FactoryLink 7

Version 7.0

Concepts

© Copyright 2000 United States Data Corporation. All rights reserved.
NOTICE:

The information contained in this document (and other media provided herewith) constitutes confidential
information of United States Data Corporation (“USDATA”) and is protected by copyright laws and
international copyright treaties, as well as other intellectual property laws and treaties. Such information is
not to be disclosed, used or copied by, or transferred to, any individual, corporation, company or other entity,
in any form, by any means or for any purpose, without the express written permission of USDATA.

The information contained in this document and related media constitutes documentation relating to a
software product and is being provided solely for use with such software product. The software product was
provided pursuant to a separate license or other agreement and such information is subject to the restrictions
and other terms and conditions of such license or other agreement.

The information contained in this document and related media is subject to change without notice and does
not represent a commitment on the part of USDATA. Except for warranties, if any, set forth in the separate
license or other agreement relating to the applicable software product, USDATA makes no warranty, express
or implied, with respect to such information or such software product.

USDATA and FactoryLink are registered trademarks of United States Data Corporation in the United States
and/or other countries. Open Software Bus is a registered trademark licensed to United States Data
Corporation. All other brand or product names are trademarks or registered trademarks of their respective
holders.

Contents

Chapter 1 FactoryLink CoNCepLSot e 5
FaCtoryLink OVErVIEW e 5
Examples of FactoryLink Implementations i 5

Gl Nt SarVEr . .o 8
MU T . 8
FactoryLink's Architecture e e e 9
OPC . . 10
FactoryLink's Benefits 10
FactoryLink Taskso 11
Real-TimeDatabhase oo 12
Real-Time Database Elements (Tags) oo i i i e 12

Tag SrUCIUrE . e e e 18
FactoryLinK TriggerS .. oot et e e e 25
FactoryLinK TOOISttt 27
Configuration Explorer 27
Client Builder 29
Chapter 2 Sarter Application e e e 31
Server Application 31
Client Builder Project ...t e e e et e e 32
Application ObJECESt 33
Application Object Overview Diagramot 33
Examples of Application Objectscc i 36
Client Builder Starter Project GraphiCso vt i e 39
Animation Real-timeDisplayt 42
ACtiveX ControlS . .. oo 42
Sandard Animation Features 43
Advanced Animation Featuresttt 43

FactoryLink Concepts / 3

Using the Starter Application ... e e e
Computer LOCALIONottt e e

Help File

Running the Sarter Application

4 | FactoryLink Concepts

Chapter 1

FactoryLink Concepts

FACTORYLINK OVERVIEW

Examples

FactoryLink isa SCADA (Supervisory Control and Data Acquisition) product built
exclusively for Microsoft Operating systems. It is built on Microsoft’s Distributed interNet
Architecture (DNA) standard. FactoryLink lets you automate anindustrial process and monitor
and control that process. Using FactoryLink’s graphics tool, you can build a user interface that
graphically represents your process. The graphical objects within the interface are linked to
real-world data points, which gives you control of the processin real time.

A processis any activity performed repeatedly, such as:

 Production of goods at afactory

« Movement of liquid or gas through a pipeline

* Periodic collection of data

FactoryLink is not a single program, but a collection of programs or tasks. Eachtaskisa
separate program that performs a specialized function within FactoryLink. For example,

functions such as alarming, datalogging, graphics, etc. are controlled by separate tasks, but the
tasks function together to produce a seamless application.

The usesfor FactoryLink are unlimited. It isatool to build a graphical application that mimics
the process you want to automate.

of FactoryLink Implementations
FactoryLink has been implemented in awide variety of applications. Here are afew examples:
Dallas Area Rapid Transit

One application of FactoryLink is used in the management of acity’s rapid-transit

system. The Dallas (Texas) Area Rapid Transit (DART) uses FactoryLink to
monitor the locations of its trains.

Three huge life-size monitors display the locations of all trainsin the rapid-transit <

system. FactoryLink reads datafrom SLC 500s that control the trains. FactoryLink continually
monitors the status of the rapid transit system for alarm conditions, such as trainstoo close
together, or emergency conditions in the tunnels used by the trains.

FactoryLink Concepts / 5

FACTORYLINK CONCEPTS
FactoryLink Overview

Nanjing Lukou International Airport

g=a At Nanjing (People's Republic of China) Lukou International Airport, FactoryLink
< monitors and controls the baggage handling system. The departures system feeds
off three independent departure terminals, each with 20 check-in desks.
FactoryLink automatically processes and x-rays each piece of luggage before it
joins acollector conveyor, and then feedsit into an unloading carousel in the
baggage hall. In the arrival s system, there are 8 infeed linesin turn feeding 4 inclined baggage-
reclaim carousels.

FactoryLink’s graphical user interface displays afully animated screen, providing the airport’s
maintenance engineers with avisual check on the status of the entire system, including some
2,000 meters of conveyors, carousels and x-ray machines. Its highly sophisticated alarm-
management system detects with pinpoint accuracy conveyor blockages, conveyor belt motor
failure, or photo-cell alignment problems. The layout is color-coded to show green for
Running, red for Stop, black for Ready, and yellow for Fault --allowing for differencesin the
languages.

British Steel

To lower costs and increase product flexibility, British Steel upgraded one of its

steel works with new manufacturing equipment and a FactoryLink system. British
Steel set three goals for the refurbishment:

 Higher-quality, more consistent products
 Lower production costs
 Increasein operational flexibility to produce more products and shorter runs

FactoryLink monitors and controls initial setup conditions and all plant operations. The
application provides awindow into the plant, with dynamic graphical displays showing
up-to-the-second status of the plant and material. Diagrams indicate the position and status of
individual steel sections. Real-time and historical trending graphs provide invaluable decision
support. With FactoryLink’s sophisticated alarm handling, operators can see and act on any
alarm from any station. Both the alarm and its subsequent handling are logged in a historical
file. In addition, operators can use the terminals to enter new set-points or other key data. All
changeable parameters are protected by a multilevel password system.

To speed change-over between products, FactoryLink stores machine settings and other
parameters relevant to every type of steel section. For example, operators can instantly
retrieve any one of over 200 setup configurations for the RSMs (roller straightening
machines). This capability has reduced RSM setup time from 15 minutes to afew seconds.
The system controlling the saws is automated to the extent that operators only have to check
the position of the saw before starting saw cuts.

6 / FactoryLink Concepts

FACTORYLINK CONCEPTS
FactoryLink Overview

One particular plant employs two FactoryLink systems. Because each FactoryLink system has
the power to handle all of the application, the servers are configured to back up each other in
case onefails or is damaged.

By upgrading its mill with FactoryLink, British Steel has realized several important benefits:

By eliminating several manufacturing steps and controlling operations through FactoryLink,
British Steel can now respond faster to customer demands and produce smaller quantities
efficiently.

 Set-up time for the RSM's has dropped dramatically.

 Engineers and managers can now see their entire section of the plant on the FactoryLink
graphical display, enabling them to spot problems immediately and fix them faster.

» With more information available faster, engineers can make better operational decisions.
Telecommunications Manufacturer

FactoryLink is used by the world's leading provider of corded and cordless phones
and answering machines. This manufacturer designs, develops, manufactures,
markets, and sells a complete range of personal communi cation products, including
digital and analog cellular phones, PCS phones, and other cordless and corded
telephones.

The Wireless Technology Production Center, an automated production facility that
manufactures the new breed of cellular PCS phones, required a manufacturing execution
system (MES) to control production and link the shop-floor system with its SAP enterprise
system. The company selected FactoryLink to connect and control individual production
machines, conveyor controls, test station controllers, and assembly-line controllers.

The solution had two goals:

+ Make products that could be individually configured and still ship within 24 hours.

» Track product information closely and connect the design and ordering systems to the
production systems.

These capabilities would allow the company to immediately correct nonconformities and
quickly move new products from design to production.

FactoryLink provides real-time communications to different types of production equipment,
conveyor controls, and test-station and assembly-station controllers. By connecting to severa
databases, FactoryLink allows production data to be moved directly into engineering- and
production-control data storage. FactoryLink’s direct integration with shop-floor systems
allows manufacturing data reporting in real time.

The new system provides some major advantages:

FactoryLink Concepts / 7

FACTORYLINK CONCEPTS
FactoryLink Overview

« Integration of the enterprise system, FactoryLink, and the shop floor control system,
seamlessly passing data among them to optimize production efficiency

» Managed execution of scheduled production runs; the system can reschedule
nonconforming product, route partsto and from rework stations, and direct production lines
to produce the required product

+ Rapid line changes by downloading new process programs to egquipment before product
reaches the machine

 Real-time usage data upl oaded automatically to purchasing and accounting systemsin SAP,
and real-time test data logged to the database for analysis

 Exception or nonconformance reporting, including data saved for off-line analysis by
third-party packages

FACTORYLINK ENVIRONMENT

The FactoryLink environment is a client/server system based on Microsoft's DNA standard,
which isamulti-tier architecture.

Client/Server

Multi-Tier

Client/server describes the relationship between two computer programs. A client isthe
requesting program, or user, which requests data from another program, the server. The server
receives arequest for data, processes the request, and returns the datato the client. A server
program provides data to client programs in the same computer or in other computers. The
computer that the server program runs on is also referred to as a server (though it may contain
anumber of server and client programs). For example, the user of aWeb browser is effectively
making client requests for pages from serversall over the Web. The browser itself isaclientin
its relationship with the computer that is receiving and returning the requested files. The
computer handling the request and sending the Web pages back to the user is the server.

Multi-tier is aterm that appliesto a computer system where the software is layered, by
function, among multiple computers. Generally, each of these layers resides on its own
computer. The most common multi-tier architecture is the client/server system, whichisa
two-tier system; the user interface is on one tier (the client) and the business process and data
storage are on the other tier (the server).

Windows DNA architecture supports three tiers, or layers:
¢ Userinterface
¢ Business process

8 / FactoryLink Concepts

FACTORYLINK CONCEPTS
FactoryLink Overview

» Datastorage

FactoryLink’s Architecture

FactoryLink conforms to the Windows DNA three-tier standard:

+ User interface: FactoryLink Client

» Business process (the application): FactoryLink Server

- Datastorage: SQL Server, or other database product, and PLCs

The following diagram illustrates a FactoryLink environment:

FactoryLink Environment

I
FactoryLink Clients

FactoryLink Servers

Data Storage

FactoryLink Client

The FactoryLink Client provides two things:
A connection to the server to build a FactoryLink application
A graphical user interface into the application

FactoryLink’s application-devel opment tools reside on the client.

FactoryLink Concepts / 9

FACTORYLINK CONCEPTS
FactoryLink Overview

OPC

FactoryLink Server

The FactoryLink Server is where the FactoryLink application and the FactoryLink
programs reside, so the server provides all data-processing functionality.

Data Storage

Because data required by the application can come from any external source, the data-
storage tier can be a database product and/or PLCs.

The FactoryLink Client and Server communicate using an OPC interface. OLE for Process
Control (OPC) is acommunication standard devel oped by a group of software and hardware
vendors, in cooperation with Microsoft, to standardize the way datais accessed. OPC is
incorporated into Microsoft Windows DNA.

OPC alows client applications to access data consistently, regardless of the source (server).
Hardware vendors generally provide OPC servers so that their data can be accessed without
needing proprietary drivers. SCADA vendors generally provide OPC clients. Because of
FactoryLink’s client/server architecture, FactoryLink isuniquein that it also provides an OPC
server. Your FactoryLink application can not only collect data, it can aso, using its OPC
server, distribute that data to other applications throughout your organization.

FactoryLink’s Benefits

FactoryLink’s multi-tier architecture offers major benefits:

 Each server can have one or more application.

» The applications can be developed and maintained from any of the clients.

 Modifications made to any application are “pushed” to any clients looking at that
application.

» A FactoryLink system can be scaled or expanded, based on the needs of the business. A
small application can exist with all tiers on a single computer. A large application may
require multiple servers. For example, the middle tier for the servers can have alarming on
one server, trending on another, and so forth. And, because the application database is
separate, the data-storage tier can be scaled to grow with the business.

10 / FactoryLink Concepts

FACTORYLINK CONCEPTS
FactoryLink Tasks

%
J

FACTORYLINK TASKS

FactoryLink is aset of programs
that perform a specific activity in
the automation process, such as:

 Reading and writing of datato
external devices (PLCs, RTUS)

 Collection and storage of data
e Alarming
» Generating reports

These programs are referred to as ‘

modules or tasks because they are
independent programsthat do only
one specific job or task alone, but
together make an application fully
functional. You access the tasks
through the Configuration
Explorer, one of the FactoryLink
application-devel opment tools.

FactoryLink Concepts / 11

FACTORYLINK CONCEPTS
Real-Time Database

REAL-TIME DATABASE

USDATA's patented Open Software
Bus architecture provides a global
rea -time database (RTDB) through
which all FactoryLink tasks
communicate.

The real-time database is a block of
memory allocated by the system when
the application starts. It servestwo
pUrposes:

» Stores application data

» Providesintertask communication
The real-time database stores data that
has been:

» Collected from an external device,
suchasaPLC

» Computed by a FactoryLink task,
such asMath & Logic

* Manually entered through a
keyboard or a graphic screen

After datais stored in the real-time database, other tasks can access and manipulate the data.
The tasks communicate with each other by reading values from and writing values to the
database. Tasks do not communicate directly.

This architecture allows communication with other applications, such as an Oracle database or
an Excel spreadsheet, and also allows you to develop your own tasks to integrate with
FactoryLink.

Together, the real-time database and the tasks make up the FactoryLink application, which runs
on the server.

Real-Time Database Elements (Tags)

The values in the real-time database are stored in memory locations known as real-time
database elements or tags. This section explains:

» Concept of atag
* How to define atag

12 / FactoryLink Concepts

FACTORYLINK CONCEPTS
Real-Time Database

» Basic structure of atag
» Tag types and their specific structure

What is a Tag?

A tag is nothing more than a memory location within the real-time database (specifically, a
segment and offset). Any value that iswritten to the database is stored within a tag.

To use an anal ogy, the tag concept is similar to that of a post-office box. EachtagislikeaP.O.
box in that, just as a PO. box stores mail, atag storesinformation. Just as each P.O. box has a
unique identification: its box number, atag has a unique identification; itstag name. A tag
nameisthe nameyou assign to atag when you defineit. Just asthe contents of the P.O. box
change constantly, so does the value of the tag change. Just as, to send something to the P.O.
box, you must use the correct box number, to write a value to a tag, you must use the correct

FactoryLink Concepts / 13

FACTORYLINK CONCEPTS
Real-Time Database

tag name. To read the contents of aP.O. box or atag, you must go to the correct P.O. box or tag
to retrieve its contents or value.

Tag = Element
Tagname = Name used to reference elements

Post Office Boxes

TAG1 | TAG2 | TAG3 | TAG4 | TAGS

e AtagislikeaPO. box.

« Each box or tag has a unique way to be identified.

 Each tag has a unique tag name.

+ Each tag's contents may change.

 You can send or receive (write or read) values (contents) to or from atag.

Defining and Naming Tags

Whenever you enter a new tag name in one of the FactoryLink application-devel opment tools,
Configuration Explorer or Client Builder, you are prompted to define a new tag.

Tag Naming Requirements

When naming tags, be aware of the following requirements:

14 | FactoryLink Concepts

FACTORYLINK CONCEPTS
Real-Time Database

» Tagsare case-sensitive. Use capitalization consistently in tag names. For example, atag
named “TEST” and atag named “Test” are two different tags to FactoryLink.

 Tags can have up to 32 a phanumeric characters.

» Tags cannot have spaces or periods.

 Tags cannot start with numbers.

Try to name tags in away that describes their purpose. Thisisvery helpful when you need to

referencethem in an application. After atag isdefined, any object in any Client Builder screen
or any task may reference that tag.

Tag Editor

Entering a new tag name in a configuration table in the Explorer or in an animation dialog in
Client Builder displays the FactoryLink Tag Editor. The Tag Editor prompts you for
information about the new tag so the system can define it in the real-time database. The
sampl e diagram below shows the definition of atag named Tank_87.

FactoryLink Concepts / 15

FACTORYLINK CONCEPTS
Real-Time Database

FactoryLink TagEditor - \WFBURKLE2ASTARTERAPP

Gieneral Page | H-Ref | Alarm Groups | Alarrs | Scaling/Deadbanding | Looging | 10 |
Aray Subscript;
=1
=
Dezcription: Dormain:
I.i".Nf-'« tag - Fuel level of 87 octane tank. ISHﬁHED j
Type: Array Dimerizions: Meszage Length: D efault Yalue:
EIGERET |
— Persistence
™ Use Domain Settings
Save When Restaring
[OnTime (™ Set Change Status On
[OnException {+ Set Change Status Off

The Tag Editor requires that you specify adatatype. The other information is optional,
depending on how you intend to use the tag in the application. Tag descriptions are
recommended because they are very useful in self-documentation of the application. For afull
discussion of the Tag Editor, refer to the FactoryLink Configuration Explorer User Guide.

Tag Data Types

FactoryLink supports several different types of datain the real-time database. The tag type you
select determines what data a tag can store.

16 / FactoryLink Concepts

FACTORYLINK CONCEPTS
Real-Time Database

Digital

A digital typeis aone-bit binary number that can only be set to a value of 0 (OFF) or 1 (ON).

Analog

Ananaog typeisal6-bit signed integer. This datatype can handle anumber between negative
32,768 and positive 32,767. Remember, no internal checking is done for rollover of numbers.

Rollover can cause problems by misrepresenting the value, much as a car odometer rolls over
from 99,999 to 0. Though the odometer may read 00002, you know the car has gone 100,002

miles. You may not be aware of an analog tag’'s value rolling over, so ensure that the values are
within arange that prevents this condition.

Long-Analog

A long-analog type (longana) is a 32-bit signed integer; its value can range between negative
2,147,483,648 and positive 2,147,483,647.

Floating-point

A floating-point (float) typeis an | EEE double-precision number supporting up to 31 placesto
theright of the decimal with avalue range from positive or negative 10 raised to the power of
plus or minus 308.

Message

A message value can be any combination of a phanumeric characters. You set the length limit
in the tag definition.

Mailbox

A mailbox is aunique data type that specific tasks use to communicate with each other. Thisis
the only datatype that can queue data rather than overwrite the previous value. The contents of
this datatype vary in length.

System Tags
Many time-related system tags are pre-defined by FactoryLink to provide system-wide time
information to all FactoryLink tasks. For example, there are tags for date, time, number of

minutes past the hour, current month, etc. These tags are updated as soon as FactoryLink starts
and are continuously updated as the system runs.

Arrays

A tag can also be defined as an array of elements. An array tag has the following format:

FactoryLink Concepts / 17

FACTORYLINK CONCEPTS
Real-Time Database

« tagname[n]: One-dimensional array (list of elementsindexed in sequence)

 tagname[n][n]: Multi-dimensional array (matrix or table containing afixed number of rows
and columns. Each element in atwo-dimensional array is distinguished by apair of indexes.
The first index gives the row and the second gives the column of the array the element is
located in. A three-dimensional array is distinguished by three indexes, and so on.

Theletter n isthe number of elementsin the array. The brackets[] around the array size are
required when referencing an array tag.

The following figure illustrates single and multi-dimensional arrays and tag naming
conventions used for each.

Fuel Type Price per region for Super 93
Region1 Region2 Region 3
Jan. 1.45 1.80 1.23
Fuel [0],—vSuper_93 Super 93/31111-FE- 1.56 177 125
Fuel[1]-=Extra_89 per_93(3]I]W\’LQ 174 127
Fuel[2]-+Regular_87 Super 93412 g5 —— e =i 133
: Super_93[6] [0l ay 1.79 1.64 1 35
Fuel[3]-—*=Diesd h%lﬁz 170 131
July 1.73 1.76 1.28
Single Dimensional Multi-Dimensional
(alist) (one or moretables)

An advantage of using arrays isthat certain FactoryLink tasks, such as Math & Logic and
Database Browser, can perform operations on an entire element array using only one reference
to the array rather than using separate references to each element in the array.

Tag Structure

If it were possible to see atag, you would see that it consists of a number of bits. Excluding
the bitsrequired for the tag's value, every tag, regardless of its data type, has the same basic bit
structure.

Basic Tag Structure

All tagsrequire 16 bytesjust for the structure of the tag itself. The following illustration shows
the basic bit structure for every tag in the real-time database.

The 16 bytes are designated as follows:

18 / FactoryLink Concepts

FACTORYLINK CONCEPTS
Real-Time Database

4 bytes that function as change-status bits
4 bytes that function as change-wait bits
8 bytes that are reserved for future use.

G D P
P C R B o
R E O R A B w
T T U R U E P R S D S E D R
R | N S N C H A H O P B C R P T F
E I E M R M I T 1 | L Il w o CcC L A N L M L
b M N E P G S E P S OC s OMO L E O O F
| L bR TR TRE TG S E L L G E T G N M
[I I I I I [I,
0/0/0jo]o]o|0/0]0]0]|0]0]0]0]|0]0]0]0]0]0|0] |4Bytes--Change-status bits

4 Bytes -- Change Wait Bits

4 Bytes -- Reserved for future use

4 Bytes -- Reserved for future use

The change-status bits are very important to the FactoryLink system.
Change-Status Bits

The change-status hits enable FactoryLink to operate based on exception processing.
Exception processing means that tasks do not access the database to read atag’s value
UNLESS the tag's value has changed since the last time it was read.

Each FactoryLink task is assigned to a change-status bit. The task looks at the same bit in
every tag that you define. (The diagram above isjust an example. The order in which the tasks
areassigned isirrelevant.) The value of the bit determines whether the tag’s value has changed.
Thebit is set to either 1 (ON) or 0 (OFF). One (1) indicates to atask that the value of the tag
has changed since the last time it was read, so the task will access the database again to read
the tag's new value. Zero (0) indicates that the tag value has not changed since the last time it
was read, so the task will not access the database unnecessarily to read a value that did not
change.

When atask writesavalue to atag, FactoryLink automatically sets ALL the change-status bits
to 1. When atask reads atag, it setsjust that task’s individual change-status bit to 0. The
change-status bits for tasks NOT configured to read atag always have avalue of 1; they do not
affect other tasks or the application.

Start-up Values in Tags

Unless you define a default value for atag, the start value of all the change-status bitsis zero
(0), indicating that no activity has taken place.

FactoryLink Concepts / 19

FACTORYLINK CONCEPTS
Real-Time Database

Digital Tag Structure

A digita tag contains 16 bytes:
e Thefirst bit stores the tag value (either O or 1).

» The second bit through the thirty-second bit store the value for the change status of each
task (31 tasks).

» The next four bytes are change-wait bits used to allow atask to “sleep” until atag’s value
changes.

» Thefinal eight bytes are reserved for future use.

G D P
Bit -- containing the P C R B o
R E O R A B w 1 Change Status Bit
aueOor 1l T T U R U E P R s D s E D R
R 1 N S N C H A H O P B C R P T F for each of 31 FL Tasks
E | E M R M I T 1| 1 L I W o 1L A N L M L
DM N E P G S E P S OC S M O O L E O O F
I L Db R T R TR E T G S E L L G E T G N M
EEEEEEEEEEEEEEEEEEE K e EEEEn

4 Bytes -- Change Wait Bits

4 Bytes -- Reserved for future use

4 Bytes -- Reserved for future use

Analog Tag Structure

An analog tag contains 18 bytes. The structure of an analog tag is the same as that of a digital
tag, but with two additional bytes to contain the value of the tag.

2 Bytes -- containing G D P
the Value £ A b w
R E O R A B w 1 Change Status Bit
TT U R U E P R s D s E D R
Unused R I N S N C H A H O p B c R p T F [foreachof31FL Tasks
E I E MR M I T I I L I W<coOWLANTLM.L
DMNETPGSTETPSOCSMOTOTLTE OO F
'L DRTRTRETSGSETLTLTGETGNM
¥

4 Bytes -- Change Wait Bits

4 Bytes -- Reserved for future use

4 Bytes -- Reserved for future use

20 / FactoryLink Concepts

FACTORYLINK CONCEPTS
Real-Time Database

Long-Analog Tag Structure

A long-analog tag contains 20 bytes. The structure of along-analog tag isthe same asthat of a
digital tag, but with four additional bytes to contain the value of the tag.

G D P
4 Bytes-- containin Pc RB o
the)\//a| ue o TT E E 8 Fé é 2 s D s \év D R 1 Change Status Bit
Unused R I N S N CHATH O p B c R p T £ /foreachof31FL Tasks
E I EMRM I T I I L I wWCOTLANTLM.L
DMNEZPGSTETPSOCSMOTOTLTEOOF
'L DR TRTRETGSETLTLTGTETGNM

L P

4 Bytes -- Change Wait Bits

4 Bytes - Reserved for future use

4 Bytes - Reserved for future use

Floating-point Tag Structure

A floating-point tag is 24 bytes. The structure of a floating-point tag is the same asthat of a
digital tag, but with eight additional bytes to contain the value of the tag.

G D P
8 Bytes -- containing R P RoB °
the Value Unused T T U R U E P R S D S E D R 1 Change Status Bit
nu R I NS N CHAH O p B8 c R p 1 F [foreachof31FL Tasks
E I E MR M I T I I L I WECUOTLANILM.L
DM NEJUPGSETPSOCSMOTOTLE OO F
I L b R TR TRTETTGSTETLTLGTETGNM
[

4 Bytes -- Change Wait Bits

4 Bytes - Reserved for future use

4 Bytes -- Reserved for future use

Message-Tag Structure
A message tag is 24 bytes plus bytes needed to store the message itsalf.

The structure of a message tag is the same as that of adigital tag, but with 8 additional bytes:
4 bytesto point to the memory location where the actual message is stored

2 bytesto specify the maximum message length

» 2 bytesto specify the current length of the message

FactoryLink Concepts / 21

FACTORYLINK CONCEPTS
Real-Time Database

plus the bytes required to store the message itself.

8 Bytes structure that o e e e °
ndwesthemesge - pE o R0 o
length. Unused R 1 N S N CHAHO P B c rR p 1T F [foreschof31FL Tasks
E I EMRM I T I I L I WCOTULANTLM.L
D MNETPGSTETPSOTCSMOTOTLTEOOF
'L DR TRTRETGSETLTLTGETGNM
v 3

IENEEERREEREENEENERE NN EEEE

4 Bytes -- Change Wait Bits

4 Bytes - Reserved for future use

4 Bytes - Reserved for future use

Mailbox Tag Structure

Mailbox tags are different from other data types; their values do not get overwritten, because
new values are appended (queued) to current values already stored.

A mailbox tag contains 24 bytes plus bytes for storing the length of the value and the number
of values.

The 24 byte-structure of amailbox tag is the same as the 24-byte structure of a message tag:

e The basic 16-byte tag structure

4 bytes point to the memory location where the actual message is stored

2 bytes specify the maximum message length

* 2 bytes specify the current length of the message

plus the bytes required to store the mailbox messages and the number of messages.

22 | FactoryLink Concepts

FACTORYLINK CONCEPTS
Real-Time Database

Real-Time Database Access: Reads and Writes

While knowledge of how tasks access the real-time database is not required to develop an
application, it will help you understand what is going on as an application runs, and will help
with troubl eshooting.

Tasks access the real-time database to read values from tags and to write values to tags. When
atask accesses the database, it is actually making a call to the FactoryLink kernel. The kernel
isapart of the real-time database that manages the reads and writes to the database. Its
function is transparent to you. There are two types of write calls and two types of read calls:

« Normal (conditional) write

+ Forced (unconditional) write

» Change (conditional) read

+ Normal (unconditional) read

You do not have to configure which write or read call atask makes. The type of call atask

makes to the real-time database is programmed into the task; it is part of its code. The task
makes the appropriate calls, depending on its purpose in life.

Normal (Conditional) Write

A normal write occurs ONLY if the new value being written to the tag is different from its
current value. Thus, the term conditional: Is the new value different from the current value?
The kernel checks this condition. If it istrue, the kernel performs the write and setsthetag's
change-status bits to 1; if not, the kernel does not perform the write, and the change-status bits
remain O.

For example, given the following information:;

+ A tagisnamed Tank1.

* ltscurrent valueis 10.

e ThelInterpreted Math & Logic task (IML) is configured to perform acalculation and assign
the result to Tank1.

Example 1: IML performsits calculation and the result is 10. IML makes the normal write call
to the database and the kernel compares the current value of Tank1 with the new value from
IML. The current valueis 10 and the new valueis also 10. Because the old and new values are
the same, the kernel does not continue with the write, and the current value remainsin Tank1.
Because the kernel does not perform the write, the change-status bits for Tank1 remain zero.
Therefore, no tasks are notified to perform aread of Tank1.

Example 2: IML performsits calculation and the result is 20. IML makesthe normal write call
to the database, and the kernel compares the current value of Tank1, 10, with the new value

FactoryLink Concepts / 23

FACTORYLINK CONCEPTS
Real-Time Database

from IML, 20. Because the old and new va ues are different, the kernel continues with the
write and writes 20 to Tank 1. Because the kernel performed the write, it sets the change-status
bits for Tank1 to 1. Therefore, the kernel notifies any tasks waiting for change on Tank1 that
they should read the new value.

Forced (Unconditional) Write

Unlike the normal write, the forced write updates the value, whether or not it is different from
the old value. Thus, the term unconditional: regardless of the tag’s status, its change-status bits
areforced to 1.

G D P
it -- containing the R DS NS ° _
lueOor 1 1 Change Status Bit
Rl NSNGHANO b b cr e 1 F foreh3lFTaks
E | E M R M | T | | L I wCc O L A N L ML
D M N E P G S E P S O C s M O O L E O O F
| L bR TR TRE T G S E L L G E T G N M
*|ojo|ojo/0]o]0|0]0]0|0]0]0|0|0]0|0|0[0|0]0]|0|0]0]|0|0|0]|0|0|0|0| «— At Start-u
4 Bytes -- Change Wait Bits
4 Bytes -- Reserved for future use
4 Bytes -- Reserved for future use
. L. G D P
it -- containing the R DS NS ° _
lueOor 1 1 Change Status Bit
Rl NSNGCHANOG p8 corop 1 lorehd3lFTaks
E | E M R M | T | | L I w CcC O L A N L M L
b MNE P G S E P S OC S M OO L E O O F
| L bR TR TRE T G S E L L G E T G N M
g ' Normal o
[aajajafajajajafajajajafajajajafafa]ajafa]a]aja]a[a[a]1|a[a]1) «— T -

4 Bytes -- Change Wait Bits

4 Bytes -- Reserved for future use

4 Bytes -- Reserved for future use

Using the previous example:
* A tag named Tank1
e ltscurrent valueis 10.

e ThelInterpreted Math & Logic task (IML) is configured to perform a calculation and assign
the result to Tank1.

IML performsits calculation and the result is 10. IML makes the forced-write call to the
database. The kernel writes the new value of 10 to Tank1. Because the kernel performed the
write, it sets the change-status bits for Tank1 to 1. Therefore, the kernel notifies any tasks
waiting for change on Tank1 that they should read the “new” value.

24 | FactoryLink Concepts

FACTORYLINK CONCEPTS
Real-Time Database

Change (Conditional) Read

A change-read call returns the value ONLY if the data has changed. The condition is: Are the
change-status bits for the tag set to 1? If the change-status bits are 1, then the value must be
different from the last read, so the kernel will notify waiting tasksto read it again. This type of
read significantly optimizes performance.

Normal (Unconditional) Read

An unconditional-read call returns the value, regardless of whether the value has changed since
the last read. It isa“forced read.”

G D P
it--containingthe P ¢ NS °)
lueOorl TOT U R U E P R S DS E D R 1 Change Status Bit
R I N S N CHATHO p B8 c R p T f ([foreachof31FL Tasks
E | E M R M | T | | L | w CcC O L A N L M L
b M N EP G S E P S OC S M O O L E O O F
'L bR TRTHRETG S E L L GE TG NM After Normal
Ylo[1]1]a]2|1]1]2]2|1]1[2]2|1]1]2[2|1]1[2]1]2]1]2]2]2|1]2[2]21]1]« Read (other
4 Bytes -- Change Wait Bits Tasks have rea
the element)
4 Bytes -- Reserved for future use
4 Bytes -- Reserved for future use
) L. G D P
it -- containing the X P S NS °)
lueOor1 T T U R U E P R S D S E D R 1 Change Status Bit
RO N S NCHATHO P 8 c rR p T f (forexchof31FL Tasks
E | E M R M | T | | L | w CcC O L A N L M L
b M N EP G S E P S OC S M O O L E O O F
| L bR TR TRE T G S E L L G E T G N M
v s Change
0]a]ajafa[a]a[a[a]a[2]aja]a]a]a]aj1]a[a[T]2]a]1]a[a[2]2]2[2[1] « 0

4 Bytes -- Change Wait Bits

4 Bytes -- Reserved for future use

4 Bytes -- Reserved for future use

FactoryLink Triggers

Theterm trigger refersto atag whose change in value causes another event to occur in the
application. For example, a message tag station_name stores the name of aworkstation. You
could have Math & Logic run a script every time you change the name of the workstation.
What happens when you enter a new workstation name? The kernel sets all the change-status
bitsfor station_nameto 1. What happens when change-status bits go to 1? The kernel notifies
waiting tasks that their bit is set, and the tasks then read the new value and perform their job. In

FactoryLink Concepts / 25

FACTORYLINK CONCEPTS
Real-Time Database

this example, Math & Logic runsits script. What you are saying, then, isthat station_name
triggers Math & Logic to run your script. So, for atag to act as atrigger, its change-status bits
must be set to 1. Any tag type can act as atrigger.

However, for digital tags to act astriggers, two conditions are required:
¢ The change-status bits must be 1, AND
e Thetag'svaue must be 1.

Remember that digital tags are either 1 or 0; ON or OFF. The reason for the two conditions
above isthat the change-status bits themselves, not the values of 1 or 0, function as the
ON/OFF switch.

For example, given adigital tag at startup with its value as 0 and its change-status bits 0. You
writealto the tag. Writing anew value sets all the change-status bits to 1. Both conditions are
true, so thetag is considered ON. Any task that is configured to read this digital tag is notified
by the kernel to do so. Now, you want to turn it OFF. You do not write a 0 to the tag, because
the change-status bits turn the tag OFF for you.

After atask reads the value of 1, it set its own change-status bit to 0. Both conditions are no
longer true. Thetag'svalueistill 1; it never changed. But the reading task’s change- status bit
isnow 0. So, for thereading task, both conditions are no longer true, and the tag is considered
OFF. Note that the tag is still ON for any other task that is configured to read it but has not
done so.

Given that you do not write a0 to adigital tag to turn it OFF, then itsvalueremainsa 1. So how
doyouturnit ON againif itsvalueis aready 1? Use the force-write call to write a1 back into
thetag again. A force-write call writesa 1 to the tag and forces the change-status bitsto 1.
Both conditions are now true again, so the tag is considered ON again.

In general, the following rules apply for digital tags:

e A digita isON whenitsvalueis 1 and its change-status bits are set to 1.

e Oncethevaueiswrittento 1, it remains 1 for the duration of the application (unless you
purposely write a0 to it).

« The change-status hit, not the tag value, serves as the ON/OFF switch for the tag.

- A digital valueis OFF for atask when the change-status bit for that task is set to 0 (when the
task completesits read of the value).

« Useaforced writeto turn adigital ON again.

26 / FactoryLink Concepts

FACTORYLINK TOOLS

FACTORYLINK CONCEPTS
FactoryLink Tools

FactoryLink includes two application-development tools: Configuration Explorer and Client
Builder. Both reside on the FactoryLink client computer.

Configuration Explorer

- Configuration Explorer

File Yiew “Window Help

Ja=

[E==N A

EI---QGI> Erterprize Wiew
E| FactoryLink Servers
EI MyFactoryLinkServer

EI@ My Starter Apgp

ﬂ Application Object Claszes
_| Application Object Instances
_| Alarms

_| Drata Logging

_| Device Interfaces

_| Graphics

_| Historians

Configuration Explorer provides access
to the FactoryLink tasksin atree view
much like the Windows Explorer. You
useit to create the server application.

Using Configuration Explorer, you
configure atask to make it part of the
application. Each task has a specific job
to do, such aslogging data to a database,
reading from or writing to aPLC or other
external device, alarming, etc. A task
must be configured before it will run.

You configure atask by completing its
associated configuration table(s).

E-__1 Msth and Logic
-] Metworking

1 Scaling and Deadbanding
1 sPC

-] Other Tasks
EEI-- OPC Servers
@ Workspaces

@ Enterprize YWiew
| Ready

FactoryLink Concepts / 27

FACTORYLINK CONCEPTS
FactoryLink Tools

Using the Alarm task as an example, the diagram below shows a sample table.

ﬁ Alarm Definition Information - SHARED [AWFBURKLE 2\StarterApp]
28| &|ml@|X| |F Fl FIF =gl2 oW 2
[i'}‘fg’l”;qame Cond. |Limit ‘Deadband Hessage
1 123 TAMEK H [=]55] The tank is too highl
2 -
| | 3

Given that the general purpose of the Alarm task isto monitor values in the real-time database,
compare these values against the criteria defined by the user in the Alarm table, and display an
alarm message if the real-time database values meet the criteria; this sample configuration tells
the Alarm task to do the following:

“Read the value of TANK1 and compare it to the alarm condition ‘ greater than 55." If
TANK12’svalue is greater than 55, display the alarm message ‘ The tank istoo high!’ on the
application screen.”

Thisisasimple example, but theideaisthat atask will do nothing unlessit has been told to do
so by its configuration table. Every task has at least one configuration table, depending on the
job the task performsin an application.

Configuration Explorer, including its ease-of -use features and the configuration tabl e structure,
is discussed in detail in the FactoryLink Configuration Explorer User Guide. Individual tasks
are discussed in the FactoryLink Task Configuration Reference.

28 / FactoryLink Concepts

FACTORYLINK CONCEPTS
FactoryLink Tools

Client Builder

Client Builder isthe tool you use to create the user interface for your application directory on
the server. It iswhere you devel op the graphic screens you see when you run the application. A
sampl e application screen appears below:

Jiil, FactoryLink Client Graphics

“Eile Edit Display |nsert Draw Apange Animate Mode Tool: Window 2
NIEDVATH Overview Areal Area2 Area 3 Alarms Tasks | Wed lelQIEDDD;
WSTEYATE
SIS AN LAY
PID Loop Faceplate Alarm Faceplate PID Loop Tuning
Units (%) Units Loop Name
-+ 10 — 100 — 10 I_
- — — »
1= 8 [so Hi——% ﬂl
= = = B
4+ s [&0 - & ok
T — —
1 4 [a0 4
+ - Lo—= &
T £ - 2 P Y S PP oy s S PP S
T s FE o E o 5= N
L1 =
SP PY Out PYH PY PYL
[0.0 [oo [ooo | JENE | oo JHENY Gain [EEY
| 0.0f | 0.0| Rate JEWOTY
Reset JEN
< | i
Fieady T CEL] EEFI0ATE K 100%
llol1]/2l3[a]s s 7|8|al10/1]12[13]14]15

Client Builder exchanges data with the server through its OPC connection. FactoryLink’s
starter application files provide you with many default screens that help you learn about the
featuresin Client Builder, aswell as many libraries of imagesto help you quickly create good-
looking, user-friendly screens.

FactoryLink Concepts / 29

FACTORYLINK CONCEPTS
FactoryLink Tools

30 / FactoryLink Concepts

STARTER APPLICATION
Starter Application Overview

Chapter 2
Starter Application

During the FactoryLink 7.0 installation process, you have an option to install the Starter
Application, which USDATA highly recommends. It is abaseline application with
functionality common to most FactoryLink applications. Using the Starter Application, users
can modify the existing components to meet their needs, therefore reducing the time and effort
required to configure a new application.

STARTER APPLICATION OVERVIEW

The FactoryLink Starter Application consists of two sets of components:
A server application with an Application Object database and source file examples
« A Client Builder project

Server Application

The Server Application consists of a set of preconfigured tasks that are commonly used in
industry, such as Alarm Logger, Database Logger, Historian, OPC Server, Math and Logic.
These tasks provide examples of logging datafor alarm, trend, and browse, aswell as generate
real-time data for graphic animation display. The data is accessed by the Client Builder
graphics using the Alarm Server and the OPC Server running within the FactoryLink
application and the Trend Server and Database Browser Control running from Client Builder.

Application Objects

The Application Objects configured in the AOInstance.mdb database are collections of
Template Variables, Configuration Objects, and File Objects based on common FactoryL ink
task configuration tables. These Application Objects use the exampleinput source fileslocated
in the {FLAPP}\AppObj directory to dynamically populate one or more FactoryLink task
configuration tables.

Asan Application Object is copied to an application, each Application Object’'sinstanceis
written to the Instances database file (AOInstance.mdb). On successful completion of each
instance, the configuration table's database record is written to that table's database (*.cdb)
file

FactoryLink Concepts / 31

STARTER APPLICATION
Starter Application Overview

Client Builder Project

The Client Builder project consists of three sets of screens that demonstrate each of the major
functions that are available in the graphical development software.

e Thefirst set demonstrates real-time data display for alarming, trending, and browsing,
using the developed ActiveX components.

e Thesecond set demonstrates standard animation features commonly used for color control,
value input and output, and image display.

e Thethird set demonstrates advanced features used to add movement, visibility, script, and
objects to the graphics.

Note: TheFacotryLink Clientinstallationinstallsaset of clip art images
in the USDATA\Client Builder\Shared Libraries directory. To use the
clip art graphics, you need to copy them into your new Client Builder
project.

32 / FactoryLink Concepts

STARTER APPLICATION
Application Objects

APPLICATION OBJECTS

The Application Objects examples are installed in Configuration Explorer. Each Application
Object isa collection of template variables, configuration objects and file objects that is
specifically configured to populate one or more configuration tables within the FactoryLink

Server.

There are two main advantages for using Application Objects:

* Increased development productivity
- Simultaneous development by users with different FactoryLink skill levels
- Reusability of common variables and objects
- Structured configuration methodology

+ Easier application maintenance
- Organized view of records grouped by function
- Ableto add, insert, and remove instances per changing specifications
- Ak?l etorecalculate al the instances of an Application Object from revised data source

files
Application Object Overview Diagram

Figure 2-1 illustrates how data flows from the devel oper’s raw information to the configuration
tables. There are three sections in this process:

« Where does the data come from?
- Raw configuration data can be a user input or a sourcefile.
- User input can be entered by keyboard or by record generator panel.
- Source file data types can be atext file, spreadsheet, or database.
« How the classes are defined?
- Template variables define the input or source parameters.

- Template variables can be used in configuration objects, file objects and Application
Objects.

- Configuration objects define the template variables or constants used in the configuration
forms.

- File objects define the template variables or text used in the text forms.

- Application Objects define the collection of template variables and objects used to
represent afunctional equipment object.

FactoryLink Concepts / 33

STARTER APPLICATION
Application Objects

« How are the Application Objects instantiated into configuration tables?

- Application objects are instantiated using a copy and paste method from the Classes tables
to the Instances tables within the Application Objects database.

- Application Object Instances tables within the database are used to record and maintain the
location of the instantiated objects within the FactoryLink application.

- Each successful instantiation is then written as arecord to the FactoryLink application
configuration tables and files.

34 / FactoryLink Concepts

Figure 2-1 Application Objects Overview Diagram

{FLAPPMAppobj default directory
- source files (gen txt cav xls mdb)
- property page files (htm)

Application Object Classes Tables
- created in ADInstances. mdb

Saurce
[configuration rar data)

Template Variables
(input source defintions)

STARTER APPLICATION
Application Objects

User Input or Source File:
- Keyhoard

- Generated

- Text File

- Excel spreadsheest

- DDBC Database

Configurstion Objects
[configuration table farms)

[configuration text forms)

File Objects

Application Ohjects
(collection of variables and ohjects)

Application Ohject Instances Tables
({FLAPP putppobiOlnstances mdk)

FactoryLink
Application Directory

Configuration Tables
({FLAPP Y colb files)

Oninstantiation, the objects
are written to the Instances
tables and then to the
Configuration tables

FactoryLink Concepts / 35

STARTER APPLICATION
Application Objects

Examples of Application Objects

The Application Objects in the Classes folder are configured as examples of atypical function
that would be required in a FactoryLink development project (see Figure 2-2). Each of these
objects is described in general in the following subsections.

Figure 2-2 Application Objects in Configuration Explorer

. Configuration Explorer =] E3
File “iew ‘window Help
[EETTE Y
==
EI---QO; Erterprize Wiew |=]
E| FactoryLink Servers
El-- myFactoryLinkServer
E@ My Starterpp
=5y Application Ohject Classes
1 Template variables
7.] File Objects
-4 Application Objects
---00‘ Analog2 = Analog input with 2 alarm states
Q. Analogd = Analog input with 4 alarm states
Q. AnaloghB = Analog input with scaling from Keyboard
---302 AnalagOut » Analog Output
@, Block = Example for instance and offset
Q. Digitall = Digital input with 1 alarm state
302 Digitald = Digital inputs with 4 alarm states
302 DigitalkB = Digital input from Keyhoard pre
302 DigitalCwt = Digital output
302 MLOPSim = ML Simulstar for Analog2
302 PCAlarms = Alarma for Parent Child example
30 RizAnalog = Rpt Generator for Analog2
G, Taglrrayl = Tag array example 1
G, Taglrray2 = Tag array example 2
--%0?) TextTest = Tag test for text source file
----- _| Application Ohject Instances
B Alarms ;I
@ Enterprize Wiew I
| Ready | 3416400 | 2:00 PM i

Analog2 - Analog Input with Two Alarm States

Analog2 configures an analog input from an Excel spreadsheet in these task functions: read
from an OPC server, scale to engineering units, log to a database, and alarm on high and low
limits.

36 / FactoryLink Concepts

STARTER APPLICATION
Application Objects

Analog4 - Analog Input with Four Alarm States

Analog4 configures an analog input from an Excel spreadsheet in these task functions: read
from an OPC server, scale to engineering units, log to a database, and alarm on high-high,
high, low, and low-low limits.

AnalogKB - Analog Input with Scaling from Keyboard Entry

AnalogKB configures an analog input from a keyboard manual entry in these task functions:
read from an OPC server and scale to engineering units.

AnalogOut - Analog Output for Write
AnalogOut configures an analog output from an Excel spreadsheet for write to an OPC server.
Block - Example for Instance and Offset

Block configures a block of related tags from an Excel spreadsheet for Math and Logic
variables.

Digitall - Digital Input with One Alarm State

Digital1 configures adigital input from an Excel spreadsheet in these task functions: read from
an OPC server and alarm for an ON condition.

Digital4 - Digital Inputs with Four Alarm States

Digital4 configures two digital inputs from an Excel spreadsheet in these task functions: read
from an OPC server, calculate the four analog states of two digital inputs using Math and
Logic, and alarm for the four analog conditions.

DigitalKB - Digital Input from Keyboard Entry

DigitalKB configures a digital input from a keyboard manual entry for read from an OPC
server.

DigitalOut - Digital Output for Write

Digital Output configures adigital output from an Excel spreadsheet for write to an OPC
server.

MLDPSim - Math and Logic Simulator for Analog2

MLDPSim configures tags from an Excel spreadsheet for Math and Logic trigger, variables
and program for ssmulation of the analog inputs for the prior Analog2 object.

FactoryLink Concepts / 37

STARTER APPLICATION
Application Objects

PCAlarms - Alarms for Parent Child Example

PCAlarms configures tags from an ODBC database for alarming with a Parent-Child
dependency relationship.

RGAnalog - Report Generator for Analog2

RGAnalog configures tags from an Excel spreadsheet for areport generation of the analog
inputs for the prior Analog2 object.

TagArrayl - Tag Array Example 1

TagArrayl configures array tags using one column for “tags[index]” from an Excel
spreadsheet for Math and Logic variables.

TagArray?2 - Tag Array Example 2

TagArray2 configures array tags using two columns for “tags” and “index” from an Excel
spreadsheet for Math and Logic variables.

TextTest - Tag Test for Text Source File

TextTest configures tags from two types of text file extensions (Txt, Csv) for Math and Logic
variables.

38 / FactoryLink Concepts

STARTER APPLICATION
Client Builder Starter Project Graphics

CLIENT BUILDER STARTER PROJECT GRAPHICS

You can view the Client Builder Starter Project examples by navigating the graphic template’'s
menu bar. These examples are grouped under each of the area headings on the menu bar, where
Areal contains the common ActiveX controls, Area2 contains the standard animation
functions, and Area3 contains the advanced animation features (see Figure 2-3).

Figure 2-3 USDATA Logo Graphic

[@] Client Builde e e e _ |0
”Ei\e Edit Display Inset Draw Amange Animate Mode Tools ‘Window 7
Overview Areal Area2 Area sl \Wed 03/15/2000 10:07:37

T
USIBYAEA
e Alarms Tasks

FactoryLink Software
for

Control and Monitoring

Log On

FactoryLink Version 7.0 Log Off

Help

FactoryLink Concepts / 39

STARTER APPLICATION
Client Builder Starter Project Graphics

Figure 2-4 depicts the communication connections between the major components of the
Client Builder Project, the FactoryLink Server, and the Database Server.

40 / FactoryLink Concepts

STARTER APPLICATION
Client Builder Starter Project Graphics

Figure 2-4 FactoryLink Components Communication Diagram

Client Builder
“'B Script
Animation
Alarms Activer OPC Camm hgr Trend Activer Browwse Activex
Trend Server
Local or Remate
Client l
Caornputer
FactoryLink
Server RTRCN
Computer OPC Server
Alarm Server
FactoryLink Application
Feal Time Databasze
(RTDE)
Alarm Logger
OPC Client
h Historian
(ODEC or Mative) Diata Logger
Third Party _§_>
QPC Zerver on e
Local Computer,
Remote Computer Locgl or: Etemme
or FLC QT PLLSE
Mgy el

FactoryLink Concepts / 41

STARTER APPLICATION
Client Builder Starter Project Graphics

Animation Real-time Display

With the FactoryLink Starter Application running, the Client Builder Project Graphics connect
to the FactoryLink Real-time Database (RTDB) using the OPC Communication Manager’s
client connection to the FactoryLink OPC Server. This communication allows any of the
FactoryLink tag values to be read and written from the graphics. The standard and advanced
animation features use those tag values as well as the graphics’ local register variables for
real-time display and control of the FactoryLink Server. The internal VB Script editor can be
used to write custom code using each graphic object’s exposed properties, methods, and events
for control beyond the animation features and functions.

ActiveX Controls

There are three ActiveX controlsin Client Builder:
e Alarms

e Trend

* Browser

For detailed information on the three ActiveX controls, refer to the FactoryLink Task
Configuration Reference Guide.

Alarms

The Alarm Viewer Control is used to configure, display, sort, filter, and acknowledge the
active alarms from the FactoryLink Server as communicated through the Alarm Server. The
Alarm Viewer properties can be accessed for configuring the parameters for general control,
colorg/fonts, groups, and fields. The Alarm Logger uses an ODBC Historian task to write the
alarm datato either adBase IV or SQL Server database selected during installation.

Trend

The Trend Control is used to configure, display, and select data as communicated through the
Trend Server from values logged to a database using the Data Logger tasks. Using this
database method, the Trend Control can display the datain either areal-time or historical
mode. The Trend Control properties can be accessed for configuring the parameters for graph,
pens, and fonts. Within that panel, a Trend Editor is accessed for pen assignments to the
database tables and columns. The Trend Server is used so asingle Trend Control can connect
to multiple databases or tables at the same time. The Trend Server makes adirect connection to
the databases using an ODBC data source configuration.

42 | FactoryLink Concepts

STARTER APPLICATION
Client Builder Starter Project Graphics

Browse

The Browse Control is used to configure, display, and select data from values logged to the
database using the Data L ogger tasks. The Browse Control properties can be accessed for
configuring the parameters for general control, database sources, columns, select statement,
and sort order. The Browse Control makes a direct connection to a database using an ODBC
data source configuration.

Standard Animation Features

The following types of animation are used for most of the graphic functions. Certain
combinations of animation can be applied on asingle object so that object could serve multiple
purposes.

« Coalor animation color-fillsany drawn object, bargraph, or legend by using a bit or numeric
register value.

» Text animation displays messages, |abels, or numeric values.

* Symbol animation selects predrawn objects from alibrary by using a bit or numeric
register value.

» Send animation writes values to bit, numeric, or text registers.
* Run animation aunches an external program.

« Link animation opens or closes graphics, connects to a document or URL, and views or
edits atext file asanote.

Advanced Animation Features

The following advanced animation features can be used to add movement, visibility, script,
and symbols to the graphics:

» Layersaredifferent sheets on the same graphic used to group objects that can be seen when
the Layer Toolbar is used to select alayer number, or the Layers valueis set by script.

» Vishility bound is an object property that defines object visibility based on zoom range.

« Rotation is an animation function that rotates an object through an angle range relative to a
register value range.

» Scaling isan animation function that scales an object through a percentage range relative to
aregister value range.

+ One-axis positioning is an animation function that moves an object relative to its original
position in X and/or Y weighted directions using one register value linked to both axes.

+ Two-axis positioning is an animation function that moves an object relative to its original
position in X and Y weighted directions using a separate register value for each axis.

FactoryLink Concepts / 43

STARTER APPLICATION
Client Builder Starter Project Graphics

« Freepositioning isan animation function that moves an object to absolute coordinatesin X
and Y directions using a separate register value for each axis.

e VB script isasingle object or a grouped object script file that executes event-based
subroutines.

« Function objects are examples of library symbols that can be created with local register
variables for substitution with tags after inserting the symbol.

44 | FactoryLink Concepts

STARTER APPLICATION
Using the Starter Application

USING THE STARTER APPLICATION

This section discusses several issues on how to run the Starter Application:
« Computer location

» Helpfile

* Running the Starter Application

Computer Location

The Starter Application, by design, runs on acomputer where both the server and the client are
installed. However, for the Starter Application filesto work with a server install on the local
machine and the client install on a remote machine, you must change the information regarding
the computer location in two places.

Perform the following steps to change the computer |ocation information:

1 Double-click the Client Builder icon from your desktop. Open the Starter project in the Open
Project dialog box.

2 Select the Starter.fvp file.
3 From the Tools menu, select Servers to open the Servers Editor dialog box.

4 Point the OPC and Alarm servers to the server computer name for Run Time or Design Time.
The Communication Manager computer should point to the local host, MyComputer (see
Figure 2-5).

The Trend Server should point to the local host so it will always start on the Client Builder’s
computer. You can do this from any remote computer’s Client Builder program, referencing
the server’s Starter Project.

FactoryLink Concepts / 45

STARTER APPLICATION
Using the Starter Application

Figure 2-5 Servers Editor

i Servers Editor E

=™ SERVERTYPES
i E% OPCDAZ0 Mame : I.ﬁ.lalmSewer'I

 Run Time

Computer : |M_|,l Computer ~ |

E% TrendServers

-u TrendServerl Prog|D |FLAIarmServer..-’-‘«IarrnServer.‘l
=-® CLUSTERS

E& FactoryLinkCluster Advanced... |

o] g FactoryLinkServerl

=] &. AlarmCluster — Design Time
- AlarmServer] .
Elé TrendCluster Camputer : IM_l,- Computer ;I

e Q TrendServerd

Prog D : IFL.-‘-‘«IarmSewer.AIarmSewer.'l

Advanced...

1| | >]|l Storage Mame: [[
_ o |

k.

5 Configure the remote computer’s ODBC System Data Source Names (DSNS) to point at the
server's database |ocation (see Figure 2-6).

46 / FactoryLink Concepts

STARTER APPLICATION
Using the Starter Application

Figure 2-6 ODBC Data Source Administrator

£ 0DBC Data Source Administrator

User DSW System DSN I File DSM I Dri\rersl Tracingl Connection F'oolingl About I

System Data Sources:

Add...

Mame | Diriver |
ApplicationObjects Microsoft Access Driver [*mdhb) Bemove |
MEIS SOL Server

Microsoft Visual FosPro Driver Configure... |
MyDPLag Micrazoft Visual FosPra Driver
MyPCalarms Microsoft Access Diiver [*.mdb)
byT rend Microsoft Visual FoxPro Driver
USDATAMS Microsoft Access Diiver [*.mdb)

A ODBC System data source stores information about how to connect to
the indicated data provider. & Swpetem data source is visible to all ugers
on this machine, including MT services.

Ok I Cancel Lppl Help

Help File

The Starter Application Help File, USDATA\Client Builder\Project\Starter\Help
Files\Starter.txt, covers the basic requirements for configuring and running the application.
Please review thisfile for any final notes that did not make it to this chapter. You can also
access thisfile by clicking the Help button on the Client Builder Starter Project logo screen.
The Help File covers the following topics:

» Configuration steps

* Set up the database
- SQL Sever Flink database
- dBase |V Flink database
- Application Objects database

 Set up and start the FactoryLink Server

e Set up and start the Client Builder graphics
 Using the Application Objects
« Saveand restore

FactoryLink Concepts / 47

STARTER APPLICATION
Using the Starter Application

Running the Starter Application

The FactoryLink installation program installs all the Starter Application components that are
pre-configured. To view how the Starter Application operates, perform the following steps:

1 Start the Server Application “MyStarterApp” in Configuration Explorer.
2 Launch the Starter Project in Client Builder.
Step I: Start the Server Application

In the Configuration Explorer’s Enterprise View, right-click “MyStarterApp” under
FactoryLink Application and select Start/Stop>Start in the pop-up menu (see Figure 2-7).

Figure 2-7 Configuration Explorer

. Configuration Explorer

File “iew “indow Help

|2= mEs

(ﬂn?‘

EI---;O; Erterprize Wiew

E| FactoryLink Servers

EI-- MyFactoryLinkServer

E@ erdpp

B-uCh Application Open in Mevw Tab
_| Application Open i New YWindow
B Alarms ‘/ebClisnt
—l Data Lood | Browse Tags
[~ Device Inte

-] Graphics [St |
B-_] Historians | Save... Stop
_| hiath and | Coreert... [Irlime Festark
-] Metworkin - Rebuild P Autostart
_| Recipe i
#-_] Reports Wis L
_| Sealing an Domain Wiew »
- SPC Security Administratior...
—I S_\,-'S‘tem Rename
_I Timers Delete
[#-_] Cther Tasz|

[]-- OPC Servers Eefresh

8 Enterprise View | Properties. .

| Feady

This application is configured to run only the Server tasks, which are the same as the legacy
SHARED domain tasks. The Real-time Database Monitor (RTMON) is also started for debug

48 | FactoryLink Concepts

STARTER APPLICATION
Using the Starter Application

using the tag input, the watch list, or the command input windows.
Step 2: Launch the Client Project

Double-click the Client Builder icon on your desktop, select the Starter.fvp filein the Starter
project, and open the Logo graphic or mimic (see Figure 2-8).

Figure 2-8 Choose Mimic

Choose Mimic
Folder |Mimics ;I e
Libramy I Local ;I
I arne:
Filker ;Il Preview v =
'E Alarms 1 Declutter 1 Menuz 1 5caling
m Almbizt m FreeFos m MuDPLog m Scratch
1 treal =1 Function 1 objects Fl5end
™ reaz i Lapers 1 Onetis [1ext
™ 4vea3 B Links B averview =1 Trend
™1 Banner . ™1 Ratation [T Twasuis
™1 Browse 1 Menu i Runmars i VB Scrpt
™1 Calors E Meruz i Rurmmars2 [T visible
4] | I
Branch I g | ak I Cancel |

Optional methods to launch the Starter Project are to configure a copy of the default Client
Builder icon with the L ogo graphic as the default mimic using the icon’s shortcut properties per
the following examples (see Figure 2-9 and Figure 2-10).

Option 1 (with menus)

Target = “...\Client Builder\Program\ClientBuilder.exe” <space>
.\Project\Starter\Starter.fvp <space> /OpenWindow:“Logo”
Start In = “...\Client Builder\Program”

Note: Thetwo dotsin front of “\Project” refers to the parent directory
above Project.

FactoryLink Concepts / 49

STARTER APPLICATION
Using the Starter Application

Figure 2-9 Client Builder Properties

Client Builder Properties

YUSDATAN lient BuilderProgramsClient Builder. exe”

FEH AT

Program FilestJSDATAN\Clent BulderProgram'

Nomal vindow 7]

50 / FactoryLink Concepts

STARTER APPLICATION
Using the Starter Application

Option 2 (without menus)

Target = “ ...\Client Builder\Program\ClientBuilder.exe” <space>

/Runtime <space> ..\Project\Starter\Starter.fvp <space> /OpenWindow:“Logo”
Start In = “...\Client Builder\Program”

Figure 2-10 Client Builder Runtime Properties

Client Builder Runtime Properties

General Shortcut | Securit_l,ll

[Clignt Builder B unti
EIEI ient Builder Runtime

T arget ype: Application
T arget locatior: Program
Target: IHE” Sruntime startersstarter fep /0 peniwindow, "Loga' |

¥ Hurin S epanate Memon Space

Start in; I"C: WProgram Files\USDATAN lient BuildersProgra

Shortcut Key: IN one

Bun: I Mormal window j

Find T arget... | Ehangelcon...l

QK. I Cancel | Lpply |

FactoryLink Concepts / 51

STARTER APPLICATION
Using the Starter Application

52 / FactoryLink Concepts

