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The Pentium 4 and the G4e: an Architectural 
Comparison 
   by Jon "Hannibal" Stokes 

  

When the Pentium 4 hit the market in November of 2000, it was the first 
major new x86 microarchitecture from Intel since the Pentium Pro. In the 
years prior to the P4's launch the P6 core dominated the market in its 
incarnations as the Pentium II and Pentium III, and anyone who was paying 
attention during that time learned at least one, major lesson: clock speed 
sells. Intel was definitely paying attention, and as the Willamette team labored 
away in Santa Clara they kept MHz foremost in their minds. This singular focus 
is evident in everything from Intel's Pentium 4 promotional and technical 
literature down to the very last detail of the processor's design. As this article 
will show, the successor to the most successful x86 microarchitecture of all 
time is a machine built from the ground up for stratospheric clock speed. 

This article will examine the tradeoffs and design decisions that the P4's 
architects made in their effort to build a MHz monster, paying special attention 
to the innovative features that the P4 sports and the ways those features fit 
with the processor's overall design philosophy and target application domain. 
We'll cover the P4's ultra-deep pipeline, its trace cache, its double-pumped 
ALUs, and a host of other aspects of its design, all with an eye to their impact 
on performance. 

One thing I've found in writing about technology is that it's never enough to 
just explain how something new works. Most of us need a point of reference 
from which to evaluate design decisions. When covering a new product, I 
always try to compare it to either a previous version of the same product or 
(even better) to a competitor's product. Such a comparison provides a context 
for understanding what's "new" about a new technology and why this 
technology matters. To this end, I'll be using Motorola's new MPC7450 (a.k.a. 
the G4e or G4+) as a basis from which to talk about the P4. Note that this 
article is not a performance comparison; performance comparisons are best 
done in the lab by testing and benchmarking with real-world applications. I will 
talk about performance quite a bit, but not in a manner that pits the two 
processors directly against each other. In the end, it's best to think of this 
article as an article about the P4 that uses the G4e as a point of reference. I'll 
be using the G4e as sort of a baseline processor that will give you a feel for 
how things are "normally" done. Then I'll talk about how and why the P4 does 
things differently.  

Before we talk about the two processors in detail, it might help to review a few 
basics of processor design. If you've read my previous work, especially my G4 
vs. K7 article, then you're probably familiar most of what I'll cover in the 
following short review section. More advanced readers will want to skip to the 
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next section. Still, if you haven't though about microarchitecture in a while you 
might want to give the section below a quick read. 

Basic instruction flow 

One useful division that computer architects use when talking about CPUs is 
that of "front end" vs. "back end" or "execution engine." When instructions are 
fetched from the cache or main memory, they must be decoded and 
dispatched for execution. This fetching, decoding and dispatching takes place 
in the processor's front end.  

 
Figure 1.1: Basic CPU Instruction Flow 

Instructions make their way from the cache to the front end and down through 
the execution engine, which is where the actual work of number crunching 
gets done. Once they leave the execution engine, their results are written back 
to main memory. This process, in which you FETCH the instruction from the 
cache, DECODE it into a form that the internals of the processor can 
understand, EXECUTE it, and WRITE its results back to memory makes up 
the basic, four stage pipeline that all aspiring CPU architects learn in their 
undergraduate architecture courses. Each pipeline stage must take exactly 
one clock cycle to complete its business and send the instruction on to the 
next stage, so the more quickly all of the stages can do their thing the shorter 
the processor's clock cycle time (and the higher its clock speed or frequency) 
can be.  

(For a thorough explanation of all things pipelining--what it is, its relation to 
the CPU's clock speed, etc.--see my first K7 article. From here on out, I'll just 

http://arstechnica.com/cpu/3q99/k7_theory/k7-one-1.html


http://arstechnica.com/cpu/01q2/p4andg4e/p4andg4e-1.html 

Copyright © 1998-2001 Ars Technica, LLC 4

assume that you understand the basic concepts of pipelined execution. If you 
don't, you should read up on it before proceeding further.)  

 
Figure 1.2: Basic 4-stage pipeline 

This basic pipeline represents the "normal" path that instructions take through 
the processor, and as I just noted it assumes that all instructions spend only 
one cycle being EXECUTEd. While most processors do have one-cycle 
instructions (the P4 even has 0.5-cycle instructions), they also have some 
really complicated instructions that need to spend multiple cycles in the 
EXECUTE stage. To accommodate these multi-cycle instructions, the different 
functional units their own EXECUTE pipelines (some with one stage, some with 
more), so they can add stages to the processor's basic pipeline. 
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Figure 1.3: 4-stage pipeline with pipelined execution units 

The take-home message here is that when we talk about how many pipeline 
stages a processor has we use an ideal number that pretends that each 
instruction spends only one cycle in the EXECUTE stage, but most instructions 
pass through multiple EXECUTE stages in the various functional units.  

The general approaches and design philosophies of the P4 and G4e 

While some processors still have the classic, four stage pipeline described 
above, most modern CPUs are more complicated. The G4e breaks the classic, 
four-stage pipeline into seven stages in order to allow it to run at increased 
clock speeds on the same manufacturing process. Less work is done in each of 
the G4e's shorter stages but each stage takes less time to complete. Since 
each stage always lasts exactly one clock cycle, shorter pipeline stages mean 
shorter clock cycles and higher clock frequencies. The P4, with a whopping 20 
stages in its basic pipeline, takes this tactic to the extreme. Take a look at the 
following chart from Intel, which shows the relative clock frequencies of Intel's 
last six x86 designs. (This picture assumes the same manufacturing process 
for all six cores). The vertical axis shows the relative clock frequency, and the 
horizontal axis shows the various processors relative to each other. 
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 Figure 2.1: I know it says "Figure 2," but ignore that. 

Intel's explanation of this diagram and the history it illustrates is enlightening, 
as it shows where their design priorities were. 

Figure 2 shows that the 286, Intel386 ™, Intel486 ™ and 
Pentium ® (P5)processors had similar pipeline depths – they 
would run at similar clock rates if they were all implemented on 
the same silicon process technology. They all have a similar 
number of gates of logic per clock cycle. The P6 
microarchitecture lengthened the processor pipelines, allowing 
fewer gates of logic per pipeline stage, which delivered 
significantly higher frequency and performance. The P6 
microarchitecture approximately doubled the number of pipeline 
stages compared to the earlier processors and was able to 
achieve about a 1.5 times higher frequency on the same process 
technology. The NetBurst microarchitecture was designed to 
have an even deeper pipeline (about two times the P6 
microarchitecture) with even fewer gates of logic per clock cycle 
to allow an industry-leading clock rate. (The Microarchitecture of 
the Pentium 4 Processor, p. 3) 

As we'll see, the Pentium 4 makes quite a few sacrifices for clock speed, and 
although Intel tries to spin it differently, an extraordinarily deep pipeline is one 
of those sacrifices. (For even more on the relationship between clock speed 
and pipeline depth, see my first K7 article.) 

Some might be tempted to attribute the vast differences in pipeline depth 
between the P4 and the G4e to the fact that modern x86 processors like the 
Athlon, PIII, and P4 need to break down large, complex x86 instructions into 
smaller, more easily scheduled operations. While such instruction translation 
does add pipeline stages to the P4, those stages aren't part of its basic, 20-
stage pipeline. (Yes, the P4 still needs to translate x86 instructions into µops, 
but as we'll see later on the P4's trace cache takes the translation and decode 
steps out of the P4's "critical execution path."). 

http://arstechnica.com/cpu/3q99/k7_theory/k7-one-1.html
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The drastic difference in pipeline depth between the G4e and the P4 actually 
reflects some very important differences in the design philosophies and goals 
of the two processors. Both processors want to run as many instructions as 
quickly as possible, but they attack this problem in two different ways. The 
G4e's approach can be summarized as "wide and shallow." Its designers added 
more functional units to its back end for executing instructions, and its front 
end tries to fill up all these units by issuing instructions to each functional unit 
in parallel. In order to extract the maximum amount of instruction-level 
parallelism (ILP) from the (linear) instruction stream the G4e's front end first 
moves a small batch of instructions onto the chip. Then, its out-of-order 
(OOO) execution logic examines them for interdependencies, spreads them 
out to execute in parallel, and then pushes them through the execution 
engine's nine functional units. Each of the G4e's functional units has a fairly 
short pipeline, so the instructions take very few cycles to move through and 
finish executing. Finally, in the last pipeline stages the instructions are put 
back in their original program order before the results are written back to 
memory.  

At any given moment the G4e can have up to 16 instructions spread 
throughout the chip in various stages of execution simultaneously. As we'll see 
when we look at the P4, this instruction window is quite small. The end result 
is that the G4e focuses on getting a small number of instructions onto the chip 
at once, spreading them out widely to execute in parallel, and then getting 
them off the chip in as few cycles as possible. 
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Figure 2.2: The G4e's approach 

The P4 takes a "narrow and deep" approach to moving through the instruction 
stream. It has fewer functional units, but each of these units has a deeper, 
faster pipeline. The fact that each functional unit has a very deep pipeline 
means that each unit has a large number of available execution slots and can 
thus work on quite a few instructions at once. So instead of having, say, three 
short FP units operating slowly in parallel, the P4 has one long FP unit that can 
hold and rapidly work on more instructions in different stages of execution at 
once.  

It's important to note that in order to keep the P4's fast, deeply pipelined 
functional units full, the machine's front end needs deep buffers that can hold 
and schedule an enormous number of instructions. The P4 can have up to 126 
instructions in various stages of execution simultaneously. This way, the 
processor can have many more instructions on-chip for the out-of-order 
execution logic to examine for dependencies and then rearrange to be rapidly 
fired to the execution units.  
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Figure 2.2: The P4's approach 

It might help you to think about these two approaches in terms of a 
McDonald's analogy. At McDonald's, you can either walk in or drive through. If 
you walk in, there are five or six short lines that you can get in and wait to 
have your order processed by a single server in one, long step. If you choose 
to drive through, you'll wind up on a single, long line, but that line is geared to 
move faster because more servers process your order in more, quicker steps: 
a) you pull up to the speaker and tell them what you want; and b) you drive 
around and pick up your order. And since the drive-through approach splits 
the ordering process up into multiple, shorter stages, more customers can be 
waited on in a single line because there are more stages of the ordering 
process for different customers to find themselves in. So the G4e takes the 
multi-line, walk-in approach, while the P4 takes the single-line, drive-through 
approach. 
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The perils of deep pipelining 

The P4's way of doing things has advantages for certain types of applications--
especially 3D and streaming media applications--but it also carries with it 
serious risks. The "narrow and deep" scheme gets into trouble when the 
processor can't find enough instructions or data in the L1 cache to keep those 
deep pipelines fed. Notice those empty execution slots in Figure 2.2. (The 
empty execution slots are the white squares, while the ones containing 
instructions are red). Those empty slots, called "pipeline bubbles," occur when 
the processor can't schedule an instruction to fit in that slot. Pipeline bubbles 
must propagate through each stage all the way to down the end of the 
pipeline, and each stage that contains a bubble with no instruction is sitting 
idle and wasting precious execution resources on that clock cycle.  

The P4's long pipeline means that bubbles take a long time to propagate off 
the CPU, so a single bubble results in a lot of wasted cycles. When the G4e's 
shorter pipeline has a bubble, it propagates through to the other end quickly 
so that fewer cycles are wasted. So a single bubble in the P4's 20 stage 
pipeline wastes at least 20 clock cycles (more if it's a bubble in one of the 
longer FPU pipelines), whereas a single bubble in the G4e's 7 stage pipeline 
wastes at least 7 clock cycles. 20 clock cycles is a lot of wasted work, and 
even if the P4's clock is running twice as fast as the G4e's it still takes a larger 
performance hit for each pipeline bubble than the shorter machine. 

 
  

Figure 3.1 

As you can see, the more deeply pipelined a machine is, the more severe a 
problem pipeline bubbles become. When the P4's designers set high clock 
speeds as their primary goal in crafting the new microarchitecture, they had to 
do a lot of work to prevent bubbles from entering the pipeline and killing 
performance. In fact, we've already discussed the extremely deep scheduling 
queues in the P4's front end. These queues represent a place where the P4 
spends a large number of transistors to alleviate the negative the effects of its 
long pipeline, transistors that the G4e spends instead on added execution 
units. 
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Overview of the G4e's architecture and pipeline 

This large diagram shows the basics of the G4e's microarchitecture, with an 
emphasis on representing the pipeline stages of the front end and functional 
units. You might want to open it in a separate window and refer to it 
throughout this section. 

 
Figure 4.1: Basic Architecture of the G4e 

Before instructions can enter the G4e's pipeline, they must be available in its 
32K instruction cache. This instruction cache together with the 32K data cache 
makes up the G4e's 64K L1 cache. The instruction leaves the L1 and goes 
down through the various front end stages until it hits the execution engine, at 
which point it is executed by one of the G4e's eight execution units (not 
counting the Branch Processing Unit, which we'll talk about in a second). 

As I've already noted, the G4e breaks down the G4's classic, four stage 
pipeline into seven, shorter stages: 

    G4   G4e 
1 Fetch1 

1 Fetch 
2 Fetch2 
3 Decode/Dispatch 

Front End 
2 Decode/Dispatch 

4 Issue 
3 Execute 5 Execute 

6 Complete Back End 
4 Complete/Write-Back 

7 Write-Back 

http://arstechnica.com/cpu/01q2/p4andg4e/figure3.jpg
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Let's take a quick look at the basic pipeline stages of the G4e, because in spite 
of the fact that there are more than four of them they're still pretty 
straightforward. An understanding of the G4e's more classic RISC pipeline will 
provide us with a good foundation for our upcoming discussion of the P4's 
much longer, more peculiar pipeline.  

Stages 1 and 2 - Instruction Fetch: These two stages are both dedicated 
primarily to grabbing an instruction from the L1 cache. The G4e can fetch four 
instructions per clock cycle from the L1 cache and send them on to the next 
stage. Hopefully, the needed instructions are in the L1 cache. If they aren't in 
the L1 cache, then the G4e has to hit the much slower L2 cache to find them, 
which can add up to 9 cycles of delay into the instruction pipeline.  

Stage 3 - Decode/Dispatch: Once an instruction has been fetched, it goes 
into a 12-entry instruction queue to be decoded. The decoding stage is where 
the processor determines what kind of instruction it's looking at and where the 
instruction should be sent for execution. Once the instruction is decoded, it is 
dispatched to the proper issue queue.  

The G4e's decoder can dispatch up to three instructions per clock cycle to the 
next stage. 

Stage 4 - Issue: There are three issue queues for the three main types of 
instructions that the G4e can execute. The first queue is the Floating-Point 
Issue Queue (FIQ), which holds floating-point (FP) instructions that are waiting 
to be executed. The second queue is the Vector Issue Queue (VIQ), which 
holds vector (or Altivec) operations, and the third queue is the General 
Instruction Queue (GIQ), which holds everything else. Once the instruction 
leaves its issue queue, it goes to the execution engine to be executed. 

The issue stage, which also involves the reservation stations* attached to the 
various execution units, is the stage where the linear instruction stream is 
broken up into independent chunks and the instructions are rearranged and 
scheduled to fit the available execution resources. This is where the "out-of-
order" part in "out-of-order execution" comes in. Most of this OOO action 
happens in the reservation stations, which do the dirty work of figuring out 
when to schedule instructions for the execution unit that they're attached to. 
The Issue Queues, however, even though they're FIFO (First In First Out) can 
also send instructions to the reservation stations out of program order with 
respect to each other. 

The 4-entry Vector Issue Queue can accept up to two instructions per cycle 
from the dispatch unit. The 6-entry General Issue Queue can accept up to 
three instructions per cycle, and the 2-entry FP Issue Queue can accept one 
instruction per cycle. 
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Stage 5 - Execute: This stage is pretty straightforward. Here, the instructions 
can pass out of order from their issue queues into their respective functional 
units and be executed. Floating-point ops move into the FPU, vector ops move 
into one of the four Altivec units, integer ops move into an ALU, and LOADs or 
STOREs move into the LOAD/STORE Unite (LSU). We'll talk about these units 
in a bit more detail when we discuss the G4e's execution engine. 

Stages 6 and 7 - Complete and Write-Back: In these two stages, the 
instructions are put back into program order (the order in which they came 
into the processor), and their results are written back to memory. It's 
important that the instructions are re-arranged to reflect their original ordering 
so that the illusion of in-order execution is maintained to the world outside the 
processor. The program needs to think that its commands were executed one 
after the other, the way it was written. 

For a look at two instructions as they travel through the G4e, check out this 
animated GIF. Modem users should beware, though, because the GIF weights 
in at 355K. 

Before we go into detail about the back end of the G4e, let's look at one 
aspect of the G4e's front end in a bit more detail: the branch processing unit.  

*Note that the reservation stations are not visible in the large diagram linked above. If I were to put 

them in, they'd be little white boxes that sit right on top of the each group of functional units. 

The Branch Processing Unit and branch prediction 

If you look on left side of the G4e's front end you'll see a unit attached to the 
Instruction Fetch and Decode/Dispatch pipeline stages. This is the branch 
processing unit (BPU), an execution unit which acts as the rudder that steers 
the front end (and behind it the rest of the processor) through the instruction 
stream. Whenever the front end's decoder encounters a conditional branch 
instruction, it sends it to the BPU to be executed. The BPU in turn usually 
needs to send off to one of the other execution units to have the instruction's 
branch condition evaluated, so that the BPU can determine if the branch is 
taken or not taken. Once the BPU determines that the branch is taken, it has 
to get the address of the next block of code to be executed. This address, the 
"branch target," must be calculated and the front end must be told to begin 
fetching code starting at the new address.  

In older processors, the entire processor would just sort of sit idle and wait for 
the branch condition to be evaluated, a wait that could be quite long if the 
evaluation involved a complex calculation of some sort. Modern processors use 
a technique called "speculative execution," which involves making an educated 
guess at the which direction the branch is going to take and then beginning 
execution at the new branch target before the branch's conditional is actually 
evaluated. This educated guess is made using one of a variety of "branch 
prediction" techniques, which we'll talk more about in a moment. Speculative 
execution is used to keep the delays associated with evaluating branches from 

http://arstechnica.com/cpu/01q2/p4andg4e/g4e_anim1.gif
http://arstechnica.com/cpu/01q2/p4andg4e/g4e_anim1.gif
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introducing bubbles into the pipeline. (For a more detailed discussion of 
speculative execution, see my IA-64 preview.) 

Branch prediction can backfire when the processor incorrectly predicts a 
branch. Such mispredicts are a bad thing, because if all of those instructions 
that the processor has loaded into the pipeline and begun speculatively 
executing turn out to be from the wrong branch then pipeline has to be 
flushed of the erroneous, speculative instructions and results. Then the front 
end has to fetch the correct branch target address so that it can begin 
executing at the right place. Flushing the pipeline of instructions and results 
means you're flushing a lot of work right down the toilet. Furthermore, there's 
a delay (and a therefore a few cycles worth of pipeline bubbles) associated 
with calculating the correct branch target and loading the new instruction 
stream into the front end. This wasted work and delay can degrade 
performance significantly, especially on branch intensive code.  

As you can probably guess, the more deeply pipelined a machine is the bigger 
a price it pays for a mispredict. We've already seen how delays and their 
attendant pipeline bubbles can degrade performance for long pipelines, so 
nothing more needs be said about how painful it is for a 20-stage machine like 
the P4 to have to wait around while new instructions are loaded from the 
cache. Also, a deeper pipeline means that more speculative instructions can be 
loaded into the machine and executed simultaneously, which means that there 
are more instructions and work that has to be thrown out when a mispredict 
occurs.  

The P4 has a minimum mispredict penalty of 19 clock cycles for code that's in 
the L1 cache--that's the minimum; the damage can be much worse, especially 
if the correct branch can't be found in the L1 cache. (In such a scenario, the 
penalty is upwards of 30 cycles). The G4e's 7-stage pipeline doesn't pay 
nearly as high of a price for mispredict as the P4, but it does take more of a 
hit for one than its 4-stage predecessor, the G4. The G4e has a minimum 
mispredict penalty of 6 clock cycles, as opposed to the G4's minimum penalty 
of only 4 cycles. 

There are two main types of branch prediction: static prediction and dynamic 
prediction. Static branch prediction is simple, and relies on the assumption 
that the majority of backwards pointing branches occur in the context of 
repetitive loops, where a branch instruction is used to determine whether or 
not to repeat the loop again. Most of the time a loop's conditional will evaluate 
to "taken," thereby instructing the machine to repeat the loop's code one more 
time. This being the case, static branch prediction merely assumes that all 
backwards branches are "taken." For a branch that points forward to a block of 
code that comes later in the program, the static predictor assumes that the 
branch is "not taken." 

Static prediction is very fast, as it doesn't involve any table lookups or 
calculations, but its success rate varies widely with the program's instruction 
mix. If the program is full of loops, static prediction works ok; if it's not, static 

http://arstechnica.com/cpu/1q99/ia-64-preview-1.html
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branch prediction performs quite poorly. To get around the problems 
associated with static prediction computer architects use a variety of 
algorithms for predicting branches. These "dynamic branch prediction" 
algorithms usually involve the use of either one or both of two types of tables, 
the Branch History Table (BHT) and the Branch Target Buffer (BTB), to record 
information about the outcomes of branches that've already been executed. 
The BHT stores each conditional branch that the BPU has encountered on its 
last few cycles, along with some bits that indicate the likelihood that the 
branch will be taken based on its past history. For a regular 2-bit branch 
history scheme, branches are marked as "strongly taken," "taken," "not 
taken," and "strongly not taken." When the front end encounters a branch 
instruction that has an entry in its BHT, the branch predictor uses branch 
history information to decide whether or not to speculatively execute the 
branch.  

Should the branch predictor decide to speculatively execute the branch, it 
needs to know exactly where in the L1 cache the branch is pointing--in other 
words, it needs a branch target. The Branch Target Buffer (BTB) stores the 
branch targets of previously executed branches, so when a branch is taken the 
BPU grabs the speculative branch target from the BTB and points the front end 
to begin fetching instructions from that address. Hopefully, the BTB contains 
an entry for the branch you're trying to execute, and hopefully that entry is 
correct. If the branch target either isn't there or it's wrong, you've got a 
problem. I won't get into the issues surrounding BTB performance, but suffice 
it to say that a larger BTB is usually better. 

The G4e and the P4 each use both static and dynamic branch prediction 
techniques to prevent mispredicts and delays. If a branch instruction does not 
have an entry in the BHT, both processors will use static prediction to decide 
which path to take. If the instruction does have a BHT entry, dynamic 
prediction is used. The P4's BHT is quite large; at 4K entries, it has enough 
space to store information on most of the branches in an average program. 
The PIII's branch predictor has a success rate of around 91%, and the P4 
allegedly uses an even more advanced algorithm to predict branches so it 
should perform even better. The P4 also uses a BTB to store predicted branch 
targets. In most of Intel's literature and diagrams, the BTB and BHT are 
combined under the label "the front-end BTB." 

The G4e has a BHT size of 2K entries, up from 512 entries in the G4's. I don't 
have any data on the G4e's branch prediction success rate, but I'm sure it's 
fairly good. The G4e has a 128-entry Branch Target Instruction Cache (BTIC), 
the functional equivalent of the P4's BTB. This cache is twice as large as the 
G4's 64-entry BTIC. 

The take-home message here is that both processors spend more resources 
than their predecessors on branch prediction, because their deeper pipelines 
make mispredicted branches a major performance killer for both of them. 
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The P4 does actually have one more branch prediction trick up its sleeve that's 
worth at least noting (if only because if I don't note it I'll get lots of email 
about it). That trick comes in the form of "software branch hints," or little 
prefixes that a compiler or coder can attach to conditional branch instructions. 
These prefixes give the branch predictor clues as to the expected behavior of 
the branch, whether the compiler or coder expects it to be taken or not taken. 
There's not much information available on how big of a help these hints are, 
and Intel recommends that they be used sparingly since they can increase 
code size.  

Overview of the P4's architecture I: the trace cache 

Even though the P4's pipeline is much longer, it still performs most of the 
same functions as that of the G4e. I've cooked up the following picture of the 
P4's basic architecture so that you can compare it to the picture of the G4e 
presented above. Due to space and complexity constraints, I haven't 
attempted to show each pipe stage individually like I did with the G4e. Rather, 
I've grouped the related ones together so you can get a more general feel for 
the layout and instruction flow.  

 
Figure 6.1: Basic Architecture of the P4 

The first you'll probably notice about Figure 6.1 is that the L1 cache is split up, 
with the instruction cache actually sitting inside the front end. This oddly 
located instruction cache, called the trace cache, is one of the P4's most 
innovative and important features. It also greatly affects the P4's pipeline and 
basic instruction flow, so we'll have to understand it before we can talk about 
the P4's pipeline in detail. 
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In a conventional x86 processor like the PIII or the Athlon, x86 instructions 
make their way from the instruction cache into the decoder, where they're 
broken down into multiple smaller, more uniform, more easily managed 
instructions called µops. These µops are actually what the out-of-order 
execution engine schedules, executes, and retires. As you know if you've read 
my K7 articles, this instruction translation happens each time an instruction is 
executed, so it adds a few pipeline stages to the beginning of the processor's 
basic pipeline. (Note that in the following two Figures, multiple pipeline stages 
have been collapsed into each other, i.e. Instruction Fetch takes multiple 
stages, Translate takes multiple stages, Decode takes multiple stages, etc.) 

 
Figure 6.2: Normal x86 processor's critical execution path 

For a block of code that's executed only a few times over the course of a single 
program run, this loss of a few cycles each time isn't that big of a deal. But for 
a block of code that's executed thousands and thousands of times (i.e. a loop 
in a media application that applies a series of operations to a large file) the 
number of cycles spent repeatedly translating  and decoding the same group 
of instructions can add up quickly. The P4 reclaims those lost cycles by 
removing the need to translate those x86 instructions into µops each time 
they're executed.  

The P4's instruction cache takes translated, decoded µops that are primed and 
ready to be sent straight out to the OOO execution engine, and it arranges 
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them into little mini-programs called "traces." These traces, and not the x86 
code that was produced by the complier, are what the P4 executes whenever 
there's an L1 cache hit (which is over 90% of the time). As long as the needed 
code is in the L1 cache the P4's execution path looks as follows. 

 
Figure 6.3: The P4's critical execution path 

As the front end executes the stored traces, the trace cache sends up to 3 
µops per cycle directly to the OOO execution engine, without the need for 
them to pass through any translation or decoding logic. Only when there's an 
L1 cache miss does that top part of the front end kick in in order to fetch and 
decode instructions from the L2 cache. The decoding and translating steps that 
are necessitated by a trace cache miss add another eight pipeline stages onto 
the beginning of the P4's pipeline, so you can see that the trace cache saves 
quite a few cycles over the course of a program's execution. 

The trace cache operates in two modes. "Execute mode" is the mode pictured 
above, where the trace cache is feeding stored traces to the execution logic to 
be executed. This is the mode that the trace cache normally runs in. When 
there's an L1 cache miss the trace cache goes into "trace segment build 
mode." In this mode, the front end fetches x86 code from the L2 cache, 
translates into µops, builds a "trace segment" with it, and loads that segment 
into the trace cache to be executed.  

You'll notice in Figure 6.3 that the trace cache execution path knocks the BPU 
out of the picture, along with the instruction fetch and translate/decode 
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stages. This is because a trace segment is much more than just a translated, 
decoded, predigested version of the x86 code that compiler actually spit out 
and that the front end fetched from the L2 cache. The trace cache actually 
uses branch prediction when it builds a trace so that it can splice code from 
the branch that it thinks the program will take right into the trace behind the 
code that it knows the program will take. So if you have a chunk of x86 code 
with a branch in it, the trace cache will build a trace from the instructions up 
to and including the branch instruction. Then, it'll pick which branch it thinks 
the program will take and it'll continue building the trace along that 
speculative branch.  

 
Figure 6.4 

Having the speculative execution path spliced in right after the branch 
instruction confers on the trace cache two big advantages over a normal 
instruction cache. First, in a normal machine it takes the branch predictor and 
BPU some time to do their thing when they come across a conditional branch 
instruction--they've got to figure out which branch to speculatively execute, 
load up the proper branch target, etc.. This whole process usually adds at 
least one cycle of delay after every conditional branch instruction, a delay that 
often can't be filled with other code and therefore results in a pipeline bubble. 
With the trace cache, however, the code from the branch target is already 
sitting there right after the branch instruction, so there's no delay associated 
with looking it up and hence no pipeline bubble. 

The other advantage that the trace cache offers is also related to its ability to 
store speculative branches. When a normal L1 instruction cache fetches a 
cache line from memory, it stops fetching when it hits a branch instruction and 
leaves the rest of the line blank. If the branch instruction is the first instruction 
in an L1 cache line, then it's the only instruction in that line and the rest of the 
line goes to waste. Trace cache lines, on the other hand, can contain both 
branch instructions and the speculative code after the branch instruction. This 
way, no space in the trace cache's 6-uop line goes to waste.  
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Most compilers take steps to deal with the two problems I've outlined above 
(the delay after the branch and the wasted cache line space.) As we've seen, 
though, the trace cache solves these in its own way, so programs that are 
optimized to exploit these abilities might see significant advantages from 
them. 

One interesting effect that the trace cache has on the P4's front end is that the 
whole issue of x86 translation/decode bandwidth is for the most part 
decoupled from the issue of dispatch bandwidth. If you'll recall from my K7 
article, the K7 spends a lot of transistor resources on a turbocharged, beefed 
up x86 decoder so that it can translate enough clunky x86 instructions each 
cycle into MacroOps (the K7's version of µops) to keep the execution engine 
fed. With the P4, the fact that most of the time program code is fetched from 
the trace cache in the form of predigested µops means that a high bandwidth 
translator/decoder isn't necessary. The P4's decoding logic only has to kick on 
whenever there's an L1 cache miss, so it was designed to decode only one x86 
instruction per clock cycle. This is one third the maximum theoretical decode 
bandwidth of the Athlon, but the P4's trace cache should allow it to meet or 
exceed the Athlon's real-world average of 2.5 dispatched instructions per clock 
cycle. 

The trace cache's handling of very long, multicycle x86 instructions is worth 
taking a look at, because it's quite clever. You probably already know that 
while most x86 instructions decode into around 2 or 3 uops, there are some 
exceedingly long (and thankfully rare) x86 instructions (i.e. the string 
manipulation instructions) that decode into hundreds of uops. Like the Athlon, 
the P4 has a special microcode ROM that processes these longer instructions 
so that the regular hardware decoder can concentrate on decoding the 
smaller, faster instructions. For each long instruction the microcode ROM 
stores a canned sequence of uops, which it spits out when fed that instruction. 
To keep these long, prepackaged sequences of uops from polluting the trace 
cache, the P4's designers devised the following solution. Whenever the trace 
cache is building a trace segment and it encounters one of the long x86 
instructions, instead of breaking it down and storing it as a uop sequence it 
inserts a tag into the trace segment that points to the section of the microcode 
ROM containing the uop sequence for that particular instruction. Later, in 
execute mode when the trace cache is streaming instructions out to the 
execution engine and it encounters one of these tags, it stops and temporarily 
hands control of the instruction stream over to the microcode ROM. The 
microcode ROM spits out the proper sequence of uops (as designated by the 
tag) into the instruction stream, and then hands control back over to the trace 
cache, which resumes issuing instructions again. The execution engine, which 
is on the other end of this instruction stream, doesn't know or care if the 
instructions are coming from the trace cache or the microcode ROM. All it sees 
is a constant, uninterrupted stream of instructions.  

One criticism that has been leveled at the trace cache is that it's too small. 
We're not sure exactly how big the I-cache is--only that it holds 12K uops. 
Intel claims this is roughly equivalent to a 16K-18K I-cache. Since the trace 
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cache functions so differently from a normal L1 instruction cache, however, 
you've got to do a lot more work to understand how its size affects the P4's 
overall performance than merely comparing its cache size to that of another 
processor. Many of the most outspoken of the P4's critics haven't actually 
done that work, and neither have I so I'll end my discussion of this topic here. 
However, note that I will talk about the P4's L1 data cache and its impact on 
performance at a later point. (This article contains a good discussion of the 
P4's cache sizes and performance.) 

By way of finishing up our discussion of the trace cache and introducing our 
discussion of the P4's pipeline, I should note two final aspects of the trace 
cache's effect on the pipeline. First, the trace cache still needs a short 
Instruction Fetch stage so that uops can be fetched from the cache and sent to 
the allocation and scheduling logic. When we look at the P4's basic execution 
pipeline, you'll see this stage. Second, the trace cache actually has its own 
little mini-BTB and BPU for predicting the directions and return addresses of 
branches within the trace cache itself. So the trace cache doesn't eliminate 
branch processing and prediction entirely from the picture. It just alleviates 
their effects on performance.  

Overview of the P4's architecture II: the pipeline 

Now we're ready to step back and take a look at the P4's basic execution 
pipeline. Before we begin, though, I should clarify something that might be 
confusing some of you when you look at my diagrams and tables. The P4 
considers the front end to be entirely in-order, with all of the scheduling, 
rename, and other OOO logic relegated to the "back end." However, you 
probably noticed that this division was sort of muddied with the G4e. The 
G4e's literature actually considers the Issue Queues as part of the front end 
and the Reservation Stations as part of the back end, so that the Issue stage 
of the G4e's pipeline (which is where the OOO action happens) spans the front 
end and the back end. (If you were confused and this cleared things up for 
you, excellent. If you weren't confused before you read this but you are now, 
just skip it and move on because it's not that important.) 

Anyway, on to the pipeline. Here's a breakdown of the various stages: 

Stages 1 and 2 - Trace Cache next Instruction Pointer: In these stages, 
the P4's trace cache fetch logic gets a pointer to the next instruction in the 
trace cache. 

Stages 3 and 4 - Trace Cache Fetch: These two stages fetch an instruction 
from the trace cache to be sent to the OOO execution engine. 

Stage 5 - Drive: This is the first of two of Drive stages in the P4's pipeline, 
each of which is dedicated to driving signals from one part of the processor to 
the next. The P4 runs so fast that sometimes a signal can't make it all the way 
to where it needs to be in a single clock pulse, so the P4 dedicates some 
pipeline stages to letting these signals propagate across the chip. I've actually 

http://www.emulators.com/pentium4.htm
http://www.realworldtech.com/page.cfm?ArticleID=RWT091000000000
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never seen a "Drive" stage in a pipeline before, and neither has anyone else 
whose P4 write-ups I've read. I think this may be a first. It's definitely there 
because the P4's designers intend for it to reach such stratospheric clock 
speeds that stages like this are absolutely necessary. 

 
Figure 7.1: Stages 1 through 5 

Stages 6 through 8 - Allocate and Rename: This group of stages handles 
the allocation of microarchitectural register resources. Most of you are 
probably familiar with the use of register renaming as a trick for alleviating 
register conflicts by having more registers in the microarchitecture than are 
specified in the instruction set architecture (ISA). These extra 
microarchitectural registers (the P4 has 128 of them) are allocated and put 
into use in these steps. 

The Allocator/Renamer can issue three uops per cycle to the next pipeline 
stage. 

Stage 9 - Queue: There are two main queues that sit between the 
Allocator/Renamer and the scheduling logic, a memory uop queue and an 
arithmetic uop queue. These queues are where uops wait before being sent off 
to one of the four "dispatch ports" that act as gateways to the execution 
engine's functional units. 

Stages 10 through 12 - Schedule: In these stages, instructions pass from 
the Allocator to one of four scheduling main scheduling queues. These queues, 
roughly analogous to the G4e's three different issue queues, are where 
operations for each individual functional unit (or group of related functional 
units) are scheduled to go onstage and be executed. Here's a quote from an 
Intel document that sums up the schedulers' functions:  

The uop schedulers determine when a uop is ready to execute 
by tracking its input register operands. This is the heart of the 
out-of-order execution engine. The uop schedulers are what 
allow the instructions to be reordered to execute as soon as 
they are ready, while still maintaining the correct dependencies 
from the original program. The NetBurst microarchitecture has 
two sets of structures to aid in uop scheduling: the uop queues 
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and the actual uop schedulers. ("The Microarchitecture of the 
Pentium 4 Processor," p. 7) 

Here's a breakdown of the four schedulers: 

• Memory Scheduler - Schedules memory operations for the 
Load/Store Unit (LSU).  

• Fast ALU Scheduler - Schedules Arithmetic-Logic Unit operations 
(simple integer and logical ops) for the the P4's two double-pumped 
ALU units. As we'll see in Part II of this article, the P4 contains two 
ALUs that run at twice the main core's clock speed.  

• Slow ALU/General FPU Scheduler - Schedules the rest of the ALU 
functions and most of the floating-point functions.   

• Simple FP Scheduler - Schedules simple FP operations and FP 
memory operations.  

These schedulers share the four dispatch ports described in the next stage. 

 
Figure 7.2: Stages 6 through 12 

Stages 13 and 14 - Dispatch: In these two stages instructions travel 
through one of the four dispatch ports for execution. These ports act sort of as 
gateways to the actual execution units. Up to 6 uops total per cycle can travel 
from the schedulers through the dispatch ports to the functional units. This is 
more uops per cycle than the front end can execute (3 per cycle) or the back 
end can retire (3 per cycle), but that's ok because it gives the machine some 
headroom in its middle so that it can have bursts of activity. 

Here's a diagram of the four dispatch ports and the types of instructions that 
can be sent to them. If the schedulers were to be pictured below, they'd be 
sitting above the four ports. 
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Figure 7.3: Dispatch ports 

Stages 15 and 16 - Register Files: After traveling through the dispatch 
ports in the last two stages, the instructions spend these two stages being 
loaded into the register files for execution.  

Stage 17 - Execute: In this stage, the instructions are actually executed by 
the execution engine's functional units. (Whew. It took us so long to get here I 
feel like I should say more, but that's about it. If the instruction is an ADD, 
some numbers are added; if it's a LOAD, some stuff is loaded; if it's a MUL, 
some numbers are multiplied; etc...  There's not much else to say). 

 
Figure 7.4: Stages 13 through 17 

Stage 18 - Flags: If the instruction's outcome stipulates that it needs to set 
any flags, then it does so at this stage. (If you've done assembly language 
programming then you know what flags are about. If you haven't, then this 
stage isn't really important enough to warrant spending any time explaining 
what they are.) 

Stage 19 - Branch Check: Here's where the P4 checks the outcome of a 
conditional branch to see if it has just wasted 19 cycles of its time executing 
some code that it'll have to throw away. By Stage 19, the condition has been 
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evaluated and the front end knows whether or not the branch predictor's 
guess was right or not.  

Stage 20 - Drive: We've already met the Drive stage. Again, this stage is 
dedicated to propagating signals across the chip. 

 
Figure 7.5: Stages 18 through 20 

As you can see, the P4's 20-stage pipeline does much of the same work in 
mostly the same order as the G4e's 7-stage pipeline. By dividing the pipeline 
up into more stages, though, the P4 can reach higher clock rates. As we've 
noted, this deeply pipelined approach fits with the P4's "narrow and deep" 
design philosophy.  

Conclusion to Part I 

The previous discussion has provided a broad overview of both the P4 and the 
G4e. It has also drilled down into some of the details of the two architectures, 
with an eye to how those details fit within the bigger picture of what each 
processor is trying to accomplish. The next part will look more closely at the 
execution engines of the P4 and G4e; technologies like Altivec, SSE2, and the 
P4's double-pumped ALU will be discussed. I'll also talk a bit in the next part 
about system bandwidth issues, and how these impact overall system 
performance. 
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Appendix A: Figures 

  

 

Figure 4.1: Basic Architecture of the G4e 
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Figure 6.1: Basic Architecture of the P4  
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