

Specification of the architecture

Distribution: Public

MedIEQ
Quality Labelling of Medical Web content using Multilingual

Information Extraction

National Centre for Scientific Research "Demokritos"
Teknillinen Korkeakoulu – Helsinki University of Technology

Universidad Nacional de Educacion a Distancia
Collegi Oficial de Metges de Barcelona

Zentralstelle der deutschen Ärzteschaft zur Qualitätssicherung in der Medizin
Vysoka Skola Ekonomicka V Praze

I-Sieve Technologies Ltd

2005107 D12

February 2007

Project ref. no. 2005107
Project acronym MedIEQ
Project full title Quality Labelling of Medical Web content using

Multilingual Information Extraction

Security (distribution level) Public
Contractual date of
delivery

31 December 2006

Actual date of delivery 16 February 2007
Deliverable number D12
Deliverable name Specification of the architecture
Type Report
Status & version Final
Number of pages 36
WP contributing to the WP8
deliverable
WP / Task responsible I-sieve
Other contributors NCSR, UNED, UEP, TKK
Author(s) K. Chandrinos (i-sieve),

K. Stamatakis, P. Nasikas, V. Gatos, V. Karkaletsis
(NCSR),
M. Ruzicka, V. Svátek (UEP),
E.A. Cabrera, V. Peinado (UNED),
M. Pöllä, T. Honkela (TKK)

EC Project Officers Artur Furtado
Keywords Web content collection, information extraction,

linguistic resources management, label management,
monitor a website, alert an expert, assisting quality
assessment.

Abstract (for
dissemination)

This document specifies the architecture for the
integrated MedIEQ system (AQUA system). Several
toolkits (content collection, information extraction,
resources management, label management, monitor-
update-alert) inter-operate aiming to assist the
labelling expert to his work. The open architecture and
the internationalization are among the main design
principles of AQUA architecture.

 2

2005107 MedIEQ D12 - Page 3/36

Table of contents

Executive summary..4
1. Introduction..5
2. Design specifications ...6

2.1 Making the AQUA system modular ..6
2.2 Internationalization support ...8
2.3 Why web-based?..9
2.4 Why centralized? ...9

3. The architecture ...11
3.1 Which are the AQUA subsystems?..11
3.2 Description of the integrated architecture..11
3.3 The MedIEQ repository ...12
3.4 The MedIEQ database..13
3.5 The UMLS database ..13
3.6 A document’s lifecycle ..14

4. The MUA (Monitor-Update-Alert) toolkit ..15
4.1 The tools of MUA..15
4.2 MSC (Monitoring Scheduler) ..15
4.3 DBU (Database Updater) ...16
4.4 AME (Alerting Mechanism) ..16

5. User manual ...18
5.1 The integrated system use case: review / monitor a health resource18
5.2 What a labelling expert can do from the AQUA interface?...............................18
5.3 What a system administrator can do from the AQUA interface?25

6. Adapt AQUA to a new language: estimating the cost ...26
7. Concluding remarks ...28
APPENDIX A: AQUA toolkits & tools ..29
APPENDIX B: MedIEQ metadata...30
APPENDIX C: The schema of the MedIEQ database...36

 3

2005107 MedIEQ D12 - Page 4/36

Executive summary

Based upon state-of-the-art technology in the areas of web crawling and spidering,
multilingual information extraction, semantic resources and quality labelling, MedIEQ paves
the way towards the automation of quality labelling process in health related web sites.

MedIEQ, aiming to facilitate the work of health quality labelling agencies, delivers tools that:

• collect unlabeled health-related web resources, in seven European languages, and
label them according to a set of pre-specified labelling criteria,

• monitor already labelled health web resources alerting labelling experts in case the
sites’ content is updated against the labelling criteria,

• generate and maintain machine readable labels for health-related web resources,
either manually or semi-automatically using the above tools.

MedIEQ continues and builds upon the work of previous projects in the areas of

• medical quality labelling (MedCIRCLE1, MedCERTAIN2, WRAPIN3),
• quality labelling standards (QUATRO4), and
• web content collection and extraction (Crossmarc5, Rainbow6).

MedIEQ aims to tackle the main problem of current medical quality labelling mechanisms,
that is, the need for a continuous review and control of medical web sites, a process which
requires a huge amount of human effort. The resulting technology is expected to have a
significant impact on medical quality labelling assisting the work of labelling experts,
increasing the number of labelled medical sites across Europe and their effective monitoring,
and thus improving the quality health knowledge disseminated through the Web.

This deliverable describes the architecture of the MedIEQ system (AQUA), which integrates
the various tools developed in MedIEQ for content collection, information extraction, labels
management, multilingual resources management, in order to assist the labelling expert in
his/her work. The modularity and the internationalised approach are among the main design
principles of AQUA architecture aiming to facilitate the use of more techniques and tools as
well as the porting to new languages.

1 http://www.medcircle.org/
2 http://www.medcertain.org
3 http://www.wrapin.org/
4 http://www.quatro-project.org/
5 http://www.iit.demokritos.gr/skel/crossmarc/
6 http://rainbow.vse.cz/descr.html

 4

http://www.medcircle.org/
http://www.medcertain.org/
http://www.wrapin.org/
http://www.quatro-project.org/
http://www.iit.demokritos.gr/skel/crossmarc/
http://rainbow.vse.cz/descr.html

2005107 MedIEQ D12 - Page 5/36

1. Introduction

AQUA “Assisting Quality Labelling” is the name of the integrated MedIEQ system, a system
aiming to assist the work of labelling experts. AQUA consists of several subsystems or
toolkits having different roles in the generation and maintenance (including monitoring) of
quality labels for health-related web resources.
AQUA is currently accessible from: http://www.medieq.org/aqua/aqua/welcome.seam

The first version of the integrated MedIEQ system, covering two of the project languages,
English and Spanish, is scheduled at the end of June 2007.

This deliverable presents AQUA architecture. In section 2 we explain our choices concerning
the AQUA design and implementation. In section 3, we decompose AQUA in its subsystems,
describe the MedIEQ repository, discuss on the MedIEQ and the UMLS databases and
explain the proposed integrated system architecture. Section 4 provides details on the MUA
(Monitor-Update-Alert) toolkit and its components. In section 5 we describe the integrated
system use case and provide the AQUA user manual by use case (details on the use cases can
be found in deliverables D6, D8 and D10). In section 6 we discuss the remaining steps to the
final version and present some early conclusions.
Finally, Appendix A gives the list of the MedIEQ tools by toolkit and work package,
Appendix B contains the complete list of the MedIEQ metadata grouped by database table
and Appendix C has the schema of the MedIEQ database.

 5

http://www.medieq.org/aqua/aqua/welcome.seam

2005107 MedIEQ D12 - Page 6/36

2. Design specifications

In this section we explain:

1. How do we design AQUA for maximum modularity?
2. How internationalization is achieved?
3. Why do we decide to make AQUA a web-based system?
4. Why we opt for a centralized rather than distributed system architecture?

2.1 Making the AQUA system modular
AQUA was designed to provide maximum modularity and extensibility. Such a design
enables us to test modules providing the same functionality (e.g. machine learning algorithms)
with different implementations so that we can select the one that fits best to our data. Having
a modular system lets us focus on the design and implementation of the system. We will not
couple semantics or responsibilities from different modules and we will not mix control or
presentation related code with application logic. It makes also easy to remove or change
system components on demand. The AQUA system is deployed on the JBoss application
server7, which enables system modules to be added and removed from it without any need to
stop the system execution to redeploy the application. This is accomplished by implementing
some of the system modules as JBoss services, a standards based mechanism for creating
service-based modular systems. This mechanism provides us with the infrastructure to
manage, monitor and properly secure the modules that our system will use.

Java is used as the programming language for the system but we go far beyond a plain java
stand-alone program. The AQUA system is running in the context of an application server
(JBoss) and uses several services provided from it. JBoss itself and the provided services are
standards based java APIs for designing enterprise systems, implemented by JBoss inc. (now
a RedHat8 division), so the system can be deployed in any other standards based java
application server (IBM websphere9, BEA10, SUN glassfish11, etc.). The services provided to
AQUA from the application server relieve us from the need to take into account issues such as
system modularity, scalability, load balancing, management and monitoring. Using these
services and following the design patterns induced we can focus on our own application logic
and domain models.

Our application uses class types, components and deployed services, listed in Table 1; we will
provide more information on them in the following subsections.

Table 1: Components - Responsibilities
EJB3 Session beans Application logic - Control

JBoss managed services Application logic

EJB3 Entity beans12 Model

Java Server Faces13 Presentation

Seam14 Presentation - Control

7 http://jboss.com/
8 http://www.redhat.com/
9 http://www-306.ibm.com/software/websphere/
10 http://www.bea.com/framework.jsp?CNT=homepage_main.jsp&FP=/content
11 https://glassfish.dev.java.net/
12 http://labs.jboss.com/portal/jbossejb3
13 http://java.sun.com/javaee/javaserverfaces/

 6

http://jboss.com/
http://www.redhat.com/
http://www-306.ibm.com/software/websphere/
http://www.bea.com/framework.jsp?CNT=homepage_main.jsp&FP=/content
https://glassfish.dev.java.net/
http://labs.jboss.com/portal/jbossejb3
http://java.sun.com/javaee/javaserverfaces/

2005107 MedIEQ D12 - Page 7/36

EJB3 Session and Entity beans
Application control, logic and model mapping are implemented with EJB3 Session and Entity
beans and JBoss JMX15 managed services. We tried to follow some design patterns that
would let us build a flexible componentized system that would be easy to extend and
configure.

EJB3 Entity beans are Java classes that their properties map and model (datatypes,
constraints) directly to database tables. For each database table we have created a different
Java class. EJB3 Session beans are the application controllers. Each user request, whether it is
a button click or a url request is mapped to method in an EJB3 Stateful or Stateless Session
bean that handles it by executing some other Session bean method, sending or getting data
from the database or dispatching the request to a Container hosted Service. For example,
when the user selects a file to upload, the upload method is called from the UploadAction
Stateless bean that uploads the data, creates an RDF16 model from them, then dispatches the
validation task to another EJB3 Session bean and if the validation succeeds calls another
method from UploadAction to save the data to the server.

Services
Application Server (Container) deployed services give us maximum flexibility over
controlling, changing and configuring application logic in a manner independent of the
application control and presentation, on the one hand, while, on the other hand, let us enable
and disable services and functionalities while the application is online. Once we have the
services deployed and running on the Application Server we will call the methods we want
from the EJB3 session beans.

The AQUA Services (every nested component is still an independent service used by its
parent service) are:

• Crawler
• Spider

o CCC (content classification component)
o LSC (link-scoring component)

• TMG (trained module generator)
• LOFT (link-object formation tool & training)
• Information Extraction (IE) Engine

o Statistical techniques IE Engine
o Other IE Engines

• LAM (label management)
• MRM (multilingual resources management)
• MUA (monitor-update-alert)

o MSC (monitoring scheduler)
o DBU (database updater)
o AME (alerting mechanism)

JSF
AQUA web user interfaces have been built with MyFaces implementation of the Java Server
Faces technology and Java facelets17. We created a page template which contained the page
structure, navigation menus, logos for header and footer. Then each new page was simply a

14 http://jboss.com/products/seam
15 http://www.jboss.org/developers/projects/jboss/jbossmx
16 http://www.w3.org/TR/rdf-schema/
17 https://facelets.dev.java.net/

 7

http://jboss.com/products/seam
http://www.jboss.org/developers/projects/jboss/jbossmx
http://www.w3.org/TR/rdf-schema/
https://facelets.dev.java.net/

2005107 MedIEQ D12 - Page 8/36

facelet included in the template. Each new facelet created contains only the JSF and XHTML
elements needed for a certain task. For example the facelet for the file uploading contains
only a file selection control, an upload button and a placeholder for validation messages. This
way we have taken advantage of a templating system to maximize flexibility for our system.
Each facelet renders static and dynamic text messages and sends actions to EJB3 session
beans (stateful and stateless) through jsf buttons and links.
Seam provides us with JSF components, Java annotations for configuring session beans and
linking them with the JSF pages and finally a higher level application context that lets us
manage and track user sessions and workspace easier.

2.2 Internationalization support
The application user and project partner scope spreads over five European countries (Czech
Republic, Finland, Greece, Germany, Spain) and seven different languages (EN, ES, DE, CA,
GR, FI, CZ). It has been a requirement for the AQUA system interface to be internationalised
as a means to enhance usability. The AQUA system overall is also needed to be able to handle
and process content (web resources) in several languages as well. The first requirement is
handled by using the JSF and JBoss Seam mechanisms for internationalizing the interface and
handling Dates and Time zones. The second requirement is handled by using UTF-8 strings
for the internal processing of the content downloaded from the web and saved in the database.
We will explain the mechanism that supports the user interface Internationalization and will
show how a new language can be added without any need to change the application code.
First, we define the languages to support in the application using the ISO639 code18 [5] for
each one, in the configuration file faces-config.xml. We define English as the default
language and all the other, that will be loaded on demand, as supported.

How to Internationalise
The mechanism that handles content Internationalization is provided from JSF and JBoss
Seam. The languages configured at the faces-config.xml are linked with plain text files
containing all the Strings presented to the users with a simple mechanism. As noted, every
string presented to the user is contained in a text file that follows a certain naming convention
as demanded by the Java Localization infrastructure and JSF / JBoss Seam. Each language
should have its own text file filled with lines containing variable names and the Strings each
one represents linked with the '=' character. These variable names will be used by our
program and web pages internally and they are the same for each language. What changes is
the value that must be the message translation in each language. So, for each language we
have a file that follows the naming convention

filename_languageCode.properties
and placed in a directory that is included in the application classpath. For example, the file
labels_el.properties will be holding all the messages in the Greek language and when the user
selects the Greek language option from the drop down box the messages will be read from
that file and be presented to the user. It is important to note that the messages can be reused in
any part of the application and do not contain presentation or layout notation.
For a new language to be added, all that is needed is to have a translation of the terms found
of any labels_languageCoge.properties file to the new language and a simple option to be
added to the faces-config.xml file by the system administrator.

How to change the AQUA user interfaces language
On the user interface, we provide a drop down list control that presents the available
languages for the user interface. The user can select a language, click the button 'Change', and
the application will be reloaded with the user interface presented in the selected language.

18 http://www.loc.gov/standards/iso639-2/php/code_list.php

 8

http://www.loc.gov/standards/iso639-2/php/code_list.php

2005107 MedIEQ D12 - Page 9/36

2.3 Why web-based?
AQUA will have the following 2 types of users:

• the System administrator,
• the Labelling Expert user (a specialist from WMA19 or AQUMED20).

From the Labelling Expert user point of view, they currently use Web interfaces in their daily
work and can be considered familiar with web environments. On the other hand, System
administrators will be able to administer the MedIEQ system from any PC, anywhere.
Several advantages and disadvantages of web interfaces when compared to desktop
application interfaces can be found in developer’s forums and online discussions. Just to
mention the most important:

Advantages:

1. Accessibility: they are accessible from anywhere (any pc with Internet connection),
2. Simplicity: they are simple to learn and remember.
3. Navigation: offer superior navigation and menuing capabilities over desktop

alternatives.
4. Portability: they have superior cross platform portability with low server-side

proprietary lock-in.
5. Statistics: It is easier (ready-made solutions exist) to monitor your users and keep

records of their actions.
6. Context help: Web interfaces make it easy to provide links to extra information about

input fields, errors, posting options, updates, etc.

Disadvantages:

1. Security: Web interfaces have security and reliability vulnerabilities when using
scripting and rich components.

2. Performance: they have runtime performance issues relative to the desktop.
The first disadvantage doesn't much concern us as far as we have a tendency to avoid an
extensive use of rich components. The second is partially addressed by the centralized
solution analyzed below.

Considering the above, we opt for web interfaces.

2.4 Why centralized?
The work flow between applications in MedIEQ involves, in many cases, transfer or re-use of
content (html pages, pdf documents, etc.). To give a few such examples:

• In WCC (web content collection toolkit): The Spider forwards content to CCC
(content classification component);

• In WCC: CFT (corpus formation tool) helps the user to form corpora to be used by
TMG (trained module generator);

• Content collected by WCC is forwarded to IET (information extraction toolkit);
• Resources from MRM (multilingual resources management toolkit) are exploited by

WCC or IET or LAM (label management toolkit);

The case of a distributed architecture, where toolkits or components run in different servers
(e.g. Athens, Prague, Madrid, Helsinki), presents some disadvantages that a centralized
solution doesn't have:

19 http://wma.comb.es/home.php. WMA: Web Mèdica Acreditada (ES), a health quality labelling
agency and a MedIEQ partner.
20 http://www.aqumed.de/. AQUMED: Agency for Quality in Medicine (DE), a health quality labelling
agency and a MedIEQ partner.

 9

http://wma.comb.es/home.php
http://www.aqumed.de/

2005107 MedIEQ D12 - Page 10/36

• the deployment of web services is necessary;
• resources in different machines should be available;
• run-time slowdowns seem probable (reasons: delay in file transfers between

applications caused by slow connections, limited bandwidth, network overload, etc.);
• the system is paralyzed when a component is off (possible reasons: network failure,

server down, etc.);
• the maintenance and the administration of a distributed system involves access to

various servers, handling several user access rights and permissions and the
implementation and maintenance of multiple versioning systems;

• logs and statistics are harder to manage in a distributed solution.

Taking into account the above, between centralized and distributed, we opted for centralized.

 10

2005107 MedIEQ D12 - Page 11/36

3. The architecture

3.1 Which are the AQUA subsystems?
The prototype MedIEQ labelling assisting system AQUA consists of 5 subsystems or toolkits:

1. the label management toolkit (LAM),
2. the web content collection toolkit (WCC),
3. the information extraction toolkit (IET),
4. the multilingual resources management toolkit (MRM),
5. the monitor-update-alert toolkit (MUA).

LAM manages (generates/validates/modifies/compares) quality labels based on the schema
proposed by MedIEQ (for further details see Deliverable D4.1 & D5).

WCC identifies, classifies and collects on-line content relative to a number of machine
readable quality criteria (proposed by the labelling agencies participating in the project) in
seven languages: EN, ES, DE, CA, GR, FI, CZ (for further details see Deliverables D6 &
D7.1).

IET analyses the web content collected by WCC and extracts attributes for MedIEQ
compatible content labels (for further details see Deliverable D8).

MRM gives access to health-related multilingual resources from the UMLS System21
(includes MeSH22, ICD23, etc.); input from such resources is needed in specific parts of both
the WCC and IET toolkits (for further details see Deliverable D10).

MUA handles a few auxiliary but important jobs, like the configuration of monitoring tasks,
the MedIEQ database entries updates, the alerts to labelling experts when important
differences occur during monitoring existing quality labels (for further details see section 4 in
this document).

Finally, all data necessary to the different subsystems as well as to the overall AQUA system
are stored in:

• the MedIEQ repository,
• the MedIEQ database,
• the UMLS database.

(for further details see following subsections 3.3, 3.4 & 3.5 in this document)

3.2 Description of the integrated architecture
In the proposed architecture for our system (Figure 1), we distinguish three levels: the user
interface level, the application level and the storage level.
The user interface level consists of the web interfaces for both the MedIEQ user types: the
labelling expert and the system administrator.
The application level is where all software components are deployed. It actually supports all
functionalities provided by the AQUA interfaces connecting, at the same time, the user with
the data (user preferences, stored web documents and metadata on these documents, linguistic
resources, RDF labels, etc.).

21 http://www.nlm.nih.gov/research/umls/about_umls.html
22 http://www.nlm.nih.gov/mesh/
23 http://www.who.int/classifications/icd/en/

 11

http://www.nlm.nih.gov/research/umls/about_umls.html
http://www.nlm.nih.gov/mesh/
http://www.who.int/classifications/icd/en/

2005107 MedIEQ D12 - Page 12/36

Finally, we have the storage level consisting of
• the MedIEQ repository,
• the MedIEQ database,
• the UMLS database.

Figure 1: The AQUA system architecture

Figure 1 also shows all the possible data flows in AQUA (dashed arrows).

• From WCC to IET: pages and documents collected by WCC, once undergone a first
level extraction by WCC (extraction of metadata 1), are then forwarded to IET for
further processing (extraction of metadata 2).

• From IET to MUA: MUA (actually its component DBU) takes all metadata collected
by both WCC and IET and updates the MedIEQ database.

• From MRM to WCC, IET, LAM: custom vocabularies (consisting of parts of the
linguistic resources supported by MRM) generated by the MedIEQ users through
MRM interface, can be accessed from other toolkits (e.g. WCC, IET and LAM),
where the user may need them.

3.3 The MedIEQ repository
The MedIEQ repository, a storage area in the MedIEQ server, consists of:

• The MedIEQ subversion system area: hosts the MedIEQ versioning system; all
binary and ASCII files needed in the project (software, documentation, the project
deliverables and reports, etc.) are submitted here.

• The MedIEQ runtime area, storing:
o all configuration files needed by the different parts of AQUA,
o all files (e.g. web pages) and metadata needed by the different AQUA toolkits

on runtime (temporal store), and
o those files, from temporal store, being actually exploited; meaning: all those

documents from which useful information has been extracted (permanent
store).

 12

2005107 MedIEQ D12 - Page 13/36

3.4 The MedIEQ database
The MedIEQ database schema was created in Postgresql v8.1.4 database and is part of the
overall AQUA schema. We access the database from our EJB3 Session beans through EJB3
entity beans that map the tables to Java classes. The EJB3 persistence manager called from
Session beans is used to save, update, delete and retrieve data to the database through the
proper mapping entity beans. The schema of the MedIEQ database is provided in Appendix
C. It actually maps the MedIEQ metadata as these are grouped and listed in Appendix B.

The metadata defined in MedIEQ are grouped in the following eight sets:

1. Metadata on a Web resource (doc or site) – General metadata
2. Metadata on File (or Document)
3. Metadata on Extracted Information
4. Metadata on User
5. Metadata on Label
6. Metadata on Corpus
7. Metadata on Alert Profiles
8. Metadata on Tasks

Appendix B gives details on all metadata included in the above eight sets.

Note that in MedIEQ, as a resource it is considered either

• a website (or a part of a website) consisting of several documents (fits to both WMA
and AQUMED), or

• a single document (fits only to AQUMED), which may be one of the following:
o an html page,
o a Word document (.doc),
o a PDF document (.pdf).

3.5 The UMLS database
The UMLS Metathesaurus is a very large, multi-purpose, and multi-lingual vocabulary
database that contains information about biomedical and health-related concepts, their various
names, and the relationships among them. It is built from the electronic versions of many
different thesauri, classifications, code sets, and lists of controlled terms used in patient care,
health services billing, public health statistics, indexing and cataloguing biomedical literature,
and/or basic, clinical, and health services research.
In the Metathesaurus, all the source vocabularies are available in a single, fully-specified
database format. It is organized by concept. Its purpose is to link alternative names and views
of the same concept together and to identify useful relationships between different concepts. It
is necessary to define which Metathesaurus concepts and terms will be available depending
on the use case. Other Metathesaurus concepts and terms will then provide synonyms and
related terms which can help to lead users to the vocabularies selected for a particular use
case.
The UMLS Database can be accessed through the Internet via UMLSKS (UMLS Knowledge
Source Server), but there are some problems accessing remotely to the UMLSKS mainly with
firewalls. It is preferable to create a local copy of the database using the custom tools
provided with the UMLS data. These tools offer database customization so there's not a fixed
schema associated to the UMLS database. The definitive database schema for the MRM
repository will be decided to improve the access to the selected resources of UMLS database
and custom vocabularies.

 13

2005107 MedIEQ D12 - Page 14/36

3.6 A document’s lifecycle
To track a document’s lifecycle, starting from when the document is identified by the
spidering mechanism until when the MedIEQ database has been updated with all relevant data
being extracted from within this document, the schema of the architecture in Figure 1 should
again be our guide.

1. WCC
The WCC mechanism may be initialized either by an AQUA user or by a monitoring task set-
up by an AQUA user but scheduled to run in specific time intervals, e.g. once a month. WCC
identifies and stores the document and some metadata on it (content + metadata 1 in Fig. 1).
The Spider, with the help of the link-scoring component decides which links to follow and
which to ignore. When following a URL, the Spider, with the use of the content classification
component, decides whether the accessed document fits to one or more MedIEQ classification
categories. Fit documents need further processing (information to be extracted) and are
locally stored (along with some initial metadata extracted by the Spider).

2. IET
IET extracts further information from the local copy of the document and additional metadata
slots are filled.

3. MUA
All extracted information, by both WCC and IET, has to be stored in the database; for this,
Database Updater (DBU) is responsible. In case there is some conflict between the new and
possibly existing data (derived from the same resource in a previous run) the AQUA alerting
mechanism (AME) is activated and an alerting e-mail message is sent to the MedIEQ user
who had initialized WCC.

Independently from the above described steps, LAM could be asked to generate a RDF
quality label, by aggregating all the information corresponding to a MedIEQ resource. In fact,
the aggregation is needed only when reviewing an entire or a part of a web site (see definition
of a MedIEQ resource in 3.4), where information from several documents contribute to the
label. In contrary, when reviewing a single document (AQUMED case), no aggregation is
necessary (all data can be found into a single ID database entry).

 14

2005107 MedIEQ D12 - Page 15/36

4. The MUA (Monitor-Update-Alert) toolkit

4.1 The tools of MUA
Below we can see the tools of the MUA toolkit.

MUA (Monitor – Update – Alert)
 |
 |---MSC (monitoring scheduler)
 |
 |---DBU (database updater)
 |
 |---AME (alerting mechanism)

MUA complements the content collection and the extraction toolkits, WCC and IET
respectively. With the help of MSC, a user can create and configure monitoring tasks (see
4.2). The DBU is responsible for the maintenance of the MedIEQ database, providing both
automatic and manual updating mechanisms (see 4.3). Last, AME provides a configurable
mechanism alerting the user in case the monitored resources’ content is updated against the
quality criteria (see 4.4).

4.2 MSC (Monitoring Scheduler)

Description
MSC is a mechanism allowing the AQUA user to create and configure monitoring tasks. A
monitoring task is a cron job. It can be either a searching-for-unlabelled-health-resources or a
reviewing-health-resources task. To configure a task, MSC needs the information listed in
Appendix B, paragraph 8. The AQUA user interface of MSC is shown in section 5, fig. 3.

Specifications

a. What is a MedIEQ task: a task is a cron job that runs in specified time intervals,
which may be week | month | year.

b. A task’s owner: a task is always bound to a specific user, its creator; he only has the
right to re-configure, temporarily cease or completely remove the task.

c. Active/inactive task: a task may be set inactive, which means that although we may
be between its start and end dates, the task is not running.

d. A task’s base directory: all configuration, initialization, output files of a specific task
are stored in its base directory, a directory in the local disk automatically assigned by
the system.

Actions of the MSC
(Group 1 - Actions provided to the labelling expert user through the expert interface)
MA1. Create a new task (a search-t which means a searching-for-unlabelled-health-resources
or a review-t which means a reviewing-health-resources task), either from scratch or by
loading the configuration options from another, existing task.
MA2. Edit existing tasks: rename, reschedule, remove, etc.
MA3. When for search-t, import terms from MRM,
MA4. When for review-t, import URLs from Crawler’s results.
(Group 2 - Actions provided to the system administrator through the sysAdmin interface)
There is no such action.

 15

2005107 MedIEQ D12 - Page 16/36

4.3 DBU (Database Updater)

Description
DBU is the AQUA mechanism responsible for the maintenance of the MedIEQ database and
can work in two ways: automatic and manual. On the one hand, DBU automatically inserts
new entries taking the output of both WCC and IET. Alternatively, an AQUA user may
manually insert new data in the MedIEQ database, update contained information and also
remove unwanted entries. Manual updates are restricted to information included in MedIEQ
RDF labels.
Additionally, in automatic updates, DBU compares the data to-insert with existing ones
(corresponding to the same resource) and marks possible differences. Then, when these
differences are important enough24, DBU triggers the reaction of AME.

Specifications

a. Automatic database updates: the biggest part of the MedIEQ database is maintained
and updated without any human intervention (data coming from the AQUA tools and
components are automatically handled by DBU).

b. Manual database updates: DBU provides web forms through which a labelling expert
can insert new data and update or remove existing database entries. However, given
that manual database updates are allowed only to information included in RDF labels,
these forms can be found under “Label management” in AQUA web interfaces (see
Fig. 5).

c. Differences between new and existing data: once a difference identified, DBU keeps
pointers to the conflicting entries into ConflictingData table (see Appendix B). When
those differences are important (an issue to be resolved), DBU calls AME in action.

Actions of the DBU
(Group 1 - Actions provided to the labelling expert user through the expert interface)
DA1. Update information contained in the MedIEQ database.
DA2. Remove unwanted entries.
(Group 2 - Actions provided to the system administrator through the sysAdmin interface)
DA3. Define differences importance threshold.

4.4 AME (Alerting Mechanism)

Description
AME is the AQUA alerting mechanism. When AQUA reviews/monitors a health resource,
information relevant to the quality criteria is extracted from its contents. In case of conflicts
between the recently extracted and possibly existing data (extracted from the same resource in
previous runs) the AQUA alerting mechanism (AME) is activated and an alerting e-mail
message is sent to the MedIEQ user who had initialized the review/monitoring process.

Specifications

a. Alert profiles: AME allows various alert profiles per user (stored in Table
AlertProfiles of the MedIEQ database). A user can modify and/or remove only the
profiles created by him.

24 This is an issue still under discussion between the MedIEQ partners. An approach we examine is the
definition of an importance threshold (which eventually needs to be “estimated” through real use and
evaluation). The idea is to calculate the ratio of conflicting to non-conflicting cases (among all
conflicting cases from a given resource) and determine their overall importance by comparing this
number to the importance threshold. This threshold should be possibly defined by the system
administrator only.

 16

2005107 MedIEQ D12 - Page 17/36

b. Configuring an alert profile: an alert profile contains the alerting preferences
specified by its owner, which include the e-mail address to receive alerts, the alerting
frequency and the exact parts of information to be included in an alert message (the
resource URL, the criteria where differences occur, the URLs where conflicting
information was identified, etc.). A preview of the interface for the creation /
configuration of alert profiles is given in Fig. 6.

Actions of the AME
(Group 1 - Actions provided to the labelling expert user through the expert interface)
AA1. Create a new alerts profile.
AA2. Edit/update an existing alerts profile.
(Group 2 - Actions provided to the system administrator through the sysAdmin interface)
There is no such action.

 17

2005107 MedIEQ D12 - Page 18/36

5. User manual

5.1 The integrated system use case: review / monitor a health resource
An actor is a user; it’s anyone who can use the AQUA system and/or its different toolkits and
components. An actor can be either a user or a program (S/W). Furthermore, we distinguish
two interaction levels:

• High-level Interactions [-H-]: where actors directly interact with each other. E.g.
toolkits interact with other toolkits, the database and the cron jobs.

• Low-level Interactions [-L-]: within this level we group the interactions between
components inside a toolkit.

Actors
[-H-] Labelling expert, WCC, IET, MUA
[-L-] Spider, CCC, LSC, extraction engines, DBU, AME
Interactions
[-H-] The labelling expert wants to review or monitor a web resource against specific quality
criteria. In case of an immediate review, the system is activated, by the labelling expert, via
the AQUA UI (see Fig. 3). In case of a scheduled monitoring task, the system is activated by
MSC. An activation of the AQUA system signifies that various components from different
toolkits will run one after the other. First, WCC is called.
[-L-] WCC calls the Spider to collect, by storing locally, on-line health-related content. The
user specifies a number of parameters like the web resources to be spidered, the preferred
languages of the required content, the accepted content type(s), the labelling criteria etc.
[-L-] The Spider runs: a) internal (same host) links are collected and scored (LSC is called)
and the most promising followed, b) every visited page’s content is classified (CCC is called)
and fit (to specified criteria) pages are locally stored.
[-H-] IET is called: once finished, WCC dispatches a relevant message to IET.
[-L-] IET runs: IET passes the collected content successively from the extraction engines it
disposes. Extracted information is forwarded to MUA.
[-H-] MUA is activated: it calls DBU and, possibly, AME.
[-L-] DBU updates the MedIEQ database.
[-L-] In case of changes against the quality criteria, AME alerts the labelling expert.

5.2 What a labelling expert can do from the AQUA interface?
Figure 1 shows the home page of the AQUA web interface for the labelling expert.

The navigation menu on the left is divided in three submenus (“My account”, “Quality
labelling”, “The AQUA system”), each one giving access to different information and
functionalities. We are going here to focus on “Quality labelling”, as its links point straight to
the heart of the AQUA system itself.

 18

2005107 MedIEQ D12 - Page 19/36

Figure 1: Home page of AQUA

Quality labelling > My quality labels
Here, the labelling expert sees a table listing the most recent URIs he/she has reviewed (also,
links to previous listings are given at the bottom of the page, below this table, see fig.2).
‘COMPL’ indicates a completed quality label (where all label’s attributes have a value) while
‘PEND’ indicates incomplete (pending) labels.
A pending label for a URI usually means that, when the AQUA system ran for this URI, it
didn’t find all values for all the label’s attributes25 (however, it may also mean that the
labelling expert while manually filled some of the attributes, left the rest unfilled).

25 In any case, no one could expect a labelling assisting system to do all the work alone, without any
human intervention. AQUA is supposed to identify and propose values for only a subset of the quality
criteria a label consists of (those being machine processable) assisting thus the manual work of
labelling experts.

 19

2005107 MedIEQ D12 - Page 20/36

Figure 2: My quality labels

Quality labelling > Tasks management
From this page (see fig.3) the labelling expert manages two major task-groups:

A) Search for new unlabelled web resources with health-related content, what is also called
“Focused crawling”, and
B) Review those unlabeled resources and/or monitor known, labelled ones.

In (A) the user can configure the MedIEQ search mechanism (the Crawler) by specifying the
preferred language of the identified resources. Additionally, there is a second screen
providing a number of other controls on how/where to search:

a) Has the Crawler to query known search engines? And if yes:
• Which (from available) search engines?
• After how many results the queries should be interrupted?
• With which sets of keywords to query the search engines?
• (and many other parameters)

b) Has the Crawler to use Web directories? And if yes:
• Which Web directories to explore? and
• How to explore them, by parsing down the entire directory tree or merely collect

the containing URIs?
c) Is there a list of URIs to include in search results (white list)? or

 20

2005107 MedIEQ D12 - Page 21/36

d) Is there a list of hosts to ignore (black list)?

Figure 3: Tasks management

In (B) (“Review / monitor”, fig. 3) the user can either access the results of the Crawler and
start a reviewing or a monitoring task, or propose his/her own URIs to review or to monitor.
In both cases, any URIs (if not set to be immediately reviewed) can be either added in an
existing monitoring task or the user can create and configure a new monitoring task dedicated
to these URIs (see fig. 4).

 21

2005107 MedIEQ D12 - Page 22/36

Figure 4: Create a new monitoring task

Quality labelling > Labels management
The form that shows up (see fig.5) is split to four parts the first three involve user input for the
actual label data and the last options for saving label. The Label Metadata sections accept the
following type of input for each field:
Organization Name any string

Mailbox address valid email address of the form
auser@adomain.com

Homepage , Authority for a string representing a valid url e.g.
http://mydomain.com

Issued date , Modification date date format DD/MM/YYYY

 22

mailto:auser@adomain.com
http://mydomain.com/

2005107 MedIEQ D12 - Page 23/36

Figure 5: Generate a label

The Label Restrictions section holds a list of URLs that this label is restricted for. Inserting
URLs to the input box and by pressing “Add new URI” button a list over the input box is
populated. This list has an edit option to let the user change a URL. Once edit is clicked the
URL is editable, the user can refill it, deselect the edit box and click the “Update Hosts”
button to update the list.
Label Properties section contains a form that changes its content dynamically depending on
the user selection. There is a tabbed pane with two links currently. Each link represents a
different group of properties, clicking on each link displays the proper form.
The fourth part contains a select combo box that lets the user specify the file format he/she
wishes to save the label; next to the combo box there is a text field for specifying the file
name. Clicking “Clear label” clears all the fields in the form and “Create label” creates an
RDF label, saves a copy to the server and lets the user download his/her own copy locally.

 23

2005107 MedIEQ D12 - Page 24/36

Quality labelling > Alerts management
Here, the user can configure his/her preferences concerning the alerts from AQUA (see fig.6).
First, he/she has to fill the e-mail field (note that a user can give a different e-mail address for
all communication / administration issues – through “My account” - and a second one for the
AQUA alerts – through this form). Then, the user specifies the required structure of the
alerting messages and saves its preferences. It is possible now to see a sample alert message
in the text area at the bottom of the page by clicking on the “preview” button (if not happy,
changes preferences, previews again and so on).

Figure 6: Alerts management

 24

2005107 MedIEQ D12 - Page 25/36

Quality labelling > Formation of corpora
This page will provide the UI for the MedIEQ corpus formation tool or CFT1 (the page is
currently under construction as the early version of CFT1 has an AWT (Abstract Window
Toolkit) interface; however, it is planned to be available soon).
With the aid of CFT1, the user forms collections of web pages / documents, stored in different
directories, corresponding to the different categories specified. Such a collection is called a
corpus. The corpora are necessary to train and test ML algorithms and, therefore, produce
content classification and link scoring models (needed by the Web content collection toolkit).

Quality labelling > Linguistic resources
This page will give access to the management of the available (for the purposes of MedIEQ)
multilingual resources (such as MeSH, ICD, etc.) This page also is currently under
construction.

Quality labelling > The quality criteria
Finally, here we can see the first set of quality criteria proposed by the labelling authorities
participating in MedIEQ.

5.3 What a system administrator can do from the AQUA interface?
Although the AQUA interface for the system administrator is still under development, what
he will be able to do is well defined. The following table enumerates the actions for the
system administrator as these are defined in Deliverables D6, D8 and D10; therefore, for more
details on them, refer to these documents.

WP Toolkit Actions
WP5 WCC Generate a CCM
 Generate a LSM
WP6 IET Derive a new Extraction model (or edit existing)
 Add extraction knowledge to an Extraction model
 Add human expert extraction knowledge
 Add extraction knowledge from training data
 Define, run and evaluate an extraction task
WP7 MRM Manipulate the available formats
 Manipulate the available encodings
 Manipulate the available languages
WP8 MUA Define differences importance threshold

 25

2005107 MedIEQ D12 - Page 26/36

6. Adapt AQUA to a new language: estimating the cost
The adaptation to a new language is a two-step process:
Step 1: Adapt the AQUA web interfaces to the new language;
Step 2: Adapt the AQUA tools from all the participating toolkits to properly handle
data in the new language.

We are here going to estimate how expensive such an adaptation may be in terms of
human work.

Regarding the 1st step, as described in 2.2, the mechanism that handles the web
interface Internationalization is provided from JSF and JBoss Seam. Plain text files
contain all the Strings presented to the users. Each language has its own text file filled
with lines containing variable names and their value Strings (messages), linked with
the '=' character. Variable names are the same for each language; what changes is the
value that is the message translation in each language and does not contain any
presentation or layout notation. Variable names are used by our system internally to
easily alter interfaces views across the supported languages. Therefore, when support
of a new language is required, all that is needed is to have the translation of all
variables values into the new language. As noted in the “1st Interim report: Technical
Implementation Report”, Appendix IV.1, to translate all language files in a new
language, about 7 person days are estimated as necessary.

As for the 2nd step, AQUA’s open architecture requires that several components from
all the AQUA subsystems will run as independent services deployed in the application
server where the system runs. A proper abstraction layer has been created to enable
the system to accept, integrate and use such new services as alternative
implementations of existing ones, e.g. any web crawler respecting MedIEQ Crawler
specifications could easily replace the proper AQUA Crawler. Such modularity needs
led us to specify tools having the minimum possible dependence from speaking
languages. We also opted for UTF-8: it is used in every internal process where text is
needed, in every downloaded document, in all information extracted and data saved in
the MedIEQ database.

Therefore, to estimate the work needed in tools’ customization to a new language, all
we need is to aggregate (again from the “1st Interim report: Technical Implementation
Report”) the efforts reported for each toolkit.

LAM: 2-3 PDs
Crawler: 3-4 PDs
CFT: 1 PD
Spider: 1 PD
LSC: 0 PDs (language independent)
CCC: 0 PDs (language independent)
TMG: 0 PDs (language independent)
IET: 5 PDs
Ex: 30 PDs
MRM: 0 PDs (language independent)
MUA: 0 PDs (part of AQUA user interfaces language customization)
TOTAL: 44 PDs

 26

2005107 MedIEQ D12 - Page 27/36

The above calculation does not include the effort required to form (using the CFT and
the LOFT tools) the necessary training/testing corpora in the new language, which is
estimated at about 10 PDs.

Concluding, the migration of the AQUA interfaces and all the AQUA components in
a new language would require:
AQUA user interfaces: 7 PDs
AQUA tools: 44 PDs
Formation of corpora: 10 PDs
TOTAL: 61 PDs

It has to be mentioned that the above estimations are made upon the 1st version of the
tools and the user interfaces. However, foreseen tool improvements may further
shorten that time.

 27

2005107 MedIEQ D12 - Page 28/36

7. Concluding remarks

The development and implementation of the overall MedIEQ system took into account
specific design requirements such as:
1. Modularity: modules of the original system should be easily replaceable by other

modules (respecting certain specifications), possibly developed outside MedIEQ, who
would do similar work with the original modules.

2. Internationalization: both user interfaces and software of the MedIEQ system should
ensure support for multiple languages.

3. Accessibility: the MedIEQ users (mainly labelling experts from labelling agencies)
should access MedIEQ system easily, at anytime and from anywhere; what else if not a
web based system would better support that?

4. Performance: requiring both run-time performance and effectiveness in the maintenance
and control of the MedIEQ system, we opted for a centralized solution.

Therefore, the resulting architecture is open and the foreseen integrated system (its 1st version
is due for M18 or June 2007) will be modular (a design requirement we repeatedly support in
all our documents already since the MedIEQ project proposal).

Additionally, customization of the MedIEQ system to new languages, as this was calculated
for its forthcoming 1st version, is not too expensive in terms of human work: 61 PDs (person
days) are estimated to be enough to totally adapt all interfaces and software tools into a new
language. This estimation will be evaluated in practice when customising the MedIEQ
systems to the rest languages of the project (English and Spanish are to be supported in the 1st
version).

The next steps in the development of the MedIEQ system are the following:

• Implement the user interfaces for the system administrator;
• Properly join all tools functionalities with relevant user interface controls;
• Resolve possible communication malfunctions;
• Tackle performance issues and suggest usability improvements taking into account

results from scheduled future evaluation sessions and feedback from labelling experts
having tested the MedIEQ system in practice.

 28

2005107 MedIEQ D12 - Page 29/36

APPENDIX A: AQUA toolkits & tools

In the table below, we see all AQUA toolkits and tools per Work Package (WP). The
following legend explains all toolkits acronyms.

WP TOOLKIT TOOL ABBREV. TOOL DESCRIPTION

RM Resources Manager
Generic parser Generic parser
Specific parsers Specific parsers
Browser Browser

WP7 MRM

Converter Converter
Crawler Crawler
Spider Spider
CFT1 and CFT226 Corpus Formation Tools
LOFT27 Link Objects Formation tool
TMG Train Module Generator
CCC Content Classification Component

WP5 WCC

LSC Link Scoring Component
DMM Data Model Manager
TM Task Manager
AT Annotration tool
Preprocessor Preprocessor
NER (IEEngine A) Named Entity Recognition
EXO (IEEngine B) Extraction Ontologies
ML (IEEngine C) Machine Learning
STA (IEEngine D) Statistical methods
Integrator Integrator

WP6 IET

Visualiser Visualiser
MSC Monitoring scheduler
DBU Database updater

WP8 MUA

AME Alerting mechanism
RDF-G RDF generator WP4 LAM
RDF-C RDF comparator

Toolkits legend
MRM: Multilingual Resources Management
WCC: Web Content Collection
IET: Information Extraction Toolkit
MUA: Monitor - Update - Alert
LAM: Label Management

26 There are two corpus formation tools:
- CFT1 developed by NCSR (available through AQUA) and
- CFT2 or Scrapbook, a plug-in for Mozilla (available at http://amb.vis.ne.jp/mozilla/scrapbook/)
27 LOFT forms the link objects necessary for training / testing the link scoring models (needed for the
link scoring mechanism employed in spidering).

 29

2005107 MedIEQ D12 - Page 30/36

APPENDIX B: MedIEQ metadata

1. Metadata on Web resources (doc or site) – General metadata
MedIEQ database > Table: Webs
WebID (PK) An id automatically assigned by the system
WebType (< WebTypeID from WebTypes) [doc | site]
WebCategory (< WebCategoryID from WebCategories) [Government

Organization | Healthcare service provider | Media and
publishers | Pharmaceutical company / retailer | Universities
/ research institutions | Scientific or professional
organizations | Patient organizations / self-support groups |
Private individual]

WebBaseDir The path to a local directory containing all files stored from
the specific web, as well as other files with metadata
information and/or configuration files

WebURI The URI of the Web; may be the URI of an entire (e.g.
http://www.foo.org/)or a part of a web site (e.g.
http://www.foo.org/health) or URI of a webpage or
document (e.g. http://www.foo.org/health/abc.html)

WebTitle The title of the Web
DateOfCreation The date the Web was first introduced in AQUA

2. Metadata on Files (or Document)
MedIEQ database > Table: Files
FileID (PK) An id automatically assigned by the system
FilePurpose (< PurposeTypeID from PurposeTypes) [ie | cc | ls]
FileType (< FileTypeID from FileTypes) [text/html | doc | pdf]
FileContentType (< ContentTypeID from ContentTypes) [about | advert |

article | contact | health | policy | vc]
FileLanguage (< LanguageID from Languages) [en | es | gr | de | cz | ca |

fi]
FileParent (< FileID from Files – self-relationship)
FileName The filename given by the system when storing a file
FileLocation The location of the file in the local storage
FileEncoding The original encoding of the file
FileContentHash A hash (e.g. SHA 1) is calculated corresponding to the

original status of the content of a file
WebURI File’s web address (e.g. http://abc.com/10/1.html)
BaseURI File’s base address (e.g. http://abc.com/10/)
HostURI File’s host (e.g. http://abc.com/)

3. Metadata on Extracted Information
MedIEQ database > Table: ExtractedInformation
XID (PK) An id automatically assigned by the system
XFile (< FileID from Files)
XCategory (< XCategoryID from XCategories) [PurposeOfWeb |

PurposeOfOwner | TargetAudience |
ProvidedInfoLimitationDisclaimer | OwnerOrganization |
OwnerOrganizationType | WebResponsible | Webmaster |
MeSHTerms | MeSHTopics | VCServicePresent |
VCResponsible | VCLimitationDisclaimer |
AdvertisingPresent | AdvertisingSeparated |

 30

2005107 MedIEQ D12 - Page 31/36

AdvertisingPolicy | AdvertisingStatement |
OtherSealsPresent | OtherSealsList | BibliographyPresent |
PublicationDate | LastModifiationDate | Author |
ProvidedInfoResponsibilityDisclaimer |
FundingSourcesClear |
FundingSourcesLimitationDisclaimer |
SponsorOrganization | SponsorOrganizationType |
CPSPolicyPresent | CPSPolicyOnPersonalData |
AccessibilityLevel]

XType (< XTypeID from XTypes) [freetext | personName |
organizationName | organizationType | address | region |
city | country | phone | fax | email | Boolean | date]

XStatus (< StatusTypeID from StatusTypes) [pending | completed]

XDate The date of the information extraction
XData The extracted information
XStart The starting offset of the extracted information
XEnd The ending offset of the extracted information

4. Metadata on Users
MedIEQ database > Table: Users
UserID (PK) An id automatically assigned by the system
UserType (< UserTypeID from UserTypes) [admin | expert | aqua]
OrganizationName (<OrganizationNameID from OrganizationNames) [aqumed

| wma | other]
UserName The username specified by the user
UserPass The password specified by the user
UserFirstName User’s real first name
UserLastName User’s real last name
UserContactEmail User’s contact e-mail address
UserBaseDir The path to a local directory (automatically created by the

system) containing all information (other than the
information of an entry of this table, e.g. preferences files,
configuration files etc.) corresponding to the specific user

5. Metadata on Labels
MedIEQ database > Table: Labels
LabelID (PK) An id automatically assigned by the system
LabelCreator (< UserID from Users)
LabelStatus (< StatusTypeID from StatusTypes)
LabelInitiationDate The date the user initiated the label
LabelCompletionDate The date the user completed the label
LabelHash The hash of the label

6. Metadata on Corpora
MedIEQ database > Table: Corpora
CorpusID (PK) An id automatically assigned by the system
CorpusCreator (< UserID from Users)
CorpusPurposeType (< PurposeTypeID from PurposeTypes) [cc | ls]
CorpusType (<ContentTypeID from ContentTypes) [about | advert |

article | contact | health | policy | vc]
CorpusLanguage (<LanguageID from Languages) [en | es | gr | de | cz | ca | fi

]

 31

2005107 MedIEQ D12 - Page 32/36

CorpusName A name given by the user
CorpusDescription A description given by the user
CorpusCategories The categories of the corpus (e.g. pos|neg)
CorpusBase The path to the local dir containing everything related to the

specific corpus
CorpusSize The size of the corpus (number of sample files)
CorpusDistribution The distribution in the different categories (e.g. pos=350,

neg=450)
CorpusCreationDate The date the corpus was formed
CorpusLastModificationDate The date the corpus was last modified

7. Metadata on AlertProfiles
MedIEQ database > Table: AlertProfiles
AlertProfileID (PK) An id automatically assigned by the system
AlertProfileCreator (< UserID from Users)
AlertPeriod (<PeriodTypeID from PeriodTypes) [week | month | year]

AlertEmail User’s alert e-mail address
AlertStartDate The date the alert profile becomes activate
AlertMessageParameters The parameters an alert message should contain (will

probably become a separate table)

8. Metadata on Tasks
MedIEQ database > Table: Tasks
TaskID (PK) An id automatically assigned by the system
TaskOwner The user who created the task; UserID from Users table
TaskPeriod The time interval between consecutive runs (PeriodTypeID

from PeriodTypes table, value range: week | month | year)
TaskName The name the user gave to the task
TaskDescription The description of the task
TaskBaseDir A directory in the local disk (automatically created by the

system) containing all those files (configuration, task
outputs, etc.) needed for the task

TaskType The type of the task: either a searching-for-unlabelled-
health-resources or a reviewing-health-resources task
(TaskTypeID from TaskTypes table, value range: search-t |
review-t)

TaskCreationDate The date when the task was created
TaskStartDate The date the task is scheduled to initialize
TaskEndDate The date the task is scheduled to cease
TaskIsActive Whether the task is active or not

The following are auxiliary tables, containing the restricted values for several fields of the
above 8 tables.

WebTypes
doc
site

WebCategories
Government Organization
Healthcare service provider

 32

2005107 MedIEQ D12 - Page 33/36

Media and publishers
Pharmaceutical company / retailer
Universities / research institutions
Scientific or professional organizations
Patient organizations / self-support groups
Private individual

AudienceTypes
prof
adult
child

SealTypes
hon
wma
pwmc
urac
eHealth trust-e
afgis
aqumed
omni
who

AccessibilityLevels
A
AA
AAA

FileTypes
text/html
doc
pdf

ContentTypes
about
advert
article
contact
health
policy
vc

PurposeTypes
ie
cc
ls

StatusTypes
pending
completed

LanguageTypes
en

 33

2005107 MedIEQ D12 - Page 34/36

es
gr
de
cz
ca
fi

UserTypes
expert
admin
aqua

OrganizationNames
aqumed
wma
other

OrganizationTypes
la
other

PeriodTypes
week
month
year

TaskTypes
Search-t
Review-t

XCategories
PurposeOfWeb
PurposeOfOwner
TargetAudience
ProvidedInfoLimitationDisclaimer
OwnerOrganization
OwnerOrganizationType
WebResponsible
Webmaster
MeSHTerms
MeSHTopics
VCServicePresent
VCResponsible
VCLimitationDisclaimer
AdvertisingPresent
AdvertisingSeparated
AdvertisingPolicy
AdvertisingStatement
OtherSealsPresent
OtherSealsList
BibliographyPresent
PublicationDate
LastModifiationDate

 34

2005107 MedIEQ D12 - Page 35/36

Author
ProvidedInfoResponsibilityDisclaimer
FundingSourcesClear
FundingSourcesLimitationDisclaimer
SponsorOrganization
SponsorOrganizationType
CPSPolicyPresent
CPSPolicyOnPersonalData
AccessibilityLevel

XTypes
organizationName
organizationType
personName
address
region
city
country
phone
fax
email
freetext
boolean
date

 35

2005107 MedIEQ D12 - Page 36/36

APPENDIX C: The schema of the MedIEQ database

 36

	
	 Executive summary
	 1. Introduction
	 2. Design specifications
	2.1 Making the AQUA system modular
	2.2 Internationalization support
	2.3 Why web-based?
	2.4 Why centralized?

	 3. The architecture
	3.1 Which are the AQUA subsystems?
	3.2 Description of the integrated architecture
	3.3 The MedIEQ repository
	3.4 The MedIEQ database
	3.5 The UMLS database
	3.6 A document’s lifecycle

	 4. The MUA (Monitor-Update-Alert) toolkit
	4.1 The tools of MUA
	4.2 MSC (Monitoring Scheduler)
	4.3 DBU (Database Updater)
	4.4 AME (Alerting Mechanism)

	 5. User manual
	5.1 The integrated system use case: review / monitor a health resource
	5.2 What a labelling expert can do from the AQUA interface?
	Quality labelling > My quality labels
	Quality labelling > Tasks management
	Quality labelling > Labels management
	 Quality labelling > Alerts management
	 Quality labelling > Formation of corpora
	Quality labelling > Linguistic resources
	Quality labelling > The quality criteria

	5.3 What a system administrator can do from the AQUA interface?

	 6. Adapt AQUA to a new language: estimating the cost
	 7. Concluding remarks
	 APPENDIX A: AQUA toolkits & tools
	 APPENDIX B: MedIEQ metadata
	APPENDIX C: The schema of the MedIEQ database

