
LambdaCore Database Programmer’s Manual
For LambdaMOO version 1.3

July 1991

Mike Prudence (blip)
Simon Hunt (Ezeke)
Floyd Moore (Phantom)
Kelly Larson (Zaphod)
Al Harringtom (Geezer)

Copyright c© 1991 Mike Prudence, Simon Hunt, Floyd Moore, Kelly Larson, Al Harrington.
Copies of the electronic source for this document can be obtained using anonymous FTP on
the Internet. At the site belch.berkeley.edu the files are pub/moo/LambdaMOO/LambdaCoreProgMan.*;
several different file formats are provided, including Texinfo, plain text, and Postscript.
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the author.

Introduction 1

Introduction

The LambdaCore database provides the facilities needed to make a LambdaMOO server
useful for Multi User Adventuring. If you compare the LambdaMOO server to a piece of
computer hardware, then LambdaCore is the operating system needed to allow the user to
do useful work.

This document gives a rundown on the elements of the LambdaCore database, and
provides details of each of the verbs used by the database. It also provides source for some
of the verbs, to aid understanding and provide extra information.

The user is assumed to have read the two companion manuals to this one, The Lamb-
daMOO Programmer’s Manual and The LambdaCore User’s Manual. An understanding of
MOO concepts, the MOO language and the facilities provided by the LambdaCore database
is needed to follow the explanations given in this document.

Chapter 1: The LambdaCore Classes 2

1 The LambdaCore Classes

The LambdaCore database provides several basic classes that are used to define the
virtual world. It is these classes that provide the core of any MOO database built on the
LambdaCore database. As well as defining obvious things like players, rooms and exits,
the classes also provide all the commands used to interact with the database, and several
utility functions for use by the MOO programmer writing his or her own verbs.

The LambdaCore classes can be divided into two categories:

• Generics: These are classes containing generic objects, for example players, rooms,
exits and so on. If a new generic object is created, it would be placed in this list.

• Utilities: These are classes containing utility verbs that can be used by other verbs.
Example include string utilities, trig functions etc.

The sections that follow describe the LambdaCore classes in detail, providing insight
into what each verb and property is used for, and some idea of how they should be used in
your own MOO programs.

1.1 The LambdaCore Generic Classes

The following generic classes are available in the LambdaCore database:

The Root Class ($root_class)
This is the basic class from which everything else in the database is
descended. It defines basic operations and properties on an object.

The Generic Room ($room)
This class is the parent for all the rooms in the database.

The Mail Distribution Center ($mail_room)
This is a special class used to define a room for dealing with MOO mail.
It is a child of the generic Room class.

The Generic Mail Recipient
To be written.

The Generic Editor’s Office ($editor)
This is a special class used to define a room used for program editing.
It is a child of the generic Room class.

Chapter 1: The LambdaCore Classes 3

System Object (#0)
This is the keystone object for the database. It holds various important
system properties, as well as pointers to the various other classes and
objects that are system-wide.

The Generic Thing ($thing)
This class defines a TinyMUD style object, that is, something that can
be picked up and put down. It defines various messages related to
taking and dropping the object.

The Generic Container ($container)
This is a child class of the Thing class. A container is an
object that can have other objects placed within it.

The Generic Note ($note)
A note is a child class of the Thing class. It is used to store
text messages, which may be encrypted. A note can only be recycled by
the owner.

The Generic Letter ($letter)
A letter is a child class of the Note class. It provides the
same facilities, but also has a burn verb which the recipient can
use to recycle the letter.

The Generic Player ($player)
This is the class from which all players are descended.

The Generic Programmer ($prog)
This is a child of the Player class used for players that are MOO
programmers. It defines a set of verbs that are useful for programming
activities.

The Generic Wizard ($wiz)
This is a child of the generic programmer class, used for
wizards.

Chapter 1: The LambdaCore Classes 4

The Generic Exit. ($exit)
This class defines a generic exit used to link one object of class
Room to another object of class Room. It defines a
number of messages that may be generated when an exit is used.

1.1.1 The Root Class

The root class is the base class from which all objects are descended. It is the keystone
of the database and defines fundamental verbs and properties common to every object. If
you are a programmer (ie, you have a player object with the programmer bit set) you can
examine the properties and verbs of the root class using the command

@show $root_class

You can examine the code for a verb on the class by using, for example, the following
command.

@list $root_class:description

This lists the program definition for the verb $root_class:description. An interesting
point to note is that this code can be changed by the owner - in this case the Wizard - to
provide any functionality desired. This configurability of the basis of the whole LambdaCore
database allows a large degree of flexibility in the way the LambdaMOO server is used. It
also allows for very subtle and perplexing problems. Care must be taken when editing
definitions on any of the fundamental classes, the $root_class in particular. However, as
the base classes of the LambdaCore database have been thoroughly tested and debugged,
there should be very little need for any changes by the average database administrator.

The following section lists the verb and property definitions for the $root_class. For
each verb, a description of it’s function is given, along with any interesting points. The
intent is to present each verb in such a way that it is possible to grasp the whole picture,
rather than just looking at the individual brushstrokes.

Verbstring description ()
The :description verb on any object is supposed to return a string or list of strings
describing the object in the detail someone would notice if they were specifically
looking at it.

The default implementation of the "look" command (defined on the $room class),
prints this description using the :look_self verb on the object. :look_self uses
:description to obtain the text to display.

Verbnone describe (value)
The :describe verb is used to set the description property of an object. This is
only allowed if we have permission, determined using the $perm_utils:controls()
verb. By overriding this verb and the :description verb, it is possible to completely
change the representation of an object description. This is done invisibly to anyone
outside the object, as long as you adhere to the same interface to :description and
:describe.

Chapter 1: The LambdaCore Classes 5

Verbnone look self ()
The :look_self verb on any object is used to :tell another object what this object
looks like, in detail. This verb makes use of the :description verb on the object to
obtain a string or list of strings to print. It would be possible to override this verb
to produce a special description for an object. However, any other verbs that use
the :description verb of the object will not see the extra information added by the
overriding function. The $room class overrides this verb with code to print the room
name and a list of objects that are in the room.

Verbnone tell (string strings, ...)
This verb is used to send a message from one object to another. The $root_class
definition of this verb tests to see if the object is a player, and if it is, uses the notify
primitive to print the argument list on the player’s screen, if they are connected.
However, this verb can be overridden to allow arbitrary objects to pass messages
between each other, or to augment the way the message is handled.

One simple example is that of an object that listens to everything that happens in a
room. Every verb that needs to send text to players uses the :tell verb. If an object
has it’s own :tell verb, it too will be able to act upon the messages sent between
objects in a room.

The $player class overrides this verb to filter messages in two different ways, as show
below:

if (typeof(this.gaglist) != LIST || !(player in this.gaglist))
if (player != this && this.paranoid == 1)

pass("<", player.name, "(", player, ")> ", @args);
else

pass(@args);
endif

endif

Firstly, if the message comes from a player that we don’t want to listen to - the player
has been gagged - then the message is thrown away. Secondly, if the player is being
paranoid, and the message is not from ourselves, it is prefaced with the name of the
originating object. The pass primitive is used to allow the :tell verb of the parent
class to send the message after it has been modified.

Verbnone moveto (obj where)
This verb is used to change the location of an object to be where. The built-in
function move() is used by this verb. Any error codes generated by it are returned
by this function. This verb is intended to be used by any other verbs that must move
an object to another location.

One important point to note is that this uses the set_task_perms() primitive to set
the task permissions to those of the thing that is being moved.

Again, by overriding the verb definition on an object, it is possible to augment or
change the way an object is moved. For example, you could keep a list of places
visited by simply recording the where objects in a list every time this function is
called.

Chapter 1: The LambdaCore Classes 6

Verbnum accept (obj thing)
This verb is used to control what objects are permitted to be placed inside other
objects. If this verb returns ‘0’, then the object where cannot be moved into this
object. Conversely, if the verb returns a non-zero value, the object is allowed to be
placed inside this object. The verb is called by the server when it executes a move()
primitive.

The $root_class definition returns a zero value. In this case, no objects are allowed
inside any objects that are children of the $root_class. The $room class definition
provides for a flexible scheme using various different criteria, as shown in the following
code :

what = args[1];
return this:is_unlocked_for(what) &&

(this.free_entry ||
what.owner == this.owner ||
(typeof(this.residents) == LIST && what in this.residents));

Starting at the top of the conditional expression, we see the locking condition being
checked. If the room lock forbids this object to enter the room, then the :accept
verb returns zero.

If this is not the case, then we consider the value of the free_entry property. If this
is set to a non-zero value, then the object is allowed to enter the room.

If the owner of an object is the owner of a room, the object is allowed to enter.

Finally, if a residents list is defined in the room, and the object is in the list, then
it is allowed to enter.

This complex set of conditions shows how an arbitrary set of criteria can be applied
to the movement of objects into other objects.

Verbobj match (string name)
This verb is used to find things that are located within this object. It tries to match
name to something in the contents list of this object, using object names and object
aliases. This verb uses the $string_utils:match() verb to do the actual searching.
If a match is found, the object that matched is returned. If more than one object
matches, then $ambiguous_match is returned. If no match is found, then $failed_
match is returned.

Verbnone exam*ine ()
This prints out some useful information about the object to the player. It is provided
as a player command, to allow every player to determine basic information about any
other objects they come across. For example,

>exam #0
The System Object (#0) is owned by Wizard (#2).
Aliases: The, Known, and Universe
(No description set.)

The idea is to allow every player to discover the owner, full name, description and
aliases of any object.

Chapter 1: The LambdaCore Classes 7

If you control the object, the lock for the object is shown. If the object has other
objects inside it, then the contents list is printed out, too. If the object has verbs
defined on it, then these verbs are listed, provided they are readable, and have not
been hidden by setting the argument specifiers to the triplet ‘this’, ‘none’ ‘this’.

Verbnone tell lines (list strings)
This outputs out the list of strings strings to the object, using the tell verb for this
object. Each string in strings is output on a separate line.

Verbnum set name (string value)
This verb sets the name of the object to value. It returns ‘1’ if the name was set to
the value successfully, otherwise it returns ‘0’. This verb, and the :title verb are
used to control access to the name property of an object.

Verbnum is unlocked for (obj thing)
Returns ‘1’ if the object is unlocked for the argument. If the value of this.key is zero,
the object is unlocked. If this is not the case. the verb $lock_utils:eval_key() is
used to determine the result.

Verbstring title ().
This verb is used to get the name property of this object.
One example where it might be useful to redefine this verb is if you want to add an
honorific or descriptive phrase to the end of your name. By overriding the :title
verb, you can append anything you like to the :name property of the object.

Verbnone recycle ()
This verb contains no code for the $root class. It is called by the recycle() primitive
just before an object is recycled. This is useful to make sure that recycling objects
does not leave the database in a strange state. For example, the $exit class uses
the :recycle verb to remove the exit from the the entrance and exit lists of its
destination and source rooms.

Verbstring titlec ()
This verb performs the same function as the title verb, but returns a capitalised
version of the name property of the object, using the $string_utils:cap_property
verb.

Verbnone eject ()
This verb is used to remove something from the contents of an object. The owner of
an object, or a wizard, can use this verb to eject a victim from inside the object. The
victim is sent to $nothing, for most objects, or to $player_start if the victim is a
player.

The root class defines a few basic properties that every object has. The verbs discussed
above make reference to these properties - as well as the built in properties name, owner,
location, contents, programmer, wizard, r and w. The following properties are defined
for the root class:

Chapter 1: The LambdaCore Classes 8

Propertykey
This is used to determine what, if anything, an item is locked to.

Propertyaliases
This gives a list of the alternative names that can be used to refer to an object.
The value of this property should be a list of strings, the various alternatives for
naming the object. Note that the name of the object in question should be included
in this list, because the built in name matcher uses only the aliases property when
searching for matches.

Propertydescription
This is a string or list of strings giving the description of the object - what we see
when we look at the object.

1.1.2 The Room Class

The Room Class is the basic class from which all the rooms in the virtual world are
descended. It is one of the very basic classes essential to constructing a virtual world; an
exit is the other essential class.

A room can be thought of as a container for players and objects. It can have a number
of exits that connect it to other rooms. These exits are directed; they lead from one room
to another room. For a two way passage to exist, two exits are needed, going in opposite
directions.

The room class defines a lot of verbs, which are used to provide an interface to the
properties of the room.

One special point is worth noting about rooms and exits. An exit can have an arbitrary
name - indeed, this is the usual case. In order for the room to recognise the exit name, and
match it up with an exit that exists in the room, some form of catchall mechanism is used.
If a player types a sentence that the parser cannot match with anything, it executes a verb
called :huh in the current room, if one exists.

When this happens, the :huh verb is free to take the player’s sentence, search for a
valid exit, and act accordingly. This mechanism provides a very flexible arrangement for
dealing with exits, and also allows a degree of player help to be added. If a close match
to a command is found, the huh verb could detect this and provide a useful response that
would help the player construct the correct sentence.

The following section lists the verbs defined for the $room class. Those verbs which are
more properly described as player commands are detailed in a preceding section.

Verbnone confunc ()
This verb is called by the LambdaMOO server when a player connects in a room.
The action coded into the $room class simply shows the player what the room looks
like (using the :look_self verb of the room) and tells everyone else in the room that
the player has connected.

Chapter 1: The LambdaCore Classes 9

Verbnone disfunc ()
This verb is called by the LambdaMOO server when a player disconnects from the
game. The $room class definition of this verb moves the player home if s/he is not
already there, using the :moveto verb on the player. One possible enhancement of
this verb, already implemented in some MOOs, is to include a time delay between
disconnection and movement of the player to his/her home. This would allow some
tolerance of disconnection due to network problems.

Verbnone say (string message)
This verb provides one of the basic ways in which players communicate. The action
of the :say verb is very simple: it :tells the player what s/he has just said, and
tells everyone else what the player said. The text spoken is passed to all the objects
in a room, not just the players, through the :tell verbs on the objects in the room.

By overriding this verb, it is possible to provide all sorts of effects that work on
everything said in the room. For example, you could redirect messages to other
rooms, or repeat messages to provide cavernous echoes.

Verbnone emote (string message)
This verb is used for the pose type of interaction with other players. It functions in
a similar way to the :say verb, but instead places the player’s name at the front of
the text. The actual output is done in two stages. The :emote verb is responsible for
telling the player the action s/he has just performed. The emote1 verb is then called
to tell the other objects in the room of the pose action. This provides a two stage
mechanism; either or both of the verbs can be overridden to provide special effects.

Verbnone emote1 (string message)
This verb is invoked by the emote verb to send the emote text to the other objectss in
the room. By overriding this verb, it is possible to create special effects for emote ac-
tions that are only seen by the other people in a room. :emote1 uses $room:announce
to send it’s message.

Verbnone announce (string message)
This verb is a general purpose verb used to send a message to every object in the
room except the player that invoked it. This is intended to be the way other verbs
pass messages to objects in a room. For example, when an exit is activated, it uses
:announce to inform the other players in the room of what has happened.

Verbnone announce all but (list @args)
This general purpose verb is used to send a message to everyone in the room except
a particular object. This can be used in situations where we wish to present one view
to the world in general, and another view to a particular object, normally a player.
Another common usage is to prevent robots that trigger actions based on a redefined
:tell() verb on themselves from recursing, using something like

place:announce_all_but(this, "message");

Chapter 1: The LambdaCore Classes 10

Verbnone huh (string sentence)
This verb is a stub used to call the huh2 verb. It is called by the LambdaMOO server
when it can’t match a sentence given to it by a player. The server calls :huh with
verb equal to the actual verb in the erroneous command line. This means it is not
possible to use pass() if you override :huh in a room; it would pass control up to
a verb on the parent named verb, i.e., whatever the verb was on the command line.
This, by definition, doesn’t exist. To get around this, and allow you to use pass() to
get the default :huh behaviour, :huh calls :huh2. You should override :huh2 if you
wish to be able to use pass() to get the default :huh behaviour.

Verbobj match exit (string exit)
This verb is used to determine if exit is the name of an exit leading out of the room.
It performs a simple string match on the names and aliases of the objects in the exits
list stored as a property of the room. The intent here is to allow for more sophisticated
matching algorithms to be implemented. One might even go so far as implementing
a fuzzy matching scheme, to allow for player misspellings. If a successful match is
made, this signifies that an exit with the name exit leads from this room. It’s object
number is returned. If more than one match is found the value $ambiguous_match is
returned. If no match is found, the value $failed_match is returned.

Verbnum add exit (obj exit)
This verb is used to add exit to the list of exits leading out of the room. This verb,
and the :match_exit verb provide the interface to the room exits list. The way in
which exits are stored, removed and matched has been separated from the interface
so that different implementations of the exits concept can be used in different sub
classes of the $room class.
If it is not possible to add exit to the room’s exit list (normally because the object
that invoked the verb does not have the required permission) then the verb returns
‘0’. Otherwise, a successful addition returns ‘1’.

Verbnone tell contents ()
This verb tells us what things are visible in the room. It goes through the contents
list of the room, and if it is not dark, prints the name of the object in a nicely
formatted way. Three different formats are available depending on the value of the
ctype property of the room. These are best illustrated by example.
Consider the a room in the LambdaCore database. With a ctype value of three (the
default), the tell_contents verb produces the following output:

You see a newspaper and a fruitbat zapper here.
Wizard is here.

This format provides the separation of player objects from other objects, and provides
the list in a way that fits in with the idea of a virtual reality. It is easy to read, and
looks natural.
If the ctype value is changed to 2, the following is printed:

You see Wizard, a newspaper, and a fruitbat zapper here.

This format treats players and objects the same, and is useful if you wish to hide the
fact that an object is not a player, or vice versa.

Chapter 1: The LambdaCore Classes 11

With a ctype value of one, the following is seen:
Wizard is here.
You see a newspaper here.
You see a fruitbat zapper here.

This format provides the advantage of having each item on a separate line, although
it does mean that rooms with a large number of objects in might have excessively
long contents lists.
Finally, with a ctype of zero, the following is seen:

Contents:
Wizard
a newspaper
a fruitbat zapper

This is the sort of listing obtained in traditional TinyMU* games. It benefits from
clarity, but is not as natural as any of the other forms.
If a value of ctype is set that is outside of the range zero thru three, then no contents
list is printed. This can be useful if you want to handle the room contents listing as
part of the description of the room. Also, if the dark property of a room is set to a
non-zero value, then no contents list is printed.
As usual, this verb can be overridden to provide special effects. For example, you
could apply a filter so that certain objects do not appear in the printed contents of
a room, even if they appear in the contents list. This can be use to hide objects, for
example, as part of a puzzle, or to vary how objects are seen, for example if you are
looking through water at something.

Verbobj match object (string name)
This is the verb used to search the player’s locale for an object that has the name
or pseudonym name. This verb handles mapping of me to the player object, here to
the player’s location as well as the use of #<number> to refer to a particular object.
If none of these cases match, the verb searches the room contents and the players
contents (or possessions) for a match. If a match is found, then the unique object
number is returned. If name matches more than one object, then $ambiguous_match
is returned. If no match is found, then $failed_match is returned.
The verb :match_object is the one to use to map names of objects to object numbers,
when referring to objects that the player is able to see in his current location. This
includes objects that the player might be carrying, but does not include objects that
are contained in other objects.

Verbnone @exits ()
This verb is a player command used to print a list of the exits in a room. It can only
be used by the owner of the room. The verb simply runs through the list of defined
exits, stored in the property exits, and prints the exit name, object reference number,
destination name, and exit aliases.

Verbnone look self ()
This verb overrides the $root_class definition of the verb :look_self in order to
provide a fuller description of a room than the description property gives. This

Chapter 1: The LambdaCore Classes 12

verb prints the room name, followed by the room’s description property, and then
the list of contents of the room, using the room’s :tell_contents verb. This is what
the player would see if he was looking at the room.

The description property of the room is actually printed by using the pass() prim-
itive to invoke the parent verb :look_self). Changes in the way an object’s descrip-
tion is stored by the root class are invisible to this verb, because of the way pass is
used.

Verbnum accept (object thing)
This verb overrides the $root_class definition. The $room_class definition provides
for a flexible scheme using various different criteria. The idea is to allow the builder
flexibility in preventing objects from moving into the room. The following code shows
how the $room:accept verb decides whether to allow thing to enter the room or not.

what = args[1];
return this:is_unlocked_for(what) &&

(this.free_entry ||
(what==this.blessed_object&&task_id()==this.blessed_task) ||
what.owner == this.owner ||
(typeof(this.residents) == LIST && what in this.residents));

Starting at the top of the conditional expression, we see the locking condition being
checked. If the room lock forbids this object to enter the room, then the :accept
verb returns zero.

If this is not the case, then we consider the value of the free_entry property. If this
is set to a non-zero value, then the object is allowed to enter the room. This is used to
provide public places, where anything and everything is allowed to enter. The default
value of this property is 1.

If the object has been blessed for entry into this room, and the task that is moving the
object is the same as the task that requested the blessing, then the object is allowed
to enter. Refer to the :bless_for_entry verb for further details on the concept of
blessed objects.

If the owner of an object is the owner of a room, the object is allowed to enter. This
is a general rule used as a catch-all case. It can be overridden by specifically locking
against an object, but as a rule, it is desirable for objects owned by the room owner
to be allowed to enter.

Finally, if a residents list is defined in the room, and the object is in the list, then
it is allowed to enter. This concept can be used to define a set of objects that are
allowed to enter the room without specifying a long and complex locking condition.

Verbnum add entrance (obj entrance)
This verb functions similarly to the :add_exit verb, but applies to $exit objects
that lead into the room. If we imagine an $exit object as a flexible tube connecting
two rooms, then the concept of specifying both ends of the tube seems natural. It is
not usual to search the entrance list for a match, as you would with the exit list, but
the concept of an entrance is included to cover unexpected cases.

Chapter 1: The LambdaCore Classes 13

If it is not possible to add entrance to the room’s entrance list (normally because the
object that invoked the verb does not have the required permission) then the verb
returns ‘0’. Otherwise, a successful addition returns ‘1’.

Verbnone bless for entry (obj thing)
This verb is called by an exit to allow an object special permission to enter a room.
Two properties on the room store thing and the task_id of the calling task. The
idea behind blessed objects is to allow an object temporary permission to enter. The
permission is only granted if the request is made by an object that is an entrance into
the room.

The idea here is that a normally inaccessible room can be entered providing you use
an exit that leads into the room. In addition, the task ID of the task that asked for
the blessing is stored, so that there is no way an object can become blessed, and then
later gain entry to the room. The object being blessed is only allowed to enter once
per blessing. Once the object has moved into the room, it’s blessed status is removed
by resetting the blessed_object property in the room to $nothing.

Verbnone @entrances
This verb is a player command used to list the entrances to the player’s current
location. Only the owner of a room may list it’s entrances. For every object kept
in the room’s entrances list, the exit name, object reference number and aliases are
displayed to the player.

Verbnone go (list args)
The verb is a player command used to move from one room to another. One special
feature of this command is that it allows the player to string together a number of
different movement commands into one use of the ‘go’ command. This can save typing
when we know where we want to go. The code for this verb is shown below:

for dir in (args)
exit = player.location:match_exit(dir);
if (exit < #0)

player:tell("Go where?");
else

exit:invoke();
endif

endfor

This simply moves through the list of exits given in args, matching the exit name in
the current room, and invoking the exit if a valid match is found.

Verbnone look ()
This verb is a player command used to look at various things in the player’s current
location. It can be used meaningfully in other verbs, however, if the verb is called
with no arguments. In this case, it calls the :look_self on the room which the verb
was invoked on. You could use this verb to print the description of a room you are
not in, but it is stylistically better to use the :look_self() verb of the room.

Chapter 1: The LambdaCore Classes 14

If a preposition is supplied, via this verb being invoked as a command, and the
preposition is not ‘on’ or ‘in’, then the verb attempts to match the direct object with
something in the room. If the match succeeds, the :look_self verb of the matched
object is called to tell the player what the object looks like.

If the preposition is ‘on’ or ‘in’, then the player wishes to look inside a container
of some sort, be it a member of the $container class, or in a player’s inventory,
for example. An attempt is made to match the indirect object with something in
the room. If it succeeds, then an attempt is made to match the direct object with
something inside the container previously matched. If this final match is made, the
:look_self verb of the matched object is invoked to print it’s description.

If the direct object is the empty string, ‘""’, then the container’s :look_self verb is
called to print it’s description.

Any ambiguous or failed matches produce suitable error messages.

Verbnone announce all (list @args)
This verb is another general purpose verb used to send a message to every object in
the room. It is used for messages that we wish everyone to see, with no exceptions.

Verbnone enterfunc (obj thing)
This verb is invoked by the LambdaMOO server when an object moves into a room,
as part of action of the move primitive. The actions taken for a room are very straight-
forward. If thing is a player object, then we tell the player where s/he has moved into
using the $room:look_self verb on the room. If the object is the blessed object for
this room, then the blessed_object property for the room is reset to $nothing. For
further details on blessed objects, refer to the description of $room:bless_for_entry.

Verbnone exitfunc (obj thing)
This verb is invoked by the LambdaMOO server when an object is moved out of a
room, as part of the action of the move primitive. The action defined for the $room
class is to do nothing.

This verb, and the :enterfunc verb, can be used for a variety of effects that need
to take note of objects moving in and out of rooms. For example, consider a torch
object that casts light on it’s surroundings. When the torch is moved out of a room,
the light that is casts moves with it. This can be tackled using the room’s exitfunc,
which could check if the object leaving is a torch, and if it is, the room could become
dark. Similarly, when the torch enters a room, the enterfunc can be used to detect
this, and brighten the room accordingly.

Verbnum remove exit (obj exit)
This verb performs the opposite function to the :add_exit verb. It removes exit
from the room’s list of exits. If it is not possible to remove exit from the room’s exit
list (normally because the object that invoked the verb does not have the required
permission) then the verb returns ‘0’. Otherwise, a successful addition returns ‘1’.

Chapter 1: The LambdaCore Classes 15

Verbnum remove entrance (obj entrance)
This verb performs the opposite function to the :add_entrance verb. It removes
entrance from the room’s list of entrances. If it is not possible to remove entrance
from the room’s entrance list (normally because the object that invoked the verb does
not have the required permission) then the verb returns ‘0’. Otherwise, a successful
addition returns ‘1’.

Verbnone @add-exit
This is a player command used to add an exit to the current room. This is normally
used when someone else has created an exit they want to lead out of a room you
own. The verb matches the direct object string with an object in the room to get the
object reference number for the exit. If the object found is not a descendant of the
$exit object, the verb is aborted with an error.
Otherwise, if the destination of the exit is readable and leads to a valid room, an
attempt is made to add the exit using the room’s :add_exit verb. If this fails, a
suitable error message is sent to the user.

Verbnone @add-entrance
This is a player command used to add an entrance to the current room. This follows
much the same sequence as for the ‘@add-exit’. An attempt is made to match the
direct object supplied with an object in the room. If this fails, the verb is aborted
with a suitable error message.
Otherwise, if the object found is a descendant of the $exit class, then the exit is
checked to make sure it goes to this room. If this is the case, then the exit is added
as an entrance using the room’s :add-entrance verb.

Verbnone recycle ()
This verb is called by the LambdaMOO server when a room is recycled. When a
room is recycled, something has to be done with the room’s contents, both players
and objects, to stop them ending up in $nothing. This is done by trying to move
everything home. The code to do this is shown below:

for x in (this.contents)
if (is_player(x))

if (typeof(x.home) == OBJ && valid(x.home))
x:moveto(x.home);

endif
if (x.location == this)
move(x, $player_start);

endif
elseif (valid(x.owner))

x:moveto(x.owner);
endif

endfor

The main loop goes through the complete contents list of the room. If the object is
a player, then it is moved home, using it’s :moveto verb, or to the $player_start
room, using the move() primitive. All other objects are moved to the inventories of
their owners.

Chapter 1: The LambdaCore Classes 16

Note that if the attempt to move an object fails, then no action is taken. The server
will place all objects still in the room into $nothing when the room is recycled.

Verbnone @lastlog ()
Commabdnone @lastlog (player)

This verb is a player command used to list the times that players last connected to
the MOO. If player is supplied, by invoking the verb as a command, only the last
connect time for that player is shown.
If no argument is supplied, the verb uses the players() primitive to return a list of all
players in the database. It then looks at each players last_connect_time property,
and places a particular list, depending on whether the player conncted within the last
day, week or month or longer.
When all players have been placed in one or other of the lists, they are printed
out, along with the exact connect time as found in the player’s last_connect_time
property.

Verbnone n*orth/e*east/w*west/s*south ()
Verbnone northwest/northeast/southwest/southeast ()
Verbnone up/down ()

In general, when a player wants to move out of a room using an exit, the recognition
of the exit name is done by the :huh and :huh2 verbs for the room. However, to cope
with the most common cases, verbs are defined for each of the compass directions
and up and down. The code for these verbs is the same, and is shown below as an
example:

exit = this:match_exit(verb);
if (valid(exit))
exit:invoke();

elseif (exit == $failed_match)
player:tell("You can’t go that way.");

else
player:tell("I don’t know which ’", verb, "’ you mean.");

endif

What this does is check to see if the exit is defined for the room. If it is, then the
exit is :invoked. If not, a suitable message is sent to the player.
This case is included simply to speed up processing for certain common cases.

Verbnone explain syntax (string verb)
This verb is used to provide helpful information to the player should s/he fail to
enter a command correctly. It is called by the :huh2 verb as a last resort to process
the player command. The verb follows the parser’s search path for verbs looking for
a match with verb. If one is found, this means that the parser rejected the match
because the argument’s did not match.
Having established this, :explain_syntax compares the user input to the verb ar-
gument definition, and prints some explanatory text to try and help the player enter
a correct command. This verb usually catches mistakes such as entering the wrong
preposition, or forgetting to use an indirect object. It is provided as part of the $room

Chapter 1: The LambdaCore Classes 17

class to allow other room subclasses to provide more specific help for certain verbs
defined in their rooms, if the user should make an error trying to use one of them.

Verbnone huh2 (list args)
This verb is called by the huh verb to handle commands that the parser couldn’t
sensibly pass to another object. In the case of a room, the verb covers a number
of different possibilities. First, the sentence is checked to see if it matches any of
the exits that lead out of the room. This is done using the match_exit verb. If a
matching exit is found then the :invoke verb for the exit is called, which causes it
to be activated. This provides for a flexible approach to handling exits.
If this does not produce a sensible match, then the verb is treated in one of two ways.
If it starts with an ‘at’ (@) character, then we attempt to match the remainder of the
verb in the sentence with a message field on the direct object. A message field is a
property whose name ends in "_msg". If a match is found, then this is treated as a
field setting command. This approach is used to avoid having to define a verb for
every message field that can exist on an object. It also allows players to add extra
message fields to objects simply by ending the name of the property with "_msg".
For example, if you define a message on an object called foobar_msg then you can
set the message with the command

@foobar <object> is <message text>

If the verb does not start with an ‘at’ (@) character, then we call the :explain_syntax
verb. This tries to match the verb with a verb defined on the player, room, direct
object (if any) and indirect object (if any). If a match is found, the syntax of the
verb (ie, number and type of arguments and prepositions) is checked, and a useful
message sent to the player.
This approach is taken to provide flexibility. By not placing this sort of code within the
server, the LambdaMOO administrator has the choice of changing the way erroneous
commands are handled. One application could be an augmentation of the basic huh
action to log failed commands in a list somewhere. This mechanism, long used in
other MUDs, can provide a builder with an idea of what other players have tried (and
failed) to do in his or her areas.

Verbnone @eject object
This verb is a player command used to remove unwanted objects from places that
you own. It can be used to remove objects, which are sent to $nothing and players,
which are sent to $player_start.
The verb first matches the supplied object with something in the room. If a match
is found, and the player controls the current room, then the ejection messages are
printed, and the victim’s :eject verb is invoked to actually remove the object.

Verbstring ejection msg ()
Verbstring oejection msg ()
Verbstring victim ejection msg ()

These three verbs return the messages used by the @eject mechanism. The code for
the verb is shown below, as it illustrates how to deal with multiple messages with a
single verb:

Chapter 1: The LambdaCore Classes 18

set_task_perms(caller_perms());
return $string_utils:pronoun_sub(this.(verb));

Note the permission setting at the start of the verb. This is necessary because the
verb is owned by the Wizard, and hence would have permission to read the ejection
messages on any object. By restricting the permissions of the verb to those of the verb
that called it, this verb restricts who may access the ejection messages on objects.

The following properties are defined for the $room class:

Propertyvictim ejection msg
This is a string containing the message sent to objects that are ejected from a room
by the owner. It is sent to the victim by the room’s :@eject verb.

Propertyejection msg
This is a string containing the message sent to the owner when they eject an object
from the room. It is printed by the room’s :@eject verb.

Propertyoejection msg
This is a string containing the message sent to everyone else in a room when the
owner ejects an object. It is printed by the room’s :@eject verb.

Propertyresidents
This is a simple list of objects that have their homes in this room. It is examined by
the :accept verb on the $room class as one of the criteria used to determine whether
an object is allowed to enter the room or not. The @sethome verb could be enhanced
to include players as residents when their home is set to be a particular room.

Propertyfree entry
If this is set to a non-zero value, then the room is considered public and any object is
allowed to move in to the room. Setting the value to zero will stop objects that do not
meet any of the other acceptance criteria from entering. Refer to the $room:accept
verb for further details on these criteria.

Propertyentrances
This is a simple list of the exits that lead into this room. It is manipulated by the
$room:add_entrance and $room:remove_entrance.

Propertyblessed object
This contains the object number of the object that has been blessed for entry into
this room.

Propertyblessed task
This contains the task ID of the task that requested an object be blessed for entry
into the room.

Chapter 1: The LambdaCore Classes 19

Propertyexits
This is a simple list of the exit objects that lead out of this room. It is manipulated
by the $room:add_exit, $room:remove_exit and $room:match_exit verbs.

Propertydark
If set to a non-zero value, then this property inhibits display of the contents of a
room when the $room:look_self verb is invoked. It can be used, for example, in
rooms where a large number of objects are likely to be located, that you do not
wish to see (for instance, a limbo type room, where sleeping players and lost objects
reside.). If the dark is set to zero, then the contents of a room are displayed when
$room:look_self is invoked.

Propertyctype
This property determines the format of the room contents list, as printed by the verb
$room:look_self. It can take a value between ‘0’ and ‘3’. An example for each of
the contents formats is given below.

0: Traditional TinyMU* format.
Contents:

Wizard
a newspaper
a fruitbat zapper

1: Enhanced TinyMU* format.
Wizard is here.
You see a newspaper here.
You see a fruitbat zapper here.

2: "All-in-one" format.
You see Wizard, a newspaper, and a fruitbat zapper here.

3: The default, objects and player descriptive format.
You see a newspaper and a fruitbat zapper here.
Wizard is here.

1.1.3 The Thing Class

The $thing defines verbs and properties for objects that exist in the virtual world.
This class includes everything that is not a player, room or exit. For example, the classes
$container and $note are descended from the $thing class. The two basic operations
that can be performed on a thing are picking it up and putting it down. Two verbs are
defined for the $thing class to implement this idea. Configurable messages are used, so
that someone using an object of this class can set the text printed when an attempt is made
to take an object. No messages are available for the case of dropping an object.

Chapter 1: The LambdaCore Classes 20

Verbnone g*et ()
Verbnone t*ake ()

One or the other of these verbs is invoked when a player tries to take possession of
an object i.e., pick it up. The code involved is fairly straightforward. It checks to see
if the player already has the object, and prints a suitable message if this is the case.
If not, then the :moveto verb on the object is invoked. If this results in the object
moving into the player’s inventory, then the take_succeeded messages defined on
the object are printed. If the :moveto failed, then the take_failed messages for the
object are printed.
This scheme allows you to add extra conditions to restrict whether a player can take
an object or not. For example, you may place a notion of strength onto a player, and
add weight to objects. If an object is too heavy for a player to lift, then the object
cannot be taken by the player. This sort of condition should be added to the :take
verb for the object.

Verbnone d*rop ()
Verbnone th*row ()

One or the other of these verbs is invoked when a player tries to place an object in the
room s/he is currently located, i.e., when the player tries to drop the object. Again,
the code is fairly straightforward. If the object is not located on the player, then a
suitable message is sent to the player telling him/her to check his/her pockets. If the
player does possess the object, and the current location :accept verb indicates that
the room will allow the object to be dropped, the object :moveto verb is invoked to
move the object from the player’s inventory to the contents list of the player’s location.
Suitable messages are printed to inform the player that the action succeeded, and to
tell other people in the room that the object has just been dropped.

Verbnone moveto (obj where)
This verb should be used to move an $thing object from one location to another.
It checks to see that where is a valid object, and that the lock on wher permits the
object to enter. If this is the case, then the $root_class:moveto verb is invoked to
actually move the object, using pass(where).

Verbstring take failed msg ()
Verbstring take succeeded msg ()
Verbstring otake failed msg ()
Verbstring otake succeeded msg ()
Verbstring drop failed msg ()
Verbstring drop succeeded msg ()
Verbstring odrop failed msg ()
Verbstring odrop succeeded msg ()

These eight verbs are used to access the message fields used by a $thing object. In
each case, the value returned by the verb is a a version of the corresponding "_msg"
property of the object, with standard pronoun substitutions performed. This allows
the messages to be more flexible than simple constant text strings. If extra complexity
were to be added to the messages, then these verbs should be overridden.
The default values of these strings are shown below:

Chapter 1: The LambdaCore Classes 21

drop_failed_msg
"You can’t seem to drop %t here."

drop_succeeded_msg
"You drop %t."

odrop_failed_msg
"tries to drop %t but fails!"

odrop_succeeded_msg
"drops %t."

otake_succeeded_msg
"picks up %t."

otake_failed_msg
""

take_succeeded_msg
"You take %t."

take_failed_msg
"You can’t pick that up."

The following properties are defined for the $thing class. They are the messages used
by the $thing:take and $thing:drop verbs in various situations. All of these message can
use standard pronoun substitutions.

Propertyotake succeeded msg
This message is the text sent to other people in the thing’s location when the thing
is taken by another object. The default value of this string is ‘picks up %t.’

Propertyotake failed msg
This message is the text sent to other people in the thing’s location when an attempt
by another object to take the thing fails. The default value of this string is ‘’

Propertytake succeeded msg
When an object successfully takes a thing, this message is sent to inform the object
of success. The default value of this string is ‘You take %t.’

Propertytake failed msg
When an object unsuccessfully tries to take a thing, this message is sent to tell the
object that the attempt failed. The default value of this string is ‘You can’t pick
that up.’

Chapter 1: The LambdaCore Classes 22

Propertyodrop succeeded msg
This message is the text sent to other people in the thing’s location when the thing
is dropped by another object. The default value of this string is ‘drops %t.’

Propertyodrop failed msg
This message is the text sent to other people in the thing’s location when an attempt
by another object to drop the thing fails. The default value of this string is ‘tries
to drop %t but fails!’

Propertydrop succeeded msg
When an object successfully drops a thing, this message is sent to inform the object
of success. The default value of this message is ‘You drop %t.’

Propertydrop failed msg
When an object unsuccessfully tries to drop a thing, this message is sent to tell the
object that the attempt failed. The default value of this string is ‘You can’t seem to
drop %t here.’

1.1.4 The Exit Class

The $exit class is the other type of object used to construct the fabric of the virtual
world. You can imagine an exit to be a flexible tube connecting two $room objects. Each
$exit object goes in one direction only. It leads from a source object to a destination object.
Note that it takes no virtual time to traverse an exit. When an object moves through an
exit, it moves from one room to another instantaneously.

The verbs defined for the $exit class are fairly simple and obvious. Several messages
are defined as properties on an exit. These are pronoun substituted and printed when the
exit is invoked, under various conditions.

Verbnone invoke ()
This verb is used to trigger an exit. In the $room class, when a player elects to move
through an exit, this verb is called to move the player through the exit. The code for
this verb is very simple. It calls the exit’s :move verb, with the player object as an
argument.
This is the verb to use for moving players through exits. It does not allow objects to
be moved. For that, a direct call to the exit’s :move verb is needed, with the object
you wish to move through the exit as an argument.

Verbnone move (obj thing)
This verb is used to move thing through the exit. It provides a general mechanism for
moving any sort of object through the exit, not necessarily just players. The code for
this verb performs a number of actions. First, the lock on the exit is checked to see if
thing is allowed to use the exit. If this is not the case, the nogo_msg and onogo_msg
text is sent to thing and everyone else in thing ’s location, respectively.
If the object is allowed to use the exit, it is blessed for entry to the destination room.
This is done to ensure that the object will be accepted by the destination room. It

Chapter 1: The LambdaCore Classes 23

provides a way to stop objects moving into a room by any means other than an exit
leading into the room. By simply prohibiting all objects from entering the room, the
only way in is then to use an exit that leads into that room.

If the object is accepted by the room, determined using the $room:accept verb, then
the leave messages are printed to thing and the other people in the room. Then
thing:moveto is invoked to move the object from the current room to the destination
of the exit. Once this has been done, the arrive messages for the exit are printed
out to thing and the destination room’s occupants.

Verbnone recycle ()
This verb is defined to allow an exit to be tidily removed from the database. The
exit is removed from the entrance and exit lists of the destination and source rooms
respectively, if the caller of this verb has permission to do so. This is done using the
$room:remove{entrance|exit} verbs.

Verbnone leave msg ()
Verbnone oleave msg ()
Verbnone arrive msg ()
Verbnone oarrive msg ()
Verbnone nogo msg ()
Verbnone onogo msg

These verbs return a pronoun substituted version of the corresponding properties
stored on the exit object. They are used by $exit:move.

The following properties are defined for the $exit class. Most of them are messages
used when the exit is invoked.

Propertysource
This is the object that the exit leads out of. If the exit has been created using the
correct verbs, the exit object should be in the exits list of the source room object.

Propertydest
This is the object that the exit leads to. If the exit has been created using the correct
verbs, the exit object should be in the entrances list of the dest room object.

Propertynogo msg
This is the message printed to an object if it is unable to move through the exit.

Propertyonogo msg
This is the message printed to everyone in an object’s location if it is unable to move
through the exit.

Propertyarrive msg
This is the message printed to an object using an exit when it arrives in the destination
room.

Chapter 1: The LambdaCore Classes 24

Propertyoarrive msg
This is the message printed in the destination room of the exit when something is
moved through it.

Propertyoleave msg
This is the message printed in the exit’s source room when an object moves through
the exit.

Propertyleave msg
This is the message printed to an object using the exit as it leaves the source room.

1.1.5 The Player Class

The player class is the one of the basic classes of the virtual world. A player object is
the same as any other object, except that has it’s player bit set. This allows the server to
connect a user to that object. A number of player commands are defined as verbs of the
$player class, as well as other useful functions.

Verbnone g*et ()
Verbnone take ()

This verb is called in the situation when another object tries to get or take a player.
Given that this is a fairly nonsensical thing to do, it is not allowed. Suitable messages
are sent to the object that invoked the action, and the player object.

Verbnone i*nventory ()
This verb is used to tell a player what s/he has in his/her pockets. The code for the
verb provides the best documentation, so it is printed below. Note the use of the
thing:title verb to get the name of an object.

if (length(player.contents))
player:tell("You are carrying:");
for thing in (player.contents)

player:tell(thing:title());
endfor

else
player:tell("You are empty-handed.");

endif

Verbnone wh*isper ()
This verb is used to send secret messages between two players, as if they were whis-
pering to each other. The way this works is slightly the reverse of what might be
expected, because the :whisper verb on the person being whispered to is the one
that is invoked. The message, referred to by the dobjstr, is printed to the recipient,
with suitable text surrounding it to indicate that is it a whisper.

Verbnone look self ()
This verb overrides the $root_class definition to provide an indication to other
players of whether this player is currently active or not. It uses pass() to allow the

Chapter 1: The LambdaCore Classes 25

parent class to print a description, and then looks at the connected_players() list
to determine if this player is currently connected. If not, then the text

He is sleeping

is printed. If the player is connected, and has been idle for less than 60 seconds, then
the string

He is awake and looks alert

is printed. If the player is connected, but has been inactive for more than 60 seconds,
the string

He is awake, but has been staring off into space for X

is printed, where X is an indication of the time the player has been inactive. The
gender pronoun inserted is taken from the pronoun list for the player. This means it
can vary with the gender of the player object.
If the player is carrying any objects, a simple list of these is printed.

Verbnone @gag (args)
The concept of gagging is fairly simple to understand. If there is a player or object
you do not wish to see any output from, then you can place the player or object into
your gag list. If any output is sent to you from that object, using it’s :tell verb,
then it is ignored, and not printed on your terminal screen.
Two gaglists are maintained: one for players, in the property gaglist and one for
objects, in the property object_gaglist.
Three verbs are used to maintain and observe the list of objects that are in the gag
lists. The @gag verb is used as a player command to add objects to the gag lists. The
code for this is fairly straightforward, and is included below:

if (player != this)
player:tell("Permission denied.");
return;

endif
victims = $string_utils:match_player(args);
if (!victims)
player:tell("Usage: @gag <player or object>

[<player or object>...]");
return;

endif
gagplayers = gagobjs = {};
for i in [1..length(args)]
if (valid(victims[i]))

gagplayers = {victims[i], @gagplayers};
elseif (valid(o = player.location:match(args[i])))

gagobjs = {o, @gagobjs};
elseif (tonum(o = toobj(args[i])) && valid(o))

gagobjs = {o, @gagobjs};
else

player:tell("Could not find ", args[i], " as either a player or an object.");
endif

endfor

Chapter 1: The LambdaCore Classes 26

changed = 0;
for p in (gagplayers)
if (p in player.gaglist)

player:tell("You are already gagging ", p.name, ".");
else

changed = 1;
player.gaglist = setadd(this.gaglist, p);

endif
endfor
for o in (gagobjs)
if (o in player.object_gaglist)

player:tell("You are already gagging ", o.name, ".");
else

changed = 1;
player.object_gaglist = setadd(this.object_gaglist, o);

endif
endfor
if (changed)
fork (0)

this:("@listgag")();
endfork

endif

Note that you can only manipulate your own gag list. Other objects cannot change
your gag list. Another interesting point is the call to @listgag, after the new objects
have been added to the gag list, to print the current gag list.
The code first tries to match the argument list against the players in the database,
using $string_utils:match_player(). Then, for each argument given, if a match
was not found using that method, a match for an object in the room is tried, using
the utility routine $string_utils:match_object(). If this fails, the argument is
rejected.
This results in a list of objects to be added to the player’s gag lists. Any objects
already in the player’s gag lists are removed from the to do list. If this yields an
empty to do list, the command is aborted. Any objects that are not already in the
gag list are added to it.
Finally, this:@listgag is called to print the list, if it has changed.

Verbnone @listgag ()
This verb is used as a player command to list the objects in the player’s gag lists. If
the gag lists are not empty, a list of the names of the players in the gaglist property
on the player, and the objects in the object_gaglist property are produced.
The verb uses a test based on the callers() primitive, to determine if it is being
called by another verb, or invoked by a player as a command. If callers() returns a
null list (and hence is not TRUE, then the verb is being invoked as a player command.
This affects the text printed by the verb.
In addition, the verb checks through the gag lists of all the player’s in the database,
to see if the player who invoked the command is listed in anyone else’s gag list. If
this is the case, a list of the people doing the gagging is printed.

Chapter 1: The LambdaCore Classes 27

Verbnone @ungag (args)
This verb is used as a player command to remove an object from one of the player’s
gag lists, if it is a member. The dobjstr is used as the name of the thing to remove
from the gag list.
If this name is ‘everyone’ then the player gag and object gag lists are reset to the
empty list. Otherwise, if a valid direct object has been referred to, by checking dobj,
that is used as the object to gag. Otherwise, an attempt is made to match the
dobjstr with something in the player gag list. If no match is found, it is retried with
the object gag list. If this fails, the command is aborted with an error message.
If a valid match is found, it is removed from the relevant list, and the player informed.
@listgag is used to print the list after the operation has been completed.

Verbnone news ()
This is a very simple verb used as a player command to print out the current MOO
news. It makes a simple call to the verb $news:read to actually perform the reading
task.

Verbnone @gripe (args)
A gripe is a player complaint or observation that is sent, using MOO mail, to all the
administrators in the game. It is intended to provide a way to report problems with
the MOO in a high-priority way that will attract the attention of the people who can
do something about it. A good example of the use of a gripe is to complain about a
bug in one of the core classes, or maybe even a request for something to be added.
The implementation of the gripe concept involves a property on the System Object
called $gripe_recipients. This is a list of all the players who will be mailed the
@gripe message. When a player types in @gripe they are taken to the mail room to
enter their message. Any text entered on the line with the @gripe command is taken
to be the subject of the gripe message. When the message is finished and sent, it is
received by all the people on the $gripe_recipients list.

Verbnone gi*ve ()
Verbnone ha*nd ()

This verb is a player command used to exchange objects between players. It performs
a :moveto on the direct object to the inventory of the indirect object. If, after the
move, the object is still in the possession of the donor, then it is obvious that the
recipient has rejected the gift. If this is the case, a suitable message is printed to the
doner.

Verbnone ? help info*rmation ()
This verb is a player command used to activate the help system. It is described more
fully in the section on the help system.

Verbnone @password ()
This verb is a player command used to change a player’s password. A player’s pass-
word is stored in a property on the player called, surprisingly enough, password. The
crypt() primitive is used to store the password in encrypted form, using the standard

Chapter 1: The LambdaCore Classes 28

UN*X encryption algorithm. Note that you need to know your old password in order
to change it, unless a password has not been previously set for this player.

Verbnone @gender (string gender)
This verb is used to set the gender of a player object. Without any arguments, it
prints the player’s gender, currently set pronouns and the available genders stored on
$gender_utils.genders.

If a gender is given as the argument, gender, then the $gender_utils:set verb is
called to actually change the player’s gender pronouns. If this verb does not return an
error, then the gender of the player is set to the full gender name which is returned.
$gender_utils:set takes care of setting the correct pronouns.

If an error is returned when trying to set the player’s gender, this could indicate that
permission to change the pronouns was denied, or some other problem existed. If a
value of E_NONE is returned by $gender_utils:set then the gender of the player is
set, but the pronouns are left unchanged.

The gender of a player is used in the string_utils:pronoun_sub verb to insert the
appropriate pronouns in places where ‘%’ substitutions have been used. When the
gender of a player is changed, it results in a set of 8 properties being assigned on
the player, one for every type of possible pronoun substitution. A further property,
containing the gender of the player, is also set, for example, to either "male", "female",
or "neuter", depending on the argument given to the @gender command.

Verbnone page (list args)
This verb is a player command used to send messages between players who are not
physically located in the same room in the virtual world. You can imagine a page to
be a worldwide form of whispering. Without an argument, a message like

You sense that blip is looking for you in The Venue Hallway.

is sent to the recipient of the page. If an argument is given, it is treated as a message
to send to the other player. This results in the recipient getting a message like

You sense that blip is looking for you in Hallway.
He pages, "Hello - are you busy ?"

Paging is used primarily to attract the attention of a player, or to pass short messages
between players in different locations. It is not intended to be used for conversation.

If a player name has been given as an argument, the :page verb first tries to match the
first argument with a player name, using $string_utils:match_player. If a match
is found, then there are two possibilities. Firstly, if the player is not connected, a
pronoun substituted version of the string returned by that player’s :page_absent_
msg verb is printed to the sender, and the verb is aborted.

Otherwise, if the recipient is connected, we send him/her the string returned by the
sender’s :page_origin_msg. We then check to see if, optonally, ‘with’ followed by a
message is part of the argument list for the verb. If so, then the message is extracted
from the argument list and sent to the recipient, suitably pronoun substituted. The
string returned by the recipient’s :page_echo_msg verb is printed to the sending
player.

Chapter 1: The LambdaCore Classes 29

An interesting piece of coding is used to stop the line containing the message from
duplicating the sender’s name if it has already been sent as part of the :page_origin_
msg. For example, if blip page’s Ezeke, Ezeke might see the following:

You sense that blip is looking for you in The Venue Hallway
He pages, "Hello"

which would be better than something like
You sense that blip is looking for you in The Venue Hallway
blip pages, "Hello"

The code in question is shown below:
who:tell($string_utils:index_delimited(pagemsg, player.name) ?

player.psc | player.name, " pages, \"", msg, "\"");

Here, the $string_utils:index_delimited() verb is used to check if the player’s
name occurs in the string we sent to the recipient as pagemsg. If it does, then we
print the player’s subjective pronoun, capitalised. If it doesn’t, we print the player’s
name.

Verbnone @rename ()
This verb is a player command used to change the name and aliases of an object
or verb. It first tries to parse the supplied direct object as a verb reference. If this
succeeds, then it tries to match the object, and then the verb name. If both are
found, the indirect object string is used to set verb name.
If the direct object string cannot be parsed as a verb, then a match is attempted using
the string as an object name. If this succeeds, then $building_utils:set_names()
is used to set the name and aliases of the matched object.
Any permission errors, ambiguous object specifications or syntax errors are flagged
appropriately.

Verbnum accept (obj thing)
This verb is used to determine if a player will allow thing to be moved into his/her
inventory. The verb defined for the $player class allows anything that is not a player
to be moved into the player’s possession. You could override this verb to restrict the
sorts of things you would want other people to be able to place on your person.

Verbnone tell ()
This verb should be used to send a message to a player. The $player:tell filters
messages in two different ways, as show below. Remember that the player referred to
in the code is the player sending the message. this refers to the player receiving the
message.

if (!this:gag_p())
if (this.paranoid == 2)

z = this:whodunnit(listappend(callers(), {player, "", player}),
{this}, {})[3];

pass("(", z.name, " ", z, ") ", @args);
else

pass(@args);

Chapter 1: The LambdaCore Classes 30

if (this.paranoid == 1)
this.responsible = listappend(this.responsible,

{listappend(callers(), {player, "<cmd-line>",
player}), args});

while (length(this.responsible) > this.lines)
this.responsible = listdelete(this.responsible, 1);

endwhile
else
this.responsible = {};

endif
endif

endif

The verb $player:gag_p returns true if the player sending the message is in the
recipient’s gag list. For this verb, the output from any gagged player is ignored, and
not printed to the recipient’s terminal.

If the paranoid level of the recipient is ‘2’, this means that they wish to see who has
sent them a message. The $player:whodunnit verb returns the object reference of
the player that sent the message. This is prepended to the message text, which is
then printed to the player.

If the paranoid level of the recipient is ‘1’, then the message and it’s originator are
stored in the property list responsible on the player. The list is kept to player.lines
length, at most. This option is used for later processing by the @check command.

Verblist whodunnit (list callers, list trust, list mistrust)
This verb runs through the list of callers until it finds an object reference that is
not a wizard, is not in the list trust, or is in the list mistrust. The verb is used by
$player:tell to locate the originator of a message. It returns a list of three elements,
in the same format as that returned by the callers() primitive:

{this, verb-name, programmer}

where this is the initial value of the variable this in that verb, verb-name is the name
used to invoke the chosen verb, and programmer is the player with whose permissions
that verb is running.

Verbnum gag p ()
This verb returns ‘TRUE’ if the current value of the player variable is in the gag list
of the object indicated by the variable this, or if a non-player object mentioned in
the gag list if the first elements of the verbs callers() list.

Verbnone home ()
This verb is normally invoked by the player as a command. The home of a player is
the room where s/he goes to when they disconnect. Unlike some flavours of MUD,
MOO does not cause you to lose all your possessions if you go home.

The :home verb performs a simple sequence. It first checks whether the player is
already at home, and tells him/her so if this is the case. Secondly, a check is made
that the player’s home (stored in the home property on the player, is a valid object.

Chapter 1: The LambdaCore Classes 31

If this is not the case, the verb sets the home to the default, $player_start, and
stops with a suitable message.

Having decided that the player has a valid home s/he is not already in, the verb
uses $player:moveto to send the player to the home location. If this doesn’t work -
checked by comparing the player’s home with the player’s location after the move -
then for some reason the player’s home location has not allowed him/her to enter. A
suitable message is printed, and no further action is taken.

Verbnone @sethome ()
This verb is a player command used to set the player’s home to be the his/her
current location. You can only set your home to a room if the room will accept you,
determined by checking the room’s :accept verb.. This allows builders to restrict
which rooms may be used by players as their homes. If the room does not allow the
player to set it as his/her home, a suitable message is printed to inform the user of
this fact. Otherwise, the player’s home property is set to the player’s current location.

Verbnone confunc ()
This verb is called when the player connects to the LambdaMOO server. It can be
used to perform actions that should be done every time the player logs in to the MUD.
This is much the same idea as having a ~/.cshrc or ~/.kshrc file that is activated
when you log into a UN*X account. The verb defined for the player class is listed
below:

$news:check(this);
for x in (this.messages)
if (x[1] > this.current_message)

this:tell("You have new mail. Type ’help mail’ for
info on reading it.");

return;
endif

endfor

This performs a couple of actions. First it calls $news:check to see whether the news
has been updated since this player last looked at it. Then it checks through the MOO
Mail list on the player to see if any mail has arrived since they were last connected.

You could place a variety of actions into this verb. For example, you may wish to
tell your friends when you log in, by sending a suitable message to them if they are
connected. Similarly, you may wish to produce a special message in the room you are
in when you connect.

Verbnone disfunc ()
This verb is invoked when the player disconnects from the LambdaMOO server. The
verb defined for the $player class does nothing. You might choose to override this
verb to print a special message when you log out, or perhaps to retrieve some of your
possessions.

Chapter 1: The LambdaCore Classes 32

Verbnone whereis (args)
Verbnone @whereis (args)

This verb is a player command used to locate a player in the virtual world. The code,
shown below, allows any player to locate any other player. If no argument is given, a
list of the locations of all the currently connected players is printed.

if (!args)
them = connected_players();

else
who = $command_utils:player_match_result(

$string_utils:match_player(args), args);
if (length(who) <= 1)

if (!who[1])
player:tell("Where is who?");

endif
return;

elseif (who[1])
player:tell("");

endif
them = listdelete(who, 1);

endif
lmax = rmax = 0;
for p in (them)
player:tell(p:whereis_location_msg());

endfor

If an argument is given, the verb attempts to match with one or more player names.
If no valid matches are found, a suitable error message is printed by invoking the verb
$command_utils:player_match_result. That verb returns a list. The first element
indicates whether any of the elements of the argument list didn’t match. The rest of
the list contains the objects references that did match.

The verb runs through the list of object references, and reports the string returned
by each player’s whereis_location_msg verb.

Verbnone @mail ()
Verbnone @rmm*ail ()
Verbnone @send ()
Verbnone @read ()
Verbnone @answer ()
Verbnone @reply ()
Verbnone @renumber ()
Verbnone receive message ()
Verbnone fix current message ()
Verbnone @next ()
Verbnone @prev ()

These functions are player commands used to access the MOO Mail system. They
are fully described in the section on the MOO mail system.

Chapter 1: The LambdaCore Classes 33

Verbnone @quota ()
This verb is a player command used to print a player’s current building quota. This
is a numerical value of the number of objects that the player may create without
recycling anything. Quotas are used to limit the number of objects that can be
created, in principle to allow the game administrators to quality control the things
that are placed in the database.
With no argument, the player’s quota is displayed, taken from the property ownership
quota. If an argument is given in the dobjst, it is taken as a player name, and
matched to find a player object reference. If one is found, and the user is a wizard, then
the value of that player’s ownership_quota is returned. Otherwise, a ‘permission
denied’ message is returned.

Verbnone @realm (args)
This is a player command used to examine the object hierarchy. The arguments can
specify the players whose objects are to be shown, the root object number to start
from, and a list of objects to miss from the tree search.
Firstly, the verb parses the arguments, to determine the root to start from, the
players whose objects we are intersted in, and any objects that are to be ignored.
Any ancestors of the root are printed by a short loop, with the owner appended in
square brackets. The verb this:realm2 is called to produce the hierarchical list of
objects to printed. A summary of the number of objects in the list, and how many
are owned by the player, is printed at the end.

Verblist realm2 (obj root, list owners, string space, list missing)
This verb puts toegther a number of lines of text indicating the object hierarchy from
the root object downwards. Only objects owned by people in the owners list are
included. Objects in the missing list are excluded. The verb is called recursively to
evaluate the descendants of each node in the tree of objects. The string space is the
visual indentation factor used to represent different levels in the hierarchy.

Verbnone @count ()
This verb is a player command used to print the number of objects owned by a
particular player. If no player name is given in the dobjstr, then the number of
objects owned by the player invoking the verb is printed. In both cases, the verb
this:count_2 is called to do the actual counting and displaying.

Verbnone count 2 (num count, num start)
This verb is called to count the number of objects owned by the player indicated by
dobj. The verb first checks the current remaining time available for it to execute
in. If it is in danger of running out of time, it forks another :count_2 verb to carry
on from where it left off. This enables the verb to count lots of objects in a large
database.
Foe each object, if it is valid, and the owner is the same as dobj, then the count is
incremented. This is performed for every object in the database, from start to the
last item.
When all the objects in the database have been looked at, the total is printed.

Chapter 1: The LambdaCore Classes 34

Verbnum set name ()
This verb is used to set the name of the player object. It overrides the verb $root_
class:set_name to provide some extra checking needed for player objects. This
checking basically stops you changing your name to be the same as another player.
Note also that spaces are not allowed in player names. If the extra checks are passed,
the parent set_name verb is called to actually set the name.

Verbnone @memory ()
This is a player command used to return memory usage statistics for the LambdaMOO
server. It uses the memory_usage() primitive to gather usage information, which is
then printed in a nicely formatted fashion.

Verbnone announce (args)
Verbnone announce all but (args)

This verb is used to call the :announce and :announce_all_but verbs in the player’s
location, if those verbs are defined, and the player is in a valid location. It is used
by noisy objects in player’s inventories that wish to broadcast messages to both the
player, and others in the surrounding room.

Verbnone @notedit (args)
This is a simple verb used as a player command to invoke the note editor on the
argument.

Verbnone @who (list names)
This verb is a player command used to determine who is currently connected to the
MOO. If names is given, it is a list of player names to display in the who list. In
both cases, the list is sorted, using $list_utils:sort_alist and displayed. Player
names, connection times, idle times and locations are displayed. Player name is
determined by getting the value of the name property on the player. Connection time
is determined by using the connected seconds() primitive. Idle time is determined
using the idle_seconds() primitive. The location is determined by the return value
of a player’s :who_location_msg verb.
A summary of player activity is attached to the end of the list.

Verbnone @typo (args)
Verbnone @bug (args)
Verbnone @suggest*ion (args)
Verbnone @idea (args)

These commands are used register a typo/bug/suggestion/idea with the person who
owns the room the player is currently in. If args is given, this is used as the text of
the message, and is delivered straightaway to the room owner.
If no argument is given, the player is taken to the mail room to compose a full message.
However, if the room the player is in does not have it’s free_entry property set, then
the verb doesn’t move the player to the mail room, as s/he may not be able to reenter
the current room after the message has been completed. Similarly, if the $generic
editor is a parent of the current room, then the move is not performed. Generally

Chapter 1: The LambdaCore Classes 35

speaking is is not a good idea to be taken to the mail room from within another
editor.

Verbnone @quit ()
This verb is a player command used to exit in an orderly fashion from the MOO
server. It simply calls the boot_player primitive to disconnect the player.

Verbnone @audit ()
This verb is a player command used to print the objects owned by this or another
player. If a direct object is given, this is taken as a player name to audit, otherwise
the current value of player is used. In both cases, the this:audit_2 verb is called
to do the actual counting and displaying of objects.

Verbnone audit 2 (num count, num start)
This verb is called by the @audit command to print the objects owned by player
given in dobj. In a similar way to @count, the verb first checks how much time it has
left. If it might run out, then it forks another occurrence of itself to carry on auditing
where it left off.

A loop is entered, running from start to the last item in the database. Each object
in the database is looked at. If it is valid, and the owner matches the dobj, then the
object name and reference number are printed, and the count is incremented.

When all the objects in the database have been covered, the total count is printed
out.

Verbnone @eject ()
This verb is a player command used to remove objects from rooms or the player’s
inventory. The indirect object is used to specify what the direct object is to be ejected
from. The special cases of ‘me’ and ‘here’ are caught and handled. Similarly, the case
where the direct object is ‘me’ is also handled.

If neither of the special cases match, the direct and indirect object are matched on,
to give an object reference to use. Suitable error messages are printed if a match
is not found. If matches are found, then a sequence of message printing is started.
The indirect object’s :victim_ejection_msg verb is invoked, and the returned result
printed to the victim. The string returned by the indirect object’s :ejection_msg is
printed to the player doing the ejecting. The result returned by the indirect object’s
oejection_msg verb is printed to everyone else in the room.

Finally, the indirect object’s :eject verb is called to remove the victim.

Verbnone QUIT ()
This player command used to be the way to disconnect from the MOO. It has been
replaced with the ‘@quit’ command. Some rooms, for example editors, define the
‘QUIT’ command. If the room the player is in has a :QUIT verb, it is called. Otherwise,
the verb prints a message telling the player to use the ‘@quit’ command.

Chapter 1: The LambdaCore Classes 36

Verbnone @unlock ()
This verb is a player command used to unlock an object. The direct object string,
dobjstr is matched to try and find an object to unlock. If a match is found, the key
property is reset to ‘0’. Any errors are reported to the invoking player.

Verbnone @lock ()
This verb is a player command used to lock an object with a specified key. It first
matches the direct object, dobj to get an object reference number. If that succeeds,
the $lock_utils:parse_keyexp() verb is called to parse the key expression given
for thelock. If that fails, a suitable error message is printed. Othwerwise, the key
property of the object being locked is set to the returned value from the parsing verb.
Again, any errors are reported to the invoking player.

Verbnone @version ()
This is a player command used to print the current server version number, using the
server_version() primitive.

Verbnone @mess*ages ()
This is a player command used to list the possible message properties (those that
end in ‘_msg’) on the dobjstr supplied. The names of the messages, along with their
current values, are displayed.

Verbnone @sw*eep ()
This is a player command used to list the objects that are capable of receiving any
messages sent out from the player in the current room. It gathers a list of the objects
in the current room, from the contents property of the player’s location. In any
element in the list is a connected player, the message

blip (#42) is listening.

is printed, for example.

If an element has a sweep_msg verb defined, the returned string from this verb is
printed, prepended by the object’s name.

If an element has a tell verb defined, and the owner is not the invoking player or a
wizard, then this object is a potential snooper, and is reported by a phrase such as:

The Fruitbat (#999) has been taught to listen by blip (#42).

The verbs ‘announce’, ‘announce_all’, ‘announce_all_but’, ‘say’, ‘emote’, ‘huh’,
‘huh2’ and ‘whisper’ are checked to see if the current room has a definition not
owned by the invoking player or a wizard. If any of these are found, a message such
as:

The Venue Hallway (#1234) may have been bugged by blip.

if the player’s location was the Venue hallway.

If no potential bugs are found, the the message ‘Communications are secure.’ is
printed, and the player can breath easily (ish).

Chapter 1: The LambdaCore Classes 37

Verbnone @che*ck (list args)
This is a player command used to check the origin of the last few messages received
by the player. The args list can contain the number of lines to print as the first
element, followed by a list of player names. Each player name in the list is a person
to be trusted, unless the name is prefixed by an exclamation point, ‘!’, in which case
the person is not to be trusted.
The verb starts by building up a list of trusted and mistrusted individuals based
on the names given on the command line. Then it runs through last n messages in
the player’s responsible property list, checking the origin of the messages using the
this:whodunnit verb with the trust and mistrust lists.
Any dubious messages found are printed, along with details of who sent them.

Verbnone @move ()
This is a player command used to move objects from one location to another. The
direct and indirect object strings are used to match an object and location to move
to. The :moveto verb on the dobj is invoked to move it to the iobj location. If the
location changes, and the object is a player, then the message

blip disappears suddenly for parts unknown.

is displayed in the player’s location before the move took place. Similarly, at the new
location, the message

blip materializes out of thin air.

is printed to the objects in the destination room. No messages are printed if an object
is moved. If a permission problem is found, it is reported to the player who typed the
command.

Verbnone @par*anoid ()
This verb is used to set the player’s paranoid level, as stored in the .paranoid prop-
erty. Three different levels are available :
• 0. The normal case, where no paranoia is applied to any messages sent to the

player.
• 1. In this case, the anti-spoofer is enabled, and the value of the lines property

on the player is set to 20. This determines how many messages are stored on the
player, for checking with the ‘@check’ command.

• 2. In this case, every message sent to the player is prefixed with the name and
object number of the sender. This is the immediate mode of the anti-spoofer
mechanism.

Verbnone @s*how ()
This is a player command used to examine other objects in detail. It returns details
of an object’s owner, location, parent, and all the verbs and properties defined for the
object, along with their values, if permissions allow.

Verbnone @desc*ribe ()
This is a player command used to set the description of an object. It takes the
dobjstr and tries to match it with an object. If a match is found, then the object’s
:describe verb is invoked, with the dobjstr as an argument.

Chapter 1: The LambdaCore Classes 38

Verbnone @create (args)
This verb is a player command used to create an instance of an object or class. It
parses the arguments to extract the parent object we wish to create an instance of,
along with the name we wish to give to the created object. The create() primitive is
called, with the derived parent as an argument. The resulting object is moved to the
player’s inventory, using the move() primitive, and it’s names and aliases set using
$building_utils:set_names.

Verbnone @recycle ()
This is a player command used to recycle an object. This simply matches the dobjstr
with an object, and calls the recycle() primitive to recycle the object. The returned
value, in the case of an error, is printed to the player. Otherwise, a suitable success
message is sent.

Verbnone @dig ()
This is a player command used to create a room or exit, (that is, instances of the
class $room or ‘$exit’. The verb parses the arguments to determine the type and
number of objects that are to be created. It uses the create() primitive, with $room
as a parent to create a room. Note that you can only use the @dig command to dig
an exit from within a room. The building_utils:make_exit verb is called to dig
an exit.

Verbnone @cl*asses ()
This is a player command used to list the publicly available classes in the database.
The public classes are divided into different sections, as defined by the property
$class_registry. This contains a list of entries, in the following form:

{ {name, description, members}, ... }

where name is the name of the superclass of objects, description is a short, one line
description of the superclass, and members is a list of object references that are in
the superclass.

If no argument is given to the ‘@classes’ command, it runs through the entries in
the $class_registry and prints out the name and description.

If an argument is given, it is taken as one or more names of an entries in the $class_
registry. The names of the members of the requested classes are printed, in this
case, using this:classes_2.

Verbnone classes 2 (obj root, indent, list members, list printed)
This verb is called by ‘@classes’ to print the members of the classes given in members.
It is called recursively to list all the children of every class in members. If root is
in the list of members then it is printed as the class root name. Otherwise, it is
printed as a member of the class. For every child of the root, if it is in the set printed,
this:classes_2 is called, to print any descendants.

Chapter 1: The LambdaCore Classes 39

Verbstr who location msg ()
Verbstr whereis location msg ()
Verbstr page origin msg ()
Verbstr page echo msg ()
Verbstr page absent msg ()

These verbs return the value of the corresponding property on the player after pronoun
substitution. They are provided to allow the player to override the verbs for more
distinctive and complex messages.

The following properties are defined for the $player class.

Propertycurrent message
This property contains an integer index into the list of MOO Mail messages currently
stored in the messages property. It is used by the mail handler to determine which
message the player is currently looking at.

Propertymessages
This property contains a list of mail messages. Each mail message is a list in the
following format:

{num, {line-1, line-2, ..., line-n}}

num gives the message number used in the various MOO mail commands. The list
of strings contains the text of the message, one line per string.

Propertylast connect time
This property is an integer, holding the time that this player last connected to the
MUD. The integer is in the format returned by the time() primitive, i.e., the number
of seconds elasped since 1 January 1970, GMT.

Propertyownership quota
This property stores the current quota for the player. It is not accessible by the
player, to prevent you increasing your building quota arbitrarily. This field can be
only changed by a wizard.

Propertygender
This property is used to hold a string representing the gender of the player. In the
normal case, this is one of ‘male’, ‘female’, ‘neuter’. This property is affected by
the ‘@gender’ command.

Propertyps
This property is used to hold the subjective pronoun, set to either "he", "she" or "it"
as appropriate. string_utils:pronoun_sub replaces the string "%s" with the value
of this property.

Propertypo
This property is used to hold the objective pronoun, set to either "him", "her" or
"it" as appropriate. string_utils:pronoun_sub replaces the string "%o" with the
value of this property.

Chapter 1: The LambdaCore Classes 40

Propertypp
This property is used to hold the possessive pronoun, set to either "his", "her" or
"its" as appropriate. string_utils:pronoun_sub replaces the string "%p" with the
value of this property.

Propertypr
This property is used to hold the reflexive pronoun, set to either "himself", "herself"
or "itself" as appropriate. string_utils:pronoun_sub replaces the string "%r" with
the value of this property.

Propertypq
This property is used to hold the possessive pronoun in it’s noun form, set to either
"his", "hers" or "its" as appropriate. string_utils:pronoun_sub replaces the string
"%q" with the value of this property.

Propertypsc
This property is used to hold the subjective pronoun, set to either "He", "She" or
"It" as appropriate. string_utils:pronoun_sub replaces the string "%S" with the
value of this property.

Propertypoc
This property is used to hold the objective pronoun, set to either "Him", "Her" or
"It" as appropriate. string_utils:pronoun_sub replaces the string "%O" with the
value of this property.

Propertyppc
This property is used to hold the possessive pronoun, set to either "His", "Her" or
"Its" as appropriate. string_utils:pronoun_sub replaces the string "%P" with the
value of this property.

Propertyprc
This property is used to hold the reflexive pronoun, set to either "Himself", "Herself"
or "Itself" as appropriate. string_utils:pronoun_sub replaces the string "%R" with
the value of this property.

Propertypqc
This property is used to hold the possessive pronoun in it’s noun form, set to either
"His", "Hers" or "Its" as appropriate. string_utils:pronoun_sub replaces the
string "%Q" with the value of this property.

Propertyhome
This property stores the object number of the player’s home. This is the place that
the player is taken to when s/he types in ‘home’. The home room is normally either
a general sleeping area, or the player’s hotel room or apartment.

Chapter 1: The LambdaCore Classes 41

Propertypassword
This property stores the encrypted password used to connect to the LambdaMOO
server as this player. It is changed by using the ‘@password’ command, and is checked
by the server upon login.

Propertygaglist
This property stores a list of object numbers. Any output received, using $player:tell
from any of the objects in the list is filtered out of the text sent to the player’s ter-
minal screen. Items are added and deleted to this list using the ‘@gag’ and ‘@ungag’
commands.

Propertyparanoid
This property is an integer, representing the paranoid level of the player. If set to
‘2’, any output received by the player, via $player:tell is prefixed with the name
of the object that originated the message. This is used to that a player can detect
spoof output from other players or objects.
If set to ‘1’, any messages sent using $player:tell are stored in a small cache in the
property responsible, along with details of where the message came from. This can
be used for later checking with the ‘@check’ command.
If set to ‘0’, no spoof checking is performed. This is the normal case.

Propertyresponsible
This property stores a list in the following format:

{callers, text}

The callers part is in the same format returned by the callers() primitive, and lists
the verb stack at the time that the message stored in text was sent.
This property is set by $player:tell and looked at by $player:@check. It contains
a maximum number of entries, as determined by the value of the lines property on
the player.

Propertylines
This property stores the number of lines kept in the property responsible for anti-
spoof checking.

Propertyobject gaglist
This property holds a list of objects that are in the player’s gaglist. Any output from
these objects is ignored by the player’s :tell verb.

Propertypage absent msg
This property holds the message sent to someone when they try to page the player
while s/he is not connected. It may contain the usual pronoun substitutions. The
default value is ‘%n is not currently logged in.’

Propertypage origin msg
This property holds the message sent to a player you page, telling them where you
are. The default message is ‘You sense that %n is looking for you in %l.’

Chapter 1: The LambdaCore Classes 42

Propertypage echo msg
This property holds the message sent to a player that pages you when you are logged
in. The default message is ‘Your message has been sent.’

Propertywhereis location msg
This property holds the message sent when someone locates you through the
‘@whereis’ command. The default message is ‘%N (%#) is in %l (%[#l]).’ This
might expand out to something like

Blip (#35) is in The Toilet (#96).

Propertywho location msg
This property holds the message printed in a who list to inform other player’s of your
location. The default value is ‘%l’, which returns your current location.

Propertymail notify
Propertymail options
Propertymail forward

These properties define your MOO mail environment. They are discussed in more
detail in the section on the MOO Mail system.

Propertyedit options
This property defines your MOO editor environment. It is discussed in more detail
in the section on the MOO editor.

1.2 The Mail Room Class

*** To be updated for MOO 1.3 ***
This class provides the mail facility used within LambdaMOO. Some would say that to

provide an electronic mail facility within a game is slightly insane, but it is very useful for
passing around game related messages. Coupled with the use of a suitable client program,
for example the excellent mud.el with MOO Mail extensions, sending MOO mail can be
easy and efficient. It also allows players to separate their MOO based mail from other, more
important mail.

LambdaMOO does not yet provide any facility for reading input from a player. For
this reason, programs such as the mail room use a pseudo-room to catch player input.
For example, when you start to compose a mail message, you are transported to the mail
pseudo-room. Once there, anything you enter is trapped by various verbs in the room, and
stored in the message you are entering.

This method means that commands used in the mail composition environment are ac-
tually verbs on the mail pseudo-room.

Mail messages are actually stored on the player object, in a property list called messages.
Each message occupies one entry, called a mail record, in the following format:

{num, {date, from, to, subject, line1, ..., lineN} }

Apart from the num field, these are all strings. The num field stores the message number
for each message. When a new piece of mail arrives, it is allocated a message number 1

Chapter 1: The LambdaCore Classes 43

greater than the last message in the player’s mailbox. If the mailbox is empty, the message
is numbered ‘1’. Each message retains it’s unique message number until it is deleted using
‘@rmmail’.

The number of messages in the mailbox is given by the length of the messages list. A
current message pointer is maintained in the property $player.current_message. This is
used to determine which message to print when the ‘@read’ command is used.

The MOO Mail system is implemented by four separate objects, and some verbs on the
$player class:
• The Mail Room/Editor ($mail_room or $mail_editor). This room is the place where

mail messages are composed. It also contains a number of mail utility verbs. The mail
editor is a child of the Generic Editor.

• The Mail Distribution Center ($mail_agent). This is a child of $root_class and has
verbs used to handle mail distribution. It is also the database of mailing lists and mail
folders.

• The Generic Mail Recipient ($mail_recipient). This is a special class used to set up
mailing lists and folders.

• The Player Class ($player). This class holds various player commands used to deal
with the MOO Mail system.

The sections that follow detail the verbs in each of the classes, along with any relevant
properties.

1.2.1 Mail Commands and Properties on The Player Class

A number of verbs are defined in the $player class to provide access to the mail system.
These verbs are detailed below:

Verbnone @mail (args)
This command is used to list the messages currently stored in the player’s mailbox.
Mail messages are stored in the property list messages on the player. This is a list
of complete messages, stored one per list item, in the format shown above.
The ‘@mail’ command first checks the current message number still exists, using the
verb this:fix_current_message. It then attempts to parse the arguments given
to it, to get a set of message numbers that the user wishes to have displayed. The
possible arguments are as follows :-

cur - the current message

new - all messages after the current message

num - (where num is a number) the message numbered num if there is one.

num1-num2
- all messages in the given range, if any.

Chapter 1: The LambdaCore Classes 44

last:num - the last num messages

-num - the last num messages

These may be combined on the ‘@mail’ command line. When a list of messages
to display has been gathered in the variable msglist, the following code is used to
display the list to the user:

for x in (msglist)
msg_num = x[1];
player:tell(this.current_message == msg_num ? "-> " | " ",

$string_utils:right(msg_num, 2), ": ",
$mail_recipient:summary_line(x[2]));

endfor

For example,
You have 3 messages:

1: May 30 12:18 Ezeke (#57) Classes Documentation
2: Jun 4 19:35 Ezeke (#57) Room contents using title()

-> 3: Jun 5 10:23 Ezeke (#57) Potential problems

The pointer, ‘->’ indicates the current message. The date, subject and sender of
each message, along with the message number, is taken from the relevant mail record
stored in the player’s messages property.

Verbnone @rmm*ail (args)
This command is used to delete mail from the player’s mailbox property, messages.
The verb takes each message number given as an argument, and searches for the
message in the player’s mailbox. If an argument is the string ‘cur’, then this is taken
as the number of the current message.
If a match is found, by checking the first entry in each mail record, the message is
removed from the messages property list. If a message is not found, the player is
informed with a suitable message.

Verbnone @send player1 player2 ...
This command is used to send mail messages to other players. The verb simply calls

$mail_editor:invoke(args, verb, this.mail_options)

to start composition of a message.

Verbnone @read
Verbnone @read num1 num2 ...

This command is used to read mail messages in the player’s mailbox. If no argument
is given, the current message is displayed on the player’s terminal screen. If a list of
one or more message numbers is given, each message is printed out, in turn.
The verb first checks to see if an argument has been given. If this is not the case, it
attempts to get the current message number, and use this as the argument. If there
are no messages, or no possible current message, the verb is aborted with a warning
message to the player.

Chapter 1: The LambdaCore Classes 45

Once the message number(s) to display has been decided, a loop is entered which lists
each message in turn. For each message number given the mailbox is searched for the
message with that number. If no message is found with a given number, a warning
message is sent to the user.
Printing a message simply involves printing the message number, and the message
text - the second item in the mail record.

Verbnone @answer
Verbnone @answer msg
Verbnone @reply
Verbnone @reply msg

This command is used to reply to a message sent by another player. If no argument
is given, the current message number (if valid) is taken to be the message to reply to.
Once a valid message has been located in the player’s messages property, the verb

$mail_editor:invoke(2, verb, x[2], {@this.mail_options, @args});

is invoked to allow the player to compose a reply, where x is the message being replied
to.

Verbnum receive message (list message)
This function is called by other mail system verbs to place a message in the player’s
mailbox property, messages. If the calling verb has permission to modify the prop-
erties on the player, the message is simply added to the end of the current list of
messages, and given a message number one greater than the maximum current mes-
sage number.
A notification is sent to the player, informing him/her that new mail has arrived.
The verb returns ‘1’ for a successful delivery, and an error code (normally E_PERM)
otherwise.

Verbnone fix current message ()
This verb is used to validate the current message number property on the player.
For example, if a player deletes the current message, then the number stored in the
current_message property no longer points to a valid message. This verb checks
through all the messages in the mailbox, player.messages, until it finds message
number current_message, or it passes the place in the list where the current message
is supposed to be. If this happens, the current message property is set to the next
message along in the list. If this does not produce a valid message number, then the
current message is taken to be the last message on the list, or ‘0’ if there are no more
messages.

Verbnone @next ()
This command is used to advance the current message pointer to the next message
in the player’s mailbox. This is done by incrementing the pointer, and then calling
$player:fix current message to validate it. If there is no message after the current
message, the pointer is moved off the list.
Once a new current message has been found, it is printed out using the $player:@read
verb.

Chapter 1: The LambdaCore Classes 46

Verbnone @prev ()
This command is used to backtrack the current message pointer to the previous
message in the player’s mailbox. This is done by looking for the current message
in the message list, and then decrementing the index that expression returns by one
place.
Once a new current message has been found, it is printed out using the $player:@read
verb.

Verbnone @renumber ()
This verb is used to renumber the messages in a player’s mailbox to all consecutive
numbers, starting from one. After checking that the person invoking the verb has
permission to perform the renumbering, and there are messages to renumber, the
verb executes the following code:

newmsgs = {};
i = 0;
for x in (this.messages)
newmsgs = {@newmsgs, {i = i + 1, x[2]}};

endfor
this.messages = newmsgs;

which is fairly self explanatory. The current message number is preserved by getting
it’s index in the list of messages. This is the number that the message will have after
the renumbering operation.

1.2.2 The Mail Room or Mail Editor

When a player wishes to send a mail message, s/he is transported to the mail room to
compose the message. This room is a child of the generic editor, and provides all the func-
tions documented in the section on that class. In addition, it provides verbs and properties
related specifically to the sending of mail messages. The following section describes each of
the $mail_room verbs and properties in detail.

Verbstring working on (num who)
This verb returns a string describing the mail message currently being worked on by
the player identified by who. It executes the following code:

return this:ok(who = args[1]) && "a letter to " +
this:recipient_names(who) +
((subject = this.subjects[who]) &&
" entitled \"" + subject + "\"");

Verblist parse invoke (args)
This verb parses the arguments given to $mail_room:invoke to determine the type
of mail editor invocation required - either produced by an ‘@answer’ or a ‘@send’
command. In the latter case, the arguments passed to $mail_room:invoke are

invoke(rcpts, verb, flags [, subject])

The argument rcpts is a list of recipients for the message. This list is parsed using the
verb $mail_room:parse_recipients(). The flags parameter is a list of possible mail

Chapter 1: The LambdaCore Classes 47

options. In this case, it is searched for the replyto option, and a variable set if it is
found. The parameter subject can optionally give the subject for the message. For an
‘@send’ command, the returned list from this verb contains the following information:

{list rcpts, str subject, str replyto, {}}

For an @answer command, the arguments are
invoke(2, verb, msg, flags)

For answering a message, a different set of information is given and returned. The
verb $mail_editor:parse_msg_headers is used to parse the options given by the
player into a variable hdrs.
Several options can be specified in this way to the ‘@answer’ command. as shown
below.

incl - include the original message text.

all - reply to everyone in the mail header.

sender - reply to the sender only.

noincl - do not include the original message in your reply.

If the ‘incl’ option is given, the original message text is placed into a variable incl
for returned to the calling verb. Every line is prepended with the characters >, as
one would expect.
The list shown below is returned to the calling verb:

{hdrs, include}

where hdrs is the list returned by parsing msg supplied to the verb, and include
contains any included message text.
If any problem is encountered in parsing the message headers, or in recognising which
command originated the call to this verb, ‘0’ is returned.

Verbnone init session ()

Verbnone pri*nt ()

Verbnone print msg ()

Verbnone message with headers ()

Verbnone subj*ect: ()

Verbnone set subject ()

Verbnone to*: ()

Verbnone also*-to: cc*: ()

Chapter 1: The LambdaCore Classes 48

Verbnone parse recipients ()

Verbnone recipient names ()

Verbnone make message ()

Verbnone name list ()

Verbnone parse msg headers ()

Verbnone check answer flags ()

Verbnone reply-to*: replyto*: ()

Verbnone send ()

Verbnone who ()

Verbnone showlists ()

Verbnone send message ()

Verbnone subsc*ribe ()

Verbnone unsubsc*ribe ()

The following properties are also defined on the $mail_editor or $mail_room class:

Propertyreplytos ()

Propertyrecipients ()

Propertysubjects ()

Verbnum accept (obj thing)
This verb overrides the $room class definition. In this case, thing is allowed to enter
the room only if it is in the list $mail_room:writers. In practice, this stops anyone
from moving into the room, unless they have used a mail system command that enters
their object number into the list of message writers. This is necessary because the
action of entering the room causes certain mail related state to be setup.
Note that the normal way to enter the mail room is to use the ‘@send’, for example.
When a player enters the room using one of the mail commands, s/he is added to the
list of writers. If, for some reason, the player has to ‘@move’ out of the room, then
s/he can move back in using ‘@move’ because s/he is in the $mail_room:writers list.

Verbnone enterfunc (obj player)
This function is triggered when a player moves into the room by the LambdaMOO
server. It performs a number of actions related to setting up the state of the mail
room ready for the user to interact with the mail system. The code for this verb is
shown below:

Chapter 1: The LambdaCore Classes 49

who = args[1];
recips = this:recipient_names(who);
if (this:message_so_far(who))
player:tell("You are in the middle of writing a letter to ",

recips, ". To discard that message, type ’abort’.");
this:print_msg(who);

else
player:tell("Sending a message to ", recips, " ...");
pass(@args);

endif

First, we get the list of recipients for the mail message (specified before the player
has entered the room). If the player already has part of a message stored in the mail
room, then s/he is allowed to continue the message.

Finally, pass() is used to invoke the $room class verb :enterfunc.

Verbnone add writer (obj player, list recipients)
This verb is used to add a plyer to the list of people composing letters in the mail
room. Only players are allowed to do this. If the player is not already composing a
message, then s/he is simply added to the list of writers for the room. This causes
player to be added to the $mail_room:writers property.

In addition to this, the recipients list is added to the list, $mail_room:recipients.
The original location of the player (before being moved to the mail room) is stored
in the $mail_room:places list. The subject line and message text for this message
is set to the empty string, in the property lists $mail_room:subjects and $mail_
room:messages. The message is also marked as being abortable, by adding a ‘0’ to
the $mail_room:abortable list. This is done because there is no warning given for
deletion of an empty message.

If the player is already in the list of people composing messages in the mail room,
then the listset() primitive is used to change the recipients, subject and abortable
property for the message associated with the player. This means that a player can
only be composing one message at a time.

Once the above has been performed, the player is moved from his/her current location
to the mail room. A suitable message is sent to all the objects in the player’s current
location telling them what has happened.

Throughout all user interaction in the mail room, the position of the player object
reference in the $mail_room:writers list is used to index into all the other property
lists used when dealing with a mail message.

Verblist recipients (obj player)
This verb returns the list of recipients for the message being composed by player.

Verblist message so far (obj player)
This verb returns the text of the message currently being composed by player. This
is returned as a list of strings.

Chapter 1: The LambdaCore Classes 50

Verbnone say (string text)
This verb overrides the $room class definition. It is intercepted to allow the mail
program to capture input from the user to append to the message currently being
composed. The $mail_room:say verb itself just passes the player object reference
and text to the $mail_room:add_line verb for processing.

Verbnone emote (string text)
This verb overrides the $room class definition. It is intercepted to allow the mail
program to capture input from the user to append to the message currently being
composed. The $mail_room:say verb itself just passes the player object reference
and text, with the player name prepended, to the $mail_room:add_line verb for
processing.
This allows both ‘say’ and ‘emote’ input to be captured in the current message.

Verbnone add line (obj player, string text)
This verb is used to add text to the current message being composed by player. Once
a line has been added to a text message, it is not allowed to be immediately aborted.
This is set using the $mail_room:clear_abortable verb.

Verbnone print ()
This verb is a player command used to print the text stored in the current message.
The code itself first allows the message to be aborted, using $mail_room:clear_
abortable, and then calls $mail_room:print_msg to print the message text.

Verbnone print msg (obj player)
This verb prints the text of the current message being composed by player. Again,
the code is fairly simple, and is shown below:

who = args[1];
who:tell("Your message so far:");
who:tell();
who:tell_lines(this:message_with_headers(who));
who:tell();
who:tell("<End of message>");

Note the use of the $root_class:tell_lines verb to print the message contents.
$mail_room:message_with_headers returns a list of strings comprising the mail
header, and message text.

Verblist recipient names (obj player)
This verb returns a list of the names of the recipients of the current message be-
ing composed by player. It retrieves the correct list of recipients from the $mail_
room:recipients property list, and then maps this from a list of object references
to a list of object names using $mail_room:name_list.

Verbnone pause ()
This is a player command used to temporarily stop composition of a message by a
player. A suitable message is printed by the player, and then the $mail_room:send_
back verb is invoked to send the player back to the room s/he was in when letter
composition was started.

Chapter 1: The LambdaCore Classes 51

Verbnone send back (obj player)
This verb is used to return a player to the room s/he was in when a letter composition
command was invoked. When a player enters the mail room, the original location of
the player is stored in the property list $mail_room:places. This verb causes that
location to be looked up, and the player is returned to his/her original location. A
suitable message is sent to the objects in the player’s original location to inform them
that s/he has returned from the mail room.

Verbnone look self ()
This verb overrides the $room class definition. This is done to inhibit the room name
and contents list being printed when the player uses the ‘look’ command. Instead,
this verb uses $mail_room:description as help text, which is sent to the player
using $root_class:tell_lines.

Verbnone help ()
This verb is a player command invoked to get some help on the mail room facilities.
This results in the $mail_room:look_self verb being called to print the help text
stored in the mail room description. Note that this overrides, also, the LambdaMOO
help system.

Verbnone abort ()
This is a player command used to abort composition of a message, and throw the
text away. A check is made to see if the message is abortable. If it is, then the
player is sent back to his/her original location, and the message is destroyed using
$mail_room:destroy.
If this message is marked as being non-abortable, the player is given an ‘Are you
sure?!’ message. The $mail_room:abortable property is used to provide a safety
net for players. Typing abort once will not throw away the message, unless it is
empty.

Verbnum abortable (obj player)
This verb is used to return the abortable status of the message currently being
entered by player. The $mail_room:abortable property list contains a boolean
value for each player currently composing a message. The mechanism is included to
stop a player accidentally deleting a message by using the ‘abort’ command. If the
abortable flag for a message is set, then the message may be deleted by using the
‘abort’ command. If the flag is clear, then deletion is prevented.
One invocation of ‘abort’ results in an ‘Are you sure?!’ message being printed, and
the $mail_room:abortable flag for the player’s message is reset to allow aborts. A
subsequent ‘abort’ by the player will then destroy the message.
An empty message can be aborted without any warning. Once a line of text has been
entered into a message, this saftey feature is enabled by clearing the abortable flag
for the message.

Verbnone set abortable obj player
This verb is used to set the $mail_room:abortable flag for the message currently
being composed by player. If the flag is set, the message is allowed to be aborted.

Chapter 1: The LambdaCore Classes 52

Verbnone clear abortable ()
This verb is used to clear the $mail_room:abortable flag for the message currently
being composed by player. If the flag is reset, the message cannoted be aborted.

Verbnone exitfunc obj (player)
This verb is invoked when a player leaves the mail room. It clears the abortable flag
for the player’s message, and then invokes the exitfunc of the parent class.

Verbnone destroy (obj player)
This verb is used to delete the message currently being composed by player. This
involves removing the message state from the various property lists stored in the
room. The code for this verb is shown below, as the best explanation:

who = args[1];
pos = who in this.writers;
this.writers = listdelete(this.writers, pos);
this.recipients = listdelete(this.recipients, pos);
this.messages = listdelete(this.messages, pos);
this.places = listdelete(this.places, pos);
this.abortable = listdelete(this.abortable, pos);
this.subjects = listdelete(this.subjects, pos);

Verbnone send ()
This verb is a player command invoked to send the current message to the list of
recipients. It retrieves the message as a list of strings, and then sends it to each
recipient in turn. Note that no third part mail agent is involved. When the ‘send’
command is invoked by a player, it delivers mail to the recipients using the verb
$player:receive_message.
After a message has been sent, it is destroyed. The invoking player is returned to the
room s/he was in when the mail system was started.

Verblist message with headers (obj player)
This verb returns a list of strings, giving the message plus any headers which are
added to the front by the mail system. The $mail_room:make_message verb is used
to produce the list of strings.

Verbstring the subject (obj player)
This verb returns the subject text for the message being composed by player. This is
done by retrieving the correct entry from the property list $mail_room:subjects.

Verbnone sub*ject ()
This is a player command used to set the subject text of the current message. A simple
call is made to the $mail_room:set_subject verb, with the arguments supplied by
the player in argstr.

Verbnone to ()
This is a player command used to set the list of recipients for the current message.
Without any arguments, the command prints the current list of recipients. If one or

Chapter 1: The LambdaCore Classes 53

more arguments are supplied, then the recipients list for the message is cleared, and
the verb $mail_room:also-to is invoked to take tge player arguments, and set the
message recipients list accordingly.

Verbnone set subject (obj player)
This verb is used to set the subject text for the message being composed by player.

Verbnone also*-to (string args)
This verb goes through the list of names given in args adding each name to the
recipients list for the current message. The code for the verb is shown below:

pos = player in this.writers;
recips = this.recipients[pos];
for x in (args)
r = $string_utils:match(x, players(), "aliases");
if (r == $failed_match)

player:tell("There is no player named ’", x, "’.");
return;

elseif (r == $ambiguous_match)
player:tell("I don’t know which ’", x, "’ you mean.");
return;

endif
recips = setadd(recips, r);

endfor
this.recipients = listset(this.recipients, recips, pos);
player:tell("Your message is now to ", this:recipient_names(player), ".");

Each name in the argument list is matched to a player name. If there is no match,
the name is rejected from the list of recipients, and further processing is aborted. If
there is a match, the player object reference is added to the list of recipients. If there
is an ambiguous match, the name is ignored, and further processing is aborted.

Valid names are added one by one to the recipient list for the message.

Verblist make message (obj player, list to, string subj, list msg)
This verb returns the message as it will be sent to the recipients in the list to. It
takes the arguments given, and puts together a list of strings that gives the current
message being written by player. In addition to the supplied arguments, the date and
sender’s name are added to the message as header.

Verbstring name list (list names)
This verb returns an english style list of the names in names.

Verbnone send message (obj from, list to, string subj, list msg)
This verb is used to actually send a mail message to the players given in the to list
of recipients. If you wish to send mail from another verb, this is the verb to use. The
arguments given are passed to $mail_room:make_message for formatting, and then
sent to each of the recipients in turn.

Chapter 1: The LambdaCore Classes 54

The following properties are defined for the $mail_room class. Each property contains
a list of items, one per player currently composing a letter. The index of the player in the
writers list is used to locate the correct entries for that player’s message in all the other
property lists.

Propertysubjects
This is a list of strings. Each string contains the subject line for a message currently
being composed.

Propertyabortable
This is a list of boolean (number) values. If set, the relevant message can be aborted
by the player using the ‘abort’ command in the mail room. If not set, the message
cannot be aborted.

Propertyplaces
This is a list of room object references. When a player enters the mail room, using
one of the mail composition commands, his/her current location is stored here. When
the player has finished in the mail room, s/he is returned to the original room.

Propertyrecipients
This is a list of lists of object references, referring to players. Each entry in the list
looks like the following :

{player1, player2, ..., playerN}

The message currently being composed will be sent to player1 thru playerN when it
is ‘sent’.

Propertymessages
This property stores the actual message text being composed by the player. Each
entry in the list is a list of strings, one per line of the message.

Propertywriters
This is the list of players currently engaged in composing a message in the mail room.
Every time a player enters the mail room using one of the mail commands, his/her
object reference is added to this list. If a player enters the mail room and is already
on this list, this indicates a resumption of a previously ‘pause’d mail session.

1.2.3 The generic Editor Class

This class provides a basic MOO code editing facility for those players who do not have
access to an external editor such as Emacs. It provides basic facilities for editing and
compiling MOO code on verbs, but cannot be considered complete or extensive.

Chapter 1: The LambdaCore Classes 55

1.2.4 The System Object Class

The system object class is the fundamental cornerstone of the whole LambdaMOO
database. It is the first item in the database, and hence has an object number of ‘#0’.
It has no verbs defined on it, but a number of interesting properties that are used to deter-
mine the behaviour of parts of the LambdaMOO server and Core functions.

In particular, properties defined on the root class can be referred to using the ‘$’ notation
as a shorthand. For example, if I define a property called

#0.foobar = #1234

then I can refer to ‘#1234’ thereafter using the shorthand
$foobar

Shorthand references are provided for all of the base classes. If a new public class is
added, it should be given a shorthand by adding a suitable property to the system object,
‘#0’. In this way, players can refer to the shorthand when creating objects that belong to
the new class.

For example, if foobar were the name of a new class, then I could use
@create $foobar named gadget

to create an instance of the class foobar.
Shorthand notation is provided in the following properties. Most of them refer to public

classes. A few refer to other, global values that are used in the database.

Propertyeditor

Propertymail room

Propertyobject utils

Propertylock utils

Propertylist utils

Propertycommand utils

Propertyplayer

Propertywiz

Propertyprog

Propertycode utils

Propertyhelp

Propertynothing
This should be used similarly to a void pointer in C.

Chapter 1: The LambdaCore Classes 56

Propertyfailed match
This is the value used in all matching verbs to indicate that nothing matched.

Propertyambiguous match
This value is used in matching verbs to indicate that more than one possible result
was found.

Propertyperm utils

Propertybuilding utils

Propertystring utils

Propertynews

Propertynote

Propertyletter

Propertycontainer

Propertything

Propertyexit

Propertyroom

Propertyroot class
This points to the class from which everything else is descended.

The other properties defined for the system object are listed below, with details given
as to their function and derivation.

Propertywizard mail recipients
This property is a list of object numbers. It gives a list of people who will receive
mail sent by players to the wizard. This can loosely be interpreted as being a list of
players that are involved in running the game, and are not strictly wizards.

Propertygripe recipients
This property is a list of object numbers. It gives a list of people who will receive
mail sent by players using ‘@gripe’. This can loosely be interpreted as being a list of
players that are involved in running the game, and are not strictly wizards.

Propertydump interval
This property specified the interval between database dumps, in seconds. The default
value is 600 seconds, which is every ten minutes. A database dump should be initiated
at regular intervals to provide a backup in case the LambdaMOO server crashes, or
the host machine goes down.

Chapter 1: The LambdaCore Classes 57

Propertywelcome message
This property is a list of strings containing the message sent to players when they log
in to the LambdaMOO server. It should be used to convey simple help information
to first time players, as well as making urgent announcements that you wish everyone
to see.

Propertyplayer start
This is an object reference of the starting room for new players. When a player is
created, using the ‘create’ command when initially connecting to the LambdaMOO
server, s/he is placed in the $player_start room. This is also set as the default home
for a new player. If you wish to place new players into a different starting room, then
you should change the object reference stored in $player_start.

Propertyplayer class
This is an object reference for the class that newly created players belong to by
default. The initial value of this property is $player. If you create an enhanced
player class that you wish all new players to belong to, you should change the value
of this property to be the object reference of the new, enhanced player class.

1.2.5 The Container Class

A container is a an object that can hold other object inside itself. This is similar to the
idea of a room, except that a container has no notion of exits, and can only hold things; it
cannot hold players.

The following verbs are defined for the container class.

Verbnone d*rop (obj object)
Verbnone in*sert (obj object)
Verbnone p*ut (obj object)

This verb puts object into the container. The container is first checked to verify that
it is open, if not an error message is printed.
For example, if you have a container named pipe and an object named tobacco, you
could enter:

put tobacco in pipe

If pipe is open, then tobacco will be put into the pipe. If you look at pipe you should
see:

pipe
Contents:
tobacco

Verbnone g*et (obj object)
Verbnone ta*ke (obj object)
Verbnone re*move (obj object)

This does the opposite of the put/insert/drop commands. To remove the tobacco
from the pipe you would enter:

Chapter 1: The LambdaCore Classes 58

remove tobacco from pipe

When you look at pipe now you should see:
pipe
It is empty.

Verbnone open ()
This verb will open the container and allow objects to be put into it (via the put
verb). This verb sets the property opened to ‘1’.

Verbnone @lock for open (obj object)
This verb will lock the container with object. The container can only be opened if
the player is holding object, or the object is the player trying to open the container.
The container will remained locked until it is unlocked (see below).

Verbnone @unlock for open ()
This verb will remove the lock set by @unlock for open. It can only be run by the
owner of the container.

Verbnum is openable by (obj PLAYER)
This verb uses the $lock_utils:eval_key verb to determine if the container can be
opened by the player. The verb will return ‘1’ if the player has permission to open
the container, and ‘0’ otherwise.

Verbnone close ()
This is the opposite of open. If the pipe is already close, an error message is printed.

Verbnone tell contents ()
This verb displays the contents of the container. If the container is empty, the message
‘It is empty’ is displayed.

Verbnone set opened (int number)
This verb is called by open and close, with the arguments ‘1’ and ‘0’ respectively.
The property opened is set to either ‘1’ (opened) or ‘0’ (closed).

Verbnone @opacity (int number)
Opacity determines when/if you can look at the contents of the container. There are
three levels of opacity:

0 - transparent
1 - opaque
2 - black hole

When the opacity is set to 0, you can see the contents when the pipe is open or closed.
When the opacity is set to 1, you can only see the contents when the container is open.
If opacity is set to 2, you can never see the contents when looking at the container.
The syntax for ‘@opacity’ is:

@opacity container is #

where ’#’ is either 0, 1 or 2.

Chapter 1: The LambdaCore Classes 59

Verbint set opaque (int number)
This verb is called by ‘@opacity’. It sets the property opaque to be either 0, 1 or 2.

1.2.6 The Note Class

The note class provides a handy way of communicating in MOO, whether you want to
leave somebody a quick message, or perhaps leave a clue for solving an adventure. The
note class can also provide a good starting base for more specialized objects. The letter
and newspaper objects are examples of this.

Verbnone r*ead ()
This verb first checks to see if the note can be read by the person who is attempting
to read the it. If they have permission to read it, the note text, which is stored in the
property text, is shown to the player.

Verbnone er*ase ()
This verb erases all text stored on the note. Only the owner of a note can erase it.

Verbnone wr*ite (string message)
Appends the string message to the note text. This function simply adds another line
to the list stored in the note property ’text’. A carriage return is inserted between
each list entry, therefore the command:

write "Zaphod was here." on note

would be read as

Zaphod was here.

whereas the commands

write "Zaphod" on note
write "was" on note
write "here." on note

would be read as

Zaphod
was
here.

Verbnone del*ete (string line-number)
Verbnone rem*ove (string line-number)

Deletes the given line number from the note. Only the owner of the note may modify
it. Negative numbers can be given to delete lines counting from the end of the note,
hence ‘delete -5 from note’ would delete the 5th line from the bottom.

Verblist text ()
Returns a list of strings containing the message text on the note. Called by the verb
:r*ead.

Chapter 1: The LambdaCore Classes 60

Verbnum is readable by (obj PLAYER)
This verb uses the $lock_utils:eval_key verb to evaluate the key, stored in the
encryption_key property, and determine if the note is readable or not by the player.
This verb will return a ‘1’ if it is readable, or a ‘0’ if it is not.

Verbnone encrypt (string ENCRYPTION)
This verb will encrypt a message so that it can only be read if the encryption con-
straints are satisfied. Refer to the ‘@lock’ command for details on the syntax for
encryption. Encryption is stored in the encryption_key property. You must have
permission to do this.

Verbnone decrypt ()
This verb will remove any existing encryption from a note, allowing it to be read by
anybody. You must have permission to do this.

The following properties are defined for the $note class.

Propertyencryption key
This is encryption string for the note. It is formed within the verb :encrypt by pars-
ing its input with $lock_utils:parse_keyexp. The verb :is_readable_by then uses
this to determine whether or not the note can be read by calling $lock_utils:eval_
key.

Propertytext
This is a list of strings where the body of the note message is kept. Each entry in the
list corresponds to one line in the note text.

1.2.7 The Newspaper Class

To be written.

1.2.8 The Letter Class

The letter class is a subclass of the note class. A letter object provides all of the functions
of a note, with the addition of a ‘burn’ command. This command will recycle the note after
it has been read by the recipient, completely removing it from the database. The letter is
read, written, erased and encrypted just as if it were simply a note object.

Verbnone burn
This verb first checks to see if the letter is readable by the person who is attempting
to burn it. If it is, the letter will be completely destroyed. If it is not readable, the
command will fail. The code for this is shown below for illustration:

if (this:is_readable_by(player))
player:tell(this.name,

" might be damp, in any case it won’t burn.");
else
player:tell(this.name,

Chapter 1: The LambdaCore Classes 61

" burns with a smokeless flame, and leaves no ash.");
player.location:announce(player.name,

" stares at ", this.name, " and it catches alight.");
recycle(this);

endif

1.2.9 The Generic Programmer Class

1.2.10 The Help Database Class

The LambdaCore database provides an extensive help facility. As well as command
syntax, it provides other useful information on a variety of other MUD topics. The $help
class is used to store help text and verbs used to implement the help system. A verb on the
player class, $player:help is used to give the player access to the help database.

Each entry in the help database is stored as a property on the $help class. By doing this,
an index can be generated by using the properties() primitive to list all the properties
on $help. No other properties are stored on the $help class.

The ‘help’ command, defined on the $player class, is described below.

Verbnone help
Verbnone help topic
Verbnone help index

This verb, part of the player class, is used to gain access to the help system. The
first form is used to obtain help on the topic summary, which is a top level help with
pointers to other topics in the database.
If the third form, ‘help index’ is used, the verb $help:print_index is invoked to
print a list of all the help topics currently available.
The most complex case is the second form, where help is being requested on a par-
ticular topic. The relevant code segment is shown below:

topics = $help:find_topics(dobjstr);
if (topics == {})

player:tell("Sorry, but no help is available on \"",
dobjstr, "\".");

return;
elseif (length(topics) > 1)

player:tell("Sorry, but the topic-name \"",
dobjstr, "\" is ambiguous.",

" I don’t know which of the following topics you mean:");
for x in (topics)
player:tell(" ", x);

endfor
return;

else
topic = topics[1];
if (topic != dobjstr)
player:tell("Showing help on \"", topic, "\" ...");

Chapter 1: The LambdaCore Classes 62

player:tell();
endif

endif
$help:print_topic(topic);

First, the verb $help:find_topics is called. This takes the topic given by the player,
and searches through the help database index for possible matches. This returns a
list of possible topics in the variable topics.
If the list is empty, than no help was available for the topic given by the player, and
the verb ends.
If the list contains more than one item, the player is told what matched, and asked
to be more specific next time.
If just one help topic was found, it is printed out, using the verb $help:print_topic.

The $help class has three verbs defined on it which are used to implement the help
system. They are described in detail below:

Verblist find topics (string handle)
This verb is used to search the list of topics on the $help class for one that matches
handle. The list of topics is given by the list of properties defined on the $help class.
In the simple case, if the handle matches one property name exactly, then this name
is returned.
The player is allowed to omit the leading ‘@’ on commands. This is checked for in this
verb by adding an ‘@’ temporarily, and then checking for this in the topic list, along
with the un-prefixed handle.
If no direct match is found, the verb looks at all the properties stored on the $help
class, and tries to make a match using index() between the handle, the handle with
an ‘@’ prepended and all the property names. Every possible match is returned by
this verb, so that the ‘help’ command can give the list to the user.
If no matches are found, an empty list is returned.

Verbnone print index ()
This verb is used to print an alphabetical list of help topics, as given by the properties
stored on the $help class. The code for this function is shown below, as it illustrates
one method of sorting strings in MOO, using lists.

topics = setremove(properties(this), "summary");
buckets = "abcdefghijklmnopqrstuvwxyz";
else_bucket = length(buckets) + 1;
counts = names = {};
for i in [1..else_bucket]
names = {@names, {""}};
counts = {@counts, 1};

endfor
keys = names;
count = 1;
for name in (topics)
if (name && index(".@", name[1]))

Chapter 1: The LambdaCore Classes 63

key = name[2..length(name)];
else

key = name;
endif
k = index(buckets, key[1]) || else_bucket;
bucket = keys[k];
count = counts[k];
i = 1;
while (i <= count && key > bucket[i])

i = i + 1;
endwhile
names = listset(names, listappend(names[k], name, i - 1), k);
keys = listset(keys, listappend(keys[k], key, i - 1), k);
counts = listset(counts, count + 1, k);

endfor
sorted = {};
for i in [1..length(names)]
sorted = {@sorted, @names[i][2..counts[i]]};

endfor
sorted = {@sorted, "", "", ""};
n = length(sorted) / 4;
su = $string_utils;
for i in [1..n]
player:tell(su:left(sorted[i], 20),

su:left(sorted[i + n], 20),
su:left(sorted[i + n + n], 20),
sorted[i + 3 * n]);

endfor

Verbnone print topic (string topic)

1.3 The LambdaCore Utility Classes

The following utility classes are provided in the LambdaCore database:

String Utils. ($string_utils)
This class provides a number of verbs containing string utility
functions.

Building Utils. ($building_utils)
This class provides a couple of verbs used in building commands.

Permissions Utils. ($perm_utils)
This class provides verbs used in manipulating permissions on
objects.

Chapter 1: The LambdaCore Classes 64

Code Utils. ($code_utils)
This class provides some useful general purpose verbs.

Command Utils. ($command_utils)
This class provides some verbs used for command line parsing.

List Utilities. ($list_utils)
This class provides a couple of verbs used in manipulating lists.

Matching Utils. ($match_utils)
This class provides verbs used in matching names to objects.

Trignometric Utilities ($trig_utils)
This class provides some trigonometric functions and other mathematical
utilities.

Lock Utilities. ($lock_utils)
This class provides verbs used in dealing with locks on objects.

Object Utilities. ($object_utils)
This class provides some useful verbs used in manipulating objects.

Time Utilities ($time_utils)
This provide some time manipulation utilities.

Gender Utilities ($gender_utils)
These provide some gender based utilities.

1.3.1 The String Utilities Class

The string utilities class, $string_utils defines a number of verbs useful for performing
operations on strings.

Chapter 1: The LambdaCore Classes 65

Verblist explode (list subject [, str break])
This verb is used to explode a string into a list of substrings separated by runs of
break as the delimiting character. If break is not specified it defaults to space. As an
example:

$string_utils:explode("This is a test");

will return the list
{"This", "is", "a", "test"}

Verbstr from list (list list [, str separator])
This verb is used to implode the string representations of the elements of a list into
a single string, each pair being separated by separator. which defaults to the empty
string. This function is essentially the inverse of :explode. Note that the elements of
list need not be strings themselves, as the function tostr is applied to each element
before it is catenated. As an example, to reassemble the list above into the original
string, with just one space between words, you could write:

oldstr = $string_utils:from_list({"This", "is", "a", "test"}, " ");

Verbobject match (str string [, list obj-list, str prop-name]*)
This verb is used to search for a match to string in all the specified properties of all
the specified objects, returning either object, $ambiguous_match or $failed_match.
Each obj-list should be a list of objects or a single object, which is treated as if it
were a list of that object. Each prop-name should be a string naming a property on
every object in the corresponding obj-list. The value of that property in each case
should be either a string or a list of strings.
The argument string is matched against all of the strings in the property values.
If it exactly matches exactly one of them, the object containing that property is
returned. If it exactly matches more than one of them, $ambiguous_match is returned.
If there are no exact matches, then partial matches are considered, ones in which
the given string is a prefix of some property string. Again, if exactly one match is
found, the object with that property is returned, and if there is more than one match,
$ambiguous_match is returned.
Finally, if there are no exact or partial matches, then $failed_match is returned.

Verbstr from value (item value [, str quote strings [, num list depth]])
This verb is used to print the given value into a string. Note that quote strings
defaults to 0 (false), and list_depth defaults to 1. This is best described by example:

$string_utils:from_value(v) gives:

value result 5 "5" 5 + 3 "8" "5 + 3" "5 + 3" {} "{}" {1,2,3} "{1,
2, 3}" {1, {2, 3}, 4} "{1, {list}, 4}" {"1", {2, 3}, 4}
"{1, {list}, 4}"

$string_utils:from_value(value, 1) gives:

value result

Chapter 1: The LambdaCore Classes 66

5 "5"
5 + 3 "8"
"5 + 3" "\"5 + 3\""
{} "{}"
{1,2,3} "{1, 2, 3}"
{1, {2, 3}, 4} "{1, {list}, 4}"
{"1", {2, 3}, 4} "{\"1\", {list}, 4}"

$string_utils:from_value(value, 0, 2) gives:

value result
5 "5"
5 + 3 "8"
"5 + 3" "5 + 3"
{} "{}"
{1,2,3} "{1, 2, 3}"
{1, {2, 3}, 4} "{1, {2, 3}, 4}"
{"1", {2, 3}, 4} "{1, {2, 3}, 4}"

$string_utils:from_value(value, 1, 2) gives:

value result
5 "5"
5 + 3 "8"
"5 + 3" "\"5 + 3\""
{} "{}"
{1,2,3} "{1, 2, 3}"
{1, {2, 3}, 4} "{1, {2, 3}, 4}"
{"1", {2, 3}, 4} "{\"1\", {2, 3}, 4}"

It is interesting to note that :from_value calls itself recursively, to evaluate lists.

Verbstr pronoun sub (str text [, obj who])
This verb is used to substitute the pronoun properties of who in all occurances of
%s,%o,%p,%r in text. who is optional, and defaults to player. Also ‘%n’, ‘%d’, ‘%i’,
‘%t’, ‘%%’ are substituted by player, dobj, iobj, this and % respectively. Further,
‘%(propname)’ is substituted by who.propname. Capitalised versions of each of these
are: ‘%S’, ‘%O’, ‘%P’, ‘%R’, ‘%N’,‘%D’, ‘%I’, ‘%T’ and ‘%(Propname)’. The full list is given
below:

Code Property Pronoun Defaults
---- -------- ------- -------
%% %
%s who.ps subjective he, she, it
%S who.psc subjective He, She, It
%o who.po objective him, her, it
%O who.poc objective Him, Her, It
%p who.pp possessive his, her, its
%P who.ppc possessive His, Her, Its

Chapter 1: The LambdaCore Classes 67

%r who.pr reflexive himself, herself, itself
%R who.prc reflexive Himself, Herself, Itself
%n who.name
%N who.name (capitalised)
%d dobj.name
%D dobj.name (capitalised)
%i iobj.name
%I iobj.name (capitalised)
%t this.name
%T this.name (capitalised)
%(xyz) who.xyz
%(Xyz) who.xyz (capitalised)

Verbstr space (num num [, str str])
This verb returns a string of num occurences of str. str is optional, and defaults to
space (" ").

:space(8) returns " "
:space(8, "z") returns "zzzzzzzz"
:space(4, "<>") returns "<><><><>"

Verbstr right (str text, num len [, str fill])
This verb is used to right justify text in a string of length len. fill is the optional
fill character, which defaults to space. This function calls $string_utils:space
(described above). It is interesting to note that text need not be a string, as tostr()
is applied to it before justification.

:right("help", 9) returns " help"
:right("me", 9, ".") returns ".......me"
:right(200, 9, "*") returns "******200"
:right({1,2}, 9) returns " {list}"

Verbstr centre (str text, num len [, str fill])
This verb (aka $string_utils:center) is used to centre text in a string of length
len. fill is the optional fill character, which defaults to space. This function calls
$string_utils:space, (described above).

:centre("help", 9) returns " help "
:centre("me", 9, ".") returns "...me...."
:centre(200, 9, "*") returns "***200***"
:centre({1,2}, 9) returns " {list} "

Verbstr left (str text, num len [, str fill])
This verb is used to left justify text in a string of length len. fill is the optional
fill character, which defaults to space. This function calls $string_utils:space,
(described above). It is interesting to note that text need not be a string, as tostr()
is applied to it before justification.

:left("help", 9) returns "help "
:left("me", 9, ".") returns "me......."
:left(200, 9, "*") returns "200******"
:left({1,2}, 9) returns "{list} "

Chapter 1: The LambdaCore Classes 68

Verbstr english list (list list [str empty str and str sep str penum])
This verb is used to return a list of things as an english sentence. Note that tostr()
is applied, so things in the list need not necessarily be strings.
The optional arguments allow you to control how the list is presented. empty is the
string returned if the list is empty. The default is ‘nothing’. and is the string to use
instead of ‘ and ’ in the list. A common usage of this is replace ‘ and ’ with ‘ or ’.
sep is the separator to use between words, the default being ‘ ,’. Finally, penum is
the string to use after the penultimate elements, before the ‘and’. The default is to
have a comma without a space.

:english_list({}) = "nothing"
:english_list({"cat"}) = "cat"
:english_list({"cat","dog"}) = "cat and dog"
:english_list({"cat","dog","pig"}) = "cat, dog, and pig"
:english_list({1}) = "1"
:english_list({{1, 2, 3}, "Hi", 300}) = "{list}, Hi, and 300"

Verbstr from seconds (num secs)
This verb is used to return a string showing time in units of days, hours, minutes or
seconds.

:from_seconds(0) returns "0 seconds"
:from_seconds(2) returns "2 seconds"
:from_seconds(61) returns "a minute"
:from_seconds(130) returns "2 minutes"
:from_seconds(7000) returns "an hour"
:from_seconds(1000000) returns "11 days"

Verbnum find prefix (str subject, list choices)
This verb is used to find a string from a list of choices which has the prefix subject.
For example, if choices = {"hat", "hand", "face", "help"} then...

:find_prefix("f", choices) == 3
:find_prefix("g", choices) == 0
:find_prefix("h", choices) == $ambiguous_match
:find_prefix("he", choices) == 4
:find_prefix("ha", choices) == $ambiguous_match

Verbstr trim (str text [, str what])
This verb is used to trim leading and trailing characters from the string text. what
is the optional character to trim, and defaults to space.

:trim("help") returns "help"
:trim(" help ") returns "help"
:trim(">> help <<", ">") returns " help <<"

Verbstr capitalise (str text)
Verbstr capitalize (str text)
Verbstr cap fast (str text)

This verb is used to capitalise its argument. Note that it depends on strcmp()
returning the difference of the first non-matching letters!

Chapter 1: The LambdaCore Classes 69

:cap_fast("hello") returns "Hello"
:cap_fast("Ezeke") returns "Ezeke"

Verbstr strip chars (str subject, str stripped)
This verb is used to remove the characters in the string stripped from the string
subject.

:strip_chars("The quick brown fox", " ") = "Thequickbrownfox"
:strip_chars("The quick brown fox", "aeiou") = "Th qck brwn fx"

Verblist match player (str name, ..., [obj meobj)
Verbobj match player (str name, obj meobj)

This verb is used to match one or more names to player objects in the database. Note
that name need not be complete, nor in the same case as the player’s actual name.
If the name given is ‘me’, then the value of player, or meobj is returned. If meobj is
not a player, then $failed_match is returned.
In the case where a name is not matched against a player name or alias, the value
$failed_match is returned. If a name matches more than one player, then the value
$ambiguous_match is returned.
For example:

Verb Call Returned
--------- --------
:match_player("blip") #35
:match_player("bli") #35
:match_player("blip", "Fred") {#35, $failed_match}
:match_player("blip", "Ezeke") {#35, #99}
:match_player("me", #35) #35
:match_player("me", #1234) $failed_match
:match_player("b") $ambiguous_match

This assumes that players named ‘blip’ and ‘Ezeke’ exist in the database, but ‘Fred’
doesn’t. Additionally, there is more than one player whose name starts with ‘b’.

Verblist words (str text)
This verb is used to split a piece of text into words, in the same wat that the com-
mand line parser turns args into argstr. This verb differs from using, for example,
$string_utils:explode in that it recognises a quoted piece of text as being one
word. For example:

Verb Call Returned
--------- --------
:words ("There is a dog.") {"There", "is", "a", "dog."}
:words ("A \"red nose\"") {"A", "red nose"}
:words ("") {}
:words ("Hello") {"Hello"}

Verbstr cap property (obj what, str prop, [, num ucase]))
This verb returns what.prop, but capitalised if either ucase is true, or the prop-
erty name specified is capitalised. If prop is blank, the verb returns the value of

Chapter 1: The LambdaCore Classes 70

what:title(). If prop is not specified on what or is otherwise irretrievable, then an
error is returned.
If capitalisation is indicated by ucase being true, we return what.propc if that
exists, otherwise what.prop is capitalised in the normal fashion using $string_
utils:capitalise. A special case exists if we are trying to retrieve the name of a
player. This is never capitalised.

Verbnum index delimited (str string, str target [, num casem])
This verb works in the same way as the primitive index(), except that it only matches
on occurrences of target in string that are delimited by word boundaries. That is, it
will not match on occurrences that are preceded or followed by an alphanumeric.
For example,

Verb Call Returned
--------- --------
:index_delimited ("Hi there", "he") 0
:index_delimited ("Hi there", "hi") 1
:index_delimited ("Hi there", "hi", 1) 0
:index_delimited ("Hi there", "Hi", 1) 1

Verbnum to value (str expr)
This verb is used to convert a string into a value. It is the opposite operation to
$string_utils:from_value. As with that verb, this is best explained by examples:

$string_utils:to_value(s) gives:

s result
"5" 5
"5 + 3" "5 + 3"
{} error
{1,2,3} error
"{1,2,3}" {1,2,3}

Verblist columnize columnise (list items, num n [, num width])
This verb is used to turn a one-column list of items into an n column list. width is the
last character position that may be occupied; it defaults to a standard screen width
of 79 characters.
For example, to tell a player a list of number in three columns, use the following code:

player:tell_lines($string:utils:columnise ({1, 2, 3, 4, 5, 6, 7}, 3));

Verblist parse command (str command, who)
This verb is used to parse a command line, in the same way that the built in command
line parser does the job. It returns an horrendous list of stuff, that I’m not quite sure
about yet.

Verblist match str*ing (str input, str match, ...)
This verb performs wildcard matching of ‘match’ to input, using the ‘*’ character as
a wildcard. It returns a list of what the *s actually matched. Note that this verb will

Chapter 1: The LambdaCore Classes 71

not catch every match, if there are several different ways to parse the input. More
than one wildcard string may be given. If a numeric argument is given, it is taken to
indicate whether case sensitivity should be used.

For example:

;$string_utils:match_string(\"Jack waves to Jill\",\"* waves to *\")
a {\"Jack\", \"Jill\"}

Verbstr uppercase lowercase (str string)
This verb returns either the uppercase or lowercase version of string, as appropriate.

No properties are defined on the $string_utils class.

1.3.2 The Permissions Utils Class

The permission utilities class, $perm_utils provides a couple of useful verbs for dealing
with permissions of objects, i.e.. the ability of a player to read or access another object.

Verbnum controls (obj who, obj what)
Returns true, ‘1’, if who is the owner of what, or if who is a wizard, else returns false,
‘0’.

Verbstr apply (str perms, str mods)
This verb is used to modify the permissions given in perms with the modifiers shown
in mods. The following modifiers are possible:

! - negate a permission.

+ - add a permission.

- - remove a permission.

Consider the following examples:

Verb Call Returns
--------- -------
;$perm_utils:apply("rw", "!w") "r"
;$perm_utils:apply("rw", "!r") "w"
;$perm_utils:apply("rw", "-w") "r"
;$perm_utils:apply("rw", "") ""
;$perm_utils:apply("rw", "x") "x"
;$perm_utils:apply("rw", "+x") "rwx"

No properties are defined on the $perm_utils class.

Chapter 1: The LambdaCore Classes 72

1.3.3 The Code Utils Class

The code utils class is somewhere to hang code functions. These are defined as verbs of
the $code_utils class.

Verblist parse propref (str string)
This function parses string as a MOO-code property reference, returning

{object-string, prop-name-string}

for a successful parse and false otherwise. It always returns the right object-string to
pass to, for example, $room:match_object().
The following examples show how this verb works:

:parse_propref("me") returns 0
:parse_propref("me.name") returns {"me", "name"}
:parse_propref("$room.location") returns {"#3", "location"}
:parse_propref("$thing") returns {"#0", "thing"}
:parse_propref("$player:tell") returns 0

Verblist parse verbref (str string)
This function parses string as a MOO-code verb reference, returning

{object-string, verb-name-string}

for a successful parse and false otherwise. It always returns the right object-string to
pass to, for example, $room:match_object().
The following examples show how this verb works:

:parse_verbref("me") returns 0
:parse_verbref("me:title") returns {"me", "title"}
:parse_verbref("$room:blow_up") returns {"#3", "blow_up"}
:parse_verbref("$thing") returns 0
:parse_verbref("player:tell") returns {"player", "tell"}

Verbnone show object (obj obj)
Verbnone show property (obj obj, str pname)
Verbnone show verbdef (obj obj, str vname)

These verbs are the ones used by the ‘@show’ command to display details of an object,
a property on an object, or a verb on an object. Below is some sample code used to
display details on the paranoid property of ezeke:

fullpropref = "ezeke.paranoid";
here = player.location;
prop = $code_utils:parse_propref(fullpropref);
if (!prop)
player:tell("Could not parse string.");

else
obj = here:match(prop[1]);
if (obj < #0)

player:tell("Could not match ’", prop[1], "’.");
else

$code_utils:show_property(obj, prop[2]);
endif

endif

Chapter 1: The LambdaCore Classes 73

Verbnone find verbs containing (str pattern, num start obj, num count)
This verb prints to the player the name and owner of every verb in the database
whose code contains pattern as a substring. It starts at the object number start obj
(as a number, not an object) and goes to the end of the database. count specifies
how many verbs have been found so far. Because it searches the entire database, this
function may not be finished when it returns; it may have forked a task to continue
the job.

For example:

>;$code_utils:find_verbs_containing ("show_property", 0, 0)
a #4:@s*how, line 18 [Wizard (#2)]

1.3.4 The Command Utilities Class

The command utilities class, $command_utils provides a couple of useful verbs for deal-
ing with player commands, as follows:

Verbnum object match failed (obj result, str string)
This function tells the player of a failed match, and returns true if so. If result is
valid it returns false, without telling the player anything. For example, (where #118
has been recycled):

Result String Ret Player sees...
------ ------ --- --------------
$failed_match "blip" 1 I see no "blip" here.
$ambiguous_match "blip" 1 I don’t know which "blip" you mean.
#118 "" 1 #118 does not exist.
#28 "blip" 0

This could be used in the following way, in the implementation of a ’bop’ command,
defined as a verb on a player:

/* bop <any> */
here = player.location;
victim = here:match(dobjstr);
if (!$command_utils:object_match_failed(victim, dobjstr))
player:tell("You bop ", dobj.name, " over the head!");
dobj:tell(player.name, " bops you over the head!");
here:announce_all_but({player,dobj},
player.name + " bops " + dobj.name + " over the head!");

endif

Verbnone player match result (list results, list strings, [str prefix])
This verb is used to inform the player of the results of trying to match the player
names in string with players in the database. It assumes that results are the result
of a $string_utils:match_player(strings) and prints out nasty messages to the
player concerning strings that didn’t match with any player in teh database. It returns
a list, in the following format:

{our result, player1, ..., playerN}

Chapter 1: The LambdaCore Classes 74

where our result is an overall result, set to ‘true’ if some string didn’t match, followed
by the object reference numbers of players that matched. An optional third argument,
prefix, gives an identifying string to prefix to each of the nasty messages.
For example, supposing there are only players named ‘blip’ and ‘blipster’ in the
database:

Results Strings Ret Player Sees....
------- ------- --- ---------------
{$nothing} {"George"} 0 nothing
{$failed_match} {"George"} 1 "George" is not the

name of any player.
{$ambiguous_match} {"blip"} 1 "blip" could refer to any

of a number of people."
{#28} {"blip"} {0, #28} nothing

The following code fragment from $player:page shows how you might use this func-
tion in your own programs:

who = $string_utils:match_player(args[1]);
if ($command_utils:player_match_result(who, args[1])[1])
return;

The variable args[1] contains the name of the player we are trying to page

No properties are defined on the $command_utils class.

1.3.5 The List Utilities Class

The list utilities class, $list_utils defines a number of functions that manipulate lists.

Verblist map prop (list objs, string prop)
This function returns a list of the values of a specified property prop on each of the
objects in the list objs. If prop does not exist on one of the objects, an error occurs.
As an example, the following code will list all the locations that have at least one
player in them. It uses the :map_prop verb to generate a list corresponding to each
player’s location. Set addition is used to provide a list of the location names without
duplication. Note that the players() primitive returns a list of all the player objects
in the database.

locs = $list_utils:map_prop(players(), "location");
rooms = {};
for x in (locs)
rooms = setadd(rooms, x.name);

endfor
player:tell("Inhabited locations are ",

$string_utils:english_list(rooms), ".");

Verblist map verb (list objs, string verb [, list varg])
This function returns a list of the return values of a specified verb verb on each of the
objects in the list objs. varg is optional and defines the arguments to verb; it defaults
to the empty list {}. If verb does not exist on one of the objects, an error occurs.

Chapter 1: The LambdaCore Classes 75

As an example, the following code will list all the connected players, using the :title
verb on each to do so. It uses the :map_verb function to generate a list of each of
the player’s title strings.

cp = $list_utils:map_verb(connected_players(), "title");
player:tell("Connected players are ",

$string_utils:english_list(cp), ".");

Verblist assoc (target, list list, [num index])
This verb requires list to be a list of lists. It returns the first element of list whose
own indexth element is target. If not supplied, index defaults to ‘1’.
Consider the following examples:

Verb Call Returned
--------- --------
:assoc(1, {{2,3}, {1, 2}}) {1,2}
:assoc(1, {{2,3}, {2, 1}}) {}
:assoc(1, {}) {}

Consider a more interesting example. Suppose that you have a list of heights for a
number of players, in the following format:

{{name1, height1}, ..., {nameN, heightN}}

and you want to search through the list to find out how tall a particular player is.
This can be done using the following code, assuming that the variable heights is the
list of ‘{name, height}’ pairs, and ourplayer is the player whose height you wish to
look up:

player:tell(ourplayer, "is ",
$list_utils:assoc (ourplayer, heights)[2], "ft high");

Suppose that heights is defined as follows:
{{"blip", 2}, {"Ezeke", 6}, {"Geezer", 10}}

For different lookups, we would get the following results:
ourplayer Results
blip {"blip", 2}
Ezeke {"Ezeke", 6}
Fred {}

Verbnum iassoc (target, list list, [num index])
This verb works similarly to $string_utils:assoc except that it returns an index
into list, rather than the actual matching element from list. If no matching element
is found, it returns ‘0’. Consider the following examples:

Verb Call Returned
--------- --------
:assoc(1, {{2,3}, {1, 2}}) 2
:assoc(1, {{2,3}, {2, 1}}) 0
:assoc(1, {}) 0

Verblist sort alist (list list, [num index])
This verb requires list to be a list of lists. It sorts the list into ascending order, using
the indexth element of each list element as the sort key. For example:

Chapter 1: The LambdaCore Classes 76

Verb Call Returned
--------- --------
sort_alist({{5}, {2}, {3}}) {{2}, {3}, {5}}
sort_alist({}) {}
sort_alist({{2,3},{5,1},{3,6}},2) {{5,1},{2,3},{3,6}}

Verblist map pronoun sub (list objects, string)
This verb returns the result of calling $string_utils:pronoun_sub for each object
in the list objects on the string supplied. For example, where ‘#28’ is named ‘blip’,
and ‘#35’ is named Ezeke:

our_objs={#28,#35};
our_msg="Hello %n";
our_output=$list_utils:map_pronoun_sub(our_objs, our_msg);
player:tell_lines (our_output);

Executing this short program would produce the following output
>run_test_program
a Hello blip.
a Hello Ezeke.

Verblist slice (list list, [num index])
This verb returns a list of the indexth elements of the elements of list. If index is not
given, it defaults to ‘1’. For example,

Verb Call Returns
--------- -------
:slice ({{1,2}, {3,4}, {5,6}}}) {1,3,5}
:slice ({{1,2}, {3,4}, {5,6}}},2) {2,4,6}
:slice ({}} {}

No properties are defined on the $list_utils class.

1.3.6 The Building Utils Class

This class provides a couple of utility functions used in building rooms and exits in the
core database structure. The verbs provided are used mainly by the building command
‘@dig’, although they can, of course, be used by other verbs.

Verbnone set names (obj object, string spec)
The function is used to set both the name of an object and any aliases that the
programmer needs. It expects 2 arguments: first, the object reference whose name
is to be set, and then a string which contains the name and any aliases as a comma
delimited string.

Verbnone make exit (string spec, obj source, obj dest)
This is a function that is used to create a named exit with given source and destination
rooms. The code will do a protection check to verify that an exit can be created and
which if any links specified can be made.

Chapter 1: The LambdaCore Classes 77

The following will try to create an exit called ‘Out’ owned by the calling player and
then link that exit to #25 as the source (exit from) and #26 as the destination
(entrance to).

$building_utils:make_exit("Out", #25, #26);

1.3.7 The Lock Utilities Class

This class provides some useful functions related to the use of locks for objects in the
database. The LambdaCore database supports a simple but powerful notation for specifying
locks on objects, encryption on notes, and other applications. The idea is to describe a
constraint that must be satisfied concerning what some object must be or contain in order
to use some other object.

The constraint is given in the form of a logical expression, made up of object num-
bers connected with the operators ‘and’, ‘or’, and ‘not’ (written ‘&&’, ‘||’, and ‘!’, for
compatibility with the MOO programming language).

These logical expressions (called key expressions) are always evaluated in the context
of some particular candidate object, to see if that object meets the constraint. To do so,
we consider the candidate object, along with every object it contains (and the ones those
objects contain, and so on), to be ‘true’ and all other objects to be ‘false’.

As an example, suppose the player blip wanted to lock the exit leading to his home so
that only he and the holder of his magic wand could use it. Further, suppose that blip was
object #999 and the wand was #1001. blip would use the ’@lock’ command to lock the exit
with the following key expression:

me || magic wand

and the system would understand this to mean
#999 || #1001

That is, players could only use the exit if they were (or were carrying) either #999 or
#1001.

There is one other kind of clause that can appear in a key expression:
? object

This is evaluated by testing whether the given object is unlocked for the candidate object;
if so, this clause is true, and otherwise, it is false. This allows you to have several locks all
sharing some single other one; when the other one is changed, all of the locks change their
behavior simultaneously.

The internal representation of key expressions is stored in the property .key on every
object.

1.3.7.1 Key Representation For Locks

Objects are represented by their object numbers and all other kinds of key expressions
are represented by lists. These lists have as their first element a string drawn from the
following set:

"&&" "||" "!" "?"

For the first two of these, the list should be three elements long; the second and third
elements are the representations of the key expressions on the left- and right-hand sides of

Chapter 1: The LambdaCore Classes 78

the appropriate operator. In the third case, ‘!’, the list should be two elements long; the
second element is again a representation of the operand. Finally, in the ‘?’ case, the list is
also two elements long but the second element must be an object number.

As an example, the key expression
#45 && ?#46 && (#47 || !#48)

would be represented as follows:
{"&&", {"&&", #45, {"?", #46}}, {"||", #47, {"!", #48}}}

1.3.8 Verbs for Manipulating Locks and Keys

The following utility verbs, defined on the $lock_utils class can be used by the pro-
grammer to manipulate locks on objects and key expressions.

Verbnum eval key (list key, obj who)
This verb evaluates the key expression key, in the context of the candidate object who.
It returns ‘1’ if the key will allow who to pass, otherwise it returns ‘0’. The simple
examples below are intended to show the ways in which this verb can be invoked:

Verb Call Returned
--------- --------
:eval_key(#35, #35) 1
:eval_key({"!", #35}, #35) 0
:eval_key({"!", #35}, #123) 1

The key expression is given as a list, in the format described above.

Verblist parse keyexp (stringkeyexp, obj who)
This verb parses the string keyexp and returns the internal representation of the
expression, for use with $lock_utils:eval_key. It is used, for example, by the verb
$player:@lock to parse the text given by a player into a key expression to store on
the .key property of an object.

Verbnone init scanner ()
Verbnone scan token ()
Verbnone match object ()
Verbnone canonicalize spaces ()
Verbnone parse E ()
Verbnone parse A ()

These verbs are used by the verb $lock_utils:parse_keyexp to perform it’s parsing
functions. They can be called from user programs, but are really part of the :parse_
keyexp verb.

Verbstring unparse key (list keyexp)
This verb takes the key expression keyexp and returns the input expression that could
be used to obtain that key. It is the reverse operation to $lock_utils:parse_keyexp.

A few properties are defined on the $lock_utils class, but these are only used internally
by the lock evaluation routines, and are of no real interest to the programmer.

Chapter 1: The LambdaCore Classes 79

1.3.9 The Object Utilities Class

This class provides some utilities used to ascertain information about objects.

Verbnum contains (obj container, target)
This verb returns ‘1’ if target is in any way contained by container. This includes
being directly in the contents list of the object, and also in the contents list of any
object that is contained by container. This verb is a partner to the :match verb, as
they both embody the same concept.

Verblist all properties (obj object)
This verb returns a list of names of all the properties of object. This includes prop-
erties defined on the parent(s) of this object. Recall that properties defined on the
parent(s) of an object do not appear in the set given by the properties(thing) prim-
itive in MOO. The :all_properties verb is useful for seeing the properties that an
object actually has values for.

Verblist all verbs (obj object)
Returns a list of all the names of the verbs defined for object. This includes verbs de-
fined on the parent(s) of this object. Again, as for the :all_properties verb, :list_
all_verbs provides the complete list of verbs that define an object’s behaviour. Using
the verbs(thing) primitive in MOO lists only those verbs actually defined on thing.

Verblist ancestors (obj object)
This verb returns a list of the parent objects of this object. This is all the objects
that lie above this object in the hierarchy. All objects have the $root_class in their
list of parents. For example, the $newspaper class object has the $note class, the
$thing class and the $root_class as it’s parents.
This verb can be used by an object to tell if another object is descended from the
same ancestor class. Consider, for example, a generic zapper object. This is an
object which can be used to shoot at other people, with amusing and sometimes
unexpected results. Bearing in mind that it is unfair to try and zap someone who is
unarmed, the verb zapper:shoot looks at the possessions of the victim, and decides
whether s/he is armed. If this is the case, then the victim is fair game and deserves
all s/he gets. If not, the zapper refuses to shoot, with embarrassing results for the
aggressive attacker.
Considering the implementation of the zapper:shoot verb, we could determine if the
victim has a zapper by comparing the parents of the assailant’s zapper and each
of the victim’s possessions. However, this would only work if the zappers were first
generation children of the same parent - the generic zapper class.
Suppose, however, that the crafty player has built a super zapper class, with radar
sights, based on the generic zapper class. In this case, the test fails because the
children of the super zapper class are not first generation descendants of the original
generic zapper class.
A better way to code this test is to look at the :ancestors of the objects, and see
if the generic zapper class is numbered amongst them. If this is the case, then we
can definitely know who is armed and who isn’t.

Chapter 1: The LambdaCore Classes 80

Verblist descendants (obj object)
Returns a list of all this object’s descendants, going down the object hierarchy.

Verbobj has verb (obj object string vname)
This verb returns the object number of object if it defines the verb vname. If object
does not define vname, then the object number of any ancestor of object that does
define the verb is returned. If the verb is not defined on object or any of it’s ancestors,
then ‘0’ is returned.

Verbobj has property (obj object string pname)
This vernb returns ‘1’ if object has a property pname, else it returns ‘0’.

1.3.10 The Matching Utilities

The matching utilities class, $match_utils provides several useful verbs for matching
strings to objects. The following facilities are provided:

Verbobj match (str string, list where)
This is a general purpose matching verb. It tries to match string against the list of
objects in where, if string does not match any of the special cases, listed below.

me This matches with the value of the player variable, i.e. the
player who is running the verb.

here This returns the value of the player.location property.

"" If a null argument is supplied, this verb returns the value of
the caller variable.

$class This returns the value of the corresponding property on the system
object, #0. This is used to match with, for example,
$player, $exit etc.

#num This returns the value of num as an object reference, as long as
the object referred to is valid, and meets one of the following
conditions:
• The object is in the object that called this verb.
• The object is in the same location as the player.
• The object is being carried by the player.
• The object is in the same location as the caller.
• The object is owned by the player.

Chapter 1: The LambdaCore Classes 81

string In the general case, a match is attempted using the
$string_utils:match verb, using the value of where as the
list of objects to match against. The aliases property is used
to match the string against.

If no match is found using the above rules, a more general algorithm is used. This
recognises forms such as the following:

person’s object
This matches against the item object in the inventory of
person. The special case where person is specified by using
‘my’ is catered for. Note that $match_utils:match is used
to match the person string.

number object
This form allows you to specify a particular object in situations where
the object string would match more than one item. The string
number is something like ‘first’, ‘second’, . . . or
‘1st’, ‘2nd’,

These two forms can be combined, as show in the examples below. Here we assume
that wizard(#2) is carrying two newspapers, with object numbers #10 and #23. Wiz-
ard is currently standing in a room with object reference #11. The verb calls are
made by the Wizard, so that referring to ‘me’ or ‘my’ refers to the wizard.

Verb Call Returns
--------- -------
:match ("me", {}) #2
:match ("here", {}) #11
:match ("", {}) $nothing
:match ("$player", {}) #4
:match ("wizard", {}) $failed_match
:match ("wizard", {#2}) #2
:match ("my newspaper", {}) #10
:match ("wizard’s newspaper", {}) $failed_match
:match ("wizard’s newspaper", {#2}) $ambiguous_match
:match ("wizard’s first newspaper", {#2}) #10
:match ("wizard’s second newspaper", {#2}) #23
:match ("first newspaper", {#2}) $failed_match
:match ("first newspaper", {#10, #23}) #10
:match ("second newspaper", {#10, #23}) #23

Verbobj match nth (str string, list where, num n)
This verb is used to match the nth occurrence of string in the list of objects given
in where. This verb is used, for example, by $match_utils:match to pick out one
particular object from a list with more than one possible match.
This verb looks at the aliases property of each of the objects in the where list, and
returns the nth match. If there is no nth match, then $failed_match is returned.

Chapter 1: The LambdaCore Classes 82

The idea behind this verb is to allow you to specify particular objects in situations
where a normal match would return $ambiguous match. This verb uses index() to
do it’s matching, and so returns objects which partially match string.

Verbnum match verb (str verb, obj what, args)
This verb returns ‘1’ if verb is found on the object what. The code for this is shown
below:

vrb = args[1];
what = args[2];
ret = what:(vrb)(args[3]);
return ret != E_VERBNF;

Note that the verb being matched is executed with the args given, but the result
returned by the verb is lost. If the verb is not found, then ‘0’ is returned.

Verblist match list (str string, list where)
This verb returns a list of objects taken from the list where that match with string.
The aliases property of each object is checked to see if it can be matched against
string. If it can, then it is added to the returned list. This verb is used in cases
where you wish to know all the objects that match a particular string. This verb uses
index() to do its matching, and so returns objects which partially match string.

1.3.11 The Trigonometric Utilities

This class provides various numerical routines, including trigonometric routines, gener-
ation of number sequences, and permutations and combinations.

The trigonometric routines all take a parameter x in degrees. Result returned are to
four decimal places, multiplied by 10000, so that they can be represented by numbers. For
example:

Verb Call Result
--------- ------
:sin(0) 0
:sin(90) 10000
:sin(45) 7063
:sin(270) -10000

The following verbs are available:

Verbnum sin (num x)
This verb returns the sine of x, where x is in degrees. The returned value is to four
decimal places, multiplied by 10000.

Verbnum cos (num x)
This verb returns the cosine of x, where x is in degrees. The returned value is to four
decimal places, multiplied by 10000.

Verbnum tan (num x)
This verb returns the tangent of x, where x is in degrees. The returned value is to
four decimal places, multiplied by 10000.

Chapter 1: The LambdaCore Classes 83

Verbnum xsin (num x)
Verbnum xcos (num x)

These two verbs are used by the above verbs to compute the sin, cos and tan values
using Taylor’s Theorem. They are not really of use to the average programmer.

Verbnum factorial (num x)
This verb returns the factorial, using the traditional recursive method. Note that n
must be greater than or equal to 0.

Verbnum pow (num x, num n)
This verb returns x raised to the nth power. Note that n must be greater than or
equal to 0. Again, a recursive method is used to generate the result.

Verblist exp (num x [, num n])
This verb calculates an nth order Taylor approximation for e^x. n defaults to 5. The
result returned is in the format:

{integer part, fractional part}

For example,
>;$trig_utils:exp(1)
a {2, 71666}

>;$trig_utils:exp(2, 6)
a {7, 35555}

Verblist fibonacci (num n)
This verbn calculates the Fibonacci sequence to the nth term, and returns the result
as a list of numbers. Note that n must be greater than or equal to zero.
For example:

>;$trig_utils:fibonacci(10)
a {0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55}

Verbnum geometric (num x, num n)
This verb calculates the value of the geometric series at x to the nth term. i.e., it
approximates 1/(1-x) when |x| < 1. This, of course, is impossible in MOO, but
someone may find it useful in some way. n defaults to 5. Note that n must be greater
than or equal to zero.

Verblist div (num n, num q)
This verb returns a decomposition of n by q using the division algorithm. The re-
turned list contains the divisor and the remainder.
For example:

Verb Call Returned
--------- --------
;$trig_utils:div(5,1) {5, 0}
;$trig_utils:div(5,2) {2, 1}
;$trig_utils:div(5,3) {1, 2}
;$trig_utils:div(5,4) {1, 1}
;$trig_utils:div(5,5) {1, 0}

Chapter 1: The LambdaCore Classes 84

Verbnum combinations (num n, num r)
This verb returns the number of ways one can choose r objects from n distinct choices.
For example:

Verb Call Returned
--------- --------
;$trig_utils:combinations(5,1) 5
;$trig_utils:combinations(5,2) 10
;$trig_utils:combinations(3,2) 3

Verbnum permutations (num n, num r)
This verb returns the number of ways possible for r objects to be ordered given n
distinct locations,using the formula

P(n,r) = n!

(n-r)!

For example:

Verb Call Returned
--------- --------
;$trig_utils:permutations(5,1) 5
;$trig_utils:permutations(5,2) 20
;$trig_utils:permutations(3,2) 6

Verblist simpson (list {num a, num b}, list {num f(a), num f((a+b)/2), num
f(b)})

Given two endpoints, a and b, and the function’s value at a, (a+b)/2, and b, this verb
will calculate a numerical approximation of the integral using Simpson’s rule. The
answer is returned in the form

{integer part, fractional part}

Verblist abs (num x)
This verb returns the absoluate value of x. Note that this is available in the server as
the abs() primitive, so this verb is redundant.

Verblist parts (num n, num q [, num i])
This verb returns a decomposition of n by q into integer and floating point parts. i
gives the number of digits after the decimal point. If not given, i defaults to 5. For
example:

Verb Call Returned
--------- --------
;$trig_utils:parts(5,1) {5, 0}
;$trig_utils:parts(5,2) {2, 50000}
;$trig_utils:parts(3,2,2) {1,50}

Chapter 1: The LambdaCore Classes 85

1.3.12 The Time Utilities

The time utilities class, $time_utils provides a few useful functions for dealing with
dates and times. The following verbs are provided:

Verbstr day (time)
This verb takes a time specification in time, and returns the full name of the day.
This verb expects time to be the result of a either the time() primitive or ctime().
In the first case, time is a number. In the second case, time is a string.
For example,

>;$time_utils:day(time())
a "Friday"

The names for the days are stored on a property list called days on the $time_utils
class. This is indexed from a list of abbreviated day names, stored in a property list
called dayabbrs.

Verbstr month (time)
This verb takes a time specification in time, and returns the full name of the month.
This verb expects time to be the result of a either the time() primitive or ctime().
In the first case, time is a number. In the second case, time is a string.
For example,

>;$time_utils:month(time())
a "July"

The names for the months are stored on a property list called months on the $time_
utils class. This is indexed from a list of abbreviated month names, stored in a
property list called monthabbrs.

Verbstring ampm (time [,num precision)
This verb takes a time specification in time, and returns string containing a time in
the form

[h]h[:mm[:ss]] {a.m.|p.m.}

time is either the result of the time() or ctime() primitives, and is either a number
or a string respectively. If given, precision specifies the accuracy required:

1 Only the hours are returned.

2 The hours and minutes are returned.

3 The hours, minutes and seconds are returned.

If not given, then precision defaults to minutes. For example,
Verb Call Returns
--------- -------
:ampm(time()) "8:58 p.m."
:ampm(time(), 1) "8 p.m."
:ampm(time(), 2) "8:58 p.m."
:ampm(time(), 3) "8:58:23 p.m."

Chapter 1: The LambdaCore Classes 86

Verbnum to seconds (str string)
This verb takes a string in the form

hh:mm:ss

for example, created using the expression
$string_utils:explode(ctime(time))[4]

and returns the number of seconds elapsed since 00:00:00.

Verbnum sun ([num time])
I can’t work out what this verb is supposed to do. I include the code for those
interested persons who might find it useful.

r = 10000;
h = r * r + r / 2;
time = args == {} ? time() | args[1];
t = (time + 120) % 86400 / 240;
s = 5 * ((time - 14957676) % 31556952) / 438291;
phi = s + t + this.corr;
cs = $trig_utils:cos(s);
spss = ($trig_utils:sin(phi) * $trig_utils:sin(s) + h) / r - r;
cpcs = ($trig_utils:cos(phi) * cs + h) / r - r;
return (this.stsd * cs - this.ctcd * cpcs - this.ct * spss + h) / r - r;

Verbnum from ctime (str string)
This verb, given a string such as that returned by ctime(), returns the corresponding
time-in-seconds-since-1970 time returned by time(), or E_DIV if the format is wrong
in some essential way. Note that ctime() doesn’t return a time zone, yet it arbitrarily
decides whether it’s standard or daylight savings time.

The following properties are defined on the $time_utils class:

Propertystsd
Propertyctcd
Propertyct
Propertycorr

These properties are used by the mysterious $time_utils:sun() verb. Becuase of
this, I have no comment to make on what information they contain, or how they are
used.

Propertydayabbrs
This property contains a list of day abbreviations, such as are found in the string
returned by ctime(). They are used to produce an index into the property days,
that contains the full names of each day of the week.

Propertydays
This property contains a list of the seven full names of the days of the week.

Propertymonths
This property contains a list of the twelve full names of the months of the year.

Chapter 1: The LambdaCore Classes 87

Propertymonthabbrs
This property contains a list of month name abbreviations, such as are returned from
ctime(). They are used to produce an index into the property months, that contains
the full names of each month of the year.

Propertyzones
This contains a list of some time zones, for some random purpose as yet unknown. If
anyone can enlighten me.....

1.3.13 The Gender Utilities

The gender utilities class, $gender_utils contains a couple of verbs used for manipu-
lating the gender pronouns of objects.

Verbnum set (obj object, str gender)
This verb is used to set the pronoun properties of object, according to the gen-
der specified. gender is a string: one of the strings in the property list $gender_
utils.genders, the list of rcognized genders.

The verb checks gender against the gender list, and sets the pronouns on object with
strings taken from property lists stored on $gender_utils. If the gender change
is successful, the (full) name of the gender (e.g., ‘female’) is returned. E_NONE is
returned if gender does not match any recognized gender. Any other error encountered
(e.g., E_PERM, E_PROPNF) is likewise returned and the object’s pronoun properties are
left unaltered.

Verbnum add (obj object [,str perms] [, obj owner])
This verb is used to add pronoun properties to object if they are not already there.
The owner and perms arguments allow you to optionally specify the permissions and
owner of the gender properties that are being created. If not given, owner defaults to
the object’s owner, and perms defaults to ‘rc’.

The following properties are defined on the $gender_utils class:

Propertypronouns
This property holds a list of the pronoun properties that can be given to an object.
It is used by the $gender_utils:add verb when adding the gender properties to an
object.

Propertygenders
This property holds a list of legal genders for objects, as strings.

Propertyps
This property holds the subjective pronouns for each different gender. If a gender
is given by $gender_utils.genders[x], then the corresponding gender pronouns is
given by $gender_utils:ps[x].

Chapter 1: The LambdaCore Classes 88

Propertypo
This property holds the objective pronouns for each different gender. If a gender
is given by $gender_utils.genders[x], then the corresponding gender pronouns is
given by $gender_utils:po[x].

Propertypp
This property holds the possessive pronouns for each different gender. If a gender
is given by $gender_utils.genders[x], then the corresponding gender pronouns is
given by $gender_utils:pp[x].

Propertypq
This property holds the possessive pronouns, in the noun form, for each different
gender. If a gender is given by $gender_utils.genders[x], then the corresponding
gender pronouns is given by $gender_utils:pq[x].

Propertypr
This property holds the reflexive pronouns for each different gender. If a gender is
given by $gender_utils.genders[x], then the corresponding gender pronouns is
given by $gender_utils:pr[x].

Propertypsc
This property holds the capitalised subjective pronouns for each different gender.
If a gender is given by $gender_utils.genders[x], then the corresponding gender
pronouns is given by $gender_utils:psc[x].

Propertypoc
This property holds the capitalised objective pronouns for each different gender. If
a gender is given by $gender_utils.genders[x], then the corresponding gender
pronouns is given by $gender_utils:poc[x].

Propertyppc
This property holds the capitalised possessive pronouns for each different gender. If
a gender is given by $gender_utils.genders[x], then the corresponding gender
pronouns is given by $gender_utils:ppc[x].

Propertypqc
This property holds the capitalised possessive pronouns, in their noun form, for each
different gender. If a gender is given by $gender_utils.genders[x], then the cor-
responding gender pronouns is given by $gender_utils:pqc[x].

Propertyprc
This property holds the capitalised reflexive pronouns for each different gender. If
a gender is given by $gender_utils.genders[x], then the corresponding gender
pronouns is given by $gender_utils:prc[x].

Chapter 2: Common Questions - How to do Useful Things 89

2 Common Questions - How to do Useful Things

To be written.

Verb Index 90

Verb Index

?
? . 27

@
@add-entrance . 15

@add-exit . 15

@answer . 32, 45

@audit . 35

@bug . 34

@che*ck . 37

@cl*asses . 38

@count . 33

@create . 38

@desc*ribe . 37

@dig . 38

@eject . 17, 35

@entrances . 13

@exits . 11

@gag . 25

@gender . 28

@gripe . 27

@idea . 34

@lastlog . 16

@listgag . 26

@lock . 36

@lock_for_open . 58

@mail . 32, 43

@memory . 34

@mess*ages . 36

@move . 37

@next . 32, 45

@notedit . 34

@opacity . 58

@par*anoid . 37

@password . 27

@prev . 32, 46

@quit . 35

@quota . 32

@read . 32, 44

@realm . 33

@recycle . 38

@rename . 29

@renumber . 32, 46

@reply . 32, 45

@rmm*ail . 32, 44

@s*how . 37

@send . 32, 44

@sethome . 31

@suggest*ion. 34

@sw*eep . 36

@typo . 34

@ungag . 27

@unlock . 36

@unlock_for_open . 58

@version . 36

@whereis . 32

@who . 34

A

abort . 51

abortable . 51

abs . 84

accept . 6, 12, 29, 48

add . 87

add_entrance. 12

add_exit . 10

add_line . 50

add_writer . 49

all_properties . 79

all_verbs . 79

also*-to . 53

also*-to: . 47

ampm . 85

ancestors . 79

announce . 9, 34

announce_all. 14

announce_all_but . 9, 34

apply . 71

arrive_msg . 23

assoc . 75

audit_2 . 35

B

bless_for_entry . 13

burn . 60

Verb Index 91

C
canonicalize_spaces . 78

cap_fast . 68

cap_property. 69

capitalise . 68

capitalize . 68

centre . 67

check_answer_flags . 48

classes_2 . 38

clear_abortable . 52

close . 58

columnize . 70

combinations. 84

confunc . 8, 31

contains . 79

controls . 71

cos . 82

count_2 . 33

D
d*rop . 20, 57

day . 85

decrypt . 60

del*ete . 59

descendants . 80

describe . 4

description . 4

destroy . 52

disfunc . 9, 31

div . 83

drop_failed_msg . 20

drop_succeeded_msg . 20

E
eject . 7

ejection_msg. 17

emote . 9, 50

emote1 . 9

encrypt . 60

english_list. 68

enterfunc . 14, 48

er*ase . 59

eval_key . 78

exam*ine . 6

exitfunc . 14, 52

exp . 83

explain_syntax . 16

explode . 65

F
factorial . 83

fibonacci . 83

find_prefix . 68

find_topics . 62

find_verbs_containing . 73

fix_current_message 32, 45

from_ctime . 86

from_list . 65

from_seconds. 68

from_value . 65

G
g*et . 20, 24, 57

gag_p . 30

geometric . 83

gi*ve . 27

go . 13

H
ha*nd . 27

has_property. 80

has_verb . 80

help . 51, 61

home . 30

huh . 10

huh2 . 17

I
i*nventory . 24

iassoc . 75

in*sert . 57

index_delimited . 70

init_scanner. 78

init_session. 47

invoke . 22

is_openable_by . 58

is_readable_by . 60

is_unlocked_for . 7

Verb Index 92

L
leave_msg . 23

left . 67

look . 13

look_self . 5, 11, 24, 51

M
make_exit . 76

make_message . 48, 53

map_pronoun_sub . 76

map_prop . 74

map_verb . 74

match . 6, 65, 80

match_exit . 10

match_list . 82

match_nth . 81

match_object . 11, 78

match_player. 69

match_str*ing . 70

match_verb . 82

message_so_far . 49

message_with_headers 47, 52

month . 85

move . 22

moveto . 5, 20

N
n*orth/e*east/w*west/s*south 16

name_list . 48, 53

news . 27

nogo_msg . 23

northwest/northeast/southwest/southeast

16

O
oarrive_msg . 23

object_match_failed . 73

odrop_failed_msg . 20

odrop_succeeded_msg . 20

oejection_msg . 17

oleave_msg . 23

onogo_msg . 23

open . 58

otake_failed_msg . 20

otake_succeeded_msg . 20

P
p*ut . 57

page . 28

page_absent_msg . 39

page_echo_msg . 39

page_origin_msg . 39

parse_A . 78

parse_command . 70

parse_E . 78

parse_invoke. 46

parse_keyexp. 78

parse_msg_headers . 48

parse_propref . 72

parse_recipients . 48

parse_verbref . 72

parts . 84

pause . 50

permutations. 84

player_match_result . 73

pow . 83

pri*nt . 47

print . 50

print_index . 62

print_msg . 47, 50

print_topic . 63

pronoun_sub . 66

Q
QUIT . 35

R
r*ead . 59

re*move . 57

realm2 . 33

receive_message . 32, 45

recipient_names . 48, 50

recipients . 49

recycle . 7, 15, 23

rem*ove . 59

remove_entrance . 14

remove_exit . 14

reply-to*: . 48

right . 67

Verb Index 93

S
say . 9, 50

scan_token . 78

send . 48, 52

send_back . 51

send_message . 48, 53

set . 87

set_abortable . 51

set_name . 7, 34

set_names . 76

set_opaque . 59

set_opened . 58

set_subject . 47, 53

show_object . 72

show_property . 72

show_verbdef. 72

showlists . 48

simpson . 84

sin . 82

slice . 76

sort_alist . 75

space . 67

strip_chars . 69

sub*ject . 52

subj*ect: . 47

subsc*ribe . 48

sun . 86

T
t*ake . 20

ta*ke . 57

take . 24

take_failed_msg . 20

take_succeeded_msg . 20

tan . 82

tell . 5, 29

tell_contents . 10, 58

tell_lines . 7

text . 59

th*row . 20

the_subject . 52

title . 7

titlec . 7

to . 52

to*: . 47

to_seconds . 86

to_value . 70

trim . 68

U
unparse_key . 78

unsubsc*ribe. 48

up/down . 16

uppercase . 71

V
victim_ejection_msg . 17

W
wh*isper . 24

whereis . 31

whereis_location_msg . 39

who . 48

who_location_msg . 38

whodunnit . 30

words . 69

working_on . 46

wr*ite . 59

X
xcos . 83

xsin . 83

Property Index 94

Property Index

A

abortable . 54

aliases . 8

ambiguous_match . 56

arrive_msg . 23

B

blessed_object . 18

blessed_task. 18

building_utils . 56

C

code_utils . 55

command_utils . 55

container . 56

corr . 86

ct . 86

ctcd . 86

ctype . 19

current_message . 39

D

dark . 19

dayabbrs . 86

days . 86

description . 8

dest . 23

drop_failed_msg . 22

drop_succeeded_msg . 22

dump_interval . 56

E

edit_options. 42

editor . 55

ejection_msg. 18

encryption_key . 60

entrances . 18

exit . 56

exits . 19

F
failed_match. 56

free_entry . 18

G
gaglist . 41

gender . 39

genders . 87

gripe_recipients . 56

H
help . 55

home . 40

K
key . 8

L
last_connect_time . 39

leave_msg . 24

letter . 56

lines . 41

list_utils . 55

lock_utils . 55

M
mail_forward. 42

mail_notify . 42

mail_options. 42

mail_room . 55

messages . 39, 54

monthabbrs . 87

months . 86

N
news . 56

nogo_msg . 23

note . 56

nothing . 55

Property Index 95

O
oarrive_msg . 24

object_gaglist . 41

object_utils. 55

odrop_failed_msg . 22

odrop_succeeded_msg . 22

oejection_msg . 18

oleave_msg . 24

onogo_msg . 23

otake_failed_msg . 21

otake_succeeded_msg . 21

ownership_quota . 39

P
page_absent_msg . 41

page_echo_msg . 42

page_origin_msg . 41

paranoid . 41

password . 41

perm_utils . 56

places . 54

player . 55

player_class. 57

player_start. 57

po . 39, 88

poc . 40, 88

pp . 40, 88

ppc . 40, 88

pq . 40, 88

pqc . 40, 88

pr . 40, 88

prc . 40, 88

prog . 55

pronouns . 87

ps . 39, 87

psc . 40, 88

R
recipients . 48, 54

replytos . 48

residents . 18

responsible . 41

room . 56

root_class . 56

S
source . 23

string_utils. 56

stsd . 86

subjects . 48, 54

T
take_failed_msg . 21

take_succeeded_msg . 21

text . 60

thing . 56

V
victim_ejection_msg . 18

W
welcome_message . 57

whereis_location_msg . 42

who_location_msg . 42

wiz . 55

wizard_mail_recipients . 56

writers . 54

Z
zones . 87

i

Table of Contents

Introduction . 1

1 The LambdaCore Classes 2
1.1 The LambdaCore Generic Classes . 2

1.1.1 The Root Class . 4
1.1.2 The Room Class . 8
1.1.3 The Thing Class . 19
1.1.4 The Exit Class. 22
1.1.5 The Player Class . 24

1.2 The Mail Room Class . 42
1.2.1 Mail Commands and Properties on The Player Class

. 43
1.2.2 The Mail Room or Mail Editor 46
1.2.3 The generic Editor Class . 54
1.2.4 The System Object Class . 55
1.2.5 The Container Class . 57
1.2.6 The Note Class . 59
1.2.7 The Newspaper Class . 60
1.2.8 The Letter Class . 60
1.2.9 The Generic Programmer Class 61
1.2.10 The Help Database Class . 61

1.3 The LambdaCore Utility Classes . 63
1.3.1 The String Utilities Class . 64
1.3.2 The Permissions Utils Class . 71
1.3.3 The Code Utils Class . 72
1.3.4 The Command Utilities Class 73
1.3.5 The List Utilities Class . 74
1.3.6 The Building Utils Class. 76
1.3.7 The Lock Utilities Class . 77

1.3.7.1 Key Representation For Locks 77
1.3.8 Verbs for Manipulating Locks and Keys. 78
1.3.9 The Object Utilities Class . 79
1.3.10 The Matching Utilities . 80
1.3.11 The Trigonometric Utilities 82
1.3.12 The Time Utilities . 85
1.3.13 The Gender Utilities . 87

2 Common Questions - How to do Useful Things
. 89

Verb Index . 90

ii

Property Index . 94

	Introduction
	The LambdaCore Classes
	The LambdaCore Generic Classes
	The Root Class
	The Room Class
	The Thing Class
	The Exit Class
	The Player Class

	The Mail Room Class
	Mail Commands and Properties on The Player Class
	The Mail Room or Mail Editor
	The generic Editor Class
	The System Object Class
	The Container Class
	The Note Class
	The Newspaper Class
	The Letter Class
	The Generic Programmer Class
	The Help Database Class

	The LambdaCore Utility Classes
	The String Utilities Class
	The Permissions Utils Class
	The Code Utils Class
	The Command Utilities Class
	The List Utilities Class
	The Building Utils Class
	The Lock Utilities Class
	Key Representation For Locks

	Verbs for Manipulating Locks and Keys
	The Object Utilities Class
	The Matching Utilities
	The Trigonometric Utilities
	The Time Utilities
	The Gender Utilities

	Common Questions - How to do Useful Things
	Verb Index
	Property Index

