

Coyote-1TM User’s Manual
Version 1.1

August 20, 2008

WARRANTY

OpenStomp™ warrants the Coyote-1 against defects in materials and workmanship for a period of 60

days from receipt of product. If you discover a defect, OpenStomp™. will, at its option, repair or replace

the merchandise, or refund the purchase price. Before returning the product to OpenStomp™, call for a

Return Merchandise Authorization (RMA) number. Write the RMA number on the outside of the box

used to return the merchandise to OpenStomp™. Please enclose the following along with the returned

merchandise: your name, telephone number, shipping address, and a description of the problem.

COPYRIGHTS AND TRADMEARKS

This documentation is copyright © 2008 by Eric Moyer. By downloading or obtaining a printed copy of

this documentation you agree that it is to be used exclusively with OpenStomp™ products. Any other

uses are not permitted and may represent a violation of OpenStomp™ copyrights, legally punishable

according to Federal copyright or intellectual property laws. Any duplication of this documentation for

commercial uses is expressly prohibited by OpenStomp™.

DISCLAIMER OF LIABILITY

Eric Moyer and OpenStomp™ are not responsible for special, incidental, or consequential damages

resulting from any breach of warranty, or under any legal theory, including lost profits, downtime,

goodwill, damage to or replacement of equipment or property, or any costs of recovering,

reprogramming, or reproducing any data stored in or used with OpenStomp™ products. Eric Moyer and

OpenStomp™ are also not responsible for any personal damage, including that to life and health,

resulting from use of any of our products. You take full responsibility for your OpenStomp™ application,

no matter how life-threatening it may be.

Dedication

This project is dedicated to the memory of my dear friend Larry Altneu, who died immediately after

crossing the finish line in the 2007 Orange County Marathon.

Larry was a terrific mentor. He significantly shaped the Engineer I am today, and introduced me to many

of the people involved in manufacturing this device. Hardly a week goes by that I don’t use some

Engineering trick I learned from him.

Engineers tend to live in the future. We make long term plans, dream new things, and force them into

existence. When this world occasionally reminds us that we are not in control,

it comes as a bit of a shock.

Thanks

First of all, I have to thank my awesome wife Krisula for sticking by me. This project cut into my free

time in a major way for the greater part of a year. She knew it was something I just had to do, and she

supported me all the way.

A huge thanks to Steve Wozniak, both for creating the Apple computer and for writing the book “iWoz”.

I had the audio version of iWoz playing in my car the night I conceived the Coyote-1 and it was

instrumental in inspiring me. Whenever this project lost momentum I’d start listening to iWoz again and

it would fire me back up. Now that I’m done I’ve listened to that book at least ten times. It still gets me

pumped to make stuff.

Revision History

1.0 Aug 7, 2008 Initial Release

1.1 Aug 20, 2008 Add Expansion Port Section

Elaborate on Control Socket Value to Time Conversions

Table of Contents

Chapter 1 Introduction ..8

Chapter 2 Licensing Summary ..9

Chapter 3 Recommended Reading ... 10

Propeller Documentation ... 10

Propeller Information ... 10

Digital Signal Processing .. 10

Chapter 4 Recommended Tools .. 11

Chapter 5 Software Installation .. 12

Chapter 6 Overview ... 13

Chapter 7 Using the Pedal .. 14

Connecting Equipment ... 14

Boot ... 15

Controlling a Patch: Knobs ... 15

Controlling a Patch: Buttons .. 15

Switching Patches ... 16

Reformatting the EEPROM .. 16

Patch / Module Load Errors .. 16

Real Time Error: Output Clipping .. 17

Real Time Error: Time Overflow .. 17

Chapter 8 Restoring the Factory Configuration ... 18

Chapter 9 Using OpenStomp
TM

 Workbench .. 20

Connecting to the Coyote-1 .. 20

System Resources ... 21

Knobs ... 21

Buttons .. 21

LEDs ... 21

Audio ... 22

Gain ... 22

Loading a Patch ... 22

Working in the Editor .. 22

Zoom and Pan ... 22

Moving Objects ... 22

Adding Effects to a Patch .. 23

Connecting Objects ... 23

Modifying Static Assignments ... 24

Main Menu Commands .. 24

Module List Menu Commands .. 25

Patch List Menu Commands ... 25

Conduit Routing Restrictions .. 26

Chapter 10 Under the Hood ... 27

Block Diagram ... 27

Software Architecture ... 28

Propeller Pin Assignments .. 29

MEMBUS Interface .. 29

PLD Register: CCR (CODEC Control Register) .. 29

PLD Register: GPIO0 (General Purpose I/O 0) ... 30

Chapter 11 Creating Custom Effects Modules ... 31

Socket Types ... 32

The Module Descriptor ... 32

A Word about Socket Ranges .. 33

The Module Code .. 33

Pointer Loading ... 34

Initialization ... 34

The Synchronization Loop ... 34

The Bypass Block ... 35

Effect Processing ... 35

Data Declaration ... 35

The Effects Module Creation Process ... 35

Linking an Effect Module as a Static Module .. 36

Recompiling and Loading the O/S ... 36

Useful Coyote-1 Control Socket Value to Time Conversions .. 37

Chapter 12 Working with the Expansion Port ... 39

Overview ... 39

Software Paradigm .. 39

Tips .. 39

On the remote board .. 39

On the Coyote-1 .. 40

Chapter 13 Error Codes .. 41

Chapter 14 Glossary of Terms .. 42

Chapter 15 Module Descriptor format .. 43

Chapter 16 Module Signature Format .. 44

Chapter 17 Module Control Block format ... 46

Chapter 18 Epilogue .. 47

C

h
a

p
te

r
1

 I
n

tr
o

d
u

ct
io

n

8

Chapter 1 Introduction

$DO || ! $DO ; try

try: command not found

- jma5t3r_y

Welcome to my crazy little world. Thanks for joining me.

You have in your hands the product of many late nights, much day dreaming, some speculative

hunches, a surprisingly large volume of caffeine, and a willingness to take some risks. If I’d known quite

how much work it would be I might not have started, but by the time I realized what I’d gotten into it

was already far too late to quit. I hope you enjoy it as much as I do. Personally, I think it’s pretty darn

cool.

Like many of you, I’ve dreamed about the possibility of an open source audio effects processor for a

long time. A lot of different things kept me from starting until the day I thought of creating one around

the Propeller processor, and that idea was so intriguing it dragged me kicking and screaming through

just over a year of design. I really had no choice. I just had to do it.

C

h
a

p
te

r
2

 L
ic

e
n

si
n

g
 S

u
m

m
a

ry

9

Chapter 2 Licensing Summary

The Coyote-1 project consists of many different assets, released under a mix of different licensing

arrangements. The following is a summary of the release licenses:

Asset Source License

Coyote-1 O/S Source Code Open GPL 3

Coyote-1 Effects Modules Source

Code (and associated Dynamic

Modules files (*.c1m))

Open GPL 3

Coyote-1 Schematics (and

associated Printed Circuit Board)

Provided Copyright. Reproduction & Redistribution

Prohibited.

Coyote-1 User Manual Provided Copyright. Reproduction & Redistribution

Prohibited.

Open Stomp™ Workbench Closed Copyright. Reproduction & Redistribution

Prohibited.

Patches N/A Creative Commons 3.0 Attribution Non-

commercial (by-nc)

Coyote-1 Hardware N/A Copyright. Reproduction & Redistribution

Prohibited.
This list is for reference purposes only. The licensing arrangements for each asset are declared on or within the assets.

C

h
a

p
te

r
3

 R
e

co
m

m
e

n
d

e
d

 R
e

a
d

in
g

10

Chapter 3 Recommended Reading

Propeller Documentation

The Propeller Manual

Describes the architecture and operation of the Propeller chip, the use of the Propeller Tool (i.e.

the Propeller IDE), the SPIN language, and the Propeller Assembly language. Avalable from the

the “Help” menu within the Propeller tool, or from Parallax’s website www.parallax.com .

Propeller Information

 The Propeller Forum

Parallax maintains a forum for the Propeller chip here:

http://forums.parallax.com/forums/default.aspx?f=25

deSilva's Machine Language Tutorial

A growing reference of information about programming the Propeller in assembly language.

The document is maintained on the forums here:

http://forums.parallax.com/forums/default.aspx?f=25&m=209237

Programming resources

A collection of various Propeller Programming resources is maintained on the forums here:

http://forums.parallax.com/forums/default.aspx?f=25&m=204210

Digital Signal Processing

General Introduction

A pretty good and not overly mathematical introduction to DSP can be found here:

http://www.dsptutor.freeuk.com/

C

h
a

p
te

r
4

 R
e

co
m

m
e

n
d

e
d

 T
o

o
ls

11

Chapter 4 Recommended Tools

PASD (Propeller Assembly Sourcecode Debugger)

PASD is a fantastic source level debugger tool for Propeller assembly code, written by Andy

Schenk. Around August of 2007 I realized that a source level assembly debugger would be

immensely useful to Coyote-1 effect authors. I trolled around the Parallax forums to see what

people thought, and it turned out Andy had already written one, but the manual was in German

and he was waiting to get an English translation before releasing PASD to the public. I ended up

writing the English manual translation for him and the rest is history.

A copy is included on the Coyote-1 distribution CD, and the project is maintained here:

http://www.insonix.ch/propeller/prop_pasd.html

HAM (Hydra Asset Manager)

HAM is a clever and handy tool written by Richard Benson for the Propeller based Hydra video

game system to support loading and archiving data stored in the (typically unused) upper 96K of

the Hydra’s 128K EEPROM. Because the Coyote-1 also uses a 128K EEPROM, and uses the same

pins for video as the Hydra, HAM will run on the Coyote-1 and can be used to archive/restore a

“snapshot” of the entire OS, the stored patches, and stored dynamic modules (see Chapter 8).

A copy is included on the Coyote-1 distribution CD, and the project is maintained here:

http://forums.parallax.com/forums/default.aspx?f=33&p=1&m=168490

GEAR

GEAR is a cool Propeller chip emulator written by Robert Vandiver. There are a couple of times

when I got completely stuck because I couldn’t figure out what my code was doing. I was able

to throw the offending snippets into GEAR, single step them, and figure out what was really

going on.

A copy is included on the Coyote-1 distribution CD, and the project is maintained here:

http://forums.parallax.com/forums/default.aspx?f=25&m=164602

C

h
a

p
te

r
5

 S
o

ft
w

a
re

 I
n

st
a

lla
ti

o
n

12

Chapter 5 Software Installation

1. Copy the contents of the Coyote-1 CD to a directory on your hard drive (such as C:\Coyote1).

The remaining steps are written assuming a “C:\Coyote1” installation.

2. Install the “Propeller Tool” software by running its installer (Located in

C:\Coyote1\PropellerTool\”). When prompted check “Automatically install/update driver

(recommended)”.

NOTE: This is the software development environment for the Propeller Chip. Even if you are not

planning to develop Coyote-1 software at this time, you need to perform this step because the

installer loads the USB to Serial chip driver necessary for OpenStomp™ Workbench to

communicate with the Coyote-1.

3. Run “OpenStomp™ Workbench Setup.msi” (located in C:\ OpenStomp(TM) Workbench\”).

4. If you do not already have the appropriate .NET framework installed, you will be directed to

Microsoft’s website where you can download and install it. You can install a higher rev .NET

framework than required if desired.

NOTE: A copy of the .NET 2.0 Compact framework is in C:\OpenStomp(TM) Workbench\.NET

Framework 2.0, but I have not yet been able to test it on a machine that did not already have the

framework installed.

5. Complete the OpenStomp™ Workbench installation.

C

h
a

p
te

r
6

 O
ve

rv
ie

w

13

Chapter 6 Overview

The Coyote-1 is a digital guitar effects pedal based on the Propeller processor from Parallax. The

Propeller is a unique embedded microprocessor containing 8 independent “cogs”. Each cog is

essentially a dedicated microprocessor. All 8 cogs execute simultaneously.

The Coyote-1 was designed to be Open-Source. A big part of that challenge was creating an

infrastructure through which developers could create effects modules that could interoperate, be

configured by non-technical end users, and be freely exchanged. To accomplish this, the Coyote-1 uses

the concept of effect modules. An effect module is a piece of software which implements one (or

possibly more than one) effect and which executes on one of the Propeller processor’s 8 cogs.

Effect modules are interconnected by virtual signal pathways called conduits, which connect to sockets

on those effect modules. Sockets are virtual data exchange ports through which a single 32 bit value is

exchanged every audio sample period (i.e. at a rate of 44 KHz, which is approximately once every 22.7

microseconds). There are two different types of conduits: signal conduits which carry audio data and

control conduits which carry control data (such as the output of the buttons and knobs).

The pedal contains a number of system resources which implement sockets on which they output or

input data (the audio jacks, the buttons, the knobs, the LEDs, etc.). To turn an effect module into

something you can actually use, you must specify the conduit routing between the various system

resources and the effect module. This is accomplished using the OpenStomp™ Workbench application.

A specific configuration of effect moules, system resources, and the conduit routing which

interconnects them is called a patch. OpenStomp™ Workbench provides a graphical interface in which

patches can be authored, loaded, saved, and transferred to/from the Coyote-1.

OpenStomp™ Workbench also allows users to load/save and transfer effects modules to/from the

Coyote-1.

The Coyote-1 can hold up to 15 patches, and up to 16 effect modules in its EEPROM memory, and an

additional 4 effect modules can be compiled into the O/S at any given time.

Once the Coyote-1 has been loaded with a collection of patches and effects modules, those patches can

be accessed using the foot switches without connecting the Coyote-1 to a computer.

The Coyote-1 ships with a factory installed collection of patches and effect modules. If at any time you

wish to restore the factory configuration, instructions for doing so can be found in Chapter 8.

C

h
a

p
te

r
7

 U
si

n
g

 t
h

e
 P

e
d

a
l

14

Chapter 7 Using the Pedal

Connecting Equipment

Connect the Coyote-1 to your equipment as shown below. The video output is not necessary unless you

are running video applications (the standard O/S build, and standard effects, do not use it). The PC

connection via USB is only necessary when configuring the pedal or loading software; the pedal can

operate without a PC connection.

The functional assignment of the three ¼ inch jacks is patch dependant. The standard assignment for

monaural single input / single output patches is to use “IN-L” as the input, and “OUT-L” as the output.

Note: The IN-L jack is a very high-impedance input (~1M Ohm), suitable for high impedance devices such

as electric guitars. The IN-R input (because of its dual function as OUT-R) is a medium impedance input.

Plugging a high impedance device (like an electric guitar) into IN-R will result in a rolling off of the high

frequencies. If you need to plug a high impedance device into IN-R, try running it through another guitar

stomp box first. The other stomp box will act a pre-amp to convert the signal to low impedance. Guitars

which contain built-in preamps will work well with IN-R.

C

h
a

p
te

r
7

 U
si

n
g

 t
h

e
 P

e
d

a
l

15

Boot

When you first apply power to the pedal it will display the Coyote-1 O/S revision.

 Coyote-1 O/S
 v1.0.0

After booting the Coyote-1 O/S will load “Patch 0” and start it running. In the default shipping

configuration Patch 0 will be the Tremolo patch.

Patch: 0
Tremolo

Controlling a Patch: Knobs

To modify patch parameters, spin the knobs. The functional assignment of the knobs is patch

dependant. When you rotate a knob the pedal will display the knob being changed (“K0” in the image

below, for “Knob 0”), the parameter assigned to that knob (“Delay” below), the current value (835

below), and the units (mSec below, or “milliseconds” (1000 milliseconds = 1 second).

The O/S implements “sticky” knobs, which means that if you rotate a knob the knob will not begin to

modify the assigned parameter’s value until you have rotated its position to match the current

parameter value. If you start spinning a knob and the parameter does not change, just keep spinning

the knob across its full range; when you match the current value the knob will become “unstuck”, and

the display value will begin to follow the knob position.

K0:Delay
 835 mSec

S

Some patches may not make use of all 4 knobs. If a knob has not been assigned to a function then the

parameter name will be displayed as “<Unassigned>”, and rotating the knob will have no effect on the

patch being heard.

K2: Unassigned
 92%

By convention the right most knob (K3) is typically used to control the final gain stage (output volume)

of a patch.

Controlling a Patch: Buttons

The function of the two “foot switch” buttons is patch dependant. Typically the buttons are used to

turn different effects on and off, and typically the on/off state is represented by the LED associated with

each button.

C

h
a

p
te

r
7

 U
si

n
g

 t
h

e
 P

e
d

a
l

16

Switching Patches

To switch between patches, step on both button simultaneously. An arrow will appear pointing to the

current patch number.

Patch: 0
Tremolo

Clicking the right button will advance to the next patch. Clicking the left button will go backwards one

patch. Stepping on both buttons simultaneously will load (and start) the currently selected patch.

NOTE: If the selected patch is the same as the patch which was running when patch select mode was

entered, the patch will NOT be reloaded, but will continue to run undisturbed.

Reformatting the EEPROM

Performing a EEPROM format will erase all patches and modules stored in EEPROM. Once reformatted,

patches and modules can be reloaded into EEPROM using the OpenStomp™ Workbench application.

NOTE: It is recommended that the patches and modules you develop be archived on your PC, and that

you do not rely on the pedal’s EEPROM as your only patch/module storage.

Why reformat? If you create a custom module or patch which crashes the pedal when it attempts to

load Patch 0 on boot then reformatting can be used to get the O/S booting again so that it will talk to

the Workbench application.

To reformat the EEPROM, hold the left button down while powering up the device, then click the right

button when prompted. Clicking the left button will cancel the reformat and boot normally.

Reformat EEPROM?
Left:No Right:Yes

Patch / Module Load Errors

If a patch fails to load successfully due to a patch or module error then a numeric error code will be

briefly displayed. A list of error codes can be found in Chapter 13.

Error: 1

The Error codes are defined in the source file COYOTE1_HW_Definitions.spin.

C

h
a

p
te

r
7

 U
si

n
g

 t
h

e
 P

e
d

a
l

17

Real Time Error: Output Clipping

If the final digital output value (i.e. the value sent to the DAC) reaches its maximum then a small upward

pointing triangle will appear in the upper right corner of the display. This is an indication that the output

is potentially becoming distorted by going outside of the available output range (i.e. clipping).

Patch: 0
Tremolo

Output clipping may be caused by too high an input signal, or too much gain in the effects chain

composing the current patch.

NOTE: Clipping is only detected at the final output stage. It is possible to have audible clipping distortion

occur within a patch and not trigger the “Output Clipping” indicator if the clipping occurs in one effect

module and some subsequent effect module reduces the gain.

Real Time Error: Time Overflow

The Coyote-1 operates at a standard sampling frequency of 44kHz. That means that each effect module

typically has one 44kHz sample window (22.7 microseconds) in which to process a given sample. The

OpenStomp™ architecture refers to this interval as a “microframe”.

Effect modules can self-report to the O/S if they take more than their allotted 22.7 microseconds, and

the O/S will display a Time Overflow indication in the upper right hand corner of the display.

Patch: 0
Tremolo

NOTE: All standard Open Stomp modules implement Time Overflow reporting.

NOTE: It is possible to write a module which operates at a lower sample rate by taking more than one

microframe to process a sample. Such a module can still implement Time Overflow reporting by self-

reporting when it goes over its self-allotted processing interval.

C

h
a

p
te

r
8

 R
e

st
o

ri
n

g
 t

h
e

 F
a

ct
o

ry
 C

o
n

fi
g

u
ra

ti
o

n

18

Chapter 8 Restoring the Factory Configuration
There are two different ways to crash the Coyote-1:

One is to install a bad O/S build, or somehow corrupt the build you have. That situation can be

recovered by just recompiling a good O/S build from the CD and using the Propeller Tool to load it onto

the Coyote-1.

The second way to crash is to corrupt the EEPROM data with bad patches, or bad dynamic modules, or

bad configuration data. That situation can be remedied by erasing the EEPROM per the “Reformatting

the EEPROM” section of Chapter 7, but when you’re done you’ll have an empty EEPROM and you’ll need

to reload any patches or modules you were using.

If you don’t want to go through the motions of restoring your configuration piecewise, you can use a

tool called “HAM” (the “Hydra Asset Manager”) to reload the entire EEPROM (OS, modules, and

patches) to the factory configuration. HAM was written by Richard Benson to manage EEPROM data for

Andre’ LaMothe’s “Hydra” Propeller-based video game system

(http://www.xgamestation.com/view_product.php?id=33). Because the Coyote-1 uses the same pins

for video as the Hydra, HAM will also work on the Coyote-1.

To restore the factory configuration using HAM:

1. Connect the Coyote-1 to your PC using the mini-USB cable and power it on.

2. Start HAM (It should be locate in your “C:\Coyote-1\Additional Utilities\Hydra Asset

Manager (HAM)\” directory).

3. Select the COM port on which the Coyote-1 is attached.

4. It is helpful, but not necessary, to connect a video monitor to the Coyote-1 so you can watch

the progress of HAM.

5. Click “Load HAM Driver”. You will see the button change states when the load is complete.

If you have video attached, you will see the HAM driver screen appear on the attached

display.

6. Drag the factory configuration .eeprom file into the black “Memory Map” box in the HAM

window. The configuration file shoud be located in your “C:\Coyote-1\Coyote-1 Firmware\”

directory, and will be named something like “Coyote-1 Factory Configuration Image 001 (OS

1.0.2).eeprom”.

7. Click “Upload to Hydra”. When the upload completes a dialog box will appear.

8. Cycle power on the Coyote-1, and it will boot into the restored configuration.

Richard Benson maintains HAM here:

http://forums.parallax.com/forums/default.aspx?f=33&p=1&m=168490

C

h
a

p
te

r
8

 R
e

st
o

ri
n

g
 t

h
e

 F
a

ct
o

ry
 C

o
n

fi
g

u
ra

ti
o

n

19

NOTE: It’s also possible to use the “Download from Hydra” button in HAM to take a “snapshot” of your

Coyote-1’s EEPROM, which you could then reload at a later time using the method above.

C

h
a

p
te

r
9

 U
si

n
g

 O
p

e
n

S
to

m
p

T
M

 W
o

rk
b

e
n

ch

20

Chapter 9 Using OpenStompTM Workbench

Connecting to the Coyote-1

Before starting OpenStomp™ Workbench, attach the Coyote-1 to your PC using the supplied mini-USB

cable. Windows will assign the Coyote-1 a dedicated virtual COM port.

When you first start OpenStomp™ Workbench you will see the set of available System Resources (green)

in the Patch Editor pane. Both the “Modules” list and the “Patches” list will be blank.

Using the “COM Port:” drop down menu in the upper right corner, select the COM port on which the

Coyote-1 is attached and then click “Connect”. The “Modules” list and the “Patches” list will be updated

to reflect the Effect Modules and Patches currently present on the attached device.

Note: The Coyote-1’s COM port may not appear in the “COM Port:” drop down menu if you

attached it after starting Workbench, or switched USB ports. To update the COM port list

select “Refresh COM Port List” from the “Communications” drop down menu.

Advanced: OpenStomp™ Workbench closes the COM port when not communicating with the Coyote-1

even though the state appears to be “Connected”. This is done so that new O/S code can

C

h
a

p
te

r
9

 U
si

n
g

 O
p

e
n

S
to

m
p

T
M

 W
o

rk
b

e
n

ch

21

be compiled in the Propeller IDE and loaded into the device without quitting Workbench or

disconnecting.

Advanced: If you added, changed, or removed Static Modules by compiling and loading a new O/S

build, you can update the “Modules” list by clicking “Diconnect”, and then clicking

“Connect”.

System Resources

Knobs

There are 4 knob resources, representing the 4 physical knobs on the Coyote-1. Knob 0 is the left-most

knob. The Init conduit allows you to specify the initialization value of the knob when creating a patch (0-

100%). The output conduit outputs the knob’s position.

Buttons

There are 2 button resources, representing the 2 physical button on the Coyote-1. Button 0 is the left-

most button. The Init conduit allows you to specify the initialization state of the button’s “+Toggle”

output. The “+Toggle” output toggles its value each time the button is pressed and released. The

“+Momentary” output reflects button’s current state (down or up).

LEDs

There are 2 LED resources, representing the 2 physical LEDs. LED 0 is the left-most LED.

C

h
a

p
te

r
9

 U
si

n
g

 O
p

e
n

S
to

m
p

T
M

 W
o

rk
b

e
n

ch

22

Audio

There are 4 audio resources, representing the 4 audio ports. “Audio In (Right)” and “Audio Out (Right)”

share the same physical jack.

Gain

There is a gain resource which is typically used as a final output volume control for a patch, and is

typically configured to be controlled by Knob 3. The “In” and “Out” conduits are the input and output

audio conduits respectively. The “Gain” conduit (have you guessed already?) sets the gain.

Loading a Patch

You can load a patch into the Editor by either selecting “Open Patch” from the “File” menu, or by right

clicking on a Path in the “Patches” list and selecting “Load this Patch into the Editor”.

Note: The Editor cannot show an Effect Module in the Editor Pane if that Effect Module does not exist

in the connected Coyote-1 device. If you attempt to load a Patch which contains an Effect

Module that is not currently present in the Coyote-1 (either as a Static Module or as a Dynamic

Module), then an error will be displayed, and the Patch will load without the missing Effect.

Working in the Editor

The large black grid area is the Patch Editor Pane. Patches are created by interconnecting System

Resources and Effects Modules inside the Editor Pane.

Zoom and Pan

Rotating the mouse wheel will zoom in and out (the mouse cursor must be over the Editor Pane). Zoom

can also be performed by clicking the “+” or “-“ buttons at the bottom right of the Editor Pane.

Clicking “Home” will return the Editor Pane to 1:1 zoom and will pan to the home position (the upper

left of the work area).

Holding down both the left and the right mouse buttons simultaneously while moving the mouse will

pan the editor pane.

Moving Objects

To move an Object (i.e. a System Resource (green) or an Effect (purple)) click the top “Title Bar” region

of the object and drag it. Objects cannot be overlapped. If you attempt to overlap objects a red

boundary will appear, and if you release the mouse button while in an overlapping position the object

will return to its original location.

C

h
a

p
te

r
9

 U
si

n
g

 O
p

e
n

S
to

m
p

T
M

 W
o

rk
b

e
n

ch

23

Adding Effects to a Patch

To add an Effect Module to a Patch, right-click an Effect Module in the “Modules” list and select “Add to

Editor Patch”. Static Modules (shown in red in the “Modules” list) and Dynamic Modules (shown in

purple in the “Modules” list) can both be added to Patches.

The added Module will appear in the upper left corner of the working area (you may need to zoom/pan

to see it), and may overlap existing objects. Play nice and drag it somewhere better before hooking it

up.

Connecting Objects

Objects (System Resources and Effects) have connection points called sockets which can be connected

to one another using wires called conduits.

To create a conduit:

1. Hover your mouse over the right hand edge of an output socket (i.e. one on the right

hand side of an object). A yellow circle will appear at the edge of the conduit.

2. Click the left mouse button. A blue line will appear and will follow the mouse.

3. Hover the mouse over the left hand edge of an input socket (i.e. one on the left hand

side of an object). The input socket type (Signal (blue) or Control (brown)) must

match the output socket type. A yellow circle will appear when hovering over a valid

input socket.

4. Click the left mouse button. A conduit will be created between the two sockets.

To delete a conduit:

1. Hover the mouse over either the right hand edge of the output socket from which the

conduit originates, or over the left hand edge of the input socket to which the conduit

terminates. Click the right mouse button. A popup menu will appear. Select “Remove

Conduit”.

C

h
a

p
te

r
9

 U
si

n
g

 O
p

e
n

S
to

m
p

T
M

 W
o

rk
b

e
n

ch

24

Modifying Static Assignments

Any unconnected input socket (i.e. a socket to which a conduit has not been attached) has a default

static assignment value which is shown in a light yellow bubble to the left of the socket. To modify the

static assignment, hover the mouse over the left edge of the conduit and click the right mouse button.

A popup menu will appear. Select “Change Static Assignment” from the popup menu. A dialog box will

appear allowing you to modify the assigned value.

Main Menu Commands

File

New Patch

Creates a “Blank Slate” in the Patch Editor Pane, containing only the built in System Resources.

Open Patch

 Opens a Patch file (.c1p) from disk into the Patch Editor Pane.

Save Patch

 Saves the current patch (in the Patch Editor Pane) to a Patch file (.c1p) on disk.

Patch

Run

Loads the current patch onto the Coyote-1 and starts it executing. The patch number on the

device will display as “--" to indicate that the patch is a “temporary” load and is not stored in

one of the regular numbered patch slots.

Unroute All Conduits

Removes all conduits from the current patch in the Patch Editor Pane.

Coyote-1

Connect

Attempts to establish a connection with the Coyote-1 device on the currently selected COM

port. Selecting this option is equivalent to clicking the “Connect” button in the main window.

C

h
a

p
te

r
9

 U
si

n
g

 O
p

e
n

S
to

m
p

T
M

 W
o

rk
b

e
n

ch

25

Reset

Performs a hardware reset on the attached Coyote-1 device.

Format EEPROM

Erases the Effects Modules and Patchs from the Coyote-1 EEPROM. Does not erase the

Coyote-1 O/S, which is also stored in EEPROM.

Erase All Dynamic Modules

Erases the Dynamic Modules stored in EEPROM, but does not erase the Patches.

Erase All Patches

 Erases the Patches stored in EEPROM, but does not erase the Dynamic Modules.

Communications

Refresh COM Port List

Updates the “COM Port:” drop down list to show all currently existing COM ports. You may

need to select this option if the Coyote-1 was attached after starting Workbench, or was moved

to a new USB port.

Help

About

Shows software revision, revision history, and copyright info.

Module List Menu Commands

Load From File

Loads a dynamic module from a Coyote-1 module file (.c1m), and stores it in the Coyote-1’s

EEPROM at the selected position. This operation can not be performed on the first four

positions, which are reserved for static modules.

Save to File

Saves the selected module to a file as a dynamic module. This operation can be performed on

both static modules and dynamic modules.

Erase

Erases the selected modules. This operation can only be performed on dynamic modules.

Add to Editor Patch

Adds the selected module to the patch editor pane.

Copy From ����

Copies the static module selected from the hierarchical sub-menu to the currently selected

dynamic module position.

Patch List Menu Commands

Load From File

Loads a patch from a Coyote-1 patch file (.c1p) into the selected patch location in Coyote-1

EEPROM.

Save to File

Saves the selected patch to a Coyote-1 patch file (.c1p).

C

h
a

p
te

r
9

 U
si

n
g

 O
p

e
n

S
to

m
p

T
M

 W
o

rk
b

e
n

ch

26

Erase

Erases the selected patch from the Coyote-1 EEPROM.

Store the Current Editor Patch Here

Copies the current patch from the patch editor pane to the selected patch location in Coyote-1

EEPROM.

Load This Patch Into the Editor

 Copies the selected patch from Coyote-1 EEPROM to the patch editor pane.

Conduit Routing Restrictions

The following restrictions apply to conduit routing:

1. Output Sockets can only be connected to Input Sockets.

2. Multiple Output Sockets cannot be connected to a single Input Socket.

3. A single Output Socket can be connected to multiple Input Sockets.

4. Signal Sockets (blue) can only be connected to other Signal Sockets.

5. Data Sockets (brown) can only be connected to other Data Sockets.

6. Initialization Sockets (purple) can only be assigned a static value (they cannot be connected to

other Sockets).

C

h
a

p
te

r
1

0

U
n

d
e

r
th

e
 H

o
o

d

27

Chapter 10 Under the Hood

Block Diagram

USB

To Serial

Converter

Propeller

Processor

USB

Jack

¼ Inch

Input

Jack

128K EEPROM 0

(Code & Data)

128K EEPROM 1

(User Defined)

Expansion

Port

DC Power

Jack

5V & 3.3V

Linear

Regulators

Headphone

Amplifier

Headphone

Jack

¼ Inch

Output

Jack

Knob 0

Knob

Conditioning

Circuit

Knob 3

Knob 2

Knob 1

Button 0

Button 1 LED 1

LED 0

16x2

LCD

PLD

512K Byte

SRAM 0

512K Byte

SRAM 18
 B
it D

a
ta
 B
u
s

I2
C
 S
e
ria
l

1
9
 B
it A
d
d
re
s
s
 B
u
s

Video Out
I2S Serial

CODEC

¼ Inch

Output

Jack

Note: The shipping configuration of the Coyote-1 actually contains 3 512K SRAMs. The block diagram

has not yet been updated to reflect this.

C

h
a

p
te

r
1

0
 U

n
d

e
r

th
e

 H
o

o
d

28

Software Architecture

C

h
a

p
te

r
1

0

U
n

d
e

r
th

e
 H

o
o

d

29

Propeller Pin Assignments

Pin Primary Function Alternate Function

P0 MEMBUS_CNTL_0 LCD_REGSEL

P1 MEMBUS_CNTL_1 LCD_READ

P2 MEMBUS_CNTL_2 LCD_ENABLE

P3 KNOB_STROBE

P4 KNOB_SHUNT BUTTON_MUX

P5 BUTTON_READ

P6 MEMBUS_CLK

P7 KNOB_0

P8 KNOB_1

P9 KNOB_2

P10 KNOB_3

P11 CODEC_BCK

P12 CODEC_SYSCLK

P13 CODEC_DATAO

P14 CODEC_DATAI

P15 CODEC_WS

P16 MEMBUS_D0

P17 MEMBUS_D1

P18 MEMBUS_D2

P19 MEMBUS_D3

P20 MEMBUS_D4

P21 MEMBUS_D5

P22 MEMBUS_D6

P23 MEMBUS_D7

P24 VIDEO_0

P25 VIDEO_1

P26 VIDEO_2

P27 LCD_MUX

P28 EEPROM_SCK

P29 EEPROM_SDA

P30 USB_RXD

P31 USB_TXD

MEMBUS Interface

MEMBUS_CNTL[2..0] Function

0x0 Write SRAM Byte

0x1 Read SRAM Byte

0x2 Write SRAM Addr LOW [SRAM_A07..SRAMA00]

0x3 Write SRAM Addr MID [SRAM_A15..SRAMA08]

0x4 Write SRAM Addr HIGH [SRAM_A20..SRAMA16]

0x5 Set CCR (CODEC Control Register)

0x6 Set GPIO0 (General Purpose I/O 0)

PLD Register: CCR (CODEC Control Register)

C

h
a

p
te

r
1

0
 U

n
d

e
r

th
e

 H
o

o
d

30

Bit Function

7 (Reserved)

6 CODEC_MC2

5 CODEC_MC1

4 CODEC_MP5

3 CODEC_MP4

2 CODEC_MP3

1 CODEC_MP2

0 CODEC_MP1

Note: The CODEC_yyy bits each control the corresponding CODEC_yyy pin directly. For an

understanding of the various MCx and MPx pin functions, refer to the NXP UDA1345 CODEC

data sheet.

PLD Register: GPIO0 (General Purpose I/O 0)

Bit Function

7 (Reserved)

6 (Reserved)

5 (Reserved)

4 (Reserved)

3 (Reserved)

2 LED1

1 LED0

0 LCD_BACKLIGHT

Note: The LCD_BACKLIGHT is configured in hardware to be on whenever power is applied. Toggling

LCD_BACKLIGHT will have no effect.

C

h
a

p
te

r
1

1

C
re

a
ti

n
g

 C
u

st
o

m
 E

ff
e

ct
s

M
o

d
u

le
s

31

Chapter 11 Creating Custom Effects Modules

This is the true joy of living. This being used for a

purpose recognized by yourself as a mighty one.

This being thoroughly used up before being

thrown on the scrap heap. This being a force of

nature instead of a feverish, selfish little clod, full

of ailments and grievances, complaining that the

world will not devote itself to making you happy.

 - G.B. Shaw

If you have not already familiarized yourself with the Propeller chip’s hardware and software

architecture, and with the Propeller IDE (the “Propeller Tool” software), you should take a look through

the “Propeller Manaul” PDF and do so. The Propeller Manual is installed when you install the Propeller

Tool, and can be accessed quickly from the “Help” menu within the Propeller Tool.

Before you learn to write custom effects, take a quick look at the existing effects modules to

familiarize yourself with their structure. The effect module source files all have the form

“COYOTE1_MODULE_module_name.spin”.

This chapter will use the Tremolo effect (COYOTE1_MODULE_Tremolo.spin) as an example. Inside

OpenStomp™ Workbench, the Tremolo effect looks like this:

The job of creating a custom effect is basically one of defining the effect’s inputs/outputs (called

sockets), and then writing the software to read the input sockets and create the proper behavior on the

output sockets.

The Coyote-1 uses a 44kHz audio sample rate, which means that every 1/44000
th

 of a second

(approximately every 22.7 microseconds) the ADC (analog to digital converter) hardware captures a

digital sample from each of the two analog input channels (In-L (left) and In-R (right)), and outputs a

digital sample on each of the two analog output channels (Out-L (left) and Out-R (right). In general, an

audio effect module must keep up with this sample rate, which means that it has 22.7 microseconds to

read its input sockets and write new values to its output sockets. The exception to this rule is effect

modules which are specifically written to operate at a lower sample rate. A 22kHz effect module would

C

h
a

p
te

r
1

1
 C

re
a

ti
n

g
 C

u
st

o
m

 E
ff

e
ct

s
M

o
d

u
le

s

32

read its input sockets only once every 1/22000
th

 of a second, and write its output sockets once every

1/22000
th

 of a second.

In the Coyote-1 system architecture, the native 44kHz sample period is referred to as a microframe.

The Coyote-1 O/S provides a mechanism by which effect modules synchronize to the start of a

microframe, and by which they can report an overrun error if they ever take more than a single

microframe to process their data.

Socket Types

There are three types of sockets; signal sockets, control sockets, and initialization sockets. Signal

sockets carry audio data, and are colored blue in the Workbench editor. Their data is signed, and they

have a maximum range of 0xffffffff (-2147483647) to 0x7fffffff (2147483647).

Control sockets carry control information (data values which affect the behavior of effect modules

or system resources), and are colored brown in the Workbench editor. Their data is unsigned, and they

have a maximum range of 0x00000000 (zero) to 0x7fffffff (2147483647). Sometimes a control socket is

designed to implement a two state (on/off) function. In these cases the convention is to name the

socket with “+” prefix. Two state inputs treat all input values below 0x40000000 as “false”, and all input

values above 0x40000000 as “true”. Two state outputs are set to 0x00000000 when “false”, and

0x7fffffff when true.

Initialization sockets are a special form of input control socket which reads its input value only once

(during the startup of a patch). They are colored light purple. Their data is unsigned, and they have a

maximum range of 0x00000000 (zero) to 0x7fffffff (2147483647).

The Module Descriptor

The module descriptor is a data structure which describes the attributes of an effect module,

including its name, its size, its signature, its revision, how many conduits it has, the conduit definitions,

how much SRAM it requires, and how much RAM it requires.

Early on in the effect module code you’ll see the get_module_descriptor_p function, which allows

the Coyote-1 O/S to get a pointer to the effect modules’ module descriptor:

PUB get_module_descriptor_p

 ' Store the main RAM address of the module's code into the module descriptor.

 long[@_module_descriptor + hw#MDES_OFFSET__CODE_P] := @_module_entry

 ' Return a pointer to the module descriptor

 return (@_module_descriptor)

Next, you’ll see the module descriptor definition:

DAT

'------------------------------------

'Module Descriptor

'------------------------------------

_module_descriptor long hw#MDES_FORMAT_1 'Module descriptor format

 long (@_module_descriptor_end - @_module_descriptor) 'Module descriptor size (in bytes)

 long (@_module_end - @_module_entry) 'Module legth

 long 0 'Module code pointer (this is a placeholder which gets overwritten during

 ' the get_module_descriptor_p() call)

 long $03_80_00_00 'Module Signature

 long $00_01_00_00 'Module revision (xx_AA_BB_CC = a.b.c)

 long 0 'Microframe requirement

 long 0 'SRAM requirement (heap)

 long 0 'RAM requirement (internal propeller RAM)

 long 0 '(RESERVED0) - set to zero to ensure compatability with future OS versions

 long 0 '(RESERVED1) - set to zero to ensure compatability with future OS versions

 long 0 '(RESERVED2) - set to zero to ensure compatability with future OS versions

C

h
a

p
te

r
1

1

C
re

a
ti

n
g

 C
u

st
o

m
 E

ff
e

ct
s

M
o

d
u

le
s

33

 long 0 '(RESERVED3) - set to zero to ensure compatability with future OS versions

 long 6 'Number of sockets

 'Socket 0

 byte "In",0 'Name

 long 0 | hw#SOCKET_FLAG__SIGNAL | hw#SOCKET_FLAG__INPUT 'Flags and ID

 byte 0 {null string} 'Units

 long 0 'Range Low

 long 0 'Range High

 long 0 'Default Value

 'Socket 1

 byte "Out",0 'Name

 long 1 | hw#SOCKET_FLAG__SIGNAL 'Flags and ID

 byte 0 {null string} 'Units

 long 0 'Range Low

 long 0 'Range High

 long 0 'Default Value

 'Socket 2

 byte "Rate",0 'Name

 long 2 | hw#SOCKET_FLAG__INPUT 'Flags and ID

 byte "mSec",0 'Units

 long LFO_PERIOD_MIN_MSEC 'Range Low

 long LFO_PERIOD_MAX_MSEC 'Range High

 long 500 'Default Value

 'Socket 3

 byte "Depth",0 'Name

 long 3 | hw#SOCKET_FLAG__INPUT 'Flags and ID

 byte "%",0 'Units

 long 0 'Range Low

 long 100 'Range High

 long 100 'Default Value

 'Socket 4

 byte "+Bypass",0 'Name

 long 5 | hw#SOCKET_FLAG__INPUT 'Flags and ID

 byte 0 {null string} 'Units

 long 0 'Range Low

 long 1 'Range High

 long 0 'Default Value

 'Socket 5

 byte "+On",0 'Name

 long 6 'Flags and ID

 byte 0 {null string} 'Units

 long 0 'Range Low

 long 1 'Range High

 long 1 'Default Value

 byte "Tremolo",0 'Module name

 long hw#NO_SEGMENTATION 'Segmentation

_module_descriptor_end byte 0

A full definition of the module descriptor format can be found in Chapter 15.

Great care should be taken when creating a module descriptor. The module descriptor must be

formatted exactly to the module descriptor format definition in Chapter 15 or the O/S will not be able to

interpret it properly.

A Word about Socket Ranges

You will see in the module descriptor format that a socket range can be specified for each socket.

The range is used only for the purposes of displaying values to the user when they rotate a knob

connected to that socket by a conduit. For example, a knob always outputs values from 0x00000000 to

0x7fffffff. If you specify a range_low of 0 and a range_high of 100, and connect a knob to that conduit

using Workbench, and rotate the knob fully clockwise, the user will see the value “100” displayed, and

the value arriving at the socket will be 0x7fffffff.

This “universal” ranging of control socket values (i.e. that control socket values always operate

across the full range 0x00000000 to 0x7fffffff) was done to ensure the maximum flexibility when

interconnecting objects in Workbench.

The Module Code

The module code will always consist of 6 basic regions:

1) Pointer Loading

2) Initialization

3) The Synchronization Loop

4) The Bypass Block

5) Effect Processing

6) Data Declaration

C

h
a

p
te

r
1

1
 C

re
a

ti
n

g
 C

u
st

o
m

 E
ff

e
ct

s
M

o
d

u
le

s

34

Pointer Loading

In this section the data pointer to the various system objects (frame counter, module control block,

etc) are loaded, and the pointers to all the socket locations are set up. This section will typically

have the same form for all modules, though the socket pointers, their names, and their quantity will

be unique.

Initialization

In this section any necessary data initialization is performed. This section will be different for all

modules, and will be very application specific. In the case of the tremolo module, there is a single

variable to initialize.

The Synchronization Loop

This code should be identical for all modules. The synchronization loop waits for the start of a

microframe boundary (i.e. the start of an audio sample interval) before dropping into the execution

of the effect code. It also detects overrun conditions (i.e. whether the effect code took longer than

its allotted sample interval to execute) and reports them to the O/S if they occur.

C

h
a

p
te

r
1

1

C
re

a
ti

n
g

 C
u

st
o

m
 E

ff
e

ct
s

M
o

d
u

le
s

35

The Bypass Block

Most effects modules will choose to implement “Bypass” functionality, which gives the user the

ability to step on one of the foot switches to turn the effect on or off.

Effect Processing

This is where the real work gets done. The code will read the input sockets, work its magic, write

the output sockets, and end with a jump back to the synchronization loop to wait for the next

sample.

Data Declaration

This is where the variables and data are declared.

The Effects Module Creation Process

To create a custom effect module you would:

1) Author the effect module as a Propeller code module (the existing

COYOTE1_MODULE_Tremolo.spin is an example of an effect module).

2) Link the effect module into the O/S build by modifying the COYOTE1_static_module_list.spin

module to include the new module.

3) Recompile the O/S, creating a version which includes the new module as a static module (i.e as

a compiled-in module).

4) Load the O/S onto the device.

5) Create a patch which uses the new module.

6) Run the patch to test the new module.

7) Iteratively test, modify, recompile, load until the effect module is complete and functional.

8) Use OpenStomp™ Workbench to save the module as a dynamic module. Once saved as a

dynamic module the new module can be easily distributed to other Coyote-1 users.

C

h
a

p
te

r
1

1
 C

re
a

ti
n

g
 C

u
st

o
m

 E
ff

e
ct

s
M

o
d

u
le

s

36

Linking an Effect Module as a Static Module

Linking an effect as a “Static Module” means that it will be compiled into the O/S build. To link an effect

module as a static module:

1. Load the file COYOTE1_static_module_list.spin into the Propeller Tool.

2. List the new module in the OBJ section as shown below. The name in quotes must match the

filename of the effect module (excluding the .spin extension).

3. Replace any of the 4 static modules in the case statement with a call to the new module’s

get_module_descriptor_p function.

4. Save the modified COYOTE1_static_module_list.spin file.

Recompiling and Loading the O/S

To recompile the O/S, open the COYOTE1_OS.spin file in the Propeller tool, select it as the currently

displayed file (if it is not already) by clicking its tab, and press:

F11 (to build the O/S and load it into EEPROM)

or

F10 (to build the O/S and load it into RAM)

C

h
a

p
te

r
1

1

C
re

a
ti

n
g

 C
u

st
o

m
 E

ff
e

ct
s

M
o

d
u

le
s

37

Useful Coyote-1 Control Socket Value to Time Conversions

It is often desirable to have a control socket govern a rage of time, such as the delay interval for an echo

effect or the period of a Low Frequency Oscillator (LFO). A quick and efficient way to compute such an

interval is to simply perform a right-bit-shift on the socket value so that the resulting numeric range

translates into some useful time range (when interpreted as a length of time expressed in microframes).

The following table can be used to determine the time range obtained by right shifting an input socket

value by different amounts (and, in the rightmost columns, by multiplying by an additional factor of 3).

(Unmodified) (Times 3)

Bit Shift Decimal Max Hex Max Delay in Sec Decimal Max Hex Max Delay in Sec

0 2147483647 0x7FFFFFFF 48806.446523

1 1073741823 0x3FFFFFFF 24403.223250

2 536870911 0x1FFFFFFF 12201.611614 1610612733 0x5FFFFFFD 36604.834841

3 268435455 0xFFFFFFF 6100.805795 805306365 0x2FFFFFFD 18302.417386

4 134217727 0x7FFFFFF 3050.402886 402653181 0x17FFFFFD 9151.208659

5 67108863 0x3FFFFFF 1525.201432 201326589 0xBFFFFFD 4575.604295

6 33554431 0x1FFFFFF 762.600705 100663293 0x5FFFFFD 2287.802114

7 16777215 0xFFFFFF 381.300341 50331645 0x2FFFFFD 1143.901023

8 8388607 0x7FFFFF 190.650159 25165821 0x17FFFFD 571.950477

9 4194303 0x3FFFFF 95.325068 12582909 0xBFFFFD 285.975205

10 2097151 0x1FFFFF 47.662523 6291453 0x5FFFFD 142.987568

11 1048575 0xFFFFF 23.831250 3145725 0x2FFFFD 71.493750

12 524287 0x7FFFF 11.915614 1572861 0x17FFFD 35.746841

13 262143 0x3FFFF 5.957795 786429 0xBFFFD 17.873386

14 131071 0x1FFFF 2.978886 393213 0x5FFFD 8.936659

15 65535 0x0FFFF 1.489432 196605 0x2FFFD 4.468295

16 32767 0x07FFF 0.744705 98301 0x17FFD 2.234114

17 16383 0x03FFF 0.372341 49149 0x0BFFD 1.117023

18 8191 0x01FFF 0.186159 24573 0x05FFD 0.558477

19 4095 0x0FFF 0.093068 12285 0x02FFD 0.279205

20 2047 0x07FF 0.046523 6141 0x017FD 0.139568

21 1023 0x03FF 0.023250 3069 0x0BFD 0.069750

22 511 0x01FF 0.011614 1533 0x05FD 0.034841

23 255 0x0FF 0.005795 765 0x02FD 0.017386

24 127 0x07F 0.002886 381 0x017D 0.008659

25 63 0x03F 0.001432 189 0x0BD 0.004295

26 31 0x01F 0.000705 93 0x05D 0.002114

27 15 0x0F 0.000341 45 0x02D 0.001023

28 7 0x07 0.000159 21 0x015 0.000477

29 3 0x03 0.000068 9 0x09 0.000205

30 1 0x01 0.000023 3 0x03 0.000068

For example, the “Delay” effect module has a delay range of 0 to 1489msec (0 to 1.489 seconds). To

accomplish this, it declares a range of 0 to 1489 in its Module Descriptor block…

And then computes the delay by shifting the delay socket value right 15 bits…..

C

h
a

p
te

r
1

1
 C

re
a

ti
n

g
 C

u
st

o
m

 E
ff

e
ct

s
M

o
d

u
le

s

38

When a knob is attached (by a conduit) to the delay socket and rotated fully clockwise, the socket value

will be 0x7fffffff (maximum). After right shifting 15 bits, the value will be 0x0000ffff (or 65535 decimal).

When that value is used to control the echo delay time in microframes, the resulting delay is…

 65535 * (1/44000) = 1.489 seconds

Note that the sample rate is 44kHz, so the sample interval is 1/44000 of a second.

C

h
a

p
te

r
1

2

W
o

rk
in

g
 w

it
h

 t
h

e
 E

xp
a

n
si

o
n

 P
o

rt

39

Chapter 12 Working with the Expansion Port

Overview

The Coyote-1 has an expansion port designed to interface with external control devices such as

pedal switch boards and analog foot pedals, or more experimental devices like accelerometers or

proximity detectors.

The expansion port is an extension of the I
2
C interface on the board (on which also sit the 2 local

EEPROM devices). External devices can be easily interfaced using any of a number of different I2C chips

available commercially. NXP makes I
2
C chips that provide anywhere from 4 to 16 digital I/O lines (like

the PCA9536 and the PCA9539), as well as ADC and DAC chips (like the PCF8591). Many other

manufacturers also make I
2
C compatible devices that interface to all kinds of interesting things.

 The port can source up to 50mA of current at 3.3V, so low power devices can receive their power

directly from the Coyote-1.

Software Paradigm

The paradigm to follow when creating expansion port devices is to write an accompanying effect

module which effectively functions as a device driver for the new hardware. Most effect modules have

both input and output sockets, but an effect module which is the device driver for a piece of expansion

port hardware like an analog foot pedal might only have an output socket (representing the current

pedal position).

Tips

I am currently working to create an expansion port device reference design for a simple device. In

the meantime, here are some design tips for those interested in tinkering with the expansion port:

On the remote board

• Protect against power reversal with a diode.

• Use an I2C I/O expander to provide digital ins/outs

• Use an I2C ADC or DAC to provide analog ins/outs

• Provide pads for a transient line termination on SCL, SDA just in case you need them. (I have

tested without termination on the external device side with no problems and decent looking

signals for a 3 ft cable run.)

• Work whatever magic you like on the far side of the I2C devices.

• Design for use with a standard phone cable, and try to keep the cable length around 3 ft or less.

Standard phone cables do not “cross over”, so pin 1 (which is 3.3V power on the Coyote-1)

should connect to pin 1 (also 3.3V power) on the remote device.

• Put two RJ-11 ports on your device, so that multiple devices can be “daisy chained”.

• Be mindful that if you disturb the operation of the SCL and SDA lines too much (say, by adding

too much load or strong termination) you may prevent the Coyote-1 from booting. This is

C

h
a

p
te

r
1

2
 W

o
rk

in
g

 w
it

h
 t

h
e

 E
xp

a
n

si
o

n
 P

o
rt

40

because the I
2
C is shared with the internal Coyote-1 EEPROMs, one of which contains the

Coyote-1’s boot code.

 On the Coyote-1

• The O/S needs to be updated to lock/unlock the I2C semaphore around the O/S's I2C accesses. I

have not put that in yet, but it is very simple to add. The I2C semaphore is declared in

COYOTE1_HW_Definitions.spin already, just not used yet (LOCK_ID__I2C).

• Write an "Effect Module" which is a device driver for the external device.

• I found essential in my own testing to re-initialize the external I2C device(s) on every pass

through my main loop in the "device driver" code (typically these devices have one or more

control registers which need to be initialized to configure their I/O). Doing so allows the user to

arbitrarily unplug and re-plug the external device without having to restart the Coyote-1 just to

reinitialize the external device's I2C chips properly.

C

h
a

p
te

r
1

3

E
rr

o
r

C
o

d
e

s

41

Chapter 13 Error Codes
The following is a list of error codes which may be reported by the Coyote-1 device.

Value Constant Definition Description

0 ERR__SUCCESS No error (internal return value, never displayed)

1 ERR__MODULE_NOT_FOUND The patch contains a module which is not currently

compiled into the code (static) or located in EEPROM

(dynamic).

2 ERR__MAX_ACTIVE_MOD_EXCEEDED The patch contains more modules than supported.

3 ERR__CONDUIT_ENG_START_FAILED Could not start the conduit engine.

4 ERR__MODULE_COG_START_FAILED Could not start a module.

5 ERR__I2C_WRITE_FAIL Error writing the I2C bus.

6 ERR__I2C_WRITE_TIMEOUT Timeout writing the I2C bus.

7 ERR__INDEXED_MODULE_DNE A module was referenced which does not exist.

8 ERR__ILLEGAL_MODULE_INDEX Module index out of range.

9 ERR__I2C_READ_FAIL Error reading the I2C bus.

10 ERR__ILLEGAL_PATCH_INDEX Patch index out of range.

11 ERR__OUT_OF_SRAM The modules in the patch, taken together, requested

more SRAM than the total available SRAM pool.

12 ERR__OUT_OF_RAM_POOL The modules in the patch, taken together, requested

more RAM than the total available RAM pool.

C

h
a

p
te

r
1

4
 G

lo
ss

a
ry

 o
f

T
e

rm
s

42

Chapter 14 Glossary of Terms

Term Definition

DSP Digital Signal Processing (or Digital Signal Processor).

Using a digital computer to represent an analog signal as a sequence of

discrete samples, and performing operations on that signal digitally.

Module In the Propeller chip lexicon, a “Module” is a single .spin program file

which may contain a mix of assembly code, Spin code, constants, and

data.

Effect Module An “Effect Module” is a piece of code which occupies a single COG and

implements one or more audio effects. Sometimes “Effects Module” is

referred to as just a “Module”. Effects Modules can be either “Static” or

“Dynamic” (see definitions).

Conduit A data path which connects one output Socket to one or more input

Sockets.

Socket A 32 bit portal thorough which data is exchanged between Effect

Modules and System Resources. Any given Socket is either an Input or an

Output, and caries either Signal or Control data.

Static Assignment A value assigned to an input Conduit to which no Conduit is attached.

Static Module An Effect Module which has been compiled into the Coyote-1 O/S kernel.

Dynamic Module An Effect Module which is stored in EEPROM.

Patch A specific collection of Effect Modules and System Resources with a

specific Conduit routing.

System Resource Objects which appear in OpenStomp™ Workbench and which represent

available hardware and software resources within the pedal, such as

buttons, knobs, I/O ports, etc.

SRAM Static Radom Access Memory.

In this case, “SRAM” refers to the 1.5Mbytes of memory in external chips

(i.e. outside the Propeller processor).

RAM Random Access Memory

In this case, “RAM” refers to the 32K of memory inside the Propeller

processor.

DAC Digital to Analog Converter

ADC Analog to Digital Converter

Microframe One 44kHz audio sample period (1/44000
th

 of a second, or approximately

22.7 microseconds).

Frame Eight microframes. (NOTE: The concept of “Frames” is not currently used,

but exists for future development).

C

h
a

p
te

r
1

5
 M

o
d

u
le

 D
e

sc
ri

p
to

r
fo

rm
a

t

43

Chapter 15 Module Descriptor format
The module descriptor consists of 3 regions: The module descriptor header, the socket definitions, and

the module descriptor trailer.

Module descriptor header:

Bits Field Description

32 module_descriptor_format Identifies the module descriptor format (for future expansion). At

present, the only valid format is 0x3130444d (“MD01” in ASCII).

32 module_descriptor_size Length of the module descriptor (in byte)

32 module_size Length of the module code (in bytes)

32 module_code_address The address of the module code, in Propeller RAM.

32 module_signature A unique signature used to identify the module.

See Chapter 16 for a description of the module signature format.

32 module_revision The module revision in the form 0xXXAABBCC = Rev AA .BB.CC

32 microframe_requirement (Reserved for future use. Set to 0.)

32 sram_requirement The amount of SRAM the module requires.

32 ram_requirement The amount of Propeller RAM the module requires.

32 reserved0 (Reserved for future use. Set to 0.)

32 reserved1 (Reserved for future use. Set to 0.)

32 reserved2 (Reserved for future use. Set to 0.)

32 reserved3 (Reserved for future use. Set to 0.)

32 num_sockets The number of sockets the module implements.

Socket definitions (one for each socket):

Bits Field Description

8 x n socket_name_string The socket name. 32 characters max. Zero terminated.

32 socket_flags Length of the module descriptor (in byte)

8 x n socket_units_string The socket units (e.g. “mSec”, “Hz”, “%”, etc.). 32 characters max.

Zero terminated.

32 range_low The max range, for purposes of display only.

32 range_high The min range, for purposes of display only.

32 default_value The module revision in the form 0xXXAABBCC = Rev AA .BB.CC

Module descriptor trailer:

Bits Field Description

8 x n module_name_string The socket name. 32 characters max. Zero terminated.

32 segmentation_flags Reserved for future use. Set to 0.

C

h
a

p
te

r
1

6
 M

o
d

u
le

 S
ig

n
a

tu
re

 F
o

rm
a

t

44

Chapter 16 Module Signature Format
Each effect module must have a unique 32-bit module signature with the form 0xTTFVVVVV where ‘TT’

is the effect type, ‘F’ is a set of 4 signature flag bits, and ‘VVVVV is a unique ID value.

NOTE: It is important that every effect module’s signature be unique. The Coyote-1 O/S uses the

signature as the sole means of identifying effects modules. If two effects modules have the

same signature, then the incorrect module may be loaded when the O/S loads a patch.

The current effect type definitions are :

0x0n MODULATION

0x01 Chorus

0x02 Flagner

0x03 Tremolo

0x04 Ring Modulator

0x05 Vocoder

0x06 PA Mic Control

0x07 Compressor

0x1n DELAY

0x11 Echo / Delay

0x12 Reverb

0x2n EFFECTS

0x20 Distortion

0x21 Wah

0x22 Synth

0x3n EQ

0x30 Parametric EQ

0x4n EQ

0x40 Tuner

0x41 Note Detector

0x42 Signal Generator

The current signature flag bits are:

0x8 OpenStomp™ effect (i.e. released by OpenStomp™)

This bit is set for effects written and released by

OpenStomp™. This bit should be a zero for user

authored effects.

0x4 Experimental effect.

This bit should be set when authoring effects for

personal experimentation which will not be (or have

not yet been) released to the public.

0x2 (Reserved)

0x1 (Reserved)

C

h
a

p
te

r
1

6
 M

o
d

u
le

 S
ig

n
a

tu
re

 F
o

rm
a

t

45

When you release an effect to the public, it should have a signature of the form 0xTT0VVVVV. You can

email support@OpenStomp.com to request a unique ID Value (VVVVV) for your publically released

effects.

C

h
a

p
te

r
1

7
 M

o
d

u
le

 C
o

n
tr

o
l

B
lo

ck
 f

o
rm

a
t

46

Chapter 17 Module Control Block format
The module control block (MCB) is the structure by which the O/S interfaces with an effects module. A

pointer to the MCB is passed to an effects module when it boots, and the effects module reads the

various fields of the MCB to determine the location of its allocated memory (if any SRAM or RAM was

requested by the module). The MCB is also the mechanism for the exchange of socket data (inputs and

outputs) routed to and from the effect.

Bits Field Description

32 ss_block_p A pointer to the system status block

32 heap_base_p A pointer to the SRAM block granted to the module (per the module’s

SRAM request via the sram_requirement field in its module

descriptor).

32 ram_base_p A pointer to the RAM block granted to the module (per the module’s

RAM request via the ram_requirement field in its module descriptor).

32 microframe_base (Reserved for future use.)

32 runtime_flags (Reserved for future use.)

32 reserved0 (Reserved for future use.)

32 reserved1 (Reserved for future use.)

32 reserved2 (Reserved for future use.)

32 reserved3 (Reserved for future use.)

32*n socket_exchange[] The number of sockets the module implements.

C

h
a

p
te

r
1

8

E
p

ilo
g

u
e

47

Chapter 18 Epilogue

This was a triumph.

I’m making a note here:

HUGE SUCCESS.

- GLaDOS, Portal

Man oh man oh man. This has been some ride. It feels great to be finished, but in many ways it’s just

starting. I began this project because I wanted to play around with weird ideas in audio. There was so

much work to do to put the infrastructure in place that it’s really only today, this moment of

“completion”, that the real fun can begin.

Here we go…

"Yes you will," enthused Zaphod, "there's a whole

new life stretching out ahead of you."

"Oh, not another one," groaned Marvin.

- HHGTTH, D. Adams

