that “Cygwin” be installed, and Meta-Update script
developers become familiar with it. There are numerous utilities that are especially useful for
handling large log files.

“Cygwin” provides open source UNIX-like utilities and shells for Windows. It is available at
WWW.Cygwin.com

Meta-Update -70 - User’s Guide

file:///C:/Users/W701/AppData/Roaming/Microsoft/Word/www.cygwin.com

STH

Software Tool House Inc

Tracing

Tracing can be controlled through the use of the —d switch. When a —d is specified with no
additional options, full Meta-Update tracing is turned on. With -d no ARS client tracing is
turned on.

With full tracing a great deal of data is generated. Without -d, only a very few messages will
be traced.

Tracing levels for both Meta-Update and ARS can be specified with the —d: switch options.
-d [fpd2as ,] [fsap] [, file]

The first set of letters specifies the Meta-Update tracing levels. A comma is used to separate

the Meta-Update levels and the ARS levels. The second set of letters specifies the ARS

client tracing level. A further comma separates these levels from a specific trace file name.

If a full tracing switch is specified, further switches may be specified as the next set of
parameters.

For Meta-Update tracing, the levels are specified with a single case sensitive character as
follows:

S Severe Severe error
E Error Error
W Warn Warning
A All Always like info but never masked out
R Run Run execution instance
Script Processing These are on by default but may be turned off.
i Info Informational (on by default)
Script Debugging These are echoed when selected with the -d
Q OQry ArQuery, Sqgl; all query strings
G Get ArGet all ArRecGet ids
U Put ArPut all ArRecPut ids etc
Debugging settings These are never echoed.
Caution:These generate masses of logs and can affect performance.
F Func Function entry and exit
d Dbg Debugging detailed debugging
2 Dbg2 Debugging 1lvl 2 more details yet
a Data Data data values: records, fields
s Struct Structure data Structures
1 List Script listing and files are logged

For ARS tracing, the user id the Meta-Update signs on the update ARS server must be in the
Group that the ARS administrator has specified client side logging for in the Server
Information panels using the ARS Administrator tool.

The following options can be specified:

S SQL logging
f filter logging
a API logging
p Plug-in logging

Specifying any ARS tracing implies Meta-Update tracing of level 2.
In the next example, we want the filter traces from ARS and the Meta-Update data traces.

This will show us what value each field had before the ARS submit, set, or merge call, as well
as the filter logs produced by that call.

Meta-Update -71- User’s Guide

W ‘_
Software Tool House Inc

-d:a,f

In this example, we want complete tracing, including complete ARS tracing, and we want to
direct it to a specific file:

-d:,sfap,d:\trc\my-script.log

There are two versions of Meta-Update: one uses local tracing and produces a trace file in the
current working directory of where the program is run.

Local Tracing

The local trace file is called sthMupd. log unless a file name is specified on the -d switch.
SthMupd . log can be found in the current working directory of the Command Prompt or shell
where Meta-Update was run from.

This file is appended to with each execution of Meta-Update. sthMupd.log Will continuously
grow in size. Itis recommended that you delete the file before the next execution of Meta-
Update.

There is no locking mechanism for multiple instances of Meta-Update running simultaneously
in the same directory. This can happen when ARS workflow fires a Meta-Update process on
the server.

It is recommended that if Meta-Update will be used in workflow, or in multiple, concurrent
instances on a single machine, that the Trace server version be used. The Trace server must
be running.

For ad-hoc runs of Meta-Update from a client machine it may be more convenient to use the
local trace version.

When using the —d switch, a great deal of logging information may be written.
With or without full tracing, a file is created or appended to each Meta-Update is run. This file

will grow in size. It is the user’s responsibility to remove this file from time to time as
appropriate.

Meta-Update -72 - User’s Guide

STH

Software Tool House Inc

Server Tracing

An alternative, communication based trace facility is available for high use applications. With
this server based trace facility, the machine administrator manages the detail of the
messages captured, and the size and number of trace files. Tracing is controlled
independently of any application using it.

Trace
Configuration

Dasemon

LNx Windows
Message Named
Quaus Pipes

“__—5
w‘\l _“K* Trace
\ Cortrol
\
\ CJ
Apphoabon \ i
Y \\ Administrator

Appd b:.'n::u\I

.

Appheation

All client binary (executable) names that have the server based tracing included are suffixed
with “Trc”. Meta-Update, for example, would be sthMupdTrc.exe.

If the trace daemon is not running, the same local trace file, sthMupd. 1og, is created or
appended to. .

The following binaries are supplied with the server based tracing facility.

trcdaem.exe This is the trace server itself. It should be started automatically when
the machine starts.

trcctl.exe This controls the trace daemon allowing the tracing levels to be set,
switching to the next generation of trace file, and shutting down the
trace server.

trcecho.exe This utility adds records to the trace file and can be used in shell scripts
or Windows command files.

Note that Meta-Update must be invoked with a —d switch for any debug level traces to be sent
to the trace daemon. The trace daemon must also be set to capture the level of tracing
desired.

The trace daemon uses a configuration file to specify both communication parameters and file
handing and other trace daemon operational options.

Meta-Update -73- User’s Guide

STH

Software Tool House Inc

All trace clients, such as Meta-Update or sthMupdTrc.exe for example, need to access this
file to read the communication parameters. The location of this file is given by an
environment variable.

On UNIX the trace daemon uses the PoSIX message queue facility. The daemon should be
run at a higher priority, or lower nice value, than any of its clients to prevent messages being
lost. Further, system parameters should be adjusted so that the message queuing is not a
performance bottleneck.

Under normal production usage (without the —d switch) very few messages are sent to the
trace daemon and so performance is not generally an issue.

On Windows, Name Pipes are used to implement the inter-process communication. This will
generally not require any system parameters to be changed to affect the performance. The
trace daemon performance is not generally a bottleneck on Windows systems.

Note that to capture a level of trace messages beyond the minimum, both:

v" The trace daemon is configured to include the desired trace level, or by using the
trace control program. the desired trace level is on; and,
v" The program will have been run with the -d switch specifying the desired trace level.

An environment variable is used by the trace daemon and all trace clients. This environment
variable specifies a trace configuration file. The environment variable can be set in Windows
as a system wide variable.

Set TrcIni=c:\etc\conf\SthTrc.cfg

The configuration file must exist. It is an Ascli file (created with Notepad or vi for example)
and follows the format rules for a Meta-Update command file but with no section names. It
can have these variables:

Trace facility configuration file for sth-m3
file: e:\etc\confl\trace.ini
#
Environment variable must be defined system wide...
TrcIni=e:\etc\conf\trace.ini
#
QueueKey = e:\etc\conf\trace.ini
TraceFile = e:\trc\trace
GenMax = 99
RecMax = 500000
TrcLvl = dasfp2
TrcTme = 30
ErrLog = e:\trc\error.log
ScOpen = cmd /c trcerrm.cmd
QueueKey = is used on Unix platforms only. The message queue is opened using
the specified file’s i-node as the key. On Windows this parameter is
ignored.
TraceFile = specifies the fully qualified prefix for the trace files. The string specified

is suffixed with .xx where xx is the current open trace file.

Meta-Update -74 - User’s Guide

STH

Software Tool House Inc

GenMax = specifies the maximum number of trace files to produce. Specifying 99,
for example, would mean that a maximum of 100 files named
e:\trc\trace.01, .02, .. .99 could exist at the same time. After trace.99 is
filled up, trace.01 will become the current file.

RecMax = specifies the maximum number of records per file. When this number
is reached, the trace file will be closed and the next trace file will be
opened.

TrcLvl = the starting trace level. See trcctl.exe for more information about the

levels and their meanings.

TrcTme = a normal trace client is presumed to live for a short time between
issuing traces. Long lived processes may have larger amounts of time
between traces. This specifies the maximum amount of time between
calls for the trace daemon to consider that the client program has failed
or been aborted without a proper shutdown. When this time is
reached, an error trace message will be added to the trace file and
client resources will be freed.

ErrLog = specifies a single file that will collect R and E messages. This file will
always grow. It is the administrators responsibility to remove the file on
occasion.

ScOpen = can be used to run a single command file or shell script. It is passed
the version number of the file just closed and the fully qualified file
name:

In the above example, when the trace switches (say it was on 19 and is
now on 20), a command will be run in the system as follows:

cmd /¢ trcerrm.cmd 19 e:\trc\trace.19

See www.softwaretoolhouse.com for more details and for the Trace User document.

Trace Format

A trace record looks like this:

hhmmss.nnn £ Opid Prog text

The hhmmss.nnn is the time that the record was created by the application. Note that trace
records may appear out of sequence between applications but will never be out of sequence
for any one instance of an application. Note also that a single application may have two
instances running concurrently.

Meta-Update -75 - User’s Guide

http://www.softwaretoolhouse.com/

STH

Software Tool House Inc

The f is the highest priority TrcLvl value on the Trc call that sent this trace message. Values
are as follows:

S Severe Severe error
E Error Error
W Warn Warning
A All Always like info but never masked out
R Run Run execution instance
Script Processing These are on by default but may be turned off.
I Info Informational (on by default)
Script Debugging These are echoed when selected with the -d
Q OQry ArQuery, Sqgl; all query strings
G Get ArGet all ArRecGet ids
U Put ArPut all ArRecPut ids etc
Debugging settings These are never echoed.
Caution:These generate masses of logs and can affect performance.
F Func Function entry and exit
d Dbg Debugging detailed debugging
2 Dbg2 Debugging 1lvl 2 more details yet
a Data Data data values: records, fields
s Struct Structure data Structures

The Opid is the process identifier, in hexadecimal, of the process that generated the trace
message. This number can be used to select the trace records for a specific instance of a
specific application.

The Prog is the program name coded on the application’s Trclnit call. Each application that
uses the trace facility should document its use of the facility in its User’'s Guide. You can use
this field to extract those records written by any one application.

The text is the actual text of the trace message and is entirely application dependent.

Meta-Update - 76 - User’s Guide

STH

Software Tool House Inc

Firing from Workflow

Meta-Update may be fired from workflow as Run Process or Set Fields $SPROCESSS$ filter or
active link.

When firing from workflow on the server, the environment is that of the ARS server process.
It is prudent to code a script or batch file in the workflow and then have that script or batch file
set up the environment for the run, invoke Meta-Update, and possibly do some termination
activities.

The environment generally includes a path to the executable and to any required shared
libraries or dlls, other environment variables, parameters, and the working directory.

As workflow is fired at independent times, it is possible for multiple copies of Meta-Update to

be running simultaneously. If so, the Server based tracing version is highly recommended to
properly serialise log files.

Meta-Update -77 - User’s Guide

W ‘_
Software Tool House Inc

Developing Scripts

Normal Meta-Update runs will report script errors with an ‘E’ level message echoed to the
console. That message will print the script file name, section, line number, and, if
appropriate, the keyword being processed.

114159.531 E [Do] [asg-init] AssignInit apply was aborted in file:
FD-SupGrp-Ren.ini [asg-init] @Cmd= line: 74

Errors may be caused by different things:
Syntax errors
ARS reported errors such as unrecognised schema names or field names or labels
LookUp or Load failures
User Aborts

Meta-Update has several switches that will aid in script development which would normally
not be used in production runs.

-e single Error With this switch, any error in any section will stop the run.

We recommend you use this switch when you develop and
test scripts. You will generally not want it on production runs.

-V Verbose This prints all query qualifications and results to the console
and to the log file.

We recommend you use this switch when you develop and
test scripts. You will generally not want it on production runs.

-n null This switch prevents any ARS updates or creates.
This is only useful for the most simple of scripts as generally
launched sections depend on access to a previous sections
updated and reread record reference.

-d Logging: Debug This should not normally be needed. It is intended to be
used when using Meta-Update support. It provides complete
debug level information on the job and generates masses of
logs. You can also specify you want ARS client logging with
this switch. See Tracing above for more information.

-g Script Debugger This invokes the Meta-Update script debugger. The script
debugger allows you to set breakpoints and single step
though your script’s operation. You can get debugging help,
print your script, examine references, control breakpoints,
and resume normal execution.

See Script Debugging below for more information about
using the Meta-Update Script Debugger.

Meta-Update -78 - User’s Guide

STH

Software Tool House Inc

In this example, a script Abort= was set by an AssignInit= section that ensured there was

at least one matching Support Organisation.

Another example where a bad value is passed as a script argument:

Version 5.56
(c) Copyright 1
WWW . wWaretoolhouse.com

Meta-Update (x64)

114159.515 g QuerySgl: Svr: sthvl

114159.515 g [Do] QuerySgl: Qualification: : 0 T select couyt (*)
CTM_Support_Group where Tt Organiza

114159.515 g [Do] QuerySqgl: Quali#iCation: 0040: tion = 'Qelp De

114159.515 g [Do] Quer —returned 1 records of 1.

114159.515 1 Found 0 records with: 'Support Organj

114159.515 E Msg: The Support Organisation argument

of CTM:Support Group"

3 - ArPutIini:

The -v switch echoes the
kaxact query qualifications
sent to the Remedy Server

The script issues several
“E” messages and then an
abort.

Meta-Update tells you the
script issued an Abort.

T
St match 1 or more records

ur command line argument."

FD-SupGrp-Ren.ini

Parm error 3

(with 0 skipped)

114159.515 E [Do] Msg: Please check the spelling of

114159.531 E [Do] Abort: ..aborting."

114159.531 E [Do] [asg-init] AssignInit apply s aborted in file:
[asg-init] @Cmd= 1line: 74

114159.531 E IniRdo of FD-SupGrp-Ren.ini [Do] failed with

114159.531 1 Statistics:

114159.531 1 Sections: 1

114159.531 1 Maximum section depth: 1

114159.531 1 Output Schemas: 0

114159.531 1 Output Schema records: 0 created

114159.531 1 Output Schema records: 0 updated

114159.546 1 Outputs OK: 0

114159.546 1 Outputs Errors: 0

114159.546 i Outputs Aborts: 0

114159.546 1 Input Errors: 0

114159.546 E error: some errors occurred. Check for errors above this message.

114159.546 E terminating unsuccessfully in 0 sec.

In this next example, the script file’s guery= at line 65 referenced a ReadServer tag which

was not defined as the script didn’'t need use additional servers.

Query =

@Itsmé6, User, User, V, Qry 4/////

Source line in error.

E:\> SthMupd QQQ-TblRpt-User.ini Do sthvl Demo -start 1 -max 10

Meta-Update Version 5.56 (x64) for ARS 1lib 8.1.2
(c) Copyright 1996-2015 by Software Too

www.softwaretoolhouse.com

Error: Server reference not
found.

113416.785 i [Do] One: . . .

113416.785 i [Do] Onex fiching: 1 of 1 [Dol] Script line number in error.

113416.785 E One: F1lIniFindCtl: Server Tag: Itsmé6 not fo

113416.785 E [Do] One: ArIiniQuery: FlIniRefFindCtl for ItgmM6 failed at file: QQQ-
TblRpt-User.ini [Dol] Query= line: 65

113416.785 E [Do] One: ArPutIiniRinit: ArIiniQuery fgdled (rc=4) in file: QQQ-TblRpt-
User.ini [Dol] Query= line: 65

113416.785 E [Do] One: ArPutIiniRinit for Dol returned 3 - ArPutIini: Parm error 3

113416.785 E [Do] One: ArPutIiniRdo: DoLaunch failed!

113416.801 E [Do] One: 0 record OK; 1 records with errors; total: 1.

113416.801 E IniRdo of QQQ-TblRpt-User.ini [Do] failed with 3 -

113416.801 i Statistics:

113416.801 1 Sections: 1

113416.801 1 Maximum section depth: 1

113416.801 1 Singleton Sections: 1 errors: 0

113416.801 1 Output Schemas: 0

113416.801 1 Output Schema records: 0 created

113416.801 1 Output Schema records: 0 updated (with 0 skipped)

113416.801 1 Outputs OK: 0

113416.817 i Outputs Errors: 0

113416.817 i Outputs Aborts: 0

113416.817 i Input Errors: 0

113416.817 E error: some errors occurred. Check for errors above this message.

113416.817 E terminating unsuccessfully in 0 sec.

Meta-Update -79-

User's Guide

STH

Software Tool House Inc

Script Debugging

Meta-Update -81- User’s Guide

STH

Software Tool House Inc

Script Debugging

Meta-Update -82- User’s Guide

Software Tool House Inc

What Is Script Debugging?
When running Meta-Update in debugging mode, you can
> View your script’s source lines
> Set and manage breakpoints
> View references
> View help on the debugging commands available.

When running Meta-Update with the debug switch, Meta-Update will load the script file and
then present you with the debugging prompt.

You can then set and clear breakpoints, and begin or continue execution, or single step
through the script.

The debugger is part of the Meta-Update binary and is available on all supported platforms.
A normal debugging session comprises setting various breakpoints within the script,
continuing execution until the breakpoints are reached, examining references and field

values, and then resuming or aborting script execution.

Additionally, a conditional Break command may be coded in an assignment section of a script
that will cause a breakpoint when the condition is met and debugging is enabled.

Meta-Update -83- User’s Guide

STH

Software Tool House Inc

Entering Debug Commands

At the Meta-Update debugger prompt, you enter debug commands by specifying the
command, any command arguments, and then ending the command with a new line.

The last command entered of a subset of the commands) is automatically repeated when the
enter key is pressed with no command entered.

If there is no such command saved, or an invalid command was entered, help text is printed
outlining the available commands.

Further help is available by using the Help command and specifying the command name you
want more help on.

All Meta-Update debug commands may be abbreviated.

C:\> SthMupd -v —-g ArSchema-Rpt.ini Do
-fle "ArSch.csv" -qry RE:$

Meta-Update Version 5.56 (x64) for ARS lib 8.1.2
(c) Copyright 1996-2015 by Software Tool House Inc.
www.softwaretoolhouse.com

211900.140 g Server: (5) sthvl
211900.140 g User: (4) Demo
211900.140 g Port: 2501
42: [Do]
at: [Do] 1ln 42 Init

Mupd Dbg > help
The Meta-Update script debugger supports these commands:

h Help Displays Help about commands
bt BackTrace Print a Launch backtrace

P Print Print tag set or single string
s Step Execute next statement

so StepOut Execute until section end

n Next Execute Next statement

c Continue Continue execution until Break Point
b Break Manage Break Points

1 List List script source

1f Listfiles List included script files

q Quit Quit job execution

Enter "help command" for more Help on these commands.
at: bp 2: [asg-I] 1n 37 Asg

Mupd Dbg > go

Meta-Update -84 - User’s Guide

STH

Software Tool House Inc

Meta-Update Line Numbers
The @include directive allows a single Meta-Update script to include other script files.

The format of “Line Numbers” displayed and used as input in the Meta-Update debugger is
changed as a result. There are two formats of line numbers when a script uses the
@include directive:

> A single combined line number,
> A file specific line number comprising the file index and line number within that file.

The combined number can be used as input and is listed along with the file specific number
when listing source lines. It is the line number of the file that results when all @include

directives are resolved.

The file specific number consists of two parts: the “file index” and that file’s line number — not
taking into consideration any other files.

The ListFiles command will list all source files and their indexes.

Meta-Update -85- User’s Guide

Software Tool House Inc

About Meta-Update Break Points

A “Breakpoint” in the Meta-Update sense is either

> A control section name and an “event”
> An assignment section’s line number

A control section has the following breakable events:

Init when a section is starting up

Term when a section is completing

IterInit before an iteration query is run

IterNext before an iteration record is loaded
IterTerm after the last iteration record is completed
Launch before each Launch is evaluated

Asg a line number at an assignment section

Init Init happens before a section is ready to perform its iteration query, and before
any AssignInit assignments have been done.

Term Term happens when all iterations of the section have been processed, all
termination assignments have been processed and the script is ready to return to
the launching section.

IterInit Happens only once per section call. Happens after all the AssignInit
assignments have been processed and before the iteration query (or open file
etc) has been executed.

IterNext Happens once per iteration. Happens just after the next iteration record, row,
field set, has been loaded and just before any AssignPre assignments are
processed.

I

Launch Happens once per iterations. Happens after all AssignPre assignments are
processed and before each Launch is evaluated.

Asg Assignment statements are line number based and not event based.

Each assignment statement in an assignment section can be stepped through,
one at a time.

When specifying an assignment breakpoint, you simply specify the script’s line
number that you wish to break at — before its assignment is processed.

Note that when you set the breakpoint, Meta-Update does not check that the
specified line number is in an assignment section. Use the List command to
verify your line numbers.

It is not possible to set breakpoints in lookup sections or file sections.

A normal begging session begins with setting various breakpoints and then continuing
execution until one of those breakpoints is reached.

Meta-Update - 86 - User’s Guide

STH

Software Tool House Inc

Debug Commands

This table lists the Meta-Update debug commands.

Command Abbreviation Notes
Help h Displays Help about commands
List 1 List script source
Listfiles 1f List script source files
BackTrace bt Print a Launch back trace

Print P Print tag set or single string

Next n Execute Next statement

Continue c Continue execution until Break Point
Quit q Quit job execution

Break b Manage Break Points

List
Use List to print your scripts source lines or sections:

Mupd Dbg > help list
The List command allows you to display your Meta-Update
script's Source lines

1 List Lists up to 25 source script lines
List nnn starting at line nnn
List nnn, mmm starting in file nnn line mmm
List nnn mmm same as above
List * list section names and line numbers
List Sec list contents of a section
List Sec Kwd list only a single keyword and value
Examples
1 100 will list the source script at line 100
1 2 20 will list source at line 20 in file 2
1 asg-new-HPD will list the complete [asg-new-HPD]
1 asg-new-HPD Status will list the Status= assignment in
at: [Do] 1In 42 Init
Mupd Dbg >

Meta-Update - 87 - User’s Guide

STH

Software Tool House Inc

List Files

Use ListFiles to print your scripts source file name and file indexes:

Mupd Dbg > help listfiles

The ListFiles command lists all source files and file indexes of the
source script

1f ListFiles [n] list file names and indexes
When using multiple source files with the @include directive,

each file is given an index number from 1 upwards.

Line numbers are displayed and entered as either
[ix, num] where ix is the file index,

or a single
line number,

being the combined line number for the
script with all included files folded in.

The optional argument causes the single file name referenced by
the given index to be listed.

at: [Do] 1n 42 Init

Mupd Dbg > listfiles

1 --> 100-Hpd.ini

2 --> 999-Includes\000-Jctl-Sync.ini
3 --> 999-Includes\100-CfgUpdFlag.ini

at: [Cfg-asg] 35 [1, 35] Asg
Mupd Dbg >

BackTrace

Use BackTrace to print the list of sections launched to the current execution position. From
the Help BackTrace command:

Mupd Dbg > help bt

A Launch BackTrace reports which sections have lead to
where you are in a Meta-Update script.

bt BackTrace Print a Launch BackTrace

Examples
bt
[DoOuter] @ line 14
[DoInner] @ line 21

[DoInnerInner] @ line 42
@ DoInnerInner line 42

at: [Do] 1In 42 Init

Mupd Dbg >

Meta-Update - 88 - User’s Guide

STH

Software Tool House Inc

Print

Use Print to print the available reference tags, all references for any one tag, or a string
containing references. From the Help Print command:

Mupd Dbg > h print
The Print command allows you to print your Meta-Update
script's Tags and variables

P Print Print tag, set, or single string
Print will print all Tags defined
Print Tag will print all members of the Tag
Print String will print String with normal substitution
Examples
P will print all defined tags
P ENV will print all environment variables
P ArsSvr=$CTL, Servers$

will print ArsSvr=xxx
at: [Do] 1n 42 Init

Mupd Dbg >

Next

Use Next to “single step” your script.

If you’re in an assignment section, next will execute the current assignment statement and
then stop at the next one.

If you’re in a command section, next will run the next “phase” or operation in that command
section and stop before the next operation. For example, next might load the next iteration
record and then stop before executing any AssignPre= assignment sections.

Mupd Dbg > h next
The Step command executes the next instruction or settable breakpoint
and returns debugging control to you.

n Next Execute next instruction
See also:
Continue"
Mupd Dbg >

Meta-Update -89 - User’s Guide

STH

Software Tool House Inc

Continue

Use Continue to resume normal execution of your script until a breakpoint is reached or the
end of the Meta-Update job is reached.

A normal begging session begins with setting various breakpoints and then continuing
execution until one of those breakpoints is reached.

Mupd Dbg > h continue
The Continue command continues script execution until the next break.
point is reached. Use break clear all to remove all breakpoints
before entering the Continue command to run the script to its end.

c Continue Continues script execution until the next
breakpoint is reached or until the end of
the Meta-Update job.

See also:
Quit
Mupd Dbg >

Quit

Use Quit to terminate the Meta-Update job immediately. An error message is written and the
Meta-Update job ends abruptly.

A normal debugging session begins with setting various breakpoints and then continuing
execution until one of those breakpoints is reached.

Mupd Dbg > h quit
The Quit command terminates the Meta-Update job immediately.
Use Continue to continue script execution until the next break.

q Quit Terminates this Meta-Update job immediately
with an error

See also:
Continue
Mupd Dbg >

Meta-Update -90 - User’s Guide

Break

STH

Software Tool House Inc

Use Break to manage your script's breakpoints. With Break, you can set, list, or clear script
breakpoints

Mupd Dbg > h break
The Break command allows you set, clear, and list Break Points.

Break Points allow your Meta-Update to proceed until you reach
an area of the script you want to examine.

A "Break Point", in the Meta-Update sense, is a section name and

a
It

Section's Event Type. Event Types are things like before an
eration Query is loaded, or after a new Iteration record is read.

The Break command allows you set, clear, and list Break Points.

b Break Manage Breakpoints
bs Break Set Set a Breakpoint
bl Break List List Breakpoints
bc Break Clear Clear Breakpoints
bs Break Set Set a Breakpoint
bs line Will set an Assignment break point to
the line specified
bs section type
section is a section name in the script
type is one of:
Init when a section is starting up
Term when a section is completing
IterInit before an iteration query is run
IterNext before an iteration record is loaded
IterTerm after the last iteration record is completed
Launch before each Launch is evaluated
Asg at an assignment section; must be set
with bs line
Examples:
bs 42
breaks when line 42 is encountered while
processing an assignment section
bs Do IterInit
breaks just before an iteration Query is run
bs Do IterNext
breaks just after each iteration tag is loaded
bs Do Launch
breaks just before each Launch of this Section
See also:
Next, Step, Continue
Mupd Dbg >

Meta-Update

-91 - User's Guide

STH

Software Tool House Inc

Script Reference

Meta-Update -93- User’s Guide

STH

Software Tool House Inc

Meta-Update -94 - User’s Guide

STH

Software Tool House Inc

Script Reference

Meta-Update -95- User’s Guide

Software Tool House Inc

Script File: General Format

The script file drives Meta-Update. It is your Meta-Update script. It tells which form the target
assignment is to be applied to, and drives the required loading of records.

It resembles a sectioned INI file:

[Main] The [Main] section identifies the
Server = ArsDev ARS server and sign on
User = Demo parameters.
ArgNm = HpdId
éCSHEfOlS] ot HPD:Helobesk The [Controls] section is passed
paate = gt, :HelpDesk, &
on the Meta-Update command
‘1’ = “S$Arg, HpdId$”$001 P

gives operational information

fesron - festanment including the Assignment section
to be applied.

[Assignment]

bescription = “Router * The [Assignment] section assigns

gi;;iption _ :Aii‘g?" auto-raised by Xxx™ | y3|yes to fields in HPD:HelpDesk

Statusy = Assigned 7 for update.

The format for this INI file is as follows:

e Comments may be coded freely. They are started with a number sign (“#”) or semi-colon
(“;) as the first non-white space character of a line. Blank lines may also be inserted
freely. Comments cannot be coded on the right side of lines as the ‘# character is
permissible in ARS form names, field names, and queries.

e Lines can be continued by having the last non-blank character of a continued line be a
backslash (“\") or ampersand character (“&”).
e If a backslash is used, all spaces preceding the continuation character and at the
beginning of the next line are significant. No additional spaces are inserted.
e If an ampersand is used, all spaces preceding the continuation character and all
leading spaces on the continuation line are removed and a single space is inserted.

e The @include file directive will include the whole of another script file and then continue
reading the source file at the same point. The resulting script is a merge of all source
script files.

e All section names and keywords are case sensitive.

e Keywords within a section can be placed in any order but are processed in the order that
they are encountered.

e Sections can be placed in any order and can be split.

e Equal signs only are used to separate a keyword from its value.

Meta-Update - 96 - User’s Guide

STH

Software Tool House Inc

e The file may be in either Windows or UNIX formats. That is, lines may be terminated by
either <If> or <cr><If> , and a single end of file marker (*Z) will be ignored if present as
the last character of the file. Script files may be used across both platforms.

The validity of the INI file can be checked with the siniget.exe program. This is highly
recommended whenever the INI file is changed, as all invocations of Meta-Update specifying
that file will fail if its syntax is in error. To check the syntax, simply invoke the siniget.exe
executable with the INI file name as the only parameter. It will either report a syntax error, or it
will print the contents of the file.

Meta-Update -97 - User’s Guide

Software Tool House Inc

Including Other Script Files

Script files may include other script files. The resulting script that Meta-Update executes will
be the merge of all source files and included files in the order that they are included.

The @include file directive tells Meta-Update to stop processing this script source and fold in
the included source, and finally to resume processing the original script source at the line
after the include statement at the original source’s section.

The file name specified on the directive cannot be a reference and must be a valid file name
for the operating system on which Meta-Update is running. For example, directory separators
must be the correct ones for Linux and Windows.

The sthScriptPath environment variable may be used to set a search path for the included
files. Then the script can simply reference the file name with no path information. That script
can then be used on Linux and Windows.

An example may help:

include main.ini
[Controls] -
@include controls.in&———””’[Mam]

. Update = Tgt, HPD:HelpDesk, &
[Assignment] ~— 71’ = “$Arg, HpdId$”

Assign = Assignment

Summary = YAuto” w-—
SFatus = Ass+gped Description = “Router down; “
@include asg-desc.ini Description = “auto-raised by Xxx“
The script above is entirely the same gs the script below.

P AR

[Main] ;

Server = ArsDev

User = Demo

Arg = HpdId

[Controls]

Update = Tgt, HPD:HelpDesk, 1’ = “$Arg, HpdId$”
Assign = Assignment

[Assignment]

Description = “Router down; “

Description = “auto-raised by Xxx“

Summary = “Auto”

Status = Assigned 7

Meta-Update -98 - User’s Guide

STH

Software Tool House Inc

Section Types

There are several types of sections used in the ini file. These are:

Main gives the updating ARS server and sign on information.
Read Servers gives ARS server and sign on information.
Control specifies the operation you want Meta-Update to perform.

You can iterate through a query or loop and output files and
ARS records.

File defines the format of an external Ascli file that will either be
read or written.

Field defines a set of fields to be associated with an external Ascii
file, an SQL result set, a regular expression pattern. Used to
specify value transformations and interpretations.

Assignment contains the actual field assignments to be made to the
target form. These can include other assignment sections
and can reference Look Up sections.

Look Up offers a non-Remedy mechanism for translating data values
using lists, CSV files, ARS Queries, SQL queries or
procedures.

When you fire Meta-Update, you pass it a single Control section’s name.

This control section also lists any assignment sections to be applied to the target update
record, and other control sections through the Launch statement.

Think of this section as a “main” or “entry point” to a script. A script can be coded with
multiple starting sections. Consider, for example, these “entry points in the same script, that
either iterate or not, and then all launch the real worked section:

Ppl-Del.ini Del-One -p hwu
Ppl-Del.ini Del-File - del-list-42.csv
Ppl-Del.ini Del-Qry -p wWNlro= 427

Only those sections following within the run of a Meta-Update script are syntactically checked.
For example, if the first control section launches a second control section conditionally, and
that condition is not met, then that second section will not be syntax checked as it was not
fired.

Meta-Update -99- User’s Guide

STH

Software Tool House Inc
[Main] Section

The [Main] section is requ

ired and declares the Remedy sign-on information, if not entered on

the command line. This example is used by the samples.

[Main]

Server = $
Port = $
User = S
Password = $

ENV, ArsSvrAdmin $
ENV, ArsPort $
ENV, ArsUsr S
ENV, ArsPwd $

The above environment variables are set by a Windows batch file, SthLic.cmd, or a Unix

shell script, SthLic. sh.

This batch file sets the environment variables in the current Window

for any given Meta-Update licensed BMC Remedy server. It also sets the license variables
for all Meta-Update utilities.

SthLic.cmd, or, SthLic. sh are generated by a utility called SthLicUpd, or the Software
Tool House License Updater. See “Running SthLicUpd above for more information.

The following keywords are available in [Main]

ARS Authentication

Server

Specifies the server connection address. May be a reference.
Must resolve into an IP address that has an BMC Remedy
Server listening for API requests.

Port

Specifies the BMC Remedy Server’s Listen port.
Use zero when the server uses Port Mapper.

RPC

Specifies the BMC Remedy Server’'s RPC Listen port.
Not used by Meta-Update.

User

The BMC Remedy server Login Name to be used for the script.

It is highly recommended that this user be an administrator and
have all ITSM rights.

Some script operations, such as QuerySql=, require
Administrator rights. When a non-administrator is used, it is
possible for scripts to be denied fields, records, or operations.

Password

The above user’'s password. May be an encrypted string as

ARS Session Contr

ol

TimeOutNormal

Specifies the “Normal” time-out value. Default and minimum is
120 seconds. Primarily used for reads and updates. May be a
reference.

TimeOutLong

Specifies the “Long” time-out value. Default and minimum is 300
seconds. Primarily used for queries. May be a reference.

Locale

Specifies the BMC Remedy Server’'s RPC Listen port.
Not used by Meta-Update.

ClientType

The BMC Remedy server Login Name to be used for the script.

It is highly recommended that this user be an administrator and
have all ITSM rights.

Some script operations, such as QuerySql=, require
Administrator rights. When a non-administrator is used, it is
possible for scripts to be denied fields, records, or operations.

Meta-Update

- 100 - User’'s Guide

STH

Software Tool House Inc

Password The above user’s password. May be an encrypted string
starting with “Enc:” or a plain text password. Use ‘-‘ for no
password.

Meta-Update Licensing

License The License key may be specified in the script.

This is not recommended as there are other, more convenient
ways of specifying the license key, including by using the
Windows batch file, SthLic.emd, or the Unix shell script,

Sthlic.sh.
Meta-Update Scripting Options
MaxOutput nnn Default: none

Can be used while developing scripts. Limits the number of
Output records. This includes Updates and Creates.
QueryDbNames Yes, No Default: Yes

Disallow use of BMC Remedy field database names in queries.
IdLog filename Default: none

Specifies a default, script-wide IdLog.

This has been superseded by the section based IdLog facility.
Please see Using ldLogs in for more information.

Script Arguments
Arg Arg name [Default xxx] Default: none
Arg Arg name [Default xxx]

Specifies a “field” that will be referenced in the script body in the
tag “Arg”.

This will correspond to an argument on the command line when
this script was invoked.

If the argument default value is not specified in the script, the
argument will be required on the command line and an error will
be thrown. Any script usage text (PrmReqg=) will be displayed.

You may specify as many Arg= keywords as needed by the
script.

It is recommended that a minimum of one argument be
mandatory and that script usage information be supplied with the
PrmReq= keyword.

ArgNm ArgNm= is deprecated and is treated as Arg=

The Default keyword is not available..
PrmReq text Default: 0
PrmReq text

Specifies usage text presented when any required arguments
are not supplied.

All sample scripts will present usage instructions when run
without arguments. These will explain the script function, default
and required arguments, and example runs.

Meta-Update -101 - User’s Guide

STH

Software Tool House Inc

Script Initialization

ReadServers Section, section, .. Default: none

A list of other ReadServer section names which will be used in
the script. See ReadServer sections below.

Sessions will be established to the main server and all servers in
the sections specified by this statement.

Queries and SQL queries can be run against the main server or
any of the Read Servers.

RandSeed

Yes | No Default: Yes

If set “No” the sequence of random numbers generated by the
rand() function will be the same on multiple runs.

AssignInit Section, section, .. Default: none

A list of Assignment sections that are invoked before the first
control section passed on the command line begins. This
happens after arguments are processed and the [Main] and all
ReadServer sessions are established. It is effectively the first
assignment section.

See AssignInit below and in the Assignment reference.

AssignTerm Section, section, .. Default: none

A list of Assignment sections that are invoked after the first
control section passed on the command line completes. This
happens just before the job ends.

See AssignInit below and in the Assignment reference.

Server

User =

Password =

Meta-Update

This is the Remedy ARS server to sign in to. If coded on the command line,
this has no effect. If not coded on the command line, this must be coded.
This does not have to be the real Remedy server alias. Itis simply an IP or
domain name that translates to an IP where the ARS server is running. The
server may be specified as a string reference. The string reference may be a
named parameter or an environment variable. If it is a named argument, it
must be passed on the command line as a script argument.

The ARS User ID to use if not coded on the command line. This may be a
string reference.

The password for the above user. Code “-“ if there is no password.

Use the operating system security to prevent unauthorised access to the file.
This may also be a string reference such as in the default value:

$ ENV, ArsPwd $.

The ARS User Password may be encrypted. If so, it begins with “Enc:”.
Password encryption is handled by a separate utility, SthLicUpd. This utility
is used to both generate the SthLic.cmd file and to encrypt ARS User
passwords.

-102 - User’'s Guide

Software Tool House Inc

Port = This is generally not specified. It is required if the ARS server does not use
Port Mapper. Simply code the port that the ARS server uses. Note that if the
environment variable, ARTCPPORT is set, this setting is ignored. This is
documented in the ARS manuals. This may be a string reference. Setting
this to zero (0) has the same effect as not specifying it at all.

RPC = This is generally not specified. It is required if the Meta-Update process is to
use a private queue on the ARS Server. Simply code the RPC program
number that the ARS server has been configured to use for Meta-Update.
Note that if the environment variable, ARRPC is set, this setting is ignored.
This is documented in the ARS manuals. This may be a string reference.

This ARS server must be licensed for Meta-Update use.
Records will be updated on this server.

Other servers may be read from. These are called ReadServers. These do
not need licenses.

MaxOutput = Optional. Limits the number of outputs for the entire job to a specified
maximum. Any single record Updates, Creates, File writes is considered in
this maximum. The default is O which means unlimited.

This is useful during development of scripts that return large query results or
process large files.

RandSeed

Optional. Meta-Update, by default, seeds the standard random number
generator with the run time at start-up. You can have Meta-Update not seed
the random number generator by specifying RandSeed = No.

Note that the sequence of random numbers generated on each run will
always be the same for a script that does not seed the generator.

QueryDbNames =
Optional. Meta-Update, by default, allows a field’s database name to be used
within single quotes in a Query. Meta-Update pre-scans all Query
qualifications and if it sees a field’s database name will substitute the field Id
within the single quotes. This is especially useful as field labels can change
when multiple languages are installed and a forms default view is changed.

By specifying QueryDbNames=No there will be no prior scan of qualifications.

TimeOutNormal =
Optional. Can be used to increase the “Normal” timeout value for this
session. Only available for ARS Release 6.3 or above. The default or
minimum is 120 seconds. This value applies to record reads and submits. If
a lot of workflow is run when a record is submitted, raising this value may
correct the problem. Symptoms of the problem are an ARS error 92.

TimeOutLong =
Optional. Can be used to increase the “Long” timeout value for this session.
Only available for ARS Release 6.3 or above. The default or minimum is 300
seconds. This value applies to record queries. If slow queries are run
through ARS, raising this value may correct the problem. Symptoms of the
problem are an ARS error 93 or 94.

Locale =

Meta-Update -103 - User’s Guide

v\.
Software Tool House Inc

ReadServers=

IdLog =

Meta-Update

Optional. Used to set the ARS server’s client locale for the RPC calls in this
Meta-Update execution. Only available for ARS Release 6.3 or above. The
default is “” or “C”.

The Remedy API uses this client Locale setting to effect character translation
to and from the internal database representation and to interpret field labels
in queries. Meta-Update does not validate this setting.

Please see the BMC Remedy Installation and Configuration manual for more
information on the values that can be used in this setting.

Optional. Specifies one or more section names defining additional ARS
servers and the Tags associated with them. These servers can be queried
and read but not written to. These servers do not need Meta-Update
licenses.

Deprecated and superseded by section IdLogs which allow more functionality
such as assignments, fields, conditions.

Optional. Specifies a file name to be produced. This file will be a tab
separated columnar file containing a single header row and a row for every
record added or updated in the Meta-Update run and every record queried or
loaded from a file/.

IdLog = fname [, { Overwrite | Append }]

The file name can use substitution from parameters and environment
variables and is in the form of a string reference (see below).

One of the two keywords, “Overwrite”, or “Append” can be coded following
the filename. The default is “Append”.

The produced file can be imported into Excel and looks like this:
Time Server User Schema ID Op Op2 Status

The records are produced in the order that the queries and updates are done.
Time is only resolved to a second.

On updates and ARS queries, the full Schema name is identified and the ID
of the record is specified (unless a create operation failed).

On updates of Join forms, the record id is blank. Note that on a Join form, it
is the workflow that creates underlying records when desired. A submission
to a join form with no workflow defined succeeds but causes no database
updates.

In the case of a file, there is no User, the Server is the file name, the ID is the
record number, the Schema is, by default, the first 20 bytes of the record
itself. This value may be changed when defining the file.

Op contains either “Update”, “Create”, or “Read”
Op2 contains “Merge” if and only if a Merge operation was done.
Status can be one of
Ok the operation completed successfully
Ok — Skip the update was skipped as no fields had changed values
Error the operation failed
-104 - User’s Guide

STH

Software Tool House Inc

PrmReq = Optional. If coded, specifies script usage text that will be produced as error
messages if required script arguments were not coded on the command line.

This is generally a good place to put usage information about the file.

ArgNmVar = Deprecated. There is no need to use this.

Optional. If coded, specifies a Reference name to be used for command
arguments (parameters). If missing, the name is presumed to be “Arg”.

Arg = Optional. If coded, specifies a command argument and optionally a default
value. Only arguments without default values are required on the command

line.

Arg = arg_name Default “default”

The reference would become $Arg, arg name$

For the switch based command line, the argument name is used as a switch

and it is followed by the argument value:

SthMupd.exe MyScript.ini Do -—-arg name “some value”

AssignInit = Optional. If coded, specifies a list of Assignment Section
names to be processed after Meta-Update establishes all its
server sessions and before the first Control section is fired.

AssignTerm = Optional. If coded, specifies a list of Assignment Section
names to be processed after Meta-Update completes all
script processing and before the server sessions are closed.

You may specify
script-wide
initialization and
termination
assignments from
[Main]

These assignment sections can be used to load records, load configuration

values, validate the environment, fire processes, and so on.

Please see the Assignment reference below for more information

The Meta-Update License may be specified in the Main section of a
command file as an alternative to using environment variables or using a form
on the server. There are two types of licenses: Server and Site.

Site = This is the name the Site for a site license. It must be specified exactly as

was specified when the site license was requested.

Domain = This is the Domain suffix for a site license. It must be specified exactly as

was specified when the site license was requested.

License = This is the password for either a server or a site license. It must be specified
exactly, as was specified when the license was requested. If a site license is

being specified, both the Site= and Domain= will be required.

Meta-Update - 105 -

User’'s Guide

STH

Software Tool House Inc

Examples

[Main]

PrmReq = Usage ... -TtId TT-ID - PplId PPL-ID
Arg = TtId

Arg = PplId

In the above example, in subsequent references, the TT-ID parameter may
be referenced in an assignment statement:

Xxx = Arg, TtId

Or an expression:

Xxx = Qif (“$Arg, TtId$” = ”All”, ”%”, ”S$SArg, TtIds”)

Meta-Update - 106 - User’s Guide

STH

Software Tool House Inc

Read Server Sections

Read server sections identify additional ARS Servers that can be queried or read from.

A Tag or name is specified to identify the server. All read server sections are identified on the
ReadServers= entry in the [Main] section.

[Main]

ReadServers = ReadSvrl, ReadSvr?2
[ReadSvrl]

Tag = Svrl

Server = 198.2.12.1

Port $Arg, Svrlports$
RPC $Arg, Svrlrpc$
User = Demo

Password = XXX
TimeOutNormal = 240

TimeOutLong = 600

[ReadSvr2]

Tag = Svr2

Server = 198.2.12.2

User = Demo

Password = XXX
TimeOutNormal = 360

TimeOutLong = 1200

The Tag= specifies the word used to identify the ARS Servers in the control section’s Query=
or Load= Statements.

Read Servers do not need to be licensed. Sessions are established for each ReadServer
section specified in the [Main] ReadServers= values.

Like the main section, values for Server, Port, RPC, User, and Password may be string
references. Values may also be set for time-outs and for Client Type.

Meta-Update - 107 - User’s Guide

STH

Software Tool House Inc

Control Sections

About Control Sections

A Meta-Update Control Section tells Meta-Update the operations to perform.

When you fire Meta-Update, you pass it the first control section’s name. You may code many
sections in the same file.

A control section may execute its process once or may loop through the
> records returned by an ARS Query or an SQL Query,
> records read from an ASCII file,
> values extracted from a string or a Diary field,
> the fields of a record,
> while any condition remains true.

This is called Iteration.

| Assignments Assigninit
A control section can 4L
Create Or Update [Reradon? . N S A
ARS records or file L 5 Yy e Loop>
records and can Do Loop Loap Loop Loop
e for sach for aach for each for each
Launch other control terw Quary= Querysqle Filow
H only resut record recong record diary or string value

sections to create or R et
update more ARS or file Load and trans farmatlon fies

et nothing next ARS record next SOL row next File row next Value
records.

4L
A control section tells Assonmorns Arwigmpon
what output, if any, to ——L
produce: the target [Outer o > i DSORRE
form (schema), whether <> Q"y < i mu 2 @
this will be updating or ARS / File Target Assignments \
submitting new records, p heet Axsiger Jasignitew Assige- |
C Apply aus igmment s ections One ARS o
Whe’[h?l’sthtl)s V_Y{'” ui/le t(;]fe C;-I;h-wn:.w Create anew Cremte or modily 0 File recard
norm mit or | e ARS record wn ARS record croated or
A%I o? uslcja MerSe o £ b '
It also gives the "Assignments AasignPostole Assignpostralle
. . Assigniosts=
assignment section]
names to be applied to [Launch invoke other control sections iteratively
the target update record JT
and lists any [keration? Rs
assignment sections to hevation
d abgs

be applied when the &
control section starts,

ends, or before or after

the iteration record is
loaded.

i

A control section can also Launch, or call other control sections in order and conditionally.
These can process queries dependent on this query’s retrieved records or the first section’s
record and can create other outputs and launch other sections as needed.

A control section can also have no output at all. It can be used to group several control
sections or decide which control sections to launch based on arguments or other criteria.

Meta-Update

-108 -

User's Guide

STH

Software Tool House Inc

Keywords & Statements

A control section can use these types of statements to:
> Operational control Meta-Update’s behaviours.

> |oad allow loading of additional records.
This is superseded by the LookUp facility and use is discouraged.

> |teration automatically iterate through the rows of a Query, QuerySq|, File,
values extracted from a string or diary field, or on any condition.

> Output update an ARS record or add a row to an output file.
> Launch call another Meta-Update control section to query and update more
records.

> Assignment specify assignment sections to be called at various points in the
cycle of a control section.

> |dLog specify an “ldLog” to automatically create CSVs on a section’s
events.

This table specifies all Control Section statements:

Operational statements

Sleep Used to slow down the operation of Meta-Update.

Status Alters or inhibits the default status message while processing a
file or query.

TimeOutNormal Alters the ARS Defined “Normal Operation” timeout value.

TimeOutLong Alters the ARS Defined “Long Operation” timeout value.

Load statements
LoadQ Specifies a query that results in a single record to be loaded.

lteration statements

File Indicates that this operation will process an Ascil file. Point to
the file definition section.

Query Indicates that this operation will process a set of records
returned by a query.

QuerySql Indicates that this operation will process a set of direct SQL
records returned by a query.

Loop Indicates that this operation will process a string or diary field

value, loop through the fields of a Tag or the forms making up a
Join, or while a condition is true.

Iteration controlling statements
Until Applies a conditional expression to limit the number of iterations
the section performs.

Output statements

Update Specifies that an output record is to be created or updated.
Specified the query to be issued to determine the update record.

Create Specifies that an output record is to be created.

Output Specifies that an ASCII file record or pattern file is to be utput

Meta-Update - 109 - User’s Guide

STH

Software Tool House Inc

rather than an ARS record.

Assign

Specifies the assignment sections to be applied to an update
record.

AssignNew

Specifies the assignment sections to be applied if an Update=
query returned zero records and you want to create a new
record.

AssignOpen

Specifies the assignment sections to be applied if an Output= file
is specified as output. These sections are applied only when the
file is opened.

AssignClose

Specifies the assignment sections to be applied if an Output= file
is specified as output. These sections are applied only when the
file is closed.

Output controlling statements

UpdateIfEqual Specifies whether to continue with an update when no field
values have been changed.

Merge Indicates whether a Merge operation is desired and specifies the
Merge options desired. Ignored if the output is not an ARS
record.

MaxOutput Limits the number of outputs for this control section to a specified

maximum. Any single record Updates, Creates, File writes is
considered in this maximum. The default is 0 which means
unlimited.

This is useful during development of scripts that return large
query results or process large files.

Note that when coded in the [Main] section, any run of this
section is limited to the lesser of the two numbers.

Launch statement

Launch

Specifies a set of Control sections to be fired for each record
updated in this operation. May be conditional. Used to Nest
operations.

Assignment section statements

AssignInit

Specifies the assignment sections to be applied before
processing begins for the section.

AssignTerm

Specifies the assignment sections to be applied after processing
ends for the section and the section is about to be closed.

AssignPre

Specifies the assignment sections to be applied directly after
loading the section’s record. This is applied before any
subsequent Loads, Updates, or Assignments.

AssignPost

Specifies the assignment sections to be applied directly after
completing any updates but before any launches and the next
iteration of the section. This is applied whether an error occurred
or not.

AssignPostOk

Specifies the assignment sections to be applied directly after
completing any updates but before any launches and the next
iteration of the section. This is applied whether only when an
error did not occur in the update or any launches. .This is
applied before the AssigninitPost sections.

Meta-Update

-110 - User’'s Guide

STH

Software Tool House Inc

AssignPostErr Specifies the assignment sections to be applied directly after

completing any updates but before any launches and before the
next iteration of the section. This is applied whether only when

an error did occur in either the update or any launches. .This is
applied before the AssignlinitPost sections.

AssignPostLaunch | Specifies the assignment sections to be applied directly after all

launches are invoked, if any, but before the next iteration of the
section. This is applied whether only when an error did occur in
either the update or any launches. .T

IdLog statements

IdLog

Specifies an IdLog file for a set of events and conditions. Also
specifies the formats and assignments for an IdLog file.

Operational Statements

Sleep

TimeOutNormal

Meta-Update

s [, n]
Optional. If coded, specifies a number of seconds to pause every “n”

[7el]

iterations of a section. If “n” is missing, it defaults to 1.

Examples:
Sleep = 2
Sleep = 2, 5

The first example pauses 2 seconds after each iteration of the section. The
second example pauses 2 seconds once after every five iterations of a
section.

= nnn

Optional. If coded, sets the API Session Timeout for “Normal Operations” to
a number of seconds. These operations include most single record
operations such as reading and updating Remedy ARS records.

The number can only be increased from the default: 120 seconds.
Example:

TimeOutNormal = 300

This increases the timeout for single record operations to 5 minutes. This

can be used when filter activity takes more than the default of two minutes or
for slow connections to the server.

-111 - User’'s Guide

Software Tool House Inc

TimeOutLong = nnn
Optional. If coded, sets the API Session Timeout for “Long Operations” to a
number of seconds. Long operations are those that are multi-record such as
ARS or SQL queries.
The number can only be increased from the default: 300 seconds.
Example:
TimeOutLong = 1200

This increases the timeout for queries to 20 minutes.

ClientType = nnn
Optional. If coded, sets the Client Type. Setting the Client Type can be used
in testing scripts to exercise client specific filters.
Example:
ClientType = 11
Set the Client Type to that of the Mid-Tier.

Load Statements

The LoadQ statement is supported but has been superseded by the more powerful LookUp
facility.

The LookUp facility can cache records, handle multiple records as a result of a query and
succeed even if no record is loaded.

A LoadQ is used to query for and load a single record into the specified Tag.

LoadQ = Optional. Loads specify a query that must return exactly one record.
LoadQ = [@SvrTag] Tag , Schema , Query
Any number of load statements may be in the control section or in the
assignment section. These are processed in the order they are encountered
with those in the control section being processed before those in the

assignment section.

All loads coded in the control section before the iteration statement (Query=,
File=, Loop=, QuerySqgl=) are processed before the iteration statement, if
coded.

The iteration statement may reference fields from any of the preceding Load
statements.

Loads following the iteration statement can refer to data from the loaded
records or from the record loaded by the iteration statement.

Then, the update= is processed possibly resulting in another load. The

Update= can refer to any loaded record in the control section including the
record from the file or query.

Meta-Update -112 - User’s Guide

STH

Software Tool House Inc

Finally, the assignment sections are processed. In any one assignment
section, loads are processed first, then, an update record is built up. After all
the sections are processed, the update is applied.

About lteration Statements

Exactly one or zero iteration statements may be coded. If none are coded, the section
performs its process exactly once, producing a single output, if coded.

If an iteration statement is coded, the section loops based on the results of the iteration
statement, loading the values into the specified tag and producing its output, if coded, as
many times as it iterates.

Query = Optional. A single ouery= statement is allowed. If coded, a query is
executed and the records returned from the query are iterated through.

They are loaded one by one and the assignment sections are applied to a
new or retrieved update record. As many records as there are returned from
the query are produced for the target schema.

Query = [@SvrTag &
Tag, &
Schema, &
[@sort (F1d [Ascending|Descending] [, ..]1),] &
Query

@SvrTag If coded, specifies that the Query is to be run against the specified
Read Server.

Tag As each record is loaded, references to the record’s fields are made
with this Tag.

Schema This is the name of the ARS form to query.

@sort Specifies a sort order. Records are normally retrieved in the sort

order specified by the form definition with the admin tool. The
default sort order is by Request ID which is generally from oldest to
newest.

Query This is an ARS query to be performed. The Query format is the
same as that which is acceptable in the Advanced Query bar in the
BMC User Tool. That is, field labels and not database names are
used. Field Ids can be used when labels are not available of are
multiply defined in the form. Of course, full reference substitution is
available.

Examples:

Query = @Prod, &
SrcTT,
HPD:HelpDesk, &
‘17 = “$Arg, TT-IDS”

°g)

Query = SrcTT, &
HPD:Help Desk,
‘Assignee+’ = “$SrcTT, Assignee$” AND &
‘Status’ < “Resolved”

°g}

QuerySql = Optional. A single Querysqgl= statement is allowed. If coded, a query is
executed and the records returned from the query are iterated through.

The returned SQL rows are loaded one by one into the Tag specified, and the
assignment sections are applied to a new or retrieved update record. As

Meta-Update -113 - User’s Guide

STH

Software Tool House Inc

Loop

Merge

Meta-Update

many records as there are returned from the query are produced for the
target schema.

The Querysql= returns a set of record with each record containing a set of
fields. These fields can be referenced by either an integer or a field name.
The field name is defined is a special Field section. This also allows data
conversions to be specified from the native SQL data types into the ARS
types. See Field Sections below for more information on specifying field value
transformations.

The Querysql= may be run on the target server or on any read servers. lItis
passed through the Remedy API to the Remedy server and executes the
query using the Remedy server’s credentials. There is size limit on the query
itself.

QuerySql =[@SvrTag] Tag , FieldSec, Query

Optional. A single Loop= statement is allowed.

Loops can go through:

Diary fields — assigning various fields from the Diary entry to the tag
Delimited Strings — assigning the single string to the tag

Fields of a schema or tag — assigning information and value fields to
the tag

Forms making up a Join — assigning form information to the tag

As long as a while condition is true — not using a tag at all

>
>

>
>

These values are loaded one by one and the assignment sections are applied
to a new or retrieved update record. As many records as there are values in
the passed string or diary field value are produced for the target schema.

If the string or diary field value is null, no records will be produced.

Loop = Diary, Tag , [Reverse, | Forward,] Reference

Loop = String, Tag , seperator, &
[Reverse, | Forward,] &
Reference

Loop = Fields, Tag , Source Tag

Loop = Join, Tag , ”Form Name”

Loop = While, (condition)

Indicates that a Merge operation is desired and specifies the Merge options
desired.

Note that a Merge operation is different than a Submit or Update. A Merge is
what the arimport facility uses. On Merges:

1 only workflow set on Merge will be fired — unless the NoFilters
option is specified.
2 Core fields can be assigned or updated including the ID field.
3 Diary fields can be replaced completely with formatted Diary
values; simple character strings are invalid as a Diary value.
Merge Yes
Merge = [No]JAllowNull , [No]SkipPatternMatch
[No]Filters
AllowNull Allows $NULLS$ assignments to required fields

-114 - User’'s Guide

UpdateIfEqual

Update

Meta-Update

STH

Software Tool House Inc

SkipPatternMatch Allows assignments to fields even if the assignment
fails the field’s pattern matching specifications

NoFilters is only available in Meta-Update for version 6.3+ of
ARS. It causes all Merge filters to be turned off for
the single Meta-Update job running.

The defaults are NoAllowNull, NoSkipPatternMatch, and Filters.

If the defaults are required, you can simply specify “Yes” to tell Meta-Update
the Merge itself is required. For documentation and completeness, it is
recommended that all options always be specified.

The default action of Meta-Update is to skip a record update if the values
being assigned are equal to the current database values. This can be used
to override this default. If updateIfEqual = Yes is coded, an update will
occur whether or not the values being assigned differ from the current values.
This is useful for causing filters set on Modify to fire.

UpdateIfEqual = Yes | No

Indicates that this is an update and supplies the query to be used to
determine the update record. It must not be coded for creates.

Update = Tag , Schema , Query

If the section contains a Query= and the query results are to be updated, the
Update= specifies the same Tag as on the Query=. The Query= cannot have
specified a read server.

Update = Tag

A query is be performed to select the update record unless the update record
is the same as this sections query record and the short form of the update
statement is used.

This update= query’s results must contain exactly one or zero records. The
Tag must be unique and cannot match that of the guery= if a different
schema and query are coded.

If the update= query returns zero records, a new record can be created if the
AssignNew= is also coded. Otherwise, an error will be produced and no
record will be created.

If the update= query returns one record, and no assign= is coded, no update
will take place and no error will be thrown.

-115 - User’'s Guide

Software Tool House Inc

Assign =

AssignNew =

AssignInit
AssignTerm
AssignPre
AssignPostOk
AssignPostErr
AssignPost

AssignInit=

AssignTerm=

AssignPre=

AssignPostOk

Meta-Update

Required. Specifies the name(s) of the assignment section(s) to be applied
to the updating record when update= is used, or record being created if
Create= is used.

These are the actual Remedy ARS field assignments to be performed against
the target schema in either an update or a submit. See Assignment Section
below for more information. Multiple assignment sections can be specified on
multiple assign= statements. All are processed in the order specified for
each update.

If an AssignNew= is coded when an update is used, and the update query
results in zero records, this indicates that a new record is to be created. It
lists the assignment sections to be applied for this condition. If it is not
coded, no update is done when the update query returns no records.

The above keywords specify optional assignment sections. The different
keywords indicate when, during the execution of a single command section,
the assignments will be processed.

These are used in more complex scripts. Assignment sections so specified
have no Remedy targets and are generally used to set script variables, or,
launch external processes.

Only the following assignments can be made in these sections:

@Cmd = Reference

@Cmd = Qif, else, endif
@Cmd = Include

@Cmd = Spawn

@Cmd = Abort

Specifies the name(s) of the assignment section(s) to be applied when a
command section first starts. This is generally used to assign initial values to
variables.

When a section is launched iteratively, each new Launch will process these
assignments.

Specifies the name(s) of the assignment section(s) to be applied once just
before the section is ended. If a section is launched iteratively, then each
time the section completes and is ready to return to the section will have
these assignments processed.

Specifies the name(s) of the assignment section(s) to be applied before the
next iteration of any Query= or File= statements is processed but after the
Query= or File=record is loaded and a Status= message is processed.

If a section is launched and has no Query= or File= then this will have the
same effect as an Assigninit.

-116 - User’'s Guide

Software Tool House Inc

Specifies the name(s) of the assignment section(s) to be applied after an
iteration of the command section is complete. That is after the update is
done and all launches have completed. These assignments are applied only
if the update and all launches succeeded. They are applied before any

AssignPost or AssignTerm assignments.
AssignPostErr =

Specifies the name(s) of the assignment section(s) to be applied after an
iteration of the command section has complete with an error. These
assignments are applied only if the update fails or any of the launches fail.

They are applied before any AssignPost or AssignTerm assignments.
AssignPost =

Specifies the name(s) of the assignment section(s) to be applied after an
iteration of the command section has completed either successfully or in
error. These assignments are applied before the next iteration of the
section.l. They are applied before any AssignTerm assignments.

Load Statements

Load statements cause a record to be read from the ARS server and associated with the Tag
given. They may be coded in the control section or in an assignment section.

A load statements specifies a query to be performed that will return exactly one record to load
and associates that record with the specified Tag.

A Load= statement consists of the keyword L.oado= and a three part value plus an optional
read server reference.

LoadQ = [@ SrvTag] Tag, Schema, OQry

e The svrTag, if coded, indicates that this record will be loaded from the server
specified as a Read Server with the matching Tag.

e The Tag is used as references to the loaded record’s fields in assignments to the
target record, in other Loads, in Queries, Launches and Updates.

e The Schema is the ARS form on the server to read from.

e The Qry is a query string whose result must return one and only one record.

Any field in the loaded record’s form can be assigned to any field in the update assignments.
Meta-Update does automatic type conversions. A loaded record’s field can also be used as a
Key in a subsequent load or inside a query string.

Two loads with the same Tag is an error.

Loads are processed in the order coded. This order may be important as a field from a
loaded record may be used to load another record.

All loads specified in the control section before the Query=, File=, and Update= Statements
of that section are processed before the Query=, File=, and Update= statements. The
Query=, File=, and Update= Statements can use data loaded in the preceding loads.

Load statements specified after guery=, File=, and Update= statements are processed after

these statements and can use the data in the results of the Query=, File=, and Update=
statements.

Meta-Update -117 - User’s Guide

Software Tool House Inc

There is no distinction between loads in a control section and loads in an assignment section
other than the fact that the loads from the control section are processed first. The query and
update are then processed resulting in one or two more loads. Then the assignments may
use all loaded data from either section.

The LoadQ statement has been superseded by the more powerful LookUp facility.

Note that the LookUp facility can also be used to Load records and has advantages over the
Load including caching the records, using the first record when multiple records are returned,
and allowing no matching records.

If a Load query returns zero records, an error is thrown.

Query Statements

A Query statement is used to iterate through a query result of records. For each record, other
records may be created or updated, and other control sections may launched and assignment
sections may be processed.

All results from a query are processed even if the server limits the number of records
returned. The starting record returned by the results and the maximum number of records
returned by the results can be controlled if desired.

There are two types of Query statements: Query=and QuerySql=. Both types use the ARS
API to return results.

A single guery= or QuerySql= statement may be coded in a control section.

When the guery= 0r Querysql= statement is coded, Meta-Update will issue the supplied
guery and for each record returned in that query will:

e Load that record and associate that data with the tag specified on the Query
statement.

e Perform any AssignPre section if coded.
This is a great place to load related records, transform values, validate the record
loaded, and, set the target schema for the Update.

e Perform an Update= query if coded, and, apply the assignment sections to create or
update a record in the target schema.

e Launch other control sections to update other records, possibly using variable set in
the AssignPre= to add a condition to the launches.

An Update= can result in the same number of new records added to, or updated in, the
target schema as was returned by the query.

Syntax

Query = [@ SrvTag]
Tag,
Schema,
[@sort (F1d[,..1),
Qualification

22 2 2

Meta-Update -118 - User’s Guide

STH

Software Tool House Inc

@SvrTag Specifies a ReadServer to run the Query on. The
ReadServer’s Tag= value is the SvrTag and is prefixed with
an “@”. The ReadServer’s section must be specified in the
Main ReadServer= keyword.

Tag Specifies the Tag that each of the returned records will be
assigned to and referenced with.

The Tag is used throughout the script to access data from the
guery result. The Tag is reloaded while iterating through the
guery results

You can then use $Tag, fields$ to reference data from the
record.

Schema The Schema is a full ARS table name that will be queried. It may
be a reference.

An AssignPre section, for example, could determine a table to
update and set the name of the updating schema in a script
variable.

@sort(
Fld [,..] Specifies a specific sort order.

List the fields to be used in the sort by name or Id and optionally
follow a field by —A or Ascending or -D or Descending to
specify the previous field’s sort direction.

The set of fields may include references.

An @sort ($NULL$) evaluated by expanding a reference
causes no sort to be applied to the query.

Note that if an @sort is not specified, the Remedy schema
specifies a default sort and this is implicitly used.
Qualification Specifies the Query Qualification that will be passed to Remedy.

Qualifications may include script references.

Generally, any qualification acceptable to the advanced query
bar of the User tool is acceptable.

The Qualification may include Remedy field names between
single quotes. Meta-Update will replace these with field Ids
when the default field label is different then the field name.

The qualification string is similar to one that you would enter when issuing a query in the
advanced bar with the user tool. Any literal $’s must be doubled or escaped.

Meta-Update reference substitution on the query qualification is done. This can be in any part
of the qualification including the Remedy fields between single quotes.

Field Ids, field labels, and field names may be coded between single quotes. If a field name
is used, and that field name does not match the default field label in the ARS schema, the
field ID is substituted before the query is sent to Remedy.

The values “$NULLS$”, “”, and $NULL$ are equivalent and replaced with the $NULL$
keyword with any quotes removed.

Meta-Update -119 - User’s Guide

STH

Software Tool House Inc

The query may be tested using Meta-Query.

Using —d: g or —v on the Meta-Update run will cause the complete text for all query
gualifications sent to ARS to be logged.

Using —d: q, g on the run will log the query sent to Remedy, and, if the Meta-Update user is in
the configured client logging group, will also log the resultant ARS Server SQL logs.

To perform substitution, use assignment references wrapped in $’s. Examples are:

Query = @SrcSrv, &
SrcR, &
HPD:HelpDesk, &
‘Key'’ = “SArg, Key” AND &
“Walue’ > $Src, TgtValue$ AND &
‘Non-Null’ = SNULLS

If the command argument named Key had the value “Key1” and the value of the TgtValue
field in the record loaded as “Src” was “1”, then the substituted query qualification would be:

‘Key’ = “Keyl” AND ‘Value’ > 1 AND ‘Non-Null’ != S$NULLS

If, on the other hand, the value of Key was “” or NULL, the substituted query string would be:
‘Key’ = SNULLS AND ‘Value’ > 1 AND ‘Non-Null’ != $NULL$

Note that only one of Query=, QuerysSql=, File=, Or Loop= may be used in any single

control section.

Performance Considerations

A Query result limit may be imposed through a Remedy server configuration setting.

Server Information

Platiorm | Timeouts | Loenses :_C,gﬂwnm_;l Log Fies | Databare | Pots and Queces | Advanced | Souce Contiol | Setve .
0 specifies
unlimited

Usars Prongted For Login: |y Prederance :J

Maw Entaes Retumed By Geflust ;‘l]

Sarvor Tabie Fued Chunk Sz 1000

Servee Langusce: FRCWESTERN

Waee Evmad Notiiaz From: | ARSysten _j

Mo AP Version: {ai

Deetaut Home Fei | Home Page L] _]

Mas Nuebes of Pacawond Starnpts ll'

Mest Baguest (D Black Saw |1

Meta-Update will retrieve all query results by issuing a Remedy call to get the next chunk of
results until all the results are retrieved.

Once a set of Query results are retrieved, Meta-Update will retrieve the data for those results
in blocks of 100 records. Each iteration of the section will load the next record from the
current block until that block is exhausted. It will then retrieve the next block from Remedy.

This reduces accesses to the Remedy server to once per 100 records, and 1 per query chunk
with a Remedy Server maximum, or 1 if unlimited.

Meta-Update -120 - User’s Guide

STH

Software Tool House Inc

Additional Keywords

The following optional keywords may be included in a control section that has a Query=
statement.

QueryStart nnn
QueryMax = nnn

If QueryStart=is coded, the first record returned by the query will be the record specified.
If QueryMax= is coded, the total number of records returned by the query will be limited to
the number given.

The values can be integers or references that evaluate to integers. If missing, the default will
be the first record returned by the query.

The special integer 999,999,999 can be used to override a server-based limit on servers
above release 7. Itis unnecessary but possible to set this in a Meta-Update script. Meta-
Update, by default, will continue issuing queries automatically until all results are exhausted.

These keywords can be used to limit the number of records processed by a single job
allowing you to start multiple jobs with different QueryStart= values.

In this example of a script, we will run 4 simultaneous jobs with 2.5k per job:

[Main]

Arg = start

Arg = max

Arg = qgry

[Do]

Query = Src, HPD:Help Desk, Arg, qry
QueryStart = $Arg, start$

QueryMax = Arg, max

To fire the jobs we might use a batch file like this:

start SthMupd -d:i,,jl.log example.ini Do -start 00000 -max 2500 —-qry 1=1
start SthMupd -d:i,,j2.log example.ini Do -start 02500 -max 2500 —-gqry 1=1
start SthMupd -d:i,,j3.log example.ini Do -start 05000 -max 2500 —-gqry 1=1
start SthMupd -d:i,,j4.log example.ini Do -start 07500 -max 2500 —-gqry 1=1

Meta-Update -121 - User’s Guide

v\.
Software Tool House Inc

QuerySql Statement

A QuerySql statement is like a Query statement except that instead of supplying a Remedy
Table and Query, an SQL query is provided and that query is passed through ARS onto the
database.

A single guerysql= statement may be coded in a control section.

When the Querysql= statement is coded, Meta-Update will issue the supplied query using the
ARS ApI function, and for each record returned in that query will:

Load that record and associate that data with the supplied tag.

Perform any AssignPre section if coded.

Perform and Update query if coded, and

Apply the assignment sections to create or update a record in the target schema.

This will result in the same number of new records added to, or updated in, the target schema
as was returned by the query.

QuerySqgl = [@ SrvTag] Tag, Sec, Query
The statement has three parts with an optional reference to a read-server.

The Tag is the name that Meta-Update will recognise as a reference to the current record in
the result set.

The sec specifies a section that is used to specify column names and value translations as
per a Fields= section of a File=. See below for more information on the rFields= section.

The sec may be empty or @na. Both mean the same and there will be no column names and
no data value transformations for the record denoted by the Tag. In this case, the field names
are integers much like assignments with the Administrator Tool: The first column selected
has the “name” 1, the second, “2” and so forth.

If sec is not empty and refers to a field section, and automatic variable is set which holds the
select fields separated by commas. This is gathered from the fields in the section. When
fields are the result of complex SQL expressions, those expressions may be coded in the field
section with sql=.

This variable is $CTL, Sec-SqlSelect$

The query string is similar to one that you would enter when issuing a query in a set fields
action dialogue with the BMC Administrator Tool except, of-course, that the query may return
multiple records and these will be iterated through in the control section.

The query may be tested the Meta-Query.

Text substitution in the query qualification is done. Wrap references in dollar signs. Literal
$’s must be doubled or escaped.

If a dereferenced Query string contains equal and not equal comparisons with ‘SNULL$’, that
comparison will be replaced with “is null” or “is not null” respectively. This qualification
example should help clarify:

DbField = ‘$Tag, Ars-Field$’ or DbField <> ‘$Tag, Ars-Field$’

Meta-Update -122 - User’s Guide

STH

Software Tool House Inc

If the value of Ars-Field in the record referenced by Tag is $NULLS$, the qualification can
become.

DbField = ‘$NULL$’ or DbField <> ‘S$NULLS’

This of course, would not match what is wanted, so the above QuerySql qualifications will be
changed to:

DbField is null or DbField is not null

Examples:

QuerySqgl = SglRec, SqglFlds, &

select distinct &
Category, Type, Item &

from BMC BMC AssetBase

[SglFlds]

Category S

Type $

Item = $

Note that the following query is entirely equivalent to the above.

QuerySqgl = SglRec, SqglFlds, &
select distinct &
$CTL, SglFlds-SglSelect$ &

from BMC BMC AssetBase

References to SqlRec could then be coded as:

Query = ShrCat, SHR:Categorization, &
"Category’ = ”$SqglRec, Category$” ANDG&
" Type’ = ”$SglRec, Type$” AND &
"Ttem’ = ”$SglRec, Item$”

Or in assignments as:

Category = SglRec, 1
Type = SglRec, Type
Item = SglRec, 3

Another example:

QuerySqgl = @SrcSvr, SrcPct, SrcPct, &
select Request Id, Instance Id, &
Category, Type, Item
from
(select distinct item from $Arg, Schema$ &
where AssetLifecycleStatus != 5 and &
BMC DataSet = ‘BMC.ASSET’ &
)
[SrcPct]
RequestID = $
InstancelID $
Category $
Type = $
Item = $

Meta-Update -123- User’s Guide

Software Tool House Inc

In the above example, records of 5 “fields” or values will be retrieved. These fields are can be

referenced in two ways:
1) simply by their column numbers starting from 1 as in the BMC Administrator, or,
2) by the field names in the [srcpct] section.

For the guerysql= above, the fields of each SQL row can be referenced as:

SrcPct, 1 SrcPct, RequestiD
SrcPct, 2 SrcPct, InstancelD
SrcPct, 3 SrcPct, Category
SrcPct, 4 SrcPct, Type
SrcPct, 5 SrcPct, Item

Here are example references using the Querysql= above:

Query = @SrcSvr, CI, &
‘Category’ = “$Pct, 3” AND &
‘Category’ = “$Pct, 3” AND &

If the example QuerySql launched a section with the next example Query=, the effect would
be to process all of the distinct “Items” in the Asset database, and then for each of those
Items, process the set of Assets that have that categorisation.

Note: at most one and only one iteration statement: QuerySqgl=, Query=, File=, Of Loop=
may be coded in a command section.

File Statement

A single File= statement may be coded in the control section. Meta-Update will read the
specified file record by record. For each record in the file, Meta-Update will:

e Load that record and associate that data with the supplied tag.
e Query for an update record.
e Apply the assignment sections to create or update a record in the target schema.

This will result in the same number of new records added to, or updated in, the target schema
as are in the file.

File = Tag, DefSec, FileSpec
Tag specifies the name that will be associated with the fields of each file’s
records. This tag is used in references.
DefSec specifies the file sections that define the characteristics of the Ascli file.
FileSpec This is the actual file name and path. Itis a string reference.
File = F_OutLook, fDefExchg, $ENV, Rmdy$work/exchg $Arg, fname$.cvs
File = F OutLook, fDefExchg, exchg.cvs

The first example uses the environment variable Rmdy and the program argument -fname.
File records are similar to ARS records. A record is comprised of fields. The fields may be
referenced in ARS assignments in the same way as a loaded record’s fields can be
referenced.

There are two types of input files: Delimited and Fixed.

Meta-Update -124 - User’s Guide

STH

Software Tool House Inc

Delimited files are used by Excel. Microsoft Exchange also produces these files.

Fixed format files have fields that are always a specified length. Transaction files, UNIX script
output and input files tend to be fixed format.

See File and Field section below for more information on the options you can select.

When Launching a control section with a rile=, that File will be processed for each record in
the parent control section. For example, if the first control section processes a 100 record file,
and the second control section processes a 10 record file, the assignments of the second
control section will be processed 100*10 or 1,000 times.

Note: at most one and only one QuerySql=, Query=, File=, Or a Loop= may be coded in a
command section.

Loop Statement

A single Loop= statement may be coded in the control section. Meta-Update will iterate
through the values being looped. For each value in the loop, Meta-Update will set the loop
reference tag and can create or update a single record.

Note: at most one and only one iteration statement (QuerySql=, Query=, File=, Of Loop=)
may be coded in a command section.

Types of Loops

There are four types of loops:

String a string is parsed according to a specified delimiter.
Diary all entries in a Diary field value are iterated through.
While a loop continues while the specified condition is true.
Fields all fields defined by a source Tag are looped through.
Join all normal forms that make up a Join are looped through.

Syntax overview

Loop = String, Tag, dlm, [sort] Ref
Diary, Tag, [sort] Ref
While, (expression)
Fields, Tag, SrcTag, [Options]
Join, Tag, [SvrTag], Schema
[Skip: list]

These are keywords that specify the type of loop and are required.

String A string loop iterates through a set of substring.

Diary A diary loop iterates through all diary entries in a single diary field.

While A while loop iterates until the condition is false.

Fields Each field of the source Tag is iterated through.

Join Each normal form that makes up the Join is iterated through.
Keywords

Ref= This is a string reference.

If Ref evaluates to a NULL, no iterations and no outputs are performed. This
is similar to a guery= that returns no records.

Meta-Update -125- User’s Guide

v\.
Software Tool House Inc

dlm

Sort

forward
reverse
ascending

descending

Meta-Update

For diary loops, the reference must evaluate to a formatted diary field. It will
generally be to a loaded record’s diary field or a diary field picked up by SQL.

This is a string delimiter.
A delimiter can be a single character or a string. It can also be a reference
that evaluates to a single character or a string..

If the delimiter is a string, it can be “anchored” by prefixing the string with a
single or double cimcumflex character “” or “A”, or by suffixing the string
with a single “$”.

A prefixing “*’means that the delimiter will match only if it is preceeded by a
new line or is at the start of the string. The “*” is not matched.

A prefixing “*” means two new lines must precede the delimiter string to be
considered a match.

A suffixing “$” means that the delimiter will match only if it suffixed by a new
line or the end of the string. Newlines may be in either Windows or UNIX
formats on either OS.

If the delimiter is a single character, the values iterated through the looped
strings do not include the delimiter. If the delimiter is a multicharacter string,
the looped strings include the delimiter string.

Delimiters may be quoted and may contain escape characters (for example
“\n” or \013").

The string is parsed into an array of strings by using the delimiter as a
separator.

A non-null string with no delimiters returns a single complete string.

An optional sort if specified, must be coded as one of:
forward ascending asc reverse decending

In the natural order, that is the source order within the string or diary field. No
sort is applied. This is the default setting.

Reverses the natural order — not the same as descending except for Diary
loops.

Sorts set data in ascending sequence. If both are numeric uses a numeric
compare else does character comparisons. May be abreviated to “asc”.
Sorts set data in descending sequence. If both are numeric uses a numeric
compare else does character comparisons. May be abreviated to “desc”.

If the sort is not specified, no sort, or “forward” is applied.

For Diary loops the time stamp of the diary entry is used in the sort.

The ARS server stores Diary entries in an encoded diary string by appending
to the string — always from oldest to newest. Hence, “forward” is equivalent

to “ascending” and is from oldest to newest. “reverse” is equivalent to
“‘descending” and is from newest to oldest.

-126 - User’'s Guide

Software Tool House Inc

In a String loop, the “forward” order is the order that the individual strings
are parsed from the whole reference. Strings are compared as case
sensitive strings except when both strings are integers. In that case, the
integers are compared.

So: 104;17;12 will sort as expected (numerically)
and 104a;17a;12a will sort as 104a;12a;17a
The following string example, will illustrate the effects of the sort keywords:
String value: 1,97,42,26,51

Forward 1,97,42,26,51

Reverse 51,26,42,97,1

Ascending 1,26,42,51,97

Descending 97,52,42,26,1

While, Field, Join loops ignore any sort.
Tag assighments
A String loop sets only a single named value into the Tag:
Text The text of this iteration’s string

A Diary loop sets several named values into the Tag:

Text The text of this iteration’s diatry entry

User The user value for the entry

Date The date the user made the entry

Date The date the user made the entry ‘yyyy/mm/dd hh:mm:ss”
DateYmd e formatted like: ‘yyyy/mm/dd hh:mm:ss”
DateMdy e formatted like: ‘mm/dd/yyyy hh:mm:ss”
DateDmy e formatted like: “‘dd/mm/yyyy hh:mm:ss”
Datel . Remedy timestamp value nnnnn

A Fields loop sets the named values defined by the @info Reference assignment command
(See page 183 for the complete list) into the Tag:

FieldName The name of the field of this iteration
Value The actual value of that field
ValueLength The length of the above string

A Join loop sets the named values defined by the @info Reference assignment command
(See page 183 for the complete list) into the Tag:

Schema The name of one of the Normal Schemas making up the Join

Note that the field values of @info will not be filled in.

Meta-Update -127 - User’s Guide

STH

Software Tool House Inc

Examples

In the following discussion, we describe examples of a Loop statement coded in the Do-Loop
section of this script:

Do

éueiy = SrcTT, HPD:HelpDesk, ‘1’7 = “$Arg, 1IDS$S”

Launch = [Do-Loop]

[Do-Loop]
1 | Loop = Diary, sDiary, $SrcTT, Notes$
2 | Loop = String, sTag, “;”, $Usr, Group List$
3 | Loop = Fields, fTag, SrcTT, Type Attachment, NoNulls
4 | Loop = String, sTag, “Wh*xxx 7, $SrcTT, CASE HISTORY

4

Example 1 Diary:

Loop = Diary, sDiary, $SrcTT, Notes$

In the first example, a Help Desk ticket is loaded into the Tag SrcTT. The Notes field, a diary
field, is parsed, and each entry in that diary field is iterated through. When the entry is
loaded, the following references are made available to the section:

sDiary User the login name of the user who made the diary entry
sDiary Date the date of the entry: yyyy/mm/dd hh:mm:ss
sDiary DateMdy the date of the entry: mm/dd/yyyy hh:mm:ss
sDiary DateDmy the date of the entry: dd/mm/yyyy hh:mm:ss
sDiary Text the entry text

The Date value is useful for assignments. This is the format that Meta-Update expects for
date variables. The Datexxx values are useful for ARS Queries which require that the date
be formatted according to the machine’s locale. In Windows, this is set at a machine level.
On Unix, the local may be controlled by environment variables. The “C” locale, a default, is
referenced by DateMdy.

Example 2 String:

Loop = String, sTag, “;”, SUsr, Group List$
In the second example, a User record is loaded into the tag Usr. The Group List field is
parsed (based on the semi-colon seperator specified) into a set of single groups. Each of
those groups is interated through. When each group is loaded, the following references are

made available :

sTag Text the single group id as a string

Example 3 Fields:

Loop = Fields, fTag, SrcTT, Type Attachment, NoNulls

In the third example,a Loop of only a records’ attachment fields containing attachments (non-
null) are iterated through.

The Tag, £Tag will contain the information returned from the @ info reference assignment
command.

Meta-Update -128 - User’s Guide

STH

Software Tool House Inc

If the record has three attachment fields and two have no attachments (are $NULL$) the loop
will execute once only with these fields being assigned to the fTag specified:

fTag Type ARS
SchemaName HPD:HelpDesk
FieldName Attachmentl
FieldId 3000100010
FieldType Attachment
Value C:\tmp\Some File.Jjpg
Valuelength 19

See Assignment Reference, on page 183, for the list of variables assigned to fTag.

Example 3 String:
Loop = String, sTag, Wh*x**x 7, $SrcTT, CASE HISTORY

In the fourth example, say $srcTT, CASE HISTORYS contains:
*** CASE OPEN 2011/08/01 supl

The customer called complaining of slow response time. This
generally happens for a period of an hour across his lunch.

*** CASE NOTES 2011/08/02 supl
Ran the tracert to his server when he experienced the slowness.
i *** tracert output attached

{ *** CASE TRANSFERED 2011/08/02 sup-net

*** CASE CLOSED 2011/08/02 sup-net
1 Firewall change made.

Consider the following Loop= example using a double anchor on the delimiter:

Loop = String, &
T, &
WAA KKKk &

$Src, CASE HISTORYS
The Loop= will iterate through 4 strings. These are:

Lp 1 of 4: *** CASE OPEN 2011/08/01 supl
The customer .
Ip 2 of 4: *** CASE NOTES 2011/08/02 supl
Ran the trac
ILp 3 of 4: *** CASE TRANSFERED 2011/08/02 sup-net
ILp 4 of 4: *** CASE CLOSED 2011/08/02 sup-ne
Firewall cha

Itis up to the assignpPre of the Loop section to parse the looped strings and determine what
to do.

When a double anchor is used, only when the delimiter string is preceded by two new lines
does that string be considered a match.
Consider the following example:

Loop = String, &

Meta-Update -129 - User’s Guide

STH

Software Tool House Inc

T,
WAAkKkKk
’

$SrcC, CASE HISTORYS$

Then the loop will be executed four times. If, on the other hand, a single anchor were used,
the loop would be executed five times and iterate through these strings:

Lp
Lp
Lp

Lp
Lp

Example 5 Join

The following script will transfer records from a class form on a production server to
server. Because we do not want workflow to fire, we will use the Merge APl and wri

1 of 5: *** CASE OPEN 2011/08/01 supl
The customer .
2 of 5: *** CASE NOTES 2011/08/02 supl
Ran the trac
3 of 5: *** tracert output attached
4 of 5: *** CASE TRANSFERED 2011/08/02 sup-net
5 of 5: *** CASE CLOSED 2011/08/02 sup-ne

Firewall cha

records to the underlying normal forms.

The class form as well as query qualifications are passed on the command line.

[Main] sets script
arguments and sets
up 2 connections: a
“prod” server, and the
target server.

Environment variable
ArsSvrAdmin is the
target server.
ArsSvrProdAdmin

ai Eéﬁg “prod” server.

te

[Do] issues a Query
on the BMC Class

Join form given by the

[Main] program arguments.
Arg = Form, Default BMC.CORE:BMC ComputerSystem
Arg = Query Default 1=1 .
ReadServer = prod [Do-Join] loops
PrmReq = Function: through each normal
PrmReq = Will transfer CMDB records from production. fonninthe(jassjoHL
PrmReq = Usage:
PrmReq = SthMupd $ScriptFx$ Do —-Form form —Query query .
PrmReq = where form is a BMC.CORE:BMC xxx class form [Do-I] Issues a
PrmReq = and query is a qualification on the form. query on each normal
forms of the class join
[prod] and updates the
Tag = prod records on the target
Server = SENV, ArsProdServer $
server.
User = SENV, ArsProdUser S
[Do]
Query = @prod, Src, S$Arg, Form$, $Arg, Query$
Launch Do-Join
[Do-Join]
Loop = Join, SrcI, S$Arg, Form$
Launch Do I
[Do TI]
Query = @prod, SrcIr, $SrcI, Schema$, '179’ = ”$Src, 179%”
Update = TgtIr, $SrcI, Schema$, ’'179’ = ”$Src, 179$”
Merge, = Yes, NoWorkflow
AssignNew = Do I-asg
Assign = Do TI-asg
[Do-I-asg]
@Cmd = Copy, Srclr, CoreAssign
If the above script were called as follows:
Meta-Update -130 - User’s Guide

STH

Software Tool House Inc

SthMupd.exe CmdbXfer.ini Do —-Form BMC.CORE:BMC Mainframe

All mainframes, no matter what datasets, would be transferred from the production server to
the target server.

The following output might result:

[Do] Qry 1 of 1 BMC.CORE:BMC Mainframe RE7269hqy0Olmna6yOlga
[Do] Qry 1 of 1: Launching Do-Join
[Do-Join] Lp 1 of 3 BMC.CORE:BMC Mainframe
[Do-Join] Lp 1 of 3 Launching Do I
[Do I] Qry 1 of 1: BMC.CORE:BMC Mainframe RE726%hqgy0Olmna6yOlga
[Do I] Updated BMC.CORE:BMC Mainframe RE7269hqy0Olmna6yOlqga
[Do-Join] Lp 1 of 3 BMC.CORE:BMC ComputerSystem
[Do-Join] Lp 2 of 3 Launching Do I
[Do I] Qry 1 of 1: BMC.CORE:BMC ComputerSystem RE7269%hqyOlmna6yOlga
[Do I] Updated BMC.CORE:BMC ComputerSystem RE7269%hgy0lmna6yOlga
[Do-Join] Lp 1 of 3 BMC.CORE:BMC BaseElement
[Do-Join] Lp 3 of 3 Launching Do I
[Do I] Qry 1 of 1: BMC.CORE:BMC BaseElement RE7269hqy0lmna6y0lga
[Do I] Updated BMC.CORE:BMC BaseElement RE7269hqy0Olmna6yOlga
[Do-Join] Lp completed 3 records OK
[Do] Qry completed 1 record OK

Create Statement

A single create= statement may be coded in the control section if Meta-Update is to always
create new records with every iteration.

Note that generally it is better to code an update= so that when the same script is run, the
pertinent records are updated rather than created.

A create= statement has only two parts. The Tag that the created record will be known
under in any Launched sections, and the schema to create. After a record is created, it is
reloaded into the Tag so that Launches will have available all values of that record.

All loads in the control section are processed before the Update= is processed. A Query= or

File= is processed before the update=. The assignment section is processed after the
Update= is processed.

Until Statement

The Until statement may be used only when a control section includes an iteration such as
Query=, QuerySql=, File=, or, Loop=.

The Until statement specifies a condition, that when true, causes the control section to stop
its iterations with no errors.

Until = @if (condition)
If an error is needed, use the Abort assignment command.

In a section that does not iterate, any Until= statement is ignored with a warning.

Meta-Update -131- User’s Guide

Software Tool House Inc

In the following example, an infinite loop is set up but is aborted after a single iteration.

[Do] These two sections
AssignInit = Do-asgInit are entirely equivalent
Loop = While (1)

Until = @if (1)

[Do]

AssignlInit = Do-asglInit

An Until= statement can be used to limit a section’s processing when any condition
becomes known. For example, say you want to delete an Incident and all its dependencies
but only if a copy of that Incident and all those dependencies exist in an archive form.

Consider this example, where we want to validate that a root request and all its children exist
in alternate — or archive — forms. If any child is missing, there is no point continuing. This
request has failed the validation.

So, say you may have sections querying all of the Incident’s children on the real forms, and a
LookUps to check the Archive forms. When the first case of a missing child is found, there is
no point continuing any of the queries for this incident’s children, so a flag can be set and all
Launched sections would complete up to but not including the section that looped through the
Incidents. That section would then iterate to the next Incident.

In this example, the flag V, Do, is initialized to True and set false when a Work Log for
this incident is not found in the archive form.

[Do]

Query = Inc, &
HPD:Help Desk, &
qry

AssignPre = Do-asgPre

Launch = Qif(“V, Do”) Do-WL

Launch = Qif(“V, Do”) Do-delete The Until= stops the

processing of this
Incident’'s Work Logs

Do-asgPre
[gPre] as soon as a Work

QCmd = Ref, V, Do, 1 .
@Cmd = Ref, V, gotIncArch, @QLookUp, & Lpgrecomis. .
Lkp-Inc-Arch, $Inc, 179% discovered missing
@Cmd = Qif (! “$V, gotIncArch$”) & from an Archive form
Ref, V, Do, 0
[Do-WL]
Query = WL, &
HPD:WorkLog, & If a Work Log is
‘Incident Number’ = “$Inc, Incideént Number$” missing from an
Until = (! “V, Do”) Archive form, we set
AssignPre = Do-WL-asgPre the v, Do flag to
false.
[Do-WL-asgPre]
QCmd = Ref, V, gotIncWL, @QLookUp, &
Lkp-Inc-WL, SWL, 179$
QCmd = Q@if (! “$V, gotIncWL$”) &

Ref, V, Do, 0

Meta-Update -132- User’s Guide

STH

Software Tool House Inc

Update Statement

A single update= statement may be coded in the control section if Meta-Update is to update
existing records in the target form, or create records if the specified update= query returns no
records. .

There are two forms of the Update= statement. In the first form, a query is performed to
determine the update record, or determine that a new record needs to be created.

In the second form, the update record has already been loaded into a Tag.

No Query is needed and no creates are possible. An ARS Query selects
/ the update record
Update = Tag, Schema, Query A
Update = Tag < The update record is
already loaded.

If Meta-Update is to always create new records without issuing any query, use Create=
instead of Update-=.

All loads in the control section are processed before the Update=is processed. Any iteration
statement (Query=, QuerySql=, File=, Of, Loop=) IS processed before the Update=.

The assignments sections which will set the fields of the Update= record, are specified by
Assign= and AssignNew= keywords. When all assignments are done, the record is
updated on the server.

The Update= statement issues the ARS query to load the Tag. If the query returns no
records, no Tag is loaded. If and only if there is a list of assignment sections specified in the
AssignNew= keyword, these are taken and a new record is created. If there are no
AssignNew= sections, no new records will be created. No error is thrown.

The Update= Tag is automatically loaded with a new copy of the update record after the
update is done.

This cannot be done on Join forms. A Warning is issued if the Update= form is a join form
and the Update Tag will be undefined.

You can use an AssignPost= section to reload the Tag yourself in the case of Join forms.
The Schema is a form name and may be a reference.

The Query is any valid Remedy Query.

Update = Tag, Schema, Query

If a section wants to update a Tag that is already loaded, as a result of a Query=, a LookUp,
or a LoadQ=, then the Tag may be specified alone in an Update statement:

Update = Tag

The Tag must have been previously loaded and must be a Remedy record.

Meta-Update -133- User’s Guide

Software Tool House Inc

Consider this example:

[Do]

Query = Hpd, HPD:Help Desk, Query

AssignPre = Do-asgPre -
Launch = Q@if (“$V, gotPplAsg$”) Do-Asgee Loads Pplasg with a

record from

[Do-asgPre] CTM: People

@Cmd = Ref, V, gotPplAsg, &

@LookUp, Lkp-Ppl-Asg, S$Hpd, Assigpkelds$
[Do-Asgee]) We update the Loaded
Update = PplAsg < CTM: People record

[Lkp-Ppl-Asg] held in PPlASg, the

given a person’s ID, load CTM:People rec inth Pplasg |Update record. PplAsg

Cache = 100 data is replaced with the
Default = 0 re-read, updated record
NoMatch = D, Default
Query = PplAsg, CTM: People, &

‘17 = “S$CTL, LookUpSrc$”
QueryTarget = $PplAsg, 1$

In this example, we want to update the records returned by a query:

[Do]
Query = Hpd, HPD:Help Desk, Query
Update = Hpd

The Update= query results must include exactly one record. That record is updated and
loaded. Itis an error for the Update= query to return more than one record.

If the update= query returns no matching records, you can instruct Meta-Update to create a
new record with the AssignNew= statement. This overrides the default behaviour of returning
an error.

The assignNew= specifies a list of assignment sections to be applied to the new create. On
create, you may want to assign values to more fields. You can specify the same sections as
in the Assign= or a different set of sections.

Assign = PplAsg
AssignNew = PplAsg, PplDft

In the above example used to load SHR:People from an Exchange Post Office extract, normal
updates use the assignment section [pPplasg]. New submits include additional assignments
contained in section [PplAsg].

When an Update= is processed against a record, and that record already exists, the fields
assigned are compared to their values in the current record. If there are no changes, by
default the update is skipped but counted as successful.

In some cases, this may not be desired. A special keyword can be used to override this
behaviour.

The UpdateIfEqual = Yes Statement is coded in the same section as Update= will force
the Update= to always write the Update to Remedy.

Meta-Update -134 - User’s Guide

STH

Software Tool House Inc

[Do]

Update = Hpd

UpdateIfEqual = Yes

Assign = asg

[asg]

Short Description = Hpd, Short Description

In the above fragment, the Short Description field is assigned the same value as it already
has. By default this will skip the actual Remedy update. Because the UpdatelfEqual= Yes
statement is in the Update= section, the real update to Remedy will fire. This can be used to
force workflow firing for example.

Output Statement

A single output= statement may be coded in the control section if Meta-Update is to output
either a CSV row, more text to a pattern file, or a completely new pattern file.

All loads in the control section are processed before the output= is processed.

An output= can be part of the iteration that is the result of a Query= or File= or other
iteration statement.

Assignment sections are processed in each iteration and result in a new row being appended
to the output file, for delimited files such as CSV, or more text being appended to a pattern
file, or that text becoming a new file in a pattern file with the MultiFile option..

Output = Tag, File-Section, FileName

The FileName argument is a string expression and is evaluated once when the output= is
first encountered at the section initialization.

If the file type is Pattern, MultiFile, the FileName is re-evaluated each time that output
is processed and a new file, rather than a new record, is created.

It is possible to open multiple CSV files with a single output statement. When a section is
Launched with an output= statement, the file name and tag is evaluated.

If both are unique, a new file is opened. If a tag was used before, the file name must match

the name opened when that tag was used before. If so, a new row is appended to the file. If
not, an error is thrown.

Meta-Update -135- User’s Guide

Software Tool House Inc

The sample script, ThI-All-Bkp.ini uses this feature to produce different CSV files for a set of
different tables using the same Output= statement:

[Do]
QuerySqgl

Launch

[Do2]
Query =
Output =

Assign =

[asg]
@Cmd =

[Out-f]

This declares the
from the schema
Type

Format =
Fields =

[Out-f-flds]
@Cmd

[Sgl-Fields]

used to name the SQL fields

name =
viewname
schemaid =

A list of tables are
returned from the first
QuerySql=on
arschema

Tbl, SglFlds, < &
select name, viewname , schemaid &
from arschema &
where $Arg, sch-qry$

Do2

Src, $Tbl, name$, 1 =1 — |
$Tbl, viewname$, Out-f, &
$Arg, F-out$-$Tbl, viewname$.csv

asg

Copy, Src

For each table, a Query
is run returning all
records and a new
output CSV is created.
That file contains a
column for each field in
the table.

output CSV file. All fields

are copied to the CSV

Delimited, ",", FldHdr

Quoted always Quotes escape l1lf escape
Out-f-flds

Copy, $Tbl, 18

(rather than 1, 2, 3)
$
$
$

Let’s say the sch-qry argument is “name like 'HPD:%’”

The second section [Do2] is launched once for each table returned from the SQL query

against arschema.

Let's say, one of the tables returned is “HPD : Help Desk”. When [Do2] is launched, a query
returning all records will be run against HPD : Help Desk and each record will be copied to an

output file.

The Tag for the Output= will resolve to HPD_Help Desk and the file name will be suffixed
by HPD_Help Desk.csv. As this will be the first time this combination is encountered, a
new CSV file will be created and it will contain all the fields in the Incident schema.

Now, ;et’s say, one of the tables returned is “BPD : Worklog”. When [Do2] is launched, a
query returning all records will be run against HPD : Worklog and each record will be copied

to an output file.

The Tag for the Output= will resolve to HPD_Worklog and the file name will be suffixed by
HPD Worklog.csv. As this will be the first time this combination is encountered, a new CSV
file will be created and it will contain all the fields in the Incident’s Worklog schema.

Meta-Update

- 136 -

User’'s Guide

STH

Software Tool House Inc

Merge Statement

Merge = Off
Merge = Yes
Merge [No]JAllowNull , [No]SkipPatternMatch

[No]Workflow
The value supplied to the Merge= may be a reference.

By default, that is, without a Merge= statement, or with a Merge = Off statement, Meta-
Update uses a Submit or Modify API operation. Workflow set on Submit and Modify fire.

You can tell Meta-Update to use Merge similar to the way the ARImport tool operates. Only
workflow that fires on Merge will be executed (by default).

Using Merge= with any value but O£ £ tells Meta-Update that you want to use Merge.

You can also use a Merge= option to inhibit all filters including those set to fire on Merge.

Use this option with caution. For example, when the output is to a join form, only workflow set
to fire on Merge will allow the real underlying records to be updated. A write to a join form
without underlying workflow causes no database update.

When a record is being updated, or when a field id is explicitly included in the update, the
setting corresponding to “Update Old Record with New Records Data” is always used.

Status Statement

A single status= statement may be coded in the control section. Its function is simply to
issue status messages while processing a rile= or Query=. These are informational
messages sent to the log file and copied to stderr.

Status = 1, SRecCtr$: SRec:72%
The above is the default status= specification used if none is coded. The status message is
repeated every record. The text of the associated message comprises the current record
number (from either the query or file) and the first 72 bytes of the record or query result string.

Any values permitted in Query= statements may be used. For example, when operating on a
query based on a Help Desk schema, you may code:

Status = 1, SRecCtr$: Tkt: $HD, Ticket IDS$ - $HD, Summary$

The format of the Status message is also used to report the original record being worked on if
any errors occur in the processing of that record.

You may inhibit the status message as well as the end of iteration status message with:

Status = 0

Meta-Update -137 - User’s Guide

STH

Software Tool House Inc

Sleep Statement

A single sleep= statement may be coded in the control section. Its function is to act as a
governor for Meta-Update. You can use it to reduce the load that Meta-Update will place on
the ARS server.

Sleep = recs, secs

The above s1eep= will cause Meta-Update to pause recs seconds every secs records while
processing a File= or Query=. If Sleep=is not coded, there is no pausing.

Launch Statement

Meta Update allows you to follow chains of linked records. One control section can launch
other control sections, which can, in turn, launch still others.

For example, let’s say you have the following tables

Organisation 1:many Sites 1:many Services
You want to write a script to invalidate all Services belonging to an Organisation.
You write a Meta-Update control section that queries for the single Organisation record you
wish to invalidate services for. This control section launches a second control section that
gueries for all sites associated with this Organisation.
That second control section processes a set of Site records and for each of those Site
records, launches a third control section that queries for all services associated with that

single Site record being processed.

That third control section invalidates the Services records for each Site of the Organisation.

[Org]

Query = Org, Organisation, ‘1’ = $001

Launch = Site

[Site]

Query = Site, Site, ‘Organisation ID’ = “$0rg, 1$”
Launch = Services

[Services]

Query = Service, Services, ‘Site ID’ = “$Site, 1$”
Assign = ServicelInvalidate

[ServiceInvalidate]

Status = 1Inactive

Launches can be made conditional. That is, the Section name launched can be build and
selected from ARS data or other loaded data.

Launch = (@if(“$Cfg, DoHtml$”) Do-Html

Meta-Update -138 - User’s Guide

STH

Software Tool House Inc

IdLog Statement

An ldLog is used to create a delimited file with a row for each record processed (read,
queried, updated). You can specify multiple IdLogs and events that the IdLog will be created
for. You can also control the format and content of the IdLog fields.

An IdLog is primarily used to track errors so that a subsequent Meta-Update run can process
only those records that resulted in errors.

Syntax and usage of IdLogs:

IdLog = Tag &
On Eventl[,Event2...] &
Fdef def section &
Fname file name &
Key key &
Fasg assign section
Tag The Tag identifies an IdLog file and file section. If the same Tag is used in

two different IdLog statements, they must specify the same file and file
definition section or an error will result. You may change assignments and
events on different IdLog statements in Launched sections

A special Tag is used to turn off all Id logging for a section:

IdLog = Off

On Specifies a series of events for which this Id Log will be written to.
Events are keywords and must be coded exactly as follows:

Update a record is updated (successfully or not)
UpdateErr a record update failed
Create arecord is created
CreateErr a record create failed
Iter an iteration is done: the next record, SQL row, or file row is read,
or the next loop value is processed
IterErr an iteration failed.
Fdef Optional. Specifies a file section.

The IdLog will be written with the fields and attributes of this file section.
Automatic fields, if not specified, will be added in sequence after the last field
specified. To change the order of the automatic fields in the output file,
specify them in the file section.

If a file definition is not specified, only the automatic fields will be in the IdLog
file.

Meta-Update -139 - User’s Guide

v\.
Software Tool House Inc

These are:
Time The time of the event.
Server The ARS server name
User The ARS user
Schema The schema or file name. NULL for SQL queries.
Key The value of ‘1’ for ARS schemas, of a string made of the first
few attributes for SQL queries, files, and Loops.
Operation One of: Read, Update, Create
Op2 Either blank or “Merge”.
Result One of: OK, Err, or Err followed by an error message.
Fname Required when any IdLog Tag is first used. Optional otherwise. It is an error

to use a Tag twice with different Fname values.
Specifies the name of the output IdLog file associated with this Tag.

Key Optional. A reference string that is used instead of the default key value
generally containing references from the sections iteration Tag.

Fasg Optional. A single assignment section name.

This is used to override the default assignments as given above or to assign
values to other fields defined in the file section for this IdLog. For example
you could add some fields from an SQL query to the IdLog and use the
assignment section to assign values to the added fields and even to change
the assignment to automatic fields such as the Schema or Key field.

Only a single assignment section can be specified. That assignment section
can include other assignment sections, record loads, lookups, spawning of
server or client processes and so on.

As many IdLog statements as needed may be coded in control sections.

When a section with an IdLog launches other sections, the IdLogs are carried through to that
launched section unless that launched section has its own IdLog statements.

IdLogs are recognized as the same when they have the same Tag. Itis an error to specify
two IdLog statements with the same Tag and different file names or different file sections.

You can use the same Tag in a Launched section’s IdLog to specify a different assignment
section. That section could include the launched section’s IdLog assignments if needed.

Once an IdLog event is taken, and before the assignment section is started, some Tags and
fields are assigned values. These can be referenced in the IdLog assignment section.

CTL IdLogging 1 or O to indicate that IdLogging is turned on
CTL EvSec the section name of the last Id Log event

The Tag for the next variables is a concatenation of “CTL-" and the section name — as given
by $CTL, EvSec$.

CTL-EvSec EvIdLog the Tag from the IdLog statement for this event.

CTL-EvSec EvName the Event name (one of the Event keywords that
can be specified on the IdLog= statement as
described above.

Meta-Update - 140 - User’s Guide

CTL-EvSec

CTL-EvSec
CTL-EvSec
CTL-EvSec
CTL-EvSec
CTL-EvSec
CTL-EvSec

EvSch

EvServer
EvUser
EvRc
EvOp
EvOp2
EvKey

STH

Software Tool House Inc

the Schema name which may be “” when there is
no schema.

the ARS Server of the event.

the ARS Server’s User of the event.

the event’s error code (0 means no error).

the event operation (see below).

either “Merge” or “”

the “Key” value as specified in the |dLog
statement or the default key value for the type of
event.

These references may be used in an event’s assignments.

Meta-Update

-141 - User’'s Guide

v\.
Software Tool House Inc

File Sections

A file section defines an external Ascil file’s format.

i . b dfori ith the 1 q File= keyword iterates
Files sections can be used for input or output with the File=an through a CSV.

output= command section keywords.

Output= adds a new CSV
record or appends text to
a single or new file.

Input files are always columnar (CSV like) and can be of two types:
Those with fixed length fields and those with variable length fields.

Output files may be columnar like input files or they may be pattern
files. A pattern file is any type of asci file and can be used to generate html or xml.

A file definition can also include field definitions. These fields can specify value
transformation and interpretation rules.

If an output file is columnar, fixed or delimited, the fields must be defined.

Input files have their field definitions as optional if the field includes a field header. However,
it is recommended that the fields be defined in the script as well both to validate the file, and
to perform value interpretations and field requirement checks.

An output file can also be a “pattern file” or a non-columnar, text file. Pattern files are
generally used for reports, emails, XML, HTML, and so on. They are ASCII files.

A pattern file can be used to append text for each iteration to a single text file or to create a
new output file each iteration and have the contents of that record (and of course all variables
which could have been a loop of records) used in the creation and naming of the new file.

Fixed format files have fields defined in the script that are always a specified length.
Transaction files, UNIX script output and input files tend to be fixed format. Fields can
overlap.

Excel generated CSV files are the most common of delimited files.

Delimited files have columns that are variable in length and may be null. They have a
separator character between the column values. They can have quotes around the values
and, if quoted, the values can contain embedded carriage returns and line feeds. Fields
cannot overlap.

For Output files, field values with embedded line feeds may cause some tools such as Excel
or the BMC Remedy Import Tool to interpret the line feed as a record end. Fields with line
feeds can be changed through using the line feed options in field formats.

The first record of a delimited field can contain the field names — as in most Excel generated
CSV files.

For an input file, if a field header row is specified, and fields are specified in the File Section of
the script that defines the file, then only those fields that are in the script file are defined and
available to the script. If a script field is not in the source CSV, that field will always have the
$NULLS value. Extra fields in the source CSV are ignored.

For an output file, F1dadr causes the field row to be produced on open. The field order is as
specified in the field section.

Meta-Update - 142 - User’s Guide

STH

Software Tool House Inc

[File Def]
Type = Delimited, "\t" [, FldHdr]
Type = Fixed
Type = Pattern [, MultiFile]
Field = Field Def
Format = [Csv | Excel] [[,] Overridden | Merge] [format]
Quote = c [, [No]LineSpan]
Trim = XXX [, trailing] [, leading]
[Field Def]
Field = 1 [Formatting] [# comment] for Delimited files.
Field = 1, 10 [Formatting] [# comment] for Fixed files.
File Section Keywords
Type Delimited, “,” [, F1ldHdr] Required. Default: none
Fixed
Pattern [, Multi] Output=only

Specifies the type of file that will be read or written.

Fixed format files have fields but no field header in the file and
each field has a starting and ending column number. Fields may
overlap.

Delimited files are typically comma separated values (CSVs)
that many software products export and import. The delimiter
may be specified as a reference. The first row of the file may be
the names of the fields and is specified by the keyword F1dHdr

Pattern files are used for output only and are plain AscIl text with
no fields defined. The keyword Multi indicates that a new file is
created on each output.

Field section Default: none
Specifies a section name that describes the fields of the file.

Required for output files and for both output and input fixed files.
Optional for input Delimited files. Not permitted for pattern files.
Format [Csv | Excel] [, [Overriden | Merged]]
format spec Default: see below

Specifies a default format spec for all fields of the file.

Overridden or Merged indicates what should be done with a field
format spec. The default is Merged, that is both the file and field
format spec will be merged to interpret the field.

ErrorFile filename Default: none

Specifies the name of a file (may be a reference) that will contain
an exact copy of the input file records that caused an error in the
script. Any error in any launched section will result in the record

being added. Formatting is not applied to records in this file.

Meta-Update - 143 - User’s Guide

STH

Software Tool House Inc

FieldsRequired all | field, . . . Default: none

Specifies a set of fields that cannot be NULL on either input or
output. When a record is read that has a NULL in one of these
fields, an error is thrown, and the record is placed in the ErrorFile
if one was specified. The script does not get a chance to work
with this error record.

FieldsInFile all | field, . . . Default: none

Specifies a set of fields that must be present in the file.
Normally, if a field is declared in the script, and the actual file
does not include that field, all values for that field return NULL.
With this keyword, such a file will be in error. Only appropriate
for input files.

Type=

Type=

Type=

Field=

Format=

Meta-Update

Required.

Delimited.

For Delimited files, the second parameter specified the set of characters that
can be used as the delimiters. These should not occur in the data values
unless the values are quoted. The delimiter itself can be specified as a
reference.

The optional F1dudr keyword indicates that first row of the file contains the
names of all the fields.

Pattern, MultiFile

For Pattern files, the optional, MultiFile keyword may be appended. This
causes every output= to generate a new file. The name is dereferenced
each time the file is to be opened. It should dereference into a different file
name.

Optional for Delimited; Required for Fixed and Output files. Not used on
patter files.

This specifies the field section for the file. That field section defines the
names and positions for each column of the file.

For Delimited files, not having the Field= statement implies F1dadr. That s,
if there is no field definition for a file, the first row of the file must contain the
fields.

If both Field= and F1dHdr are coded for input files, the fields of the file are
ordered as they are in the file. Missing fields have the value $NULLS$. Extra
fields are ignored.

Optional.

This specifies a default format for all fields in the file.

The format tells Meta-Update how to interpret the value of the file’s field on
input and how to format the field value for output.

Format specifications are described below in the Field Section.

- 144 - User’'s Guide

STH

Software Tool House Inc

The special keywords, Csv or Excel are equivalent for input files and stipulate
a specific default format as follows:

Quote \" Quoted asneeded Quotes double Nulls std 1f unix

The keyword Overridden or Merged tell Meta-Update that the field level
format either overrides or is merged with the file level format. The default is
Merged.

ErrorFile= Optional for any type of input file. Ignored on Output files.

Gives the name of an output file to build. This file will contain all those input
records that resulted in an error. The supplied name is a string reference.
The file so created will be in the same format as the input file. If the input file
had field headers, the output file will also have field headers. No
manipulation of the record data is done before output when any error is
diagnosed within the processing of an input record.

The following keywords have been superseded by the Format= keyword.
Their use is not recommended.

Quote= Optional for Delimited; ignored for Fixed.
Specifies that the fields in the file may be quoted. Specifies the single quote
character (not escaped).
LineSpan is used to indicate that a quoted value within the file may contain
embedded line feeds or carriage returns. The default is NoLineSpan.

Trim= Optional for any type of file.
Indicates how fields containing leading and trailing spaces are to be handled.
As many trim statements as required may be coded.
The field name “a11” is a shortcut for every field of the file. If Trim = A1l is
coded, any other Trim= are ignored.
The default for a Trim=is trailing. You must specify both 1eading and
trailing if you need both.
With a trim=, a field containing all spaces is equivalent to a zero-length field

or SNULLS.
Trim = All, leading Only leading spaces are trimmed.
Trim = Aall, trailing, leading Both leading and trailing spaces
trimmed.
Trim = All, trailing Only trailing spaces are trimmed.
Trim = Aall Equivalent to All, trailing

Fixed files contain fields that start in the same column of each record and are of a fixed
length. These files must have their fields specified in a field definition section. Each field has
a starting column number and a length. It is possible to have overlapping field definitions in a
fixed file.

Meta-Update - 145 - User’s Guide

STH

Software Tool House Inc

Field Sections

About Fields and Formats
What is a Field Section?

Field sections are a list of field, giving them names and optionally, formatting and
interpretation rules. These fields are then used in those Tags for assignments.

[FieldSection]
ID = $ [format] # a delimited field
UpdateText = $ [format] # one that could span lines

The above example defines two fields called ID and UpdateText. Note that the required dollar
sign is a simple place holder for the next position

There are two types of field sections based on the possible length of the fields: fixed or
variable length.

Most columnar files, such as CSVs, are variable length. That is, each field value will be as
long as it needs to be to hold the value. This includes the length zero, which Meta-Update
translates (by default) to SNULLS.

Fixed fields are rarely used now. These are used by files with Type = Fixed. Fixed field
begin in a column and are a specific length. Fields can never contain no value. A sequence
of spaces can be used to mean $NULL$. Fixed fields can overlap on read files offering
different ways to interpret the same data.

[FieldSection]

ID = 1, 15 [format]
ID-Prefix = 1, 3 [format]
ID-Suffix = 3, 12 [format]
UpdateText = 2, 512 [format]

Assignments to overlapping fields of output fixed length files are done in the order they are
encountered. Such overlapping assignments would not normally be done.

Reading overlapping fields works as expected with each field having an appropriate,
interpreted, value.

Where are Field Sections used?

Field sections are used with
» Fields= keyword in file definition sections
» QuerySql= field sections in command sections or look up sections
> The Assignment command: Ref ... Qregex extract field sections
> The IdLog= statement to change the default fields of an IdLog output file

Only File= fields have a file or file name associated with them. Only File= fields can be of
the Type = Fixed, that is with a starting and ending column number.

Specifying field order

The field sections positions are specified in different ways for fixed length fields and variable
length fields.

Meta-Update - 146 - User’s Guide

STH

Software Tool House Inc

Only fixed length fields need both a starting column and a length. Variable length fields
simple have a “$” to represent the next sequential position of the field.

For variable length fields the field position is that of it in the list in the field section in all cases,
except in the case of an input file with a field header row.

For input files with field headers, as specified by Type = Delimited, “,”, F1ldHdr in
the file section, the field order is given by the file’s field header row.

Fields in the file and not in the field section are ignored. Fields in the field section but not in
the file are assigned $NULLS$ (by default).

If an input file does not contain a field specified in the field section, the value of a reference to
that field will always be $NULLS$.

A FieldsRequired= or FieldsInFile= keyword may be specified in the file section to
throw errors as needed.

About Field Formats

Field Formats allow character substitutions and value interpretation rules to be specified when
loading the field with

> avalue from a file by reading the next row of the file,

> an SQL result column,

> aRegex extract

They also applied when a field is output to a file row including the IdLog.

Formats may be used to:

interpret dates

substitute or remove characters
handle line feeds

handle embedded quotes

YYYY

Copying Fields from Schemas

Fields may also be copied from ARS Schemas. A simple “Copy” command can specify an
ARS server and form whose fields will be included in the file.

@Cmd = Copy, [@ ReadServer ,]
Schema
[, NoDisplayOnly]

[, Skip: field [, field ... 1]
The ReadServer is optional and refers to a ReadServer Tag.
The Schema may be a constant or a string expression that evaluates to a Schema name.

If the keyword NoDiplayOnly is specified, Display Only fields are not included as part of this
file. If this is missing, all fields are added to the file’s field section.

Skip allows you to specify a list of field names or field ids to not include in file'

Examples:

Meta-Update - 147 - User’s Guide

STH

Software Tool House Inc

[FieldSection]

ExtraField
@Cmd

AnotherExtraField

Or

[FieldSection]

ExtraField
@Cmd

AnotherExtraField

Field Formats

$ [format]

Copy, @ITSM6SVR, HPD:HelpDesk

$

$ [format]

Copy, @QITSM6SVR, $MyVars, Schema$
$

Any field can have special interpretations applied either in addition to the interpretations
applied to all fields in the file or overriding those applied to the whole file. Note that field
sections used referenced by non-files have no global formats applied.

The format is a string following the column or width in a field specification. That string is
made up of a set of keywords and values coded in any order.

Keyword
Trim [quoted]

Case

Date

Quoted

Quote

Meta-Update

Values
leading
trailing

both

upper
lower
title

Spec;
“Spec”

never
always
asneeded

std
\nnn

Meaning

Specifies that leading and or trailing white space in the
source field is to be deleted. If the field value is quoted,
trimming does not take place unless the special
keyword quoted is specified.

Specifies that alphabetic characters are to change case
to the specified case.

For title case, the first letter or a word beginning the
string or following white space is converted to uppercase
and all other alphabetic characters are converted to
lower case. If a word does not begin with an alphabetic
character, no characters of that word are converted to
uppercase.

“aAbB 1Aa b1B” becomes “Aabb 1aa B1b”

Indicates that the field contains a date value and
determines how to interpret the date value. Described
further below.

Indicates that the field may be surrounded by quotes
and that the quotes are not part of the field value.
Unless specified, the quote character is the double-
quote ().

Indicates the single character that is to be interpreted as
a quote. “Std” means the standard double-quote
character. \nnn defines an Ascil character with the value

nnn. “X” represents any single character.

- 148 - User’'s Guide

Software Tool House Inc

Quotes double Indicates that values containing the quote character
escape have that character either quoted or escaped. Delete is
delete not applicable for input files.

Lf unix Quoted values can span lines. All line feeds are
nt converted to single <If>s in internal (ARS) values.
escape For external values (such as output files), if this format is
delete not specified, the default will be unix or nt based on the

platform that the job is being run on.

Nulls Std Specifies the conversion for Null (empty) values in the

SNULL$ file. “std” indicates that the Remedy keyword $NULL$
will be substituted. “’ Indicates that an empty string will

“xxx” be substituted. Note that in Remedy, as assignment of
$NULLS$ is not equivalent to an assignment of an empty
string.

Subst ["Nyyy[$] Specifies simple character based value substitutions

/XXX

/ Multiple “Subst” keywords may be coded. They are

effected in the order coded.

The slash (/) in the above example is a separator
character. It can be any character not in either the
pattern or substitution strings.

In the pattern string, a leading circumflex (*) indicates
that the value must begin with the pattern to be
considered a match. Similarly, a dollar as the last
character of the pattern says that the value must match
the pattern at the end of the string. If both are specified,
the value must match completely. The ~ and $ character
must be escaped if they are part of and begin or end the
pattern string.

Trunc nnn Truncate the value. Applied last.

WordChars delete Specifies the conversion for the non-printable characters
escape of the value. The set of values considered “printable” —
“xXxx” WordChar - can be adjusted from the default.

If not specified the default action is delete.

The default set of characters comprises the letters, the
numbers, the underscore, the hyphen, the period, the

dollar sign.

WordCharsAdd “xxx” Adds a set of characters to the list of characters
considers a WordChar.

WordCharsDel “xxx” Removes a set of characters to the list of characters

considers a WordChar.

Automatic SQL Select Generation

Fields may be used in a Querysql= statement. These fields offer value interpretation for the
columns returned by that SQL query and must be specified in the same order as the fields in
the Querysql select.

Meta-Update - 149 - User’s Guide

STH

Software Tool House Inc

Meta-Update provides a feature to simplify the select statement and to ensure that the order
of the fields declared in the field section and columns selected in the SQL query match.

When a field section is used in a QuerySql statement, the fields in the field section are
concatenated together, separated by commas, so that a select statement can use this symbol
for the list of fields following the select.

An additional feature of a field declaration supports the case where a field has an SQL
fragment other than the name — for example an inner select.

This may be specified before any field formats and after the field position as sq1="...”

An automatic tag and field is assigned with the text of the field names or field Sql= text string
separated by commas

References within the Sql text is dereferenced when creating the string.

The CTL tag and a field made up of the field section name followed by —-SqlSelect contains
the string.

Here's an example:

[QrySql]

QuerySqgl = Q, &
SglFields, &
select S$CTL, SglFields-SglSelect$ &
from table x A &
where fieldl = ‘$Arg, some argument$

[SglFields]

OBJID = $

DATE CRE = $ Sgl="(Select date cre &

from table y &
where cre2x = A.OBJID) as DATE CRE” &
Date: yyyy-Mmm-dd
FIELD3 = $

When the QuerySql is executed, the text in $CTL, SqglFields-SqlSelect$ will contain:

OBJID , (select date cre from table y where cre2x = A.OBJID)
as DATE CRE , FIELD3

Date Fields

ARS supports two different date fields in the database.

» One is called a Date/Time field.
This is accurate to one second between 1970 and 2034-Mar-23ish.
For ARS purposes, this is an “epoch” time. It represents a whole number of seconds
from January 1, 1970 in Universal or Greenwich Mean Time.

» The other is a Date only field containing no time component.
For ARS, this is a “Julian” date from an 1, 4713 BC through Jan 1, 9999

When a date is entered into the ARS User Tool, it is considered to be in the local time zone of
the machine that is running that User Tool. Meta-Update uses the standard libraries to

Meta-Update - 150 - User’s Guide

STH

Software Tool House Inc

convert dates and also presumes that date values are in the locally set time zone of the Meta-
Update process.

Ascll file date fields, either from an ARS field, a CSV column, or SQL column, are character
strings that Meta-Update must interpret and convert when assigning them to ARS date fields.

Meta-Update can read date data as either one of the above raw “julian” or “epoch” formats,
and a normal date specifying the year, month, day, hour, minute, seconds.

By default, a date is specified in any one of the following ways:
yyyy/mm/dd hh:mm:ss
yyyy-mm-dd hh:mm:ss
yyyy.mm.dd hh:mm:ss
yyyymmddhhssmm
One could use this format in making a constant assignment:

CreateDate = 2003/12/31 10:15

Any missing components will be treated as if they were zero (one for month and day). These
assignments are equivalent:

CreateDate = 2003/01/01 00:00:00
CreateDate = 2003/01/01
CreateDate = 2003/

These defaults can be overridden on a field-by-field basis when the field is defined in a field
section. Simply code the Date format specification when the field is defined. Once a date
specification is coded, the file must contain all components specified.

Meta-Update can also accept date data as the raw ARS date/time integer, or raw Date only
integer. These are known as an “epoch” and “julian” dates, respectively.

Date formats can be specified in one of three exclusive ways:

Date epoch
Date julian
Date “Date format”;

“Date format” s a string containing the following special symbols and any set of other
characters acting as component separators and is terminated by a semi-colon or wrapped in
double quotes.

yyyy a four digit year

yy a two digit year.
Years equal or above 70 are presumed to be offset by 1900,
below 70 by 2000.

M a one or two digit month.

Mm a two-digit month.

Mmm a three character month abbreviation (Jan, Feb, etc.)

Mmmm the full month name (January, February, etc.)
Note case difference between minute and month
specifications.

d a one or two-digit day of month.

dd a two-digit day of month.

ddd a three-digit day of year (Julian date)

Meta-Update -151 - User’s Guide

STH

Software Tool House Inc

h a one or two-digit hour. Must be followed by a separator
character or must be the end of string.

hh a two-digit hour.
If the hour component is missing, 00:00:00 is assumed.

m a one or two-digit minute. Must be followed by a separator
character or must be the end of string.

mm a two-digit minute

If the minute component is missing, 00:00 is appended to the
supplied hour.
Note case difference between minute and month

specifications.

S a one or two digit second. Must be followed by a separator
character or must be the end of string.

Sss a two digit second

If the second component is missing, 00 is appended to the
supplied hour.

Aora the string AM or PM will modify the hour specified. This
string is case insensitive.

If a one digit component is specified, it must be followed by a separator or, if not the month,
by the end of the value string. The minimum date component must include year month, and
day, or year and Julian day. Two digit years are not recommended.

Examples:
|
‘Default date format ~~ Date_Field = $ Date “yyyy/Mm/dd hhimm:ss”

0S/390 Julian date Date Field = $ Date “yyddd”

American date format Date Field = S Date “Mm/dd/yyyy hh:mm:ss”

European date format Date Field = $ Date “dd-Mm-yyyy hh:mm:ss”

ARS Date values Date Field = $ Date epoch

Numeric Fields

Numeric fields should be specified without thousands separators and with a period as the
decimal separator.

If the numeric field in the CSV has a different format, Subst formatting can be used to
transform it to the expected format.

For example, say the numeric field in the file is “1.983.217,97” (‘. for thousands separators
and ‘,” for the decimal point:

Numeric Field = 3 Subst /.// Subst /,/./

By applying the above “Substitutes”, in order, the above value is transposed into

“1983217.97".
Similarly, a value of “1,234,567.89” will be transposed into the “1234567.89” by this field
format:

Numeric Field = $ Subst /,//

Meta-Update -152 - User’s Guide

STH

Software Tool House Inc

Quotes in Field Values

CSV files are generally defined by these rules:
Values are separated by commas.
All lines are terminated by a <If> or <cr><If> combination.
Spaces are considered significant.
Values containing a comma must be quoted with the double quote character.
Values containing a double quote character escape that character with another quote.

Meta-Update extends these rules on reading to permit several types of common flaws found
in CSV files, no matter how generated. It allows you to specify a different quote and
separator character. In addition, with Meta-Update, fields can have embedded new lines.
These types of files are difficult to use with the standard tools such as the ARS Import tool
and Microsoft Excel.

Finally, Meta-Update can allow some values with embedded un-escaped, or un-doubled,
double quotes.

Consider these CSV records:

a,b,c,”some text”.”some more text
with a new line”,,,

This is really a single record that is commonly generated from database extracts. Consider
this record, similar to the above, but with a field containing a single double-quote character:

a,b,c,”some text”.”some more text
“with a new line”,,,

Meta-Update will handle this by establishing the value for the fifth field as:

some more text\n“with a new line

Consider these CSV records:
“val-f1”,”val-f2 “with embedded and undoubled quotes””,”val-£3”

In fact the CSV, if it had all embedded quotes doubled, would look like
this:

“val-f1”,”val-f2 ““with embedded and undoubled quotes”””,”val-f3”

Meta-Update will assume a doubled quote followed by a separator has a single quote as the
last character of the field value. The value for field 2 for either of the above two CSV example
would be:

val-f2 “with embedded and undoubled quotes”

Finally, consider this record where the single quote appears as the character before the end
of the line. Meta-Update in this case will assume that that quote terminates the field and the
record.

a,b,c,”some text”.”some more text”
with a new line”,,,

The value of the field will be:

Meta-Update - 153 - User’s Guide

STH

Software Tool House Inc
some more text
The effect is that this “record” will be truncated and the next record will be read incorrectly.
The command script itself could declare an error in these cases by ensuring a field value that

cannot be null is not null in any assignment section. Ensure the field tested follows the field
that may contain these values with embedded new-lines and quotes.

[Asg]

@Cmd = @if (“$Finp, NON NULL-FIELD$” == “") s
Abort, E, Incomplete or badly formed CSV record: $Finp, CSV-

KEYS

Meta-Update -154 - User’s Guide

STH

Software Tool House Inc

Assignment Reference

Meta-Update - 155 - User’s Guide

STH

Software Tool House Inc

Meta-Update - 156 - User’s Guide

STH

Software Tool House Inc

Assighment Reference

Meta-Update - 157 - User’s Guide

Software Tool House Inc

About Assignment Sections

Assignment sections are where you specify which fields will be updated with what values for
any given Update= or Create= ARS schema and field set.

Assignments specify a target field on the left, an equal sign, and an assignment value on the
right. Here as an example used to update a Help Desk ticket:

[HpdUpdate-asg-upd]

Status = Closed

Work Log = “Auto closed in batch process: ™
Work Log = Arg, RunName

2400000001 = “Auto Closed”

When Remedy updates or creates a record through the API, it is supplied a list of field — value
pairs on the Create, Update, or Merge API call. In the Assignment sections of Meta-Update
scripts, you build the lists of field-value pairs that Meta-Update will use on its calls to these
API functions.

Assignment sections let you

Reference sets of pre-loaded records and load other records.

Create complex fully-nested conditions to control both the values and the fields in the
assignments.

Split data values using pattern matching regular expressions.

LookUp and translate values using a combination of files, queries, and SQL queries.
Spawn external processes or ARS Server processes.

YYY ¥YY

Assignments may also be special keywords that allow commands to be specified.

This example will assign all fields in the target schema with the values from the source record
(and schema, server, user), with matching field ids. The source record was associated with
the Tag, HpdSrc, as a result, of a Query, Load, Update, or Create. These source and target
schemas do not have to be the same or even on the same server.

[Assignment Section]
@Cmd = Copy, HpdSrc, DupIgnore, CoreAssign, &
Skip: field 1, field 31

Assignment sections may be broadly classed as

> An update to, or create of an ARS record or an output CSV file record

These assignment sections are used to specify the field / value pairs that will be used
in an update or create to a single ARS record to the form specified in the [Controls]
Create=, Of, Update= Statements, or a create of additional row of a CSV as declared
in the calling section’s File= statement.

> Sections with no ARS or CSV targets

These are specified in the command section to fire at specific times such as
Initialization, after the iteration record is loaded, after the output is performed, after
launches are performed, and at termination.

They are used to set script variables and invoke external programs or server
processes. This example examines the passed arguments and creates a query that
will result in either one record or a range of records.

[asg-script-init]
We should have at least a single id as an argument

Meta-Update - 158 - User’s Guide

STH

Software Tool House Inc

@Cmd = @if (“$SArg, Idl$ == W)
QCmd = Abort, E, Usage: -p idl [id2] \n &
where 1idl is the starting id &
and id2 is the ending id
Check in our second id was coded
@Cmd = @if (“$Arg, Id2$ == W)
@Cmd = Ref, MyVars, Qry, “1’ = \"$Arg, idls\””
@Cmd = else
@Cmd = Ref, MyVars, Qry, “1’ >= \”$Arg, id1$\” AND &
‘17 < ”\”SArg, id2s\””
@Cmd = endif
@Cmd = Msg, D, Qry: $MyVars, Qry$

2 String sections
These are used when a section uses the Output= to create a pattern file.

[asg-pattern]

String = “Record Id $Src, 1$ $Src, 179%”
LoadQ = SrcReq, SHR:People, ‘1’ = “$Src, 1$”

String = “Requestor Id .. $SrcReq, 1$ $SrcReq, 179%”
include pattern file for this language:

File = @if (“V, Lang$” == “en”) asg-pattern-sub-en.ptn
String = %7

String = “Generated Stime$”

Meta-Update - 159 - User’s Guide

Software Tool House Inc

Using Assignment Sections

Assignment section names are specified in the command sections with various Assign=
keywords. They are also specified in Include assignment commands.

This example is a command section that specifies three different assignment sections:

HpdUpdate-asg-init,

[HpdUpdate]
AssignInit
Update

AssignNew
AssignNew
Assign

HpdUpdate-asg-create,

~

HpdUpdate-asg-upd.

HpdUpdate-asg-init

HpdTgt, &
HPD:Help Desk, &
\1/ — “Arg, Id"

HpdUpdate-asg-create
HpdUpdate-asg-upd
HpdUpdate-asg-upd

The specific Assign= keyword or command semantics implies a target.

In the above example, both the AssignNew= and Assign= sections, HpdUpdate-asg-create
and HpdUpdate-asg-upd, Will apply to an ARS record in the HPD:Help Desk form. In these
assignment sections, the fields of the HPD:Help Desk form are assigned values and the
assignment commands may be used as needed. Similarly, if the section uses an output= to
create Ascli files, values will be assigned to the fields.

The AssignInit= section, has no target. Only the assignment commands may be used in
these assignment sections. There are no fields to be assigned values.

The following keywords may be coded in a control section to specify assignment sections.
Any number of sections can be coded with any keyword and the same section may be coded

with many keywords.

Each of these keywords specify assignment sections that have no output targets. The
different keywords are used to specify the point during the section process that the
assignment sections will be used. These assignment sections, because they have no target
ARS schema or Output file, only allow the @Cmd and LoadQ “pseudo-fields” as the assigned

fields.

Assignlnit

Specifies the assignment sections to be applied before
processing begins for the section.

AssignTerm

Specifies the assignment sections to be applied after processing
ends for the section and the section is about to be closed.

AssignPre

Specifies the assignment sections to be applied directly after
loading the section’s record. This is applied before any
subsequent Loads, Updates, or Assignments.

AssignPost

Specifies the assignment sections to be applied directly after
completing any updates but before any launches and the next
iteration of the section. This is applied whether an error occurred
or not.

AssignPostOk

Specifies the assignment sections to be applied directly after
completing any updates but before any launches and the next
iteration of the section. This is applied whether only when an
error did not occur in the update or any launches. .This is
applied before the AssigninitPost sections.

Meta-Update

- 160 - User’'s Guide

Software Tool House Inc

AssignPostErr Specifies the assignment sections to be applied directly after
completing any updates but before any launches and before the
next iteration of the section. This is applied whether only when
an error did occur in either the update or any launches. .This is
applied before the AssignlinitPost sections.

AssignPostLaunch | Specifies the assignment sections to be applied directly after all
launches are invoked, if any, but before the next iteration of the
section. This is applied whether only when an error did occur in
either the update or any launches. .T

Each of these keywords specifies assignment sections that have either and ARS record or an
output file, record or pattern output targets.

Assign Required for all sections that have output - Update=, Create=,
Output= keywords.

Specifies the assignment sections to be applied when an update
record is found or a new ARS or file record is to be created.

AssignNew Only used with an update=. Optional.

Specifies the assignment sections to be applied when no update
record is found. This will cause the Update= to create a new
record if the Update= query returns no records.

AssignOpen Only used with an output=. Optional.

Specifies the assignment sections to be applied when the file is
first opened, or for pattern files, when the next file is being
opened.

AssignClose Only used with an output=. Optional.

Specifies the assignment sections to be applied when the file is
closed (at the job end), or for pattern files, when the current file is
being closed just before the next file is opened.

Meta-Update -161 - User’s Guide

STH

Software Tool House Inc

Assignment Targets

Assignment sections are applied to target ARS records, target columnar files, target pattern
files, or with no target at all.

The general format of an assignment is:

[Assignment Section]
Target Field = “some value”

For ARS records, the “Target Field” is an ARS Database Field Name, or Field ID belonging to
the target schema.

[HpdUpdate-asg—-upd]

Status = Closed

Work Log = “Auto closed in batch process: ™
Work Log = Arg, RunName

2400000001 = “Auto Closed”

For columnar Output Files, the “Target Field” is a field as defined by the file definition section
in this script.

[FleDef-out-csv]

Type = Delimited, “,”, FldHdr
Fields = FleDef-out-csv-£flds
[FleDef-out-csv-£flds]

Case 1D = $

Diary User = $

Diary Date = $ Date: yyyy-MM-dd
Diary DateEpoch = 3§ Date: epoch
Diary Text = $

[HpdWorkLogReport-asg—-upd]

Case ID = HpdSrc, 1

Diary User = HpdSrcDiary, User
Diary Date = HpdSrcDiary, Date
Diary DateEpoch = HpdSrcbhiary, Date
Diary Text = HpdSrcDiary, Text

For Output Pattern Files, the “Target Field” are the reserved words string= and File=. This

is also called a String target and can be used in the Reference assignment command to build
complex strings.

[HpdWorkLogReport-asg]

String = Case ID: $HpdSrc, 13

String = Diary Entry by: S$HpdSrcDiary, User$
String = on: $HpdSrcDiary, Date$
String = SHpdSrcDiary, Text$

String = wr

For any of the above target and for assignment sections having no output targets, a “Target
Field” may be “@cmd”. This is aspecial keywords that allow commands to be specified.

[Assignment Section]
@Cmd = Copy, HpdSrc, DupIgnore, CoreAssign, &
Skip: field 1, field 31

The above example is only allowed when assignment section has a target and that target is

one of: an ARS schema, a columnar file, or a string. It will copy all matching fields except
fields field_1 and field_31 and any fields not defined in the target.

Meta-Update -162 - User’s Guide

Software Tool House Inc

Section Target Types

There are three different types of assignment sections which differ in their targets:

ARS or CSV

No Target

Tag Target

Pattern
Target

Meta-Update

Target is an ARS Record in the schema declared in the
Create= Or Update= keywords, or the @ars Reference

assignment command, or a columnar File record whose
fields are declared in the output= keyword.

These sections can only be specified by Assign=,
AssignNew=, AssignOpen=, and AssignClose=
command section keywords.

There is no output target for these assignments. There is no
ARS or record to create or update or output file record to
create.

These sections are used to assign script variables, to invoke
external processes, issue messages, abort an operation,
and so on.

These sections can only be specified by Assigninit=,

AssignTerm=, AssignPre=, and AssignPost=
AssignPostOk= AssignPostErr=, and
AssignPostLaunch=.

Called by a Reference command, the target is a single string
reference tag.

Any fields assigned in these sections become a field of the
Tag that this section was called for.

See “Assigning a set of fields and values to a single Tag” in
the Assignment Command, Reference command.

The output target for these assignments is either:
2 anamed string specified with the Reference
assignment command,
2 or a pattern file “record”, specified with the output=
keyword.

There are only two “fields” available as an assignment’s
target field. These are string= and File=.

Each string= assignment specifies a single line of text and
is automatically terminated with a new line. If only a single
String= is encountered in an assignment process, then the
new line is not implied.

A File= specifies an Ascll text file to be read and copied

into the target named string or pattern file “record”. Any
Meta-Update references in the body of the file are resolved.

- 163 - User’'s Guide

Software Tool House Inc

Assignments

The assignment section specifies the Remedy fields to be updated and the values to update
those fields with.

The assignment section can also Load= and LoadQ= Statements. These are processed after
the main section’s entire Load= statements are processed and can use the record loaded by
the Query= Or File= Or Update= Statement. In the assignment section, these are processed
in the order encountered.

An assignment section consists of keywords which are Remedy Field Ids or “Database Field
Names” in the target schema - the one being updated, or file fields in an output columnar file,
or the special target field names: String and File for output pattern files.

Field = Assignment Value

Processing an assignment for the same field twice causes concatenation as in this example.
It only makes sense for text and diary fields.

Status = Closed

Work Log = “Auto closed in batch process: ™
Work Log = $Arg, WkTxt

2400000001 = “Auto Closed”

Close Date SDATES

Note that values must be compatible with the Remedy fields if the target is a Remedy record..
Enum values can be specified as a numeric value or the Remedy enum label.

The assignment value can be a constant, or a simple reference.

Assignment Value = Constant | Keyword | Parameter |
Environment | Reference

Constant = number | string | quoted string

Keyword = Keyword values supported:
$NULLS applies to all Remedy data types and is an

assignment to NULL. Causes deletion of
attachment fields’ attachments.
$TIMESTAMPS gives the current date and time and is only
available for use with a Remedy time field.
$DATES$ is equivalent to $TIMESTAMPS$.
$DAYENDS$ current date at 23:59:59
$DAYSTARTS current date at 00:00:00

If the value cannot be interpreted, a warning is issued and
the value is interpreted as a string constant.

Meta-Update -164 - User’s Guide

STH

Software Tool House Inc

Parameter = Deprecated.
The n’th parameter passed on the command line
$nnn $nnn If nnn exceeds the number of

parameters available, an error is thrown and
the update does not proceed.

Note that there must be exactly three digits following the $.

Named parameters are self-documenting and easier to use.
These are simply a string Reference with the Tag being Arg
by default and the variable name being the parameter
defined by the Arg= value of the Main section.

Environment = Deprecated.
An environment variable set before Meta-Update is
executed.
$aaaaa If the named variable (aaaaa) is defined in

the environment, its text value is used. Ifitis
not found, a warning is issued and the
$aaaaa is used as Keyword missing the
terminating $.

The Environment is available as a reference in the pre-
defined tag: ENV. To assign an environment variable’s value,
simply use the reference form, as in this example:

Path = ENV, Path

Reference = Tag, Field
Tag is a previously loaded ARS or file record, or a named
collection of strings. Field is the name or ID of one of the
Tag’s form’s fields.

The field in references does not have to be of the same type
as the field being assigned. It must be of a compatible type.
If a conversion is not possible, the operation fails.

Field = FieldId | Field Name
Field ID = a long numeric Remedy Field Id
Field Name = The Remedy ARS Field database name

Using $NULLS$ is not the same as not assigning a field. Not assigning a field allows Remedy
to choose that field’s default value on a create record. On an update, the value is not
changed.

Diary entries are always appended to on an update.

Conditional Assignments

Any individual assignment or can be made conditional by preceding the assignment value by
an @if () construct. This includes the special assignment commands.

There are two styles of @ifs:

Meta-Update - 165 - User’s Guide

"’\ A.\
Software Tool House Inc

Fieldl = (@if (exp) assignment
Field2 = @if (exp, true-value, false-value)

In addition, a full structured if facility is provided.
Assignments can use either format. If the first format is used, and the expression evaluates
to false, the assignment is not made at all. If the expression evaluates to true, the

assignment to the field is made.

In the second format, an assignment to field2 is always made. If the expression is true, the
true-value is assigned. If false is false, the false-value is assigned.

Assignment commands can only use the first format. If the expression evaluates to false, the
command is not processed.

@Cmd = (@if (exp) assignment command
In the second format, the values can also be @if constructs.

The expression syntax is as follows:

op-not: ! Boolean not
op-bool: ss Boolean and
Il Boolean or
op-rel: == = > >= < <= ~= case sensitive
==~ l=~ >~ >=~ <~ <=~ ~=~ case insensitive
val: "string"
digits
(val)
rel-exp: val [op-rel val]
(rel-exp)
exp: [op-not] rel-exp [bool-op rel-exp]
(exp)

Values compared are string references and are case sensitive. The NULL value compares
equal no matter if it is specified as the $NULL$ keyword or an empty string.

The operators ~= and ~=~ are leading string compares. If the left string begins with the right
string, the expression yields true. For example:

“abcdef” ~= T“abc” yields true
“abcf ~= “abcdef” yields false
“abcdef ~= “A” yields false
“abcdef ~=~ “A” yields true

A string containing all digits is converted into a number when being compared against a
number or when being used as a Boolean value by itself. A zero-length string by itself is
considered false.

Meta-Update - 166 - User’s Guide

STH

Software Tool House Inc

Examples:
Status = @if (“S$Xn, XnCode$” == “Delete”) Inactive
Status = @if (“$Xn, XnCode$” != “Delete”) Active
Status = @if (“"$Xn, XnCode$” == “Delete”, “Active”,
“Inactive”)

The above statements set the status to Inactive if the incoming transaction code is equal to

“Delete”. Otherwise, the Status is set to Active.

The incoming transaction code is read from a File statement with a tag of “Xn”. The field

within that file is “XnCode”.

Example:
Notes = “Notes\n”
Notes = Xn, Notes
Notes = @if (“$Xn, Notes2$” !== “7) “\n===========Notes
2 \ nll
Notes Xn, Notes2
Or, with a little “improvement”:
Notes = “Notes\n”
Notes = Xn, Notes
Notes = @if (“$Xn, Notes2$” !== "7, &
W\ n===========Notes 2\n$Xn, Notes2$”, &

“No notes2 data\n”

If the Notes2 field of the Xn record is empty, the Notes field will contain the text Notes and the
value of the Notes field in the transaction followed by the text, “No notes data”.

Notes
Value from Xn,
No notes2 data

Notes

If it is not empty, the Notes field will look like:

Notes

Value from Xn, Notes
Notes 2

Value from Xn, Notes2

IF Statement

The structured, nested, if facility is like the if of many programming languages such as c,

Java, and so on. Basically,

if (condition)
condition true assignments
else
condition false assignments
if (condition2)
Condition2 true assignments
else

condition2 false assignments
endif

Meta-Update - 167 -

User's Guide

STH

Software Tool House Inc

endif

Meta-Update uses the first format of the assignment conditional “if“, followed by no value to
specify an IF statement. See Conditional Assignments above for more information on
specifying the conditional expression.

To distinguish this if from an assignment, the special target field @Cmd is used. So,

@Cmd = @if (condition)
real ARS target field assignments

@Cmd = else
real ARS target field assignments

@Cma = endif
An “else” can follow and an “endif” terminates the “if”. If the expression evaluates to true, all
assignments up to the “else” are processed. If false, all assignments are skipped until the
“else” and all subsequent assignments are processed.

Ifs can be nested as needed up to a maximum nesting level of 100.

This following assignment sections are entirely equivalent:

Notes = “Notes\n”
Notes = Xn, Notes
@Cmd = @if (“$Xn, Notes2$” !== W)
Notes = W\ n===========Notes 2\n”
@Cmd = else
Notes = Y No notes2 data”
@Cmd = endif
and
Notes = “Notes\n”
Notes = Xn, Notes
Notes = @if (“$Xn, Notes2$” !== "7, &
“\n===========Notes 2\n$Xn, Notes2$”, &

“No notes2 data\n”)

LookUp Assignments

LookUp assignments allow a data value to be translated without having any extra ARS tables.

@LookUp [,] Section, Src Value

Section Specifies the LookUp section that gives the source and target values for
the look up. It also specifies any default value and match failure options.
See LookUp Sections below for more information.

Src value This is the value that will be looked up. It is a string reference.
If this value is found in the LookUp section, the value associated will be
assigned.

If this value is not matched, a default value can be assigned, the
assignment to the field can be skipped, or the processing for this update

Meta-Update - 168 - User’s Guide

Software Tool House Inc

can be aborted. These actions are specified in the LookUp section’s
NoMatch statement.

Like all assignments, a LookUp can be made conditional.

Example:
Status = @LookUp, AsgLookUp, $Xn, Status$
[AsgLookUp]
Active = Current
Deleted = Inactive
Cancelled = Inactive

Assignments Commands

Special commands can be included in assignment sections. These are identified with the
field name “@cmd”

Like all assignments, these special commands can be conditional.

@Cmd = Copy,
@Cmd = Qif(...) &
Copy,

Assignment commands allow

assignments to script variables of strings, Remedy records, the current environment
if conditionals to be coded

external processes to be spawned on the client or the server

messaging, aborting

copy like fields into the target

conditional breakpoints when debugging is enabled

YYYYYY

The following commands can be used:

Copy Copy all like fields from one record into the target record.
Include Process another section of assignments

Abort Abort the update or output.

Msg Issue a message.

Spawn Spawn an external process

Reference Assign a new string reference

Break Execute a debugging Breakpoint

@if allows nested ifs

else

endif

Meta-Update - 169 - User’s Guide

"’\ A.\
Software Tool House Inc

Assignment Commands

Assignment commands allow
if conditionals to be coded

messaging, aborting
copy like fields into the target

YYYYY

Copy Command

assignments to script variables of strings, Remedy records, the current environment

external processes to be spawned on the client or the server

The Copy command is used to copy all fields that have matching field Names or Ids from one

loaded record into the
or the same server, or

@Cmd

Targets of C
The Copy command ¢

ARS records

File records

String patterns

@Cm

String Tags

@Cmd

Defaults:

Meta-Update

target update record. These do not have to be from the same schema
even ARS records.

SrcTag,
DupAppend | DupOverwrite | DupIgnore

{ MismatchIgnore | MismatchWarn | MismatchError
{ CoreAssign | NoCoreAssign

@if (exp)]

SkipDisplayOnly]

SkipNull]
Skip: fld
Fields: fld

— e

(
[

I4
’

opy commands
an be used in assignment sections for the following targets:

in assignment section called from Update= or Create=
command sections, or from Reference @ars commands
called from other assignment sections.

in assignment sections called from command sections
containing an output= for a columnar file (delimited or
fixed).

in assignment sections for an output pattern file, or the
assignment reference command:

d Reference, Tag, Var, @Sec
A copy command in [Sec] will iterate though all fields from
the source tag building a single string based on the supplied

Ptn value (required).
through the use of the assignment command:
e, Sec

Reference, Tag,

A copy command in [Sec] will copy fields from the source
tag creating like named fields in the specified Tag.

DupIgnore, MismatchWarn, NoCoreAssign

-170 - User’'s Guide

Software Tool House Inc

In the case where the target is a String Tag, the duplicate
assignment option default is DupOverwrite.

To use Duplgnore on String Tag targets so that prior
assignments may be made, the following command should
be run at an opportune point (the Assigninit or AssignTerm
sections for example) to remove the last iteration’s values:

@Cmd = Reference, Tag, /del

Only one of Skip: or Fields: can be used and it must be the last keyword on the
command.

Keywords for Copy commands

SrcTag Specifies the source reference tag. This can be a string reference which
must evaluate to a defined tag.

This Tag can be a loaded Remedy record, a loaded File record, or a
String Tag.

Only fields with the same Ids (if both the source and target are Remedy
records), names and types can be copied. Options indicate what to do
on mismatches.

You can also override the copy of some fields by making explicit
assignments to those fields ahead of the copy command and selecting
the default option: bupIgnore.

DupAppend If a field already has been assigned a value, this will cause the copied
value to be appended to the current value if possible. This is only
possible for character and diary fields.

DupOverwrite If a field already has been assigned, this will take the value in the copy
source record.
DupIgnore If a field already has been assigned, this will ignore the value in the copy

source record.
If not specified, bupIgnore is taken as a default.

MismatchIgnore When comparing the source schema to the target schema, this will ignore
any mismatched fields.

MismatchWarn When comparing the source schema to the target schema, this will ignore
any mismatched fields and issue a warning message.

MismatchError When comparing the source schema to the target schema, any
mismatched fields will cause an error and the assignment will not be
processed. The record will not be updated.

CoreAssign Indicates that the “core” fields are also to be copied. This is only useful
when doing a Merge operation. Note that specifying CoreAssign will also
cause the Request Id field to be assigned. If you do not want this,
specify Skip: 1 in addition to the CoreAssign.

NoCoreAssign Indicates that the “core” fields are not to be copied. This is the default.

CoreAssign, NoCoreAssign, and the MisMatch options apply only if
the target is a Remedy record.

Meta-Update -171 - User’s Guide

Software Tool House Inc

Ptn “string”

Qif (exp)

SkipDisplayOnly:

SkipNulls:

Skip:

Fields:

Specifies an pattern text string that will be used for each field and value
being copied. Required and used only when the target is a single
pattern.

In the pattern string, the following extra substitutions can be made:
@FldSrc $TagSrc, Field Name$ (the value)

@F1dNme Field Name (the field’s name)

Specifies an expression to be applied to each field being copied. If the
expression evaluates to true, the field is copied and an assignment is
made to that field. If the expression evaluates to false, an assignment to
that field is not made.

In the expression, the following extra substitutions can be made:

@Fldsrc $TagSrc, Field Name$ (value)
@FldTgt $TagTgt, Field Name$ (value)
@F1ldNme Field Name (field’'s name)
TagSrc is the SrcTag on the copy command.
TagTgt is the Tag on the Update statement.

A field is the TagSrc’s field name being worked on. This iterates through
all data fields of TagSrc.

Specifies that ARS Display Only fields are not to be copied. Ignored
when the SreTag (the source tag) is not a Remedy record. May be
abbreviated to SkipDO.

Specifies that source fields which have a $NULLS$ value are not to be
copied

If used, must be the last keyword on the command. Skip: is followed by
a comma separated list of fields to ignore from SrcTag (the source tag).

Specifies a list of fields that are not to be copied. The field names are
fields of the source tag.

Field Ids may be used only if the source Tag refers to a Remedy record.

If you are doing a Merge, and especially if you are copying data from
another server, you may not want the Request Id field (field 1)
assigned. Specify Skip: 1 to avoid this.

If used, must be the last keyword on the command. Fields: is followed
by a comma separated list of fields to copy from SrecTag (the source

tag).

Specifies a list of fields that are to be copied. The field names are fields
of the source tag.

Either Skip: or Fields: can be used but not both.

Meta-Update

-172 - User’'s Guide

STH

Software Tool House Inc

CoreAssign and Core Fields

The meaning of “Core fields” as applied to the copy command, does not include core fields
that can be assigned without the use of Merge. That is, a Copy command with the default
NoCoreAssign option, will copy these fields:

Field Id | Common Field Name |

4 Assigned To
7 Status
8 Short Description

To not assign these fields with the copy command, add them to the Skip list.

This option is ignored when the target is not an ARS record, and all fields that can be copied
—including core fields in the source if that source is an ARS record — are copied.

Examples of Copy Commands
When merging two different records, it is often desired to not overwrite the contents of a field
with $NULLS$. We also do not want to replace the Diary log with that of the source. We will
instead add a new Diary entry indicating the records were merged. Note that we are not
using a Merge operation but a normal Modify. These assignments, including the copy
command will do that.

@Cmd = Copy, Src, Qif(“@FldSrc“ == ““ && “@F1ldSrc“ != “%)
In this example, we are copying from another server but we do not want the request id copied.

@Cmd = Copy, Src, CoreAssign, Skip: 1

This example could be an assignment section for a pattern file to build an HTML table from all
the fields.

String = <table><tr><th>Field</th><th>Value</th></tr>
@Cmd = Copy, Src, &

Ptn ”<tr><td>Q@FldNme</td><td>@FldSrc</td></tr>"
String = </table>

Include Command

The Include command is used to include assignments from another section. This is in
addition to the set of assignment sections listed in the control section’s Assign= Or Update0=
keywords.

@Cmd = Include, Section

Section This is the section name to be included.

It can be a constant
asg-BaseElement

If the section name does not exist, an error will be thrown.

It can also be a string reference expression:
“Sec-Upd$Src, TypS”

Meta-Update -173 - User’s Guide

Software Tool House Inc

When the included section name is derived from a string reference
expression, the resulting section name does not need to exist. If it
doesn’t, no section will be included.

If the whole command is prefixed with an @if (exp), that expression
must evaluate to true or no new sections will be included.

Abort Command

The Abort command is used in an assignment section to discontinue an update or to simply
issue a message. Itis generally made conditional. Options include the severity of the error to
generate and a message to be written to the trace file. The IdLog, if being created, reports
the operation status as “Aborted”.

@QCmd = Abort [, Severity [, { Launch | Msg }] [, Message
1]

Severity D Debug No error is reported. A Debug message is produced
in the trace files. These are normally inhibited.
I Informational No error is reported. An Information message is
produced in the trace files.

w Warning No error is reported. A Warning message is
produced in the trace files.
E Error An error is reported. An Error message is produced

in the trace files. Processing of the control section
stops for this record and no other sections are
launched for this record.

Note that if the Severity is Error the message appears as an error but no
actual error condition is raised. Also note that if the message severity is
Debug, debugging logging must be turned on for the message to appear.

Launch This is a keyword that must be coded as is. If coded, any Launches
coded will be executed. This is not the default behaviour. Note that the
record being created or updated cannot be reread (as the update was

aborted) and so there should be no references to the Update tag in any
Launched sections.

Message Any string including any string references.

Defaults I, User Abort taken for $CTL, Operation$ on $CTL,
Schema$ ID: SCTL, IDS

AttachSave Command

The AttachSavecommand allows you to save an attachment reference on the machine that
Meta-Update is running on.

@Cmd = AttachSave, Tag, Fld, FileName

Tag This is the Tag containing the ARS record that will have an attachment
field that needs to be saved.

Meta-Update -174 - User’s Guide

Software Tool House Inc

Fld This is the field name or id of the attachment field.
FileName This is a reference string that will be the name of the file.
Examples:

@Cmd = AttachSave, Src, Attachl, $Src, Attachl$

In the above example, the attachment field itself is used as an output file name. Note that this
will fail if the path information is incorrect or the paths do not exist.

You can use regular expressions to remove all path information as needed.

Msg Command

The Msg command is used in an assignment section to produce a message. It has no other
effects. It can be made conditional. Options include the severity of the message to generate
and text of the message to be written to the trace file.

@QCmd = Msg [, Severity [, Message]]

Severity D Debug A Debug message is produced in the trace files.
These are normally inhibited.
I Informational An Information message is produced in the trace
files and may be echoed to the console.
w Warning A Warning message is produced in the trace files.
E Error An Error message is produced in the trace files but
no real error condition is raised.

Message Any string including any string references.

Spawn Command

The Spawn command allows you to launch a separate process. Any valid executable can be
coded. The process must complete for Meta-Update processing to continue.

@Cmd = Spawn, command

command This is any string that can be de-referenced and makes sense for the
operating system that Meta-Update is being run on.

The process should return 0 to indicate success and any non-zero value
to indicate failure.

If the spawn itself fails, that is, the operating system will not or can not launch the specified
process, the Meta-Update will throw an error, and the assignments will fail.

If the spawn succeeds, but the spawned process returns a non-zero return value, Meta-
Update will issue a Warning but continue the assignments.

Meta-Update -175 - User’s Guide

Software Tool House Inc

When a Spawn command is used in an assignment, and that Spawn succeeds, these cTL
references are automatically set:

CTL Spawn_Cmd The executed command.

This reference is set when any Spawn is
encountered.

CTL Spawn_rc The executed process return code.
This reference is setto “-1” when a Spawn is
encountered and set to the spawned processes

return code when the spawned process completes.

These variables need to be assigned to be saved.

Reference Command

The Reference command allows you to assign a value into a named string reference. That
named string reference can be used anywhere any reference can be used after it has been
assigned.

This is a very powerful facility allowing you to implement more complex batch functions with
Meta-Update.

A string reference is similar to a Remedy record. The Tag identifies a set of named values
akin to “fields”.

So, if you assigned the value “xyz” to a field called Text in a Tag called MyVars you would
get “xyz” from this reference: “$MyVars, Text$”.

Each Reference command assigns one or more such named values to tags, or can refer to an
assignment section where the left hand targets of assignments become named values.

The general format of the Reference command is this:
@Cmd = Reference, Tag, Name, Value

The word “Reference” may be abbreviated to “Re£”. The parts of a reference command
are:

Tag This is the name of the string reference to be assigned.
Any name can be used. This is the “Tag” that this collection of named
values will be referenced by. Use different Tags to group different

information in more complex scripts.

The Tag itself may be a reference which allows more complex scripts
such as configuration driven scripts using arrays of loaded data.

Name This is the name of the individual “field” within this “Tag”. References to
this Tag and Field Name will return the value assigned, for example,
$Tag, Name$.

The field may also be a reference.

Meta-Update -176 - User’s Guide

Value

Meta-Update

STH

Software Tool House Inc

Some forms of reference commands assign multiple field names to a tag.
These are identified with a special reserved keyword for the name.

Name
Keyword

@

Usage

When the name is specified as a single at sign
“@”: the value following the reference is treated
as an assignment section.

Any field assigned a value in that section, is set
as a reference under the Tag specified.

@info

Specific named fields and values are assigned
to the tag that give information about another
Tag and Field reference.

This can be used for example to determine if a
field exists in a form.

@ date

Specific named fields and values are assigned
to the tag that gives information about a date
value.

This can be used for example to determine the
name of the day for a given date.

This is a single value to be assigned. Any outer quotes are removed and
references are resolved.

This value may be interpreted differently when special @keywords are
used for the Name being assigned, as described above.

When assigning a value to a single named field of a tag, additional
functions are available to derive the value. These are identified by a
reserved keyword in the value field.

Value
Keyword

@ section

Usage

When the value is specified as a single at sign
“@”: the value following the reference is a “String

pattern” assignment section. See Assignment
Targets above.

The specified “String target” assignment section
has only two fields available: string= and File=
and is used to build a single string value that will
be assigned to the specified tag and name.

Q LookUp

The @Lookup keyword is followed by the LookUp
section and the value look up.

See LookUp Assignment above.

- 177 - User's Guide

Software Tool House Inc

Meta-Update

@fmt
@fmtout

@ars

@val

Qregex

The condition will be evaluated and the true or
false value will be assigned to the tag and name.

This is used to evaluate an arithmetic
expression. It can be followed by the keyword
“real” to override integer arithmetic and specify
that floating-point arithmetic be used.

See Using Arithmetic Expressions below.

This is used to transpose a value according to a
field formatting string. You can use this to
change case and perform substitutions for
example.

See Field Formats above for more information.
This is used to create an in-memory ARS record
from the specified schema. The name field is
interpreted as an assignment section.

When needed for an update, this in-memory
ARS record can be assigned to an update
record.

This is used to do a “double dereference” so that
the tag and name are themselves references.

This is similar to using @info for the assigned
name as described above but only extracts the
value of the references.

This is used to apply a regular expression to a
value and perform substring extraction from that
expression.

The Name field is interpreted as a field section
to name the extracts substrings. If matched the
Tag will contain all fields of this section.

The special name @rc is assigned 1 indicating
the regex was matched or O indicating it was not.

The Name may be specified as @na indicating
that fields are not defined and numerical
references will be assigned to the tag for
extracted strings.

Regular expressions may themselves have
references.

Meta-Update uses PCRE for evaluating regular
expressions.

-178 - User’'s Guide

Software Tool House Inc

Examples of Tags and Names:

MyVars, DoExtraWorkLogRecord
MyVars, SkipAuditLog

MyVars i

rt-$FleCfg, Schema$, RequestIdField
rt-$MyvVars, i$, TotalRecs

Note that in the last two lines the Tag being assigned is dereferenced. Examples could be
“rt-HPD:Help Desk” and “rt-9”. The name is fixed making an array or hash of such
fields. These can then be looped through as needed. .

Types of Reference commands A single value is

assigned to a Tag

Assigning a single value to a named string reference and field name that

@Cmd = Reference, Tag, Name, Value can be referenced

@Cmd = Reference, Tag, Name, @LookUp, T N s

@Cmd = Reference, Tag, Name, @if(..) as ag, Names.

@QCmd = Reference, Tag, Name, @ Section

@Cmd = Reference, Tag, Name, @eval, [real,] Value

@QCmd = Reference, Tag, Name, @fmt[out], Value, Format

@Cmd = Reference, Tag, Name, @fmtgry, Value, SrcTag

@QCmd = Reference, Tag, Name, (@val, SrcTag, SrcFld

L . “Value-Sec” is an

Assigning many named values to a single Tag . .

aSS|gnment section

@Cmd = Reference, Tag, @, Value-Sec Whe_re “fields ?re
assigned to this Tag.

@Cmd = Reference, Tag, @info, SrcTag, @11tlfo assigns a set

SrcFld of fields to describe
$SrcTag, SrcFlds$.

@Cmd = Reference, Tag, @date, SrcRef @déte assigns a set
of fields to describe
a single date

ARS Record in-memory value.
@Cmd = Reference, Tag, Name, @Qars, schema

Assigning a new Tag as equivalent to an existing Tag:
@Cmd = Reference, Tag, Name, (Qequ

Assigning the result of a special server $PROCESSS$ call:
@Cmd = Reference, Tag, Name, (@exec process [arguments]
@Cmd = Reference, Tag, Name, (@guid [prefix]

Assigning the results of a regular expression applied against a target string:
@Cmd = Reference, Tag, Name, (Qregex regex, Value

Assigning the result of a client spawned process to fields: rc, stdout, stderr:
@Cmd = Reference, Tag, @spawn, process [arguments]

Removing previously assigned references:

@Cmd = Reference, Tag, Name, /delete
@Cmd = Reference, Tag, /delete

Meta-Update -179 - User’s Guide

STH

Software Tool House Inc

Single value to a Tag string reference:

@Cmd = Reference, Tag, Name,
@Cmd = Reference, Tag, Name,
@Cmd = Reference, Tag, Name,
@Cmd = Reference, Tag, Name,
@Cmd = Reference, Tag, Name,
@Cmd = Reference, Tag, Name,
@Cmd = Reference, Tag, Name,
@Cmd = Reference, Tag, Name,

Value

@val, SrcTag, SrcFld
@LookUp,

Qif(..)

@ Section

Qeval, [real,] Value
@fmt[out], Value, Format
@fmtqgry, Value, SrcTag

Each of the above forms can be used to yield a single string variable being set with a value.

Value

Meta-Update

@QCmd = Reference, Tag,

Name,

Value

In this simplest form, the Tag, Name reference is assigned the
dereferenced value text as specified in the reference command.

For example
@Cmd = Ref, K,

False,

This will cause references like $k, False$ to return “0"

Or

@Cmd = Ref, K,

Ftmp-Nme,
“SENV, tmp$\\ $CTL,

ScriptFx$-$CTL, Pid$-inp.txt

This create a temporary file name in the form

C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\MyScript-11582-inp.txt

when running a script called MyScript under the Process Id 11582.

@Cmd = Reference, Tag,

Name,

@val, SrcTag, SrcFld

Use this to extract a value from a dynamic SrcTag and SrcF1d. Both of
these and be string expressions. This is an alternative to using the
@info reference command, when the SrcTag and SrcF1d are known to
exist and you are only interested in the value.

@Cmd = Reference, Tag,

Name,

@LookUp,

Use this to perform a LookUp (possibly loading a record) and load the
returned value into the Tag and Name field. See LookUp Sections

below.

@Cmd = Reference, Tag,

Name,

- 180 -

@if(..)

User's Guide

@Cmd
@Cmd

@Cmd

@QCmd

@Cmd

@Cmd

Meta-Update

Software Tool House Inc

Use this to assign a value conditionally.
The if can be of these two different formats:

Reference, Tag, Name, @if (exp) TrueValue
Reference, Tag, Name, @if(exp, TrueValue, FalseValue)

In the first case, if the expression is false, no assignment is made to Tag
and Name. If Tag and Name were not defined, they would still be
undefined.

In the second case, an assignment is always made to Tag and Name.
Reference, Tag, Name, @ Section
The section is a string pattern assignment section.

A string assignment section comprises the normal ecmd keywords as well
as the special keywords string= and File=. These special assignment
sections can be used to build long strings. Each separate string=is
implicitly terminated with a new line character with the exception of a
single string= assignment. New lines from pattern files are copied as is.

The assignment value for the string= keyword taken as a string
reference. Example:

String="The ID of the record is \tMT, IDSS”
String="The submitter is \t$SMT, Submitter$”

The assignment value for the rile= keyword is a file specification valid
for the OS. This file contains simply the text of the string with
substitutions as above. Example:

File = ./pattern.txt

The file . /pattern.txt contains:

The ID of the record is \t$SMT, IDS
The submitter is \tSMT, Submitter$
Reference, Tag, Name, @eval, [real,] Value

This assigns the result of an arithmetic expression to Tag and Name.
See Arithmetic Expressions below.

Reference, Tag, Name, @fmt [out], Value, Format

This assigns the result of a field format applied to a value to Tag and
Name. See Formatting Values below.

Reference, Tag, Name, @fmtqgry, Value, SrcTag
This takes the string “value” and replaces fields between dollar signs
with those found in the SreTag, and assigns the new string to Tag and
Name. Field IDs can be used if the SrcTag is a Remedy record.

If a field is not found, it is not replaced.

-181 - User’'s Guide

STH

Software Tool House Inc

The following example:

@Cmd = Reference, Tag, Name, @fmtqgry, &
“ Incident Number’ = \“$Incident Number$\””, &
Src

assigns a string to Tag and Name. like this;
"Incident Number’ = “INC-CAL00010021"”
Incidentally, the following command assigns the same string:

@Cmd = Reference, Tag, Name, “'Incident Number’ &
= \“$Src, Incident Number$\””

However, when Value is a not a constant but a reference such as from a
configuration, the @fmtqgry is needed.

Many values to a Tag:
@Cmd = Reference, Tag, @, Sec

d When the Name is a single “@’, it tells Meta-Update to treat the value as
an assignment section where any field can be assigned a value. All fields
become a field of the named Tag.

This is a good way to assign many fields to a single Tag in one section.

Sec This is the single section name that will be executed. All new fields are
added to the Tag. This can be a reference.

Assigning a field twice causes concatenation. If you need to initialise
specific elements of the Tag or delete the Tag before this reference
command.

After either of these two assignment sections is executed, the following references will

be defined:
sv, v1$ vl-val
SV, v2$ v2-val
Sv, v3$ v3-val
[Asg] [Asg]
@Cmd = Ref, Vv, vl, “wl-val” @Cmd = Ref, V, @, Asgvl
@Cmd = Ref, Vv, v2, “w2-val”
@Cmd = Ref, VvV, v3, “w3-val” [Asgvl]
vl = vl-val
v2 = v2-val
v3 = v3-val

Meta-Update -182 - User’s Guide

Software Tool House Inc

Reference Information — assigning a set of values using references for a Tag
and Field

The @info command assigns a specific set of fields describing the single reference Tag and
Field that is passed to it.

@Cmd = Reference, Tag, @info, SrcTag, [SrcFld]

@info @info requests a specific function. The SrcTag and SrcF1d can
themselves be references. @info causes the Tag to be assigned a
specific set of fields depending of reference passed.

SrcTag this can be a Tag loaded in your script, or a reference that will evaluate to
a Tag that is loaded in your script. If only the srcTag is supplied, only
those names appropriate to the srcTag “record” that is loaded.

SrcFld This can be a field name defined by the srcTag “record”, or a reference
that will evaluate to such a field name. If the srcTag is an ARS record,
the srcF1d may also be specified as a field id.

When a srcrid is specified, the field and value specific assignments are
set.

Note that if you are only interested in the value when the srcTag and SrcF1d are themselves
references, then the @val assignment will return that single value.

The following table lists the assignments made to the Tag.

Name Type Meaning Initial Value
DefinedTag bool Tag is defined 0
DefinedField bool Field is defined 0
Type Undefined, ARS, Tag type Undefined

File, SQL, String
TypeSchema Regular, Join, ARS Schema Type "
View, Dialog,
Vendor
Join bool TypeSchema is Join 0
Joinl string Join schema 1
Join2 string Join schema 2
View bool TypeSchema is View 0
ViewName string the database view name
ViewKey string the database key field (request
id)
Vendor bool TypeSchema is Vendor
VendorName string Vendor name identifies the
plugin supplying the table
VendorTable string Vendor Table is selected when
defining the table to ARS
KeyZeroFill bool Set false only if the schema has 1
defined max length of field '1' as
0

Meta-Update -183 - User’s Guide

STH

Software Tool House Inc

KeyLen integer Length of the request id field 15
('1"), almost always 15

KeyPfx string The initial value of the request id
field. Acts as a prefix to an
integer.

KeyPfxLen integer Length of the request id field's 0

initial value or prefix

ArchEnable bool Archiving enabled 0
ArchType string One of None, Form, Delete, None
Form&Delete, XML, ARX
ArchDelete bool The Archive Type has the None
Delete flag on
ArchName string The Archive Form Name
ArchNoAttach bool The “No Attachments” option 0
ArchNoDiary bool The “No Diary Fields” option 0
FieldTypelInt integer ARS field type integer
FieldType Integer, Real, ARS field type as a string
Char, Diary,
Enum, Time,

Bitmask, Bytes,
Decimal, Attach,
Currency, Date,
Time_of_day,
Join, Trim,
Control, Table,
Column, Page,

Page_holder,

Attach_pool,

Ulong, Coords,

View, Display
FieldId integer ARS field ID 0
FieldName string Field name
FieldLabel string ARS default field label
FieldDisplayOnl bool ARS field is DisplayOnly 0
v
FieldRequired bool ARS field is required 0
FieldMaxLength integer ARS maximum field length 0
Value string The field value
ValueLength integer The length of the value 0

Meta-Update -184 - User’s Guide

Software Tool House Inc

Doubled Reference Values — assigning a single value using references for a
Tag and Field:

When you want only the value given by a double reference — that is when the Tag and Field
are themselves references — then the @val is simpler and faster than the @info command
above.

@Cmd = Reference, Tag, Name, (@val, SrcTag, SrcFld

@val This is a keyword and must be coded exactly as shown. This command
assigns the value of a dereferenced Tag and Field to a single string.

SrcTag This can be any string expression or a constant. It must evaluate to a
known Tag.
SrcFld This can be any string expression or a constant. It must evaluate to a

known Field within the Tag given. If the Tag is an ARS record, the field
can be a field’s name or ID.

Both the Tag and Field may be references which must evaluate to an existing or
loaded Tag and a field defined in that Tag.

This allows you to hold field references in variables and do use hashes and arrays.

Note that the @info reference command also retrieves the value and can be used
anywhere that this command can be used.

In the next example, assuming the Tag “src” is a loaded ARS record with a field of
Status, the next Reference command will assign that Status string to a variable:

@Cmd = Reference, V, Tag, “Src”
@Cmd = Reference, V, Fld, “Status”
@Cmd = Reference, V, Sta, @val, SV, Tag$, V, Fld

If the field is an attachment, only the attachment’s file name value is set. The actual
attachment cannot be assigned using this facility.

Formatting Values — assigning a single value by transforming with a format
You can use a format assignment to transform a value according to a “format string”. Format
Strings” are used in field declaration to interpret SQL or CSV columns or as an output
transformation for CSV columns. See page 148, “Field Sections” in “Script Reference” for
detailed information on format strings.

There are two “forms” of a format reference assignment command:

Meta-Update -185- User’s Guide

"’\ A.\
Software Tool House Inc

@Cmd
@Cmd
@fmt
@fmtout
Val
Fmt

@fmt, Val, Fmt
@fmtout, Val, Fmt

Reference, Tag,
Reference, Tag,

Name,
Name,

These are keywords and must be coded exactly as shown.

@fmtout causes the transform to behave as though the field were being
prepared for an output CSV file.

@£fmt causes the opposite; that is the field is being interpreted for internal
use.

This can affect dates for example. @£fmt of a date always results in an
internal date and time stamp which can be used in ARS assignments and
@date reference assignments. @Emtout, on the other hand, can yield a
wide variety of strings for a date.

This is the source value. It can be a string reference. Quote this value if
needed.

This is the format specification. It can be a string reference. Quote this
value if needed.

Consider that you have an SQL column containing a Remedy time stamp value. You add a
number of seconds to it and want to convert it to a date to be assigned to another Remedy
field. This code fragment will do that:

@Cmd
@Cmd

@eval
@fmt,

Ref, V,
Ref, V,

$Sql, cDhate$ - $V, Secs$
$V, NewDate$, “Date: epoch;”

NewDate,
NewDate,

Say you want to substitute the Remedy Dropdown list word for an integer, you could do the

following:

@Cmd

Ref, V, DropName, @fmt $Sgl, DopVal$ &
“Subst /0/New/ &
“Subst /1/Open/ &

“Subst /2/etc/”

Date Information — assigning date information

The @date command assigns a specific set of fields describing the single date reference in

local time.
@Cmd

@date

date

Meta-Update

Reference, Tag, @date, date
@date is used to give information such as the day of week and the
“epoch” value of any date into a specific set of fields into the specified

Tag (which can be a reference).

this can be any Meta-Update recognized date. This can be a reference
that evaluates to such a date.

Meta-Update dates are of the form “1999/12/31 23:59:59” When a date
is read from a Remedy Time Stamp or Date field, Meta-Update converts
that date into the above format. Dates from files or SQL fields may be
converted by value interpretation.

- 186 - User’'s Guide

The following table lists the assignments made to the Tag.

Name Type
DateType string
IsDaylight bool
epoch int
year int
month int
day int
daywk int
hour int
min int
sec int

Meaning
Null $NULLS or “
Date valid date
Error invalid or unrecognized date

1 if the date is in the daylight savings time
zone, else 0

The Remedy epoch date in number of
seconds past 00:00 at Jan 1, 1970 UT
Year

Month number 1..12

Day of month

Day of week with Sunday as 0
Hour 0..23

Minute 0..59

Second 0..59

STH

Software Tool House Inc

Initial Value
Null

O O O Oo o o

The following script fragment will assign a new variable — varc, Dte — as exactly one year

back from the current date.

@Cmd = Ref,
@Cmd = Ref,
@Cmd = Ref,

Vnow, @date, S$TIMESTAMPS

Varc, yr, @eval
$Vnow, year$ - 1
Varc, Dte,

&

&

$Varc, year$/$Vnow, month$/$Vnow, day$ &

SVnow, hour$:$Vnow, min$:S$Vnow, sec$

The following will do the same but with the date being approximately one year ago:

@Cmd = Ref,
QCmd = Ref,
@Cmd = Ref,
[Dte-flds]

Dte = $

Vnow, @date, STIMESTAMPS
Varc, epoch, @eval

$Vnow, epoch$ - 365.25 * 24 * 60 * 60

Varc, Dte-flds, @regex,
/(.*)/, $Varc, epochs

Date: epoch

Conditional Value Assignments to a Tag reference:

@Cmd = Reference, Tag, Name, @LookUp, ..Sec, Value

@Cmd = Reference, Tag, Name, Qif(..)
If the condition coded evaluate to false, no assignment is made. If the
variable is then referenced, an error will be thrown. You may get around
this by assigning a default value first as in the following example.

@Cmd = Reference, Tag, Name, “Initial Value“

@Cmd = Reference, Tag, Name, Qif(..)

Meta-Update -187 - User’s Guide

"’\ A.\
Software Tool House Inc

Arithmetic expressions:

@Cmd

@eval

real

Value

Reference, Tag, Name, @eval, [real,] exp

This is a keyword and must be coded exactly as shown. This command
assigns the value of an arithmetic expression to the Named variable

This is a keyword and must be coded exactly as shown. This causes the
expression to be evaluated as a floating point real number.

This is an arithmetic expression. It can contain references, parentheses,
arithmetic operators, and basic functions. Normal arithmetic precedence
rules apply and can be changed by the use of parentheses.

The result of the expression is an integer if the “real” keyword is not
coded. The interim processing of the expression is done with real
numbers and the value is rounded up to the nearest integer. With the
real keyword there is no rounding. The floor function may be used to
implement rounding.

References that result in the value $NULL$ are treated as 0.

Please see Using Arithmetic Expressions below for details on the
arithmetic operators and functions supported.

Equivalent Tags — Assigning a Tag as another Tag

@Cmd

Qequ

Reference, Tag, Name, @equ
This is a keyword and must be coded exactly as shown.
This assigns an equivalent Tag so that fields and references are entirely
equivalent using either tag. This is useful when assignment sections are

included and made to act on different records.

Name is interpreted as a previously defined Reference Tag.

Server Processes — Assigning results of ARS Server Run Process

@Cmd

@Qguid

Meta-Update

Reference, Tag, Name, @guid [prefix]
This is a keyword and must be coded exactly as shown.

This causes this assignment to assign an ARS GUID as per the special
run process Application-Generate-GUID [<GUID prefix>]exemﬂed
on the target server. A zero, one, or two character prefix may be passed
as an argument. A one character prefix is suffixed with an underscore.
No prefix results in ID being used.

-188 - User’'s Guide

@Cmd

@exec

Software Tool House Inc

Reference, Tag, Name, @exec process [arguments]
This is a keyword and must be coded exactly as shown.

This causes this assignment to assign the results of the special run
process coded on the statement, along with any parameters required for
that special process.

For example
@Cmd = Ref, X, Guid, @exec, Application-Generate-GUID AA

would be equivalent to
@Cmd = Ref, X, Guid, Q@guid, AA

Similarly, calls can be made to any of the Special Run Processes
available and listed in the table at the end of the BMC: ARS System 7.x
Workflow Objects documents.

Regular Expressions — Assigning match and extracts to variables

@Cmd

@regex

Name

regex

Meta-Update

Reference, Tag, Name, @regex regex, Value
This is a keyword and must be coded exactly as shown.

This causes this assignment to assign several implied named strings to
the specified Tag.

A Perl compatible regular expression is specified in regex and the
supplied, de-referenced value is tested against this regular expression.

The regular expression itself may also contain references. This is useful
when the regular expression is dynamic, depending on other script or
record variables.

The Tag’s field exc is set to “1” when the pattern is matched or to “0”
when the pattern is not matched. “No match” does not cause an error.
You should test $Tag, @rc$ before relying on the substrings extracted
from the pattern.

All pattern specified output strings are extracted and set in the Tag under
a name represented by the extracted string’s index (starting at 1).

If Name is specified and not @na, a field section is processed and
extracted values are transformed according to the field section’s format
specifications. Additionally, variables with the field section’s field names
are set in the Tag.

A field “ematch” can be specified as the first field. If so specified this
contains the whole string that matched the complete expression.

This is a Perl Compatible regular expression. It will be used to match

against the value given and extract any matching substrings from that
value.

-189 - User’'s Guide

Software Tool House Inc

In accordance with the Perl convention, the first character is treated as a
delimiter and the expression is considered complete at the next such
character.

See Using regular expressions below for more information.

value This is string that the regular expression matches and extracts substrings
from.

Assigning values to an ARS record:

@Cmd = Reference, Tag, Name, @Qars, &
[@SvrTag,] Schema [, @init]

@ars This is a keyword and must be coded exactly as shown. This command
is used to make assignments to a single ARS record as identified by the
Tag.

If Tag has not been encountered before, or if the optional @init is
coded, it is allocated with no field values.

Tag The name that this record’s fields will be referenced by. This cannot be
used directly in an Update assignment but can be used in normal
references and in the Copy assignment command.

Name This is an assignment section that will be applied with this record as a
target. If this section causes an error or issues an Abort, this assignment
will also be aborted or be in error.

Name can be specified as @na which causes no assignment section to be
processed.

Name can be a string reference.

@svrTag This is an optional ReadServer Tag. As with all Read Servers, the @ is
required. It specifies the server that the schema is loaded from.

Schema This is the name of the ARS Schema or form that the record will belong
to. This can be specified as a constant or a string reference.

@init This is an optional keyword. If coded, the record will be initialised to the
empty record. That is a record containing no field value pairs and having
had no assignments.

If this keyword is not specified, this section’s assignments add to the

record. Several of these commands can be used to accumulate values in
the record.

Meta-Update -190 - User’s Guide

Software Tool House Inc

Client process’ stdout and stderr files — Assign to a Tag:

@Cmd = Reference, Tag, @spawn, process [arguments]

@spawn This is a keyword and must be coded exactly as shown. This command
is used to make assignments to three specific string names on the
specified Tag

rc the spawned process’ returned integer

stderr the stderr output (console errors) of the command;
if the process succeeded this is generally empty:

stdout the stdout output (console) of the command

The process must be on the path when Meta-Update starts.

The process cannot have redirection operators for stdout and stderr. These are appended by
Meta-Update. These are temporary files that will be automatically deleted after the command
runs.

If desired, the placement of Meta-Update’s stdout and stderr redirects may be controlled by
use of the $redirs$ string. If missing from the text to spawn, the redirects are added to the
end of the command text.

If there are multiple lines, they are concatenated into a single string containing the line ends.
You may use a Loop= if needed to process these lines individually (using a line feed as the
delimiter).

Alternatively, you may use a normal Spawn command and then process the files with a
File=.

This example, run on Windows with Cygwin installed, will extract the Windows User Id to
produce an information level message:

@Cmd = Reference, V, @spawn, &
set | grep USERNAME | cut -d "=" -f 2
@Cmd = Q@if (“V, rc“™ == 0)
QCmd = Msg, I, User is $V, stdout$
@Cmd = else
@Cmd = Msg, W, Spawn for Windows User returned V, rc
@Cmd = endif

This example will set the contents of a file into a field:

@Cmd = @if (“$CTL, 0OS$™ == “Windows")

@Cmd = Reference, V, @spawn, type $Arg, filename$
@Cmd = else

@Cmd = Reference, V, (@spawn, cat SArg, filename$
@Cmd endif
Field = 'V, stdout

Using Regular Expressions

Regular expressions may be used to match and extract (split) values.

Meta-Update -191 - User’s Guide

STH

Software Tool House Inc

This is an example of a script that does no ARS updates but simply splits the specified string
around the last “/ “ and trims and leading and trailing spaces from both parts:

[DoSplit]
PrmReq = 1, Usage S$CTL, script-f$ DoSplit -p subj »
ArgNm = subj
AssignInit = asg-Split
[asg-Split]
@Cmd = Ref, X, regex-parts, @regex, &
YR /)T, &
“S$Arg, subjs$”
@Cmd = @if (“X, Qrc” == “17)
@Cmd = Msg, I, “matched: Src: $Arg, subjs$”
@Cmd = Msg, I, “matched: Part 1: $X, part 1$”
@Cmd = Msg, I, “matched: Part 2: $X, part 2$”
@Cmd = else
@Cmd = Msg, W, “no match: $Arg, subj$”
@Cmd = endif

[regex-parts]
part 1 $ Trim both
part 2 $ Trim both”

When run, the following output is generated

SthMupd.exe BBB-Asg-regex-010.ini Do -p "Model 132 / 42 / Manu"
[DoSplit] Msg: matched: Src: Model 132 / 42 / Manu

[DoSplit] Msg: matched: Part 1: Model 132 / 42

[DoSplit] Msg: matched: Part 2: Manu

Meta-Update’s regular expression handling is through the PCRE libraries. PCRE is the Perl
Compatible Regular Expression implementation available as a GNU project.

PCRE can modify the regular expression behaviour by including options between "(?" and ")".
By prefixing an option letter by a hyphen, that option is turned off in the following pattern part.

The option letters are:

Letter Option Meaning

i PCRE_CASELESS If this modifier is set, letters in the pattern match both
upper and lower case letters.
m PCRE_MULTILINE PCRE treats the subject string as a single "line" of
characters (even if it contains several newlines). The
"start of line" metacharacter (") matches only at the
start of the string, while the "end of line"
metacharacter ($) matches only at the end of the
string, or before a terminating newline (unless D
modifier is set).

When this modifier is set, the "start of line" and "end
of line" constructs match immediately following or
immediately before any newline in the subject string,
respectively, as well as at the very start and end.

If there are no newlines in a subject string, or no
occurrences of » or $ in a pattern, setting this
modifier has no effect.

Meta-Update -192 - User’s Guide

Software Tool House Inc

S PCRE_DOTALL If this modifier is set, a dot metacharacter in the
pattern matches all characters, including newlines.

Without it, newlines are excluded.

X PCRE_EXTENDED If this modifier is set, whitespace data characters in
the pattern are totally ignored except when escaped
or inside a character class, and characters between
an unescaped # outside a character class and the
next newline character, inclusive, are also ignored.
This is equivalent to Perl's /x modifier, and makes it
possible to include comments inside complicated
patterns. Note, however, that this applies only to data
characters. Whitespace characters may never
appear within special character sequences in a
pattern, for example within the sequence (?(which
introduces a conditional subpattern.

U PCRE_UNGREEDY | This modifier inverts the "greediness” of the
quantifiers so that they are not greedy by default, but
become greedy if followed by ?. It is not compatible
with Perl. It can also be set by a (?U) modifier setting
within the pattern or by a question mark behind a
guantifier (e.g. .*?).

X PCRE_EXTRA This modifier turns on additional functionality of
PCRE that is incompatible with Perl. Any backslash
in a pattern that is followed by a letter that has no
special meaning causes an error, thus reserving
these combinations for future expansion. By default,
as in Perl, a backslash followed by a letter with no
special meaning is treated as a literal.

There are some differences in regular expression handling among all regular expression
engines. For complete information on regular expressions, and specifically, the regular
expressions implemented by PCRE, please refer to the PCRE or regex man pages available
on the web.

Using Arithmetic Expressions

Arithmetic expressions can be assigned to string variables as either integers or real numbers.
Here are a few examples:

@Cmd
@Cmd

Ref, MyVars, Ctr, (@eval, $MyVars, Ctr$ + 1
Ref, MyVars, Area, (@eval, pi * ($CiXmit, range$ "~ 2)

The following unary operator is supported:
- unary minus

The following binary operators are supported:

* multiplication

/ division

n exponentiation
+ addition

- subtraction

Meta-Update -193- User’s Guide

Software Tool House Inc

The usual arithmetic rules of precedence apply. You can change the order of evaluation by
using parentheses.

All arithmetic functions are implemented with the GNU matheval library which comes with

support for some named mathematical constants and basic functions. While of improbable
use in a Remedy application, these are documented here for completeness.

The following named constants are available.

e e 2.718282
log2e log2(e) 1.442695
log10e log10(e) 0.434294
In2 In(2) 0.693147
In10 In(10) 2.302585
pi pi 3.141593
pi_2 pi/2 1.570796
pi_4 pi/4 0.785398
1 pi 1/ pi 0.318310
2_pi 2/ pi 0.636620
2_sqrtpi 2 / sqrt(pi) 1.128379
sqrt2 sqrt(2) 1.414214
sqrtl_2 sqrt(1/2) 0.707107

The following elementary functions are available:

abs(x) absolute value of x

sgrt(x) square root if x

rand(x) a random number between 0 and x
floor(x) returns nearest integer value for x
ciel(x) returns smallest integer value that is greater than or equal to x.
exp(x) exponential of x

log(x) logarithm of x

sin(x) sine of x where x is in radians
asin(x) inverse sine of x

cos(x) cosine of x

acos(x) inverse cosine of x

tan(x) tangent of x

atan(x) inverse tangent of x

cot(x) cotangent of x

acot(x) inverse cotangent of x

sec(x) secant of x equivalent to 1/cos(x)
asec(x) inverse secant of x

csc(X) cosecant of x

acsc(x) inverse cosecant of x

sinh(x) hyperbolic sine of x

asinh(x) inverse hyperbolic sine of x
cosh(x) hyperbolic cosine of x

acosh(x) inverse hyperbolic cosine of x
tanh(x) hyperbolic tangent of x

atanh(x) inverse hyperbolic tangent of x
coth(x) hyperbolic cotangent of x

Meta-Update -194 - User’s Guide

Software Tool House Inc

acoth(x) inverse hyperbolic cotangent of x
sech(x) hyperbolic secant of x

asech(x) inverse hyperbolic secant of x
csch(x) hyperbolic cosecant of x

acsch(x) inverse hyperbolic cosecant of x

Note that 1 degree = 0.0174532925 radians.

The rand () function uses the standard OS implementations of rand(). As such, the
limitations associated with the standard random number generators are inherent in the Meta-
Update generator.

The function is seeded with the current time at the start of the Meta-Update job. This is true
even if the random number function is not used in the script. The first 100 random numbers
are discarded as part of the seeding process.

Seeding, and the discarding of the first 100 results, is automatic but can be inhibited with the
RandSeed = No directive in the [Main] section.

If seeding is inhibited, each run of Meta-Update will produce the same sequence of random
numbers.

Meta-Update -195- User’s Guide

"’\ A.\
Software Tool House Inc

Set Schema Command

The Set Schema command allows you to alter some form parameters. Currently only the
Archive settings for a form may be set.

The Set Schema Command alters the definition of the specified form. This is
not a data operation.

This requires Admin privileges and should be used with caution.
@Cmd = Set Schema Archive Schema-Name SrcTag
Set This must be coded exactly as shown and indicates a Set command.

Schema Must be coded as shown and indicates that a form property will be
changed.

Archive Must be coded as shown and indicates that a form’s archive property will
be changed.

Schema-Name This is a reference or constant with the name of the ARS form. Any form
name with spaces or special characters should be enclosed in quote
marks.

SrcTag This is a reference to a string Tag that contains a minimum number of
specific fields and appropriate function for the Set operation being
performed.

For the Archive settings, the following fields may be set:

Examples:
[Do]
AssignInit = asg-Arch, asg-None
[asg-Arch]
@Cmd = Ref, Arch, ArchName, “HPD:Help Desk-ARC”
@Cmd = Ref, Arch, ArchType, “Form”
@Cmd = Ref, Arch, ArchDelete, 1
@Cmd = Ref, Arch, ArchEnable, “true”
@Cmd = Set, Schema, "“HPD:Help Desk” Arch
[asg—-None]
@Cmd = Ref, Arch, ArchName, W
@Cmd = Ref, Arch, ArchType, “None”
@Cmd = Ref, Arch, ArchEnable, “false”
@Cmd = Set, Schema, “HPD:Help Desk” Arch

In the above script, the initial assignment section [asg-Arch] will cause Remedy to set the
connection between the main and archive forms of “HPD :Help Desk” and “HPD:Help
Desk-ARC”, creating the archive form if it doesn’t already exist.

Then, the second initial assignment section, [asg-None] will reset the Archive Properties of
“HPD:Help Desk” to have no archiving defined. This will sever the connection between the
two forms, “HPD:Help Desk” and “HPD:Help Desk-ARC” , but will not delete the archive
form. The archive form will now be considered a regular form.

Meta-Update -196 - User’s Guide

STH

Software Tool House Inc

Trace Command

The Trace command allows push, pop, and change the trace settings, when the script is run
with tracing. See Running Meta-Update, The Command Line for tracing scripts.

The trace command is generally used while debugging scripts by inhibiting or reducing tracing
in already debugged sections and then selectively tracing other sections.

@Cmd
@Cmd
@Cmd

Push

Pop

Trc-Lvl

Trace Push
Trace Trc-Lvl
Trace Pop

This is used to save the current trace levels.

Resumes the trace levels at the time of the matching Push. Meta-Update
will issue a Warning when a Pop is used without a previous Push.

A Trace Level setting. See Running Meta-Update, Tracing for more
information.

Note: Trace commands within a script will be ignored when run with the minus minus d
switch: --d. See Running Meta-Update, Tracing for more information.

Meta-Update

-197 - User's Guide

STH

Software Tool House Inc

Meta-Update -198 - User’s Guide

LookUp Sections

Overview

Software Tool House Inc

A LookUp section is used in the @LookUp assignments translate values and load records

using lists, files, ARS and SQL queries.

A LookUp section can be used in field or reference assignments. Different @LookUp
assignments may refer to a single LookUp section.

Field = (@LookUp, LookUp-Section,
@Cmd = Ref, V, DNew-Status, &
@LookUp, LookUp-Section,

Source-Value

Source-Value

The @LookUp assignment refers to a LookUp section and passes that look up section a
source string. That source string is then matched against the source — left - side of that list of
pairs, and, if found, the corresponding target — right - side of that pair of strings is returned:

$Src, Statuss$ is
matched against a list
of Source values

Status is assigned the

An example:
[Assignment-Section]
Status = @LookUp, Lkup-Status, $Src, Status$
\ [Lkup-Status]
New = Open <
Cancel = Closed

matching Target value

If the source string, as specified by $src, statuss, iS “New” then “open” is returned and will

be assigned to the Status field or the script variable V, New-Status.

A LookUp can also be used to load ARS records or SQL rows by issuing queries the Remedy.
These records are then used to create the returned target string and are also available to the

script.

LookUp Types

A LookUp can translate a source string into a target string through one or more of these

sources:

> Alist of value pairs in the LookUp section

Val
val 2

LookUp Val
LookUp Val 2

> An external file such as a csv or any columnar file.

F1d-1|F1ld-2|F1d-3|Fld-4

Val-1-1|Val-1-2|Val-1-3|Val-1-4
Val-2-1|Val-2-2|Val-2-3|Val-2-4
Val-3-1|Val-3-2|Val-3-3|Val-3-4

The first time a LookUp that uses an external file is used, the file is read and a list of
source and target pairs is generated from the values in the file. When the same

Meta-Update

- 199 -

User’'s Guide

Software Tool House Inc

LookUp is used again, the list that was read is used again and no more file reads
happen.

> An ARS Query or SQL Query.

The selected record, if found, is Loaded. A result string is made from the fields of that
record. The Loaded record can also be used by the rest of the script. If the Query
returns no results, it is still possible for the LookUp to succeed through another
source listed above.

These records may optionally be cached so that if the record is found once for a
source string, and that same source string is applied to the same LookUp section, the
same record will be returned without executing the Query.

Caching of records is not on unless specified. The default behaviour is to not cache
records. With caching in a LookUp section, the time required to access the server
can be eliminated significantly reducing the time required for a data operation.

A special reference is set to indicate the results of the LookUp. This reference can be queried
to determine that there is a loaded record available for use.

An SQL statement opens up the power of SQL functions to translate a value.

Any and all of the above sources may be used in a LookUp section.

Automatic Tags

The LookUp section sets automatic CTL variables each time it is used in a LookUp
assignment. Two variables are automatically set. These are used to specify the LookUp
source string within the LookUp section itself, and to specify where the return string was
found.

Each LookUp assignment sets these same variables. If these variables are needed by the
script, they should be saved in script variables.

CTL LookUp_Src The source string from the LookUp assignment.
CTL LookUp Set when a LookUp is successful to contain one of these
values:
Default The string was not found; the default was returned.
List Found in the internal List
File Found in the external File
Query Found in and loaded an ARS record.
QuerySql. Found in and loaded an SQL row.

Meta-Update - 200 - User’s Guide

Software Tool House Inc

Keywords

These keywords have special meaning in a LookUp section. All other keywords become
source and target strings of an internal LookUp list.

Default Optional. The value to return if the LookUp string is not found.
$CTL, LookUp_Src$ may be used to return the LookUp string
itself.

Default SNULLS
NoMatch Optional. Specifies the message level when the LookUp is not

found as well as the action to be taken.

Default: E, Error

Order Optional. Specifies the Order of LookUp lists to be searched.
Use any of the words in the default order below arranged in the
order that the LookUp will be processed.

Default: List, File, Query, QuerySql

File Optional. Specifies that an external CSV file is to be used to
load a table of LookUp value pairs.

A File= specifies a text file including any Meta-Update
references that is copied into the target named string or pattern
file “record”.

File = File-Tag, File-Section, $Arg, Filename$

See the File= statement in the Script Reference above.
FileSource Required when File=is used.

Specifies the string to be built as the Source (LookUp) while
loading the file. Use $Tag, £1d$ to specify fields of the file.

FileTarget Required when File=is used.

Specifies the string to be built as the Target (returned value)
while loading the file. Use $Tag, £1d$ to specify fields of the
file.

FileIf Optional. Only used with File=.

Specifies a condition that must be satisfied for a record to be
included. The file record’s fields are referenced through the Tag
specified in the File= statement.

FileIf = (@if (”$File-Tag, f1d-1$” == “Active”)

Meta-Update -201 - User’s Guide

STH

Software Tool House Inc

Query

Optional. Specifies that an ARS Query will be loaded and used
to derive the returned string, if matched.

A gQuery= specifies a query that should return exactly one row.
The $CTL, LookUp_sSrc$ reference can be used in the Query.

Unlike a Load@= a LookUp query can return zero, one, or more
than one record. Other keywords control what to do when the
number of records returned is not exactly one.

Query = Qry-Tag, QRY:Schema, &
‘fld-test’ = “SCTL, LookUp Src$” &
‘Status’ = “Active”

QueryTarget

Required when Query= is used.

Specifies the string to be built as the LookUp return value when
the LookUp query matches a row. Should use references within
the loaded query record to create the target string.

QueryTarget = SCTL, LookUp Src$ - &
$Qry-Tag, fldl$lenames$

QueryMulti

Optional when Query= used. Default is “Error”

Specifies the action to take when multiple records are returned
by the ARS query when the LookUp is done.

Values are “Error” and “First”. If “First” is selected, the first
record that matches is loaded into the Tag and the LookUp
return string is made fusing that loaded record.

QuerySql

Optional. Specifies that an ARS SQL Query will be loaded and
used to derive the returned string, if matched.

A Querysqgl= specifies an SQL query that should return exactly
one row. The $CTL, LookUp_Src$ reference can be used in the

Query.

The full features of the Querysql= statement are available. This
includes the field value interpretations and transformations..

QuerySqgl = Qry-Dwl-Tag, @na,
Select fld-val from QRY Schema
where fld-test’ =

‘$CTL, LookUp Src$’ and
Status = 2

R & 2

Meta-Update

- 202 - User’'s Guide

Software Tool House Inc

QuerySqlTarget Required when Querysql= is used.

Specifies the string to be built as the LookUp return value when
the LookUp query matches a row. Should use references within
the loaded query record to create the target string. SQL columns
are numbered starting at 1, or field names can be used if defined
on the Querysql= statement.

QueryTarget = SCTL, LookUp Src$ - &
SQry-Tag, fldl$lename$

QuerySqlMulti Optional when Querysql= used. Default is “Error”

Specifies the action to take when multiple records are returned
by the ARS SQL query when the LookUp is done.

Values are “Error” and “First”. If “First” is selected, the first
record that matches is loaded into the Tag and the LookUp
return string is made fusing that loaded record.

Cache Optional when Query= Or Querysql=is used. Defaultis “off”

Specifies the keyword “o££” or a number of records to cache.
Zero indicates an unlimited cache.

If cache= is specified then any records that match a source
string are saved in memory and set as though they have been
retrieved again by the Query

See Caching LookUp Records below for more information on the
LookUp cache.

The simplest @LookUp may include:

[LookUp Section]

Default = $CTL, LookUp SrcS$
NoMatch = {1, b, w, 8} [, { Default, Skip, Error }]
LookUp Val = Return Val

Return Val 2

LookUp Val 2

Default Specifies a string reference to be used as the value returned when an
exact match is not made. The Default value is $NULLS$. The special
symbol $CTL, LookUp_Src$ may be used. It refers to the value passed
to the LookUp section. It is the value being looked up.

NoMatch Specifies the actions to be done when the source value is not matched.
Default is E, Error

The first value is the type of message that will be traced.

I Information Always logged
D Debug Only logged if —d was specified.
W Warning Always logged.

Meta-Update - 203 - User’s Guide

STH

Software Tool House Inc

val

LookUp Val

Examples”

E Error Always logged.

The second value indicates the action to be done if the source value is
not matched.

Default The default value coded is taken.
Skip No assignment is made to this field.
Error An error is returned and this operation is aborted.

Specifies the value reference that will be returned as a result of this
LookUp when the source value being looked up matches the associated
LookUp value precisely.

Specifies a string constant that will be matched against the passed
source string reference. When this constant is matched exactly, its
associated Val will be the result of the LookUp command.

[x1t-Asigneelogin]

Default
NoMatch

Meta-Update

= $CTL, LookUp Srcs$

= D, Default
Ms J Blow changed names
= jsmith
...................... These persons don’t exist in the
new system. Make the Assignee $NULLS
= $NULL$
-204 - User’'s Guide

Software Tool House Inc

Using Files

LookUp sections can also use external files for its lists of string pairs.

To use external CSV files use add the File= keyword to the LookUp section.

When you use the File= keyword, all other file related keywords are also required. A list of
value pairs within the LookUp section will override, or be overridden by, the list from the

external file. The order= keyword controls the order in which the lists are searched.

[LookUp Section]

Default = XXX
NoMatch = {1, b, W, B} If a list is coded in
(» { Default, Skip, Er the section, the
Order= keyword
LookUp Val = Val = erl hyV}/.
LookUp Val 2 = val 2 controls the list
search sequence.
File = Tag, LookUp-File, rg, File Name$
FileSource = $Tag, F1ldl1-Srcl$)ATag, F1d3- - .
FileTarget = $Tag, F1d3-Tgtl®|$Tag, Fld4- 25 String [()jatll’stﬁl’e
Order = File, List mappe 0 _e
Filelf - @if (“$Tag, Fldl-Srcls” ~= “rest”) | fields of the file.
[LookUp-File]
Type = Csv
Format = Excel The 1f= pUtS_; a,
Fields = LookUp-File-Fields filter on the file's
records. Only
[LookUp-File-Fields] records that match
Fldl-Srcl = S Trim both the condition are
F1d3-Src2 = $
F1d4-Tgt2 = $
File Specifies that an external columnar file will be used to create the LookUp
table.

If coded, all other keywords below are required.

The File= keyword and syntax as well as the file definition in the
specified File section is exactly as described in File Sections in the
Command Reference part of this document above.

The Tag coded in the File= is only used during the initial load of the file
when the LookUp section is first used. Any other references to that Tag

will fail.

FileSource This allows you to specify how the source string is to be created from the
fields in the file. It is evaluated once only when a LookUp section is first
used.

The FileSource= string specifies file fields and other constants and is
used to build the table of source strings that will be used in the LookUp.

Any Meta-Update references are evaluated once when the file is loaded.

Meta-Update - 205 - User’s Guide

STH

Software Tool House Inc

FileTarget

FileIf

Meta-Update

As each record is loaded, it is placed into the File= Tag specified. You
can then use that Tag in the string reference.

This simple example uses a single column of the file as the list of source
strings:

FileSource = $Tag, Fldl-Srcl$

In this example, the source strings are made up of two file columns and a
separator.

FileSource = $Tag, F1dl-Srcl$ | S$Tag, F1d2-Src2$

Similar to the Filesource= value, use this to specify how to build the
returned LookUp string from the fields in the file. This setting is
evaluated once only when the file is loaded and the LookUp section is
first referenced

In this example, the source and target strings are each made of two file
columns and a sepatrator.

FileSource = $Tag, Fld-Srcl$ | $Tag, F1d-Src2$
FileTarget = $Tag, Fld-Tgtl$ | $Tag, Fld-Tgt2$

This specifies a condition that, if true, causes the record to be inserted
into the LookUp tables. If false, the record is ignored.

The condition may use the File= Tag for the file record’s reference.

In the CSV below, we may want to exclude all records that are not for the
CHG:Change application:

FileIf = @if (“$Tag, AppSchemas™ == &
“CHG:Change")

- 206 - User’'s Guide

Software Tool House Inc

This more complete example is described below:

This image is of a sample CSV from an ITSM 6 to ITSM 7 Migration script describing
all CTI, Product, Model conversions. Different slices of the same file were used in
different LookUp sections.

lwnn

ggh
:; -

P ﬁmwnwm-tgﬂneri .
et iatbestetghiutspetralvs vd IndrE thugs =i
oy Bwtenoratetipidiive s 14 Thange : :
By o o et g A Ardaryag 4
Ez‘_‘l i

£

HEEE 8

i

i

daslaivivdsin oo sicd

B B B B B 3

‘\f\ ASRIE YRSV ENLNENEN

pegeee ey,

ey
B A
i

ENNE e
FERRERE

i 3

Ee
¥ie
i’?’m‘}f

15
i 4

4
R

A8
»

REFRNTER N

'}wéﬁi
SIFFIRRYIREY

I

RN

LEEOOUEd

REEERTE
1,

ril’!

o0 m el (Twets Jhees / 2 1T Tor =i b

User’s Guide

- 207 -

Meta-Update

éST_fl

Software Tool House Inc

Meta-Update

This LookUp section will take as an ITSM 6 root request’s AppSchema, and its
Category, Type, and Item, and will return a new Categorization Tiers 1, 2, 3 from the

ITSM 7 Suite.

The source string was the original record’s Category, Type, Item separated by “ | “.
The returned string is the new Categorization Tier 1, 2, 3.

@Cmd = @Ref, MyVars, CT_ lkup, &
@LookUp, LkUp-CT, &
SHpdSrc, Category$ | &
$HpdSrc, Type$ | $HpdSrc, Items$
[CT lkup]
Default = $CTL, LookUp Srcs$
NoMatch = D, Default .
Override = List, File <+ Slmply aygmems
| thefilewina
1 - Default |Default |Default script wide list
|na|na = Default|Default |Default (and overrides if in
both the file and
File = F-CT, File-CT, &| here)
$Arg, File Name$
FileSource SF-CT, Category$|SF-CT, Type$lSF-CT, Item$
FileTarget $F-CT, Categorization Tier 12f1::;&
$F-CT, Categorization Tier 2% | &| Specifiesthe
$F-CT, Categorization Tier 3 LookUp source
FileIf = @if (“SF-CT, AppSchemas"“ == &| and target string
“CHG:Change®™) mappings to fields
(File-CT] in the file.
Type = Csv
Format = Excel
Fields = File-CT-Fields Only records
matching this
[File-CT-Fields] condition are
Status = $ loaded.
0C OK $
PC OK B $
Category = $
Type = $
Item $
AppSchema $
Asset Class $
Categorization Tier 1 = S
Categorization Tier 2 = $
Categorization Tier 3 = $
CI Type = $
Product Categorization Tier 1 = $
Product Categorization Tier 2 = $
Product Categorization Tier 3 = S
Product Name = $
Modell/Version = $
Manufacturer $
Check? = $

An assignment statement that references the LookUp section based on the above
file: The source string was the original record’s AppSchema,Category, Type, ltem

separated by

@Cmd = @Ref, MyVars, CT_ lkup, &
@LookUp, LkUp-CT, &
SHpdSrc, AppSchema$ | $HpdSrc, Category$ | &

SHpdSrc, Type$|S$HpdSrc, Item$

- 208 - User's Guide

Software Tool House Inc

A File=, if coded, is read once and only once on its first use by a @LookUp reference.

That initial file read creates a list of sorted value pairs according to the Source and Target
keywords. Subsequent @LookUp statements using the same LookUp section simply search
this cached list.

Using a Query
LookUp sections can also use ARS queries to build the translate string.

In this way, a LookUp acts like a Load that is allowed to fail. The record, if found, is made
available to the rest of the script under the Query Tag specified in the guery= statement.

After a @LookUp assignment $CTL, LookUp$ can be used to determine if the Query was
satisfied or a default or other list was used.

A string reference using fields of the LookUp record found is used to build the return string.

The Schema for the query may be a string reference. In this way, the same LookUp section
may be used for different schemas.

Similar to ARS if multiple records match, you may throw an error (the default) or select the
first record. You may use the optional Sort in your Query.

To use an ARS query add the guery= keyword to the LookUp section.
When you use the guery= keyword, all other file related keywords are also required. A list of

value pairs within the LookUp section will override, or be overridden by, the list from the
external file. The order= keyword controls the order in which the lists are searched.

[LookUp Section]

Default = XXX
NoMatch = { I, b, W, E} If a list is coded in
[, { Default, Skip, Error }] the section, the
Order = Query, File, List order= keyword
LookUp Val _ Val «— controls the list
LookUp Val 2 = val 2 search sequence.
Query = @[TagSvr] Tag, Schema, Querys$ QueryTarget= iS
QueryTarget = $Tag, Tgt-1$|$Tag, F1d-4$ <+— used to build a
QueryMulti = First | Error LookUp return
string from the
fields in the record
and other
references.
Query Specifies that an ARS Query will be used to select a record with which to

build the returned string.

The guery=is coded exactly as in a Command Section (see Query
Statements above)

If the guery= matches a record, the Tag is used to hold the loaded

Meta-Update - 209 - User’s Guide

Software Tool House Inc

values. These remain in memory until the next LookUp using the same
LookUp section is processed.

QueryTarget Specifies how to build the string that will be returned when the Query
matches a record.

Fields in the loaded record may be used to construct the returned string.
That string can also use other references and the $CTL, LookUp_Src$
reference.

QueryMulti This is an optional value than can be one of two keywords: Error or
First. The defaultis

QueryMulti = Error

Normally, the Query specified should return exactly one record. If
multiple records are returned this allows you to continue by loading the
first record.

Note that Error will write an error message to the log but will not
necessarily cause the LookUp to fail. The LookUp search string may still
be found through other LookUp mechanisms. The NoMatch= keyword
determines when to do when all coded LookUp mechanisms are
exhausted.

Query records may be cached to avoid the overhead of issuing queries for the same record.

The default is that the LookUp section does not use a cache. See Caching LookUp Records
below for more about LookUp record caching.

Using an SQL Query

LookUp sections can also use direct SQL queries to build the translate string. The SQL
statement is executed by the ARS server using the server’s database credentials.

SQL Queries are similar to ARS Queries. The guerysqgl= qualification string will generally
have the source reference $CTL, LookUp_Src$ in it.

A guerysql= acts like a Load (but for an SQL row) that is allowed to fail. The row, if found, is
made available to the rest of the script under the Query Tag given. The reference, $cTL,

LookUp$ may be used to determine if the Querysql= was satisfied or a default or other list
was used.

A string reference using fields of the LookUp record found is used to build the return string.
That string reference is specified with the QuerySqlTarget= keyword.

If multiple rows match, you may throw an error (the default) or select the first record.

To use an SQL query add the Querysql= keyword to the LookUp section.

Meta-Update -210 - User’s Guide

Software Tool House Inc

When you use the guerysql= keyword, all other related keywords are also required. Other
LookUp mechanisms, including an internal list of value pairs, a list from an external file, an
ARS Query will override, or be overridden by, the SQL query coded here. If a result is found,
the SQL query is not executed at all.

The order= keyword controls the order in which the LookUp mechanisms are searched.

[LookUp Section] The order=
Default - — keyword controls
NoMatch = { I, D, W, E } the search
[, { Default, Skip, Error }] sequence of
Order = QuerySql, List < LookUp
mechanisms
LookUp Val Val
LookUp Val 2 = Val 2
.. The full features of
o ol o Tagsvr 1 T . tU o QuerySqgl= can be
ueryoqg = agovr ag, [e]e) jelele] & H H
Select fld a, fld b fr XXX & ;’.Isﬁjd.":dum?gt.
Where fld look up g | Neld interpretation
\SCTL, KUp_Srcs’ rules.
QuerySqglTarget= $Tag, fld STag, fld-bs
QuerySglMulti= First rror
QuerySqlTarget=
[LookUpSglFlds is used to build a
fld a = $ Subst /@/_/ LookUp return
fld b = $ Date julian string from the
columns in the row
and other
references.
QuerySqgl Specifies that an ARS server SQL Query will be used to select a row with
which to build the returned string.
The guerysql=is coded exactly as in a Command Section (see Query
SQL Statements above)
If the Querysql= matches a row, the Tag is used to hold the loaded
values. These remain in memory until the next LookUp using the same
LookUp section is processed.
QuerySqlTarget Specifies how to build the string that will be returned when the Querysql=
matches a row.
Columns in the loaded row may be used to construct the returned string.
That string can also use other references and the $CTL, LookUp_Src$
reference. Column numbers, or, if specified, field names, can be used for
the SQL row’s columns..
QuerySqlMulti This is an optional value than can be one of two keywords: Error or

Meta-Update

First. The default is

QuerySglMulti = Error

Normally, the guerysql= specified should return exactly one row. If
multiple rows are returned this allows you to continue by loading the first
row.

-211 - User’'s Guide

STH

Software Tool House Inc

Note that Error will write an error message to the log but will not
necessarily cause the LookUp to fail. The LookUp search string may still
be found through other LookUp mechanisms. The NoMatch= keyword
determines when to do when all coded LookUp mechanisms are
exhausted.

An SQL query may also be used in other ways not obvious in a LookUp function.

For example an SQL procedure may be coded in the SQL Query that manipulates a source
string and returns a different string allowing you to write value transformation functions.

An SQL select count(*) may be used to assign to an integer field:
This query makes
[Assignment Section] 4//’/’/// no use of the
Count = @LookUp, LookUp Section, “dummy” LOOkLH)SOUFCG
value instead
[LookUp Section] using a different
QuerySql = Dmy-Tag, @na, &
Select count (*) from xxx & reference.
where case id = &
‘SHpdSrc, Request IDS$’
QuerySqglTarget= $SDmy-Tag, 1$

In this example an SQL statement is used to decrement a counter. Note that this SQL
statement is Oracle specific.

[Assignment Section]
@Cmd = Ref, MyVars, Ctr, &
@LookUp, LookUp Section, “S$MyVars, Ctr$”

[LookUp Section]
QuerySql = Dmy-Tag, @na, &
select &
to number (SCTL, LookUp Src$-1) &
from dual
QuerySqglTarget= $Dmy-Tag, 1$

QuerySql records may be cached to avoid the overhead of issuing queries for the same
record. The default is that the LookUp section does not use a cache.

Meta-Update -212 - User’s Guide

Software Tool House Inc

Caching LookUp Records
LookUp sections that issue Query= Or QuerySql= queries can cache the records retrieved.

This only happens when the cache= keyword is used in a LookUp section, and that section
USEesS a Query= O a QuerySql=.

The cache= keyword is used to specify a maximum cache size. Specifying O (zero) makes
the cache unlimited.

When a LookUp section includes a cache, the source string is searched in the order given by
that LookUp section against its internal list, file, or queries. Before the Query= or Querysql=
is executed, a search is made in the cache for the source string. If the string is found, the
saved record is returned as though the Query or QuerySql had been executed.

This saves going to the ARS server for the query and record and can yield a significant
performance boost.

Any Load= can be converted to use a LookUp to benefit from this performance boost.
It is important when using a cache= to remember these things:

» Records are found in the cache according to the LookUp input string no matter what
terms are used in the queries. Therefore, each LookUp source string that returns a
record should always return that and only that record. No other source string should
return that record.

It is usually a simple matter to develop such a string. The string passed to the
LookUp section does not have to be referenced by the LookUp queries. So, for
example, the string could simply be the set of references that the LookUp uses as in

this case:

ecmd = @Ref, MyVars, LkupRle Cannot use a Cached
@LookUp, LkUp-1, “dmy” LOOkUp

@Cmd = QRef, MyVars, LkupRslt, & Can use a Cached
@LookUp, LkUp-1, / LookUb
“$Tagl, fieldl$-$Tag2, field2$

[LkUp-1]

Cache = 0

Query = Tag, &
Schema, &
‘Field 1’ = $Tagl, fieldls and ~
‘Field 27 = $Tag2, field2$

> If arecord that is returned by a LookUp will be updated through the script (or through
any other means) then a cache should not be used. This will ensure that when
needed the record will contain the updated values.

> If two different LookUp sessions can return the same record and use the same Tag
for that record, then a cache cannot be used in either LookUp.

Using different LookUp Lists

Meta-Update -213- User’s Guide

STH

Software Tool House Inc

To use different LookUp sections to make a match, simply use several different LookUp
sections in a sequence of assignment so that the assignments are run only if the LookUp

previously has failed.

The condition can be on the $CTL, LookUp$ reference or on the assigned value if a default

was selected.
@Cmd

@Cmd

@Cmd

@Ref, MyVars,
@LookUp, LkUp-1,
@if (“SCTL, LookUp$”
@Ref, Myvars,
@LookUp, LkUp-2,
@if (“$CTL, LookUp$”
@Ref, MyVars,
@LookUp, LkUp-3,

—— W

LkupRslt,
SMyVars,
Defaul$”)
LkupRslt,
$MyVars,

== “Defaul$”)

LkupRslt,
$SMyVars,

LkupSrc$

LkupSrc$

LkupSrc$

In this example, the LookUp section returns the original source string by default and the three
different sections are always run. In fact, if the Default for the LookUp is the original string,
the example above and below are equivalent.

@Cmd

@Cmd

@Cmd

Meta-Update

@Ref,
@LookUp,

@Ref,
@LookUp,

@Ref,
@LookUp,

MyVars,
LkUp-1,
MyVars,
LkUp-2,
MyVars,
LkUp-3,

- 214 -

LkupRslt,
S$SMyVars,
LkupRslt,
S$MyVars,
LkupRslt,
S$MyVars,

LkupSrc$
LkupRslt$

LkupRslt$

User's Guide

STH

Software Tool House Inc

Field Type Notes

Meta-Update -215- User’s Guide

STH

Software Tool House Inc
Diary Fields
Diary Field values can be one of two types: a character string or a formatted diary field string.

A formatted diary field string contains diary field entries including a time stamp, a user, and
the text of the entry. These are referenced by using a loaded record’s diary field data.

When a diary field contains a formatted diary string, no concatenation is permitted. That
string can only be used in a new create, not an update. The actual update is made using the
Merge API after the record is created normally.

Normal strings can be assigned to diary entries on both new creates and updates. They can
also be concatenated in the Assignments file. In these cases, the string, the current time, and
the user that Meta-Update signs on with, are appended as a new entry to the current diary
field contents.

Meta-Update -216 - User’s Guide

Software Tool House Inc

Currency Fields

Currency Fields can be specified as a specially constructed string. This is the same whether
the currency field value is in an import file or used in a literal assignment. The field definition
on the form plays a role in the assignment of currency fields.

To specify a currency field, the minimum required is a decimal numeric quantity. If desired, all
functional currencies may be specified as well as a date for the conversion of the functional
currencies.

The syntax for a currency field value is:

nnn.nn [XXX][date][nnn.nn XXX]...

where nnn.nn is a sequence of digits with an optional decimal point decimal
portion
XXX is an ISO currency code allowed in the field being assigned
date is a formatted date value

yyyy [.mm[dd[hh[:mm[:ss]]]1]
See date fields above for more information.

nnn.nn the value part for a functional currency
XXX the ISO currency code for a functional currency
Examples:
123.62
123.62 EUR

123.62 EUR 2005.10.01 14:30 136.89 USD 174.29 CAD
123.62 EUR 2005.10.01 136.89 USD 174.29 CAD

It is an error to specify a currency code that is not defined as being permitted for the field. As
of release 6.3 or ARS, this is an error not caught and results in a null assignment to the field.

Meta-Update catches this error and does not attempt the assignment or the update. An Error
message is produced and the update fails.

Meta-Update -217 - User’s Guide

STH

Software Tool House Inc

Numeric Fields

Numeric Fields are specified as an optional leading sign indicator and a sequence of digits.
Integers can only have digits. Real numbers may have a decimal point and more digits.

Numeric constants in assignment sections must be specified in the expected format.
References from ARS records are always in the correct format. References from CSV files
must have their values transposed into the expected formats.

For data is in a CSV file, the Subst formatting option can be used to remove thousands
separators and to convert the decimal point into a period when required. For example to
convert a decimal value in German notation to the internal Meta-Update representation:

Numerc Value = $ Subst /.// Subst /,///

A value of “1.234,56” would then be transposed into “1234.56”

Meta-Update -218 - User’s Guide

Software Tool House Inc

Enum or Selection Fields

Selection Fields are stored in the database as integers. There are three different types of
selection fields defined in the API since release 5 though the administrator tool prior to
release 7 only allowed a single type. Now, with the advent of release 7, the admin tool
supports two types though a third type is supported with the API.

The two types are sequentially enumerated types and enumerated types with gaps.
Meta-Update takes character strings or integers for enumerated values. References are
converted to character strings. So a “Closed” value from one schema will match a “Closed”
value in another schema even if the underlying numerical values are different. A value of “10”
will first be searched though the aliases and if not found will be accepted as an integer value.

Values must be defined in the field or an error is thrown.

Meta-Update -219 - User’s Guide

STH

Software Tool House Inc

Date Fields

Meta-Update holds date values internally as character strings of the form
+yyyymmddhhmmss in the local time zone. It converts to and from ARS date data types as
needed.

ARS Date fields hold a date from Jan 1, 4912 BC through Jan 1, 9999. The value is
represented by an integer number of days since the 4713 BC date. The time component of a
date field is ignored. There are no time zone adjustments.

Meta-Update -220 - User’s Guide

Software Tool House Inc

Date/Time Fields

ARS date / time fields hold a date and time stamp in a number of seconds from Jan 1, 1970.
They are always saved in the GMT or UT time zone.

Meta-Update converts ARS Date / Time fields into a character string representing the local
time on the machine that Meta-Update is running on when-ever any record with such fields is
read. Similarly, these character strings are converted back when inserting into an ARS field
for updating.

Meta-Update date strings are as follows:
yyyy/mm/dd hh:mm:ss

yyyy-mm-dd hh:mm:ss
yyyy.mm.dd hh:mm:ss

yyyymmddhhssmm

$date$ represents current date / time
$time$ represents current date / time
$daystart$ represents current date at 00:00:00
$dayend$ represents current date at 23:59:59

Any missing components will be treated as if they were zero (one for month and day).

File records can specify date columns’ formats if different than above. Meta-Update then
converts from the file’s strings into the above. Any file date field, can be assigned to any ARS
date field.

Diary loops supply the entry date in various different date formats as different references. For
assignments, you'll need to use the normal reference, $DiaryTag, Date$ which represents the
date as above.

In assignments, date fields can be references to ARS fields, file fields, or strings. No
reformatting of dates is required as all internal dates have the same format as described
above. When assigning constants, the constants need to conform to the above format.

When Queries are coded, ARS expects a date to be formatted according to the current
machine’s international configuration. Queries using date fields with compare values from
diary loops can use the specific reference for that machine’s settings.

The ARDATE environment variable may be set before Meta-Update is started to alter how the
ARS API interprets dates in queries. Any change to the ARDATE environment variable within
a Meta-Update script have no effect on the ARS AP, so if you decide to use this, it must be
set before the Meta-Update job is fired.

Full documentation on the ARDATE specification is given by the BMC Remedy documents.
The release 7.6.03 documents specifically say that ARDATE has no effect on clients.
However, testing with Meta-Update scripts has proven that if ARDATE is set before Meta-
Update begins, then dates in Queries are interpreted according to the ARDATE setting.

If the same Meta-Update script is to be run on different machines with different regional
settings and dates are specified in Queries, then it is a good idea to set the ARDATE
environment variable so that the queries will be interpreted in the same way no matter the
regional settings on the machine running Meta-Update.

The format of the ARDATE value differs for UNIX and Windows.

Meta-Update -221- User’s Guide

"’\ A.\
Software Tool House Inc

These summaries of ARDATE syntax are taken from the BMC Action Request System 7.6.03
Form and Application Objects document.

This table lists the UNIX field descriptors that you can use with ARDATE, ARDATEONLY, and

ARTIMEONLY.
Descriptor | Function
%% Same as %
%a Day of week using locale’s abbreviated weekday names
%A Day of week using locale’s full weekday names
%b or %h Month using locale’s abbreviated month names
%B Month using locale’s full month names
%d Day of month (01-31)
%D Date as %m/%d/%y
%e Day of month (1-31; single digits are preceded by a blank)
%H Hour (00-23)
%l Hour (00-12)
%k Hour (0-23; single digits preceded by a blank)—Sun Solaris™ operating system only
%m Month number (01-12)
%M Minute (00-59)
%p Locale’s equivalent of a.m. or p.m., whichever is appropriate
%r Time as %1:%M:%S %p
%R Time as %H: %M
%S Seconds (00-59)
%T Time as %H:%M:%S
%W Day of week (Sunday is day 0)
%X Date, using locale’s date format
%X Time, using locale’s time format
%y Year within century (00—99)
%Y Year, including century (for example, 2004)

Table 1 ARDATE Field Descriptors for UNIX
This table lists the Windows field descriptors that you can use with ARDATE, ARDATEONLY,

and ARTIMEONLY.

Time notations Displays

h Hour (hh displays the hour with a leading zero)
m Minute (mm displays the minute with a leading zero)
s Second (ss displays the second with a leading zero)
tt A.M. or P.M.

h/H 12 or 24 hour time display

Date notations | Displays
d, dd Day
ddd, dddd Day of the week

M Month

Meta-Update

- 222 -

User’'s Guide

STH

Software Tool House Inc

y Year

Table 2 ARDATE Field Descriptors for Windows

When the value is from a reference to an ARS field, the date needs to be rearranged for the
query in the appropriate manor.

The following sample code, will take a date field reference, and create a new field to hold an
ARS query date value in the German format:

@Cmd = Ref, V, asg-Date-split, @regex, &
'([0-91%)/([0-91*)/([0-91%) ([0-91*):([0-9]*):([0-9]*)",
SRecXx, Create Date$

@Cmd = Ref, V, Date-Fff, &

"V, dy/V, mn/V, yr V, hr:V, mm:5V, ss$"
[asg-DoPpl-yr]
yr
mn
dy
hr
mm
ss

Uy 0 U U Uy

You can include the above assignments in an Assignlinit processed before a guery= and the
reference the date as $V, Date-Fff$ instead of $RecXxx, Submitter$.

Meta-Update -223- User’s Guide

Software Tool House Inc

Attachment Fields

In Remedy, there are two attributes for an attachment value: the name of the attachment, and
the file name of the attachment.

With the Remedy GUI (through the User tool or a browser), assigning an attachment sets
both the name of the attachment and the file name equal. Saving an attachment allows you to
create a file of any name.

With Meta-Update, it is possible that the real file name that is the source of a file to be
attached is not equal to the file name desired in the ARS data. Consider the case where
Meta-Update is running on a server and the file needs be opened on the client.

In Meta-Update, attachment field values can be specified as a string, as two strings, or as a
reference to another attachment field. Or, the three “forms” of an attachment assignment are:

1 Att-F1ld = “attachment file name, os file name”
2 Att-F1ld = attachment (& os) file name
3 Att-Fld = Ta, field

This example is introduced and discussed below. The three different “forms” of an
attachment value are specified.

1 Att-F1ld = “C:\tmp\logos.jpg, C:\temp\attach-1.dta”
2 Att-Fld = C:\tmp\logos.jpg
3 Att-F1ld = Src, AttFld

For 1), If the file c:\temp\attach-1.dta exists and is readable, and,

for 2) if the file c:\tmp\logos.jpg exists and is readable, and,

for 3) ifthe reference $Src, AttF1ds$ is aloaded ARS record with an attachment field
containing C: \tmp\logos.jpg

then, the three statements above are almost equivalent and result in an attachment named
C:\tmp\logos.jpg being assigned to the target attachment field.

For the three statements, these files need to exist:
1 C:\temp\attach-1.dta
2 C:\tmp\logos.Jjpg
3 none

When an attachment field is assigned the contents of another ARS attachment value through
a reference, as in example 3 above, the attachment value itself is retrieved, resulting in an
additional API call to the ARS server.

When Meta-Update reads an ARS record through the ARS API, (as in the read that populated
the tag, Src), the descriptive contents of attachment fields are read. The attachment itself is
not read until required.

When an attachment field is assigned the value of another attachment field through a
reference, and the source value is non-null, Meta-Update retrieves the contents of the
attachment. That retrieval is made using a memory buffer. The buffer is freed when the
original record is freed, in the above example’s case, when the Src tag is reloaded.

When an attachment field is a string value, that string value (in either one or two components)
refers to a file name.

Meta-Update -224 - User’s Guide

STH

Software Tool House Inc

That file name must be able to be read by the Remedy API. That is, the file must exist, and
the user running the Meta-Update binary should have read rights to the file. Generally
speaking, you should be able to open that file with the Windows Explorer if you are running
Windows.

Meta-Update -225- User’s Guide

Software Tool House Inc

Predefined Reference Tags

Meta-Update automatically defines some reference tags. These tags may be used anywhere
that any other tags can be used. These tags are available to the script on start-up:

CTL Meta-Update and script information
Arg Script defined arguments
ENV Environment variables

AR _INFO AR Server Information
RdSvr AR _INFO AR Server Information for the Read Server with the
Tag “RdSvr”

As many of these are defined as there are Read Servers.
CTL-RdSvr_Schema When any schema is loaded, queried, or updated, an
automatic tag is created that holds information about the schema.

The ENV, AR_INFO, and RdSvr_AR_INFO tags may be assigned values with the @Cmd,
Reference assignment command.

Meta-Update -226 - User’s Guide

Software Tool House Inc

CTL — Meta-Update Information

The CTL tag gives Meta-Update wide operational information:

Tag
CTL
CTL
CTL
CTL
CTL

CTL
CTL

CTL

CTL
CTL
CTL

CTL
CTL
CTL

CTL
CTL

CTL
CTL

Field
Server
Port

RPC

User
Password

Script
ScriptF

ScriptFx

0S
ArsVer
ArsVerS

pid
Pidx

PidX

Schema
SchemaFnm

Operation
ID

Value

The Server where the update will occur.

The Port number for the update server connection (or zero).
The RPC number for the update server connection (or zero).
The User ID being used for Meta-Update updates.

The Password being used for Meta-Update updates.

The script file and path being run. E.g../path/x.ini

The script file being run: minus path information.
E.g. x.1n1i

The script file being run: minus path information and
extension. E.g.: x

One of: UNIX, LINUX, or, Windows.

The ARS Server version whole number. E.g. 7 for ARS 7.01.
The ARS Server “Sub-version”. E.g. 1 for ARS 7.01.x.

The decimal process ID of the Meta-Update run.
The hexadecimal (lower case) process ID.
The hexadecimal (upper case) process ID.

The Schema being updated.

The CTL, Schema transposed into a simple file name
containing no special characters. Note that it is not possible
for two similar schema names to be transposed into the
same file name. Each special character is translated into an
underscore.

This is generally also the database view name automatically
created by ARS 6 and above. Exceptions would be some
specific tables that are SQL keywords, like USER, and tables
beginning with numbers.

One of “Update”, “Create”.

The ID for the record being updated or

when creating.

The following tags are section based. That is a different tag exists for each launched section.
The tag name is the prefix “cTr- and the section name. For example, the section
[DoFileImp] Will automatically define the reference: cTrL-DoFileImp. This reference will be
available in that section and any sections launched from that section. When that section
completes the symbol will no longer be defined.

CTL-Sec

Rec

The current record being processed within a query or file.

Null (the empty string) if not processing a File= or Query.

Some tags are only defined when appropriate. For example, the Record counters count
records in either a query or a file. A file cannot reasonably have a maximum defined so that
counter is unavailable

Meta-Update

- 227 - User’'s Guide

Software Tool House Inc

Arg — Program Arguments

The Arg tag holds any program arguments as defined by the ArgNm= keyword in the Main
section.

All arguments defined with the ArgNm= keyword are defined when the Meta-Update script
starts, whether or not the command line included a value for an argument. If the command

line did not include a value for a given argument, it will contain an empty string equivalent to
SNULLS.

ENV — The Environment

The ENV Tag refers to the environment. The fields in the environment are initialised when
Meta-Update begins and reflect the environment of the shell used to start Meta-Update.

Fields of the environment are case sensitive. $ENv, Path$ does not yield the standard PATH
variable. ENV, PATH does.

Assignments to the environment may be made through the Reference assignment command.

When a Reference command sets a variable in the ENV tag, the Meta-Update environment is
adjusted.

Any changes in the environment will be reflected in subsequent references within Meta-
Update and within any client processes that Meta-Update starts. This includes any client
processes launched by the Meta-Update Spawn command.

When Meta-Update completes, the environment will revert to what it was when the Meta-
Update process was started.

AR_INFO — ARS Server Information

The AR_INFO Tag refers to the ARS Server Information values available.

The fields in this tag are initialized when Meta-Update begins and reflect the values returned
by the main Update Server. The number of fields available is the minimum of the API version
being used by Meta-Update and the ARS server version.

Field names are the AR_SERVER_INFO_xxx defines in the API file, ar.h

The number of fields defined vary by the release of the server.

RdSvr_AR_INFO — ARS Server Information

The RdSvr_AR_INFO Tag refers to the ARS Server Information values available for a read
server with the tag, “RdsSvr”.

Meta-Update -228 - User’s Guide

Software Tool House Inc

AR_INFO - Table of Fields and Values

The following table lists the AR_INFO tag’s field names, the ARS Server version that
introduced the field, typical values, and whether the field is readable or writable.

The values were taken from an OOTB 7.6.04 patch 2 server installed on a Window 2003
Server X64 Standard VM. In some cases, the value has been truncated.

Release Name RW Example Value
Introduced
5.12 DB_TYPE R SQL -- SQL Server
SERVER_LICENSE R Server
FIXED_LICENSE R 18
VERSION R 7.6.04 Build 002 201101141059
ALLOW_GUESTS RW 1
USE_ETC_PASSWD RW 0
XREF_PASSWORDS RW 0
DEBUG_MODE RW 1179711
DB_NAME R ARSystem
DB_PASSWORD W
HARDWARE R x86_64
0S R Windows Server 2003
SERVER_DIR R D:\Apps\BMC\ARSystem\ARServer\Db\
DBHOME_DIR R
SET_PROC_TIME RW 5
EMAIL_FROM RW ARSystem
SQL_LOG_FILE RW E:Logs-ARS\a001.log
FLOAT_LICENSE R 0
FLOAT_TIMEOUT RW 2
UNQUAL_QUERIES RwW 1
FILTER_LOG_FILE RW E:Logs-ARS\a001.log
USER_LOG_FILE RW E:Logs-ARS\a001.log
REM_SERV_ID R
MULTI_SERVER RW 1
EMBEDDED_SQL R 0
MAX_SCHEMAS R 0
DB_VERSION R 2008 R2 (SP1) - 10.50.2500.0 (X64)
MAX_ENTRIES RW 0
MAX_F_DAEMONS RW 12
MAX_L_DAEMONS RwW 8
ESCALATION_LOG_FILE RW E:\Logs-ARS\a001.log
ESCL_DAEMON RW 1
SUBMITTER_MODE RW 2
API_LOG_FILE RW E:Logs-ARS\a001.log
FTEXT_FIXED R 1
FTEXT_FLOAT R 1
FTEXT_TIMEOUT RW 2
RESERV1_A RW 0
RESERV1_B RW 0
RESERV1_C RW 0
SERVER_IDENT R 0050560C63F6
Meta-Update - 229 - User’s Guide

Software Tool House Inc

DS_SVR_LICENSE
DS_MAPPING
DS_PENDING
DS_RPC_SOCKET
DS_LOG_FILE
SUPPRESS_WARN
HOSTNAME
FULL_HOSTNAME
SAVE_LOGIN
U_CACHE_CHANGE
G_CACHE_CHANGE
STRUCT_CHANGE
CASE_SENSITIVE
SERVER_LANG
ADMIN_ONLY
CACHE_LOG_FILE
FLASH_DAEMON
THREAD_LOG_FILE
ADMIN_TCP_PORT
ESCL_TCP_PORT
FAST_TCP_PORT
LIST_TCP_PORT
FLASH_TCP_PORT
TCD_TCP_PORT
DSO_DEST_PORT
INFORMIX_DBN
INFORMIX_TBC
INGRES_VNODE
ORACLE_SID
ORACLE_TWO_T
SYBASE_CHARSET
SYBASE_SERV
SHARED_MEM
SHARED_CACHE
CACHE_SEG_SIZE
DB_USER
NFY_TCP_PORT
FILT_MAX_TOTAL
FILT_MAX_STACK
DEFAULT_ORDER_BY
DELAYED_CACHE
DSO_MERGE_STYLE
EMAIL_LINE_LEN
EMAIL_SYSTEM
INFORMIX_RELAY_MOD
PS_RPC_SOCKET

REGISTER_PORTMAPPER
SERVER_NAME

DBCONF

APPL_PENDING

Meta-Update

RW

o)

RW
RW
RW

o)

RW

RW

RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW

o)

RW

o)

RW
RW
RW

RW
RW
RW
RW
RW
RW
RW
RW

RW

RW
RW

- 230 -

Server
Distributed Mapping
Distributed Pending

E:\Logs-ARS\a001.log

sthvmwin2003
sthvmwin2003

1332947367
1332944611
1348325258
1
ENU;UTF-8
0

0
E:\Logs-ARS\a001.log

O O O O o

STHVMWIN2003

ARAdmin

500000
10000
1

0

0

1024

390601:1 1,;390603:1 1 ;390620:2 12
;390621:5 16 ;390635:2 8 ;390680:2 2 ;

1
sthvmwin2003

Application Pending

User’'s Guide

AP_RPC_SOCKET
AP_LOG_FILE
AP_DEFN_CHECK
MAX_LOG_FILE_SIZE
CLUSTERED_INDEX
ACTLINK_DIR
ACTLINK_SHELL
USER_CACHE_UTILS
EMAIL_TIMEOUT
EXPORT_VERSION
ENCRYPT_AL_SQL
SCC_ENABLED
SCC_PROVIDER_NAME
SCC_TARGET_DIR
SCC_COMMENT_CHECKIN
SCC_COMMENT_CHECKOUT
SCC_INTEGRATION_MODE
EA_RPC_SOCKET
EA_RPC_TIMEOUT
USER_INFO_LISTS
USER_INST_TIMEOUT
DEBUG_GROUPID
APPLICATION_AUDIT
EA_SYNC_TIMEOUT
SERVER_TIME
SVR_SEC_CACHE
LOGFILE_APPEND
MINIMUM_API_VER
MAX_AUDIT_LOG_FILE_SIZE
CANCEL_QUERY
MULT_ASSIGN_GROUPS
ARFORK_LOG_FILE

DSO_PLACEHOLDER_MODE
DSO_POLLING_INTERVAL
DSO_SOURCE_SERVER
DS_POOL
DSO_TIMEOUT_NORMAL
ENC_PUB_KEY
ENC_PUB_KEY_EXP
ENC_DATA_KEY_EXP
ENC_DATA_ENCR_ALG
ENC_SEC_POLICY
ENC_SESS_H_ENTRIES
DSO_TARGET_CONNECTION
PREFERENCE_PRIORITY
ORACLE_QUERY_ON_CLOB
MESSAGE_CAT_SCHEMA
ALERT_SCHEMA
LOCALIZED_SERVER
SVR_EVENT_LIST

Meta-Update

RW
RW
RW
RW
RW
RW
RW
RW
RW

RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW

RW
RW
RW
RW
RW

RW
RW
RW
RW
RW
RW
RW
RW

RW

RW
RW

-231 -

Software Tool House Inc

390680

128
7200
1

300
1348555192
0

0
0
0
1
1
D

\Apps\BMC\ARSystem\ARServer\Db\arfork.|

0g
0

Distributed Pool

86400

2700

509

0

AR System Message Catalog
Alert Events

1
1;

User’'s Guide

Software Tool House Inc

DISABLE_ADMIN_OPERATIONS
DISABLE_ESCALATIONS
ALERT_LOG_FILE
DISABLE_ALERTS
CHECK_ALERT_USERS
ALERT_SEND_TIMEOUT
ALERT_OUTBOUND_PORT
ALERT_SOURCE_AR
ALERT_SOURCE_FB
DSO_USER_PASSWD
DSO_TARGET_PASSWD
APP_SERVICE_PASSWD
MID_TIER_PASSWD
PLUGIN_LOG_FILE
SVR_STATS_REC_MODE
SVR_STATS_REC_INTERVAL
DEFAULT_WEB_PATH
FILTER_API_RPC_TIMEOUT
DISABLED_CLIENT
PLUGIN_PASSWD
PLUGIN_ALIAS

PLUGIN_TARGET_PASSWD
REM_WKFLW_PASSWD
REM_WKFLW_TARGET_PASSWD
EXPORT_SVR_OPS
INIT_FORM
ENC_PUB_KEY_ALG
IP_NAMES
DSO_CACHE_CHK_INTERVAL
DSO_MARK_PENDING_RETRY
DSO_RPCPROG_NUM
DELAY_RECACHE_TIME
DFLT_ALLOW_CURRENCIES
CURRENCY_INTERVAL
ORACLE_CURSOR_SHARE
DB2_DB_ALIAS

DB2_SERVER
DFLT_FUNC_CURRENCIES
EMAIL_IMPORT_FORM
EMAIL_AIX_USE_OLD_EMAIL
TWO_DIGIT_YEAR_CUTOFF

ALLOW_BACKQUOTE_IN_PROCESS

DB_CONNECTION_RETRIES
DB_CHAR_SET
CURR_PART_VALUE_STR
CURR_PART_TYPE_STR
CURR_PART_DATE_STR

Meta-Update

RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW

RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RwW
RW
RW

RW
RwW
RW
RwW
RW
RW

A 0 X0 X

- 232 -

0

0
E:\Logs-ARS\a001.log
0

0

7

0

AR

FB

E:\Logs-ARS\a001.log

0

60
http://sthvmwin2003:8080/arsys
180

ARSYS.ARF.REGISTRY ARSYS.ARF.REGIS
TRY sthvmwin2003:9999;ARSYS.ARDBC.RE
GISTRY ARSYS.ARDBC.REGIST
RY sthvmwin2003:9999;ARSYS.
ARDBC.ARREPORTENGINE
ARSYS. ARDBC.ARREPORTE

At

60

2041

101
utf-16
VALUE
TYPE
DATE

User’'s Guide

6.3

7.0

Meta-Update

HOMEPAGE_FORM
DISABLE_FTS_INDEXER
DISABLE_ARCHIVE
SERVERGROUP_MEMBER
SERVERGROUP_LOG_FILE
FLUSH_LOG_LINES
SERVERGROUP_INTERVAL
JAVA_VM_OPTIONS
PER_THREAD_LOGS
CONFIG_FILE
SSTABLE_CHUNK_SIZE
SG_EMAIL_STATE
SG_FLASHBOARDS_STATE
SERVERGROUP_NAME
SG_ADMIN_SERVER_NAME
LOCKED_WKFLW_LOG_MODE
ROLE_CHANGE
SG_ADMIN_SERVER_PORT
PLUGIN_LOOPBACK _RPC
CACHE_MODE
DB_FREESPACE
GENERAL_AUTH_ERR
AUTH_CHAINING_MODE
RPC_NON_BLOCKING_IO
SYS_LOGGING_OPTIONS
EXT_AUTH_CAPABILITIES
DSO_ERROR_RETRY
PREF_SERVER_OPTION
FTINDEXER_LOG_FILE
EXCEPTION_OPTION
ERROR_EXCEPTION_LIST
DSO_MAX_QUERY_SIZE
ADMIN_OP_TRACKING
ADMIN_OP_PROGRESS
PLUGIN_DEFAULT_TIMEOUT
EA_IGNORE_EXCESS_GROUPS
EA_GROUP_MAPPING
PLUGIN_LOG_LEVEL
FT_THRESHOLD_LOW
FT_THRESHOLD_HIGH
NOTIFY_WEB_PATH
DISABLE_NON_UNICODE_CLIENTS
FT_COLLECTION_DIR

FT_CONFIGURATION_DIR
FT_TEMP_DIR
FT_REINDEX
FT_DISABLE_SEARCH
FT_CASE_SENSITIVITY
FT_SEARCH_MATCH_OP

RW
RW
RW
RW
RW
RW
RW
RW
RW

RW

RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW

RW
RW
RW
RW
RW
RW
RW
RwW
RW

RW
RW
RW
RW

RW

- 233 -

Software Tool House Inc

AR System Customizable Home Page
0

0

0

E:\Logs-ARS\a001.log

1

60

0
D:\Apps\BMC\ARSystem\confiar.cfg
1000

0

0

0
1295305780

390626
0
6171296
1

o O O o

1
E:\Logs-ARS\a001.log
0

600

100
200
1000000

0
D:\Apps\BMC\ARSystem\ftsconfiguration\colle
ction
D:\Apps\BMC\ARSystem\ftsconfiguration\conf

S~ -~ O O

User’'s Guide

Software Tool House Inc

7.5

FT_STOP_WORDS

FT_RECOVERY_INTERVAL
FT_OPTIMIZE_THRESHOLD
MAX_PASSWORD_ATTEMPTS
GUESTS_RESTRICT_READ
ORACLE_CLOB_STORE_INROW
NEXT_ID_BLOCK_SIZE
NEXT_ID_COMMIT
RPC_CLIENT_XDR_LIMIT
CACHE_DISP_PROP
USE_CON_NAME_IN_STATS
DB_MAX_ATTACH_SIZE
DB_MAX_TEXT_SIZE
GUID_PREFIX
MULTIPLE_ARSYSTEM_SERVERS
ORACLE_BULK_FETCH_COUNT
MINIMUM_CMDB_API_VER
PLUGIN_PORT

PLUGIN_LIST

PLUGIN_PATH_LIST

SHARED_LIB
SHARED_LIB_PATH
CMDB_INSTALL_DIR
RE_LOG_DIR
LOG_TO_FORM
SQL_LOG_FORM
API_LOG_FORM
ESCL_LOG_FORM
FILTER_LOG_FORM
USER_LOG_FORM
ALERT_LOG_FORM
SVRGRP_LOG_FORM
FTINDX_LOG_FORM
THREAD_LOG_FORM

Meta-Update

RW

RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW

RW

RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW

- 234 -

a;about;above;across;after;again;against;all;al
most;alone;along;already;also;although;alway
s;among;an;and;another;any;anybody;anyone
;anything;anywhere;are;area;area
s;around;as;ask;asked;at;away; { \
biback;be;became;becausesbeco 4 N £
me;been;before;began;behind;bei
60
1000
0
0

i

100

0

0

3

0

0
2147483647

1
50
3

ardbcconf.dll; reportplugin.dll; ServerAdmin.dl
; FlashboardObject.dll; "D:\Apps\BMC\ARSyst
em\arealdap\arealdap.dil"; "D:\Apps\BMC\AR
System\ardbcldap\ardbcldap.dil"; "D:\Apps\BM
C\ARSystem\approval\bin\arapprove.dll"; "D:\
Apps\BMC\BMC Service Level p
Management\bin\omfbjiefilapidil" \
; "D:\Apps\BMC\BMC ServiceLev 4§
elManagement\bin\arfslasetup.dil"
D:\Apps\BMC\ARSystem;
D:\Apps\BMC\ARSystem\pluginsvr;
D:\Apps\BMC\ARSystem\arealdap;
D:\Apps\BMC\ARSystem\ardbcldap;
D:\Apps\BMC\AtriumCore\cmdb\server64\bin;
D:\Apps\BMC\BMC Service Level
Management\bin

cmdbsvr7604_win64.dll
D:\Apps\BMC\AtriumCore\cmdb\server64\bin
D:\Apps\BMC\AtriumCore\cmdb
D:\Apps\BMC\AtriumCore\Logs

0

AR System Log: SQL

AR System Log: API

AR System Log: Escalation

AR System Log: Filter

AR System Log: User

AR System Log: Alert

AR System Log: Server Group

AR System Log: FullText Index

AR System Log: Thread

-t

User’'s Guide

Meta-Update

FIPS_SERVER_MODE
FIPS_CLIENT_MODE
FIPS_STATUS

ENC_LEVEL
ENC_ALGORITHM
FIPS_MODE_INDEX
FIPS_DUAL_MODE_INDEX
ENC_LEVEL_INDEX
DSO_MAIN_POLL_INTERVAL
RECORD_OBJECT_RELS
LICENSE_USAGE
COMMON_LOG_FORM
LOG_FORM_SELECTED
MAX_CLIENT_MANAGED_TRANSAC
TIONS
CLIENT_MANAGED_TRANSACTION_
TIMEOUT
OBJ_RESERVATION_MODE
NEW_ENC_PUB_KEY_EXP
NEW_ENC_DATA_KEY_EXP
NEW_ENC_DATA_ALG
NEW_ENC_SEC_POLICY
NEW_FIPS_SERVER_MODE
NEW_ENC_LEVEL
NEW_ENC_ALGORITHM
NEW_FIPS_MODE_INDEX
NEW_ENC_LEVEL_INDEX
NEW_ENC_PUB_KEY
CUR_ENC_PUB_KEY
NEW_ENC_PUB_KEY_INDEX
CURRENT_ENC_SEC_POLICY
ENC_LIBRARY_LEVEL
NEW_FIPS_ALG

FIPS_ALG

FIPS_PUB_KEY
WFD_QUEUES
VERCNTL_OBJ_MOD_LOG_MODE
MAX_RECURSION_LEVEL
FT_SERVER_NAME
FT_SERVER_PORT
VERCNTL_OBJ_MOD_LOG_SAVE_D
EF

SG_AIE_STATE
MAX_VENDOR_TEMP_TABLES
DSO_LOG_LEVEL
DS_PENDING_ERR
REGISTRY_LOCATION
REGISTRY_USER
REGISTRY_PASSWORD
DSO_LOG_ERR_FORM
ARSIGNALD_LOG_FILE
FIRE_ESCALATIONS

RW
RW
RW
RW
RW
RW
RW
RW

RW
RW
RW
RW
RW

RW

- 235 -

Software Tool House Inc

Disabled
Disabled
Disabled
Standard
Disabled
0
0
-1

0
0
AR System Log: ALL
0
0

60

0

86400
2700

0

2

Invalid Option
Disabled
Disabled
0

-1
Disabled
Disabled
0
Disabled

1

0
AES-128
RSA-1024

0
25

0

0
1
0
Distributed Pending Errors

0
E:\Logs-ARS\a001.log

User’'s Guide

STH

Software Tool House Inc

7.6

7.6.04

PRELOAD_NUM_THREADS
PRELOAD_NUM_SCHEMA_SEGS
PRELOAD_THREAD_INIT_ONLY
CREATE_WKFLW_PLACEHOLDER
MFS_TITLE_FIELD_WEIGHT
MFS_ENVIRONMENT_FIELD_WEIGH
T
MFS_KEYWORDS_FIELD_WEIGHT
COPY_CACHE_LOGGING
DSO_SUPPRESS_NO_SUCH_ENTRY
_FOR_DELETE
USE_FTS_IN_WORKFLOW
MAX_ATTACH_SIZE
DISABLE_ARSIGNALS
FT_SEARCH_THRESHOLD
REQ_FIELD_IDENTIFIER
REQ_FIELD_IDENTIFIER_LOCATION
FT_SIGNAL_DELAY
ATRIUM_SSO_AUTHENTICATION
OVERLAY_MODE
FT_FORM_REINDEX
DS_LOGICAL_MAPPING
DB_CONNECTION_TIMEOUT
ATRIUMSSO_LOCATION
ATRIUMSSO_USER
ATRIUMSSO_PASSWORD
SUPPRESS_DOMAIN_IN_URL
RESTART_PLUGIN
USE_PROMPT_BAR_FOR
ATRIUMSSO_KEYSTORE_PATH

ATRIUMSSO_KEYSTORE_PASSWOR
D

RW
RW
RW
RW
RW
RW

RW
RW
RW

RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW

==

RW
RW

20
300

- A Ao

o

0000

* A OO —

Distributed Logical Mapping
30

CTL — Schema Tag

Any Remedy form queried, loaded, or updated by a script causes a new tag to be created.

This Tag holds information about the form.

The Tag created includes the read server tag if the load or query was from a read server and
the schema name itself (including spaces and special characters).

Meta-Update

Regular, Join,
View, Dialog,
Vendor

ARS Schema Type

bool TypeSchema is Join 0
string Join schema 1
string Join schema 2

un

- 236 -

User's Guide

Meta-Update

Software Tool House Inc

bool
string
string
bool
string

string

bool

integer

string

integer

integer

bool
string

string
bool
bool

TypeSchema is View

the database view name

the database key field (request id)
TypeSchema is Vendor

Vendor name identifies the plugin
supplying the table

Vendor Table is selected when
defining the table to ARS

Set true unless the schema has
defined max length of the request

id field '1' as 1 implying no zero fill.

Length of the request id field ('1"),
almost always 15 even in those
cases where ARS indicates a
maximum length of 1 (indicating a
maximum length of 15 and no
zero fill).

The initial value of the request id
field. Acts as a prefix to a zero
filled integer.

Length of the request id field's
initial value or prefix

Number of Status (field 7) values.

A zero indicates that this form has
no Status and Status
History.fields.

Archiving enabled

One of None, Form, Delete,
Formé&Delete
The Archive Form Name

The “No Attachments” option
The “No Diary Fields” option

0

n
nn
n

n

15

None

“y

- 237 -

User's Guide

STH

Software Tool House Inc

Licensing

Meta-Update -238 - User’s Guide

STH

Software Tool House Inc

Meta-Update -239 - User’s Guide

STH

Software Tool House Inc

Licensing

Meta-Update - 240 - User’s Guide

STH

Software Tool House Inc

How It Works

Meta-Update is licensed on a server by server basis.

Licenses are dated and may be indefinite or limited term. Evaluation licenses and migration
project licenses are examples of limited term licenses.

Once a Meta-Update license is granted for an ARS Server, Meta-Update scripts can be run
against that ARS Server at any time or on any server or workstation.

License keys may be requested from the Software Tool House’s web site at
http://www.softwaretoolhouse.com.

When requesting license keys, the ARS Server Name must be supplied. This ARS Server
Alias Name is matched against the supplied license key.

This name is specified in the ARS Server’s server configuration file, ar.conf, or, ar.cfgq.
It is given by the Server-Name value.

On ARS Systems from release 7.0 onward, this setting is available under the user tool when
signed on with a User having the Administrator group permission.

From the standard “Home” form, click the “AR System Administration Console” link. From the
Administration Console, expand the “System” and “General” branches of the menu, then click
the “Server Information” item. Once, the “Server Information” form comes up, click the
“Platform” tab.

5 BMC Remedy User - [AIR Syxtem Administration: Sarves Informatinn (Medify)] I
Sl LR few Jook Amors Wrdm e - 8N

M@ a2l 27| @l B w

Servar Information

Prgory | Troncets | Licansst | Corbguastion | LogFies | Ostsoam | Ports and Qumimt | gvanced | Soure Contnl | Sermw Fvants | Cornmchon Settngs | Cunwcy Typee] £4

Serse Verson TOm 00Tt
Setee Dhschony . D Voo Nanenve Do)
Hydwye et ety

Doxsrg Sywen . Windom NT 52

Serem Nore Sl ‘;'

Seress Tive B3

o Acek/ Clow

b e by Marber | of i thwl

If an ARS Server is unnamed, the short host name is used as the server name.

Meta-Update -241 - User’s Guide

http://www.softwaretoolhouse.com/

STH

Software Tool House Inc

Meta-Update may also be licensed on an enterprise-wide basis by matching the ARS Server’s
domain name. With an Enterprise license, Meta-Update may be run against any ARS server
whose host name matches the licensed domain name.

For enterprise licensing, the ARS server’s reported full host name is checked against the IP
stack and the licensed domain name is matched against the true host domain name.

Stand-alone machines that do not return a domain name cannot be licensed through the site
licensing facility.

All licenses carry a term date, support options, the highest release that may be freely
upgraded to.

The licensed releases of Meta-Update will run against a licensed server until the term date is
reached.

Meta-Update evaluation licenses do not limit Meta-Update in any way. Full functionality is
provided in an evaluation license for the term.

Meta-Update -242 - User’s Guide

STH

Software Tool House Inc
Specifying the License Key

The license key can be given to Meta-Update in the following ways:
> |n the environment variable, SthMupdLic=
> Inthe script file's [Main] License= keyword.
This can be a reference to an environment variable,
> |n a control record on a form on the ARS server

Specifying the License Key with Environment Variables:

On Windows, environment variables may be set on a single DOS session, for a specific user’s
complete Windows sessions, or for all users’ Windows system environment.

To set a single DOS box’s environment, open a Command Prompt, then, use the set
command to assign the License Key to the expected environment variables. For example,

set SthMupdLic=QF143G6-PL95SQ
If you do have a site license, there are two more environment variable you may want to set:

SthSite = Site name
SthDomain Site licence domain suffix

For site licensing, all three environment variables must be defined. For server licensing only
the first variable must be defined.

Specifying the License Key in the Script

The Meta-Update License may be specified in the [Main] section of a script file as an
alternative to using environment variables or using a form on the server. To specify the
license key in the [Main] section, code the License= keyword with the license key as the
value.

For site license, you may also code the Domain= and site= values.

License = This is the password for either a server or a site license. It must be specified
exactly as was specified when the license was requested. If a site license is
being specified, both the Site= and Domain= are be required.

Site = This is the Site Name the of a site license. It must be specified exactly as
was specified when the site license was requested.

Domain = This is the Domain suffix for a site license. It must be specified exactly as
was specified when the site license was requested.

The following script file addition would accomplish the same thing as the environment variable
example above:

[Main]

License = QF143G6-PL95SQ

Specifying the License Key in an ARS form with the User Tool

Meta-Update - 243 - User’s Guide

STH

Software Tool House Inc

All Software Tool House tools can reference a special form on the target server for both
licensing and operational parameters.

This form needs to be installed using the ARS Remedy Administrator Tool. Simply import all
definitions included in the SoftwareToolHouse.def file which comes in the Meta-Update
distribution. See below for more information about installing this form.

To add the license key, bring up the SoftwareToolHouse form in the ARS Remedy User Tool.
Note that the ARS user must have Administrator privileges to see this form.

If you are replacing a key, search first using “Meta-Update” as the Application and “License”
as the keyword. Then modify the Value field to reflect the new license key.

If you are creating a new record, select “Meta-Update” as the Application. Leave the Section
field null. Specify “License” for the Keyword and then type in the license key.

For the above example, the form would look like this:

i i e O
_/\fw. Software Tool House Ine
oL S Licunsw
APpl st | Mesi e v
Swomn
T eywond -
Vb Frax 550

Meta-Update - 244 - User’s Guide

STH

Software Tool House Inc

Installing the def File

The License key and other server wide settings for Software Tool House Inc. Applications can
be specified in a form called SoftwareToolHouse.

An ARS Remedy Administrator Definition file (SoftwareToolHouse.def£) is included in the
Meta-Update distribution. You may also download the .def from the web. See
http://www.softwaretoolhouse.com/products/ShtMupd/licensing.htm

By running the Remedy ARS Admin tool, you can import this SoftwareToolHouse.def file
into your ARS server.

Import Definitions @
Ay siables Obycis Dityects 0 Impaot

9 Fams [= 9 Fome -
U FamDas B SotwanTookiouse
B Actve Links J i Fom Data

Fes — & Actee Links
£33 Excalobors :] | = 4 Flen
C Actwe Link Guades | 4 STH.SubmiterGet
& Fltes Guades | G Excalasors
& Appicaioos Qf Active Link Guades
5 Packing Usts & Fe Guades

Manus a Appicaors

Datrbuped Maggrgs | BB Packing Liats

Datsbured Pocls | Manus

‘Web Seraces m" STHAzp
ki Pasrbowcs Distrbued Mapoege
LX Pasnbosds Varabies ‘ Dintrbued Pocls
£ Pashboards Alarms €< 51"'”' J Wab Services

— U Fasboad:
<<< Ragrove AY | B Fasbosds Vaoabie <
P Phe st AY
v Feglaca Obpcts on e Dasinaton Served
[Delete Excess Fiskds bom Destnation Server
[Delete Excess View: from Destinaton Setver
Handes Condoting Types { Dinplay Confict Ence B
T

You can control access to Meta-Update by controlling access to the SoftwareToolHouse form.

This form has the following structure:

Application Text 32
Section Text 32
Keyword Text 32
Value Text 255

Application, Section, and Keyword must be unique. The field Ids are not important.

The License key consists of an uppercase alphanumeric string with hyphens. It is stored in a
record of the SoftwareToolHouse for, where

Application is “Meta-Update”.

Section is SNULLS

Keyword is License

Value is the license key supplied to you

Meta-Update - 245 - User’s Guide

http://www.softwaretoolhouse.com/products/ShtMupd/licensing.htm

STH

Software Tool House Inc

Meta-Update - 246 - User’s Guide

STH

Software Tool House Inc

ARS User Password Encryption

Meta-Update - 247 - User’s Guide

STH

Software Tool House Inc

Meta-Update - 248 - User’s Guide

Software Tool House Inc

ARS Authentication Password
Encryption

ARS user Passwords can be encrypted using a utility. Once encrypted, only the same OS
user that encrypted the password can use that password.

The sthLic.cemd and SthLic. sh scripts that set environment variables for a licensed

server and authentication can be automatically generated on all supported platforms — see
below.

These files will allow the setting of environment variables by specifying the desired server, so
that for example, a query can be run against one server and then run against another server.

All utilities bundled with Meta-Update will accept either plain text or encrypted passwords in
all the methods that ARS Passwords may be set: on the command line, in scripts, or, in
environment variables.

If using ARS password encryption, the supplied passwords must be encrypted for each
Windows or Unix user that will use Meta-Update. The encryption / decryption is dependent
on the currently signed on user.

A new version of the files SthLic.emd and SthLic. sh must be generated for each
Windows or Unix user even if the ARS User is the same.

This means that when using ARS Password Encryption, the files, SthLic.emd and
SthLic. sh cannot be copied from machine to machine, and, if a single machine is used by
more than one user, different SthLic.cmd and SthLic. sh files will need to be used by
each user.

Meta-Update - 249 - User’s Guide

STH

Software Tool House Inc

SthLicUpd Maintenance Utility

This utility can be used to encrypt ARS passwords and to generate an sthLic.cmd and
SthLic. sh scripts based on license files found in a specified file.

The utility is available on all supported platforms and may be run in prompt mode where it will
ask you for all needed information.

Alternate names, ARS Server IPs, Ports, Users, and Passwords can be set. ARS Passwords
by, default, are encrypted.

The sthLicUpd.exe utility will generate only one of the sthLic.cmd and sthLic.sh files as
appropriate for the system that it is being run on.

Files produced by SthLicUpd containing encrypted passwords are not transferrable across
platforms or users. You have the choice to encrypt the ARS User’s password.

Usage

Function:
SthLicUpd is used to modify a Meta-Update SthLic.sh

Modes:
SthLicUpd can be run in different modes
Prompt will scan license files, prompt for needed info
and generate a new SthLic.sh.
Pwd will encrypt a single ARS user's password or modify
your SthLic.cmd file's passwords.
Synopsis:
SthLicUpd.exe mode [switches]
where:
mode is one of: Prompt or Pwd
Prompt Run in interactive mode to scan licenses
can supply -lics and -out arguments
Pwd Will encrypt ARS users’ passwords
switches are as follows:
-licpath path The path for the license files;
must be a directory
-out file The output path and file name

Default for -out is SthMupd.sh in the bin directory
that contains SthLicUpd.exe; that bin directory is also
the default for finding license files.
Miscellaneous switches
-d Specifies full tracing

See: http://www.softwaretoolhouse.com for the Meta-Update User's Guide.

Prompt mode will find all available *.lic files in a single directory and ask for any needed
information. It will then generate a new SthLic.cmd or SthLic. sh file.

These files will set the environment variable for ARS server connectivity and authentication
which all Meta-Update utilities will automatically pick up.

Meta-Update - 250 - User’s Guide

Software Tool House Inc

Password mode will simply allow you to encrypt any number of ARS User passwords. You
can then use these encrypted password strings in any of the Meta-Update utilities to
authenticate to the ARS server.

Sample Prompt Session:

SthLicUpd.exe Prompt

SthLicUpd Uersion 1.00
(c)> Copyright 1996-2012 by Software Tool House Inc.
wuwu.sof tvaretoolhouse.com
..got 1 license files

..for server 1 - cent
Please enter a short name such as dev or prod or nothing to continue [1 > linux
Enter another short name for the server or nothing when done [1 > 764
Enter another short name for the server or nothing when done [1 >
Enter the connection addre for the server [cent] > cent_tst_674.softwaretoolhouse.com
Enter the connection addre or the Admin server if different [cent] > cent_tst_674.softwaretoolhouse.com
Enter an RPC port or B if using port mapper [B] >
Enter the ARS user id > Demo
Enter the password fo RS user Demo; use ’—’ for none >
Would you like the password encryped? [¥1 >

Sample Password Session:

¥ Administrator: C:AWi

SthLicUpd.exe Pwd

SthLicUpd Uersion 1.00
{c> Copyright 1996-2012 by Software Tool House Inc.
wuwuw.sof tuaretoolhouse.com

Enter the password you’d like encrypted. Use ’—’ for none. =
Enc : JSFUMUE-6GDPG4-BEUT4GC-MUCP?M
Would you like to end this session [¥]1 =>

Using the generated SthLic.cmd or SthLic. sh files

On Unix the generated file must be set to be executable. To do so, enter the following
command:

> chmod +x ./SthlLic.sh

The shell script needs to be “Sourced” or any changes made to environment variables will be
lost upon its completion.

Meta-Update -251- User’s Guide

Software Tool House Inc
When executing the shell script, source it by prefixing the command invocation with a dot, as
follows:

> . ./SthLic.sh

On Windows, simply execute the batch file normally:

> .\SthLic.cmd

¥ Administrator: C:AWi:

SthlLic.cmd --help

- Function
Sets license and authentication environment variables for
Meta—Update,. Meta—Query. Meta—Schema, and Meta—Delete.

: Licenses expire: Wed Jun 85 07:43:52 2613

: Usage

SthLic.cmd svur
: vhere svr is one of cent, linux,. 764.
. Examples.
SthLic.cmd cent

The sthLic -help command will list all licensed servers and alternate names for the servers.

If the command has already been issued, that is, if the appropriate environment variables are
already defined, the command will report the currently set server.

In the above example, a single server is licensed and it has two alternate names given for the
convenience of sthLic users.

Meta-Update -252 - User’s Guide

STH

Software Tool House Inc

Samples

Meta-Update - 253 - User’s Guide

STH

Software Tool House Inc

Meta-Update - 254 - User’s Guide

STH

Software Tool House Inc

Samples

The following examples can be used as learning vehicles and are included in the distribution
package. The distribution may be downloaded from the web.

AR Schema Report

This simple script creates a CSV listing the tables in an ARS server and the number of
records they contain. It queries the arschema
table, does a select count(*) for normal tables,

Development time: and generates a CSV.

fifteen minutes!

This is a good beginners’ script. It shows how to

code a script so that server information is

referenced and the script can be used in many
22 lines! ARS server environments without changes.

In addition this demonstrates a SQL Query
iteration using QuerySql= as well as a
QuerySqgl= used inside a LookUp section.

AR Info Report
This simple script creates a CSV listing the predefined server information tag, AR_INFO.
It is useful for gathering the server information
_ required for a BMC ticket. The script simply
Development time: loops through the predefined AR_INFO and
fifteen minutes! outputs a CSV file.

This is a good beginners’ script. It shows how to
code a script so that server information is
referenced and the script can be used in many

22 lines! ARS server environments without changes.
Ticket Creation Batch Command A simple script that creates a ticket accepting
different command line parameters.
Development time: This script demonstrates the simple creation of a
one hour! record based on command line arguments. It

introduces the common elements of a Meta-
Update script.

Closed Ticket Duplicator A mail robot must not reopen a ticket, nor attach
an email to a closed ticket.

Real Customer
Problem This ticket replicator creates a new ticket, with
the salient data from the old ticket, assigning it to
the last group that closed the old ticket,
replicating all emails and other associated
Development time: records, and finally linking the two tickets

three hours! together for the GUI button.

This script demonstrates launching other
sections so that multiple tables are processed.

Meta-Update - 255 - User’s Guide

STH

Software Tool House Inc

Server data extract

Real Customer
Problem

Development time:

three hours!

Server delta copy

Development time:

one hour!

Meta-Update

A single customer has many locations, people,
services, etc. This script is used to copy a single
customer’s data from production to development
for a single developer replacing any customer
contact information with the developer’'s
information.

This was used in a large development team of a
bespoke telecoms client to facilitate development
and testing.

A simple script copying all changed records from
one server to another — say a read only,
reporting server..

Demonstrates using Read Servers, QuerySq|,
Merge, Query, Update, the Copy assignment
command.

- 256 - User’'s Guide

STH

Software Tool House Inc

Meta-Update - 257 - User’s Guide

STH

Software Tool House Inc
AR Schema Report

This simple script outputs a CSV containing the tables defined an ARS server and well as the
number of records they have (for regular and join tables) by querying and processing the
arschema table.

The script demonstrates:
> How to use environment variables to specify the server
> How to process a QuerySql=
2 How to use Output= to create a CSV
> How to code a LookUp returning an SQL function

The script’s real function is to demonstrate how you can code the ARS server connectivity
arguments so that they are coded as environment variables. This way, if you want to use the
same script across several environments, you need only change a few environment variables

Requirements

We don'’t need to do much in the script itself as we want it to demonstrate how to code the
ARS server connectivity and authentication arguments referencing environment variable so
that we can run this script easily across multiple ARS Server environments. So, to add a bit
of useful function, we’ll list the regular tables from arschema along with the current number of
records they hold.

Setting Up The Environment

In Windows, the environment variables may be set on a single DOS session, for a specific
user’s complete Windows sessions, or for all users’ Windows system environment.

To set a single DOS box’s environment, open a Command Prompt.
Then, use the set command to assign the expected environment variables. For example,

set ArsSvr=192.168.1.10

set ArsPort=0

set ArsUsr=Demo

set ArsPwd=-

set SthMupdLic=QF143G6-PL953Q

When you run the script, the script will connect to the ARS server as specified by the above
environment variables and validate the above license with that ARS server.

[Main]
Server $ ENV, ArsSvr $
User = $ ENV, ArsUsr §$
Password = $ ENV, ArsPwd $
Port $ ENV, ArsPort $
Script Output
Msg: Schema: object search admin Id: 1173 Recs: 1
Msg: Schema: object search details Id: 1174 Recs: 80710
Msg: Schema: object search ref Id: 1175 Recs: 808783

Meta-Update - 258 - User’s Guide

STH

Software Tool House Inc

Meta-Update solution Development time:

fifteen minutes!

#

File: Rpt-RegTablesRecCounts.ini

#

Function: Test connecting to a server through environment vars.
ArsSvr server

ArsPort port (set to "O" for no server)
ArsUsr user

ArsPwd password (set to "-" for no server)
SthMupdLic must be set for the above server

#

Change History see bottom of file.

Main]

[
[Main] gives the connectivity arguments for the primary,

update ARS Server.

In this case, we code the connectivity info using references
of environment variables. When these variables are not

defined, connectivity errors result.

Use -v on the Meta-Update command to see

values used for the ARS Connection. Set the Server and both
#

connectivity and
authentication parameter
as references to

Server = $ ENV, ArsSvr $
User $ ENV, ArsUsr §$

Password = $ ENV, ArsPwd $. .

Port — $ ENV, ArsPort $ environment variables.
License picked up from SthMupdLic= environment

variable. This script coded License= value is over-ridden

by the environment variable. Command line arguments trump

environment variables as well. Single record operations
License = xxx such as Get, Update, Cre
Extra, optional vars

TimeoutShort = 40 Multi-record operations §

TimeoutNormal = 60 4—/ as Query and QuerySql.
TimeoutLong 200 4——_______________________
)

Client type (can be used by workflow
ClientType =

Admin operations. Notu
0 by Meta-Update.

4’ ‘ Script entry point. Issue

[Do] QuerySql for all regular
forms in arschema

This is the entry point and simply issues a

QuerySgl= on arschema looking for regular (data holding) tables

[

ate.

uch

sed

QuerySqgl = ArSch, &
@na, &
select name, schemaid from arschema &
where schematype = 1

AssignPre = asg-Msg

Meta-Update - 259 - User’s Guide

STH

Software Tool House Inc

#asg Msql <« All work (issuing a message)
Available Tags: is done in this non-targeted
ArSch An SQL record with two columns: assignment section. Therje
Name (1) and SchemaId (2) is no output.
The function of this “Pre” assignment section is to issue the
warning message by way of the @Cmd = Msg assignment command.
Prior to doing that, we need to issue an SQL query to get the
number of records in the form.
This LookUp assignment is passed the ARS Table Schema ID and
uses a select count(*) query on the “T” table. . i
@Cmd = Ref, V, Count, & This Assignment
@LookUp, & Command sets a script
LkUp-Count, & variable - $V, Count$ - tothe
$Arsch, 2§ single SQL row column:
select count (¥)
from Txxx
This is the real output of the script: This Assignment
a message to the console Command issues a
@Cmd = Msg, W, Schema: S$ArSch, 1$ \t\t\t &
Id: SArsch, 25 \t\t\t ., Messageto the consﬂole. It)
Recs: $V, Count$ uses the ArSch SQL“recprd
and the “V” -record - $V,
Count$ of script variables.
This LookUp Section
[LkUp-Count] returns a single string: the
value of the single SQL
column from the single SQL
row:
select count (%)
from Txxx
We are passed the arschema schema id and
simply do a select count(*) on that schema id’s “T” table
#
QuerySqgl = ArSchCnt, &
@na, &
select count (*) from TSCTL, LookUp Src$
QuerySqlTarget = $ArSchCnt, 1$ a
Meta-Update - 260 - User’s Guide

AR Server Info Report

STH

Software Tool House Inc

This simple script outputs a CSV containing the fields and values of the predefined AR_INFO
Tag. This Tag is automatically defined for every Meta-Update script and is the ARS Server
Information.

The script demonstrates:
> How to use environment variables to specify the server

> How to process a fields Loop=

2 How to use Output= to create a CSV

Requirements

There are no requirements for this script and no server performance ramifications.

Setting Up The Environment

This script uses the default environment variables for connectivity as set by SthLic.cmd or
Sthlic. sh.

Script Output

|

File Home

(= =

Insert Page Layout

e Ferocoft Exce

Formulas

Data Review View Team < 9 = @:E‘

H23

v

K

B
2
3
4
>
6
7
8
9

: Name

'DB_TYPE
|SERVER_LICENSE
\FIXED_LICENSE
VERSION
ALLOW_GUESTS
USE_ETC_PASSWD
' XREF_PASSWORDS
'DEBUG_MODE
'DB_NAME
|HARDWARE

oS

SERVER_DIR

' DBHOME_DIR

5 SET_PROC_TIME

4 <> M| AR INFO /73

[EMAIL_FROM
'SQL_LOG_FILE

A

-Value
SQL -- SQL Server
Server

18

7.6.04 Build 002 201101141059

1
0
0

1179711

ARSystem

x86_64

Windows Server 2003
D:\Apps\BMC\ARSystem\ARServer\Db\

5

ARSystem
E:\Logs-ARS\a001.log

T4 il

Ready |

Meta-Update

- 261 -

|[E@ M 100% (=)

User's Guide

STH

Software Tool House Inc

Meta-Update solution Development time:
fifteen minutes!

e
Meta-Update is copyright (c) 1996-2012 by Software Tool House Inc.
www.softwaretoolhouse.com

#
This is a Meta-Update script that simply writes the automatic
AR INFO values to the screen.
#
It simply loops through the fields of the automatic Tag, AR INFO,
and outputs a CSV row for each to the passed CSV file.
#
__
[Main]
This [Main] section gives script arguments and server info.
. .
ArgNm = outf < A sm_gle argument is
required: the name of theg
PrmReq = 1, . Function: output file.
PrmReq = . This is a Meta-Update script that simply writes AR INFO
PrmReg = . values from the Server to a CSV file in the form
PrmReg = . Name Value
PrmReq = . DB TYPE SQL -- SQL Server
PrmReq = . VERSION 7.6.04 Build 002 201101141059
PrmRegq = .
PrmReq = . Usage
PrmReq = . SthMupd $CTL, ScriptFx$ Do -p out-file
PrmReq = . where out-file is the output file CSV
PrmRegq =
Do]

[
This is the "main entry point" of the script.

It iterates through all the "fields" of the AR INFO tag

- an automatically defined tag containing all Server info -
and for each, ouputs a CSV row in the specified file.

Loop = Fields, S, AR_INFO <4—— The Loop=iterates through
output = F, Fle, SArg, outfs all the fields of AR_INFO
Assign = Do-asg -

assigning a set of attributes
such as FieldName and

[Do-asqg]

FEach field value pair is output Value to the Tag, “s”
into a single CSV record

Name = S, FieldName

Value = S, Value

[Fle]

This defines the CSV file with two fields
#Type = Delimited, ",", FldHdr

Fields = Fle-Flds

Format = Csv

[Fle-Flds]

Name =S

Value =3

Meta-Update - 262 - User’s Guide

STH

Software Tool House Inc

4 ’ Script entry point.

A

Output= uses the argument

to create a CSV file and the

assignments simply use the
Loop= Tag, “s”.

Meta-Update - 263 - User’s Guide

Software Tool House Inc

Ticket Creation Batch Command

This is an invented script built as an example to help learn Meta-Update. The script is
untested and it must be noted that the script will need editing before being run in any reader’s
environment.

Requirements

We need a simple, easy to use, parameterized, ticket generator for our ARS Help Desk. We
want to be able to create new tickets so that we can, if desired, force an assignment to a
specific group.

We want to use this callable command in various ways:
» Remedy ARS workflow and escalations,
» Scheduled jobs through “at” or “cron”,
» Configured commands in other their network monitors
» Added as a last step of some of their bespoke software

The command would depend on the arguments given. Defaults would be assumed for all null
arguments.

* Requester Email or Requester login
If it contained an “@” it would be looked up in a people form as an email. Otherwise it
would be looked up as a login name.

« Subject The subject of the ticket.
«»+ Description

The full textual description.
« Category If not supplied, use “Default”
< Type
< ltem
« Assignment Group Only assign if supplied.

Meta-Update - 264 - User’s Guide

Meta-Update solution

STH

Software Tool House Inc

Development time: one
hour!

[Main]

Server = Sth2

User = Demo ‘/’/,,/—”’/’/’}/”
ArgNm = Subject

ArgNm = RegSearch

ArgNm = Description

ArgNm = Category

ArgNm Type

ArgNm = Item

ArgNm = AsgGrp

PrmReq =
[TT-New] 4
#Simply create a Ticket every time.

Schema HPD:HelpDesk
Assign = Asg-New-TT

[Asg-New-TT] 4—_——_——__—_——_——_——_~—_——_——_~—_

A\ n)

Assignment Group = Qif (“$Arg, AsgGrp$”

Arg, AsgGrp

Names the arguments

Specifies that only 2
arguments are required gnd
usage info when not enotigh
arguments supplied.

Simple command section
that always creates a sing
record in the HelpDesk
schema

e

Simple assignment of
passed argument value

Subject Arg, Subject
Description = Arg, Description
Load the requester record
¢Cmd = C@if(“SArg, RegSearch into memory under the tdg,
LoadQ = Req, Req &
SHR:People, &
‘Login’ = “Defau Requester”)
@Cmd = else
@Cmd = @if (“$SArg, RegSghrch$ ~="@")
LoadQ Req, &
SHR:People, &
‘Email’ = “Default Requester”)
@Cmd = else
LoadQ Req, &
SHR:People, &
‘Login’ = “Default Requester”)
€Cmd = endif Assignment of data from
€Cmd = endif loaded Requester record
Requester Id = Req, 1
Requester Login = Req, LOgl:/— Assign either “Default” or
Category = (@if (“$Arg, Category$ == V7, the supplled Values&
“Default”, &
“$Arg, Category$”) Only make this assignmegnt if
Type = Q@if (“$Arg, Type$ == “~ a value was supplied.
“Default”, &
“S$Arg, Types$”)
Item = @if (“$Arg, Item$ == "7, &
“Default”, &
“S$Arg, Item$”)

The Category, Type, and Item assignments are simply based on the passed arguments on an
individual basis. To make similar assignments on a hierarchical basis, simply use this
segment instead or the three individual Category, Type, Item assignments above:

Meta-Update - 265 -

User’'s Guide

STH

Software Tool House Inc

@Cmd =

Category
@Cmd
Category
@Cmd
Type
@Cmd
Type
@Cmd
Item
@Cmd
Item
@Cmd

@Cmd =
@Cmd =

The PrmReq can

@if (“$Arg,

— W

Category$ ==)
“Default”

else

Arg, Category

@if (“$Arg, Type$ == “7)
“Default”
else

Arg, Type
@if (“$Arg,
“Item”
else
Arg,
endif

Item$ == ")

Item

endif
endif

be used to specify usage information as well as the required number of

arguments. The usage information is delivered when an insufficient number of arguments is

supplied on the command line. Note that passing a null value —

— is still passing a value.

Named arguments not supplied on the command line contain the null value.

This example is equivalent to the above but will supply usage information when used

incorrectly.

PrmReq

PrmReqg =
PrmReq =
PrmReq =
PrmReq =
PrmReq =

address

PrmReq =
PrmReq =
PrmReq =
PrmReq =
PrmReq =

PrmReq

Meta-Update

4,

Usage:
TT-New -p Subj, Desc, Req, Cat, Typ, Item, AsgGrp

where

Subj is required and is the ticket short subject

Desc is required and is the long

Req is either the requester login or email

Default Requester assumed if null

Cat Category (Default if null)

Typ Type (Default if null)

Itm Item (Default if null)

AsgGrp is an assignment group or null

Create a ticket and optionally

- 266 -

assigns it to a group

User's Guide

STH

Software Tool House Inc

Meta-Update - 267 - User’s Guide

STH

Software Tool House Inc
Closed Ticket Replicator

This is taken from a customer solution. It has been modified to be used as a Meta-Update
sample. The script demonstrates how to launch other dependent command sections, how to
make assignments from multiple records, how to use the Copy assignment command.
Background

The customer had a series of Perl scripts to control ticket generation and filing emails with
tickets. This allowed a full email conversation between the ticket agent and ARS system and
the requester.

Sometimes a requester would reply to an email after it was closed. The customer’s business
process stated no further work could be done on a closed ticket.

As such, a mechanism would be needed to create a new ticket from the old ticket selecting
work history records and emails.

Requirements

A Perl callable ticket replicator was needed. It would create a new, open, assigned ticket,
containing the emails, the work history with a few extra generated records identifying the
email to the closed ticket. It would copy pertinent data from the old ticket.

The new ticket would be created assigned to the resolving group of the closed ticket.

The two tickets would be linked for a GUI facility to allow ticket chains to be followed. The
closed ticket would need to be updated with the new ticket’s id.

This image shows the schemas and records of a single ticket.
Source

Trouble Ticket

'y

TT-Id -
- TT-Email
» TT-History

Meta-Update - 268 - User’s Guide

STH

Software Tool House Inc

The dashed lines in this image show the desired updated and created records:

Last Closed
Source
| 1
: Trouble Ticket :-Z TigdClonade)s
S | s o - - -
TT-id
New
] I
» TT-Email ZThtldClosedPreyy Trouble Ticket :
1
----- r i - - -
TR srarssalimlians
.- .. B 1
R T [
L |
»: TT-Email : b
» TT-History i -

Meta-Update - 269 - User’s Guide

STH

Software Tool House Inc

Meta-Update solution

Development time: three
hours!

this section creates a Ticket every tim

[asg-TT-New]

Status = New

zTktIdClosed = Src TT, 1

zTktIdClosedNew = SNULLS

@Cmd = @if ("$Src_TT, Next Actions"

Next Action =

[Main]

Server = Sth2

User = Demo ‘/,,/”////’//’
ArgNm = TtIdClosed

ArgNm = IdLog

PrmReq = 2

[TT-Copy]

Schema = TT-TroubleTicket

LoadQ = Src TT,
TT-TroubleTicket,
‘17 = “$arg, W

Create = New TT,
TT-TroubleTicket

Merge = Yes

Assign = asg-TT-New

Launch = TT-Orig-Upd,

Launch TT-Email

Launch = TT-Hist-1,
TT-Hist-3, TT-H
TT-Hist-5

Launch = TT-New-Upd

"0ld closed ticket actions:\n"

Names two required
arguments.

The closed source TT is
loaded into memory from the
passed Id.

Always creates one&singl
record in the HelpDesk
schema &

[©]

Merge APl is used to inhifit
Submit filters.

The created record fs loaged
into memory after
submission and other
sections are run to copy
dependent records.

| = vvu)

Next Action ="

@Cmd = endif

Next Action = Src TT, Next Action
Ticket Type = Problem

Priority = Medium

Severity =4

Ticket Opened = SDATES

Ticket Closed = SNULLS

Problem Started = SNULLS

Problem Fixed = SNULLS

Escalate when = SNULLS

The next cmd copies all non-assigned fields.

\n"

Assignments for the new| TT
some arbitrary values
(constants) and the

remaining set of fields from
the closed ticket

@Cmd = Copy, Src TT, DupIgnore, CoreAssign, Skip: 1
Meta-Update solution
Meta-Update - 270 -

User’'s Guide

STH

Software Tool House Inc

< The closed source ticketjand
the newly created, open
ticket are in memory befare
these sections are called
[TT-Orig-Upd] This section links the new
Update the original closed TT with the TT on the old one using the
Newly Opened TT ID Merge API.
Query = UpdOrig TT, &
TT-TroubleTicket, &
'1'" = "$Arg, T dClosed$™"
Merge = Yes
Update = UpdOrig TT
Assign = TT-Orig-Upd-1
[TT-Orig-Upd-1]
zTktIdClosedNew = New TT, 1
Action Log = "Email received after closure; New TT created: "
Action Log = New TT, 1 . . .
Action Log T This section copies all thie
source emails to the newlly
created ticket. Thisis a
copy of records in a single
[TT-Email] . form. Merge is used to
schema = TT-Email , prevent notifications.
Query = Src TT-E, TT-Email, &
'Ticket-ID' = "$Src TT, 1$8"
Update = Upd TT-E, TT-Email, &
'Ticket-ID' = "SNew TT, 1$" AND &
'Date Sent' = "$Src TT-E, Date SentsS"
Assign = TT-EmailUpd . .
Update0 = TT-EmailUpd The newly created ticket |d is
Merge = AllowNull, SkipPatternMatch assigned and all remaining
fields from the old email gre
copied.
Ticket-ID = New TT, 1
@Cmd = Copy, Src TT-E, DupIgnore, CoreAssign
Meta-Update -271- User’s Guide

STH

Software Tool House Inc

The Main section

The prmreqg= specifies that three arguments are required. A better one might be:

PrmReq = 3, TT-Closed-Copy.ini copies a closed TT to a new, unassigned TT
PrmReq = .

PrmReq = . wusage

PrmReq = . SthMupd.exe TT-Closed-Copy.ini TT-Copy -p TT-ID-src IdLog
PrmReq = .

PrmReq = . where

PrmReqg = . TT-ID-src Parm 1 the closed ticket's ID that will be copied
PrmReq = . IdLog Parm 2 the file name for the IdLog

PrmReq = .

PrmReg = . function

PrmReqg = . Will create a new TT as a copy of the old one including all its
PrmReq = . previous emails but not its history records for which a few will
PrmReq = . be artificially generated.

PrmReqg = . Will also update the source TT with the newly generated ID plus
PrmReq = . a text reference to the generation...

PrmReq = The source TT must not have already been copied to a new TT.
PrmReq =

TT-Copy, The Called Command Section.
The command section called to copy a ticket is: TT-Copy.

To call the command, either on the command line or within a shell script or batch file, one
could enter:

SthMupd.exe ./TT-Cpy.mus TT-Copy -p TKT000049 TKT000049 /tmp/..
TT-Copy has nNo Query=, QuerySql=, File= S0 it iS executed exactly once.

The Load= keyword loads the closed source ticket. The data of this ticket can be referenced
with ssrc_TT, fields$. This can be used in subsequent queries or assignments.

The create= keyword causes an ARS record to be submitted. This could have been an
Update= keyword which would have allowed different assignments for an update or a create
operation. An ARS query that selects exactly one or zero update records must be specified.

It loads the source ticket record which is always the last ticket closed in a chain of tickets.
That id is passed on the command line as the named argument, TT-Closed.

After the command section creates the new ticket, that new ticket is re-read so that all fields
have the current values, and the launches are processed in order.

Launching Other Command Sections.

Each launch allows a new command section to be processed. That command process has all
the preceding sections’ references available to it. It can query and iterate like any other

section.
Launch = TT-Orig-Upd,
Launch = TT-Email
Launch = TT-Hist-1, TT-Hist-2, &
TT-Hist-3, TT-Hist-4, TT-Hist-5
Launch = TT-New-Upd
Command Section Overview
TT-Copy The called or main section. It executes only once

Meta-Update -272 - User’s Guide

STH

Software Tool House Inc

and creates a new ticket. It then launches, in
order, these other sections.

TT-Orig-Upd Uses a Merge to add the new ticket id reference
to the old ticket.

TT-Email Uses a Query= to copy all emails to the new
ticket.

TT-Hist Uses a Query=to copy all the history records.

TT-Hist-1, 2, ..5 Uses a Create= to create a few new history

records for the TT-Closed-Copy operation.
TT-New-Upd

Meta-Update -273 - User’s Guide

Software Tool House Inc

Server Delta Copy

This script is created as a learning vehicle to demonstrate several Meta-Update statements.
Requirements

A reporting server must be kept in sync with a production server. The sync job is run on a 24
hour delay basis. The updated records are to be transferred based on the last modification
date. Request IDs are to be maintained. The subset of the tables to be kept synchronised is
given by an ascli file. That file also specifies query text that can be appended to the
programmed modification date query.

The following is a sample file

Tbl,TblSql,IdF1ld,ModF1ld, QueryText 1-\))
— Names five file columns.

SHR:People, shr people,request id,modified on |

> The fifth value is null.
HPD:HelpDesk, hpd helpdesk,case id ,modified on 4

SHR:Audit,shr audit, request id, 7 Appended to prerammed
"Schema 1’ = \”HPD:HelpDesk\” 4/ guery, isolates the Help
Desk associated records for
SHR:Association,shr association, request id, arun with this file.
modified on,’Schema 1’ = \”HPD:HelpDesk\”

Interestingly, multiple jobs can be simultaneously to take advantage of the ARS server’s
multi-threading. This could be extended to several machines. Each job would specify
independent sets of dependent tables.

Script Overview

The Main section will define the source server. It will also change the date into a format
suitable for an SQL query.

The called command section will process the passed CSV file. It will not make any outputs
itself, but instead, launch another command section.

That launched section, will in turn issue an SQL Query on the table named in the CSV and a
date with any optional query text appended.

That query section will actually do an SQL query to prevent ARS timeouts as generally the
modified by field is not indexed. It will iterate through that list updating any records it needs
to.

This Script Demonstrates

Processing a CSV with a File=.

Using an assignment section to prepare a query string.

Using an assignment section to convert a date from a normal format to an integer for
an SQL query.

Using a Read Server. In a LoadQ and a QuerySql.

Specifying an Update query.

Using the Copy assignment command.

Using a Launch.

YYYY ¥YYY

Meta-Update -274 - User’s Guide

STH

Software Tool House Inc

Meta-Update script

[Mainl Specifies the script’s tagj ip
Server _ pevol and login for the productjon
User = Demo

ReadServers = Main-Prod server.

R _ inp-csv-fle Names three arguments.
ArgNm = mod-date

AArgNm = idlog .
PrmReq = 3 < All arguments are required.
IdLog = g, idlog$.¥bog

[Main-Prod]
Tag = Prod

[Sjerver = geVOZ‘prOd'COPY Declares the format and field

ser = emo

Port _ 3201 name for the passed CS\
file.

[Fle-Tbl] g

Type = Delimited, “,”,FldHdr The fl!e s flrst.record

Format = Excel contains the field names

Fields = Fle-Tbls-Flds which must match these
fields.

[Fle-Tbl-Flds]

Tbl = S # table name in ARS

Thb1lSgl = S # table name in SQL view

IdFld = S # Y1’ in SQL

ModF1ld S # '8’ in SQL This is the called section| It
QueryText = $ # SQL query text iterates through the file’s

rows.
[SvrSync-Date]

Processes the passed CSV file of tables to synchronise.

File = Ftbls, &
Fle-Tbl, , &
$Arg, inp-csv-fle$” The AssignPre= section ip

AssignPre = asg-Mk-Qry run after the next file record

Launch = Tbl-Sync is loaded but before any

Launches are processed
[asg-Mk-Qry]
will append an “and” and any extra query text
supplied in the CSV row This makes an “and ..” s
@Cmd = Ref, Vars, Qry if the CSV had an option
$Ftbls, ModFld$ > $Arg, mod-date$ QueryText value.
@Cmd = Qif (“S$Ftbls, QueryText$” != W)
Ref, Vars, Qry $Vars, Qry$ AND (S$Ftbls, QueryText$)

Meta-Update - 275 - User’s Guide

STH

Software Tool House Inc

This section has the CSV
[Tbl-Sync] row loaded and does thejrest
Issues an SQL query to obtain the modified of the work by issuing the
record IDs, Loads the records and updates SQL Query on the sourcd
them on the target server. server for the modified
Ouerysql - eprod, request ids, loading the
Sqllst, record, and updatipg the
@na, record on the target server.
select $Ftbls, IdField$ &
from $Ftbls, TblSqgl $ &
where $Vars, Qrys$
LoadQ = (@Prod, &
Src, &
$Ftbls, Tbls, &
‘17= “$SglLst, 1%~
Update = Tgt, &
$SFtbls, Tbl$s, &
‘17= “$SglLst, 1%~
Merge = Yes, NoWorkflow
Assign = asg-Copy
AssignNew = asg-Copy
This section copies the
lasg-Copy] < : source record’s fields
€Cmd = Copy, Src, CoreAssign including core fields.
Script Detail

The [Main] section does these things:

1 Specifies three argument names with the ArgNm= keyword.

2 Specifies the file to be generated as the id log with the 1dL.og= keyword..

3 Says that all three arguments are required but does not give additional user help
text when those arguments are not specified on the command line.

4 Establishes the server and authentication parameters for the update server

5 Establish the server and authentication parameters to the source server through
the Readservers= keyword. The value of that keyword is a section name which,
like the Main section gives server and authentication parameters for addition
servers. Note the Tag= keyword in the [Main-Prod] section. Queries will use
this tag - @prod - to reference the addition server.

The Called Command Section
The [svrSync-Date] section is specified on the command line and is the script “entry-point”.
The rile= keyword says we will iterate through a columnar file. The [Fle-Tb1l] section

specifies the attributes and fields of the file. Row one of the file contains the field names and
must match the fields specified in the CSV.

Meta-Update - 276 - User’s Guide

STH

Software Tool House Inc

The assignPre= allows us to build the select SQL query for the modified date using the fields
as specified in the file row and the optional query text also specified in the file row.

The first assignment of [asg-Mk-Qry] makes the modification date query text for the SQL
statement using the modification field name specified in the CSV file for this table and the
time argument passed on the command line. This is set in tag “Vars”, field “Qry”.

If the CSV query text was non-null, the same string is appended with “and (..)” using the
supplied query text.

Now that the SQL query string has been made, the section launches the actual worker
section [Tb1-Sync] to copy the modified records. This section has no output.

The Launched Section

Section [Tb1-Sync] is launched once for each table / row in the passed configuration file row.
That row is in memory when this launched section is invoked. In addition, a select Query
string has been created.

This section issues a select to retrieve the ids of the modified records for the given table. It
does this with the guerysql= keyword, specifying the @Prod server tag. The @na says that
we will not name or edit any of the columns returned by the select statement, instead referring
to them by their column numbers.

We iterate through the set of Request Ids returned by the select. During each iteration, we
load the source record from the source server with the Loado= keyword, and issue the
Update= to create the same record on the target server with the same request id as in the
source server. That Update or Create is performed using the Merge API and no filters are
fired — including filters set to fire or Megre.

The assign= and AssignNew= sections are the same and simply issue the Copy command to

copy all source fields including attachments and core fields into the target record, updating or
creating that record,

Meta-Update - 277 - User’s Guide

STH

Software Tool House Inc

Meta-Update -278 - User’s Guide

STH

Software Tool House Inc
ARS Table Backup and Restore

There are two scripts in this sample, one to back up a table and the other to restore a table.

Meta-Update
Script

WebScr g

£ Qutput files
—— Table datg,ﬁ;'ﬁ Attachment fields
o :
a-att.csv
— — Attachment files

<]

a-nnnn-ffif.att
Table Backup & Restore @

SthMupd.exe SvTbl.ini Do -p WebScr bkp20111231/WebScr/a
SthMupd. exe LdTkl.ini Do -p WebScr bkp20111231/wWebScr/a

To back up any ARS table, run the SvTbl.ini script passing as arguments, the table name, and
a backup file prefix. The restore script will take as input the same table name and same file
prefix.

The backup script will generate these files:
> asingle csv containing all data from each field of the passed table
> if and only if there are attachment fields in that table, a CSV of the field names and
field ids for these attachment fields
> afile prefixed by the passed prefix for each attachment.

The restore script will process these files as a set:
> asingle csv containing all data from each field of the passed table
> if the attachment fields CSV exists, will read these attachment fields and ids into a
script array
> if there are attachment fields, and the data CSV indicates a non-null attachment, a file
saved by the backup script will update the attachment content and have the original
attachment name.

This script introduces more complex features of Meta-Update. The script demonstrates:
Query=, Output=

Field Loops

Output files based on schemas

Schemas and Queries passed as arguments

extracting and loading attachments

YYYYY

Running the script.
The package is in the distribution and may also be downloaded from the script library.

The package contains a def file for the form _Test. It also contains data saved by the sample
save script that can be used to populate the _Test table.

To validate these scripts, simply run the backup against a single record, generate a report of
all data from this record, delete the record, run the restore, generate a second report from this

Meta-Update - 279 - User’s Guide

http://www.softwaretoolhouse.com/product/SthMupd/scriptlib

Software Tool House Inc

record, and, do a difference of the two reports. There should be no differences between the
two reports.

SthMupd SvTbl.ini Do -p _Test test "'l' = \"000000000000001\""
SthMqgry -f -S _Test “'1’ = \”000000000000001\”” > rpt-before.txt
SthMdel Test "'l' = \"000000000000001\""

SthMupd LdTbl.ini Do -p _Test test

SthMqry -f -S _Test “/1’ = \”000000000000001\”” > rpt-after.txt
diff rpt-before. txt rpt-after. txt

Backup Script Overview

[Do] is the main command section and issues the query against the passed table. Each
record is assigned to the tag Src.

An Assignlnit is used to initialize script variables and formulate a default query string (1=1) if
the script was not passed a query qualification.

[Do] will output a record to a CSV for each record it processes. It will not change any
values other than encoding any embedded quotes and line feeds. The assignments to the
output CSV are handled by a single copy command. The file’s fields are also copied from the
passed table name.

[Do] will Launch [Sv-Att-Struct] once only.

[Sv-Att-Struct] creates a second CSV containing a list of all the Attachment fields
Field Names and IDs).

If there are no attachment fields, the CSV is not created. The single Launch is controlled
by the script variable $v, Firsts which is initialized to TRUE and set to FALSE by an
Assignlnitin [sv-Att-Struct].

If there are any attachment fields, the CSV is created and a variable is set to indicate that
there are attachments that should be saved.

[Do] will Launch [sv-att] each record it processes if there are any attachment fields in the

table. This is controlled by the sv, gotAtts$ script variable which was set by [sv-aAtt-
Struct]

[sv-Att] iterates through all non-null attachment fields in the src record. So, for any single
record it may iterate zero or more times.

[Ssv-Att] has no record or file output, so all work is done in an AssignPre section which is called
after the Loop’s Tag is assigned on each iteration.

The assignment is a simple AttachmentSave command issued to save the attachment to
the file system. The file is named as follows:

-prefix- Reqgld - FieldId .att
Prefix is passed on the command line, Reqld is the request id field with any ‘|’ characters

(from Join forms) translated to ‘-*. This is done through a simple regular expression used
for the side effect of allowing a Subst field specification.

Meta-Update - 280 - User’s Guide

STH

Software Tool House Inc

Meta-Update script

Meta-Update sample script file.
Meta-Update is copyright 1996-2011 by Software Tool House Inc.

File: SvTbl.ini
Part of the sample scripts for Meta-Update.

Two scripts used to save and restore any ARS tables' data.
This is the Save script. See LdTbl.ini for the restore script

This Save script will save all records into a single CSV
and attachments into files prefixed by the passed argument.

[Main]
The main section gives sign-on info and declares
Script arguments required and usage info.

Server
Port =
User =
Password

ENV, ArsSvr $ Server connectivity and
ENV, ArsPort $ / authentication set from
ENV, ArsUsr $ environment variables.

ENV, ArsPwd $

Uy 0 U Uy

PrmReq = 2,. Function

PrmReg = . Two scripts used to save and restore ARS tables.
PrmReq = . This is the Save script.

PrmReg]
PrmReqg
PrmReg

Usage:
SvIbl.ini Do -p tbl outp [gry]

ArgNm = schema
ArgNm = F-out
ArgNm = qry

This is the main entry point and called routine. This section
reads through the given table creating the output CSV file

A Query 1s executed on the source table and the output file record
record is created using an assignment copy command.

Once only, a section that saves a CSV of attachment files is
launched. If there are attachment fields, a section is
launched each record to save those attachments to the file system.

H o o S T S S T

Meta-Update -281- User’s Guide

STH

Software Tool House Inc

#[Do]
#
AssignInit = asg-I
Query = sre, < The ARS Schemais a
$Arg, schema$, .
SV, Qual$ < reference. As is the Query
Output = Tgt, qualification. <
Out-£f, &
$Arg, F-out$.csv The output file name is the
Assign = asg passed prefix appended with
Launch = @if ("$V, Firsts$") Sv-Att-Struct “ ogy”
Launch = @if ("$V, gotAtts$") Sv-Att
[Out-£f]
#
This declares the output CSV file.
#
Type = Delimited, ",", FldHdr
Format = Quoted always Quotes escape 1f escape
Flelds - Out-f-flds The ARS Schema’s fields dre
(Out-f-£lds] / copied into the output file’s
@Cmd = Copy, S$Arg, schemas$ definition.
[asg-1I]
#
This "initial" assignment section initialises script variables
Input Tags
Arg Ptn "" or a query string
Output Tags
\ First do Attachment File output one time
\ gotAtt table has attachments; set Sv-Att-Struct
Y Qual "1=1" or the passed query string
Y AttPth the attachment path
#
@Cmd = Ref, V, gotAtt, 0
@Cmd = Ref, VvV, First, 1
@Cmd = Ref, V, Qual, "l=1"
@QCmd = Ref, V, AttPth, "$Arg, F-out$"
@Cmd = @if ("S$Arg, qrys" != "") &
Ref, V, Qual, "Arg, gry"
[asg]
#
This is the assignment to the CSV file. Because all fields
from the table and CSV file match, we just issue a copy
This single command
¢Cmd = Copy, Src «— assigns all fields from the
table to the CSV grting
embedded line and
qguotes as speg

Meta-Update -282 - User’s Guide

STH

Software Tool House Inc

Sv-Att-Struct]

[

#

This section saves the field names and ids of any attachment fields

into a special CSV processed by the companion script.

#

Input Tags

Src The source record

Output Tags

v First 0 we want to execute once only

\ gotAtt 1 says we have attachment fields

#

Loop = Fields, Att, Src, Type Attachment

Output = Tgts, &
Out-f-struct, '\\\\\\\\\ &
$Arg, F-out$.att.csv If there are no attachment

Assign = Sv-Att-Struct-asg fields, the loop is executed

AssignInit = Sv-Att-Struct-asg-Init zero times, no file is created,

and gotAttis not set true
éé;;lgnlmtz Re?’] At\t,, St?ji;t?sg Inéu No matter if there are any
attachment fields or not, wge

[Sv-Att-Struct-asg] want to set First false.

@QCmd = Ref, V, gotAtt, 1

AttF1ldNm = Att, FieldName

AttF1ldIid = Att, FieldId

Out-f-struct]

[
#
This declares the output CSV file listing the attachment fields
#

Type = Delimited, ",", FldHdr
Format = Quoted always Quotes escape 1lf escape
Fields = Out-f-struct-flds

[Out-f-struct-flds]
AttF1dNm =S
AttFldId $

Meta-Update - 283 - User’s Guide

STH

Software Tool House Inc

[Sv-Att]

#

This section extracts any Attachment fields into the file system

Input Tags

Src The source record

Output Tags

Att The @info for each attachment field

#

The AssignInit simply gets rid of any '|' in the request id value.

#

Loop = Fields, Att, Src, <4— This will loop through all &

Type Attachment, NoNulls attachment fields with non-
AssignPre = Sv-Att-asg null values in the record just
\ loaded.

There is no output; an
AssignPre is called after the
next iteration is loaded and

#SV‘Att‘aS@I] this saves the attachment.

Here we are processing all non-null attachments in the record

We save them to the file system using the name:

idl-id2-fid.att

where idl is the request id (with Join forms' | changed

to hyphens) We use aregex that always

and fid is the attachment field id matches to effect a Subst.

#

This results in $V, Reqld$

holding a request id with

all ‘|’ changed to ‘-

An easy way to change '|' to is by/a Subst; we match

the whole string for the Zubst to/be effected.

@Cmd = Ref, V, Sv— &
@regex, /(.

companion script will expect/for non-null attachments.

@Cmd = AttachSave, Att, FieldName$, &
SV, AttPth$-$V, Re t, FieldId$.att

This saves the attachment to

the file system under a

uniqgue name.

[Sv-Att-asg-regex]

#

This field list is for f£he @regex that is used to change '|'
#

ReqgId = $ Subst /|/-/

Meta-Update -284 - User’s Guide

STH

Software Tool House Inc

Restore Script Overview

[Do] is the main command section and does no iteration or output instead only Launching
two sections once.

An Assignlinit is used to initialize script variables. There is no Query argument in the restore
script. The Assignlnit also determines if an Attachment Fields CSV exists or not. It does this
with a Reference spawn assignment that assigns “OK” to the stdout variable if the file exists.

Note that because of the UNIX if shell syntax the stdout and stderr redirection does not come
at the end of the command line and is explicitly stated.

[Do] will Launch [Do-Att-Flds] once only.

[Do-Att-Flds] processes the Attachment Fields CSV just building a “script array” of
Attachment Field Names and Field IDs and setting the number of attachment fields.

If there are no attachment fields, the CSV was not created and the number of attachment
fields remains 0.

[Do-Att-Flds]makes no output, so only an AssignPre is used. That AssignPre section
increments the number of attachment fields counter and sets the Field Name and Id into
the array.

Do-Att-Flds-asg]

[
#
For each field, increase the number of fields,
#

and set it in the Va, Fnm and Fid arrays Incrememt Va, Max
14

#

@Cmd = Ref, Va, Max, Qeval, Va, Max+1

@Cmd = Ref, va, @, Do-asg-FF This assigns a series of
“field / vglue” pairs to the va

[Do-asg-FF] tag. We (ise references in

FomyVa, Maxs 7= F, AttFldim the fields|to be assigned.

FidVa, Max = F, AttFldId

Tags built are like this:

Va, Max 2

Va, Fnml Attachmentl
Va, Fidl 5378001021
Va, Fnm2 Attachment?2
Va, Fid2 5378001022

[Do] then Launches [Do-Load], the backup file handling section, since all Attachment fields
are now known.

[Do-Load] Processes the passed backup data file and updates the passed table
using ‘1’ = the first field of the file” as the update query.

Like the backup script, the File’s fields are copied from the schema and the schema in
the query and the file’s field’s copy is the SArg, schema$ reference.

Because the file’s fields are copied, the file’s field 1 is the first schema field, or field
‘1’, and this is used in the Update= query.

Meta-Update -285- User’s Guide

STH

Software Tool House Inc

The Update is done with the Merge API and with Merge workflow inhibited. It is only
through the Merge API that core fields may be set (such as Request ID, Submitter,
Create Date).

Note that this restore script will not work with Join forms unless Merge workflow is
allowed. A write to a join can only write to the database if the filters on that join fire.

The Assignment section for the ARS Table Update= is the same for new or updated
records.

If there are any attachment fields and the backup data indicates that it is non-null, a
string is assigned with two file names:

original attachment name, attachment file
C:\dir\xxx.xxx, -prefix- Reqgld - FieldId .att

Meta-Update can process attachment values as references, single file strings, or
double file strings. In the case of a double file string, the second string is the file in
the file system that contains the data of the attachment, and the first name is the file
name set into the attachment value.

Because the file is copied from the table, a simple copy assignment command will set

all fields to their backed up values skipping any fields that have already been
assigned a value.

Meta-Update - 286 - User’s Guide

STH

Software Tool House Inc

Meta-Update script

Meta-Update sample script file.
Meta-Update is copyright 1996-2011 by Software Tool House Inc.

File: LdTbl.ini
Part of the sample scripts for Meta-Update.

Two scripts used to save and restore any ARS tables' data.
This is the Load script. See SvTbl.ini for the backup script.

This Load script will process the CSV files generated by the
save script and load all records including any attachments

[Main]

[Main] gives sign-on info and declares Script arguments.
Server = $ ENV, ArsSvr S /-
PrmReq = . LdTbl.ini Do -p tbl outp (j“éf/

ArgNm = schema
ArgNm = F-inp

Before we can proceed with loading the data file, we'll need a list
of Attachment fields so that we can assign them as needed.

So, here, the AssignInit figures out if the attachment fields CSV
exists, then, launches [Do-Att-Flds] to save attachment fields in
script variables, and finally launch the Do-Load section to process

the backup data fil inst the ARS table. - .
¢ backup data fite against the aoe The Assignlnit section

asg-I [asg-I] sets Va, Dp to

@if ("Va, DoS") Do-Att-Flds true if the Attachment|Fields

Do-Load CSV exists in the expgcted
location.

HE oS e o o o e HE —

AssignInit
Launch
Launch

asg-1]

This "initial" assignment section sets Va, Do to the existence of
the "$Arg, F-inp$.att.csv" file and makes a few initializations.

H H oA —

Input Tags
Arg F-inp the output file name
Output Tags
Va Max init num attachment fields to 0
Va Do set to true if file $Arg, F-inp$.att.csv exists.

Note different command to

He o W H S e

@Cmd = Ref, Va, Max, 0 d . . .
etermine file existenge n
@Cmd = Ref, Va, Do, 0

ecmd = @if ("$CTL, 0S$" == "UNIX" Windows an_d Unix. Npte
@Cmd = Ref, V, @spawn, use of $redirs$ in Ynix
if [-f '$Arg, F-inp$.att.csv'] ; command. &
then echo OK $redir$; &
fi; The echo produces
@Cmd = else “OK<1£>” or “OK<cr>4lf>”
¢Cmd - = Ref, Vv, @spawn, in $V, stdout$, sé we just
if exist "$Arg, F-inp$.att.csv" eCho OK .
_ - check for aleadin
Q@QCmd = endif
@Cmd @if ("$V, stdout$" ~= "OK")
@Cmd = Ref, Va, Do, 1
@Cmd = endif

Meta-Update - 287 - User’s Guide

STH

Software Tool House Inc

[Do-Att-Flds]

#

The SvTbl companion script generated an attachment fields CSV.

We are only Launched if this file exists!

We set number of attachment fields for the Update= assignments.

#

Input Tags

Va Max 0 number of attachment fields

Output Tags

Va Max 0 +n number of attachment fields

Va Fnml,2, .. char field name array l..n

Va Fidil, 2, .. int field id array l..n

#

File =F, &
Inp-f-att, &
$Arg, F-inp$.att.csv

AssignPre = Do-Att-Flds-asg

[Do-Att-Flds-asg]

#

For each field, increase the number of fields, and set it in the

Va, Fnm and Fid arrays

! ' Y Increment va, Max

@QCmd = Ref, Va, Max, Qeval, Va, Max+1

@Cmd = Ref, Va, @, Do-asg-FF
*/S This assigns a series of

[Do-asg-FF] “field / value” pairs to the| va

Fnmva, Max = F, AttFldNm tag. We use references if

Fidva, Max = F, AttFldId

the fields to be assigned {o
build an array.

File declarations: the two input CSV files

Inp-f-att saved by SvTbl.ini; schema’s attachment fields
[Inp-f-att]

#

Type = Delimited, ",", FldHdr

Format = Quoted always Quotes escape 1f escape

Fields = Inp-f-att-flds

[Inp-f-att-flds]
AttF1dNm =S
AttFldId =3

Meta-Update - 288 - User’s Guide

STH

Software Tool House Inc

[Do-Load]

Loops through the given CSV (created by the companion script)
updating in the target table with the value of the first CSV
field (Request ID) being matched against '1l'

We need to use Merge (like the Import Tool) so that we can assign
core fields like 'l' etc. For Joins, remove NoWorkflow from Merge.

We know the number of attachment fields, their names, and ids, so
if the attachment fields are non-null, they are assigned with

their original file name and the expected file system name.

The remaining field values are simply copied from the CSV row.

] == S S S S R S S S S R S S

ile = Src, We use the reference $Src,
égp‘ff P, 1% to indicate the first CSV
5 _ Jhrde Emmbrecsy field which will be Requegst
pdate = Tgt,
$Arg, schema$, ID, Entry ID, and so on. ¢
Y = "$Src, lsu
AssignNew = Do-Load-asg

Assign = Do-Load-asg You cannot use NoWorkflow
Merge = Yes, NoWorkflow 4~—“”__—__—__—_ on Join forms.

[Do-Load-asqg]

#

This is the assignment to the ARS record from the CSV file

(with the same fields as the ARS record). Because all fields

from the table and CSV file match, we Jjust issue a copy.

#

We need the CoreAssign option because we want '1l', '2', etc assigned
from the CSV - only available with Merge

#

If the attachment value in the CSV is non-null, we will have a

file named: idl-id2-fid.att

idl etc is the request id (with ‘|’ changed to hyphens)

fid is the attachment field id

We change '|' to - with a Subst; we match all for the Subst

@Cmd = Ref, V, Ld-Att-asg-regex, Qregex, /(.*)/, $Src, 1$

[Ld-Att-asg-regex]

#

This field list is for @regex used to substitute hyphens for '|'
#

ReqgId = $ Subst /|/-/

Meta-Update - 289 - User’s Guide

STH

Software Tool House Inc

[Do-Load-asqg]

handle attachments separately

@Cmd = Qif ("$Va, Ma§$" > 3)

A

)
@Cmd = endif -
@Cmd = endif
@Cmd = endif
@Cmd = endif
4”’_’,,,
@Cmd = Copy, Src, CoreAssign

@Cmd = @if ("Va, Max")
@Cmd = Ref, V, (@info, Src, $Va, Fnml$
@Cmd = @if("SV, Values$")
@Cmd = Ref, V, attval, &
"$V, Value$,$V, AttPth$-$V, Reqld$-$Va, Fidl$.att"
SV, FieldName$ = V, attval
@Cmd = endif
@Cmd = @if ("S$Va, Maxs$" > 1)
@Cmd = Ref, V, @info, Src, $Va, Fnm2$
@Cmd = @if("S$V, Values$")
@Cmd = Ref, V, attval, &
"$V, Value$,$V, AttPth$-$V, Reqld$-$Va, Fid2$.att"
SV, FieldName$ = V, attval
@Cmd = endif
@Cmd = @if ("S$Va, Maxs$" > 2)
@Cmd = Ref, V, @info, Src, $Va, Fnm3$
@Cmd = Q@if("S$V, Values$")
@Cmd = Ref, V, attval, &
"S$V, Value$,$V, AttPth$-$V, Reqld$-$Va, Fid3$.att"
SV, FieldName$ = V, attval
@Cmd = endif

The maximum number off

attachment fields in any
form should be handled
here, with, perhaps, an ¢
thrown if it is exceeded.

The remaining assignme
are handled with a Copy
command.

Meta-Update - 290 -

User's Guide

one

rror

nts

S,_H

Software Tool House Inc

Index

Meta-Update -291- User’s Guide

81_H

Software Tool House Inc

Q@

@Cmd

Assignment Commands

Field Sections........cccccoviiiiieiiiiniiiie.
@date

Assignment Command
@eval

Assignment Commands
@fmt

Assignment Command
@include

IreCiVEeeiiee e

Including Script Files

List Files Debugging Command
@info

Assignment Commands
@val

Assignment Commands

A

Abort
Assignment Command
API
Meta-Update API Versions
Archive Forms
Set Schema Assignment Commands.....
Arguments
Meta-Update Usage
Arithmetic Expressions
Assignment Commands
Functions .
Named Constants.........cccccvvevrveeennnneenns
Operators
Random Number function
Random Number Seeding
Using in Assignment Commands
ARS records

Assignment Commandscccueeee... 190
Assignment

Commands

AttachSave ..o,

Sections in CONCEPLS.......oeevrvererninieernnen.

Set Schema Command

Trace Commandcccoecvveeriieeeiineeenns
Assignment Commandsccccee.... 169

@EVAl ... 187

ADOM. ..o 174

Arithmetic EXpressions........ccccovevvveeeen. 187

Arithmetic Expressions, Using......... .193

ARS records . 190

Meta-Update

Index

- 292 -

Message
Reference

Variables
Regular Expressions....
Server Processes

Assignment Sections

Update
assignments

Concepts
Assignments

Concepts
AssignNew=

SaAMPIES....oiiiiiiie e
AttachSave

Assignment Command
Auditing

BackTrace
Debugging,Command
Breakpoints
About
Command in Script
Setting while Debugging

C

Cache

LookUps

Keywords

Client Processes

Assignment Commands.............occuveeeen.
Command Prompt

Ideal Properties.cccccvvuiiieeieeiinniiieen.
Commands

Set Schema Assignments..............cc.......

Trace Assignment Command
Concepts

Assignments Sections

Control Sections

Debugging
Examples
Flowchart in Concepts .
teration......couee i i
Launch...
Output......ccoevvvenennnn.
Output Files

User’'s Guide

Update......ovveveeeiiiiiiiiieee e
Conditions

Launch

Reference Assignment Commands........
Continue

Debugging Command
Control

Sections

in Concepts

Control Section

Create in CONCePLS.....cuvveeeiiiiiiieieeeeeiiins

Examples in Concepts..........cccovee..

Flowchart in Concepts.............cvee...

Launch in Concepts..........ccceverruneeen.

Operational Statementst............cccccee.....

Output Files in Concepts

Output in Concepts

Update in CoNcepts......ccceevvveerieeeeniieennns
Control Sections

CONCEPLS ..eeieiieeeeeeiiieeee e 20

KEYWOIdSoovviiiiiieiieiee e 109

Operational Statements............cccccceeen. 109

Statements........coooee 109

Control Statements

Copy
Assignment Command...............occuveeeen. 170
Core Fields
CoreAssign
NOCOreASSIgN ...coevevvieiiieeeeiiee e 173
Targetscccvveeieee e 170
D
date
Assignment Command............ccceeevnneenn. 186
Debugging

Breakpoints About...........cccceeiiiiiiiinenn. 86
Commands

Continue Commandeeeeeeeeeeennnn. 90
Line Numbers About..............ccoovvvvvineennnns 85

List Command
List Files Command
Next Command
Print Command

Prompt......cccvvvvveiinnns
Quit Command
Delimiters........ccccee..... See Loop Statement
Double anchor..................... Loop Statement
Developing
SCHPLS oo 77
Distribution
CoNtentS......oooeeiiiiie 49
EXpandingcccccvveveeeiiiiiiiiee e 48
Meta-Update

- 293 -

STH

Software Tool House Inc

E
Environment
RUN TIME .eeiiiiiiie e 56
Running Meta-Update............cccccceeeeeeinnnne 55
Environment Variables...........cccccoeennnnn. 60
SthMUPALIC.....vvveiieeiiiiiieeeee e 61
SthScriptPath.........ccoooiviie 60
expressions
Conditional assignments.............ccccee....
Copy assignment command

Include assignment command
Output statement

SQL fields................
Until statement.........
While statement.........ccccoevveeeviieeeeniieennn
F
Fields
Copying from ARS FOrms.........cccccueeennee 147
Dates and Date Formats
Format SPecscccovvvveiiiiieee e
Formats in @fmt Assignment Command 185
Numbers and Numeric Formats.............. 152
Quotes in values........ccccceeeeeriiciiiieneeen, 152
Regular Expression Extracts 189
SECHONS....evieeeeiiiee e 145
SQL SelectS...cuviiiiiiiiiiiiiiiiiiieieieieiiieiiiains 149
File
Iteration in Concepts.........ccvveeeeeiinininneeen. 38
Log Format ... 75
Logging Locally........cccoevveeiniiieeiineenn 72,73

Trace Format
Tracing Locally

Format

Assignment Commandccceeernnennn. 185
Functions

in Arithmetic EXpressionsccccoeuee. 194

I

o | oo PR 139
Ifs

Reference Assignment Commands........ 187
Include

Assignment Commandccceeruneenn. 173

Including Script Files
@include..........cccceeeieiii
Installing
Distribution Contents
Expanding the Distribution
Iteration

Concepts
File in Concepts
IN CONCEPLS...cevieiiiiiiiiieee e
Loop

Defined in Concepts........ccccvvveeeeeeinnnns
Loop in Concepts

User’'s Guide

STH

Software Tool House Inc

Concepts
QuerySql

Concepts

Defined in Concepts

J

Join
Loop Statement, Example 5

K

Keywords
in Control Sections

L

Launch
in Concepts
Launch
Concepts
in Concepts
Launch
Conditions
License
Meta-Update License Key
Line Numbers
List
Debugging,Command
List Files
Debugging,Command
Load statement
Loads
defined in Concepts.........covvuviieieeeiinnnnns
Logging
ARS Client Log Switches
Local Log File
Local TraCing........ceeevvvvererninieiniieee e
Message Format
Server TraCing......cccuveeveeeeiiieee e
Switch Settings.......cvvevviveeiiiieeeiec e
The —d Switch
Tracing Locally
LookUps

Automatic Tags
Caching
File
Keywords
Query
QuerySql
Reference Assignment Commands
Types
Loop
Iteration in Concepts
Loop Statement
Defined in Concepts
Delimiters

Meta-Update

- 294 -

Example 1 Diary:
Example 2 String:
Example 3 Fields:
Example 4 String:
Example 5 Join
Examples

Message

Assignment Command
Meta-Update

BMC API Versions
Msg

Assignment Command

Commands:Msg

Multifile

Output Statement...........cccceeeeeiiiiiieneeennn.

N

Name

Constants in Arithmetic Expressions
Next

Step a Script in Debugger............cccceeeneee.

O

Operational Statements

in Control Sections..........coovvvieveeeeennnnns
Output

Files in Concepts
Output

Concepts

IN CONCEPLS.....eviieiiiiiee et
Output

Files

defined in Concepts

Output

Program Output
Output Statement

Multifile

Multiple CSV files.......cocooviiiiiiiiiiiicie
Output Statement

P

PCRE

Assignment Commands.............occuvveeen.
Positional Arguments

Meta-Update Usage...........oocuvveeeeeeennnnnne
Print

Debugging Command
Program

Meta-Update License Key

Meta-Update Output

Meta-Update Versions
Program Arguments

Meta-Update Usage...........ccccuveeeeeennn. 65, 66

User’'s Guide

Q

QUETY i 118

Iteration

[©70]Te7=T o] £ 37

LiMItS..vieieiecee e 120

LOQOING wvivieeeiiiieieee e 120

Performanceccccco oo 120

QUEIYMAX....cceiiiiieieieieeeeee 121

QUEryStart.......ccccooveciieeiie e 121

SOL oo See QuerySql

using field namescccoecvvvieeeeeiiiinnns 37
QueryMax

999,999,999 ...ttt 121

With QUENYooiiiiiieiiieee e 121
QuerySql

Defined in CoONCEPLS.....cccvvvvverriiieeeriiieennn 38

Iteration

CONCEPLS .oovveeeeiiirieiee e 38

LOOKUPS ... 210
QuerySql statement

Select field variablecccceeviiinennns 122
QueryStart

With QUENYooiiiiiieiiieee e 121
Quit

Debugging Commandcccceveernnenn. 90

R

Random Numbers

in Reference Assignment Commands.... 195

Seeding for Arithmetic Expressions........ 195
Ref

Assignment Commandscccueueeee.. 176
Reference

Assignment Commandsccceueeee.. 176
References

CONCEPLS ..o 22

defined in CoNCepts.........coovvuvrieiieeiininnns 28

SIMPIE e 28

SHNG e 29
References, String

definedoooviiiiei 30
Regular Expressions

Assignment Commandsccccceeeveeeen. 189
Return Values ..., 67
Run Time Environment............ccccvveeeenn. 56
RUNNING .. 55

APLVEISIONS ..o 56

ARS Client Tracing.........cccceeeeviivieieneennnn. 71

Environment for Meta-Update................... 55

Firing from Workflowc.cccooiiiiinnen.

Local TraCing.......c.ceeevvvveeerninieiniieees e

LOG File woviiiiei e

Log FOrmat.......ceeeveeeveiiiiiiiiieieieeeeeieeeieeeees

LOQOING weeeeeeeiiiiiiieeee e

Logging ARS Client........ccceveeeeiiiiiiiinenen.

Logging Locallycoooviiiiiieniiiiiiiiiee.

Logging Server..........ccocuuve...

Meta-Update Arguments

Meta-Update Environment Variables.. 60, 61

Meta-Update

- 295 -

STH

Software Tool House Inc

Program Output ..., 68
Return Values..........ccccceevviiniiniicnicc, 67
Server TraCing ...eeeeeeveecveeeeeeeeeeciieieeeeee 73
StdoUt & SEAEITvveiieiiiciiecc e 67
TrACING..eeeeeeeee it 70
Tracing Formatccooviiiiieeeeee i 75
Tracing Locally.........ccoovviiiiiiieeeiiiiiiee. 72
Tracing SEIVErccoieeiiiiiiiiieeee e 73
S
Script
Debugging Commands...........ccccceeeeeeennne 87
Source
Including Files........cococeeiviieieniieee 98
Source Format........cccceevevveeiiieeeiiniee e 96
Scripts
Developing......ccccovvveeeeiiieee e 77
SthMupdLic Environment Variable............ 61
SthScriptPath Environment Variable......... 60
Sections
Control
IN CONCEPLS...ovveeiiriieeiieee e 33
Types in CONCEPLS......eeeevieeeeriiieeeiiieeens 32
Select field variable.............. See QyerySql
Statement
Server Processes
Assignment Commands:..........cccceevueeenn. 188
Session Timeouts See Timeouts
Set Schema
Assignment Commandccceerneennn. 196
Simple References
defined in Concepts.......ccceevivieeeiiiieeninee, 28
Sleep Statementl 138
Sort......... See Loop Statement, See Query
statement
Spawn
Assignment Commandccceeevneeenn. 175
SQL
LOOKUPS ..evveiiiiieiiiee e 210
Query
CONCEPLS...ovviiiiieeieiiieee e 38
Statements
in Control SEeCtioNS..........ccovvvveeeiiiieenne 109
Operational in Control sections............... 111
stderr
Assignment Commands.............occuvveeen. 190
RUNNING .. 67
stdout
Assignment Commands.............cccuveeeen. 190
RUNNING .. 67
Step
Step a Script in Debugger............ccccceeeen. 89
SthMupdLic Environment Variable 61
SthScriptPath Environment Variable 60
String
References ... 29

String Reference ... See References, String

User’'s Guide

STH

Software Tool House Inc

T
Timeouts
1] Vo IR PPPPPPPPPNE 103
NOIMAL..cceiiiiiiiiie e 103
Trace
Assignment Command...............cccueveee... 197
TraceTrace Assignment Commands....197
Tracing
ARS Client Log switches..........cccvvveeeenn. 71
Local Log File.....ccccceeeiviiiiiiieecceiciie, 65
Local TracCing.....cccceveeeeveviivieieeeee e 72
Message Formatccccovvveeeeiiiicnnneennn. 75
Server TraCing......cccvveveeeeinieee e 73
Switch Settings.......cccvvveeeeiiiiiiiiee e 70
Type
Sections iN CoNCEPLS.....ceeeviiiiiieieeeeeiiiins 32
U
Until statement...........ccccoeeeveereniiinnen, 131
Meta-Update

- 296 -

Defined in Conceptsccoevvvvveveeeeeeiinnns 40
Update
About - CONCEPLS...ceveeeieiiiiiieeee e 41
Update Statement...........ccceeevvieveennnnnn. 133
Assignment Sections...........ccccceeeeevvvnene.. 133
UpdatelfEqual Statement..................... 134
\Y
Value interpretations
(070] g To7=T o £ NN 22
Versions
Meta-Update Program Versions 58
w
Workflow
Running Meta-Update from 77

User's Guide

STH

Software Tool House Inc

Meta-Update -297 - User’s Guide

	Preface
	Audience
	Limitation of Liability
	Copyrights
	Updates
	Comments

	Organisation
	Introduction
	Concepts
	Installing
	Running
	Script Reference
	Licensing
	Samples

	Table of Contents
	Introduction
	Data Challenges
	Solution Options
	Meta-Update: A New Way to Use The API

	Concepts
	Overview
	Meta-Update Scripting
	Definitions
	References
	Assignments
	Assignment References
	String References
	Loads
	Types of Sections
	Control Sections
	Control Section Flowchart
	Iteration
	Query
	QuerySql
	File
	Loop
	Until

	Output
	Create
	Update
	Output

	Launch
	Control Section Example
	Example: Migrate any Table

	Installing Meta-Update
	Expanding the Distribution
	Complete Installation
	Distribution Contents

	Running Meta-Update
	Run Time Environment
	BMC Remedy API Versions
	Program Versions
	The License Key
	Environment Variables
	Script Path Environment Variable
	API Retry Environment Variable
	License Environment variable

	The Command Line
	Switches
	Usage Help Text
	Using Positional Arguments (Deprecated)

	Program Return Values
	Program Output
	Ideal Command Prompt Properties
	Tracing
	Local Tracing
	Server Tracing
	Trace Format

	Firing from Workflow
	Developing Scripts

	Script Debugging
	What Is Script Debugging?
	Entering Debug Commands
	Meta-Update Line Numbers
	About Meta-Update Break Points
	Debug Commands
	List
	List Files
	BackTrace
	Print
	Next
	Continue
	Quit
	Break

	Script Reference
	Script File: General Format
	Including Other Script Files
	Section Types
	[Main] Section
	Read Server Sections
	Control Sections
	About Control Sections
	Keywords & Statements
	Load Statements
	Query Statements
	Performance Considerations
	Additional Keywords

	QuerySql Statement
	File Statement
	Loop Statement
	Types of Loops
	Syntax overview
	Keywords
	Tag assignments
	Examples

	Create Statement
	Until Statement
	Update Statement
	Output Statement
	Merge Statement
	Status Statement
	Sleep Statement
	Launch Statement
	IdLog Statement

	File Sections
	Field Sections
	About Fields and Formats
	Copying Fields from Schemas
	Field Formats
	Automatic SQL Select Generation
	Date Fields
	Numeric Fields
	Quotes in Field Values

	Assignment Reference
	About Assignment Sections
	Using Assignment Sections
	Assignment Targets
	Section Target Types
	Assignments
	Conditional Assignments
	IF Statement
	LookUp Assignments
	Assignments Commands

	Assignment Commands
	Copy Command
	Targets of Copy commands
	Keywords for Copy commands
	CoreAssign and Core Fields
	Examples of Copy Commands

	Include Command
	Abort Command
	AttachSave Command
	Msg Command
	Spawn Command
	Reference Command
	Types of Reference commands
	Single value to a Tag string reference:
	Many values to a Tag:
	Reference Information — assigning a set of values using references for a Tag and Field
	Doubled Reference Values — assigning a single value using references for a Tag and Field:
	Formatting Values — assigning a single value by transforming with a format
	Date Information — assigning date information
	Conditional Value Assignments to a Tag reference:
	Arithmetic expressions:
	Equivalent Tags – Assigning a Tag as another Tag
	Server Processes – Assigning results of ARS Server Run Process
	Regular Expressions – Assigning match and extracts to variables
	Assigning values to an ARS record:
	Client process’ stdout and stderr files – Assign to a Tag:
	Using Regular Expressions
	Using Arithmetic Expressions

	Set Schema Command
	Trace Command

	LookUp Sections
	Overview
	LookUp Types
	Automatic Tags
	Keywords
	Using Files
	Using a Query
	Using an SQL Query
	Caching LookUp Records
	Using different LookUp Lists

	Field Type Notes
	Diary Fields
	Currency Fields
	Numeric Fields
	Enum or Selection Fields
	Date Fields
	Date/Time Fields
	Attachment Fields

	Predefined Reference Tags
	CTL – Meta-Update Information
	Arg – Program Arguments
	ENV – The Environment
	AR_INFO – ARS Server Information
	RdSvr_AR_INFO – ARS Server Information
	AR_INFO – Table of Fields and Values
	CTL – Schema Tag

	Licensing
	How It Works
	Specifying the License Key
	Installing the def File

	ARS Authentication Password Encryption
	SthLicUpd Maintenance Utility
	Usage
	Sample Prompt Session:
	Sample Password Session:
	Using the generated SthLic.cmd or SthLic.sh files

	Samples
	AR Schema Report
	AR Server Info Report
	Ticket Creation Batch Command
	Closed Ticket Replicator
	Server Delta Copy
	ARS Table Backup and Restore

	Index

