ONERA Ref.: JELSA/MDEV-03036
e e T elSA Version.Edition : 1.4

Date : July 11, 2007

DSNA Development Process Tutorial Page : 1/67

Development Process Tutorial

—~ Stat = ctapbO) .
/ mod‘{\;model()

modl.set(’phymod’,’nstur’)” ®

numl = numerics()

cfdl.extract ()

Quality Author For the reviewers Approver

Function Integration manager  Quality manager Project head
Name M. Gazaix A.M. Vuillot L. Cambier
Visa

Software management : ELSA SCM
Applicability date : immediate
Diffusion : see last page



Ref.: [ELSA/MDEV-03036 ONERA
Version.Edition : 1.4 T e
Date : July 11, 2007
Page : 2167 DSNA

HISTORY

version DATE CAUSE and/or NATURE of EVOLUTION

edition

1.0 Sept 30, 2003 Creation

1.1 Oct 1, 2003 Delivery for v3.0

1.2 Jan 5, 2006 Delivery for v3.1

1.3 Mar 10, 2006 Minor correction of delivery for v3.1 before posting on elsA web

14 June 20, 2007 A. Gazaix-Jollés corrections

1.4 July 11, 2007 Delivery for v3.2




ONERA Ref.: [ELSA/MDEV-03036
elsA

e e e e T Version.Edition : 1.4

T _ Date : July 11, 2007
DSNA Development Process Tutorial Page : 367
CONTENTS
Contents 3
(1__Introduction| 6
[I.T Documentpurpose . ... . ... ... .. ... 6
1.2 elsAversions . . . . . . . . . . e 6
1. [SA ISHCS . . . . . e 7
[2__How to Install el[sA 8
[2.1 Buillding from sourceonUnix . . ... ... ... . ... ...... 8
[2.1.1 Toolsrequired . . .. ... ... ... .. ... ... ... 8
[2.1.1.1 C++andFortrancompilers . ... ... ... ... 8
T12 Python . ... ... .. .. ... ... ... ... 8
[2.1.1.3 InstalingPython. . . . . ... .. ......... 10
[2.1.1.4 Optionaltoo|s . ... ... ... .......... 11
[2.1.2 HowtogeelsAsourcecode . . . . ... ... ... ..... 11
21271 Unixtarball . .......... ... ....... 11
[2.1.2.2 Fronmcvsrepository . .. ... ... ....... 12
2.1.3 elsAbulld. . .. ... .. ... . ... 12
2.1.3.1 OSelectionofmodules . .. ... ......... 12
[2.1.3.2 Bulldprocess . ... ... ... .. ........ 13
2.1.4 Firstruns . . . .. . . . . . 16
2141 Firsttest . . . .. ... .. oL 16
2142 OSecondtest. .. ... ............... 17
2143 Thirdte$st. . .. ... ... ... ... ... 18
[2.1.5 elsAinstallation (Optional) . .. ... ... ... ...... 19
[2.1.6  Building a new production In the same source tree . 20
[2.1.7 Optimizationnotes . . . . . . .. .. ... ... ...... 20
[2.1.6  Documentationandindexing . . . . . .. ... ... .... 21
[2.1.9  Switching between different Python versjons . . . . . . .. 21
[2.2  BuildingelsA from locally modified components . . .. . ... ... 22
[2.2.1  Production with shared library . . . . . . ... . ... ... 22
[2.2.2  Production with staticlibrary . . . . . .. ... .. ... ... 22
[2.2.3 Additional information . . . . .. ... ... ... ... .. 23
R37TSWIG . . . o oo 23
[2.3.1 SWIG pUrpose . . . . . . . . . .. 23
232 Technicaldetails . ... ... .. ... ... ........ 23
[2.4 Installing from a binary distribution . . . . .. ... ... ...... 24
[2.5 Troubleshootirig . . . . . ... ... ... . ... ... 25
[2.5.1 Bulldproblems . . . . ... ... ... . oL 25




Ref.: /IELSA/MDEV-03036 ONERA
elsA

Version.Edition : 1.4 /—\
Date : July 11, 2007 )

Page : 4)67 Development Process Tutorial DSNA

[2.5.1.1 Incorrect Makefile generatjon . . . . . . ... .. 25

[2.9.1.2 Incorrect Pythonsettings . ... ......... 25

2.0.1.3 Problemwitn jostream. . . . ... .. ... ... 26

[2.5.2  Known problems with Pythobn . . . . . .. ... ... ... 26

5.3 linktimeerrofs. . . . . .. ... .. .. .. ... ... ... 26

53T INTELICD . . . o v o v e e e e e 26

[2.5.3.2 Missingemplate Tlibrary (PGIpgCC version3) . 26

[2.9.3.3 Missindibmass library at link time (AIX) . . . . 27

[2.5.3.4  Other link time problem (missing libraries) . . . . 27

254 Runtimeerrors . . . . ... ... . ... ... 27

[2.5.4.1  Checking configuration file access rights . . . . . 27

[2.5.4.2  MPT runtime errors (incorrect environment) . . . 28

[2.5.5 Pythonruntimeerrgrs . . .. . ... ... ... ...... 28

2551 IncorrecPYTHONHOME. . . . . ... ... ... 28

[2.5.5.2  Python runtime error on HP-UX Ttanibm . . . . . 29

[3 Porting elsA to a new platform| 30

3.1 Infroductioh . . .. .. .. .. ... . .. ... 30

[3.2 Introducing a new platform . . . . . . ... .. ... ... ..... 30

[3.2.1 Compilerchoige . .. ..................... 31

[.2.1.1 Setcompileroptions . . . . . ... ... ..... 31

[3.2.1.2 C++ standard conforming mactos . . . . . ... .. 31

[.2.1.3 CPUoptimizatign . . .. ... ... ........ 32

[3.2.1.4  Fortran file preprocessing . . . .. ... ..... 32

22 MPIsettinds . ........... ... .. ... ...... 33

[3.3 Insulation oklIsA from platform-dependent featufes . . . . . . .. 33

[3.3.1 DefCompliler.n: STL (and string) insulagon . . . . . . . .. 33

8.3.2 Deflostream.h : iostream insulation . . . . ... ... ... 33

[.3.3 DeflortranOpDir.n: Fortran directive . . . . . . ... ... 34

.5.3.1 MPlinsulation . ... ... ............. 34

[3.4 Basictypesizes . . . . . . . .. .. 34

[3.4.1 Specifications . . . . . ... ... ... 34

[3.4.2 C++Dbasictypesizes . .. ... ... ... ... .. ..... 34

[3.4.3 Fortranbasictypesizes . . . . ... ... ... ....... 35

[3.5 BuilldingelsAl . . . . . .. 36

[3.5.1 Troubleshooting . .. ... ... ... ............ 36

[3..1.1 BeginwithAgt module . . . . .. ... ... ... 36

[3.9.1.2  Checking Makefile generation. . . . . ... ... 36

[3.5.1.3 elsAmain() function . .. ... .......... 37

3.0.1.4 Llinkunresolved references . .. ... ...... 37




ONERA Ref.: [ELSA/MDEV-03036
o et e T elSA Version.Edition : 1.4
) Date : July 11, 2007
DSNA Development Process Tutorial

Page : 5167

4 Developing insideelsA system : Getting Started 39
4.1 Intr 10N . . . e e e 39
42 Usefultools . . . ... ... . . . . .. . . . e 40
4.2.1 NavigatingelsAsourcecode . . . . . . . . . ... ... ... 40
[4.2.1.1 doxygen| . .. ... ... .. ... ... ..., 40
4212 Doc+H . ... .. ... 41
[4.2.1.5 glimpse|. . . . ... ... ... 41
[4.2.1.4 Useof tag” Indexfiles . . ... .......... 41
[4.3 Nonregressiontests . . . . . . . . . . ... .. e 42
[4.3.1 Howtorunregressiontests. . . .. ... ... ....... 42
[4.3.1.1 Checking outdVvs) regression scripts . . . . . . . 43
[4.3.1.2  Setting the executable version to be tested . . . 43
[4.3.1.3 Settingthereference . . . . ... ... ... ... 43
[4.3.1.4 Running regressiontests . . . . ... .. ..... 44
[4.3.2 Adding new regressiontgsts . . .. ... ... ... .... 45
44 ValidationDataBase . .. .............. .. .. .... 45
[4.5 Unitarytestcases . . . . . . . . . . i o e 45
[4.6  AsimpleelsA application . . .. ... ... .. ... ... ... 46
[4.6.1 Example from the classical shock tube problem . . . . . .. 47

[0 Development process 51
5.1 Teamworkforacommonversion . .. .. ............. 51
5.2 Differentdevelopersprofijle . . ... ... .. ... ......... 52
[>.3 Developmentprocess . . ... ... ... ... ... ... . ... 53
[2.3.1 Definition of the specifications . . . . . . ... ... .... 53
(32 Desigh ......... ... ... ... .. 53
[.3.3 Implementation . . . . ... ... ... ... . ... .. 54
b£.34 Valdation. ... ....... ... ... . ..., 54
[0.3.5 Integrationreview . . ... ... ... ... ... 55
[5.4  Development support and documentation . . . .. ... ... ... 56

Index 61



Ref.: JELSA/MDEV-03036 ONERA

Version.Edition : 1.4 e ——
Date : July 11, 2007
Page : 6/67 DSNA

1. INTRODUCTION
1.1 Document purpose

The purpose of this document is to halsA developers. The document focuses on
implementation level. Several aspects are covered:

e installation (chapter]|2);

e portingelsA to a new computing environment (chagter 3);
e getting started (chaptgf 4);

e kernel development process (chapier 5).

This document is available througisA Web site :
http://elsa.onera.tr/ExternDocs/user/MDEV-03036.pdf

A companion documentglsA Design and Implementation Tutorial”,
http://elsa.onera.tr/ExternDocs/user/MDEV-06001.pdt

is available to help developers in the understanding of the main featuetsﬁaﬂe&gn
See also theemL (Unified Modeling Language) documentation :
https://elsa.onera.fr/ExternDocs/dev/uml/elsaDocUmI v3.0.01.

html .

MostelsA developers have to perform their own computations usigeg; elsA usage
is not described in this document; instead consult :

e elsA User’s Starting Guide :
http://elsa.onera.fr/ExternDocs/user/MU-03037.pdt X

e elsA User’s Reference Manual :
http://elsa.onera.fr/ExternDocs/user/MU-98057.pdt

1.2 elsA versions

Since the beginning of thelsA project in 1997, the majoelsA reference versions,
named deliveries, have been:

e VO : September 1998
e v1.1: January 2000

e v2.0 : November 2000
e v2.1: June 2001

v2.2 : May 2002


http://elsa.onera.fr/ExternDocs/user/MDEV-03036.pdf
http://elsa.onera.fr/ExternDocs/user/MDEV-06001.pdf
https://elsa.onera.fr/ExternDocs/dev/uml/elsaDocUml_v3.0.01.html
https://elsa.onera.fr/ExternDocs/dev/uml/elsaDocUml_v3.0.01.html
http://elsa.onera.fr/ExternDocs/user/MU-03037.pdf
http://elsa.onera.fr/ExternDocs/user/MU-98057.pdf

ONERA Ref.: JELSA/MDEV-03036

e e e e T Version.Edition : 1.4
Date : July 11, 2007
DSNA Page : 7167

e v3.0 : December 2003
e v3.1: December 2005
e v3.2: July 2007 (planned)

Between deliveries, otheslsA reference versions (“releases”) are available, mainly
for internal use.

A reference version is identified with @avs tagt. The contents of each reference
version can be consulted (in French for old releases)s#t development page :
http://elsa.onera.tr/elsA/news/newsdev.html

1.3 elsA statistics

In this section, we present some statisticsdisiA release 3.2:
e 850 000 lines (00 000 lines if comments are removed)
e 726C++ classes;

e 800C++ header files.t );

772C++ implementation files.C);

approximately 1800 Fortran files (more than 1500 Fortran77 subroutines, and
300 F90 subroutines).

for examplel3207¢c
2statistics for theslsA kernel computed witlep_line  (api/Py/Tools )


http://elsa.onera.fr/elsA/news/newsdev.html

Ref.: JELSA/MDEV-03036 ONERA

Version.Edition : 1.4 e ——
Date : July 11, 2007
Page : 8167 DSNA

2. HOW TO INSTALL elsA
2.1 Building from source on Unix

2.1.1 Tools required
To build elsA from source, you need the following tools :

1. aC++ compiler;
2. a Fortran compiler;

3. Python correctly installed.

2.1.1.1 C++ and Fortran compilers

Table[2.1 gives information aboetsA portability. If you have to porelsA to a new
computing environment, see chagtep33Q

Remarks
1. IA32 architecture : INTEL Pentium, AMD Opteron.

2. |A64 architecture : INTEL Itanium 2.

3. NEC SX: SX6, SX8.

4. shared =yes: shared library version available and tested.
5

. Ael module cannot be compiled witfv7. You can either switch tg95
(http://g95.sourceforge.net/ ),
or removeAel module (see sectign 2.1.8.1 to configeteA withoutAel ).

2.1.1.2 Python

Python (vww.python.orpis used to build thelsA scripting interface : without Python,

you will not be able to build and run thedsA executable; note however that most of
the internalelsA libraries donot require Python (see sectipn 2]1(9[27), so that it
should be possible to build and run unitary test cases, written entir€ly4nand pos-

sibly Fortran. Note that a complete Python installation is necessary (include header file
Python.h andPython library, for exampldibpython2.4.a or libpython2.4.so

must be available). If Python is not installed correctly on your machine, it is fairly easy
to install (see sectign 2.1.1.33IsA has been successively built with several versions
of Pythort. Presently, we strongly suggest to use version 2.2 or higher. To choose
which Python version to use :

heginning with version 1.5.2


http://g95.sourceforge.net/
http://www.python.org

ONERA

Ref.: JELSA/MDEV-03036

e Version.Edition : 1.4
Date : July 11, 2007
DSNA Page : 9/67
| Platform | OS C++ | Fortran | ELSAPROD | shared|
IA32 GNU/Linux gcc g77 linux yes
(SUSE, RedHat) | (2.95.2, 3.2,
3.3,3.4)
g95 linuxg95
INTEL icc | INTEL ifort | intellA32 yes
PGlpgCC | PGlpgfo0 | pgi yes
IA32 Windows gce g77 linux no
(with Cygwin)
IA32em GNU/Linux INTEL icc | INTEL ifort | intellA32em yes
(x86_64)
IAG4 HP-UX aCccC f90 itanium yes
(Itanium) Linux (SGI Altix) | INTEL icc | INTEL ifort | intellA64 yes
Linux (BULL) INTEL icc | INTEL ifort | bull yes
Linux (HP) INTEL icc | ifort yes
Linux gce g77 gnulA64 no
(NEC front-end)
SGI MIPS IRIX CcC f90 sQi yes
SUN SPARC | Solaris CcC f90 sun no
HP PA-RISC | HP-UX aCC f90 hp yes
IBM Power4-5| AlX xIC xIf ibm no
IBM PowerPC | MAC OS xIC xIf macosx no
HP Alpha OSF CXX f90 dec yes
Apple Mac MacOS gcc g77 macos no
NEC SX SUPER-UX SXC++ sxf90 nec no
Fujitsu VPP CC frt fuji no

Table 2.1:elsA portability



Ref.: JELSA/MDEV-03036 ONERA

Version.Edition : 1.4 e ——
Date : July 11, 2007
Page : 10/67 DSNA

¢ Building elsA with Python 1.5 is still working, but deprecated; moreover, some
useful Python modules, most notalsiympy 2, require newer Python version.

e elsA built with Python 2.2 has been widely tested, including NEC SX and Fu-
jitsu VPP vector supercomputers;

e With Python 2.2 and 2.4, on NEC SX, and possibly on other platforms (HP-UX),
it may be better to build Python with thread disabled. To do that, you must run
thePython configure script withwithout_thread option. As an other pos-
sibility, try to compileelsA source code with &&nable multi-threading '
option, such asmt on HP-UX.

2.1.1.3 Installing Python

If you have to instalPython, take the following steps :
1. Download source from Python Web sit&tp://www.python.org ).

2. Choose a working directory, let us sByild_python ; this directory can be
destroyed at the end of build process.

3. Choose where Python will be installed at the end of the installation process, let us
assuméMY_PYTHOKMY_PYTHOM given toPython configure script through
"-prefix " option ; Python executable will be installed &MY _PYTHON/bin.

4. On some platforms (SGI IRIX, HP-UX, IBM AIX, SUN OS...), you will have
to choose between 32- or 64-bit version; to do that, you may have to set some
environment variableSGI_ABI for IRIX, OBJECT_MODEor AlX), or you
may choose to set the environment varigb@&export CC='cc -64’ ). Of
courseglsA and Python should use the same choice! When possible, we suggest
to use 64-bit, since it will provide the ability to compute very large problems;

5. Enter the following commands :

cd Build_python

gunzip Python-2.4.4.tgz; tar xvf Python-2.4.4.tar; cd Python-2.4
Jconfigure --prefix=MY_PYTHON

make

make install

Now, to check that the installation is correct, the Python interpreter can be invoked :

export PATH=MY_PYTHON/bin:$PATH
python

2numpy is a re-implementation of older Python array modulsmeric andnumarray .
Sfor exampleMY_PYTHON = $HOME/local, or /ust/local/elsA



http://www.python.org

ONERA Ref.: JELSA/MDEV-03036

e e e e T Version.Edition : 1.4
Date : July 11, 2007
DSNA Page : 11/67

The output should look like to :

Python 2.4.4 (#5, Feb 12 2007, 11:31:02)
[GCC 3.4.4 20050721 (Red Hat 3.4.4-2)] on linux2
Type "help", "copyright", “"credits" or "license" for more information.

2.1.1.4 Optional tools

e To build mpi parallel executableypi C headeriipi.h ) and library (ibmpi  4)
must be correctly installed;

e Some additional libraries are sometimes useful for Python additional modules
(but never required, see sectfon 2.5.3.4) :
— readline library
— expat library.
e For developers only if you plan tomodify elsA C++ <—> Python interface,

you may have to instaBwiIG :
http://www.swig.org

(see sectiop 213.[23.

2.1.2 How to geklsA source code

If you are eligible to geelsA source code, you can obtain it either through a standard
Unix tarball, or througlkcvs. In both cases, you must first choose a working directory,
let us saywWorkDir , with at least 50 MegaBytes availablé/ou must set environment
variableELSAWKSP

export ELSAWKSP=WorkDir

2.1.2.1 Unix tarball

You may ask an archive from elsa-infodev@onera.fr. Unpack the archive :

cd $ELSAWKSP  # Enter elsA top directory
gunzip elsA-$VERSION.src.tar.gz
tar xf elsA-$VERSION.src.tar

4or libmpich
5The amount of disk space required to bieldA is platform-dependent.


http://www.swig.org
file:elsa-infodev@onera.fr

Ref.: JELSA/MDEV-03036 ONERA

Version.Edition : 1.4 e ——
Date : July 11, 2007
Page : 12/67 DSNA

2.1.2.2 Fromcvs repository

If you plan to do some development work insieleA, you should usevs to access
directly to theelsA cvs repository. To extract thelsA source code, you need to be
registered, let us sssome_user . Then, change into a valid directotyand enter the
following command :

cvs -d:pserver:some_user@elsa.onera.fr:/data/cvs/ker co -P Kernel

Remarks

1. elsAis designed with a modular approach, which allows to compile some of its compo-
nents independently. When starting a new development, it is often a good idea to check
out only the components to be modified, for examplg if one plans to add a new
turbulence model. For additional information related to this situatior], se@.Z22,

2. In addition to the kernel sourceysis used to manage the test base (unitary, non regres-
sion and validation), and the documentation (Theoretical Manual, Developer’s Guide,
User's Manual, Technical Notes). See also sedtiohfs.[61 and /ELSA/MU-00069
for completeelsA cvs repository information.

2.1.3 elsA build
2.1.3.1 Selection of modules
SeveraklsA modules are optional :
e Aeroelasticity module Ael ;
e Linearized RANS modulelur &;
e Shape optimization moduleOpt ;
e Load balance moduleSplit
You can select which modules will be included in two ways :

o editconfiguration fildefConfig.h  (SELSAWKSP/Kernel/cfg/DefConfig.h );
use#define (#undef ) to select (remove) modules;

e alternatively, you can use tlenfig Makefile target :

cd $ELSAWKSP/Kernel
make -f cfg/Makefile.mk config

®This directory corresponds to environment variablesSAWKSP

7"User'’s Guide tacvs and production orlsA project"http://elsa.onera.fr/ExternDocs/user/MU-00069.
ps.gz

SLur cannot be compiled iel is not selected.

9see alsanake help_config


http://elsa.onera.fr/ExternDocs/user/MU-00069.ps.gz
http://elsa.onera.fr/ExternDocs/user/MU-00069.ps.gz

ONERA Ref.: JELSA/MDEV-03036

e e e e T Version.Edition : 1.4
Date : July 11, 2007
DSNA Page : 13/67

2.1.3.2 Build process

Perform the following step¥ :

1. AssumingELSAWKSHs correctly set, enter intelsA root directory :
cd $ELSAWKSP/Kernel

2. You must informelsA Makefile system where the Python interpreter is located.
To do that, you must set three environment variables
E_PPREFIX, E_PPREFIX1 andE_PYVERSION

# Example: Python executable is located in /usr/local/bin
export E_PPREFIX=/usr/local

export E_PPREFIX1=/usr/local

export E_PYVERSION=2.2

3. Set the environment variableLSAPROD ELSAPRODnNust be a concatenation
of a prefix, LATFORMand one or several optional suffixes. The allowed values
for PLATFORMre (see Table 2.p.[9) :

(@) sgi : SGI (IRIX);

(b) dec : HP Alpha processor (Digital UX);

(c) hp : HP-UX with PA-RISC architecture;

(d) itanium : HP-UX with IA64 (Itanium) architecture;

(e) linux (GNU/Linux, g++/g77 compilers); currently, gcc version 2.95 is
known to work; to use gcc 3.2, you will have to use the line :

E_CC=g++ -D_ELSA_COMPILER_GCC32_ \
-DE_SCALAR_COMPUTER -D_E_USE_STANDARD_IOSTREAM_ -DE_RTTI

in file SELSAWKSP/Kernel/cfg/prods/Make_linux.mk
(N pgi (GNU/Linux, PGI compilers);
(g) intellA32  (GNU/Linux, INTEL IA32 architecture, INTEL compilers);

(h) intellA32em  (GNU/Linux, INTEL 1A32 extended memory architec-
ture (64-bit), INTEL compilers);

() intellA64  (GNU/Linux, INTEL 1A64 architecture, INTEL compilers);

101n the following, we assume that you are running Korn sFEELL = ksh). If you use another
shell, please modify accordingly the following shell instructions (if you hawsta -like shell, use
setenv instead ofexport )

1These three environment variables are pre-defined for a small number of computers in
file Make paths.mk ; local elsA administrator can decide to add the local hostname in
Make_paths.mk . Note that Make_paths.mk takes precedence over externally defined
E_PPREFIX, E_PPREFIX1 andE_PYVERSION



Ref.: JELSA/MDEV-03036 ONERA

Version.Edition : 1.4 e ——
Date : July 11, 2007
Page : 14/67 DSNA

() nec : NEC SX (SX6, SX8; in that case, cross compilation is used (IRIX
or GNU/Linux));

(K) fuji : Fujitsu VPP 700/3000;

() ibm : IBM Power4-5 (AIX);

(m) powerpc : IBM PowerPC (MAC OS);

(n) macosx : Apple (MAC OS);

(0) sun (Solaris);

(p) cray (CRAY SV1).
The allowed suffixes are (note that some suffixes are not meaningful on all plat-
forms) :

(@) i4 :integers use 4 bytes;

(b) i8 : integers use 8 bytes; this is default on NEC,;

(c) r4 : floating point numbers use 4 bytes (sinple precision);

(d) r8 : floating point numbers use 8 bytes (double precision); this is default
on all platforms;

(e) mpi : mpiI parallel mode. InmPI mode, we have tried to provide de-
fault values for location ofvpI header ihpi.h ) and mpP1 library; how-
ever, you may have to change these default values; to do that, edit the file
SELSAWKSP/Kernel/cfg/prods/Make_$PLATFORM.mk  , and re-
setE_ MPIPATH_| andE_MPIPATH_L:

#ifdef __ MPI
E_MPIPATH_| = some_include_absolute path
E_MPIPATH_L = some_library_absolute_ path
#endif

On SGil platform, you can choose between nativee andMPICH (assum-
ing that both are correctly installed), without any file manipulafforTo
useMPICH instead of nativevPl, you must set the environment variable
MPICH_ROQOQO:iTfor example :

export MPICH_ROOT=/usr/local/contrib/MPICH_DP1.2.2

If MPICH_ROOTs not setelsA will try to use nativempl instead.
(f) dbg : DEBUGNode (much slower at run time!);
(9) so : shared (dynamically linked) librariég4;

12\mpicH is also available on other platforms as well (Linux, SUN).

Bnot available for NEC SX

Yplease note that, fAELSAPROBIntellA64  andELSAPROBsgi , shared library is currently
the default choice, (so, it is not necessary to specify explicitlhysthsuffix)



ONERA Ref.: [IELSA/MDEV-03036
e e e e T Version.Edition : 1.4
Date : July 11, 2007
DSNA

Page : 15/67

(h) n64 : 64-bit addressing mode (available for AIX, HP-UX and IRIX);
() n32 : 32-bit addressing mode (available for AIX, HP-UX and IRIX).

Examples of valiELSAPROD

e export ELSAPROD=sgi_n32
e export ELSAPROD=hp_r4_mpi
e export ELSAPROD=ibm_dbg

4. Now, you can actually build thelsA executable, starting from the 'master’
Makefile :

e make -f cfg/Makefile.mk elsa
This command does several things :

(a) it creates a symbolic link betweefg/Makefile.mk and./makefile

(b) in each sub-directory, or modulagt , Blk ...), it builds a local Make-
file (calledMakefile.$ELSAPROD ); if necessary, you can re-build
these local Makefiles through the commandake depall *°.

(c) compilation and library build is performed,; this can also be done through

the command make sysall . Alibrary is created in each module,
for example :
SELSAWKSP/Kernel/src/Agt/.Obj/$SELSAPROD/libeAgt.a

there is also a symbolic link RELSAWKSP/Kernel/lib/SELSAPROD

bassgi07 [242] pwd

/beasgi8a/mgazaix/v3207/Kernel/lib/sgi

bassqiO7 [243] Is -l libeTur.a

Irwx------ libeTur.a -> ..[./src/Tur/.Obj/sgi/libeTur.a

Note that it is possible to build each individual library separately; for
example :

cd $ELSAWKSP/Kernel/src/Agt; make sys

(d) linkis performed in the special modudgi (thereisnolibeApi.a );
the executable file name is :
SELSAWKSP/Kernel/src/Api/.Obj/Wrapper/$ELSAPROD/elsA.x

If everything goes as expected, after a few minutes, you should have the

following messages :

+++ Elsa : Add link to makefile
+++ Elsa : Making public directories
+++ Elsa : Add dir and links Fact
+++ Elsa : Add dir and links Blk
+++ Elsa . Done

15it is also possible to re-build only one local makefile, for example :
cd $ELSAWKSP/Kernel/src/Agt; make dep



Ref.: JELSA/MDEV-03036 ONERA

Version.Edition : 1.4 e ——_
Date : July 11, 2007
Page : 16/67 DSNA
+++ Elsa : +++ Stage 1
+++ Elsa : Making all Makefiles
+++ Elsa : Generate makefile from scratch into Api
+++ Make : Platform flags for sgi
+++ Make : Api/Makefile.sgi
+++ Elsa . Generate makefile from scratch into Fact
+++ Make : Platform flags for sgi
+++ Make : Fact/Makefile.sgi
+++ Elsa :  +++ Stage 2
+++ Elsa : Making all objects
+++ Elsa : Making into Api
+++ Elsa : This target is not applicable for Api
+++ Elsa : DO NOT WORRY ABOUT FOLLOWING EXIT...
*** Error code 1 (bu2l)
+++ Elsa : Making into Fact
+++ Elsa : Compiling C++ .Obj/sgi/Base/FactDataBase.C
+++ Elsa : Compiling C++ .Obj/sgi/Base/FactBase.C
+++ Elsa . +++ Stage 3
+++ Elsa : Making API
+++ Elsa : Making into Api
+++ Elsa : Producing elsA.i
+++ Elsa : Copying headers...
+++ Elsa : Ok for elsA.i and headers
+++ Elsa : Pre-processing (by sed) Wrapper/DesBase.h

No Wrap generation (SWIG NOT used)
embed.i : Using Python 2.4

+++ Elsa : Compiling C++ .Obj/sgi/Wrapper/elsA_wrap.C
+++ Elsa : Link .Obj/sgi/Wrapper/elsA_wrap.x

+++ Elsa : Symlink exec to .Obj/sgi_r8/elsa.x

+++ Elsa : Done

elsA build is now ended. The next section explains how to perform some
simple tests.

If the elsA executable
SELSAWKSP/Kernel/src/Api/.Obj/$SELSAPROD/Wrapper/elsA.x

is not built, then consult sectipn 2.5A4.]28

2.1.4 Firstruns

You are now able to launch tleésA.x  executable, which is located in the directory :
SELSAWKSP/Kernel/src/Api/.Obj/SELSAPROD/Wrapper

Please note that if you use a shared executable, you must modify the environment
variableLD LIBRARY PATHS:

export LD_LIBRARY_PATH=$ELSAWKSP/Kernel/lib/$SELSAPROD:$LD_LIBRARY_PATH

2.1.4.1 Firsttest

The first test just launch th&lsA interpreter, without any script file :

ksh > .[elsA
#

18or something equivalent on your system suchBsLIBRARY64_PATH



ONERA Ref.: JELSA/MDEV-03036

e e e e T Version.Edition : 1.4
Date : July 11, 2007
DSNA Page : 17167

# elsA v3.2.01d - Copyright (c) 1997-2006 by ONERA
# (IDDN.FR.001.370031.001.S.P.2001.000.10000)
# Built with Python library v2.3

| Additional Modules: |

| Module Ael . Aeroelasticity |
| Module Opt : Shape Optimization |
| Module Split : Load balancing [

Size of Float . 8 Bytes
Size of Integer : 8 Bytes

#
Python 2.3.4 (#4, Jan 24 2005, 11:16:41) [C] on irix6-64

Type "help”, "copyright", “"credits" or "license" for more information.
>>>

The Python banner and prompt should appear after some spsfibuild data €IsA
version, Copyright, compiler options, precision mode). To quit the Python session, just
type’CTRL-D’

2.1.4.2 Second test

This test checks thalsA.py Python module is correctly installed. You have to set
correctly the environment variabRRY THONPATH

export PYTHONPATH=$ELSAWKSP/Kernel/api/Py

Then, exactly as in the first test, launch #l8A interpreter interactively, and, inside
the interpreter loop, type (without any leading blanks!):

from elsA import *
dir()

You should see something similar to :

>>> dir()

[AbsoluteFrame’, 'AbsoluteVel’, 'Deformable’, 'DesBase’, 'DesBasePtr’, 'DesBlock’,
‘DesBlockPtr’, 'DesBndPhys’, 'DesBndPhysPtr’, 'DesBoundary’, 'DesBoundaryPtr’,

'DesCfdPb’, 'DesCfdPbPtr’, 'DesExtract’, 'DesExtractGroup’, 'DesExtractGroupPtr’,
'DesExtractPtr’, 'DesExtractor’, 'DesExtractorPtr’, 'DesFunction’,

'‘DesFunctionPtr’, 'DesGlobBorder’, 'DesGlobBorderPtr’, 'DesGlobWindow’,
'DesGlobWindowPtr’, 'Deslnit’, 'DeslnitPtr’, 'DesMask’, 'DesMaskPtr’, 'DesMesh’,
‘DesMeshPtr’, 'DesModel’, 'DesModelPtr’, 'DesNumAutomesh’, 'DesNumAutomeshPtr’,
'DesNumChimera’, 'DesNumChimeraPtr’, 'DesNumimplicit’, 'DesNumimplicitPtr’,
'DesNumMultiGrid’, 'DesNumMultiGridPtr’, 'DesNumSpaceDisc’, 'DesNumSpaceDiscPtr’,
'DesNumTimelnteg’, 'DesNumTimelntegPtr’, 'DesNumerics’, 'DesNumericsPtr’,

'‘DesState’, 'DesStatePtr’, 'DesWindow’, 'DesWindowPtr’, 'ELSA_MAJOR_VERSION’,
'ELSA_MICRO_VERSION’, 'ELSA_MINOR_VERSION’, 'E_1D’, 'E_2D’, 'E_3D’, 'E_ADI’,
'E_ASMSZL’, 'E_AXI', 'E_BALDWIN’, 'E_EXPLICIT’, 'E_FIRST_ORDER_NO_SLOPE’,

'E_K EPS', 'E_KL’, 'E_KOMEGA’, 'E_KO_JCKOK’, 'E_LURELAXMAT’, 'E_LURELAXSCA',
'E_LUSSORMAT’, 'E_LUSSORSCA’, 'E_MENTER’, 'E_MICHEL', 'E_MINMOD’, 'E_MKFLC2',
'E_NO_LIMITER’, 'E_RELAXMAT_EULER’, 'E_RELAXMAT_KA4MAT’, 'E_RELAXMAT_K4SCA',
'E_RELAXMAT_VISCOUS_3P’, 'E_RELAXMAT_VISCOUS_5P’, 'E_RELAXMAT_VISCOUS_SCA_3P’,
'E_RELAXMAT_VISCOUS_SCA_5P’, 'E_RELAXSCA_EULER’, 'E_RELAXSCA_EULER_K4SCA',
'E_RELAXSCA_VISCOUS_3P’, 'E_RELAXSCA_VISCOUS_5P’, 'E_SLOPE_NULL', 'E_SPALART’,



Ref.: JELSA/MDEV-03036 ONERA

Version.Edition : 1.4 T
Date : July 11, 2007
Page : 18/67 DSNA

'E_SUPERBEE’, 'E_VAN_ALBADA’, 'E_VAN_LEER’, 'E_X', 'E_Y’, 'E_Z', 'Fixed’,
'Mobile’, 'RelativeFrame’, 'RelativeVel’, 'StaticDeformable’, 'Undeformable’,

" builtins__’, ’__doc__’, '__name__’, ’built_with_Ael’, ’built_with_Opt’,
‘built_with_Split’, ’built_with_Xdt', 'getBlock’, 'getCfdPb’, 'getinstance’,

‘'getNbProc’, 'getProc’, 'get_nb_proc’, 'get_proc’, 'invalid’, 'isMPI’, ’joinMatch’,
‘joinNearMatchCoarse’, 'joinNearMatchFine’, ’joinNoMatch’, ’joinNoMatchLine’,
‘new_boundary’, 'new_extract’, 'new_extract_block’, 'new_join’, 'new_join_match’,
‘new_join_nearmatch’, 'new_join_nomatch’, 'new_join_nomatch_linem’, 'new_window’,
‘print_e’, 'types’]

>>>

You can now enteelsA statements (usingass , method , constant ...) defined
in elsA.py in an interactive session (for further details, please cords#t User’s
Manual orelsA User’s Starting Guide).

2.1.4.3 Third test

The third test case is conveniéritto get a quick idea olsA CPU efficiency, in se-

rial and parallel P1) mode (see algo 3.6, [37); it also gives a first example elsA
script files, which are simply plain valid Python script files. Get a copy of the script file
test mpi_16block ns_lu.py , located iftBELSAWKSP/Kernel/api/Py/Test
Then, enter (in nomPI mode):

JelsA test_mpi_16block_ns_lu.py -n 2 -p 1 -s 10

You should obtain something close to :

elsA v3.2.01d - Copyright (c) 1997-2006 by ONERA

#

#

#

# Production: IRIX64_oneroal_6.5 - sgi_r8 - Apr_10,_2003_-_10:38:24

# C++ Compiler Option: -O2_-woff_all_-diag_error_1681_-LANG:ansi-for-init-scope=on
# Fortran Compiler Option: -O2

Size of Float : 8 Bytes

Size of Integer : 8 Bytes

#

(-, 2), (-5, '10), (-p, ‘1]
[

SIZE = 10

NITER = 2

NPROC = 1

Ghost Layer information: ificl = 2, ific2 = 2
jfick = 2, jfica = 2
kficl = 2, kfic2 = 2

Cutoff used during computation: cutoff = le-15
cutoff_geom = 1e-08
min_surface = 1e-30
min_volume = 1e-30

=========== Submit problem description : Begin

Problem bench submitted

"Here an internally generated cartesian mesh is generated, thus eliminating the burden of taking care
of mesh files.



ONERA Ref.: JELSA/MDEV-03036

e e e e T Version.Edition : 1.4
Date : July 11, 2007
DSNA Page : 19/67

Begin computation

iteration no 1

iteration no 2

Time Loop CPU Time:
CPU Time (User) 2.16 (s)
(Sys) 0.06 (s)

End Loop Computation

# elsA : normal run termination (0)

You can experiment with different values of the command line options :

1. ’-n ' controls the number of iteratioNITER
(CPU time is directly proportional thITER);

2. ’-s ’'controls the problem siz&IZE ;
memory used will scale as the third powerSIZE ;

3. '-p ’controls the number of processors; to rumnvirl mode :

mpirun -np NB_OF_PROC ./elsA test_mpi_16block_ns_lu.py \
-n 2 -s 10 -p NB_OF_PROC

2.1.5 elsA installation (Optional)

The last thing to do is to “install” the executable and the Python runtime configuration
files :
export ELSADIST=$ELSAWKSP # This is just an example;

# ELSADIST can be different from ELSAWKSP !

cd SELSAWKSP/Kernel
make install

This command will copy all the files necessary to elsA in the directonf8ELSADIST/Dist
If the installation is successful, and if you do not plan to build other productions, you
can safely remove the working directory ti®eL SAWKSP/Kernel :

rm -rf SELSAWKSP/Kernel



Ref.: JELSA/MDEV-03036 ONERA

Version.Edition : 1.4 e ——
Date : July 11, 2007
Page : 20/67 DSNA

To use the installed version, you must reBR¥THONPATHaking into accounELSADIST,
and it is probably convenient to adjust ydRRATH:

export PYTHONPATH=$ELSADIST/Dist/lib/py
export PATH=$PATH:$ELSADIST/Dist/bin/$ELSAPROD
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ELSADIST/Dist/bin/SELSAPROD

The installation is now complete! Now, you should be able to elsA (seeelsA
User’s Starting Guide).

2.1.6 Building a new production in the same source tree

To build another production, you can use faanesource tree. Just redeL SAPROD
and enter :
cd $ELSAWKSP/Kernel; make elsa; make install

2.1.7 Optimization notes

Experienced developers may try to change some compiler switches to improve CPU
performance. This can be done in two ways :

¢ globally, one can change compiler switches in file :
$SELSAWKSP/Kernel/cfg/prods/Make $PLATFORM.mk ;
the most important flags are :

— CCCOPT C++ compiler optimization;
— FFFOPT: Fortran compiler option.

Once the makefile template has been changed, you must rebuitlsiidi-
braries; to do that, enter :

cd \$ELSAWKSP/Kernel; make cleanall; make depall; make sysall

If you use shared libraries, that’s all; if not, you still must rebuild $ieA
executable :

cd $ELSAWKSP/src/Api; make exec

in both cases, you can, optionnaly, perform a new installatraké install ).

The commandmake depall’ can be quite time-consuming on some ma-
chines (slow disk access, NFS file system...), since it computes file depen-
dencies (through a call to the Unimakedepend’ utility); it is possible to
speed this phase by usirgiake genall’ instead of’'make depall’

(note however thdmake genall’ doesnot compute file dependency).



ONERA Ref.: JELSA/MDEV-03036

e e e e T Version.Edition : 1.4
Date : July 11, 2007
DSNA Page : 21/67

e locally (inside a module directory, such®SLSAWKSP/Kernel/src/Agt ),
one can edit the fildakefile. 3ELSAPROD.mk , modifying flags CCCOPT
andFFFOPT). Then:

make clean; make sys

If you are using shared libraries, you can then put the modified library in your
LD_LIBRARY_PATH If not, you still have to re-buileélsA executable :

cd $ELSAWKSP/Kernel/src/Api; make exec and, optionnalymake
install

2.1.8 Documentation and indexing

Itis often useful to generatioxygen documentation and indexing data, usedjlimpse,

vi andemacs (se also sectiorjs 4.2.1.8, [41and[4.2.1.4p. [4]). This can be done

with makefile targetestalldox andindexing

2.1.9 Switching between different Python versions

If required, it is fairly easy to switch between different Python versions. To do that,
you donot have to recompile everything ! Only fivelsA components depend on
Python.h : Fact , Descp, Sio , Lur , Ael .

These modules must be re-compfifédso :

1. ResetlsA production environment variables relatedPyahon, (E_PYVERSION
E_PPREFIXandE_PPREFIX1).

2. Re-build Python-dependent libraries :
cd $ELSAWKSP/Kernel/src/Fact

make clean; make sys

# Same thing for Descp, Sio...

3. Re-buildelsA executable

cd $ELSAWKSP/Kernel/src/Api
make clean; make exec
make install # optional

8Note however that in many casBgthon.h differences are fairly small, so that re-compilation is
not strictly required.



Ref.: JELSA/MDEV-03036 ONERA

Version.Edition : 1.4 e ——
Date : July 11, 2007
Page : 22167 DSNA

2.2 Building elsA from locally modified components

elsA is designed with a modular approach, which allows to compile some of its com-
ponents independently. When starting a new development, it is often a good idea to
check out only the components to be modified (for exanipie'® if one plans to add

a new turbulence model). This technique provides several advantages :

e reduction of disk space;
e reduction of compilation time;
e improvement oklsA encapsulation and modularity through components.

To build a working version o€lsA incorporating the locally modified features, it is
necessary to set an additional environment varidbl SAPATH to inform the Make-
file system of the location of the referenelsA installation.

export ELSAPATH=/home/elsa/Public/v3.2.07

cd WorkDir

mkdir Kernel; cd Kernel

cvs -d$CVSROOT co -P cfg # can be replaced with a symbolic link
cvs -d$CVSROOT co -P Tur

cvs -d$CVSROOT co -P Fact

# building (locally) libraries: libeTur.so, libeFact.so...

make -f cfg/Makefile.mk sysall

The final step depends on the production used (dynamic or static link).

2.2.1 Production with shared library

In this case, itis often not necessary to re-build a new sped#f executable; instead,
at run time, it is much more convenient to resBt LIBRARY_PATH for example :

export LD_LIBRARY_PATH=$ELSAWKSP/Kernel/lib/$SELSAPROD:$ELSAPATH/Dist/bin/$SELSAPROD

2.2.2 Production with static library

In this case, it is always required to re-budtsA.x  (directory Api must first be
checked out) :

cd $ELSAWKSP/Kernel

cvs -d$CVSROOT co -P Api
cd $ELSAWKSP/src/Api
make api

1%and possibly a (hopefully) small number of additional related modules, for exdfapte



ONERA Ref.: JELSA/MDEV-03036

e e e e T Version.Edition : 1.4
Date : July 11, 2007
DSNA Page : 231767

2.2.3 Additional information

e If a new source file is addedC ¢+ or Fortran),Make_obj.mk must be mod-
ified accordingly; note thanake dep must be calledwiceto get correct de-
pendency (generation of fildakefile. SELSAPROD ).

e If Def is not checked out, the libraries compiled locally have the szonéig
(sed 2.1.3]1p.[1I2) setting as the reference installation.

If Def is checked out locally, an®efConfig.h  different from the refer-
ence versioff, then you must also check out every system depending upon
DefConfig.h 2%

e If you have to modifyC++ headers, then you must find which component must
be checked out to avoid inconsistencies; for exemple, assuminfurase.h
is modified :

cd $ELSAPATH/src
find . -name *C' -exec grep -l '#include *'Tur/Base/TurBase.h’ \
{ \; | cut -b 3-6 | sort | uniq

--> Ael/ Bnd/ Dtw/ Fact Fxd/ Lur/ Sou/ Tmo/ # Modules to be added

2.3 SWIG

2.3.1 SWIG purpose

Normally, for a standare@lIsA installation, SWIG is not required : this is because
the only purpose oSWIG is to create some files, which are included in the source
distribution. The next section provides more detailed information.

2.3.2 Technical details

SWIG is used to generatutomatically two files??, both located in directory :
SELSAWKSP/Kernel/src/Api/Wrapper

1. elsA.py , aPython module file which have to be imported by ewasA script
file;

2. elsA_wrap.C , which wraps the Python interpreter.

By default,SWIG is not used, which means thalsA.py andelsA wrap.C are
not modified during thelsA build : the "current” version (for examplevs last ver-
sion) are used. To invok&WIG, just define the environment varialite SWIG?; then :

20$EL SAPTH/Dist/include/Def/Global/DefConfig.h

2pescp, Bnd, Sio , Api (static), and possiblpel , Lur , Opt

22%if optional moduleOpt or Ael are selected, additional files are createslsA_Ael wrap.C
elsA_Ael.py ,elsA Opt wrap.C ,elsA_ Opt.py

23or defineE_SWIGinsideMake_paths.mk ; it may be useful to define ald6_SWIGOPT



Ref.: JELSA/MDEV-03036 ONERA

Version.Edition : 1.4 e ——
Date : July 11, 2007
Page : 24167 DSNA

export E_SWIG=/ust/local/bin/swig # example
cd $ELSAWKSP/Kernel/src/Api
make Wrapper/elsA.w

Remarks

1. The command :

cd $ELSAWKSP/Kernel/src/Api; make api

invokesSWIG (if E_SWIGis defined).

2. It is probably a good idea to use the samghon version to buildSwWIG and to build
elsA.

3. However, in most cases, files generatedwIG can be used to builélsA with a
differentPython version.

4. On SGI, with IRIX, we have not been able to build a 64-bit versioBWIG. Fortunately,
the 32-bit version worksSWIG only generates text files, so 32-bit or 64-bit does not
matter).

5. Presently, we use version 1.3.31 of SWIG. Let us stress again thatetédcevrap.C
andelsA.py are provided in the source distribution, SWIGN®T required in stan-
dardelsA installation, as well as for most kernel developments.

2.4 Installing from a binary distribution

Instead of buildingelsA from source, it is sometimes useful, or even mandatory, to
install elsA from a binary distribution :

e you do not have accessétsA source distribution;
e you do not have a working++ or/and Fortran compiler;

e you are using a cross-compiler : compilation and link are done on a computer
different from the runtime machine; in that case, you must instaletb& exe-
cutable in some way on the runtime machine.

Currently, there is no sophisticated installation procedure. Set environment variable
ELSAHOMENd do :

cd $ELSAHOME

gunzip elsA_bin.tgz

tar xf elsA_bin.tar

In some case®IsA binary distribution is delivered together wiktython files. This is
necessary if the target machine does not hage-acompiler.

In other caseRython has to be installed prior telsA.

In both cases, be careful to set corre®@ly THONHOMEee also sectidn 2.5.p,[29).



ONERA Ref.: JELSA/MDEV-03036

e e e e T Version.Edition : 1.4
Date : July 11, 2007
DSNA Page : 25767

2.5 Troubleshooting

2.5.1 Build problems
2.5.1.1 Incorrect Makefile generation

The Makefile generation process is controlled by the scripMég&eMake.mk
(PELSAWKSP/Kernel/cfg/MakeMake.mk ) called by :

make -f cfg/Makefile.mk depall
It uses the C preprocessor, either directly :

cpp ${FLIST} -I${ERDIR}/cfg/prods ${ERDIR}/cfg/prods/Make_${EPLATFORM}.mk

or indirectly, through the C compiler :

cc -c ${FLIST} -I${ERDIR}/cfg/prods -E ${ERDIR}/cfg/prods/Make_${EPLATFORM}.mk

You may encounter problems if :
e C compiler is not properly installed,;

e on some platform, the C compiler does not preprocess correctly filesmih
extension. To correct this, a possible solution is to set a symbolic link such as :

In -sf cfg/prods/Make_${EPLATFORM}.mk cfg/prods/Make_${EPLATFORM}.c

This case occurs for instance when cross-compidilsg\ on a Linux machine,
to generate NEC specific compiled code.

2.5.1.2 Incorrect Python settings

If Python is incorrectly installed, or if environment varialite PYVERSIONE_PPREFIX,
E_PPREFIX1 are incorrectly set, some files cannot be compiled. A convenient and
fast check is given below :

cd $ELSAWKSP/Kernel/src/Fact
make .Obj/$ELSAPROD/Base/FactDataBase.o

Look carefully to compiler messages ab&ython.h orconfig.c , suchas:

deimos>make -f Makefile.intellA64 .Obj/intellA64/Base/FactDataBase.o

+++ elsA : Compiling C++ .Obj/intellA64/Base/FactDataBase.C
.I../include/Def/Global/DefPython.h(27): catastrophic error:

could not open source file "Python.h" #include "Python.h"

If FactDataBase.o is not correctly produced, then it is useless to continue.



Ref.: JELSA/MDEV-03036 ONERA

Version.Edition : 1.4 e ——
Date : July 11, 2007
Page : 26167 DSNA

2.5.1.3 Problem with iostream

elsA uses theC++ iostream library to perform 1/O. Unfortunately, the 1ISO++
standardization faostream has changed relatively recently. Without going into too
much technical details, we have observed that most current implementations provided
by compiler vendors can be classified in two categories :

e classiciostream ;
e standardiostream

In order to help somewhat to solve problems relatedstream compilation, you

can sometimes solve them with the introduction (or removal) of the simple macro
definition _E_USE_OLD_IOSTREAMor E_USE_STANDARD_IOSTREAMn

the template Makefile :

(cfg/prods/Make_$PLATFORM.mk ). For example :

E_CC=g++ -D_E_USE_OLD_IOSTREAM_ # gce2.95
E_CC=g++ -D_E_USE_STANDARD_IOSTREAM_  # gcc 3.2

If none of these 2 macros solve the compilation problem, you will have to met$ify
source (not recommended, please contact elsa-infodev@onera.fr).
2.5.2 Known problems with Python

¢ Installation of Python 2.2 on IBM AIX machines may be tricky.

e For installation of Python 2.3 on IBM AlX, in some cases we had to remove
socket andssl (possibly by modifying manually filsetup.py ).

e On NEC SX8, with Python 2.4, there is a header conflict+ string  header
must be includedefore Python.h . Helper scriptpatch_include.mk
solves this problem.

2.5.3 Linktime errors

2.5.3.1 INTELicc

With some installations of INTElicc C++ compiler, it is sometimes necessary to add
-Istdc++ to E_EXTERNLIBS

2.5.3.2 Missingemplate library (PGI pgCC version 5)

When usingpgCC C++ compiler ELSAPROBpgi ), there is a makefile bug related to
C++template instanciation, and libraribtemplate.a is not created correctly,
thus leading to a link time erréf. To correct this problem :

24such as : "librartemplate  not found"


mailto:elsa-infodev@onera.fr

ONERA Ref.: JELSA/MDEV-03036

e e e e T Version.Edition : 1.4
Date : July 11, 2007
DSNA Page : 27167

cd $ELSAWKSP/Kernel/lib/$ELSAPROD/Template
ar clg libtemplate.a *.0

You can then try again to call the linker :

cd $ELSAWKSP/Kernel/src/Api
make exec

Remark This problem does not occur with newer versionpgtcC.

2.5.3.3 Missindibmass library at link time (AIX)

With ELSAPROBibm_..., elsA uses thdibmass andlibmassvp libraries to
speedup CPU computation. If these libraries are not correctly installed on your system,
they can be easily downloadelakifp://www.ibm.com/support ).

2.5.3.4 Other link time problem (missing libraries)

On some platformsIsA uses several additional libraries :
e libz
e libexpat
e libreadline
e libcurses

If these libraries are not available on your system, don’t panic; just remove them by
editing the template makefifELSAWKSP/Kernel/cfg/prods/Make_$PLATFORM.mk
(for example, if you don’'t havéibz andlibexpat , remove *lz -lexpat .
Then :

cd $ELSAWKSP/Kernel/src/Api
make dep # rebuild local makefile
make exec # link

Only a small number of relatively minor features will be disabled.

2.5.4 Runtime errors
2.5.4.1 Checking configuration file access rights

elsA configuration files, which are Python scripts, should be readable. If not, even
with a correct setting dPYTHONPATHat run time you get a message such as :


http://www.ibm.com/support

Ref.: JELSA/MDEV-03036 ONERA

Version.Edition : 1.4 e ——
Date : July 11, 2007
Page : 28167 DSNA

Traceback (most recent call last):
File "testl_mpi_16block_ns_lu.py", line 26, in ?
from elsA import *
ImportError: No module named elsA
# elsA : normal run termination (1)

or maybe :

# elsA [2249] FATAL: API error

# info [2249] Bad module EpKernelDefVal.py
Please check \evname{PYTHONPATH},
check access permissions,

or corrupted files

(EpKernelDefVal.py, EpConstant.py).

Leaving error, code is 2249

# elsA : exit force

In such cases, check the file access mode (dire§BhSADIST/Dist/lib/py )

2.5.4.2 MPI runtime errors (incorrect environment)

With some versions afiP1 (including MPICH), depending on the method thapirun

uses to start the processes, the environment variables suth &88RARY_PATHor
PYTHONPATHhaynot be "sent" to the processes. For example, using shared libraries,
the message may be something like :

Connection failed for reason: : Cannot assign requested address

One solution, admittedly not very elegant, is to set the required environment variables
in the .profile (or.cshrc ) file.

Another solution is simply to define the environment variables in the same command
line, immediately before invokinglsA executable :

PYTHONPATH=$ELSAHOME/Dist/lib/py elsA.x test.py

Remark: To use several nodes of a HP Alpha cluster, it may be useful to remove the linker
option -non_shared '

2.5.5 Python runtime errors
255.1 IncorrecPYTHONHOME

At runtime,elsA uses the Python runtime system; if tisA executable was not built
on the running machine, it is sometimes useful (specially for Python 1.5) to set the
environment variabl®YTHONHOME



ONERA Ref.: JELSA/MDEV-03036

e e e e T Version.Edition : 1.4
Date : July 11, 2007
DSNA Page : 29/67
$ elsA.x
#

Could not find platform independent libraries <prefix>
Could not find platform dependent libraries <exec_prefix>
Consider setting $PYTHONHOME to <prefix>[:<exec_prefix>]
'import exceptions’ failed; use -v for traceback

Warning! Falling back to string-based exceptions

'import site’ failed; use -v for traceback

Python 1.5.2 (#28, Oct 29 1999, 11:41:19) [C] on irix646

It is often possible to guess the corr@XTHONHOME

$ which python
/home1l/elsa/Tools/bin/python
$ export PYTHONHOME=/homel/elsa/Tools

Conversely, with Python 2.x, itis bettertoset (orunsetenv incsh)PYTHONHOME

2.5.5.2 Python runtime error on HP-UX Itanium

If you encounter Floating Point Error in the initialisation phasagqtDataBase::FactDataBase
of elsA, it may be useful to recompilelsA, with the following Python configure op-
tions :

CC='aCC -Ae +DD64’ OPT='+DD64 +0O2 +Onolimit +DSitanium2’
Jconfigure --prefix=3HOME/python2 --without-threads

)



Ref.: [IELSA/MDEV-03036 ONERA
Version.Edition : 1.4 T e o
Date : July 11, 2007

Page :

3.

30/67 DSNA

PORTING ELSA TO ANEW PLATFORM

This chapter can be safely skipped by most developers.

3.1

Introduction

PortingelsA to a new platform is usually a relatively simple task, becaaisA source
obeys several important rules:

1. elsA C++ source files dNOT use sophisticated++ features such as:

3.2

e exceptions;
e RTTI (Run Time Type ldentification)

e "complex" template coding; we only use template code from Standard
Library (STL, iostream ), so that we usually do not have to care with
template instantiation mechanism. As a result, in practice, we are able
to compileelsA C++ source code with mogt++ compilers.

. elsA Fortran source files dNOT use Fortran90-only featurésso we can use

any Fortran compiler (77, 90 or 95); this is quite useful on GNU/Linux machine,
since it allows us to use the GNg¥7 compiler.

The platform-dependent codedentralized into a very small number of files;

S0 porting to a new platform involves usually some minor modifications to this
set of "configuration files", without touching any other files. This speeds up by
a huge amount the time needed to achieve the porting task.

. Python, which is used byelsA as its scripting language, is available on most

computing platforms. In the following, we assume that Python is correctly in-

stalled (see al§o 2.1.1.3).

elsA uses a very small number of standarell routines to run in parallel mode.

Introducing a new platform

. The first thing to do is to choose a prefix for the new platform, let usxsay;

at build time €f. [3.5,p.[36), you have to set environment varialide SAPROD
to XxxXx (or maybexxx_mpi , XxX_r4 , xxx_mpi ...).

. Then we must create the template makefile :

$SELSAWKSP/Kernel/cfg/prods/Make_xxx.mk
It is often useful to start from an existing, hopefully similar, template makefile.

lexcept inAel module



ONERA Ref.: JELSA/MDEV-03036

e e e e T Version.Edition : 1.4
Date : July 11, 2007
DSNA Page : 31/67

3. To speed up the porting process, in a first stage, it is often convenient to remove

the optionalkelsA components : see sectipn 2.1]3112

3.2.1 Compiler choice
3.2.1.1 Set compiler options

You must editSELSAWKSP/Kernel/cfg/prods/Make xxx.mk , in order to
define theC++ compiler,E_CGC including its optionsE_ CCCOPBndE_CCCFLAGS
Similarly, you must define the FORTRAN compildt, F90, including its options,
E_FFFOPTandE_FFLAGS

You may also have to specify:

e linker options:E_LDFLAGS

e additional librariesE_ EXTERNLIBS

3.2.1.2 C++ standard conforming macros

If the C++ compiler is not fully standard compliant, you may have to specify several
symbols:

¢ E NO_COVARIANT_RETURNAdding "covariant return type" was the first
modification of theC++ language approved by the standards committee. This
is a fancy way of saying that the virtual function of a derived class can now
return an instance of the derived class when the base class virtual function it is
overriding returns an instance of the base class. Example:

class GeoGrid : public GeoGridBase
{

#ifdef E_NO_COVARIANT_RETURN

/** */

virtual const GeoMetricsBase* getMetric() const;
telse

virtual const GeoMetrics* getMetric() const;
#endif

}

e E_RTTI : will replaceC++ qualifieddynamic_cast by C casts; this will have
negligible impact on CPU efficiency.

#ifdef E_RTTI

#define E_DYNAMIC_CAST(a) dynamic_cast<a>
telse

#define E_DYNAMIC_CAST(a) (a)

#endif



Ref.: JELSA/MDEV-03036 ONERA

Version.Edition : 1.4 e ——
Date : July 11, 2007
Page : 32/67 DSNA

3.2.1.3 CPU optimization

Two preprocessor symbols control CPU optimization:

e E FORTRAN_LOOPS_
for some loops, two implementations, Fortran &g, are available. Defining
_E_FORTRAN_LOOPSWill select the Fortran version (recommended).

e E_SCALAR_COMPUTER
Some Fortran subroutines exist in two different versions;
defininge_ SCALAR_COMPUTEWR select the code optimized for scalar (cache-
based) computing platforms, instead of code optimized for vector supercomput-
ers.

3.2.1.4 Fortran file preprocessing

elsA Fortran files (extensiorfior ) must be preprocessed. We have to address three
cases:

1. the Fortran compiler is able to preprocefss files: there is nothing special to
do;

2. the Fortran compiler is unable to preprocdss  files, but it can preprocess
Fortran files with other extensions (for example). In that case, thelsA build
system will generate symbolic links, so that the compiler can do the preprocess-
ing job; to allow the build system to generate the required links, you have to add
three lines in the template Makefile
(E_USE_CPP_FOR_FORTRARN REQUIRE_FORTRAN_CPP_EXd FOREX]Y:

E_USE_CPP_FOR_FORTRAN = false
E_REQUIRE_FORTRAN_CPP_EXT = true
E_FOREXT=F

3. the Fortran compiler is unable to preprocess corregldA Fortran files; in that
case, you have to use tlpp preprocessor, with several macros defined, for
example:

E_CPPF90C=/usr/bin/cpp -D_ELSA_COMPILER_XXX_ \
-traditional $(E_DOUBLEDEF)

E_USE_CPP_FOR_FORTRAN = true

E_REQUIRE_FORTRAN_CPP_EXT = false

E_FOREXT=f # extension of pre-processed Fortran files

Remark: elsA assumes that the Fortran 90 compiler is able to pre-process correctly Fortran
90 (extensionf90 ) files.



ONERA Ref.: JELSA/MDEV-03036

e e e e T Version.Edition : 1.4
Date : July 11, 2007
DSNA Page : 33767

3.2.2 MPI settings

If you want to build avpi executable, you must set MPIPATH_I, E_ MPIPATH_L,
MPICCCFLAGSand possibiyWMPIEXTERNLIBS.

3.3 Insulation of elsA from platform-dependent features

Before entering the compile stage, you will have probably to make minor changes to
three files:

¢ Def/Global/DefCompiler.h
¢ Def/Global/Deflostream.h
¢ Def/Global/DefFortranOpDir.h
In addition, inMPI mode, you may have to modify two other files:
e Pcm/Base/PcmDefMpi.h

e Def/Global/DefTypes.h

3.3.1 DefCompiler.h : STL (and string) insulation

sTL platform dependent++ code is centralized in the++ header :
$ELSAWKSP/Kernel/src/Def/Global/DefCompiler.h

You must define the preprocessor symiolSTDand DEF USE USING, to con-

trol if STL classes\ector |, list , map...) are innamespace std:: or not (i.e

in global namespace ).

In some rare cases, you may have to do similar things witlstiiiegy  class.

In some situations, you may have to change the definition of preprocessor symbol
E_CONST_ITERATORdefiningE_CONST_ITERATORO iterator (instead of
const_iterator ) may solve compilation errors (but decrease somewhat type safety).

3.3.2 Deflostream.h : iostream insulation

iostream dependent code is centralizeddm+ header :
$ELSAWKSP/Kernel/src/Def/Global/Deflostream.h

In most "old" C++ compilers, theostream library was not mcluded in thetd::
namespace. Actually, it was the old AT&T Cfront compiler library, included through
theiostream.h  header. Now, recent compilers require the inclusion ofdegeam
header (without extension). But even with this up-to-date inclusion, sostream
libraries are not withirstd:: namespace. For example, with SGI CC v7.30, the

%in some cases, it can be useful to mapiCC; since there is nmpI calls from Fortran irelsA,
mpif90 is usually not useful



Ref.: JELSA/MDEV-03036 ONERA

Version.Edition : 1.4 e ——
Date : July 11, 2007
Page : 34/67 DSNA

"old" headeriostream.h  is included by default ; to includmstream requires
"-LANG:std ' compiler option.

The E_USE_OLD_IOSTREAMand_E_USE_STANDARD_IOSTREAMnacros

are used to make the code more readable. These macros should be defined in the
template makefileMake $PLATFORM.mk.

In some (hopefully rare) cases, one may have to modify Bisi-stream.h  and
DefStringStream.h

3.3.3 DefFortranOpDir.h: Fortran directive

Fortran directive optimization (mostly for vectorization) are centralized into one file:
SELSAWKSP/Kernel/src/Def/Global/DefFortranOpDir.h . You must
setFOR_OPT_DIR_NODEP_Bnd FOR_OPT_DIR_NOLOOPCHG here. Addi-
tionally, if you introduce a new directive, consider adding a line here, so that it can be
used on other platforms as well, if necessary.

3.3.3.1 MPIlinsulation

Check thatvipi settings are correct
(Pcm/Base/PcmDefMpi.h  andDef/Global/DefTypes.h ).

3.4 Basic type sizes

3.4.1 Specifications

elsA has to be usable in single and double precision mode (floating point numbers
coded with 4 or 8 bytes); additionally, some platforms put restrictions on integer sizes
(4 or 8 bytes). We wish to have the most flexible system; of course this system must
be fully portable (no dependency upon some specific compilation options, such as
"-autodbl  "). The following sections decribe the solution implementeckisA,;
however, in most cases, you will not have to modify anything.

3.4.2 C++ basic type sizes

In order to achieve the requirements described in the previous sesisénC++ code
does not directly uséloat  (or double ), int (or long ) andbool keywords.
Instead, we us&_Float , E_Int andE_Bool , which are defined through a set of
typedef ,insideC++headeSELSAWKSP/Kernel/src/Def/Global/DefTypes.h
ForReal (float ordouble ) entities:

#ifdef E_DOUBLEREAL
typedef double E_Float;
#ifdef E_MPI
#define E_PCM_FLOAT MPI_DOUBLE
#else
#define E_PCM_FLOAT sizeof(E_Float)



ONERA Ref.: JELSA/MDEV-03036

e e e e T Version.Edition : 1.4
Date : July 11, 2007
DSNA Page : 35/67
#endif
#else

[** float/double */
typedef float E_Float;
#ifdef E_MPI
/** MPI float */
#define E_PCM_FLOAT MPI_FLOAT
#else
#define E_PCM_FLOAT sizeof(E_Float)
#endif
#endif

For Integersifit orlong ) entities:

#ifdef E_DOUBLEINT
#if !defined(_ELSA_COMPILER_NEC ) && !defined(_ELSA_COMPILER_HP64 ) \
&& !defined(_ELSA_COMPILER_ITANIUM_) && !defined(_ ELSA_COMPILER_DEC )
if defined(_ELSA_COMPILER_CRAY_)
define E_Int long
define E_Bool long
else
typedef long long E_lInt;
typedef long long E_Bool;
# endif
#ifdef E_MPI
# define E_PCM_INT MPI_LONG_LONG
#else
# define E_PCM_INT sizeof(E_Int)
#endif
#else
typedef long E_lInt;
typedef long E_Bool;
#ifdef E_MPI
#define E_PCM_INT MPI_LONG
#else
#define E_PCM_INT sizeof(E_Int)
#endif
#endif
#else
[** C++ integer (int or long) */
typedef int E_Int;
typedef int E_Int;
/** C++ boolean. May be changed to ’'bool’ in future releases. */
typedef int E_Bool;
#ifdef E_MPI
/** MPI integer */
# define E_PCM_INT MPL_INT
#else
# define E_PCM_INT sizeof(E_Int)
#endif
#endif

* H HH

The size of float (real) and integer variables used ingld@ is thus determined by the

definition of the macroE_ DOUBLEREABNdE_DOUBLEINT in Make_$PLATFORM.mk

(definition which depend of the value BLSAPRO combined withDefTypes.h
(which is included by virtually anglsA C++ body files).

3.4.3 Fortran basic type sizes

Fortran files use the same insulation technique: every Fortran file must include the

Fortran heade8ELSAWKSP/Kernel/src/Def/Global/DefFortran.h



Ref.: JELSA/MDEV-03036 ONERA

Version.Edition : 1.4 T
Date : July 11, 2007
Page : 36/67 DSNA

#ifdef E_DOUBLEINT

# define INTEGER_E INTEGER*8
#else

# define INTEGER_E INTEGER*4
#endif

#ifdef E_DOUBLEREAL

# define REAL_E REAL*8
#else

# define REAL_E REAL*4
#endif

Fortran files do not use REAL or INTEGER directly; instead, they REAL_Eand
INTEGER_E which are then transformed during the preprocessing phase.

Of course, if you make any modification RefTypes.h and/orDefFortran.h |
you must be carefulE_Float andREAL_EMUST have the same size, as well as
E_Int andINTEGER_E

3.5 Building elsA

Now, it is time to try to buildelsA, with the new value oELSAPRODBasically, you

have to follow the procedure described in secfipn 2. In fact, if you have never installed
elsA before, itis probably a good idea to perform all the steps of a standard installation
on a platform already available.

3.5.1 Troubleshooting
3.5.1.1 Begin wittAgt module

In order to avoid many cryptic compiler messages, we suggest to begin with the com-
pilation of only one moduleAgt (the smallest one).

cd $ELSAWKSP/Kernel/src/Agt
make sys

3.5.1.2 Checking Makefile generation

It is sometimes useful to check that the Makefiles are correct. The first thing to do is
to look at the actual compilation commarnchk{+ and Fortran); a convenient way is to
use the-n * Makefile option; for example:

> cd $ELSAWKSP/Kernel/src/Agt
> make .Obj/$ELSAPROD/Transfo/AgtTransfo.o -n

echo "+++ Elsa ;" " Compiling C++" .Obj/sgi_r8/Transfo/AgtTransfo.C
if [ x = x]; then
CC -DE_SCALAR_COMPUTER -D_ELSA_COMPILER_SGI_ -D_E_USE_OLD_IOSTREAM_
-64 -DE_RTTI -l../../finclude -DE_DAMAS
-DE_DOUBLEREAL -DE_DOUBLEINT
-D_E_FORTRAN_LOOPS_ -DNDEBUG -DE_MEMORY
-ansiW -diag_suppress 1429,1521 -02 -woff all
-LANG:ansi-for-init-scope=on -LANG:exceptions=off
-0 .Obj/sgi_r8/Transfo/AgtTransfo.o



ONERA Ref.: JELSA/MDEV-03036

e e e e T Version.Edition : 1.4
Date : July 11, 2007
DSNA Page : 37167

-c .Obj/sgi_r8/Transfo/AgtTransfo.C;

> make .Obj/$ELSAPROD/Transfo/AgtTransfoGenF.o -n

echo "+++ Elsa A
Compiling Fortran" .Obj/sgi_r8/Transfo/AgtTransfoGenF.for

90 -D_ELSA_COMPILER_SGI_ -64 -cpp -I.././include  -64 -i8 -r8
-02 -DE_DOUBLEREAL -DE_DOUBLEINT

-c .Obj/sgi_r8/Transfo/AgtTransfoGenF.for
-0 .Obj/sgi_r8/Transfo/AgtTransfoGenF.o

3.5.1.3 elsA main() function

In some situations, such as global initialization, you may have to mets#y main()
function:

¢ If you are not usingWIG (this should be the "normal” situation), you must edit
file Api/Wrapper/elsA.C

¢ Ifyou are usingsWIG, you have to modifApi/Wrapper/elsAembed_template.i
the Makefile system (se&pi/Make_obj.mk ) buildselsA.C fromelsAembed_template.i.

3.5.1.4 Link unresolved references

If the linker requires multiple pass, you may have unresolved references. Try to un-
comment the following line (filefg/Make_lib.mk  ):

# E_ELSALIBS=$(E_ELSA_SLIBS) $(E_ELSA_SLIBS) $(E_ELSA_SLIBS)

3.6 CPU time measurement

To obtain accurate estimation elsA efficiency, you can use several methods:
1. Use thetime Python module :

cfd = DesCfdPhb()

import time

tl = time.clock()
cfd.compute()

t2 = time.clock()

print "CPU time = ", t2-t1

This method is quite useful, but:

e it overestimates slightly the computing time, since it includes the time
needed to build the kernel objects;



Ref.: JELSA/MDEV-03036 ONERA

Version.Edition : 1.4 e ——
Date : July 11, 2007
Page : 38/67 DSNA

e Pythontime module cannot be used for large values of elapsed time (in-
ternal overflow).

So usually, prefer the other methods.

2. elsA prints internally the time spent in the main iterative loop. This eliminates
completely startup time, so it is more accurate. It uses times , or, when
available (NEC SX), a more accurate timgyssx . If the new platform pro-
vides such timing function, itis easy to use it: just ékf/Sys/DefCPUTime.h
andDef/Sys/DefCPUTime.C

3. For MPI computationselsA usesMPI_Wtime to get very accurate timings.

To benchmark a new computing platform, it may be useful to use the Python script :
test_mpi_16block_ns_lu.py ,

located in directoryKernel/api/Py/Test . See sectiop 2.1.4.9. [1§for addi-
tional details.



ONERA Ref.: JELSA/MDEV-03036
e e T Version.Edition : 1.4

4.

Date : July 11, 2007

DSNA Page : 39/67

DEVELOPING INSIDE ELSA SYSTEM : GETTING

STARTED

4.1

Introduction

To decrease the learning time necessary to develop ietsde let us give some sug-
gestions :

1.
2.

Read this document.

ConsultelsA web site, especially :
http://elsa.onera.fr/elsA/dev/guide.htmi

. Consult the reference documentation, especiallythe model :

http://elsa.onera.tr/elsA/doc/retdoc.html

. Have a look to the (automatically extracted fraisA source)doxygen docu-

mentation :
https://elsa.onera.fr/elsA/dev/idoc/document.html

. Be sure to have access to some good books about Object-Oriented Software

Development :

e Bertrand Meyer: Object-Oriented Software Construction (2ed);

e Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design Pat-
terns: Elements of Reusable Object-Oriented Software.

. SomeC++ books may be helpful; we recommend:

e Bjarne Stroustrup: The++ Programming Language
(http://www.research.att.com/~bs/3rd.html );

e Harvey M. Deitel, Paul J. DeitelC++ How to Program
(http://www.prenhall.com/deitel/ );

e Scott Meyers: Effective€++
(http://www.aristeia.com/books_frames.html );

e Scott Meyers: More Effective++;
e Scott Meyers: Effective STL;
e Robert B. Murray:.C++ Strategies and Tactics;

e Bruce Eckel: Thinking irC++ (Vol 1)
(http://64.78.49.204/TICPP-2nd-ed-Vol-one.zip );

e Bruce Eckel: Thinking irc++ (Mol 2)
(http://64.78.49.204/TICPP-2nd-ed-Vol-two.zip );


http://elsa.onera.fr/elsA/dev/guide.html
http://elsa.onera.fr/elsA/doc/refdoc.html
https://elsa.onera.fr/elsA/dev/doc/document.html
http://www.research.att.com/~bs/3rd.html
http://www.prenhall.com/deitel/
http://www.aristeia.com/books_frames.html
http://64.78.49.204/TICPP-2nd-ed-Vol-one.zip
http://64.78.49.204/TICPP-2nd-ed-Vol-two.zip

Ref.: JELSA/MDEV-03036 ONERA

Version.Edition : 1.4 e ——
Date : July 11, 2007
Page : 40/67 DSNA

e John Lakos: Large-Scate++ Software Design
(http://www.awprofessional.com/catalog ).

7. Some useful links :

¢ Unified Modeling LanguageuML) :
http://www.uml.org F

e Standard Template Library Programmer’s Guide :
http://lwww.sgi.com/tech/stl ;

4.2 Useful tools

In this section, we describe briefly some tools, which may be useful in order to reduce
the learning time for newlIsA developers.

Without any tools, it would be a lengthy and boring task for newcomers to grasp the
technical contents of the software. Even if tidésA Design and Implementation Tuto-
rial", associated with themL Design documentation, give many useful information,

it must be admitted that the understandingetdA, at source level, is not easy. For
example, it can be frustrating to find where a specific tygass , or typedef ),

a function, a preprocessanacro (such as#define ), or anenum, is declared or
defined.

In the following, we describe briefly several tools that have been found useful over the
years byelsA developers.

4.2.1 NavigatingelsA source code
4.2.1.1 doxygen

doxygen (http://www.stack.nl/~dimitri/doxygen/ ) is a powerful doc-
umentation system fa++ code:

e The documentation is extracted directly from the sources,

which makes it much easier to keep the documentation consistent with the source
code.

e Generated on-line HTML documentation, which can be browsed by any naviga-
tor, is very useful to quickly find your way ielsA source tree.

¢ Relations between the various elements (files, types, functions, modules, names-
paces) are visualized by means of include dependency graphs, inheritance di-
agrams, and collaboration diagrams, which are generated automatically (thus
avoiding any human error?).

e Fortran file are not fully supported; however, Fortran routine calls inSiete
code are recognized, and Fortran source files can be browsed.


http://www.awprofessional.com/catalog
http://www.uml.org
http://www.sgi.com/tech/stl
http://www.stack.nl/~dimitri/doxygen/

ONERA Ref.: JELSA/MDEV-03036

e e e e T Version.Edition : 1.4
Date : July 11, 2007
DSNA Page : 41 /67

Please visit the documentation generated by doxygen éls# source code :
https://elsa.onera.fr/ExternDocs/dev/doxygen/htmli/hierarchy.
html .

4.2.1.2 Doc++

Doc++ was available several years befdmzygen. Sincedoxygen is more powerful,
its usage inside thelsA project is now deprecated. Switching fraac++ to doxygen
was relatively easy, sinaxygen recognizes the documentation conventiodof++.

4.2.1.3 glimpse

glimpse builds a keyword index in advance for very fast searching. Uncommon words
will be found rapidly even in a very large fileset, up to several Gigabytes. Common
words (with 100’s or 1000’s of matches) will take longer, but if the number of hits
returned can be limited, even those will be very fast.

glimpse is available on most SGI machines (and can probably be installed on other
platforms). For each new production, it is a good idea to (re-)build the iAdkx
example:

glimpseindex -o -H Some_Directory -n $ELSAWKSP/Kernel/src
alias -x glimpse="glimpse -H Some_Directory’

Then, to retrieve all the occurences of, let's fwydPhys :

glimpse BndPhys

In practice glimpse is much much faster than Unixgrep .

4.2.1.4 Use of "tag" index files

A tag is an identifier that appears in a "tags" file. It is a sort of label that can be jumped
to. For example: each function name can be used as a tag. The "tags" file has to be
generated by the Unix progracrags, before the tag commands can be used. This tag
file allows these items to be quickly and easily located. Tag index files are supported by
numerous editorsv(, vim, emacs, nedit. ..), which allow the user to locate the object
associated with a name appearing in a source file and jump to the file and line which
defines the name.

For each new production, it is a good idea to (re-)build the tagfifes example (the
options to use may depend of the versions of [ce]tags used):

http://www.icewalkers.com/Linux/Software/517090/Glimpse.html
%this is done wittmake indexing
3this can be done withmake indexing


https://elsa.onera.fr/ExternDocs/dev/doxygen/html/hierarchy.html
https://elsa.onera.fr/ExternDocs/dev/doxygen/html/hierarchy.html
http://www.icewalkers.com/Linux/Software/517090/Glimpse.html

Ref.: JELSA/MDEV-03036 ONERA

Version.Edition : 1.4 e ——
Date : July 11, 2007
Page : 42 /67 DSNA

cd $ELSAWKSP/Kernel
find $SELSAWKSP/Kernel/src \
\( -name ™\.for -o -name *\.[hC]" -0 -type f \) \
| ctags - --c++ --define --globals --members \
--typedefs-and-c++ --no-warn

find $SELSAWKSP/Kernel/src \( -name ™\.for’ \
-0 -name *\.[nC]" \) | grep -v Obj | etags - -C

Now, with vi/vim editor :

e With the “tag some_tag ' command the cursor will be positioned on the
definition ofsome_tag .

¢ If you see a call to a function and wonder what that function does, position the
cursor inside of the function name and GTRL-] . This will bring you to the
function definition: the keyword on which the cursor is standing is used as the
tag; if the cursor is not on a keyword, the first keyword to the right of the cursor
is used.

e An easy way back is with th€TRL-T command.

Foremacs users, please conseltnacs documentation.

4.3 Non regression tests

The purpose of a non regression test is to check that, after some code modification, a
specific feature is still workirfg In elsA, non regression tests perform a small num-
ber of iterations (5 or 10, usually). The computed residuals are then compared (with
diff ) with the residuals produced by the reference vefsidhe amount of memory,

and CPU time can also optionally be comp&reA large number of non regression
tests already exists Any new development must provide one (or several) new non
regression tests. Since non regression tests are passed very often, it is quite impor-
tant to keep their computing cost (memory and CPU) as low as possible. Before any
integration, developers must pass the complete suite of non regression tests.
ConsultelsA web site for additional information aboRieg :
https://elsa.onera.fr/elsA/dev/dev/env.html#moel

4.3.1 How to run regression tests

The non regression tests are stored in a separate@epositoryReg (see sectiop 51).
The regression test environment is controlled with a specific Makefile.

4it is also very helful when portinglsA to a new computing environment

Soutput files produced bgxtractor objects are also checked, usitgp, if the file name respects
the naming conventiotWksp/script_name  * data_[0-9][0-9]*

6seecompare_memory.sh anddif_memory.sh  in Reg/Tools

"approx. 600 sequential tests, and 60 paraitel ] tests


https://elsa.onera.fr/elsA/dev/dev/env.html#moel

ONERA Ref.: JELSA/MDEV-03036

e e e e T Version.Edition : 1.4
Date : July 11, 2007
DSNA Page : 43 /67

4.3.1.1 Checking outvs) regression scripts

To check out the reference Python script :

export CVSROOTREG-=...

cd SomeWorkDirectory

cvs -d $CVSROOTREG co -P Reg_core
cd Reg

Remark Instead of checking olReg_core , it is also possible to check out the entReg
repository; however, doing this checks out all the existing referénedsch can take quite a
long time, and wastes a lot of disk spéce

4.3.1.2 Setting the executable version to be tested

You must ediSomeWorkDirectory/Reg/Makefile , and set correctlZLSAROOT
ELSAPRORNAELSAVERSION

4.3.1.3 Setting the reference
In many cases, a reference already exists :

e ForintellA64  (andintellA64_mpi ) andsgi (andsgi_mpi ), reference
is stored incvsin a sub-modul¥ :

cd SomeWorkDirectory/Reg

cvs co -P Ref _intellA64

# cvs co -P Ref_intellA64_mpi_2proc
# cvs co -P Ref _sgir8

# cvs co -P Ref _sgir8_mpi_2proc

Then editMakefile  and set correctfDLDREF

¢ In other situations, a reference exidtshut has not been stored ovs. Set
OLDREFaccordingly.

¢ In some cases, you want to compare the results produced by two difédsént
executablesglsAl.x andelsA2.x '2. You must first run the regression tests
with elsAl.x , put the results in referente and then re-run the regression
tests withelsA2.x

8most of them useless in the current context
9appprox. 600 MBytes
Ocurrently, four references are available throayts :
Ref_intellA64 , Ref_intellA64_mpi_2proc , Ref _sqgir8 , Ref sgir8_mpi_2proc
for example, it has been installed by the loelA expert
2for example compiled with different optimization options
BusingVNREFandmake putrefPY (or make putrefPY_PARA )



Ref.: [ELSA/MDEV-03036 ONERA

Version.Edition : 1.4 e e e e T
Date : July 11, 2007
Page : 44 /67 DSNA

# setting ELSAROOT... to run elsAl.x

make

# set VNREF

make putrefPY TAG=...

# reset OLDREF to VNREF, and ELSAROOT... to run elsA2.x
make

4.3.1.4 Running regression tests

e To run all the sequential tests, just enter :
make

e To run all the parallel tests, just enter :
make PY_PARA
Currently, parallel MPI cases run with 2 (default) or 5 procesédfs

e To run test cases contained in a single test directory :
make PY_CASES=Nozzle/Axi # sequential
make PY_PARA PY_CASES PARA=Vega # parallel

e To run several test directories :
make PY_CASES="Nozzle/Axi Nozzle/Base"

Remarks

1. Depending on compiler options and processor floating point arithmetic implementation,
results computed bglsA, with exactly the same source code, can be different on two
different platforms. However, those differences are usually very small, so that if an
"exact" reference" is not available, it may be convenient to use anoth&. one

2. Python regression scripts have to read additional data files (mesh, init or boundary files).
Currently, these files are not stored inas directory. The location of the root directory
can be adjusted by settif®ROOT_DBn the regression Makefile.

3. Several runtime environment variables can be tuned in order to track machine-dependent
code’ :

e ELSA INIT_ARRAY_F :initialization of C++-allocated real arrays;
e ELSA IEEE_MODES : control IEEE exception behaviour.

ook atNPROC_RE@@side Python script

Snote that the name of thevs directory for parallel regression tesRef sgir8_mpi_2proc
andRef_intellA64_mpi_2proc are inconsistent

16tor examplejntellA64 , bull ,intellA32  andintellA32em  are nearly identical

7seeelsA User's Reference Manual for a complete descriptioRIoBA_INIT_ARRAY_F andELSA_IEEE_MODE

8currently, active only fosgi  andintellA64



ONERA Ref.: JELSA/MDEV-03036

e e e e T Version.Edition : 1.4
Date : July 11, 2007
DSNA Page : 45/67

In some cases, it can be useful to relax the runtime environment consttaints

4.3.2 Adding new regression tests

e To add a new sequential regression test in an existing sub-directory, put the new
script inside the sub-directory, and edit fl6LIST_TEST_CASE_PY.

e To add a new parallel regression test in an existing sub-directory, put the new
script inside the sub-directory, and edit fl6LIST_TEST_CASE_PARA.

e To add a new regression directory, you must mo&% CASE% in the regres-
sion makefile.

4.4 Validation Data Base

The validation tests are stored in a sepatats repository (see sectign 5.1). The val-
idation data base provides a wide range of test cases (approx. 200). Two platforms
are regularly considered in this validation : NEC SX for sequential test cases, IBM
Power4-5 for parallelnPi) test cases. Any development introducing a new function-
ality must provide one validation test case (including the script, the mesh and all files
needed for the computation, some tecplot macros in order to visualize the results, and
reference results) which will be introduced in the validation repository.

The validation data base can be consulted :
http://elsa.onera.fr/elsA/validation/valid.html

For each test case, the script file is available, as well as examples of post-processed
results (Tecplot graphics) and performance measurements (CPU and memory).

4.5 Unitary test cases

C++ unitary test cases can be used to check the behaviour of class member functions
andFORTRANMubroutines. They can be written during the class coding phase by the
class developer. Detecting errors early, during unitary test runs, can save a lot of time
see[ 4.4 p. [45. Moreover, unitary test cases often provide useful insight to others
programmers upon the correct use of a new class.

The end result of a unitary test case should be a boolean :

e TRUEIf everything is ok;

e FALSEIf something is unexpected.

notably for some test cases related to@m component
200r PY_CASES_PARM MPI


http://elsa.onera.fr/elsA/validation/valid.html

Ref.: JELSA/MDEV-03036 ONERA

Version.Edition : 1.4 T
Date : July 11, 2007
Page : 46 /67 DSNA

The following lines present a very simple example testingibreneL1 andnormel2
methods of thé-IdField class:

const E_Int nval=5;

const E_Int nfld=2;

const E_Int dim = nval*nfid;
FIdArrayF valeur2(dim);
FldFieldF field1(nval,nfld);
FIdArrayF normel(nfld);
FIdArrayF norme2(nfld);

E_Int nbErrors = 0;
/I test of norms

i
for (i=0; i<dim; i++)

valeur2[i] = E_Float(i-5);
}

field1.setAllValuesAt(valeur2);

fieldl.normeL1(normel);
field1.normeL2(norme2);

if ((fEqual(normel[0], 3.))
nbErrors++;

if ((fEqual(normel[l], 2.))
nbErrors++;

if (ffEqual(norme2[0]*norme2[0], 11.))
nbErrors++;

if ((fEqual(norme2[1]*norme2[1], 6.))
nbErrors++;

if (nbErrors)

cerr << " nbErrors " << nbErrors << endl;
return E_False;

}

else

{

return E_True;

}

Remark: Due to time constraint®IsA unitary tests are no more updated on a regular basis.
They can still be useful to provide some examples.

4.6 A simpleelsA application

An application is a procedural sequence of instructions where the developer describes
the problem to be solved by creating objects and sending messages to them. A typical
application can involve the following steps :

1. creation of a mesh;



ONERA Ref.: JELSA/MDEV-03036

e e e Version.Edition : 1.4
Date : July 11, 2007
DSNA Page : 47 167
2. initialization;
3. creation of boundary conditions;
4. resolution of the problem;
5. postprocessing.

In practice, the application takes the form o€a+ main() function, which must

be written by the developer. Once successfully compiled, it is linked with the class
libraries to end up with an executable file. Then the developer can run the executable
file and obtains the output.

4.6.1 Example from the classical shock tube problem

As an example, we give here the main lines necessary to build objects used to compute
a shock tube problem (to simplify, most objects used in the time integration algorithm

have not been taken into account) :
I
I Project: elsA - DSNA/ELSA - Copyright (c) 20039 by ONERA
Il Type 1 <1357438245 9689> C++ Unitary Test File

/I File : SimpleTest.C

/I Vers  : $Revision: 1.1 $

/I Chrono : No DD/MM/YYYY Author V Comments

I 1.6 11/05/2003 AJ 3.0 Creation

I
#include "Rhs/Base/RhsEquation.h"

#include "Lhs/Base/LhsNone.h"

#include "Eos/Base/EosSysEq.h"
#include "Eos/Base/EosldealGas.h"

#include "Def/Support/DefMain.h"
#include "Geo/Grid/GeoGrid.h"
#include "Geo/Grid/GeoWindowStruct.h"
#include "Geo/Grid/GeoCfdField.h"

#include "Blk/Base/BlkMesh.h"
#include "Blk/Compose/BIkElemBlock.h"

#include "Fxc/Centered/FxcCenter.h"
#include "Fxc/Centered/FxcScaNumbDiss.h"

#include "Bnd/Phys/BndSupOut.h"

1
E_Int main()

E_Int DIM=10;

E_Int NITER = 10;

cerr << "CUBE dimension = " << DIM << " X " << DIM << " X " << DIM << endl;
cerr << "Number of ITERATION = " << NITER << end];

cerr << " " << endl;

cerr << endl;

/I Coeff for grid construction:



Ref.: JELSA/MDEV-03036 ONERA

Version.Edition : 1.4 T e e
Date : July 11, 2007
Page : 48 /67 DSNA

E_Int im=DIM;

E_Int jm=DIM;

E_Int km=DIM,;

E_Float dx=ONE/DIM,;
E_Float dy=ONE/DIM;
E_Float dz=ONE/DIM,;

i
/I 1. Creation of mesh, block, grid objects:
1
BlkMesh mesh(im, jm, km, 0., 0., 0., dx, dy, dz);

BlkElemBlock block(mesh);
E_Int gridLevel=1;
GeoGrid& grid = *(block.accessGrid(gridLevel));

i
/I 2. Initialization of the aerodynamic field
1

E_Float vall
E_Float val2

1,
2.5;

FldCellF wCons(ncell,egNb);
for (E_Int wi=0; wi<ncell;, wi++)

{

wCons(wi, 1) = vall;
wCons(wi, 2) = 0,
wCons(wi, 3) = 0,
wCons(wi, 4) = 0,
wCons(wi, 5) = val2;

}

/I Perturbation to avoid residual=0 (and unwanted end of iteration !)
wCons(ncell/2,2)=0.1;

/I Creation of the container which stores the aerodynamic solution
E_Int order = 1;

E_Int ncell = grid.getNbCell();

E_Int egNb = 5;

GeoCfdField cfdF(order, ncell, eqNb);

grid.setGeoCfdField(&cfdF);

for (E_Int i=0;i<=order;i++)
cfdF.initSolution(wCons,ji);

1
/I 3. Creation of fluxes and boundary conditions
1

/I Jameson’s scheme
FxcCenter operCen;

/I Artificial (numerical) dissipation --------------------

E_Float k2 = 0.5;

E_Float k4 = 0.016;

E_Float sigma = 1.0;

FxcScaNumbDiss::sensorType sensor = FxcScaNumbDiss::pressure_velocity;
FxcScaNumDiss operDiss(k2,k4,sensor,sigma);

/I Complete fluxes with boundary conditions
/I (for example “inactive" condition)

/I create 6 windows (GeoWindowsStruct):
GeoWindowStruct wi( 1, 1, 1,DIM, 1,DIM);
GeoWindowStruct w2(DIM,DIM, 1,DIM, 1,DIM);



ONERA
T e T——

DSNA

GeoWindowStruct w3( 1,DIM, 1,

1,
GeoWindowStruct w4( 1,DIM,DIM,DIM,

1,DIM);
1,DIM);

GeoWindowStruct w5( 1,DIM, 1,DIM, 1, 1)
GeoWindowStruct w6( 1,DIM, 1,DIM,DIM,DIM);

BndSupOut bndS1(grid, wl);
BndSupOut bndS2(grid, w2);
BndSupOut bndS3(grid, w3);
BndSupOut bndS4(grid, w4);
BndSupOut bndS5(grid, w5);
BndSupOut bndS6(grid, w6);

1
/I 4. Creation of the physical model
1

E_Float gam = 1.4;
EosldealGas eos(gam);

1

/I 5. Creation of numerical objects used
1 in the time integration algorithm

1

/I Choice of monogrid:
TmoMonoLevel level(E_True);

/I Choice of the multistep time integration algorithm:

TmoRKutta tmoRK;
tmoRK .freezing(Steady);

1

/I 6. Creation of the system of equations to solve

1

/I Characterization of the system of equations:

EosSysEq desCfdSys(eos,eosgl_meanFlow,eos_euler);

/I TmoSystem: stands for a system of equations:
TmoSystem sys1(desCfdSys,eosel_meanFlow);

/I 7. Creation of the numerical problem to solve with all its data

/I (the system of equations,

/I the block where this system has to be solved,

/I the numerical ingredients,
/I the physical modelization choice)

TmoPbElem pbElem(eos, desCfdSys, eosel_meanFlow, level, tmoRK,

pbElem.addBlock(block, TmoLevel::Undefined);

pbElem.addRhsOper(operCen, block, desCfdSys, eosel_meanFlow);
pbElem.addRhsOper(operDiss, block, desCfdSys, eosel_meanFlow);

E_Boolean flag = E_True;

flag &= pbElem.addBoundary(bndS1,
flag &= pbElem.addBoundary(bndS2,
flag &= pbElem.addBoundary(bndS3,
flag &= pbElem.addBoundary(bndS4,
flag &= pbElem.addBoundary(bndS5,
flag &= pbElem.addBoundary(bndS6,

flag &= pbElem.addBoundary(bndS1,
flag &= pbElem.addBoundary(bndS2,

operCen,
operCen,
operCen,
operCen,
operCen,
operCen,

operDiss,
operDiss,

block);
block);
block);
block);
block);
block);

block);
block);

Ref.: JELSA/MDEV-03036

Version.Edition : 1.4
Date : July 11, 2007

Page :

TmoSolverBase::impl);

49 /67



Ref.: JELSA/MDEV-03036 ONERA

Version.Edition : 1.4 T e o

Date : July 11, 2007 aeRosPaCt
Page : 50167 DSNA

flag &= pbElem.addBoundary(bndS3, operDiss, block);
flag &= pbElem.addBoundary(bndS4, operDiss, block);
flag &= pbElem.addBoundary(bndS5, operDiss, block);
flag &= pbElem.addBoundary(bndS6, operDiss, block);

sysl.addTmoPbElem(pbElem);

/I ===== Tmo/Driver/Test/TmoDriverTest === Last line ===



ONERA Ref.: JELSA/MDEV-03036

e e e e T Version.Edition : 1.4
Date : July 11, 2007
DSNA Page : 51/67

5. DEVELOPMENT PROCESS

In this chapter, we will only be interested in developments which have to be integrated,
for whatever reason. Obviously, there may exist developments which will never enter
into the integration process (research purpose).

5.1 Team work for a common version

Although developers come from different CFD or software cultures and have to imple-
ment very different developments (for example adding new CFD capability, or extend-
ing Python interface), they have to integrate their development iodivenon unique
version ofelsA.

To achieve this, developers have to respect procedures and rules; this is mandatory for
an integration agreement.

The first point a developer has to be convinced of is that his development doesn’t only
consist of some source lines, but also of:

e documentation:
— manuals and technical notes :

CVs :pserver:user@elsa.onera.fr:/data/cvs/doc ;
— source documentation.

e test cases belonging to one of the three following test bases:
— Apps : theC++ unitary test base :

CcVs:pserver.user@elsa.onera.fr:/data/cvs/apps/test ;

— Reg: the Python) regression test basef( [4.3,p.[49) :
CVs :pserver.user@elsa.onera.fr:/data/cvs/reg ;

— Val : the Python) validation test basecf. [4.4,p.[49 :
cvs:pserver.user@elsa.onera.fr:/data/cvs/val

The second point is that his development will be integrated @oramon code and
will necessarily interact with other capabilities issued from other developments. That
means that the developer has to:

1. acquire a basic knowledge elsA, particularly the part to modify or extend, by:

e reading the source code;
¢ understanding the existing design solutions.

2. respect all rules and procedures (of source code, but also of tests):



Ref.: JELSA/MDEV-03036 ONERA

Version.Edition : 1.4 e ——
Date : July 11, 2007
Page : 52/67 DSNA

e respect the coding rules and implementation choices :
/ELSA/MDEV-03050 :elsA Programming rules
(http://elsa.onera.fr/elsA/doc/refdoc.htmI#MDEV-03050 )

e respect as much as possible a global coherency in design solutions :
/ELSA/MDEV-06001 : Design and implementation tutorial
(http://elsa.onera.fr/elsA/doc/refdoc.htmI#MDEV-06001 )

3. search for simplicity, clarity, efficiency;
4. deliver all information: documentation, source code, test cases;
5. take into account remarks issued from the integration review.

This development process necessarily leads to a "more or less" heavy development
phase, but benefits in term of reduced maintenance costs are obvious. These rules
should lead to a globally coherent software, well documented and tested, simple and
versatile enough to take multi-applications into account and allow various developers
to perform their own task. Even if this process is not sufficient to reach this goal, it

is nevertheless necessary. We describe in the following sections the different stages of
development process and the different associated tasks the developer has to perform.

5.2 Different developer’s profile

Coding inelsA doesn’'t mean necessarily controlling everything in the source code.
As in any large software, the developer has to accept ignoring completely some parts,
not knowing every detail in others. Object-oriented programming, based on interfaces,
facilitates using the code while ignoring large parts of it. Here is an attempt to identify
three "types" oklsA developer.

e A "beginner” developer can be usually viewed as a CFD developer: he usually
knows about only a limited subset of the kernel. He may have to:

use CFD classes and methods,

extend, modify an algorithm,
introduce Fortran subroutines,

specialize or generalize existi@y+ classes,

propose some extension to the Python interface in order to make new fea-
ture accessible to users,

— introduceC++ unitary test cases,
— extend and/or introduce Python integration or validation test cases.

He has to acquire the knowledge of the module impacted by the development,
and a minimum knowledge of the kernel design.


http://elsa.onera.fr/elsA/doc/refdoc.html#MDEV-03050
http://elsa.onera.fr/elsA/doc/refdoc.html#MDEV-06001

ONERA Ref.: JELSA/MDEV-03036

e e e e T Version.Edition : 1.4
Date : July 11, 2007
DSNA Page : 53767

e A "kernel" developer understands most of the kernel architecture. He has to
introduce new concepts, or improve existing ones. He has to introduce his own
capability from the script file up to the internal objects of the kernel; so, he has
to be able to use the description objed&$cp ) and most of the time a limited
part of the FactoryKact ), but he doesn’t have to understand all the source code
of these two modules. If his design work may have wide repercussions on other
functionnality, he has to acquire a quite complete global understanding of the
kernel. It is of his responsability to estimate which part he can ignore, which
other he has to understand. In that case, he should interact with other developers
(elsa-dev@onera.fr), or developer support (elsa-infodev@onera.fr), and propose
new solutions before implementing them. Support of design documentation or
technical notes should allow this interactive work.

e An "elsA application" developer knows the whole architecture, including Python
scripting interface; he understands creation, destruction, association of objects
and all transverse mechanisms, proposes Python extensions and evolutions.

5.3 Development process

The development process can be splitted in five successive stages.

5.3.1 Definition of the specifications

First of all, specifications of the new development should be defined and the developer
support (elsa-infodev@onera.fr) has to be informed that a new development has been
planned for a necessary coordination of &&A evolution.

During this first stage, the developer has to define the specifications in the following
way:

1. write theoretical basis of the development (Theoretical Manual contribution),
2. define validation test cases (Validation contribution),

3. write the corresponding user interface documentation: usage description, new
key words, advices to users, ... (User's Manual contribution).

5.3.2 Design

The second stage is the time of design elaboration. Achieving a good design will
reduce implementation, test, and maintenance time.

This stage is important because each decision made for a specific development can
have wide repercussion when the code is used by others. Among the issues to be
worked out are:


file:elsa-dev@onera.fr
file:elsa-infodev@onera.fr
file:elsa-infodev@onera.fr

Ref.: JELSA/MDEV-03036 ONERA

Version.Edition : 1.4 e ——
Date : July 11, 2007
Page : 54 /67 DSNA

e Interfaces: what services and access are provided? The aim is to provide services
that are convenient, with enough functionnality to be easy to use, but not so much
as to become unwieldy.

¢ Information hiding: which information is visible and which is private? The inter-
face must provide access to services while hiding details of the implementation,
so they can be changed without affecting users.

During the design stage, the developer has to write a short design documentation de-
scribing his design choices and the retained solution. This documentation will be
necessary to enrich thevL class model documentation and the "Developer’'s Guide".

It will participate to the elaboration of the common design experience and will be very
useful for other developers in similar situations.

During this stage, we recommand to interact with other developers and with the devel-
oper support, specially for a novice developer.

5.3.3 Implementation

After design comes implementation. But in many cases these two stages are not so
clearly separated; in fact, most of the time, design and implementation evolve together
in an iterative cycle.

The implementation stage consists of:

1. writing documented source lines:

e modifying existing code;
¢ introducing new CFD capability in the kernel.

2. testing the development by mean of :

e newC++ unitary test cases; these tests will verify the correct coding of the
CFD capabilities, specially the Fortran routines;

e new Python integration test cases; these tests will verify the whole design
of the new development, the correct creation of all useful objects, the gen-
eral coherency and memory management of the development.

These tests are very important to insure maintenance of the new added feature.
3. modifying all test cases impacted by the new development;

4. checking no-regression of Python integration tests.

5.3.4 Validation

Everything is now ready to perform the validation computations defined in the first
stage.



ONERA Ref.: JELSA/MDEV-03036

e e e e T Version.Edition : 1.4
Date : July 11, 2007
DSNA Page : 55767

5.3.5 Integration review

The last stage of the process is the integration review.

Before integration, all elements produced for a development (documentation, source
code and tests cases) are reviewed by reviewers. This is very useful to check the
completeness of all elements and conformity with the development rules. It improves
the homogeneity of the source code and extends knowledge of the source code by the
developers. Furthermore, it is very important to detect most errors and imperfections
as soon as possible so as to minimize the cost of their consequences.

As soon as the development is ready for integration, the developer has to inform the
developer support, and ask for an integration review. The information to communicate
is described on the web site (see the template for mail to be used to ask for an integra-
tion review) :

http://elsa.onera.fr/elsA/dev/reviews.html

This review is mandatory and consists of checking that:

1. all software elements have been furnished : source code, documentation, new
test cases to enrich botReg (regression test base) andahl (validation test
base);

2. the code of theevs workspace is ready for integration:

e it has been updated, all conflicts have been removed,
¢ all debug code has been suppressed,;

3. the no-regressioReg test base has been checked; in some situations, it is also
necessary to run théal test base.

4. coding rules and implementation choices have been respected;

5. the implementation corresponds to the described design;

6. the new test cases are pertinent (check and validate properly the development);
Moreover, the review has to evaluate:

¢ the code quality: simplicity, clearness, coherency;

¢ the design solutions and their impact on other developments.
In some cases, additional questions can be asked to the developer, such as:

1. give an estimation of the performance and the vectorization state of the develop-
ment; in that case, the developer will have to provide "profilers", memory usage
for different computations;

2. check the portability; in that case, the developer will have to perform some tests
on different computers.


http://elsa.onera.fr/elsA/dev/reviews.html

Ref.: JELSA/MDEV-03036 ONERA

Version.Edition : 1.4 e ——
Date : July 11, 2007
Page : 56/67 DSNA

If all the checked points are declared correct by the reviewers, the development can be
integrated and enrich all the repositories; conversely, if some checked points are not
judged satisfactory by reviewers, corrections and modifications have to be made by the
developer.

We have describe here the standard development process, with its successive steps.
But most of the time, the developer has to iterate through this process; refactoring is
particularly important, because requirements can change, software needs to be exten-
sible, developer experience grows. It is a part of the every developer’s daily business
and object-oriented programming should make it easier.

5.4 Development support and documentation

Several communication means are available to receive and send information about
elsA.

First of all, the address :

elsa-infodev@onera.fr

centralizes all information about developments, integration reviews, integration, and
has to be informed of each new developer and of each new planned development. All
guestion or remark a developer wants to communicate tcels® team has to be

sent to this address. Introducing a new developer to elsa-infodev@onera.fr is for him
the entry point to access tovs, receive access passwords to the private sections of
the Web site dedicated to developers, and receive all electronic or paper information
intended for developers.

Support to the developers is ensured byels\ team and covers:

e tutorship,

e maintenance of the developer documentation,

e concrete help to beginner developers through pair programming,
o follow-up of any development if needed,

e coordination of design and implementation choices,

e information by mail to all developers about: new production versions, tips for
development, problems detected in reference versions;

e support for debugging reference versions,
e coordination of integration reviews.

The addreseglsa-infodev@onera.fr has to be used to contact the developer
support.

A developer discussion list is also at the disposal of the developers to share their ex-
perience and questions about developinglsA. The address of this mailing list is


file:elsa-infodev@onera.fr
file:elsa-infodev@onera.fr

ONERA
T e T——

DSNA

Ref.: [ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page :

57167

elsA-dev@onera.fr. It is possible to subscribe ondls web site to the Developer
discussion list) :
http://elsa.onera.fr/elsA/dev/guide.htmi
and consult the archives of all mails sent to this adress.
Finally, information dedicated to the developers is available oreté® web site and
propose different sections:

News/Developers for general information, especially about reference versions;

Development/Tips for development advice;

Development/Validation for intermediate version validation record;

Development/Known bugs for bugs detected in release versions;

Development/Problem Tracking for developers information about use problem
tracking;

Development/Reviews for integration review information;

Development/Environment for hardware and software development environment.

Documentation

Theot!

UML ¢

Devell

ietical Manual

model

bper's guide

Technical notes

Sourg

User

te documentation

Manual

Developer

Specification

Des

Impi

Valil

ign
lementation

dation

Integrgtion review

elsa-dev@onera.f

grateur) (all d

support, "pi

air” programming

Integration

Pers


file:elsA-dev@onera.fr
http://elsa.onera.fr/elsA/dev/guide.html

Ref.: [ELSA/MDEV-03036 ONERA
Version.Edition : 1.4 e|SA
Date : July 11, 2007

Page : 58/67

THE FRENCH AEROSPACE LAB

Development Process Tutorial DSNA

Empty page



ONERA

DSNA

Direct access to index’s alphabetical section headings :

elsA

Development Process Tutorial

pled
p.b1
pod
p.2
p.e2
p.3
ple3
ple3
ple3
pled
o4

Ref.: JELSA/MDEV-03036

Version.Edition : 1.4
Date : July 11, 2007

Page :

59/67



Ref.: [ELSA/MDEV-03036 ONERA
Version.Edition : 1.4 e|SA p——_
Date : July 11, 2007

Page :

THE FRENCH AEROSPACE LAB

60/67 Development Process Tutorial DSNA

A p.@




ONERA Ref.: JELSA/MDEV-03036

o et e T Version.Edition : 1.4
Date : July 11, 2007
DSNA Page : 61l/67
INDEX

.cshrc  ww,[28 64-bit,[10[ 18] 1H, 24

.profile wniv), [28
_DEF_USE_USING @), [33 —A-
_E_FORTRAN_LOOPS»,[32 (link is to index’s alphabetical heading$»9

_E_USE_OLD_IOSTREAM,[26,[34 aCC,
_E_USE_STANDARD_IOSTREANM, [Tl (componery[8,[12 [ 21213, 30
Agt cvs modu|e)|E

Agt (componem;@

AIX s, [9,[T0[T4[TH, 27
AIt'X (platform),

AMD,

Ap| (component)@,@@
Apple (platform), @

Apple Mac patorm), g

AppS (CVS repository) @

_B-—
(link is to index’s alphabetical heading$»9
basic type siz¢, 34

binary installation], 24
BIK  (cvsmoduie) @

Bnd (component)@

BULL (platform),

bull (ELSAPROD), ,IE

—C -

(link is to index’s alphabetical heading$»9

C,[31

C++,[3,[4.[79[ 1], 20, 23, 24, 6,130+36,
[39,[40[ 44 4H, 47,31, 52, B4,162

CC,

CCenvironment variablg) @

CCCOP Traketiey [20,[21

cmp wniv, Iﬂ

command-line option, 10, 1B, 28,34 36

compare_memory.sh  sheiscipy [42
coO I’]ﬁg (makefile), @,@
OOLIST_TEST_CASE_PARA[45 config.c (e, [29
OOLIST_TEST_CASE_PY, 45 configure[ 8} 1, 29

32-bit,[I0[ 15[ 24 const_iterator 33




Ref.: [IELSA/MDEV-03036 ONERA
Version.Edition : 1.4 T e o
Date : July 11, 2007

DSNA

Page : 62 /67

covariant return typeg++), [31
Cp_| ine (Python module) [Z]

cpp,[32

cray (eLsaproby @

CRAY SV1 patom, [14

cross-compilef, 4

csh (Unix), @,@

ctags,[4]

cvs,[3 5[4 [11}[12, 23, B2+435,[51) 55, [56)
CXX,

Cygwin,[9

-D-
(link is to index’s alphabetical heading
dbg (ELSAPRODext)@
DEBUG’nakefile) @
dec eLsaprop), ,[E
Def (component)@
Def/Global/DefCompiler.h
33
Def/Global/DefFortranOpDir.h
(C/C++ header) @
Def/Global/Deflostream.h
33
Def/Global/DefTypes.h
34
Def/Sys/DefCPUTIMe.C (i), [38
Def/Sys/DefCPUTime.h (cIc++ header,)@
DefCompiler.h  (crrneadey[33
DefConfig.h (CIC++ header) [E ,@
DefFortran.h (Fortran headep) 3G
DefFortranOpDir.h (Fortran headep) 34}
DefFstream.h  (cic++neadey[34
Deflostream.h  (cr+neaden [33
DefStringStream.h (C/C++ headery[34

DefTypes.h  (cicr+heatey[35,[ 36

DeSCp (component) @,@
design patterr, 39

Developer discussion ligt, 57
dif_memory.sh (shell script) [@
diff o, @2

Digital UX (05),@

Doc++,[5,[41

dOUble (C++), @
doxygen, [5,(21 [39F41L

dynamic_cast (c+),[31

—E —

(link is to index’s alphabetical heading$h9
E Bool «+,[34

E_CC(makefiIe), @

E_CCC FLAG Dnakeiitey @
E_CCCOP Trukeiiey 31
E_CONST_ITERATORw, [33
E_DOUBLEINT, [35
E_DOUBLEREAL, [35
E_EXTERNLIBS ety [28,[31
E_F90 (makefile) @

E_FFFOP Timaketiey [31
E_FFLAG Sgakeiey [31

E_Float (C+4), @,@

(CIC++ headeE_FO R EX-Ecpp), @

E_Int (C+4), @,@
E_LDFLAG Smakefile), @

E_M PIPATH_' (makefile), @,@

(CIC++ headeE_M P I PATH_L (makefile), @,@

E_NO_COVARIANT_RETURM, [3]

(C/C++ header) @ E_P P R E F I X (environment variablg) [E, @, @

E_PPREF'X]. (environment variablq), ,
E_PYVE RSIONenvironment variablq)[B], @, @

E_REQUIRE_FORTRAN_CPP_EXwkke-
fie), [32)

E RTTI (31

E_SCALAR_COMPUTER,[32

E_STDmaketiey [33

E_SWIGewironment variabig) 23]

E_SWIGmakeiiey [24

E_SWIGOP Tenironment variavig)[23]

E_USE_CPP_FOR_FORTRAMiie, [32

E_DOUBLEINTcpp Forrar [35

E_DOUBLEREALy Forany [353

elsA.C file), @

elSA py (Python module) @ ,@ @@4
elsAx ,[18,[22
(Python moduley @

elsA_Ael.py
elsA_Ael_wrap.C (e, [23



ONERA Ref.: [ELSA/MDEV-03036
e e e Version.Edition : 1.4
Date : July 11, 2007
DSNA Page : 63/67

ELSA_| EEE_MO D Eenvironmem variable,) gcg, B
ELSA_INIT_ARRAY_F enionmentvarianig[44]  glimpse, [5,[21]41
eIsA_Opt.py (Python module)@ GNU/Linux (08), ,@m
elsA_Opt_wrap.C  (ciie), @ gnulA64  (ELsaproD),
eIsA_wrap.C (C++file), @,@
ELSADIST (enironment variavig) 20} —H-
elsAembed_template.i swicheaten[3 4 (link is to index’s alphabetical heading$yg
ELSAHOM Environment variable,) HP (platform),
ELSAPAT Henvironmentvariabia22) hp esarrony [9,[13
ELSAPRORmwionmentvarianin[9) [13HI3}, 20,26, HP Alphaerom, [9,[13[28

@, @, @ @ H P PA-R'SC(pIatform),
ELSAPRODRakeriey [43 HP-UX s, [9,[10, I3[ 1b
ELSAROO Traketiey [43
ELSAVERSIONmakeiie, [43 ol
ELSAWKSRwionmentvariavig[1 IHI3] (link is to index’s alphabetical heading$»9
emacs, @,m@ i4 (ELSAPROD ext) @
environment variablé 4] B7,120480] 38 esarronen [14

[34,[44 IA32 @iatormy, [8,[9,[ 13
exception| 44 IA32em @atorm), [9
expat (library), @ IAG4 (platform), , E,@
export  (niv, IE IBM (iatform), @
extraction@ ibm (eLsaprob), ,IE
extractor ,[42 IBM Power4-5piatom), [9,[14] 4%

IBM PowerP Cepiattorm), Q, @
-F - icc,[4,[9,26
(link is to index’s alphabetical heading$»9 IEEE,
f90, ifort,[9
Fact (componeny[21,[22 indexing  (maketiey [21
FFFOPT makeiie) @,m installation 119
float e, @ installdox (makefile), @
FOR_OPT_DIR_NODEP_E,[34 it c+,[33
FOR_OPT_DIR_NOLOOPCHG@k [34 INTEGERowan,[35
Fortran[ 32 INTEGER*4 (orany [35
Fortran 90| 3P INTEGER*8 (rorany [35
Fortran directive], 34 INTEGER_En,[36
frt, INTEL,
fUJI (ELSAPROD), ,@ intellA32 (ELSAPROD), , @,@1
Fujitsu VP Piattorm), B, @m intellA32em (ELSAPROD), , IE @
intellA64 (ELSAPROD), , @ mm4

-G - intel IA64_mp| (ELSAPROD), @
(link is to index’s alphabetical heading$9 jostream  (c++ibrary, [26,[30[ 3B
977,[8,[9,30 jostream  (cic++ heatey [33,[34

995,[8,[9

iostream insulatior, 33



Ref.: [ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page : 64 /67

iostream.h (CIC++ header) @ ,@
IRIX (s,[9,[I0] I3E1H, 24

itanium (ELSAPROD), B, @
Itanium (Python) 29
|tanium 2(processor)
iterator ), [33

_J—
(link is to index’s alphabetical heading$»9

_K—
(link is to index’s alphabetical heading$»9

_L—
(link is to index’s alphabetical heading$h9

L D_L I B RARY64_PAT H(environment variablg)@
L D_L | B RARY_PAT Henvironmem variablq)@, |2_7[,

2228
libcurses (iibrary), @
Iibexpat (library), @
libmass iy, [27
Iibmassvp (library),@
libm pl (library), IE
Iibmpich (library), IE
libpython2.4.a
libpython2.4.so
libreadline
libtemplate.a
libz (Iibrary),@
Linux (05),
linux (ELSAPROD), ,IE
Iinuxg95 (ELSAPROD), |g
list (C++STL), @
long «+,[35
Lur (componem)@,m@

- M-

(link is to index’s alphabetical heading$»9
MAC OS (s, [0, [T2

MacOSos), B

MacCOS (ELsAProD),

MAaCOSX (ELsAPROD), ,IE

main() <, [374,[47

(library),
(library),
(iibrary), @
(library), @

ONERA

DSNA

make apif 24
make clear], 21
make cleanal[, 20

make config, 17, 31
make depall, 15, 25
make elsA[ 1

make elsd, 15

make exed, 21

make help_config, 12

make indexing, 21, 41

make install 19

make install (Python}, 10
make installdox, 21

make putrefPY], 43

make putrefPY_PARA, 43
make sys, 15

make sysall, 15

Make_obj .mk (makefile), @
Make_paths.mk  maketiey [13,[23
MakeMake.mK makeiie) @
map c++ s, @
mP1,[I1}[14,[18,[19,[28,(30, 33, 34, 38, [42,
MPI ELsapProD exty @

MPI insulation[3#4

MPI runtime error| 2B

mpi.h (ClC++ header)@,@
MPI_Wtime , 38

mpiCC,[33

MPICCCFLAG Srateiie [33
MPICH, [14, [28
MPICH_ROO Tironment variaie) I
MPIEXTERNLIBS gmaketie [33
mpif90, [33

mpirun, [28

—N -

(link is to index’s alphabetical heading$h9
n32 (ELSAPRODext)lE

n64 (ELSAPRODext)@

namespace (c+,[33

NeC (eLsaPrOD) B,lﬂ
N EC SX (platform), B—@mmS



ONERA

DSNA

NEC SX8(pIatf0rm), @
nedit, [47

non regresion tedt, 42
NPROC_RE Gurie; 44
numMarray  (ytonmoduey [1Q
Numeric (Python module) @

num py (Python moduley @

-0 -

(link is to index’s alphabetical heading
OBJECT_MODE&vironment variavig)[10]
OLDRE Rimatetie [43

Opt (component) @,@@
Opterongrocesso

OSFos),

—P-

(link is to index’s alphabetical heading

PA-RISC grocessoy [13

patch_include.mk (makefile), @

PAT H(environment variablg) @

Pcm/Base/PcmDefMpi.h (e heades[33,
34

PcmDefMpi.h s+ heaten 34

Pentiumrocesson

pgCC,[4,[9,[26[ 27

pgfo0,[9

PGI,[4[9[18] 26

pgl (ELSAPROD), ,@@

powerpc  eisaprony [14

PY_CAS ESmakeﬁie), @
PY_CASES_PARAueie, [45

Python, [8,[10[2}[ 24, 25. 29, 30, b1
Python (Itanium);, 29

Python install (AIX)] 26

Python.h  (cic++headey , Iz. ,IEEB
PYTHONHOM&ionmentvarianig[4), [24}, [28, [29
PYTHONPAT kiromentvariain[ 17, [20, 27 28

_Q_

(link is to index’s alphabetical heading$»9

_R-—

Ref.: [ELSA/MDEV-03036
Version.Edition : 1.4
Date : July 11, 2007

Page :
(link is to index’s alphabetical heading
4 (eLsaprop exg) @
I8 (eLsaprop ext) IE
readline (library), @
REAL*4 orvan, [35
REAL*8 (rorvan, [35
REAL_En,[36
RedHatos), B
Ref _intellA64 (CVS module) @
Ref_intellA64_mpi_2proc (CVS module)
43,44

Ref sgir8  (cvsmoduie IE

(CVS module) @,

Ref_sgir8_mpi_2proc
44

Reg (CVS repositoryy @ ,@ @-Eﬁ

Reg_core (cvsmodue) IE
ROOT_D Bnakefile), @
RTTl (C++), @

—-S—

(link is to index’s alphabetical heading$»9
scalar computing platformis, 32
setenv  wni, [13

Setup.py  (eython moduiey IE

SGl arorm, [9,[I0[ TB[ TH, 24
Sgl (ELSAPROD}B,mmm4
SGI_ABI enionmentvarang[T0)
sgi_mpi (ELSAPROD),@
shared ,[g

shared library, 16

Sio (componem;@,@

SO (ELsAPROD ext)lE

socket ,[26

Solaris(OS), ,IE-

source code (how to gef), |12
Split  (componeny @

ssl ,[28

std::  ©,[33

std::  ,[33

STL,[30,[33

STL insulation[ 3B

string (C++ library), @

String  (crce+ heasey[26

65/67



Ref.: [ELSA/MDEV-03036 ONERA
Version.Edition : 1.4 T e o
Date : July 11, 2007

Page : 66/67 DSNA

subroutine] 7

SUN (eLsaProD), ,@
SUN OSes), [10

SUN SPAR Cpiattorm, [9
SUPER-UXs,[9
SUSE(OS),

SWIG, [3,[11[Z28[ 24 37
SX6 (processoy [8,[14

SX8 processon [8,[14
SXC++,

sxfo0,

syssx (NEC timer), 38

_T—
(link is to index’s alphabetical heading$h9

tag[4]
(C++), @ ,@

template
template o), @

test_ mpi_16block ns_lu.py (Python

o, [T8.38
thread[ 1D

time (Pylhonmodule)@,@
times (Unix),@

Tur (component) @,@
TurBase.h  (cic+ headey[23

typedef  (,[34

—U-—
(link is to index’s alphabetical heading$»9
umL,[6,[39 [40,

unitary test] 45
unset wniv, @

unsetenv  unx,[29

-V -

(link is to index’s alphabetical heading
Val (CVS repository) @

validation test, 45

Val (CVS repository) @

VEeCtor (c++ sy, @

vector computef, 32

vi,[21,[41

vim, [41

VN R E F(makefile), @

_W—
(link is to index’s alphabetical heading$»9
WindOWS(OS),

_X—
(link is to index’s alphabetical heading$h9
X86_ 64 piattorm), B

xIC,

xIf,

_Y_
(link is to index’s alphabetical heading$h9

-7 —
(link is to index’s alphabetical heading



ONERA Ref.: JELSA/MDEV-03036

e e T Version.Edition : 1.4

N Date : July 11, 2007
DSNA Page : 67/67

DIFFUSION SCHEME
Software Secretariat Archives
Redactors
elsA developers

END of LIST






	Contents
	Introduction
	Document purpose
	elsA versions
	elsA statistics

	How to install elsA
	Building from source on Unix
	Tools required
	C++ and Fortran compilers
	Python
	Installing Python
	Optional tools

	How to get elsA source code
	Unix tarball
	From CVS repository

	elsA build
	Selection of modules
	Build process

	First runs
	First test
	Second test
	Third test

	elsA installation (Optional)
	Building a new production in the same source tree
	Optimization notes
	Documentation and indexing
	Switching between different Python versions

	Building elsA from locally modified components
	Production with shared library
	Production with static library
	Additional information

	SWIG
	SWIG purpose
	Technical details

	Installing from a binary distribution
	Troubleshooting
	Build problems
	Incorrect Makefile generation
	Incorrect Python settings
	Problem with iostream

	Known problems with Python
	Link time errors
	INTEL icc
	Missing template library (PGI pgCC version 5)
	Missing libmass library at link time (AIX)
	Other link time problem (missing libraries)

	Runtime errors
	Checking configuration file access rights
	MPI runtime errors (incorrect environment)

	Python runtime errors
	Incorrect PYTHONHOME
	Python runtime error on HP-UX Itanium



	Porting elsA to a new platform
	Introduction
	Introducing a new platform
	Compiler choice
	Set compiler options
	C++ standard conforming macros
	CPU optimization
	Fortran file preprocessing

	MPI settings

	Insulation of elsA from platform-dependent features
	DefCompiler.h : STL (and string) insulation
	DefIostream.h : iostream insulation
	DefFortranOpDir.h: Fortran directive
	MPI insulation


	Basic type sizes
	Specifications
	C++ basic type sizes
	Fortran basic type sizes

	Building elsA
	Troubleshooting
	Begin with Agt module
	Checking Makefile generation
	elsA main() function
	Link unresolved references


	CPU time measurement

	Developing inside elsA system : Getting Started
	Introduction
	Useful tools
	Navigating elsA source code
	doxygen
	Doc++
	glimpse
	Use of "tag" index files


	Non regression tests
	How to run regression tests
	Checking out (CVS) regression scripts
	Setting the executable version to be tested
	Setting the reference
	Running regression tests

	Adding new regression tests

	Validation Data Base
	Unitary test cases
	A simple elsA application
	Example from the classical shock tube problem


	Development process
	Team work for a common version
	Different developer's profile
	Development process
	Definition of the specifications
	Design
	Implementation
	Validation
	Integration review

	Development support and documentation

	Index

