
DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 1 / 67

Development Process Tutorial

Quality Author For the reviewers Approver

Function Integration manager Quality manager Project head

Name M. Gazaix A.M. Vuillot L. Cambier

Visa

Software management : ELSA SCM
Applicability date : immediate
Diffusion : see last page

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 2 / 67

HISTORY

version
edition

DATE CAUSE and/or NATURE of EVOLUTION

1.0 Sept 30, 2003 Creation

1.1 Oct 1, 2003 Delivery for v3.0

1.2 Jan 5, 2006 Delivery for v3.1

1.3 Mar 10, 2006 Minor correction of delivery for v3.1 before posting on elsA web

1.4 June 20, 2007 A. Gazaix-Jollès corrections

1.4 July 11, 2007 Delivery for v3.2

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 3 / 67

CONTENTS

Contents 3

1 Introduction 6
1.1 Document purpose .6
1.2 elsA versions . 6
1.3 elsA statistics . 7

2 How to install elsA 8
2.1 Building from source on Unix . 8

2.1.1 Tools required . 8
2.1.1.1 C++ and Fortran compilers 8
2.1.1.2 Python . 8
2.1.1.3 Installing Python10
2.1.1.4 Optional tools .11

2.1.2 How to getelsA source code 11
2.1.2.1 Unix tarball . 11
2.1.2.2 FromCVS repository 12

2.1.3 elsA build . 12
2.1.3.1 Selection of modules12
2.1.3.2 Build process .13

2.1.4 First runs .16
2.1.4.1 First test .16
2.1.4.2 Second test .17
2.1.4.3 Third test .18

2.1.5 elsA installation (Optional) 19
2.1.6 Building a new production in the same source tree20
2.1.7 Optimization notes .20
2.1.8 Documentation and indexing21
2.1.9 Switching between different Python versions21

2.2 BuildingelsA from locally modified components22
2.2.1 Production with shared library22
2.2.2 Production with static library22
2.2.3 Additional information . 23

2.3 SWIG . 23
2.3.1 SWIG purpose . 23
2.3.2 Technical details .23

2.4 Installing from a binary distribution24
2.5 Troubleshooting .25

2.5.1 Build problems .25

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 4 / 67

2.5.1.1 Incorrect Makefile generation25
2.5.1.2 Incorrect Python settings25
2.5.1.3 Problem with iostream26

2.5.2 Known problems with Python26
2.5.3 Link time errors .26

2.5.3.1 INTELicc . 26
2.5.3.2 Missingtemplate library (PGIpgCC version 5) . 26
2.5.3.3 Missinglibmass library at link time (AIX) 27
2.5.3.4 Other link time problem (missing libraries)27

2.5.4 Runtime errors .27
2.5.4.1 Checking configuration file access rights27
2.5.4.2 MPI runtime errors (incorrect environment)28

2.5.5 Python runtime errors .28
2.5.5.1 IncorrectPYTHONHOME. 28
2.5.5.2 Python runtime error on HP-UX Itanium29

3 Porting elsA to a new platform 30
3.1 Introduction .30
3.2 Introducing a new platform .30

3.2.1 Compiler choice .31
3.2.1.1 Set compiler options31
3.2.1.2 C++ standard conforming macros31
3.2.1.3 CPU optimization32
3.2.1.4 Fortran file preprocessing32

3.2.2 MPI settings .33
3.3 Insulation ofelsA from platform-dependent features33

3.3.1 DefCompiler.h : STL (and string) insulation33
3.3.2 DefIostream.h : iostream insulation33
3.3.3 DefFortranOpDir.h: Fortran directive34

3.3.3.1 MPI insulation . 34
3.4 Basic type sizes .34

3.4.1 Specifications .34
3.4.2 C++ basic type sizes .34
3.4.3 Fortran basic type sizes .35

3.5 BuildingelsA . 36
3.5.1 Troubleshooting .36

3.5.1.1 Begin withAgt module 36
3.5.1.2 Checking Makefile generation36
3.5.1.3 elsA main() function 37
3.5.1.4 Link unresolved references37

3.6 CPU time measurement .37

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 5 / 67

4 Developing insideelsA system : Getting Started 39
4.1 Introduction .39
4.2 Useful tools .40

4.2.1 NavigatingelsA source code 40
4.2.1.1 doxygen . 40
4.2.1.2 Doc++ . 41
4.2.1.3 glimpse . 41
4.2.1.4 Use of "tag" index files41

4.3 Non regression tests .42
4.3.1 How to run regression tests42

4.3.1.1 Checking out (CVS) regression scripts 43
4.3.1.2 Setting the executable version to be tested43
4.3.1.3 Setting the reference43
4.3.1.4 Running regression tests44

4.3.2 Adding new regression tests45
4.4 Validation Data Base .45
4.5 Unitary test cases .45
4.6 A simpleelsA application . 46

4.6.1 Example from the classical shock tube problem47

5 Development process 51
5.1 Team work for a common version51
5.2 Different developer’s profile .52
5.3 Development process .53

5.3.1 Definition of the specifications53
5.3.2 Design .53
5.3.3 Implementation .54
5.3.4 Validation . 54
5.3.5 Integration review .55

5.4 Development support and documentation56

Index 61

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 6 / 67

1. INTRODUCTION

1.1 Document purpose

The purpose of this document is to helpelsA developers. The document focuses on
implementation level. Several aspects are covered:

• installation (chapter 2);

• portingelsA to a new computing environment (chapter 3);

• getting started (chapter 4);

• kernel development process (chapter 5).

This document is available throughelsA Web site :
http://elsa.onera.fr/ExternDocs/user/MDEV-03036.pdf .
A companion document, "elsA Design and Implementation Tutorial",
http://elsa.onera.fr/ExternDocs/user/MDEV-06001.pdf ,
is available to help developers in the understanding of the main features ofelsA design.
See also theUML (Unified Modeling Language) documentation :
https://elsa.onera.fr/ExternDocs/dev/uml/elsaDocUml_v3.0.01.
html .
MostelsA developers have to perform their own computations usingelsA; elsA usage
is not described in this document; instead consult :

• elsA User’s Starting Guide :
http://elsa.onera.fr/ExternDocs/user/MU-03037.pdf ;

• elsA User’s Reference Manual :
http://elsa.onera.fr/ExternDocs/user/MU-98057.pdf .

1.2 elsA versions

Since the beginning of theelsA project in 1997, the majorelsA reference versions,
named deliveries, have been:

• v0 : September 1998

• v1.1 : January 2000

• v2.0 : November 2000

• v2.1 : June 2001

• v2.2 : May 2002

http://elsa.onera.fr/ExternDocs/user/MDEV-03036.pdf
http://elsa.onera.fr/ExternDocs/user/MDEV-06001.pdf
https://elsa.onera.fr/ExternDocs/dev/uml/elsaDocUml_v3.0.01.html
https://elsa.onera.fr/ExternDocs/dev/uml/elsaDocUml_v3.0.01.html
http://elsa.onera.fr/ExternDocs/user/MU-03037.pdf
http://elsa.onera.fr/ExternDocs/user/MU-98057.pdf

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 7 / 67

• v3.0 : December 2003

• v3.1 : December 2005

• v3.2 : July 2007 (planned)

Between deliveries, otherelsA reference versions (“releases”) are available, mainly
for internal use.
A reference version is identified with aCVS tag1. The contents of each reference
version can be consulted (in French for old releases) atelsA development page :
http://elsa.onera.fr/elsA/news/newsdev.html .

1.3 elsA statistics

In this section, we present some statistics forelsA release 3.22 :

• 850 000 lines (600 000 lines if comments are removed)

• 726C++ classes;

• 800C++ header files (.h);

• 772C++ implementation files (.C);

• approximately 1800 Fortran files (more than 1500 Fortran77 subroutines, and
300 F90 subroutines).

1for exampleI3207c
2statistics for theelsA kernel computed withcp_line (api/Py/Tools)

http://elsa.onera.fr/elsA/news/newsdev.html

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 8 / 67

2. HOW TO INSTALL elsA

2.1 Building from source on Unix

2.1.1 Tools required

To buildelsA from source, you need the following tools :

1. a C++ compiler;

2. a Fortran compiler;

3. Python correctly installed.

2.1.1.1 C++ and Fortran compilers

Table 2.1 gives information aboutelsA portability. If you have to portelsA to a new
computing environment, see chapter 3,p. 30.

Remarks:

1. IA32 architecture : INTEL Pentium, AMD Opteron.

2. IA64 architecture : INTEL Itanium 2.

3. NEC SX: SX6, SX8.

4. shared =yes : shared library version available and tested.

5. Ael module cannot be compiled withg77. You can either switch tog95
(http://g95.sourceforge.net/),
or removeAel module (see section 2.1.3.1 to configureelsA withoutAel).

2.1.1.2 Python

Python (www.python.org) is used to build theelsA scripting interface : without Python,
you will not be able to build and run theelsA executable; note however that most of
the internalelsA libraries donot require Python (see section 2.1.9,p. 21), so that it
should be possible to build and run unitary test cases, written entirely inC++, and pos-
sibly Fortran. Note that a complete Python installation is necessary (include header file
Python.h andPython library, for examplelibpython2.4.a or libpython2.4.so
must be available). If Python is not installed correctly on your machine, it is fairly easy
to install (see section 2.1.1.3).elsA has been successively built with several versions
of Python1. Presently, we strongly suggest to use version 2.2 or higher. To choose
which Python version to use :

1beginning with version 1.5.2

http://g95.sourceforge.net/
http://www.python.org

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 9 / 67

Platform OS C++ Fortran ELSAPROD shared

IA32 GNU/Linux gcc g77 linux yes
(SuSE, RedHat) (2.95.2, 3.2,

3.3,3.4)
g95 linuxg95

INTEL icc INTEL ifort intelIA32 yes
PGI pgCC PGI pgf90 pgi yes

IA32 Windows gcc g77 linux no
(with Cygwin)

IA32em GNU/Linux INTEL icc INTEL ifort intelIA32em yes
(x86_64)
IA64 HP-UX aCC f90 itanium yes
(Itanium) Linux (SGI Altix) INTEL icc INTEL ifort intelIA64 yes

Linux (BULL) INTEL icc INTEL ifort bull yes
Linux (HP) INTEL icc ifort yes
Linux gcc g77 gnuIA64 no
(NEC front-end)

SGI MIPS IRIX CC f90 sgi yes
SUN SPARC Solaris CC f90 sun no
HP PA-RISC HP-UX aCC f90 hp yes
IBM Power4-5 AIX xlC xlf ibm no
IBM PowerPC MAC OS xlC xlf macosx no
HP Alpha OSF cxx f90 dec yes
Apple Mac MacOS gcc g77 macos no
NEC SX SUPER-UX sxc++ sxf90 nec no
Fujitsu VPP CC frt fuji no

Table 2.1:elsA portability

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 10 / 67

• Building elsA with Python 1.5 is still working, but deprecated; moreover, some
useful Python modules, most notablynumpy 2, require newer Python version.

• elsA built with Python 2.2 has been widely tested, including NEC SX and Fu-
jitsu VPP vector supercomputers;

• With Python 2.2 and 2.4, on NEC SX, and possibly on other platforms (HP-UX),
it may be better to build Python with thread disabled. To do that, you must run
thePython configure script with-without_thread option. As an other pos-
sibility, try to compileelsA source code with a ’enable multi-threading ’
option, such as-mt on HP-UX.

2.1.1.3 Installing Python

If you have to installPython, take the following steps :

1. Download source from Python Web site (http://www.python.org).

2. Choose a working directory, let us sayBuild_python ; this directory can be
destroyed at the end of build process.

3. Choose where Python will be installed at the end of the installation process, let us
assumeMY_PYTHON3; MY_PYTHONis given toPython configure script through
’ -prefix ’ option ; Python executable will be installed in$MY_PYTHON/bin.

4. On some platforms (SGI IRIX, HP-UX, IBM AIX, SUN OS. . .), you will have
to choose between 32- or 64-bit version; to do that, you may have to set some
environment variable (SGI_ABI for IRIX, OBJECT_MODEfor AIX), or you
may choose to set the environment variableCC(export CC=’cc -64’). Of
course,elsA and Python should use the same choice! When possible, we suggest
to use 64-bit, since it will provide the ability to compute very large problems;

5. Enter the following commands :

cd Build_python
gunzip Python-2.4.4.tgz; tar xvf Python-2.4.4.tar; cd Python-2.4
./configure --prefix=MY_PYTHON
make
make install

Now, to check that the installation is correct, the Python interpreter can be invoked :

export PATH=MY_PYTHON/bin:$PATH
python

2numpy is a re-implementation of older Python array modules,Numeric andnumarray .
3for exampleMY_PYTHON = $HOME/local, or /usr/local/elsA

http://www.python.org

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 11 / 67

The output should look like to :

Python 2.4.4 (#5, Feb 12 2007, 11:31:02)
[GCC 3.4.4 20050721 (Red Hat 3.4.4-2)] on linux2
Type "help", "copyright", "credits" or "license" for more information.

2.1.1.4 Optional tools

• To build MPI parallel executable,MPI C header (mpi.h) and library (libmpi 4)
must be correctly installed;

• Some additional libraries are sometimes useful for Python additional modules
(but never required, see section 2.5.3.4) :

– readline library

– expat library.

• For developers only: if you plan tomodify elsA C++ <–> Python interface,
you may have to installSWIG :
http://www.swig.org
(see section 2.3,p. 23).

2.1.2 How to getelsA source code

If you are eligible to getelsA source code, you can obtain it either through a standard
Unix tarball, or throughCVS. In both cases, you must first choose a working directory,
let us sayWorkDir , with at least 50 MegaBytes available5. You must set environment
variableELSAWKSP:

export ELSAWKSP=WorkDir

2.1.2.1 Unix tarball

You may ask an archive from elsa-infodev@onera.fr. Unpack the archive :

cd $ELSAWKSP # Enter elsA top directory
gunzip elsA-$VERSION.src.tar.gz
tar xf elsA-$VERSION.src.tar

4or libmpich
5The amount of disk space required to buildelsA is platform-dependent.

http://www.swig.org
file:elsa-infodev@onera.fr

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 12 / 67

2.1.2.2 FromCVS repository

If you plan to do some development work insideelsA, you should useCVS to access
directly to theelsA CVS repository. To extract theelsA source code, you need to be
registered, let us saysome_user . Then, change into a valid directory6, and enter the
following command :

cvs -d:pserver:some_user@elsa.onera.fr:/data/cvs/ker co -P Kernel

Remarks:

1. elsA is designed with a modular approach, which allows to compile some of its compo-
nents independently. When starting a new development, it is often a good idea to check
out only the components to be modified, for exampleTur if one plans to add a new
turbulence model. For additional information related to this situation, see 2.2,p. 22.

2. In addition to the kernel source,CVS is used to manage the test base (unitary, non regres-
sion and validation), and the documentation (Theoretical Manual, Developer’s Guide,
User’s Manual, Technical Notes). See also section 5.1,p. 51, and /ELSA/MU-000697

for completeelsA CVS repository information.

2.1.3 elsA build

2.1.3.1 Selection of modules

SeveralelsA modules are optional :

• Aeroelasticity module :Ael ;

• Linearized RANS module :Lur 8;

• Shape optimization module :Opt ;

• Load balance module :Split .

You can select which modules will be included in two ways :

• edit configuration fileDefConfig.h ($ELSAWKSP/Kernel/cfg/DefConfig.h);
use#define (#undef) to select (remove) modules;

• alternatively, you can use theconfig Makefile target9 :

cd $ELSAWKSP/Kernel
make -f cfg/Makefile.mk config

6This directory corresponds to environment variableELSAWKSP.
7"User’s Guide toCVS and production onelsA project"http://elsa.onera.fr/ExternDocs/user/MU-00069.

ps.gz
8Lur cannot be compiled ifAel is not selected.
9see alsomake help_config

http://elsa.onera.fr/ExternDocs/user/MU-00069.ps.gz
http://elsa.onera.fr/ExternDocs/user/MU-00069.ps.gz

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 13 / 67

2.1.3.2 Build process

Perform the following steps10 :

1. AssumingELSAWKSPis correctly set, enter intoelsA root directory :
cd $ELSAWKSP/Kernel

2. You must informelsA Makefile system where the Python interpreter is located.
To do that, you must set three environment variables11 :
E_PPREFIX, E_PPREFIX1 andE_PYVERSION.

Example: Python executable is located in /usr/local/bin
export E_PPREFIX=/usr/local
export E_PPREFIX1=/usr/local
export E_PYVERSION=2.2

3. Set the environment variableELSAPROD: ELSAPRODmust be a concatenation
of a prefix,PLATFORM, and one or several optional suffixes. The allowed values
for PLATFORMare (see Table 2.1,p. 9) :

(a) sgi : SGI (IRIX);

(b) dec : HP Alpha processor (Digital UX);

(c) hp : HP-UX with PA-RISC architecture;

(d) itanium : HP-UX with IA64 (Itanium) architecture;

(e) linux (GNU/Linux, g++/g77 compilers); currently, gcc version 2.95 is
known to work; to use gcc 3.2, you will have to use the line :

E_CC=g++ -D_ELSA_COMPILER_GCC32_ \
-DE_SCALAR_COMPUTER -D_E_USE_STANDARD_IOSTREAM_ -DE_RTTI

in file $ELSAWKSP/Kernel/cfg/prods/Make_linux.mk .

(f) pgi (GNU/Linux, PGI compilers);

(g) intelIA32 (GNU/Linux, INTEL IA32 architecture, INTEL compilers);

(h) intelIA32em (GNU/Linux, INTEL IA32 extended memory architec-
ture (64-bit), INTEL compilers);

(i) intelIA64 (GNU/Linux, INTEL IA64 architecture, INTEL compilers);

10In the following, we assume that you are running Korn shell (SHELL = ksh). If you use another
shell, please modify accordingly the following shell instructions (if you have acsh -like shell, use
setenv instead ofexport)

11These three environment variables are pre-defined for a small number of computers in
file Make_paths.mk ; local elsA administrator can decide to add the local hostname in
Make_paths.mk . Note that Make_paths.mk takes precedence over externally defined
E_PPREFIX, E_PPREFIX1 andE_PYVERSION.

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 14 / 67

(j) nec : NEC SX (SX6, SX8; in that case, cross compilation is used (IRIX
or GNU/Linux));

(k) fuji : Fujitsu VPP 700/3000;

(l) ibm : IBM Power4-5 (AIX);

(m) powerpc : IBM PowerPC (MAC OS);

(n) macosx : Apple (MAC OS);

(o) sun (Solaris);

(p) cray (CRAY SV1).

The allowed suffixes are (note that some suffixes are not meaningful on all plat-
forms) :

(a) i4 : integers use 4 bytes;

(b) i8 : integers use 8 bytes; this is default on NEC;

(c) r4 : floating point numbers use 4 bytes (sinple precision);

(d) r8 : floating point numbers use 8 bytes (double precision); this is default
on all platforms;

(e) mpi : MPI parallel mode. InMPI mode, we have tried to provide de-
fault values for location ofMPI header (mpi.h) and MPI library; how-
ever, you may have to change these default values; to do that, edit the file
$ELSAWKSP/Kernel/cfg/prods/Make_$PLATFORM.mk , and re-
setE_MPIPATH_I andE_MPIPATH_L:

#ifdef ___MPI
E_MPIPATH_I = some_include_absolute_path
E_MPIPATH_L = some_library_absolute_path

#endif

On SGI platform, you can choose between nativeMPI andMPICH (assum-
ing that both are correctly installed), without any file manipulation12. To
useMPICH instead of nativeMPI, you must set the environment variable
MPICH_ROOT; for example :

export MPICH_ROOT=/usr/local/contrib/MPICH_DP1.2.2

If MPICH_ROOTis not set,elsA will try to use nativeMPI instead.

(f) dbg : DEBUGmode (much slower at run time!);

(g) so : shared (dynamically linked) libraries13,14;

12MPICH is also available on other platforms as well (Linux, SUN).
13not available for NEC SX
14please note that, forELSAPROD=intelIA64 andELSAPROD=sgi , shared library is currently

the default choice, (so, it is not necessary to specify explicitly theso suffix)

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 15 / 67

(h) n64 : 64-bit addressing mode (available for AIX, HP-UX and IRIX);

(i) n32 : 32-bit addressing mode (available for AIX, HP-UX and IRIX).

Examples of validELSAPROD:

• export ELSAPROD=sgi_n32

• export ELSAPROD=hp_r4_mpi

• export ELSAPROD=ibm_dbg

4. Now, you can actually build theelsA executable, starting from the ’master’
Makefile :

• make -f cfg/Makefile.mk elsa
This command does several things :

(a) it creates a symbolic link betweencfg/Makefile.mk and./makefile ;

(b) in each sub-directory, or module (Agt , Blk . . .), it builds a local Make-
file (calledMakefile.$ELSAPROD); if necessary, you can re-build
these local Makefiles through the command :make depall 15.

(c) compilation and library build is performed; this can also be done through
the command :make sysall . A library is created in each module,
for example :
$ELSAWKSP/Kernel/src/Agt/.Obj/$ELSAPROD/libeAgt.a ;
there is also a symbolic link in$ELSAWKSP/Kernel/lib/$ELSAPROD :

bassgi07 [242] pwd
/beasgi8a/mgazaix/v3207/Kernel/lib/sgi
bassgi07 [243] ls -l libeTur.a
lrwx------ libeTur.a -> ../../src/Tur/.Obj/sgi/libeTur.a

Note that it is possible to build each individual library separately; for
example :
cd $ELSAWKSP/Kernel/src/Agt; make sys

(d) link is performed in the special moduleApi (there isno libeApi.a);
the executable file name is :
$ELSAWKSP/Kernel/src/Api/.Obj/Wrapper/$ELSAPROD/elsA.x

If everything goes as expected, after a few minutes, you should have the
following messages :
+++ Elsa : Add link to makefile
+++ Elsa : Making public directories
+++ Elsa : Add dir and links Fact
+++ Elsa : Add dir and links Blk
...
+++ Elsa : Done

15it is also possible to re-build only one local makefile, for example :
cd $ELSAWKSP/Kernel/src/Agt; make dep

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 16 / 67

+++ Elsa : +++ Stage 1
+++ Elsa : Making all Makefiles
+++ Elsa : Generate makefile from scratch into Api
+++ Make : Platform flags for sgi
+++ Make : Api/Makefile.sgi
+++ Elsa : Generate makefile from scratch into Fact
+++ Make : Platform flags for sgi
+++ Make : Fact/Makefile.sgi
...
+++ Elsa : +++ Stage 2
+++ Elsa : Making all objects
+++ Elsa : Making into Api
+++ Elsa : This target is not applicable for Api
+++ Elsa : DO NOT WORRY ABOUT FOLLOWING EXIT...
*** Error code 1 (bu21)
+++ Elsa : Making into Fact
+++ Elsa : Compiling C++ .Obj/sgi/Base/FactDataBase.C
+++ Elsa : Compiling C++ .Obj/sgi/Base/FactBase.C
...
+++ Elsa : +++ Stage 3
+++ Elsa : Making API
+++ Elsa : Making into Api
+++ Elsa : Producing elsA.i
+++ Elsa : Copying headers...
+++ Elsa : Ok for elsA.i and headers
+++ Elsa : Pre-processing (by sed) Wrapper/DesBase.h
...
No Wrap generation (SWIG NOT used)
embed.i : Using Python 2.4
+++ Elsa : Compiling C++ .Obj/sgi/Wrapper/elsA_wrap.C
+++ Elsa : Link .Obj/sgi/Wrapper/elsA_wrap.x
+++ Elsa : Symlink exec to .Obj/sgi_r8/elsa.x
+++ Elsa : Done

elsA build is now ended. The next section explains how to perform some
simple tests.

If the elsA executable
$ELSAWKSP/Kernel/src/Api/.Obj/$ELSAPROD/Wrapper/elsA.x
is not built, then consult section 2.5.1,p. 25.

2.1.4 First runs

You are now able to launch theelsA.x executable, which is located in the directory :
$ELSAWKSP/Kernel/src/Api/.Obj/$ELSAPROD/Wrapper .

Please note that if you use a shared executable, you must modify the environment
variableLD_LIBRARY_PATH16 :

export LD_LIBRARY_PATH=$ELSAWKSP/Kernel/lib/$ELSAPROD:$LD_LIBRARY_PATH

2.1.4.1 First test

The first test just launch theelsA interpreter, without any script file :
ksh > ./elsA
===

16or something equivalent on your system such asLD_LIBRARY64_PATH

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 17 / 67

elsA v3.2.01d - Copyright (c) 1997-2006 by ONERA
(IDDN.FR.001.370031.001.S.P.2001.000.10000)
Built with Python library v2.3

Additional Modules:
Module Ael : Aeroelasticity
Module Opt : Shape Optimization
Module Split : Load balancing

Size of Float : 8 Bytes
Size of Integer : 8 Bytes

===
Python 2.3.4 (#4, Jan 24 2005, 11:16:41) [C] on irix6-64
Type "help", "copyright", "credits" or "license" for more information.
>>>

The Python banner and prompt should appear after some specificelsA build data (elsA
version, Copyright, compiler options, precision mode). To quit the Python session, just
type ’CTRL-D’ .

2.1.4.2 Second test

This test checks thatelsA.py Python module is correctly installed. You have to set
correctly the environment variablePYTHONPATH:

export PYTHONPATH=$ELSAWKSP/Kernel/api/Py

Then, exactly as in the first test, launch theelsA interpreter interactively, and, inside
the interpreter loop, type (without any leading blanks!):

from elsA import *
dir()

You should see something similar to :
>>> dir()
[’AbsoluteFrame’, ’AbsoluteVel’, ’Deformable’, ’DesBase’, ’DesBasePtr’, ’DesBlock’,
’DesBlockPtr’, ’DesBndPhys’, ’DesBndPhysPtr’, ’DesBoundary’, ’DesBoundaryPtr’,
’DesCfdPb’, ’DesCfdPbPtr’, ’DesExtract’, ’DesExtractGroup’, ’DesExtractGroupPtr’,
’DesExtractPtr’, ’DesExtractor’, ’DesExtractorPtr’, ’DesFunction’,
’DesFunctionPtr’, ’DesGlobBorder’, ’DesGlobBorderPtr’, ’DesGlobWindow’,
’DesGlobWindowPtr’, ’DesInit’, ’DesInitPtr’, ’DesMask’, ’DesMaskPtr’, ’DesMesh’,
’DesMeshPtr’, ’DesModel’, ’DesModelPtr’, ’DesNumAutomesh’, ’DesNumAutomeshPtr’,
’DesNumChimera’, ’DesNumChimeraPtr’, ’DesNumImplicit’, ’DesNumImplicitPtr’,
’DesNumMultiGrid’, ’DesNumMultiGridPtr’, ’DesNumSpaceDisc’, ’DesNumSpaceDiscPtr’,

’DesNumTimeInteg’, ’DesNumTimeIntegPtr’, ’DesNumerics’, ’DesNumericsPtr’,
’DesState’, ’DesStatePtr’, ’DesWindow’, ’DesWindowPtr’, ’ELSA_MAJOR_VERSION’,
’ELSA_MICRO_VERSION’, ’ELSA_MINOR_VERSION’, ’E_1D’, ’E_2D’, ’E_3D’, ’E_ADI’,
’E_ASMSZL’, ’E_AXI’, ’E_BALDWIN’, ’E_EXPLICIT’, ’E_FIRST_ORDER_NO_SLOPE’,
’E_K EPS’, ’E_KL’, ’E_KOMEGA’, ’E_KO_JCKOK’, ’E_LURELAXMAT’, ’E_LURELAXSCA’,
’E_LUSSORMAT’, ’E_LUSSORSCA’, ’E_MENTER’, ’E_MICHEL’, ’E_MINMOD’, ’E_MKFLC2’,
’E_NO_LIMITER’, ’E_RELAXMAT_EULER’, ’E_RELAXMAT_K4MAT’, ’E_RELAXMAT_K4SCA’,
’E_RELAXMAT_VISCOUS_3P’, ’E_RELAXMAT_VISCOUS_5P’, ’E_RELAXMAT_VISCOUS_SCA_3P’,
’E_RELAXMAT_VISCOUS_SCA_5P’, ’E_RELAXSCA_EULER’, ’E_RELAXSCA_EULER_K4SCA’,
’E_RELAXSCA_VISCOUS_3P’, ’E_RELAXSCA_VISCOUS_5P’, ’E_SLOPE_NULL’, ’E_SPALART’,

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 18 / 67

’E_SUPERBEE’, ’E_VAN_ALBADA’, ’E_VAN_LEER’, ’E_X’, ’E_Y’, ’E_Z’, ’Fixed’,
’Mobile’, ’RelativeFrame’, ’RelativeVel’, ’StaticDeformable’, ’Undeformable’,
’__builtins__’, ’__doc__’, ’__name__’, ’built_with_Ael’, ’built_with_Opt’,
’built_with_Split’, ’built_with_Xdt’, ’getBlock’, ’getCfdPb’, ’getInstance’,
’getNbProc’, ’getProc’, ’get_nb_proc’, ’get_proc’, ’invalid’, ’isMPI’, ’joinMatch’,
’joinNearMatchCoarse’, ’joinNearMatchFine’, ’joinNoMatch’, ’joinNoMatchLine’,
’new_boundary’, ’new_extract’, ’new_extract_block’, ’new_join’, ’new_join_match’,
’new_join_nearmatch’, ’new_join_nomatch’, ’new_join_nomatch_linem’, ’new_window’,
’print_e’, ’types’]
>>>

You can now enterelsA statements (usingclass , method , constant . . .) defined
in elsA.py in an interactive session (for further details, please consultelsA User’s
Manual orelsA User’s Starting Guide).

2.1.4.3 Third test

The third test case is convenient17 to get a quick idea ofelsA CPU efficiency, in se-
rial and parallel (MPI) mode (see also 3.6,p. 37); it also gives a first example ofelsA
script files, which are simply plain valid Python script files. Get a copy of the script file
test_mpi_16block_ns_lu.py , located in$ELSAWKSP/Kernel/api/Py/Test .
Then, enter (in nonMPI mode):

./elsA test_mpi_16block_ns_lu.py -n 2 -p 1 -s 10

You should obtain something close to :
===
elsA v3.2.01d - Copyright (c) 1997-2006 by ONERA
#
Production: IRIX64_oneroa1_6.5 - sgi_r8 - Apr_10,_2003_-_10:38:24
C++ Compiler Option: -O2_-woff_all_-diag_error_1681_-LANG:ansi-for-init-scope=on
Fortran Compiler Option: -O2

Size of Float : 8 Bytes
Size of Integer : 8 Bytes

===
[(’-n’, ’2’), (’-s’, ’10’), (’-p’, ’1’)]
[]
SIZE = 10
NITER = 2
NPROC = 1
Ghost Layer information: ific1 = 2, ific2 = 2

jfic1 = 2, jfic2 = 2
kfic1 = 2, kfic2 = 2

Cutoff used during computation: cutoff = 1e-15
cutoff_geom = 1e-08
min_surface = 1e-30
min_volume = 1e-30

=========== Submit problem description : Begin ========================

Problem bench submitted

17Here an internally generated cartesian mesh is generated, thus eliminating the burden of taking care
of mesh files.

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 19 / 67

...

...

==
Begin computation

==

**
iteration no 1

**
iteration no 2

Time Loop CPU Time:
CPU Time (User) = 2.16 (s)

(Sys) = 0.06 (s)

==
End Loop Computation

==

elsA : normal run termination (0)

You can experiment with different values of the command line options :

1. ’ -n ’ controls the number of iteration,NITER

(CPU time is directly proportional toNITER);

2. ’ -s ’ controls the problem size,SIZE ;

memory used will scale as the third power ofSIZE ;

3. ’ -p ’ controls the number of processors; to run inMPI mode :

mpirun -np NB_OF_PROC ./elsA test_mpi_16block_ns_lu.py \
-n 2 -s 10 -p NB_OF_PROC

2.1.5 elsA installation (Optional)

The last thing to do is to “install” the executable and the Python runtime configuration
files :

export ELSADIST=$ELSAWKSP # This is just an example;
ELSADIST can be different from ELSAWKSP !

cd $ELSAWKSP/Kernel
make install

This command will copy all the files necessary to runelsA in the directory$ELSADIST/Dist .
If the installation is successful, and if you do not plan to build other productions, you
can safely remove the working directory tree$ELSAWKSP/Kernel :

rm -rf $ELSAWKSP/Kernel

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 20 / 67

To use the installed version, you must resetPYTHONPATH, taking into accountELSADIST,
and it is probably convenient to adjust yourPATH:

export PYTHONPATH=$ELSADIST/Dist/lib/py
export PATH=$PATH:$ELSADIST/Dist/bin/$ELSAPROD
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ELSADIST/Dist/bin/$ELSAPROD

The installation is now complete! Now, you should be able to runelsA (seeelsA
User’s Starting Guide).

2.1.6 Building a new production in the same source tree

To build another production, you can use thesamesource tree. Just resetELSAPROD,
and enter :
cd $ELSAWKSP/Kernel; make elsa; make install

2.1.7 Optimization notes

Experienced developers may try to change some compiler switches to improve CPU
performance. This can be done in two ways :

• globally, one can change compiler switches in file :
$ELSAWKSP/Kernel/cfg/prods/Make_$PLATFORM.mk ;
the most important flags are :

– CCCOPT: C++ compiler optimization;

– FFFOPT: Fortran compiler option.

Once the makefile template has been changed, you must rebuild theelsA li-
braries; to do that, enter :

cd \$ELSAWKSP/Kernel; make cleanall; make depall; make sysall

If you use shared libraries, that’s all; if not, you still must rebuild theelsA
executable :

cd $ELSAWKSP/src/Api; make exec

in both cases, you can, optionnaly, perform a new installation (make install).
The command’make depall’ can be quite time-consuming on some ma-
chines (slow disk access, NFS file system. . .), since it computes file depen-
dencies (through a call to the Unix’makedepend’ utility); it is possible to
speed this phase by using’make genall’ instead of’make depall’
(note however that’make genall’ doesnot compute file dependency).

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 21 / 67

• locally (inside a module directory, such as$ELSAWKSP/Kernel/src/Agt),
one can edit the fileMakefile.$ELSAPROD.mk , modifying flags (CCCOPT
andFFFOPT). Then :

make clean; make sys

If you are using shared libraries, you can then put the modified library in your
LD_LIBRARY_PATH. If not, you still have to re-buildelsA executable :
cd $ELSAWKSP/Kernel/src/Api; make exec and, optionnaly,make

install

2.1.8 Documentation and indexing

It is often useful to generatedoxygen documentation and indexing data, used byglimpse,
vi andemacs (se also sections 4.2.1.3,p. 41and 4.2.1.4,p. 41). This can be done
with makefile targetsinstalldox andindexing .

2.1.9 Switching between different Python versions

If required, it is fairly easy to switch between different Python versions. To do that,
you do not have to recompile everything ! Only fiveelsA components depend on
Python.h : Fact , Descp , Sio , Lur , Ael .
These modules must be re-compiled18. So :

1. ResetelsA production environment variables related toPython, (E_PYVERSION,
E_PPREFIX andE_PPREFIX1).

2. Re-build Python-dependent libraries :

cd $ELSAWKSP/Kernel/src/Fact
make clean; make sys

Same thing for Descp, Sio...

3. Re-buildelsA executable

cd $ELSAWKSP/Kernel/src/Api
make clean; make exec
make install # optional

18Note however that in many casesPython.h differences are fairly small, so that re-compilation is
not strictly required.

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 22 / 67

2.2 Building elsA from locally modified components

elsA is designed with a modular approach, which allows to compile some of its com-
ponents independently. When starting a new development, it is often a good idea to
check out only the components to be modified (for exampleTur 19 if one plans to add
a new turbulence model). This technique provides several advantages :

• reduction of disk space;

• reduction of compilation time;

• improvement ofelsA encapsulation and modularity through components.

To build a working version ofelsA incorporating the locally modified features, it is
necessary to set an additional environment variable,ELSAPATH, to inform the Make-
file system of the location of the referenceelsA installation.

export ELSAPATH=/home/elsa/Public/v3.2.07
cd WorkDir
mkdir Kernel; cd Kernel
cvs -d$CVSROOT co -P cfg # can be replaced with a symbolic link
cvs -d$CVSROOT co -P Tur
cvs -d$CVSROOT co -P Fact
building (locally) libraries: libeTur.so, libeFact.so...
make -f cfg/Makefile.mk sysall

The final step depends on the production used (dynamic or static link).

2.2.1 Production with shared library

In this case, it is often not necessary to re-build a new specificelsA executable; instead,
at run time, it is much more convenient to resetLD_LIBRARY_PATH, for example :

export LD_LIBRARY_PATH=$ELSAWKSP/Kernel/lib/$ELSAPROD:$ELSAPATH/Dist/bin/$ELSAPROD

2.2.2 Production with static library

In this case, it is always required to re-buildelsA.x (directoryApi must first be
checked out) :

cd $ELSAWKSP/Kernel
cvs -d$CVSROOT co -P Api
cd $ELSAWKSP/src/Api
make api

19and possibly a (hopefully) small number of additional related modules, for exampleFact

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 23 / 67

2.2.3 Additional information

• If a new source file is added (C++ or Fortran),Make_obj.mk must be mod-
ified accordingly; note thatmake dep must be calledtwice to get correct de-
pendency (generation of fileMakefile.$ELSAPROD).

• If Def is not checked out, the libraries compiled locally have the sameconfig
(see 2.1.3.1,p. 12) setting as the reference installation.

If Def is checked out locally, andDefConfig.h different from the refer-
ence version20, then you must also check out every system depending upon
DefConfig.h 21.

• If you have to modifyC++ headers, then you must find which component must
be checked out to avoid inconsistencies; for exemple, assuming thatTurBase.h
is modified :

cd $ELSAPATH/src
find . -name ’*C’ -exec grep -l ’#include *"Tur/Base/TurBase.h’ \

{} \; | cut -b 3-6 | sort | uniq

--> Ael/ Bnd/ Dtw/ Fact Fxd/ Lur/ Sou/ Tmo/ # Modules to be added

2.3 SWIG

2.3.1 SWIG purpose

Normally, for a standardelsA installation,SWIG is not required : this is because
the only purpose ofSWIG is to create some files, which are included in the source
distribution. The next section provides more detailed information.

2.3.2 Technical details

SWIG is used to generateautomatically two files22, both located in directory :
$ELSAWKSP/Kernel/src/Api/Wrapper :

1. elsA.py , a Python module file which have to be imported by everyelsA script
file;

2. elsA_wrap.C , which wraps the Python interpreter.

By default,SWIG is not used, which means thatelsA.py andelsA_wrap.C are
not modified during theelsA build : the "current" version (for exampleCVS last ver-
sion) are used. To invokeSWIG, just define the environment variableE_SWIG23; then :

20$ELSAPTH/Dist/include/Def/Global/DefConfig.h
21Descp , Bnd, Sio , Api (static), and possiblyAel , Lur , Opt
22if optional moduleOpt or Ael are selected, additional files are created :elsA_Ael_wrap.C ,

elsA_Ael.py , elsA_Opt_wrap.C , elsA_Opt.py
23or defineE_SWIGinsideMake_paths.mk ; it may be useful to define alsoE_SWIGOPT

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 24 / 67

export E_SWIG=/usr/local/bin/swig # example
cd $ELSAWKSP/Kernel/src/Api
make Wrapper/elsA.w

Remarks:

1. The command :

cd $ELSAWKSP/Kernel/src/Api; make api

invokesSWIG (if E_SWIGis defined).

2. It is probably a good idea to use the samePython version to buildSWIG and to build
elsA.

3. However, in most cases, files generated bySWIG can be used to buildelsA with a
differentPython version.

4. On SGI, with IRIX, we have not been able to build a 64-bit version ofSWIG. Fortunately,
the 32-bit version works (SWIG only generates text files, so 32-bit or 64-bit does not
matter).

5. Presently, we use version 1.3.31 of SWIG. Let us stress again that, sinceelsA_wrap.C
andelsA.py are provided in the source distribution, SWIG isNOT required in stan-
dardelsA installation, as well as for most kernel developments.

2.4 Installing from a binary distribution

Instead of buildingelsA from source, it is sometimes useful, or even mandatory, to
installelsA from a binary distribution :

• you do not have access toelsA source distribution;

• you do not have a workingC++ or/and Fortran compiler;

• you are using a cross-compiler : compilation and link are done on a computer
different from the runtime machine; in that case, you must install theelsA exe-
cutable in some way on the runtime machine.

Currently, there is no sophisticated installation procedure. Set environment variable
ELSAHOMEand do :

cd $ELSAHOME
gunzip elsA_bin.tgz
tar xf elsA_bin.tar

In some cases,elsA binary distribution is delivered together withPython files. This is
necessary if the target machine does not have aC++ compiler.
In other cases,Python has to be installed prior toelsA.
In both cases, be careful to set correctlyPYTHONHOME(see also section 2.5.5,p. 28).

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 25 / 67

2.5 Troubleshooting

2.5.1 Build problems

2.5.1.1 Incorrect Makefile generation

The Makefile generation process is controlled by the script fileMakeMake.mk
($ELSAWKSP/Kernel/cfg/MakeMake.mk) called by :

make -f cfg/Makefile.mk depall

It uses the C preprocessor, either directly :

cpp ${FLIST} -I${ERDIR}/cfg/prods ${ERDIR}/cfg/prods/Make_${EPLATFORM}.mk

or indirectly, through the C compiler :

cc -c ${FLIST} -I${ERDIR}/cfg/prods -E ${ERDIR}/cfg/prods/Make_${EPLATFORM}.mk

You may encounter problems if :

• C compiler is not properly installed;

• on some platform, the C compiler does not preprocess correctly files with.mk
extension. To correct this, a possible solution is to set a symbolic link such as :

ln -sf cfg/prods/Make_${EPLATFORM}.mk cfg/prods/Make_${EPLATFORM}.c

This case occurs for instance when cross-compilingelsA on a Linux machine,
to generate NEC specific compiled code.

2.5.1.2 Incorrect Python settings

If Python is incorrectly installed, or if environment variableE_PYVERSION, E_PPREFIX,
E_PPREFIX1 are incorrectly set, some files cannot be compiled. A convenient and
fast check is given below :

cd $ELSAWKSP/Kernel/src/Fact
make .Obj/$ELSAPROD/Base/FactDataBase.o

Look carefully to compiler messages aboutPython.h or config.c , such as :

deimos>make -f Makefile.intelIA64 .Obj/intelIA64/Base/FactDataBase.o
+++ elsA : Compiling C++ .Obj/intelIA64/Base/FactDataBase.C
../../include/Def/Global/DefPython.h(27): catastrophic error:

could not open source file "Python.h" #include "Python.h"

If FactDataBase.o is not correctly produced, then it is useless to continue.

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 26 / 67

2.5.1.3 Problem with iostream

elsA uses theC++ iostream library to perform I/O. Unfortunately, the ISOC++
standardization foriostream has changed relatively recently. Without going into too
much technical details, we have observed that most current implementations provided
by compiler vendors can be classified in two categories :

• classiciostream ;

• standardiostream .

In order to help somewhat to solve problems related toiostream compilation, you
can sometimes solve them with the introduction (or removal) of the simple macro
definition _E_USE_OLD_IOSTREAM_or _E_USE_STANDARD_IOSTREAM_in
the template Makefile :
(cfg/prods/Make_$PLATFORM.mk). For example :

E_CC=g++ -D_E_USE_OLD_IOSTREAM_ # gcc2.95
E_CC=g++ -D_E_USE_STANDARD_IOSTREAM_ # gcc 3.2

If none of these 2 macros solve the compilation problem, you will have to modifyelsA
source (not recommended, please contact elsa-infodev@onera.fr).

2.5.2 Known problems with Python

• Installation of Python 2.2 on IBM AIX machines may be tricky.

• For installation of Python 2.3 on IBM AIX, in some cases we had to remove
socket andssl (possibly by modifying manually filesetup.py).

• On NEC SX8, with Python 2.4, there is a header conflict :C++ string header
must be includedbefore Python.h . Helper scriptpatch_include.mk
solves this problem.

2.5.3 Link time errors

2.5.3.1 INTELicc

With some installations of INTELicc C++ compiler, it is sometimes necessary to add
-lstdc++ to E_EXTERNLIBS.

2.5.3.2 Missingtemplate library (PGI pgCC version 5)

When usingpgCC C++ compiler (ELSAPROD=pgi), there is a makefile bug related to
C++ template instanciation, and librarylibtemplate.a is not created correctly,
thus leading to a link time error24. To correct this problem :

24such as : "librarytemplate not found"

mailto:elsa-infodev@onera.fr

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 27 / 67

cd $ELSAWKSP/Kernel/lib/$ELSAPROD/Template
ar clq libtemplate.a *.o

You can then try again to call the linker :

cd $ELSAWKSP/Kernel/src/Api
make exec

Remark: This problem does not occur with newer versions ofpgCC.

2.5.3.3 Missinglibmass library at link time (AIX)

With ELSAPROD=ibm_. . . , elsA uses thelibmass and libmassvp libraries to
speedup CPU computation. If these libraries are not correctly installed on your system,
they can be easily downloaded (http://www.ibm.com/support).

2.5.3.4 Other link time problem (missing libraries)

On some platforms,elsA uses several additional libraries :

• libz

• libexpat

• libreadline

• libcurses

If these libraries are not available on your system, don’t panic; just remove them by
editing the template makefile$ELSAWKSP/Kernel/cfg/prods/Make_$PLATFORM.mk
(for example, if you don’t havelibz and libexpat , remove ’-lz -lexpat ’).
Then :

cd $ELSAWKSP/Kernel/src/Api
make dep # rebuild local makefile
make exec # link

Only a small number of relatively minor features will be disabled.

2.5.4 Runtime errors

2.5.4.1 Checking configuration file access rights

elsA configuration files, which are Python scripts, should be readable. If not, even
with a correct setting ofPYTHONPATH, at run time you get a message such as :

http://www.ibm.com/support

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 28 / 67

Traceback (most recent call last):
File "test1_mpi_16block_ns_lu.py", line 26, in ?

from elsA import *
ImportError: No module named elsA
elsA : normal run termination (1)

or maybe :

elsA [2249] FATAL: API error
info [2249] Bad module EpKernelDefVal.py
Please check \evname{PYTHONPATH},
check access permissions,
or corrupted files
(EpKernelDefVal.py, EpConstant.py).
Leaving error, code is 2249
elsA : exit force

In such cases, check the file access mode (directory$ELSADIST/Dist/lib/py).

2.5.4.2 MPI runtime errors (incorrect environment)

With some versions ofMPI (including MPICH), depending on the method thatmpirun
uses to start the processes, the environment variables such asLD_LIBRARY_PATHor
PYTHONPATHmaynot be "sent" to the processes. For example, using shared libraries,
the message may be something like :

Connection failed for reason: : Cannot assign requested address

One solution, admittedly not very elegant, is to set the required environment variables
in the.profile (or .cshrc) file.
Another solution is simply to define the environment variables in the same command
line, immediately before invokingelsA executable :

PYTHONPATH=$ELSAHOME/Dist/lib/py elsA.x test.py

Remark: To use several nodes of a HP Alpha cluster, it may be useful to remove the linker
option ’-non_shared ’.

2.5.5 Python runtime errors

2.5.5.1 IncorrectPYTHONHOME

At runtime,elsA uses the Python runtime system; if theelsA executable was not built
on the running machine, it is sometimes useful (specially for Python 1.5) to set the
environment variablePYTHONHOME.

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 29 / 67

$ elsA.x
...
===
Could not find platform independent libraries <prefix>
Could not find platform dependent libraries <exec_prefix>
Consider setting $PYTHONHOME to <prefix>[:<exec_prefix>]
’import exceptions’ failed; use -v for traceback
Warning! Falling back to string-based exceptions
’import site’ failed; use -v for traceback
Python 1.5.2 (#28, Oct 29 1999, 11:41:19) [C] on irix646

It is often possible to guess the correctPYTHONHOME:

$ which python
/home1/elsa/Tools/bin/python
$ export PYTHONHOME=/home1/elsa/Tools

Conversely, with Python 2.x, it is better tounset (orunsetenv in csh) PYTHONHOME.

2.5.5.2 Python runtime error on HP-UX Itanium

If you encounter Floating Point Error in the initialisation phase (FactDataBase::FactDataBase)
of elsA, it may be useful to recompileelsA, with the followingPython configure op-
tions :

CC=’aCC -Ae +DD64’ OPT=’+DD64 +O2 +Onolimit +DSitanium2’
./configure --prefix=$HOME/python2 --without-threads

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 30 / 67

3. PORTING ELSA TO A NEW PLATFORM

This chapter can be safely skipped by most developers.

3.1 Introduction

PortingelsA to a new platform is usually a relatively simple task, becauseelsA source
obeys several important rules:

1. elsA C++ source files doNOT use sophisticatedC++ features such as:

• exceptions;

• RTTI (Run Time Type Identification)

• "complex" template coding; we only use template code from Standard
Library (STL, iostream), so that we usually do not have to care with
template instantiation mechanism. As a result, in practice, we are able
to compileelsA C++ source code with mostC++ compilers.

2. elsA Fortran source files doNOT use Fortran90-only features1; so we can use
any Fortran compiler (77, 90 or 95); this is quite useful on GNU/Linux machine,
since it allows us to use the GNUg77 compiler.

3. The platform-dependent code iscentralized into a very small number of files;
so porting to a new platform involves usually some minor modifications to this
set of "configuration files", without touching any other files. This speeds up by
a huge amount the time needed to achieve the porting task.

4. Python, which is used byelsA as its scripting language, is available on most
computing platforms. In the following, we assume that Python is correctly in-
stalled (see also 2.1.1.3).

5. elsA uses a very small number of standardMPI routines to run in parallel mode.

3.2 Introducing a new platform

1. The first thing to do is to choose a prefix for the new platform, let us sayxxx ;
at build time (cf. 3.5,p. 36), you have to set environment variableELSAPROD
to xxx (or maybexxx_mpi , xxx_r4 , xxx_mpi . . .).

2. Then we must create the template makefile :

$ELSAWKSP/Kernel/cfg/prods/Make_xxx.mk .

It is often useful to start from an existing, hopefully similar, template makefile.

1except inAel module

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 31 / 67

3. To speed up the porting process, in a first stage, it is often convenient to remove
the optionalelsA components : see section 2.1.3.1,p. 12.

3.2.1 Compiler choice

3.2.1.1 Set compiler options

You must edit$ELSAWKSP/Kernel/cfg/prods/Make_xxx.mk , in order to
define theC++ compiler,E_CC, including its options,E_CCCOPTandE_CCCFLAGS.
Similarly, you must define the FORTRAN compiler,E_F90, including its options,
E_FFFOPTandE_FFLAGS.
You may also have to specify:

• linker options:E_LDFLAGS;

• additional libraries:E_EXTERNLIBS.

3.2.1.2 C++ standard conforming macros

If the C++ compiler is not fully standard compliant, you may have to specify several
symbols:

• E_NO_COVARIANT_RETURN: Adding "covariant return type" was the first
modification of theC++ language approved by the standards committee. This
is a fancy way of saying that the virtual function of a derived class can now
return an instance of the derived class when the base class virtual function it is
overriding returns an instance of the base class. Example:

class GeoGrid : public GeoGridBase
{
...
#ifdef E_NO_COVARIANT_RETURN

/** */
virtual const GeoMetricsBase* getMetric() const;

#else
virtual const GeoMetrics* getMetric() const;

#endif
}

• E_RTTI : will replaceC++ qualifieddynamic_cast by C casts; this will have
negligible impact on CPU efficiency.

#ifdef E_RTTI
#define E_DYNAMIC_CAST(a) dynamic_cast<a>
#else
#define E_DYNAMIC_CAST(a) (a)
#endif

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 32 / 67

3.2.1.3 CPU optimization

Two preprocessor symbols control CPU optimization:

• _E_FORTRAN_LOOPS_:
for some loops, two implementations, Fortran andC++, are available. Defining
_E_FORTRAN_LOOPS_will select the Fortran version (recommended).

• E_SCALAR_COMPUTER:
Some Fortran subroutines exist in two different versions;
definingE_SCALAR_COMPUTERwill select the code optimized for scalar (cache-
based) computing platforms, instead of code optimized for vector supercomput-
ers.

3.2.1.4 Fortran file preprocessing

elsA Fortran files (extension.for) must be preprocessed. We have to address three
cases :

1. the Fortran compiler is able to preprocess.for files: there is nothing special to
do;

2. the Fortran compiler is unable to preprocess.for files, but it can preprocess
Fortran files with other extensions (for example,.F). In that case, theelsA build
system will generate symbolic links, so that the compiler can do the preprocess-
ing job; to allow the build system to generate the required links, you have to add
three lines in the template Makefile
(E_USE_CPP_FOR_FORTRAN, E_REQUIRE_FORTRAN_CPP_EXT, E_FOREXT) :

E_USE_CPP_FOR_FORTRAN = false
E_REQUIRE_FORTRAN_CPP_EXT = true
E_FOREXT=F

3. the Fortran compiler is unable to preprocess correctlyelsA Fortran files; in that
case, you have to use thecpp preprocessor, with several macros defined, for
example:

E_CPPF90C=/usr/bin/cpp -D_ELSA_COMPILER_XXX_ \
-traditional $(E_DOUBLEDEF)

E_USE_CPP_FOR_FORTRAN = true
E_REQUIRE_FORTRAN_CPP_EXT = false
E_FOREXT=f # extension of pre-processed Fortran files

Remark: elsA assumes that the Fortran 90 compiler is able to pre-process correctly Fortran
90 (extension.f90) files.

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 33 / 67

3.2.2 MPI settings

If you want to build aMPI executable, you must setE_MPIPATH_I , E_MPIPATH_L,
MPICCCFLAGS, and possiblyMPIEXTERNLIBS2.

3.3 Insulation of elsA from platform-dependent features

Before entering the compile stage, you will have probably to make minor changes to
three files:

• Def/Global/DefCompiler.h

• Def/Global/DefIostream.h

• Def/Global/DefFortranOpDir.h

In addition, inMPI mode, you may have to modify two other files:

• Pcm/Base/PcmDefMpi.h

• Def/Global/DefTypes.h

3.3.1 DefCompiler.h : STL (and string) insulation

STL platform dependentC++ code is centralized in theC++ header :
$ELSAWKSP/Kernel/src/Def/Global/DefCompiler.h .
You must define the preprocessor symbolsE_STDand_DEF_USE_USING_, to con-
trol if STL classes (vector , list , map. . .) are innamespace std:: or not (i.e
in global namespace::).
In some rare cases, you may have to do similar things with thestring class.
In some situations, you may have to change the definition of preprocessor symbol
E_CONST_ITERATOR; definingE_CONST_ITERATORto iterator (instead of
const_iterator) may solve compilation errors (but decrease somewhat type safety).

3.3.2 DefIostream.h : iostream insulation

iostream dependent code is centralized inC++ header :
$ELSAWKSP/Kernel/src/Def/Global/DefIostream.h .
In most "old"C++ compilers, theiostream library was not included in thestd::
namespace. Actually, it was the old AT&T Cfront compiler library, included through
theiostream.h header. Now, recent compilers require the inclusion of theiostream
header (without extension). But even with this up-to-date inclusion, someiostream
libraries are not withinstd:: namespace. For example, with SGI CC v7.30, the

2in some cases, it can be useful to usempiCC; since there is noMPI calls from Fortran inelsA,
mpif90 is usually not useful

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 34 / 67

"old" headeriostream.h is included by default ; to includeiostream requires
’ -LANG:std ’ compiler option.
The _E_USE_OLD_IOSTREAM_and_E_USE_STANDARD_IOSTREAM_macros
are used to make the code more readable. These macros should be defined in the
template makefile,Make_$PLATFORM.mk .
In some (hopefully rare) cases, one may have to modify alsoDefFstream.h and
DefStringStream.h .

3.3.3 DefFortranOpDir.h: Fortran directive

Fortran directive optimization (mostly for vectorization) are centralized into one file:
$ELSAWKSP/Kernel/src/Def/Global/DefFortranOpDir.h . You must
set FOR_OPT_DIR_NODEP_Eand FOR_OPT_DIR_NOLOOPCHG_Ehere. Addi-
tionally, if you introduce a new directive, consider adding a line here, so that it can be
used on other platforms as well, if necessary.

3.3.3.1 MPI insulation

Check thatMPI settings are correct
(Pcm/Base/PcmDefMpi.h andDef/Global/DefTypes.h).

3.4 Basic type sizes

3.4.1 Specifications

elsA has to be usable in single and double precision mode (floating point numbers
coded with 4 or 8 bytes); additionally, some platforms put restrictions on integer sizes
(4 or 8 bytes). We wish to have the most flexible system; of course this system must
be fully portable (no dependency upon some specific compilation options, such as
’ -autodbl ’). The following sections decribe the solution implemented inelsA;
however, in most cases, you will not have to modify anything.

3.4.2 C++ basic type sizes

In order to achieve the requirements described in the previous section,elsA C++ code
does not directly usefloat (or double), int (or long) and bool keywords.
Instead, we useE_Float , E_Int andE_Bool , which are defined through a set of
typedef , insideC++ header$ELSAWKSP/Kernel/src/Def/Global/DefTypes.h .
For Real (float or double) entities:

#ifdef E_DOUBLEREAL
typedef double E_Float;
#ifdef E_MPI

#define E_PCM_FLOAT MPI_DOUBLE
#else

#define E_PCM_FLOAT sizeof(E_Float)

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 35 / 67

#endif
#else

/** float/double */
typedef float E_Float;
#ifdef E_MPI

/** MPI float */
#define E_PCM_FLOAT MPI_FLOAT

#else
#define E_PCM_FLOAT sizeof(E_Float)

#endif
#endif

For Integers (int or long) entities:
#ifdef E_DOUBLEINT

#if !defined(_ELSA_COMPILER_NEC_) && !defined(_ELSA_COMPILER_HP64_) \
&& !defined(_ELSA_COMPILER_ITANIUM_) && !defined(_ELSA_COMPILER_DEC_)

if defined(_ELSA_COMPILER_CRAY_)
define E_Int long
define E_Bool long
else

typedef long long E_Int;
typedef long long E_Bool;

endif
#ifdef E_MPI
define E_PCM_INT MPI_LONG_LONG
#else
define E_PCM_INT sizeof(E_Int)
#endif

#else
typedef long E_Int;
typedef long E_Bool;
#ifdef E_MPI

#define E_PCM_INT MPI_LONG
#else

#define E_PCM_INT sizeof(E_Int)
#endif

#endif
#else

/** C++ integer (int or long) */
typedef int E_Int;
typedef int E_Int;
/** C++ boolean. May be changed to ’bool’ in future releases. */
typedef int E_Bool;
#ifdef E_MPI
/** MPI integer */
define E_PCM_INT MPI_INT
#else
define E_PCM_INT sizeof(E_Int)
#endif

#endif

The size of float (real) and integer variables used insideelsA is thus determined by the
definition of the macrosE_DOUBLEREALandE_DOUBLEINT, in Make_$PLATFORM.mk,
(definition which depend of the value ofELSAPROD), combined withDefTypes.h
(which is included by virtually anyelsA C++ body files).

3.4.3 Fortran basic type sizes

Fortran files use the same insulation technique: every Fortran file must include the
Fortran header$ELSAWKSP/Kernel/src/Def/Global/DefFortran.h :

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 36 / 67

#ifdef E_DOUBLEINT
define INTEGER_E INTEGER*8
#else
define INTEGER_E INTEGER*4
#endif

#ifdef E_DOUBLEREAL
define REAL_E REAL*8
#else
define REAL_E REAL*4
#endif

Fortran files do not use REAL or INTEGER directly; instead, they useREAL_Eand
INTEGER_E, which are then transformed during the preprocessing phase.
Of course, if you make any modification toDefTypes.h and/orDefFortran.h ,
you must be careful:E_Float andREAL_EMUST have the same size, as well as
E_Int andINTEGER_E.

3.5 Building elsA

Now, it is time to try to buildelsA, with the new value ofELSAPROD. Basically, you
have to follow the procedure described in section 2. In fact, if you have never installed
elsA before, it is probably a good idea to perform all the steps of a standard installation
on a platform already available.

3.5.1 Troubleshooting

3.5.1.1 Begin withAgt module

In order to avoid many cryptic compiler messages, we suggest to begin with the com-
pilation of only one module,Agt (the smallest one).

cd $ELSAWKSP/Kernel/src/Agt
make sys

3.5.1.2 Checking Makefile generation

It is sometimes useful to check that the Makefiles are correct. The first thing to do is
to look at the actual compilation command (C++ and Fortran); a convenient way is to
use the ’-n ’ Makefile option; for example:

> cd $ELSAWKSP/Kernel/src/Agt
> make .Obj/$ELSAPROD/Transfo/AgtTransfo.o -n

echo "+++ Elsa : " " Compiling C++" .Obj/sgi_r8/Transfo/AgtTransfo.C
if [x = x]; then
CC -DE_SCALAR_COMPUTER -D_ELSA_COMPILER_SGI_ -D_E_USE_OLD_IOSTREAM_

-64 -DE_RTTI -I../../include -DE_DAMAS
-DE_DOUBLEREAL -DE_DOUBLEINT
-D_E_FORTRAN_LOOPS_ -DNDEBUG -DE_MEMORY
-ansiW -diag_suppress 1429,1521 -O2 -woff all
-LANG:ansi-for-init-scope=on -LANG:exceptions=off
-o .Obj/sgi_r8/Transfo/AgtTransfo.o

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 37 / 67

-c .Obj/sgi_r8/Transfo/AgtTransfo.C;
...

> make .Obj/$ELSAPROD/Transfo/AgtTransfoGenF.o -n

echo "+++ Elsa : " " \
Compiling Fortran" .Obj/sgi_r8/Transfo/AgtTransfoGenF.for
...
f90 -D_ELSA_COMPILER_SGI_ -64 -cpp -I../../include -64 -i8 -r8

-O2 -DE_DOUBLEREAL -DE_DOUBLEINT
-c .Obj/sgi_r8/Transfo/AgtTransfoGenF.for
-o .Obj/sgi_r8/Transfo/AgtTransfoGenF.o

...

3.5.1.3 elsA main() function

In some situations, such as global initialization, you may have to modifyelsA main()
function:

• If you are not usingSWIG (this should be the "normal" situation), you must edit
file Api/Wrapper/elsA.C .

• If you are usingSWIG, you have to modifyApi/Wrapper/elsAembed_template.i :
the Makefile system (seeApi/Make_obj.mk) buildselsA.C fromelsAembed_template.i.

3.5.1.4 Link unresolved references

If the linker requires multiple pass, you may have unresolved references. Try to un-
comment the following line (filecfg/Make_lib.mk):

E_ELSALIBS=$(E_ELSA_SLIBS) $(E_ELSA_SLIBS) $(E_ELSA_SLIBS)

3.6 CPU time measurement

To obtain accurate estimation ofelsA efficiency, you can use several methods:

1. Use thetime Python module :

cfd = DesCfdPb()
...
import time
t1 = time.clock()
cfd.compute()
t2 = time.clock()
print "CPU time = ", t2-t1

This method is quite useful, but:

• it overestimates slightly the computing time, since it includes the time
needed to build the kernel objects;

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 38 / 67

• Pythontime module cannot be used for large values of elapsed time (in-
ternal overflow).

So usually, prefer the other methods.

2. elsA prints internally the time spent in the main iterative loop. This eliminates
completely startup time, so it is more accurate. It uses Unixtimes , or, when
available (NEC SX), a more accurate timer,syssx . If the new platform pro-
vides such timing function, it is easy to use it: just editDef/Sys/DefCPUTime.h
andDef/Sys/DefCPUTime.C .

3. For MPI computations,elsA usesMPI_Wtime to get very accurate timings.

To benchmark a new computing platform, it may be useful to use the Python script :
test_mpi_16block_ns_lu.py ,
located in directoryKernel/api/Py/Test . See section 2.1.4.3,p. 18 for addi-
tional details.

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 39 / 67

4. DEVELOPING INSIDE ELSA SYSTEM : GETTING
STARTED

4.1 Introduction

To decrease the learning time necessary to develop insideelsA, let us give some sug-
gestions :

1. Read this document.

2. ConsultelsA web site, especially :
http://elsa.onera.fr/elsA/dev/guide.html

3. Consult the reference documentation, especially theUML model :
http://elsa.onera.fr/elsA/doc/refdoc.html

4. Have a look to the (automatically extracted fromelsA source)doxygen docu-
mentation :
https://elsa.onera.fr/elsA/dev/doc/document.html

5. Be sure to have access to some good books about Object-Oriented Software
Development :

• Bertrand Meyer: Object-Oriented Software Construction (2ed);

• Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design Pat-
terns: Elements of Reusable Object-Oriented Software.

6. SomeC++ books may be helpful; we recommend:

• Bjarne Stroustrup: TheC++ Programming Language
(http://www.research.att.com/~bs/3rd.html);

• Harvey M. Deitel, Paul J. Deitel:C++ How to Program
(http://www.prenhall.com/deitel/);

• Scott Meyers: EffectiveC++
(http://www.aristeia.com/books_frames.html);

• Scott Meyers: More EffectiveC++;

• Scott Meyers: Effective STL;

• Robert B. Murray:C++ Strategies and Tactics;

• Bruce Eckel: Thinking inC++ (Vol 1)
(http://64.78.49.204/TICPP-2nd-ed-Vol-one.zip);

• Bruce Eckel: Thinking inC++ (Vol 2)
(http://64.78.49.204/TICPP-2nd-ed-Vol-two.zip);

http://elsa.onera.fr/elsA/dev/guide.html
http://elsa.onera.fr/elsA/doc/refdoc.html
https://elsa.onera.fr/elsA/dev/doc/document.html
http://www.research.att.com/~bs/3rd.html
http://www.prenhall.com/deitel/
http://www.aristeia.com/books_frames.html
http://64.78.49.204/TICPP-2nd-ed-Vol-one.zip
http://64.78.49.204/TICPP-2nd-ed-Vol-two.zip

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 40 / 67

• John Lakos: Large-ScaleC++ Software Design
(http://www.awprofessional.com/catalog).

7. Some useful links :

• Unified Modeling Language (UML) :
http://www.uml.org ;

• Standard Template Library Programmer’s Guide :
http://www.sgi.com/tech/stl ;

4.2 Useful tools

In this section, we describe briefly some tools, which may be useful in order to reduce
the learning time for newelsA developers.
Without any tools, it would be a lengthy and boring task for newcomers to grasp the
technical contents of the software. Even if the "elsA Design and Implementation Tuto-
rial", associated with theUML Design documentation, give many useful information,
it must be admitted that the understanding ofelsA, at source level, is not easy. For
example, it can be frustrating to find where a specific type (class , or typedef),
a function, a preprocessormacro (such as#define), or anenum, is declared or
defined.
In the following, we describe briefly several tools that have been found useful over the
years byelsA developers.

4.2.1 NavigatingelsA source code

4.2.1.1 doxygen

doxygen (http://www.stack.nl/~dimitri/doxygen/) is a powerful doc-
umentation system forC++ code:

• The documentation is extracted directly from the sources,

which makes it much easier to keep the documentation consistent with the source
code.

• Generated on-line HTML documentation, which can be browsed by any naviga-
tor, is very useful to quickly find your way inelsA source tree.

• Relations between the various elements (files, types, functions, modules, names-
paces) are visualized by means of include dependency graphs, inheritance di-
agrams, and collaboration diagrams, which are generated automatically (thus
avoiding any human error!).

• Fortran file are not fully supported; however, Fortran routine calls insideC++
code are recognized, and Fortran source files can be browsed.

http://www.awprofessional.com/catalog
http://www.uml.org
http://www.sgi.com/tech/stl
http://www.stack.nl/~dimitri/doxygen/

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 41 / 67

Please visit the documentation generated by doxygen fromelsA source code :
https://elsa.onera.fr/ExternDocs/dev/doxygen/html/hierarchy.
html .

4.2.1.2 Doc++

Doc++ was available several years beforedoxygen. Sincedoxygen is more powerful,
its usage inside theelsA project is now deprecated. Switching fromDoc++ to doxygen
was relatively easy, sincedoxygen recognizes the documentation convention ofDoc++.

4.2.1.3 glimpse

glimpse builds a keyword index in advance for very fast searching. Uncommon words
will be found rapidly even in a very large fileset, up to several Gigabytes. Common
words (with 100’s or 1000’s of matches) will take longer, but if the number of hits
returned can be limited, even those will be very fast.
glimpse is available on most SGI machines (and can probably be installed on other
platforms1). For each new production, it is a good idea to (re-)build the index2, for
example:

glimpseindex -o -H Some_Directory -n $ELSAWKSP/Kernel/src
alias -x glimpse=’glimpse -H Some_Directory’

Then, to retrieve all the occurences of, let’s say,BndPhys :

glimpse BndPhys

In practice,glimpse is much much faster than Unixgrep .

4.2.1.4 Use of "tag" index files

A tag is an identifier that appears in a "tags" file. It is a sort of label that can be jumped
to. For example: each function name can be used as a tag. The "tags" file has to be
generated by the Unix programctags, before the tag commands can be used. This tag
file allows these items to be quickly and easily located. Tag index files are supported by
numerous editors (vi, vim, emacs, nedit. . .), which allow the user to locate the object
associated with a name appearing in a source file and jump to the file and line which
defines the name.
For each new production, it is a good idea to (re-)build the tag files3, for example (the
options to use may depend of the versions of [ce]tags used):

1http://www.icewalkers.com/Linux/Software/517090/Glimpse.html
2this is done withmake indexing
3this can be done with :make indexing

https://elsa.onera.fr/ExternDocs/dev/doxygen/html/hierarchy.html
https://elsa.onera.fr/ExternDocs/dev/doxygen/html/hierarchy.html
http://www.icewalkers.com/Linux/Software/517090/Glimpse.html

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 42 / 67

cd $ELSAWKSP/Kernel
find $ELSAWKSP/Kernel/src \

\(-name ’*\.for’ -o -name ’*\.[hC]’ -o -type f \) \
| ctags - --c++ --define --globals --members \

--typedefs-and-c++ --no-warn

find $ELSAWKSP/Kernel/src \(-name ’*\.for’ \
-o -name ’*\.[hC]’ \) | grep -v Obj | etags - -C

Now, with vi/vim editor :

• With the ’:tag some_tag ’ command the cursor will be positioned on the
definition ofsome_tag .

• If you see a call to a function and wonder what that function does, position the
cursor inside of the function name and hitCTRL-] . This will bring you to the
function definition: the keyword on which the cursor is standing is used as the
tag; if the cursor is not on a keyword, the first keyword to the right of the cursor
is used.

• An easy way back is with theCTRL-T command.

For emacs users, please consultemacs documentation.

4.3 Non regression tests

The purpose of a non regression test is to check that, after some code modification, a
specific feature is still working4. In elsA, non regression tests perform a small num-
ber of iterations (5 or 10, usually). The computed residuals are then compared (with
diff) with the residuals produced by the reference version5. The amount of memory,
and CPU time can also optionally be compared6. A large number of non regression
tests already exists7. Any new development must provide one (or several) new non
regression tests. Since non regression tests are passed very often, it is quite impor-
tant to keep their computing cost (memory and CPU) as low as possible. Before any
integration, developers must pass the complete suite of non regression tests.
ConsultelsA web site for additional information aboutReg :
https://elsa.onera.fr/elsA/dev/dev/env.html#moel

4.3.1 How to run regression tests

The non regression tests are stored in a separateCVS repository,Reg (see section 5.1).
The regression test environment is controlled with a specific Makefile.

4it is also very helful when portingelsA to a new computing environment
5output files produced byextractor objects are also checked, usingcmp, if the file name respects

the naming convention :Wksp/script_name *̇ ḋata_[0-9][0-9]*
6seecompare_memory.sh anddif_memory.sh in Reg/Tools
7approx. 600 sequential tests, and 60 parallel (MPI) tests

https://elsa.onera.fr/elsA/dev/dev/env.html#moel

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 43 / 67

4.3.1.1 Checking out (CVS) regression scripts

To check out the reference Python script :

export CVSROOTREG=...
cd SomeWorkDirectory
cvs -d $CVSROOTREG co -P Reg_core
cd Reg

Remark: Instead of checking outReg_core , it is also possible to check out the entireReg

repository; however, doing this checks out all the existing references8, which can take quite a
long time, and wastes a lot of disk space9

4.3.1.2 Setting the executable version to be tested

You must editSomeWorkDirectory/Reg/Makefile , and set correctlyELSAROOT,
ELSAPRODandELSAVERSION.

4.3.1.3 Setting the reference

In many cases, a reference already exists :

• For intelIA64 (andintelIA64_mpi) andsgi (andsgi_mpi), reference
is stored inCVS in a sub-module10 :

cd SomeWorkDirectory/Reg
cvs co -P Ref_intelIA64
cvs co -P Ref_intelIA64_mpi_2proc
cvs co -P Ref_sgir8
cvs co -P Ref_sgir8_mpi_2proc

Then editMakefile and set correctlyOLDREF.

• In other situations, a reference exists11, but has not been stored inCVS. Set
OLDREFaccordingly.

• In some cases, you want to compare the results produced by two differentelsA
executables,elsA1.x andelsA2.x 12. You must first run the regression tests
with elsA1.x , put the results in reference13, and then re-run the regression
tests withelsA2.x .

8most of them useless in the current context
9appprox. 600 MBytes
10currently, four references are available throughCVS :

Ref_intelIA64 , Ref_intelIA64_mpi_2proc , Ref_sgir8 , Ref_sgir8_mpi_2proc
11for example, it has been installed by the localelsA expert
12for example compiled with different optimization options
13usingVNREFandmake putrefPY (or make putrefPY_PARA)

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 44 / 67

setting ELSAROOT... to run elsA1.x
make
set VNREF
make putrefPY TAG=...
reset OLDREF to VNREF, and ELSAROOT... to run elsA2.x
make

4.3.1.4 Running regression tests

• To run all the sequential tests, just enter :
make

• To run all the parallel tests, just enter :
make PY_PARA
Currently, parallel MPI cases run with 2 (default) or 5 processors14 15.

• To run test cases contained in a single test directory :
make PY_CASES=Nozzle/Axi # sequential
make PY_PARA PY_CASES_PARA=Vega # parallel

• To run several test directories :
make PY_CASES="Nozzle/Axi Nozzle/Base"

Remarks:

1. Depending on compiler options and processor floating point arithmetic implementation,
results computed byelsA, with exactly the same source code, can be different on two
different platforms. However, those differences are usually very small, so that if an
"exact" reference" is not available, it may be convenient to use another one16.

2. Python regression scripts have to read additional data files (mesh, init or boundary files).
Currently, these files are not stored in aCVS directory. The location of the root directory
can be adjusted by settingROOT_DBin the regression Makefile.

3. Several runtime environment variables can be tuned in order to track machine-dependent
code17 :

• ELSA_INIT_ARRAY_F : initialization of C++-allocated real arrays;

• ELSA_IEEE_MODE18 : control IEEE exception behaviour.

14look atNPROC_REGinside Python script
15note that the name of theCVS directory for parallel regression tests,Ref_sgir8_mpi_2proc

andRef_intelIA64_mpi_2proc are inconsistent
16for example,intelIA64 , bull , intelIA32 andintelIA32em are nearly identical
17seeelsA User’s Reference Manual for a complete description ofELSA_INIT_ARRAY_F andELSA_IEEE_MODE
18currently, active only forsgi andintelIA64

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 45 / 67

In some cases, it can be useful to relax the runtime environment constraints19.

4.3.2 Adding new regression tests

• To add a new sequential regression test in an existing sub-directory, put the new
script inside the sub-directory, and edit file00LIST_TEST_CASE_PY .

• To add a new parallel regression test in an existing sub-directory, put the new
script inside the sub-directory, and edit file00LIST_TEST_CASE_PARA.

• To add a new regression directory, you must modifyPY_CASES20 in the regres-
sion makefile.

4.4 Validation Data Base

The validation tests are stored in a separateCVS repository (see section 5.1). The val-
idation data base provides a wide range of test cases (approx. 200). Two platforms
are regularly considered in this validation : NEC SX for sequential test cases, IBM
Power4-5 for parallel (MPI) test cases. Any development introducing a new function-
ality must provide one validation test case (including the script, the mesh and all files
needed for the computation, some tecplot macros in order to visualize the results, and
reference results) which will be introduced in the validation repository.
The validation data base can be consulted :
http://elsa.onera.fr/elsA/validation/valid.html .
For each test case, the script file is available, as well as examples of post-processed
results (Tecplot graphics) and performance measurements (CPU and memory).

4.5 Unitary test cases

C++ unitary test cases can be used to check the behaviour of class member functions
andFORTRANsubroutines. They can be written during the class coding phase by the
class developer. Detecting errors early, during unitary test runs, can save a lot of time
see 4.4,p. 45). Moreover, unitary test cases often provide useful insight to others
programmers upon the correct use of a new class.
The end result of a unitary test case should be a boolean :

• TRUEif everything is ok;

• FALSE if something is unexpected.

19notably for some test cases related to theOpt component
20or PY_CASES_PARAin MPI

http://elsa.onera.fr/elsA/validation/valid.html

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 46 / 67

The following lines present a very simple example testing thenormeL1 andnormeL2
methods of theFldField class :

const E_Int nval=5;
const E_Int nfld=2;
const E_Int dim = nval*nfld;
FldArrayF valeur2(dim);
FldFieldF field1(nval,nfld);
FldArrayF norme1(nfld);
FldArrayF norme2(nfld);

E_Int nbErrors = 0;

// test of norms --
//
for (i=0; i<dim; i++)
{

valeur2[i] = E_Float(i-5);
}

field1.setAllValuesAt(valeur2);

field1.normeL1(norme1);
field1.normeL2(norme2);

if (!fEqual(norme1[0], 3.))
nbErrors++;

if (!fEqual(norme1[1], 2.))
nbErrors++;

if (!fEqual(norme2[0]*norme2[0], 11.))
nbErrors++;

if (!fEqual(norme2[1]*norme2[1], 6.))
nbErrors++;

if (nbErrors)
{

cerr << " nbErrors " << nbErrors << endl;
return E_False;

}
else
{

return E_True;
}

Remark: Due to time constraints,elsA unitary tests are no more updated on a regular basis.
They can still be useful to provide some examples.

4.6 A simpleelsA application

An application is a procedural sequence of instructions where the developer describes
the problem to be solved by creating objects and sending messages to them. A typical
application can involve the following steps :

1. creation of a mesh;

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 47 / 67

2. initialization;

3. creation of boundary conditions;

4. resolution of the problem;

5. postprocessing.

In practice, the application takes the form of aC++ main() function, which must
be written by the developer. Once successfully compiled, it is linked with the class
libraries to end up with an executable file. Then the developer can run the executable
file and obtains the output.

4.6.1 Example from the classical shock tube problem

As an example, we give here the main lines necessary to build objects used to compute
a shock tube problem (to simplify, most objects used in the time integration algorithm
have not been taken into account) :
// ==
// Project: elsA - DSNA/ELSA - Copyright (c) 20039 by ONERA
// Type : <1357438245 9689> C++ Unitary Test File
// File : SimpleTest.C
// Vers : $Revision: 1.1 $
// Chrono : No DD/MM/YYYY Author V Comments
// 1.6 11/05/2003 AJ 3.0 Creation
// ==
#include "Rhs/Base/RhsEquation.h"

#include "Lhs/Base/LhsNone.h"

#include "Eos/Base/EosSysEq.h"
#include "Eos/Base/EosIdealGas.h"

#include "Def/Support/DefMain.h"

#include "Geo/Grid/GeoGrid.h"
#include "Geo/Grid/GeoWindowStruct.h"
#include "Geo/Grid/GeoCfdField.h"

#include "Blk/Base/BlkMesh.h"
#include "Blk/Compose/BlkElemBlock.h"

#include "Fxc/Centered/FxcCenter.h"
#include "Fxc/Centered/FxcScaNumDiss.h"

#include "Bnd/Phys/BndSupOut.h"

// ===
E_Int main()
{

E_Int DIM=10;
E_Int NITER = 10;
cerr << "CUBE dimension = " << DIM << " X " << DIM << " X " << DIM << endl;
cerr << "Number of ITERATION = " << NITER << endl;
cerr << "==" << endl;
cerr << endl;

// Coeff for grid construction:

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 48 / 67

E_Int im=DIM;
E_Int jm=DIM;
E_Int km=DIM;
E_Float dx=ONE/DIM;
E_Float dy=ONE/DIM;
E_Float dz=ONE/DIM;

// ---
// 1. Creation of mesh, block, grid objects:
// ---
BlkMesh mesh(im, jm, km, 0., 0., 0., dx, dy, dz);

BlkElemBlock block(mesh);
E_Int gridLevel=1;
GeoGrid& grid = *(block.accessGrid(gridLevel));

// ---
// 2. Initialization of the aerodynamic field
// ---

E_Float val1 = 1.;
E_Float val2 = 2.5;

FldCellF wCons(ncell,eqNb);
for (E_Int wi=0; wi<ncell; wi++)
{

wCons(wi, 1) = val1;
wCons(wi, 2) = 0.;
wCons(wi, 3) = 0.;
wCons(wi, 4) = 0.;
wCons(wi, 5) = val2;

}
// Perturbation to avoid residual=0 (and unwanted end of iteration !)
wCons(ncell/2,2)=0.1;

// Creation of the container which stores the aerodynamic solution
E_Int order = 1;
E_Int ncell = grid.getNbCell();
E_Int eqNb = 5;
GeoCfdField cfdF(order, ncell, eqNb);
grid.setGeoCfdField(&cfdF);

for (E_Int i=0;i<=order;i++)
cfdF.initSolution(wCons,i);

// ---
// 3. Creation of fluxes and boundary conditions
// ---

// Jameson’s scheme
FxcCenter operCen;

// Artificial (numerical) dissipation --------------------
E_Float k2 = 0.5;
E_Float k4 = 0.016;
E_Float sigma = 1.0;
FxcScaNumDiss::sensorType sensor = FxcScaNumDiss::pressure_velocity;
FxcScaNumDiss operDiss(k2,k4,sensor,sigma);

// Complete fluxes with boundary conditions
// (for example "inactive" condition)

// create 6 windows (GeoWindowStruct):
GeoWindowStruct w1(1, 1, 1,DIM, 1,DIM);
GeoWindowStruct w2(DIM,DIM, 1,DIM, 1,DIM);

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 49 / 67

GeoWindowStruct w3(1,DIM, 1, 1, 1,DIM);
GeoWindowStruct w4(1,DIM,DIM,DIM, 1,DIM);
GeoWindowStruct w5(1,DIM, 1,DIM, 1, 1);
GeoWindowStruct w6(1,DIM, 1,DIM,DIM,DIM);

BndSupOut bndS1(grid, w1);
BndSupOut bndS2(grid, w2);
BndSupOut bndS3(grid, w3);
BndSupOut bndS4(grid, w4);
BndSupOut bndS5(grid, w5);
BndSupOut bndS6(grid, w6);

// --------------------------------------
// 4. Creation of the physical model
// --------------------------------------

E_Float gam = 1.4;
EosIdealGas eos(gam);

// --------------------------------------
// 5. Creation of numerical objects used
// in the time integration algorithm
// --------------------------------------

// Choice of monogrid:
TmoMonoLevel level(E_True);

// Choice of the multistep time integration algorithm:
TmoRKutta tmoRK;
tmoRK.freezing(Steady);

// ---
// 6. Creation of the system of equations to solve
// ---

// Characterization of the system of equations:
EosSysEq desCfdSys(eos,eosgl_meanFlow,eos_euler);

// TmoSystem: stands for a system of equations:
TmoSystem sys1(desCfdSys,eosel_meanFlow);

// ---
// 7. Creation of the numerical problem to solve with all its data
// (the system of equations,
// the block where this system has to be solved,
// the numerical ingredients,
// the physical modelization choice)
// ---

TmoPbElem pbElem(eos, desCfdSys, eosel_meanFlow, level, tmoRK, TmoSolverBase::impl);
pbElem.addBlock(block, TmoLevel::Undefined);
pbElem.addRhsOper(operCen, block, desCfdSys, eosel_meanFlow);
pbElem.addRhsOper(operDiss, block, desCfdSys, eosel_meanFlow);

E_Boolean flag = E_True;
flag &= pbElem.addBoundary(bndS1, operCen, block);
flag &= pbElem.addBoundary(bndS2, operCen, block);
flag &= pbElem.addBoundary(bndS3, operCen, block);
flag &= pbElem.addBoundary(bndS4, operCen, block);
flag &= pbElem.addBoundary(bndS5, operCen, block);
flag &= pbElem.addBoundary(bndS6, operCen, block);

flag &= pbElem.addBoundary(bndS1, operDiss, block);
flag &= pbElem.addBoundary(bndS2, operDiss, block);

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 50 / 67

flag &= pbElem.addBoundary(bndS3, operDiss, block);
flag &= pbElem.addBoundary(bndS4, operDiss, block);
flag &= pbElem.addBoundary(bndS5, operDiss, block);
flag &= pbElem.addBoundary(bndS6, operDiss, block);

sys1.addTmoPbElem(pbElem);

[......]
}

// ===== Tmo/Driver/Test/TmoDriverTest === Last line ===

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 51 / 67

5. DEVELOPMENT PROCESS

In this chapter, we will only be interested in developments which have to be integrated,
for whatever reason. Obviously, there may exist developments which will never enter
into the integration process (research purpose).

5.1 Team work for a common version

Although developers come from different CFD or software cultures and have to imple-
ment very different developments (for example adding new CFD capability, or extend-
ing Python interface), they have to integrate their development in thecommon unique
version ofelsA.
To achieve this, developers have to respect procedures and rules; this is mandatory for
an integration agreement.
The first point a developer has to be convinced of is that his development doesn’t only
consist of some source lines, but also of:

• documentation:

– manuals and technical notes :
CVS :pserver:user@elsa.onera.fr:/data/cvs/doc ;

– source documentation.

• test cases belonging to one of the three following test bases:

– Apps : theC++ unitary test base :
CVS :pserver:user@elsa.onera.fr:/data/cvs/apps/test ;

– Reg: the (Python) regression test base (cf. 4.3,p. 42) :
CVS :pserver:user@elsa.onera.fr:/data/cvs/reg ;

– Val : the (Python) validation test base (cf. 4.4,p. 45) :
CVS :pserver:user@elsa.onera.fr:/data/cvs/val .

The second point is that his development will be integrated in acommon code and
will necessarily interact with other capabilities issued from other developments. That
means that the developer has to:

1. acquire a basic knowledge ofelsA, particularly the part to modify or extend, by:

• reading the source code;

• understanding the existing design solutions.

2. respect all rules and procedures (of source code, but also of tests):

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 52 / 67

• respect the coding rules and implementation choices :
/ELSA/MDEV-03050 :elsA Programming rules
(http://elsa.onera.fr/elsA/doc/refdoc.html#MDEV-03050)

• respect as much as possible a global coherency in design solutions :
/ELSA/MDEV-06001 : Design and implementation tutorial
(http://elsa.onera.fr/elsA/doc/refdoc.html#MDEV-06001)

3. search for simplicity, clarity, efficiency;

4. deliver all information: documentation, source code, test cases;

5. take into account remarks issued from the integration review.

This development process necessarily leads to a "more or less" heavy development
phase, but benefits in term of reduced maintenance costs are obvious. These rules
should lead to a globally coherent software, well documented and tested, simple and
versatile enough to take multi-applications into account and allow various developers
to perform their own task. Even if this process is not sufficient to reach this goal, it
is nevertheless necessary. We describe in the following sections the different stages of
development process and the different associated tasks the developer has to perform.

5.2 Different developer’s profile

Coding inelsA doesn’t mean necessarily controlling everything in the source code.
As in any large software, the developer has to accept ignoring completely some parts,
not knowing every detail in others. Object-oriented programming, based on interfaces,
facilitates using the code while ignoring large parts of it. Here is an attempt to identify
three "types" ofelsA developer.

• A "beginner" developer can be usually viewed as a CFD developer: he usually
knows about only a limited subset of the kernel. He may have to:

– use CFD classes and methods,

– extend, modify an algorithm,

– introduce Fortran subroutines,

– specialize or generalize existingC++ classes,

– propose some extension to the Python interface in order to make new fea-
ture accessible to users,

– introduceC++ unitary test cases,

– extend and/or introduce Python integration or validation test cases.

He has to acquire the knowledge of the module impacted by the development,
and a minimum knowledge of the kernel design.

http://elsa.onera.fr/elsA/doc/refdoc.html#MDEV-03050
http://elsa.onera.fr/elsA/doc/refdoc.html#MDEV-06001

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 53 / 67

• A "kernel" developer understands most of the kernel architecture. He has to
introduce new concepts, or improve existing ones. He has to introduce his own
capability from the script file up to the internal objects of the kernel; so, he has
to be able to use the description objects (Descp) and most of the time a limited
part of the Factory (Fact), but he doesn’t have to understand all the source code
of these two modules. If his design work may have wide repercussions on other
functionnality, he has to acquire a quite complete global understanding of the
kernel. It is of his responsability to estimate which part he can ignore, which
other he has to understand. In that case, he should interact with other developers
(elsa-dev@onera.fr), or developer support (elsa-infodev@onera.fr), and propose
new solutions before implementing them. Support of design documentation or
technical notes should allow this interactive work.

• An "elsA application" developer knows the whole architecture, including Python
scripting interface; he understands creation, destruction, association of objects
and all transverse mechanisms, proposes Python extensions and evolutions.

5.3 Development process

The development process can be splitted in five successive stages.

5.3.1 Definition of the specifications

First of all, specifications of the new development should be defined and the developer
support (elsa-infodev@onera.fr) has to be informed that a new development has been
planned for a necessary coordination of theelsA evolution.
During this first stage, the developer has to define the specifications in the following
way:

1. write theoretical basis of the development (Theoretical Manual contribution),

2. define validation test cases (Validation contribution),

3. write the corresponding user interface documentation: usage description, new
key words, advices to users, ... (User’s Manual contribution).

5.3.2 Design

The second stage is the time of design elaboration. Achieving a good design will
reduce implementation, test, and maintenance time.
This stage is important because each decision made for a specific development can
have wide repercussion when the code is used by others. Among the issues to be
worked out are:

file:elsa-dev@onera.fr
file:elsa-infodev@onera.fr
file:elsa-infodev@onera.fr

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 54 / 67

• Interfaces: what services and access are provided? The aim is to provide services
that are convenient, with enough functionnality to be easy to use, but not so much
as to become unwieldy.

• Information hiding: which information is visible and which is private? The inter-
face must provide access to services while hiding details of the implementation,
so they can be changed without affecting users.

During the design stage, the developer has to write a short design documentation de-
scribing his design choices and the retained solution. This documentation will be
necessary to enrich theUML class model documentation and the "Developer’s Guide".
It will participate to the elaboration of the common design experience and will be very
useful for other developers in similar situations.
During this stage, we recommand to interact with other developers and with the devel-
oper support, specially for a novice developer.

5.3.3 Implementation

After design comes implementation. But in many cases these two stages are not so
clearly separated; in fact, most of the time, design and implementation evolve together
in an iterative cycle.
The implementation stage consists of:

1. writing documented source lines:

• modifying existing code;

• introducing new CFD capability in the kernel.

2. testing the development by mean of :

• newC++ unitary test cases; these tests will verify the correct coding of the
CFD capabilities, specially the Fortran routines;

• new Python integration test cases; these tests will verify the whole design
of the new development, the correct creation of all useful objects, the gen-
eral coherency and memory management of the development.

These tests are very important to insure maintenance of the new added feature.

3. modifying all test cases impacted by the new development;

4. checking no-regression of Python integration tests.

5.3.4 Validation

Everything is now ready to perform the validation computations defined in the first
stage.

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 55 / 67

5.3.5 Integration review

The last stage of the process is the integration review.
Before integration, all elements produced for a development (documentation, source
code and tests cases) are reviewed by reviewers. This is very useful to check the
completeness of all elements and conformity with the development rules. It improves
the homogeneity of the source code and extends knowledge of the source code by the
developers. Furthermore, it is very important to detect most errors and imperfections
as soon as possible so as to minimize the cost of their consequences.
As soon as the development is ready for integration, the developer has to inform the
developer support, and ask for an integration review. The information to communicate
is described on the web site (see the template for mail to be used to ask for an integra-
tion review) :
http://elsa.onera.fr/elsA/dev/reviews.html .
This review is mandatory and consists of checking that:

1. all software elements have been furnished : source code, documentation, new
test cases to enrich bothReg (regression test base) andVal (validation test
base);

2. the code of theCVS workspace is ready for integration:

• it has been updated, all conflicts have been removed,

• all debug code has been suppressed;

3. the no-regressionReg test base has been checked; in some situations, it is also
necessary to run theVal test base.

4. coding rules and implementation choices have been respected;

5. the implementation corresponds to the described design;

6. the new test cases are pertinent (check and validate properly the development);

Moreover, the review has to evaluate:

• the code quality: simplicity, clearness, coherency;

• the design solutions and their impact on other developments.

In some cases, additional questions can be asked to the developer, such as:

1. give an estimation of the performance and the vectorization state of the develop-
ment; in that case, the developer will have to provide "profilers", memory usage
for different computations;

2. check the portability; in that case, the developer will have to perform some tests
on different computers.

http://elsa.onera.fr/elsA/dev/reviews.html

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 56 / 67

If all the checked points are declared correct by the reviewers, the development can be
integrated and enrich all the repositories; conversely, if some checked points are not
judged satisfactory by reviewers, corrections and modifications have to be made by the
developer.
We have describe here the standard development process, with its successive steps.
But most of the time, the developer has to iterate through this process; refactoring is
particularly important, because requirements can change, software needs to be exten-
sible, developer experience grows. It is a part of the every developer’s daily business
and object-oriented programming should make it easier.

5.4 Development support and documentation

Several communication means are available to receive and send information about
elsA.
First of all, the address :
elsa-infodev@onera.fr
centralizes all information about developments, integration reviews, integration, and
has to be informed of each new developer and of each new planned development. All
question or remark a developer wants to communicate to theelsA team has to be
sent to this address. Introducing a new developer to elsa-infodev@onera.fr is for him
the entry point to access toCVS, receive access passwords to the private sections of
the Web site dedicated to developers, and receive all electronic or paper information
intended for developers.
Support to the developers is ensured by theelsA team and covers:

• tutorship,

• maintenance of the developer documentation,

• concrete help to beginner developers through pair programming,

• follow-up of any development if needed,

• coordination of design and implementation choices,

• information by mail to all developers about: new production versions, tips for
development, problems detected in reference versions;

• support for debugging reference versions,

• coordination of integration reviews.

The addresselsa-infodev@onera.fr has to be used to contact the developer
support.
A developer discussion list is also at the disposal of the developers to share their ex-
perience and questions about developing inelsA. The address of this mailing list is

file:elsa-infodev@onera.fr
file:elsa-infodev@onera.fr

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 57 / 67

elsA-dev@onera.fr. It is possible to subscribe on theelsA web site to the Developer
discussion list) :
http://elsa.onera.fr/elsA/dev/guide.html
and consult the archives of all mails sent to this adress.
Finally, information dedicated to the developers is available on theelsA web site and
propose different sections:

• News/Developers for general information, especially about reference versions;

• Development/Tips for development advice;

• Development/Validation for intermediate version validation record;

• Development/Known bugs for bugs detected in release versions;

• Development/Problem Tracking for developers information about use problem
tracking;

• Development/Reviews for integration review information;

• Development/Environment for hardware and software development environment.

file:elsA-dev@onera.fr
http://elsa.onera.fr/elsA/dev/guide.html

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 58 / 67

Empty page

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 59 / 67

Direct access to index’s alphabetical section headings :

– A – p. 61

– B – p. 61

– C – p. 61

– D – p. 62

– E – p. 62

– F – p. 63

– G – p. 63

– H – p. 63

– I – p. 63

– J – p. 64

– K – p. 64

– L – p. 64

– M – p. 64

– N – p. 64

– O – p. 65

– P – p. 65

– Q – p. 65

– R – p. 65

– S – p. 65

– T – p. 66

– U – p. 66

– V – p. 66

– W – p. 66

– X – p. 66

– Y – p. 66

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 60 / 67

– Z – p. 66

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 61 / 67

INDEX

.cshrc (Unix), 28

.profile (Unix), 28
_DEF_USE_USING_(cpp), 33
_E_FORTRAN_LOOPS_(cpp), 32
_E_USE_OLD_IOSTREAM_(cpp), 26, 34
_E_USE_STANDARD_IOSTREAM_(cpp), 13,

26, 34
– A – , 61
– B – , 61
– C – , 61
– D – , 62
– E – , 62
– F – , 63
– G – , 63
– H – , 63
– I – , 63
– J – , 64
– K – , 64
– L – , 64
– M – , 64
– N – , 64
– O – , 65
– P – , 65
– Q – , 65
– R – , 65
– S – , 65
– T – , 66
– U – , 66
– V – , 66
– W – , 66
– X – , 66
– Y – , 66
– Z – , 66
00LIST_TEST_CASE_PARA, 45
00LIST_TEST_CASE_PY, 45
32-bit, 10, 15, 24

64-bit, 10, 13, 15, 24

– A –
(link is to index’s alphabetical headings), 59
aCC, 9
Ael (component), 8, 12, 21, 23, 30
Agt (CVS module), 15
Agt (component), 36
AIX (OS), 9, 10, 14, 15, 27
Altix (platform), 9
AMD, 8
Api (component), 15, 22, 23
Apple (platform), 14
Apple Mac(platform), 9
Apps (CVS repository), 51

– B –
(link is to index’s alphabetical headings), 59
basic type size, 34
binary installation, 24
Blk (CVS module), 15
Bnd (component), 23
BULL (platform), 9
bull (ELSAPROD), 9, 44

– C –
(link is to index’s alphabetical headings), 59
C, 31
C++, 3, 4, 7–9, 11, 20, 23, 24, 26, 30–36,

39, 40, 44, 45, 47, 51, 52, 54, 62
CC, 9
CC(environment variable), 10
CCCOPT(makefile), 20, 21
cmp (Unix), 42
command-line option, 10, 19, 28, 34, 36
compare_memory.sh (shell script), 42
config (makefile), 12, 23
config.c (C++ file), 25
configure, 8, 10, 29
const_iterator (C++), 33

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 62 / 67

covariant return type (C++), 31
cp_line (Python module), 7
cpp, 32
cray (ELSAPROD), 14
CRAY SV1 (platform), 14
cross-compiler, 24
csh (Unix), 13, 29
ctags, 41
CVS, 3, 5, 7, 11, 12, 23, 42–45, 51, 55, 56
cxx, 9
Cygwin, 9

– D –
(link is to index’s alphabetical headings), 59
dbg (ELSAPROD ext), 14
DEBUG(makefile), 14
dec (ELSAPROD), 9, 13
Def (component), 23
Def/Global/DefCompiler.h (C/C++ header),

33
Def/Global/DefFortranOpDir.h

(C/C++ header), 33
Def/Global/DefIostream.h (C/C++ header),

33
Def/Global/DefTypes.h (C/C++ header), 33,

34
Def/Sys/DefCPUTime.C (C++ file), 38
Def/Sys/DefCPUTime.h (C/C++ header), 38
DefCompiler.h (C++ header), 33
DefConfig.h (C/C++ header), 12, 23
DefFortran.h (Fortran header), 36
DefFortranOpDir.h (Fortran header), 34
DefFstream.h (C/C++ header), 34
DefIostream.h (C++ header), 33
DefStringStream.h (C/C++ header), 34
DefTypes.h (C/C++ header), 35, 36
Descp (component), 21, 23
design pattern, 39
Developer discussion list, 57
dif_memory.sh (shell script), 42
diff (Unix), 42
Digital UX (OS), 13
Doc++, 5, 41

double (C++), 34
doxygen, 5, 21, 39–41
dynamic_cast (C++), 31

– E –
(link is to index’s alphabetical headings), 59
E_Bool (C++), 34
E_CC(makefile), 31
E_CCCFLAGS(makefile), 31
E_CCCOPT(makefile), 31
E_CONST_ITERATOR(cpp), 33
E_DOUBLEINT(cpp), 35
E_DOUBLEREAL(cpp), 35
E_EXTERNLIBS(makefile), 26, 31
E_F90 (makefile), 31
E_FFFOPT(makefile), 31
E_FFLAGS(makefile), 31
E_Float (C++), 34, 36
E_FOREXT(cpp), 32
E_Int (C++), 34, 36
E_LDFLAGS(makefile), 31
E_MPIPATH_I (makefile), 14, 33
E_MPIPATH_L (makefile), 14, 33
E_NO_COVARIANT_RETURN(cpp), 31
E_PPREFIX (environment variable), 13, 21, 25
E_PPREFIX1 (environment variable), 13, 21, 25
E_PYVERSION(environment variable), 13, 21, 25
E_REQUIRE_FORTRAN_CPP_EXT(make-

file), 32
E_RTTI (cpp), 31
E_SCALAR_COMPUTER(cpp), 32
E_STD(makefile), 33
E_SWIG(environment variable), 23
E_SWIG(makefile), 24
E_SWIGOPT(environment variable), 23
E_USE_CPP_FOR_FORTRAN(makefile), 32
E_DOUBLEINT(cpp Fortran), 35
E_DOUBLEREAL(cpp Fortran), 35
elsA.C (C++ file), 37
elsA.py (Python module), 17, 18, 23, 24
elsA.x , 16, 22
elsA_Ael.py (Python module), 23
elsA_Ael_wrap.C (C++ file), 23

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 63 / 67

ELSA_IEEE_MODE(environment variable), 44
ELSA_INIT_ARRAY_F (environment variable), 44
elsA_Opt.py (Python module), 23
elsA_Opt_wrap.C (C++ file), 23
elsA_wrap.C (C++ file), 23, 24
ELSADIST (environment variable), 20
elsAembed_template.i (SWIG header), 37
ELSAHOME(environment variable), 24
ELSAPATH(environment variable), 22
ELSAPROD(environment variable), 9, 13–15, 20, 26,

27, 30, 35, 36
ELSAPROD(makefile), 43
ELSAROOT(makefile), 43
ELSAVERSION(makefile), 43
ELSAWKSP(environment variable), 11–13
emacs, 21, 41, 42
environment variable, 4, 9–17, 20–30, 35,

36, 44
exception, 44
expat (library), 11
export (Unix), 13
extraction, 42
extractor , 42

– F –
(link is to index’s alphabetical headings), 59
f90, 9
Fact (component), 21, 22
FFFOPT(makefile), 20, 21
float (C++), 34
FOR_OPT_DIR_NODEP_E(cpp), 34
FOR_OPT_DIR_NOLOOPCHG_E(cpp), 34
Fortran, 32
Fortran 90, 32
Fortran directive, 34
frt, 9
fuji (ELSAPROD), 9, 14
Fujitsu VPP(platform), 9, 10, 14

– G –
(link is to index’s alphabetical headings), 59
g77, 8, 9, 30
g95, 8, 9

gcc, 9
glimpse, 5, 21, 41
GNU/Linux (OS), 9, 13, 14
gnuIA64 (ELSAPROD), 9

– H –
(link is to index’s alphabetical headings), 59
HP (platform), 9
hp (ELSAPROD), 9, 13
HP Alpha(platform), 9, 13, 28
HP PA-RISC(platform), 9
HP-UX (OS), 9, 10, 13, 15

– I –
(link is to index’s alphabetical headings), 59
i4 (ELSAPROD ext), 14
i8 (ELSAPROD ext), 14
IA32 (platform), 8, 9, 13
IA32em (platform), 9
IA64 (platform), 8, 9, 13
IBM (platform), 10
ibm (ELSAPROD), 9, 14
IBM Power4-5(platform), 9, 14, 45
IBM PowerPC(platform), 9, 14
icc, 4, 9, 26
IEEE, 44
ifort, 9
indexing (makefile), 21
installation, 19
installdox (makefile), 21
int (C++), 35
INTEGER(Fortran), 35
INTEGER*4 (Fortran), 35
INTEGER*8 (Fortran), 35
INTEGER_E(cpp), 36
INTEL, 8
intelIA32 (ELSAPROD), 9, 13, 44
intelIA32em (ELSAPROD), 9, 13, 44
intelIA64 (ELSAPROD), 9, 13, 14, 43, 44
intelIA64_mpi (ELSAPROD), 43
iostream (C++ library), 26, 30, 33
iostream (C/C++ header), 33, 34
iostream insulation, 33

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 64 / 67

iostream.h (C/C++ header), 33, 34
IRIX (OS), 9, 10, 13–15, 24
itanium (ELSAPROD), 9, 13
Itanium (Python), 29
Itanium 2(processor), 8
iterator (C++), 33

– J –
(link is to index’s alphabetical headings), 59

– K –
(link is to index’s alphabetical headings), 59

– L –
(link is to index’s alphabetical headings), 59
LD_LIBRARY64_PATH(environment variable), 16
LD_LIBRARY_PATH(environment variable), 16, 21,

22, 28
libcurses (library), 27
libexpat (library), 27
libmass (library), 27
libmassvp (library), 27
libmpi (library), 11
libmpich (library), 11
libpython2.4.a (library), 8
libpython2.4.so (library), 8
libreadline (library), 27
libtemplate.a (library), 26
libz (library), 27
Linux (OS), 9
linux (ELSAPROD), 9, 13
linuxg95 (ELSAPROD), 9
list (C++ STL), 33
long (C++), 35
Lur (component), 12, 21, 23

– M –
(link is to index’s alphabetical headings), 59
MAC OS (OS), 9, 14
MacOS(OS), 9
macos (ELSAPROD), 9
macosx (ELSAPROD), 9, 14
main() (C++), 37, 47

make api, 24
make clean, 21
make cleanall, 20
make config, 12, 31
make depall, 15, 25
make elsA, 15
make elsa, 15
make exec, 21
make help_config, 12
make indexing, 21, 41
make install, 19
make install (Python), 10
make installdox, 21
make putrefPY, 43
make putrefPY_PARA, 43
make sys, 15
make sysall, 15
Make_obj.mk (makefile), 23
Make_paths.mk (makefile), 13, 23
MakeMake.mk (makefile), 25
map (C++ STL), 33
MPI, 11, 14, 18, 19, 28, 30, 33, 34, 38, 42,

45
mpi (ELSAPROD ext), 14
MPI insulation, 34
MPI runtime error, 28
mpi.h (C/C++ header), 11, 14
MPI_Wtime , 38
mpiCC, 33
MPICCCFLAGS(makefile), 33
MPICH, 14, 28
MPICH_ROOT(environment variable), 14
MPIEXTERNLIBS(makefile), 33
mpif90, 33
mpirun, 28

– N –
(link is to index’s alphabetical headings), 59
n32 (ELSAPROD ext), 15
n64 (ELSAPROD ext), 15
namespace (C++), 33
nec (ELSAPROD), 9, 14
NEC SX (platform), 8–10, 14, 38, 45

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 65 / 67

NEC SX8(platform), 26
nedit, 41
non regresion test, 42
NPROC_REG(makefile), 44
numarray (Python module), 10
Numeric (Python module), 10
numpy (Python module), 10

– O –
(link is to index’s alphabetical headings), 59
OBJECT_MODE(environment variable), 10
OLDREF(makefile), 43
Opt (component), 12, 23, 45
Opteron(processor), 8
OSF(OS), 9

– P –
(link is to index’s alphabetical headings), 59
PA-RISC(processor), 13
patch_include.mk (makefile), 26
PATH(environment variable), 20
Pcm/Base/PcmDefMpi.h (C/C++ header), 33,

34
PcmDefMpi.h (C++ header), 34
Pentium(processor), 8
pgCC, 4, 9, 26, 27
pgf90, 9
PGI, 4, 9, 13, 26
pgi (ELSAPROD), 9, 13, 26
powerpc (ELSAPROD), 14
PY_CASES(makefile), 45
PY_CASES_PARA(makefile), 45
Python, 8, 10, 21, 24, 25, 29, 30, 51
Python (Itanium), 29
Python install (AIX), 26
Python.h (C/C++ header), 8, 21, 25, 26
PYTHONHOME(environment variable), 4, 24, 28, 29
PYTHONPATH(environment variable), 17, 20, 27, 28

– Q –
(link is to index’s alphabetical headings), 59

– R –

(link is to index’s alphabetical headings), 59
r4 (ELSAPROD ext), 14
r8 (ELSAPROD ext), 14
readline (library), 11
REAL*4 (Fortran), 35
REAL*8 (Fortran), 35
REAL_E(cpp), 36
RedHat(OS), 9
Ref_intelIA64 (CVS module), 43
Ref_intelIA64_mpi_2proc (CVS module),

43, 44
Ref_sgir8 (CVS module), 43
Ref_sgir8_mpi_2proc (CVS module), 43,

44
Reg (CVS repository), 42, 43, 51, 55
Reg_core (CVS module), 43
ROOT_DB(makefile), 44
RTTI (C++), 30

– S –
(link is to index’s alphabetical headings), 59
scalar computing platforms, 32
setenv (Unix), 13
setup.py (Python module), 26
SGI (platform), 9, 10, 13, 14, 24
sgi (ELSAPROD), 9, 13, 14, 43, 44
SGI_ABI (environment variable), 10
sgi_mpi (ELSAPROD), 43
shared , 8
shared library, 16
Sio (component), 21, 23
so (ELSAPROD ext), 14
socket , 26
Solaris(OS), 9, 14
source code (how to get), 12
Split (component), 12
ssl , 26
std:: (C++), 33
std:: , 33
STL, 30, 33
STL insulation, 33
string (C++ library), 33
string (C/C++ header), 26

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 66 / 67

subroutine, 7
sun (ELSAPROD), 9, 14
SUN OS(OS), 10
SUN SPARC(platform), 9
SUPER-UX(OS), 9
SuSE(OS), 9
SWIG, 3, 11, 23, 24, 37
SX6 (processor), 8, 14
SX8 (processor), 8, 14
sxc++, 9
sxf90, 9
syssx (NEC timer), 38

– T –
(link is to index’s alphabetical headings), 59
tag, 41
template (C++), 26, 30
template (library), 26
test_mpi_16block_ns_lu.py (Python

script), 18, 38
thread, 10
time (Python module), 37, 38
times (Unix), 38
Tur (component), 12, 22
TurBase.h (C/C++ header), 23
typedef (C++), 34

– U –
(link is to index’s alphabetical headings), 59
UML , 6, 39, 40, 54
unitary test, 45
unset (Unix), 29
unsetenv (Unix), 29

– V –
(link is to index’s alphabetical headings), 59
Val (CVS repository), 55
validation test, 45
Val (CVS repository), 51
vector (C++ STL), 33
vector computer, 32
vi, 21, 41
vim, 41

VNREF(makefile), 43

– W –
(link is to index’s alphabetical headings), 59
Windows(OS), 9

– X –
(link is to index’s alphabetical headings), 59
x86_64(platform), 9
xlC, 9
xlf, 9

– Y –
(link is to index’s alphabetical headings), 59

– Z –
(link is to index’s alphabetical headings), 60

DSNA

elsA
Development Process Tutorial

Ref.: /ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 67 / 67

DIFFUSION SCHEME
Software Secretariat Archives
Redactors
elsA developers

END of LIST

	Contents
	Introduction
	Document purpose
	elsA versions
	elsA statistics

	How to install elsA
	Building from source on Unix
	Tools required
	C++ and Fortran compilers
	Python
	Installing Python
	Optional tools

	How to get elsA source code
	Unix tarball
	From CVS repository

	elsA build
	Selection of modules
	Build process

	First runs
	First test
	Second test
	Third test

	elsA installation (Optional)
	Building a new production in the same source tree
	Optimization notes
	Documentation and indexing
	Switching between different Python versions

	Building elsA from locally modified components
	Production with shared library
	Production with static library
	Additional information

	SWIG
	SWIG purpose
	Technical details

	Installing from a binary distribution
	Troubleshooting
	Build problems
	Incorrect Makefile generation
	Incorrect Python settings
	Problem with iostream

	Known problems with Python
	Link time errors
	INTEL icc
	Missing template library (PGI pgCC version 5)
	Missing libmass library at link time (AIX)
	Other link time problem (missing libraries)

	Runtime errors
	Checking configuration file access rights
	MPI runtime errors (incorrect environment)

	Python runtime errors
	Incorrect PYTHONHOME
	Python runtime error on HP-UX Itanium

	Porting elsA to a new platform
	Introduction
	Introducing a new platform
	Compiler choice
	Set compiler options
	C++ standard conforming macros
	CPU optimization
	Fortran file preprocessing

	MPI settings

	Insulation of elsA from platform-dependent features
	DefCompiler.h : STL (and string) insulation
	DefIostream.h : iostream insulation
	DefFortranOpDir.h: Fortran directive
	MPI insulation

	Basic type sizes
	Specifications
	C++ basic type sizes
	Fortran basic type sizes

	Building elsA
	Troubleshooting
	Begin with Agt module
	Checking Makefile generation
	elsA main() function
	Link unresolved references

	CPU time measurement

	Developing inside elsA system : Getting Started
	Introduction
	Useful tools
	Navigating elsA source code
	doxygen
	Doc++
	glimpse
	Use of "tag" index files

	Non regression tests
	How to run regression tests
	Checking out (CVS) regression scripts
	Setting the executable version to be tested
	Setting the reference
	Running regression tests

	Adding new regression tests

	Validation Data Base
	Unitary test cases
	A simple elsA application
	Example from the classical shock tube problem

	Development process
	Team work for a common version
	Different developer's profile
	Development process
	Definition of the specifications
	Design
	Implementation
	Validation
	Integration review

	Development support and documentation

	Index

