
Mailfromd mail filter
version 7.99.90, 23 March 2011

Sergey Poznyakoff.

Published by the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301 USA
Copyright c© 2005-2011 Sergey Poznyakoff
Permission is granted to copy, distribute and/or modify this document un-
der the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant
Sections, with the Front-Cover texts being “Mailfromd Manual”, and with
the Back-Cover Texts as in (a) below. A copy of the license is included in
the section entitled “GNU Free Documentation License”.
(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify
this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development.”

Dedico aquest treball a Lluis Llach, per obrir els nous horitzons.

i

Short Contents

Preface . 1

1 Introduction to mailfromd . 5

2 Building the Package . 9

3 Tutorial . 15

4 Mail Filtering Language . 51

5 The MFL Library Functions . 113

6 Using the GNU Emacs MFL Mode . 169

7 Configuring mailfromd . 173

8 Mailfromd Command Line Syntax . 183

9 Using mailfromd with Various MTAs 195

10 mtasim — a testing tool . 201

11 Pmilter multiplexer program. 209

12 How to Report a Bug . 217

A Gacopyz . 219

B Time and Date Formats . 221

C S-Expression . 225

D Upgrading . 227

E GNU Free Documentation License . 237

Concept Index . 245

iii

Table of Contents

Preface . 1
Short history of mailfromd. 1
Acknowledgments . 3

1 Introduction to mailfromd . 5
1.1 Typographical conventions . 5
1.2 Overview of Mailfromd . 6
1.3 Sender Address Verification. 6

1.3.1 Limitations of Sender Address Verification 7
1.4 Controlling Mail Sending Rate. 8
1.5 SPF . 8

2 Building the Package . 9

3 Tutorial . 15
3.1 Start Up . 15
3.2 Simplest Configurations . 17
3.3 Conditional Execution . 18
3.4 Functions and Modules . 19
3.5 Domain Name System . 20
3.6 Checking Sender Address . 20
3.7 SMTP Timeouts . 22
3.8 Avoiding Verification Loops . 23
3.9 HELO Domain . 24
3.10 SMTP RSET and Milter Abort Handling . 26
3.11 Controlling Number of Recipients . 26
3.12 Sending Rate . 28
3.13 Greylisting . 30
3.14 Local Account Verification . 33
3.15 Databases . 34

3.15.1 Database Formats . 34
3.15.2 Basic Database Operations . 36
3.15.3 Database Maintenance . 37

3.16 Testing Filter Scripts . 37
3.17 Run Mode . 39

3.17.1 Parsing Command Line Arguments . 40
3.18 Logging and Debugging . 43
3.19 Runtime Errors . 46
3.20 Notes and Cautions . 49

iv Mailfromd Manual

4 Mail Filtering Language . 51
4.1 Comments . 51
4.2 Pragmatic comments . 52

4.2.1 Pragma stacksize . 52
4.2.2 Pragma regex . 54
4.2.3 Pragma dbprop . 55
4.2.4 Pragma greylist . 55
4.2.5 Pragma miltermacros . 55

4.3 Data Types . 56
4.4 Numbers . 56
4.5 Literals . 56
4.6 Here Documents . 58
4.7 Sendmail Macros . 59
4.8 Constants . 59

4.8.1 Built-in constants . 60
4.9 Variables . 62

4.9.1 Predefined Variables . 63
4.10 Back references . 65
4.11 Handlers . 66
4.12 The ‘begin’ and ‘end’ special handlers . 71
4.13 Functions . 73

4.13.1 Some Useful Functions . 77
4.14 Expressions . 79

4.14.1 Constant Expressions . 79
4.14.2 Function Calls . 79
4.14.3 Concatenation . 79
4.14.4 Arithmetic Operations . 80
4.14.5 Relational Expressions . 80
4.14.6 Special Comparisons . 80
4.14.7 Boolean Expressions . 81
4.14.8 Operator Precedence . 82
4.14.9 Type Casting . 83

4.15 Variable and Constant Shadowing . 83
4.16 Statements . 86

4.16.1 Action Statements . 86
4.16.2 Variable Assignments . 88
4.16.3 The pass statement . 89
4.16.4 The echo statement . 89

4.17 Conditional Statements . 89
4.18 Loop Statements . 91
4.19 Exceptional Conditions . 93

4.19.1 Built-in Exceptions . 93
4.19.2 User-defined Exceptions . 95
4.19.3 Exception Handling . 96

4.20 Sender Verification Tests . 98
4.21 Modules . 102

v

4.21.1 Declaring Modules . 102
4.21.2 Scope of Visibility . 103
4.21.3 Require and Import . 103

4.22 MFL Preprocessor . 104
4.23 Example of a Filter Script File . 107
4.24 Reserved Words . 109

5 The MFL Library Functions 113
5.1 Sendmail Macro Access Functions . 113
5.2 String Manipulation Functions . 114
5.3 String formatting . 117
5.4 Character Type . 119
5.5 Envelope Modification Functions . 120
5.6 Header Modification Functions . 121
5.7 Body Modification Functions . 122
5.8 Message Modification Queue . 122
5.9 Mail Header Functions . 123
5.10 Mail Body Functions . 124
5.11 EOM Functions . 125
5.12 Current Message Functions . 125
5.13 Mailbox Functions . 126
5.14 Message Functions . 127
5.15 Quarantine Functions . 129
5.16 Polling Functions . 129
5.17 Internet address manipulation functions . 130
5.18 DNS Functions . 132
5.19 Geolocation functions . 136
5.20 Database Functions . 137
5.21 I/O functions . 140
5.22 System functions . 143
5.23 System User Database . 145
5.24 Sieve Interface . 146
5.25 Interfaces to Third-Party Programs . 147
5.26 Rate limiting functions . 150
5.27 Greylisting functions . 151
5.28 Special Test Functions . 152
5.29 Mail Sending Functions . 153
5.30 Blacklisting Functions . 155
5.31 SPF Functions . 156
5.32 Sockmap Functions . 161
5.33 National Language Support Functions . 162
5.34 Debugging Functions . 164

6 Using the GNU Emacs MFL Mode 169

vi Mailfromd Manual

7 Configuring mailfromd . 173
7.1 Special Configuration Data Types . 173
7.2 Base Mailfromd Configuration . 174
7.3 Server Configuration . 174
7.4 Milter Connection Configuration . 176
7.5 Logging and Debugging configuration . 176
7.6 Timeout Configuration . 177
7.7 Call-out Configuration . 179
7.8 Privilege Configuration . 180
7.9 Database Configuration . 180
7.10 Runtime Constants Configuration . 181
7.11 Other Configuration Statements . 182
7.12 Standard Mailutils Statements . 182

8 Mailfromd Command Line Syntax 183
8.1 Command Line Options. 183

8.1.1 Operation Modifiers . 183
8.1.2 General Settings . 184
8.1.3 Preprocessor Options . 187
8.1.4 Timeout Control . 187
8.1.5 Logging and Debugging Options . 188
8.1.6 Informational Options . 191

8.2 Starting and Stopping . 191

9 Using mailfromd with Various MTAs 195
9.1 Using mailfromd with Sendmail. 195
9.2 Using mailfromd with MeTA1. 196
9.3 Using mailfromd with Postfix . 199

10 mtasim — a testing tool . 201
10.1 mtasim interactive mode mode . 201
10.2 mtasim expect commands . 204
10.3 Trace Files . 205
10.4 Daemon Mode . 206
10.5 mtasim command line options . 206

11 Pmilter multiplexer program. 209
11.1 Pmult Configuration . 209

11.1.1 Multiplexer Configuration. 210
11.1.2 Translating MeTA1 macros. 210
11.1.3 Pmult Client Configuration. 213
11.1.4 Debugging Pmult . 214

11.2 Pmult Example . 215
11.3 Pmult Invocation . 216

vii

12 How to Report a Bug . 217

Appendix A Gacopyz . 219

Appendix B Time and Date Formats 221

Appendix C S-Expression . 225

Appendix D Upgrading . 227
D.1 Upgrading from 7.0 to 7.1 . 227
D.2 Upgrading from 6.0 to 7.0 . 227
D.3 Upgrading from 5.x to 6.0 . 228
D.4 Upgrading from 5.0 to 5.1 . 230
D.5 Upgrading from 4.4 to 5.0 . 231
D.6 Upgrading from 4.3.x to 4.4 . 232
D.7 Upgrading from 4.2 to 4.3.x . 232
D.8 Upgrading from 4.1 to 4.2 . 233
D.9 Upgrading from 4.0 to 4.1 . 233
D.10 Upgrading from 3.1.x to 4.0 . 233
D.11 Upgrading from 3.0.x to 3.1 . 234
D.12 Upgrading from 2.x to 3.0.x . 235
D.13 Upgrading from 1.x to 2.x . 236

Appendix E GNU Free Documentation License
. 237

E.1 ADDENDUM: How to use this License for your documents . . . 244

Concept Index . 245

Preface 1

Preface

Simple Mail Transfer Protocol (SMTP) which is the standard for email trans-
missions across the Internet was designed in the good old days when nobody
could even think of the possibility of e-mail being abused to send tons of un-
solicited messages of dubious contents. Therefore it lacks mechanisms that
could have prevented this abuse (spamming), or at least could have made
it difficult. Attempts to introduce such mechanisms (such as SMTP-AUTH
extension) are being made, but they are not in wide use yet and, probably,
their introduction will not be enough to stop the e-mail abuse. Spamming is
today’s grim reality and developers spend lots of time and efforts designing
new protection measures against it. Mailfromd is one of such attempts.

The package is designed to work with any MTA supporting ‘Milter’ or
‘Pmilter’ protocol, such as ‘Sendmail’, ‘MeTA1’ or ‘Postfix’. It allows you
to:
• Control whether messages come from trustworthy senders, using so

called callout or Sender Address Verification (see Section 1.3 [SAV],
page 6) mechanism.

• Prevent emails coming from forged addresses by use of SPF mechanism
(see Section 5.31 [SPF Functions], page 156).

• Limit connection and/or sending rates (see Section 1.4 [Rate Limit],
page 8).

• Use black-, white- and greylisting techniques.
• Invoke external programs or other mail filters.

Short history of mailfromd.
The idea of the utility appeared in 2005, and its first version appeared soon
afterward. Back then it was a simple implementation of Sender Address
Verification (see Section 1.3 [SAV], page 6) for ‘Sendmail’ (hence its name
– mailfromd) with rudimentary tuning possibilities.

After a short run on my mail servers, I discovered that the utility was not
flexible enough. It took less than a month to implement a configuration file
that allowed to control program and data flow during the ‘envfrom’ SMTP
state. The new version, 1.0, appeared in June, 2005.

The next major release, 1.2 (1.1 contained mostly bugfixes), appeared two
months later, which introduced mail sending rate control (see Section 1.4
[Rate Limit], page 8).

The program evolved during the next year, which led to the release of
version 2.0 in September, 2006. This version was a major change in the main
idea of the program. Configuration file become a flexible filter script allowing
to control almost all SMTP states. The program supplied in the script file
was compiled into a pseudo-code at startup, this code being subsequently
evaluated each time the filter was invoked. This caused a considerable speed-
up in comparison with the previous versions, where the run-time evaluator

http://tools.ietf.org/html/rfc2554
http://tools.ietf.org/html/rfc2554

2 Mailfromd Manual

was traversing the parse tree. This version also introduced (implicitly, at the
time), two separate data types for the entities declared in the script, which
also played its role in the speed improvement (in the previous versions all
data were considered strings). Lots of improvements were made in the filter
language (MFL, see Chapter 4 [MFL], page 51) itself, such as user-defined
functions, switch statement, catch statement that allows to handle run-
time errors, etc. The set of built-in functions extended considerably. A
testsuite (using DejaGNU) was introduced in this version.

During this initial development period the limitations imposed by
libmilter implementation became obvious. Finally, I felt they were
stopping further development, and decided that mailfromd should use
its own ‘Milter’ implementation. This new library, libgacopyz was the
main new feature of the 3.0 release, that was released in November, 2006.
Another major feature was the ‘--dump-macros’ option and ‘macros’ to
rc.mailfromd script, that were intended to facilitate the configuration on
‘Sendmail’ side.

The development of 3.x (more properly, 3.1.x) series concentrated mainly
on bug-fixes, while the main development was done on the next branch.

The version 4.0 appeared on May 12, 2007. A full list of changes in this
release is more than 500 lines long, so it is impractical to list them here. In
particular, this version introduced lots of new features in MFL syntax and the
library of useful MFL functions. The runtime engine was also improved, in
particular, stack space become expandable which eliminated many run-time
errors. This version also provided a foundation for MFL module system. The
code generation was re-implemented to facilitate introduction of object files
in future versions. Another new features in this release include SPF support
and mtasim utility, an MTA simulator designed for testing mailfromd scripts
(see Chapter 10 [mtasim], page 201). The test suite in this version was made
portable by rewriting it in Autotest.

Another big leap forward was the 5.0 release, which appeared on De-
cember 26, 2008. It largely enriched a set of available functions (61 new
functions were introduced, which amounts to 41% of all the available func-
tions in 5.0 release) and introduced several improvements in the MFL itself.
Among others, function aliases and optional arguments in user-defined func-
tions were introduced in this release. The new “run operation mode” allowed
to execute arbitrary MFL functions from the command line. This release
also raised the Mailutils version requirements to at least 2.0.

Version 6.0, which was released in on 12 December, 2009, introduced a
full-fledged modular system, akin to that of Python, and quite a few improve-
ments to the language. such as explicit type casts, concatenation operator,
static variables, etc.

Starting from version 7.0, main focus of further development of
mailfromd has shifted. While previously it was regarded as a mail-filtering
server, now it is being developed as a system for extending MTA

Preface 3

functionality in the broad sense, mail filtering being only one of features it
provides.

Version 7.0 makes the MFL syntax more consistent and the language itself
more powerful. For example, it is no longer necessary to use prefixes before
variables to dereference them. The new ‘try--catch’ construct allows for
elegant handling of exceptions and errors. User-defined exceptions provide
a way for programming complex loops and recursions with non-local exits.

This version introduces a concept of dedicated callout server. This allows
mailfromd to defer verifications for a later time if the remote server does not
response within a reasonably short period of time (see Section 3.7 [SMTP
Timeouts], page 22).

Acknowledgments
Many people need to be thanked for their assistance in developing and de-
bugging mailfromd. After S. C. Johnson, I can say that this program “owes
much to a most stimulating collection of users, who have goaded me beyond
my inclination, and frequently beyond my ability in their endless search for
"one more feature". Their irritating unwillingness to learn how to do things
my way has usually led to my doing things their way; most of the time, they
have been right.”

A real test for a program like mailfromd cannot be done but in conditions
of production environment. A decision to try it in these conditions is by no
means an easy one, it requires courage and good faith in the intentions and
abilities of the author. To begin with, I would like to thank my contributors
for these virtues.

Jan Rafaj has intrepidly been using mailfromd since its early releases and
invested lots of efforts in improving the program and its documentation. He
is the author of many of the MFL library functions, shipped with the package.
Some of his ideas are still waiting in my implementation queue, while new
ones are consistently arriving.

Peter Markeloff patiently tested every mailfromd release and helped dis-
cover and fix many bugs.

Zeus Panchenko contributed many ideas and gave lots of helpful com-
ments. He offered invaluable help in debugging and testing mailfromd on
FreeBSD platform.

Sergey Afonin proposed many improvements and new ideas. He also
invested a lot of his time in finding bugs and testing bugfixes.

John McEleney and Ben McKeegan contributed the token bucket filter
implementation (see [TBF], page 29).

Con Tassios helped to find and fix various bugs and contributed the new
implementation of the greylist function (see [greylisting types], page 31).

The following people (in alphabetical order) provided bug reports and
helpful comments for various versions of the program: Alan Dobkin, Brent

4 Mailfromd Manual

Spencer, Jeff Ballard, Nacho González López, Phil Miller, Simon Christian,
Thomas Lynch.

Chapter 1: Introduction to mailfromd 5

1 Introduction to mailfromd

Mailfromd is a general-purpose mail filtering daemon and a suite of accom-
panying utilities for Sendmail1, MeTA12, Postfix3 or any other MTA that
supports Milter (or Pmilter) protocol. It is able to filter both incoming and
outgoing messages using a filter program, written in mail filtering language
(MFL). The daemon interfaces with the MTA using Milter protocol.

The name mailfromd can be thought of as an abbreviation for ‘Mail
Filtering and Runtime Modification’ Daemon, with an ‘o’ for itself.
Historically, it stemmed from the fact that the original implementation was
a simple filter implementing the sender address verification technique. Since
then the program has changed dramatically, and now it is actually a language
translator and run-time evaluator providing a set of built-in and library func-
tions for filtering electronic mail.

The first part of this manual is an overview, describing the features
mailfromd offers in general.

The second part is a tutorial, which provides an introduction for those
who have not used mailfromd previously. It moves from topic to topic in
a logical, progressive order, building on information already explained. It
offers only the principal information needed to master basic practical usage
of mailfromd, while omitting many subtleties.

The other parts are meant to be used as a reference for those who know
mailfromd well enough, but need to look up some notions from time to time.
Each chapter presents everything that needs to be said about a specific topic.

The manual assumes that the reader has a good knowledge of the SMTP
protocol and the mail transport system he uses (Sendmail , Postfix or
MeTA1).

1.1 Typographical conventions
This manual is written using Texinfo, the GNU documentation formatting
language. The same set of Texinfo source files is used to produce both
the printed and online versions of the documentation. Because of this, the
typographical conventions may be slightly different than in other books you
may have read.

Examples you would type at the command line are preceded by the com-
mon shell primary prompt, ‘$’. The command itself is printed in this font,
and the output it produces ‘in this font’, for example:

$ mailfromd --version

mailfromd (mailfromd 7.99.90)

1 See http://www.sendmail.org
2 See http://www.meta1.org
3 See http://www.postfix.org

http://www.sendmail.org
http://www.meta1.org
http://www.postfix.org

6 Mailfromd Manual

In the text, the command names are printed like this, command line
options are displayed in ‘this font’. Some notions are emphasized like this,
and if a point needs to be made strongly, it is done this way. The first
occurrence of a new term is usually its definition and appears in the same
font as the previous occurrence of “definition” in this sentence. File names
are indicated like this: ‘/path/to/ourfile’.

The variable names are represented like this, keywords and fragments of
program text are written in this font.

1.2 Overview of Mailfromd
In contrast to the most existing milter filters, mailfromd does not implement
any default filtering policies. Instead, it depends entirely on a filter script,
supplied to it by the administrator. The script, written in a specialized
and simple to use language, called MFL (see Chapter 4 [MFL], page 51), is
supposed to run a set of tests and to decide whether the message should be
accepted by the MTA or not. To perform the tests, the script can examine
the values of Sendmail macros, use an extensive set of built-in and library
functions, and invoke user-defined functions.

1.3 Sender Address Verification.
Sender address verification, or callout, is one of the basic mail verification
techniques, implemented by mailfromd. It consists in probing each MX
server for the given address, until one of them gives a definite (positive or
negative) reply. Using this technique you can block a sender address if it
is not deliverable, thereby cutting off a large amount of spam. It can also
be useful to block mail for undeliverable recipients, for example on a mail
relay host that does not have a list of all the valid recipient addresses. This
prevents undeliverable junk mail from entering the queue, so that your MTA
doesn’t have to waste resources trying to send ‘MAILER-DAEMON’ messages
back.

Let’s illustrate how it works on an example:
Suppose that the user ‘<jsmith@somedomain.net>’ is trying to send mail

to one of your local users. The remote machine connects to your MTA and
issues MAIL FROM: <jsmith@somedomain.net> command. However, your
MTA does not have to take its word for it, so it uses mailfromd to ver-
ify the sender address validity. Mailfromd strips the domain name from
the address (‘somedomain.net’) and queries DNS about ‘MX’ records for that
domain. Suppose, it receives the following list
10 relay1.somedomain.net
20 relay2.somedomain.net

It then connects to first MX server, using SMTP protocol, as if it were
going to send a message to ‘<jsmith@somedomain.net>’. This is called
sending a probe message. If the server accepts the recipient address, the

Chapter 1: Introduction to mailfromd 7

mailfromd accepts the incoming mail. Otherwise, if the server rejects the
address, the mail is rejected as well. If the MX server cannot be connected,
mailfromd selects next server from the list and continues this process until
it finds the answer or the list of servers is exhausted.

The probe message is like a normal mail except that no data are ever
being sent. The probe message transaction in our example might look as
follows (‘S:’ meaning messages sent by remote MTA, ‘C:’ meaning those
sent by mailfromd):

C: HELO mydomain.net

S: 220 OK, nice to meet you

C: MAIL FROM: <>

S: 220 <>: Sender OK

C: RCPT TO: <jsmith@somedomain.net>

S: 220 <jsmith@remote.net>: Recipient OK

C: QUIT

Probe messages are never delivered, deferred or bounced; they are always
discarded.

The described method of address verification is called a standard method
throughout this document. Mailfromd also implements a method we call
strict. When using strict method, mailfromd first resolves IP address of
sender machine to a fully qualified domain name. Then it obtains ‘MX’ records
for this machine, and then proceeds with probing as described above.

So, the difference between the two methods is in the set of ‘MX’ records
that are being probed: standard method queries ‘MX’s based on the sender
email domain, strict method works with ‘MX’s for the sender IP address.

Strict method allows to cut off much larger amount of spam, although
it does have many drawbacks. Returning to our example above, consider
the following situation: ‘<jsmith@somedomain.net>’ is a perfectly normal
address, but it is being used by a spammer from some other domain, say
‘otherdomain.com’. The standard method is not able to cope with such
cases, whereas the strict one is.

An alert reader will ask: what happens if mailfromd is not able to get
a definite answer from any of MX servers? Actually, it depends entirely on
how you will instruct it to act in this case, but the general practice is to
return temporary failure, which will urge the remote party to retry sending
their message later.

After receiving a definite answer, mailfromd will cache it in its database,
so that next time your MTA receives a message from that address (or from
the sender IP/email address pair, for strict method), it will not waste its
time trying to reach MX servers again. The records remain in the cache
database for a certain time, after which they are discarded.

1.3.1 Limitations of Sender Address Verification

Before deciding whether and how to use sender address verification, you
should be aware of its limitations.

8 Mailfromd Manual

Both standard and strict methods suffer from the following limitations:
• The sender verification methods will perform poorly on highly loaded

sites. The traffic and/or resource usage overhead may not be feasible
for you. However, you may experiment with various mailfromd options
to find an optimal configuration.

• Some sites may blacklist your MTA if it probes them too often.
Mailfromd eliminates this drawback by using a cache database, which
keeps results of the recent callouts.

• When verifying the remote address, no attempt to actually deliver the
message is made. If MTA accepts the address, mailfromd assumes it is
OK. However in reality, a mail for a remote address can bounce after
the nearest MTA accepts the recipient address.
This drawback can often be avoided by combining sender address veri-
fication with greylisting (see Section 3.13 [Greylisting], page 30).

• If the remote server rejects the address, no attempt is being made
to discern between various reasons for rejection (client rejected, ‘HELO
rejected’, ‘MAIL FROM’ rejected, etc.)

• Some major sites such as yahoo.com do not reject unknown addresses
in reply to the ‘RCPT TO’ command, but report a delivery failure in
response to end of ‘DATA’ after a message is transferred. Of course,
sender address verification does not work with such sites. However,
a combination of address verification and greylisting (see Section 3.13
[Greylisting], page 30) may be a good choice in such cases.

In addition, strict verification breaks forward mail delivery. This is ob-
vious, since mail forwarding is based on delivering unmodified message to
another location, so the sender address domain will most probably not be
the same as that of the MTA doing the forwarding.

1.4 Controlling Mail Sending Rate.
Mail Sending Rate for a given identity is defined as the number of messages
with this identity received within a predefined interval of time.

MFL offers a set of functions for limiting mail sending rate (see
Section 5.26 [Rate limiting functions], page 150), and for controlling broader
rate aspects, such as data transfer rates (see [TBF], page 29).

1.5 SPF
Sender Policy Framework, or SPF for short, is an extension to SMTP pro-
tocol that allows to identify forged identities supplied with the MAIL FROM
and HELO commands. The framework is explained in detail in RFC 4408
(http://tools.ietf.org/html/rfc4408) and on the SPF Project Site.

Mailfromd provides a set of functions (see Section 5.31 [SPF Functions],
page 156) for using SPF to control mail flow.

http://tools.ietf.org/html/rfc4408
http://www.openspf.org/

Chapter 2: Building the Package 9

2 Building the Package

This chapter contains a detailed list of steps you need to undertake in order
to configure and build the package.
1. Make sure you have the necessary software installed.

To build mailfromd you will need to have following packages on your
machine:
A. GNU mailutils version 2.0 or newer.

It is available from http://www.gnu.org/software/mailutils.
B. A DBM library. Mailfromd is able to link with two flavors of DBM

libraries: Berkeley DB or gdbm. It will refuse to build without
DBM. By default, configure will try to find the best implemen-
tation installed on your machine (preference is given to Berkeley
DB) and will use it. You can, however, explicitly specify which
implementation you want to use.
The following table will help you do that. The column ‘DB type’
lists types of DBM databases supported by mailfromd. The column
‘confMAPDEF’ lists the value of confMAPDEF Sendmail configuration
macro corresponding to that database type. It is here because it is
usually wise to configure mailfromd to use the same database type
as your Sendmail installation. Of course, this column is irrelevant if
you use MeTA1 or Postfix. Finally, the column ‘configure option’
lists the option you should give to configure to enable using this
database. ‘N/A’ in any column means there is no support for this
database in Sendmail or mailfromd.

DB type confMAPDEF configure option
NDBM ‘-NNDBM’ N/A
Berkeley DB ‘-NNEWDB’ ‘--with-berkeley-db’
GDBM N/A ‘--with-gdbm’
The ‘--with-berkeley-db’ option needs a special note. By default
it will try to determine the version of Berkeley DB installed on your
machine. If, however, this autodetection fails, you can explicitly
specify the version or the library name to use as the argument to
the option. Unless the argument begins with a digit, it is taken as
a library name, without the ‘lib’ prefix and library type suffix, so
that

./configure --with-berkeley-db=db-3.1

instructs configure to use the library ‘libdb-3.1.so’ (or
‘libdb-3.1.a’). Otherwise, if the argument begins with a digit,
it is understood as a version number of the library to link to. In
this case configure assumes a Slackware-like installation layout.
Thus, the option

http://www.gnu.org/software/mailutils

10 Mailfromd Manual

--with-berkeley-db=3.1

tells configure to use the library ‘libdb-3.1.so’ (or
‘libdb-3.1.a’) and the header file ‘/usr/include/db31/db.h’.

2. Decide what user privileges will be used to run mailfromd

After startup, the program drops root privileges. By default, it switches
to the privileges of user ‘mail’, group ‘mail’. If there is no such user on
your system, or you wish to use another user account for this purpose,
override it using DEFAULT USER environment variable. For example
for mailfromd to run as user ‘nobody’, use

./configure DEFAULT_USER=nobody

The user name can also be changed at run-time (see [–user], page 187).
3. Decide where to install mailfromd and where its filter script and data

files will be located.
As usual, the default value for the installation prefix is ‘/usr/local’. If
it does not suit you, specify another location using ‘--prefix’ option,
e.g.: ‘--prefix=/usr’.
During installation phase, the build system will install several files.
These files are:
‘prefix/sbin/mailfromd’

Main daemon. See Chapter 8 [mailfromd], page 183.
‘prefix/etc/mailfromd.mf’

Default main filter script file. It is installed only if it is not
already there. Thus, if you are upgrading to a newer version
of mailfromd, your old script file will be preserved with all
your changes.
See Chapter 4 [MFL], page 51, for a description of the mail
filtering language.

‘prefix/share/mailfromd/7.99.90/*.mf’
MFL modules. See Section 4.21 [Modules], page 102.

‘prefix/info/mailfromd.info*’
Documentation files.

‘prefix/bin/mtasim’
MTA simulator program for testing mailfromd scripts. See
Chapter 10 [mtasim], page 201.

‘prefix/sbin/pmult’
Pmilter multiplexor for MeTA1. See Chapter 11 [pmult],
page 209. It is build only if MeTA1 version ‘PreAlpha29.0’
or newer is installed on the system. You may disable it by
using the ‘--disable-pmilter’ command line option.
When testing for MeTA1 presence, configure assumes its
default location. If it is not found there, inform configure
about its actual location by using the following option:

Chapter 2: Building the Package 11

--enable-pmilter=prefix

where prefix stands for the MeTA1 installation prefix.
It is advisable to use the same settings for file name prefixes as those you
used when configuring mailutils. In particular, try to use the same
‘--sysconfdir’, since it will facilitate configuring the whole system.
Another important point is location of local state directory, i.e. a direc-
tory where mailfromd keeps its data files (e.g. communication socket,
PID-file and database files). By default, its full name is ‘localstate-
dir/mailfromd’. You can change it by setting DEFAULT_STATE_DIR
configuration variable. This value can be changed at run-time using the
state-directory configuration statement (see Section 7.2 [conf-base],
page 174).

4. Select default communication socket. This is the socket used to com-
municate with MTA, in the usual Milter port notation (see [milter port
specification], page 173). If the socket name does not begin with a pro-
tocol or directory separator, it is assumed to be a UNIX socket, located
in the local state directory. The default value is ‘mailfrom’, which is
equivalent to ‘unix:localstatedir/mailfromd/mailfrom’.
To alter this, use DEFAULT_SOCKET environment variable, e.g.:

./configure DEFAULT_SOCKET=inet:999@localhost

The communication socket can be changed at run time using ‘--port’
command line option (see [–port], page 186) or the listen configuration
statement (see Section 7.4 [conf-milter], page 176).

5. Select default expiration interval. Expiration interval defines the period
of time during which a record in the mailfromd database is considered
valid. It is described in more detail in Section 3.15 [Databases], page 34.
The default value is 86400 seconds, i.e. 24 hours. It is ok for most sites.
If, however, you wish to change it, use DEFAULT EXPIRE INTERVAL
environment variable.
There are also two variables that allow to control particular expira-
tion intervals: DEFAULT_DNS_NEGATIVE_EXPIRE_INTERVAL sets expira-
tion time for cached negative DNS answers (see [DNS Cache Manage-
ment], page 135) (default 3600 seconds) and DEFAULT_EXPIRE_RATES_
INTERVAL sets default expiration time for mail rate database (see
Section 5.26 [Rate limiting functions], page 150).
Expiration settings can be changed at run time using database
statement in the mailfromd configuration file (see Section 7.9
[conf-database], page 180).

6. Select a syslog implementation to use.
Mailfromd uses syslog for diagnostics output. The default syslog
implementation on most systems (most notably, on GNU/Linux) uses
blocking AF_UNIX SOCK_DGRAM sockets. As a result, when an application
calls syslog(), and syslogd is not responding and the socket buffers
get full, the application will hang.

12 Mailfromd Manual

For mailfromd, as for any daemon, it is more important that it continue
to run, than that it continue to log. For this purpose, mailfromd is
shipped with a non-blocking syslog implementation by Simon Kelley.
This implementation, instead of blocking, buffers log lines in memory.
When the buffer log overflows, some lines are lost, but the daemon
continues to run. When lines are lost, this fact is logged with a message
of the form:

async_syslog overflow: 5 log entries lost

To enable this implementation, configure the package with
‘--enable-syslog-async’ option, e.g.:

./configure --enable-syslog-async

Additionally, you can instruct mailfromd to use asynchronous syslog
by default. To do so, set DEFAULT_SYSLOG_ASYNC to 1, as shown in
example below:

./configure --enable-syslog-async DEFAULT_SYSLOG_ASYNC=1

You will be able to override these defaults at run-time by using
‘--syslog-async’ or ‘--no-syslog-async’ command line options (see
Section 3.18 [Logging and Debugging], page 43).

7. Run configure with all the desired options.
For example, the following command:

./configure DEFAULT_SOCKET=inet:999@localhost --with-berkeley-db=3

will configure the package to use Berkeley DB database, version 2, and
‘inet:999@localhost’ as the default communication socket.
At the end of its run configure will print a concise summary of its
configuration settings. It looks like that (with the long lines being split
for readability):

Mailfromd configured with the following settings:

External preprocessor..................... /usr/bin/m4 -s

DBM version............................... Berkeley DB v. 3

Default user.............................. mail

State directory...........................

$(localstatedir)/$(PACKAGE)

Socket.................................... mailfrom

Expiration interval....................... 86400

Negative DNS answer expiration interval... 3600

Rates expire interval..................... 300

Default syslog implementation............. blocking

Readline (for mtasim)..................... yes

Documentation rendition type.............. PROOF

Enable pmilter support.................... no

Enable GeoIP support...................... no

Make sure these settings satisfy your needs. If they do not, reconfigure
the package with the right options.

Chapter 2: Building the Package 13

8. Run make.
9. Run make install.

10. Make sure ‘localstatedir/mailfromd’ has the right owner and mode.
11. Examine filter script file (‘sysconfdir/mailfromd.mf’) and edit it, if

necessary.
12. Upgrading If you are upgrading from an earlier release of Mailfromd,

refer to Appendix D [Upgrading], page 227, for detailed instructions.

Chapter 3: Tutorial 15

3 Tutorial

This chapter contains a tutorial introduction, guiding you through various
mailfromd configurations, starting from the simplest ones and proceeding up
to more advanced forms. It omits most complicated details, concentrating
mainly on the common practical tasks.

If you are familiar to mailfromd, you can skip this chapter and go directly
to the next one (see Chapter 4 [MFL], page 51), which contains detailed
discussion of the mail filtering language and mailfromd interaction with the
Mail Transport Agent.

3.1 Start Up
The mailfromd utility runs as a standalone daemon program and listens
on a predefined communication channel for requests from the Mail Transfer
Agent (MTA, for short). When processing each message, the MTA installs
communication with mailfromd, and goes through several states, collecting
the necessary data from the sender. At each state it sends the relevant
information to mailfromd, and waits for it to reply. The mailfromd filter
receives the message data through Sendmail macros and runs a handler
program defined for the given state. The result of this run is a response
code, that it returns to the MTA. The following response codes are defined:

continue Continue message processing.

accept Accept this message for delivery. After receiving this code the
MTA continues processing this message without further consult-
ing mailfromd filter.

reject Reject this message. The message processing stops at this stage,
and the sender receives the reject reply (‘5xx ’ reply code). No
further mailfromd handlers are called for this message.

discard Silently discard the message. This means that MTA will continue
processing this message as if it were going to deliver it, but will
discard it after receiving. No further interaction with mailfromd
occurs.

tempfail Temporarily reject the message. The message processing stops
at this stage, and the sender receives the ‘temporary failure’
reply (‘4xx ’ reply code). No further mailfromd handlers are
called for this message.

The instructions on how to process the message are supplied to mailfromd
in its filter script file. It is normally called ‘/usr/local/etc/mailfromd.mf’
(but can be located elsewhere, see Chapter 8 [Invocation], page 183) and
contains a set of milter state handlers, or subroutines to be executed in
various SMTP states. Each interaction state can be supplied its own handling
procedure. A missing procedure implies continue response code.

16 Mailfromd Manual

The filter script can define up to nine milter state handlers, called after
the names of milter states: ‘connect’, ‘helo’, ‘envfrom’, ‘envrcpt’, ‘data’,
‘header’, ‘eoh’, ‘body’, and ‘eom’. The ‘data’ handler is invoked only if MTA
uses Milter protocol version 3 or later. Two special handlers are available
for initialization and clean-up purposes: ‘begin’ is called before the process-
ing starts, and ‘end’ is called after it is finished. The diagram below shows
the control flow when processing an SMTP transaction. Lines marked with
C: show SMTP commands issued by the remote machine (the client), those
marked with ‘⇒’ show called handlers with their arguments. An ‘[R]’ ap-
pearing at the start of a line indicates that this part of the transaction can
be repeated any number of times:

⇒ begin()
⇒ connect(hostname, family, port, ‘IP address’)

C: HELO domain

helo(domain)

for each message transaction

do

C: MAIL FROM sender
⇒ envfrom(sender)

[R] C: RCPT TO recipient
⇒ envrcpt(recipient)

C: DATA
⇒ data()

[R] C: header: value
⇒ header(header, value)

C:
⇒ eoh()

[R] C: body-line
⇒ /* Collect lines into blocks blk of
⇒ * at most len bytes and for each
⇒ * such block call:
⇒ */
⇒ body(blk, len)

C: .
⇒ eom()

done
⇒ end()

Figure 3.1: Mailfromd Control Flow

This control flow is maintained for as long as each called handler returns
continue (see Section 4.16.1 [Actions], page 86). Otherwise, if any handler
returns accept or discard, the message processing continues, but no other
handler is called. In the case of accept, the MTA will accept the message
for delivery, in the case of discard it will silently discard it.

Chapter 3: Tutorial 17

If any of the handlers returns reject or tempfail, the result depends
on the handler. If this code is returned by envrcpt handler, it causes this
particular recipient address to be rejected. When returned by any other
handler, it causes the whole message will be rejected.

The reject and tempfail actions executed by helo handler do not take
effect immediately. Instead, their action is deferred until the next SMTP
command from the client, which is usually MAIL FROM.

3.2 Simplest Configurations
The mailfromd script file contains a series of declarations of the handler
procedures. Each declaration has the form:

prog name

do

...

done

where prog, do and done are the keywords, and name is the state name for
this handler. The dots in the above example represent the actual code, or a
set of commands, instructing mailfromd how to process the message.

For example, the declaration:

prog envfrom

do

accept

done

installs a handler for ‘envfrom’ state, which always approves the message
for delivery, without any further interaction with mailfromd.

The word accept in the above example is an action. Action is a special
language statement that instructs the run-time engine to stop execution of
the program and to return a response code to the Sendmail. There are five
actions, one for each response code: continue, accept, reject, discard,
and tempfail. Among these, reject and discard can optionally take one
to three arguments. There are two ways of supplying the arguments.

In the first form, called literal or traditional notation, the arguments are
supplied as additional words after the action name, separated by whitespace.
The first argument is a three-digit RFC 2821 reply code. It must begin with
‘5’ for reject and with ‘4’ for tempfail. If two arguments are supplied, the
second argument must be either an extended reply code (RFC 1893/2034)
or a textual string to be returned along with the SMTP reply. Finally, if
all three arguments are supplied, then the second one must be an extended
reply code and the third one must supply the textual string. The following
examples illustrate all possible ways of using the reject statement in literal
notation:

18 Mailfromd Manual

reject

reject 503

reject 503 5.0.0

reject 503 "Need HELO command"

reject 503 5.0.0 "Need HELO command"

Please note the quotes around the textual string.
Another form for these action is called functional notation, because it

resembles the function syntax. When used in this form, the action word
is followed by a parenthesized group of exactly three arguments, separated
by commas. The meaning and ordering of the argument is the same as in
literal form. Any of three arguments may be absent, in which case it will
be replaced by the default value. To illustrate this, here are the statements
from the previous example, written in functional notation:

reject(,,)

reject(503,,)

reject(503, 5.0.0)

reject(503,, "Need HELO command")

reject(503, 5.0.0, "Need HELO command")

3.3 Conditional Execution
Programs consisting of a single action are rarely useful. In most cases you
will want to do some checking and decide whether to process the message
depending on its result. For example, if you do not want to accept mes-
sages from the address ‘<badguy@some.net>’, you could write the following
program:

prog envfrom

do

if $f = "badguy@some.net"

reject

else

accept

fi

done

This example illustrates several important concepts. First or all, $f in
the third line is a Sendmail macro reference. Sendmail macros are referenced
the same way as in ‘sendmail.cf’, with the only difference that curly braces
around macro names are optional, even if the name consists of several letters.
The value of a macro reference is always a string.

The equality operator (‘=’) compares its left and right arguments and
evaluates to true if the two strings are exactly the same, or to false otherwise.
Apart from equality, you can use the regular relational operators: ‘!=’, ‘>’,
‘>=’, ‘<’ and ‘<=’. Notice that string comparison in mailfromd is always
case sensitive. To do case-insensitive comparison, translate both operands
to upper or lower case (See [tolower], page 115, and see [toupper], page 115).

The if statement decides what actions to execute depending on the value
its condition evaluates to. Its usual form is:

Chapter 3: Tutorial 19

if expression then-body [else else-body] fi

The then-body is executed if the expression evaluates to true (i.e. to
any non-zero value). The optional else-body is executed if the expression
yields false (i.e. zero). Both then-body and else-body can contain other
if statements, their nesting depth is not limited. To facilitate writing com-
plex conditional statements, the elif keyword can be used to introduce
alternative conditions, for example:

prog envfrom

do

if $f = "badguy@some.net"

reject

elif $f = "other@domain.com"

tempfail 470 "Please try again later"

else

accept

fi

done

See [switch], page 90, for more elaborate forms of conditional branching.

3.4 Functions and Modules
As any programming language, MFL supports a concept of function, i.e. a
body of code that is assigned a unique name and can be invoked elsewhere
as many times as needed.

All functions have a definition that introduces types and names of the
formal parameters and the result type, if the function is to return a mean-
ingful value (function definitions in MFL are discussed in detail in see [User-
defined], page 73).

A function is invoked using a special construct, a function call:
name (arg-list)

where name is the function name, and arg-list is a comma-separated list of
expressions. Each expression in arg-list is evaluated, and its type is compared
with that of the corresponding formal argument. If the types differ, the
expression is converted to the formal argument type. Finally, a copy of its
value is passed to the function as a corresponding argument. The order
in which the expressions are evaluated is not defined. The compiler checks
that the number of elements in arg-list match the number of mandatory
arguments for function name.

If the function does not deliver a result, it should only be called as a
statement.

Functions may be recursive, even mutually recursive.
Mailfromd comes with a rich set of predefined functions for various pur-

poses. There are two basic function classes: built-in functions, that are
implemented by the MFL runtime environment in mailfromd, and library
functions, that are implemented in MFL. The built-in functions are always
available and no preparatory work is needed before calling them. In contrast,

20 Mailfromd Manual

the library functions are defined in modules, special MFL source files that
contain functions designed for a particular task. In order to access a library
function, you must first require a module it is defined in. This is done using
require statement. For example, the function hostname looks up in the
DNS the name corresponding to the IP address specified as its argument.
This function is defined in module ‘dns.mf’, so before calling it you must
require this module:

require dns

The require statement takes a single argument: the name of the requested
module (without the ‘.mf’ suffix). It looks up the module on disk and loads
it if it is available.

For more information about the module system See Section 4.21 [Mod-
ules], page 102.

3.5 Domain Name System
Site administrators often do not wish to accept mail from hosts that do not
have a proper reverse delegation in the Domain Name System. In the pre-
vious section we introduced the library function hostname, that looks up
in the DNS the name corresponding to the IP address specified as its argu-
ment. If there is no corresponding name, the function returns its argument
unchanged. This can be used to test if the IP was resolved, as illustrated in
the example below:

require ’dns’

prog envfrom

do

if hostname($client_addr) = $client_addr

reject

fi

done

The #require dns statement loads the module ‘dns.mf’, after which the
definition of hostname becomes available.

A similar function, resolve, which resolves the symbolic name to the
corresponding IP address is provided in the same ‘dns.mf’ module.

3.6 Checking Sender Address
A special language construct is provided for verification of sender addresses
(callout):

on poll $f do

when success:

accept

when not_found or failure:

reject 550 5.1.0 "Sender validity not confirmed"

when temp_failure:

tempfail 450 4.1.0 "Try again later"

done

Chapter 3: Tutorial 21

The on poll construct runs standard verification (see [standard verifica-
tion], page 6) for the email address specified as its argument (in the example
above it is the value of the Sendmail macro ‘$f’). The check can result in
the following conditions:

success The address exists.

not_found
The address does not exist.

failure Some error of permanent nature occurred during the check. The
existence of the address cannot be verified.

temp_failure
Some temporary failure occurred during the check. The exis-
tence of the address cannot be verified at the moment.

The when branches of the on poll statement introduce statements, that
are executed depending on the actual return condition. If any condition
occurs that is not handled within the on block, the run-time evaluator will
signal an exception1 and return temporary failure, therefore it is advisable to
always handle all four conditions. In fact, the condition handling shown in
the above example is preferable for most normal configurations: the mail is
accepted if the sender address is proved to exist and rejected otherwise. If a
temporary failure occurs, the remote party is urged to retry the transaction
some time later.

The poll statement itself has a number of options that control the type
of the verification. These are discussed in detail in [poll], page 101.

It is worth noticing that there is one special email address which is always
available on any host, it is the null address ‘<>’ used in error reporting. It
is of no use verifying its existence:

prog envfrom

do

if $f == ""

accept

else

on poll $f do

when success:

accept

when not_found or failure:

reject 550 5.1.0 "Sender validity not confirmed"

when temp_failure:

tempfail 450 4.1.0 "Try again later"

done

fi

done

1 For more information about exceptions and their handling, please refer to Section 4.19
[Exceptions], page 93.

22 Mailfromd Manual

3.7 SMTP Timeouts
When using polling functions, it is important to take into account possible
delays, which can occur in SMTP transactions. Such delays may be due to
low network bandwidth or high load on the remote server. Some sites impose
them willingly, as a spam-fighting measure.

Ideally the callout verification should use the timeout values defined in
the RFC 2822, but this is impossible in practice, because it would cause a
timeout escalation, which consists in propagating delays encountered in a
callout SMTP session back to the remote client whose session was the cause
of the callout.

Consider, for example, the following scenario. An MFL script performs
a callout on ‘envfrom’ stage. The remote server is overloaded and delays
heavily in responding, so that the initial response arrives 3 minutes after es-
tablishing the connection, and processing the ‘EHLO’ command takes another
3 minutes. These delays are OK according to the RFC, which imposes a 5
minute limit for each stage, but while waiting for the remote reply our SMTP
server remains in the ‘envfrom’ state with the client waiting for a response
to its ‘MAIL’ command more than 6 minutes, which is intolerable, because
of the same 5 minute limit. Thus, the client will almost certainly break the
session.

To avoid this, mailfromd uses a special instance, called callout server,
which is responsible for running callout SMTP sessions asynchronously. The
usual sender verification is performed using so-called soft timeout values,
which are set to values short enough to not disturb the incoming session
(e.g. a timeout for ‘HELO’ response is 3 seconds, instead of 5 minutes). If
this verification yields a definite answer, that answer is stored in the cache
database and returned to the calling procedure immediately. If, however, the
verification is aborted due to a timeout, the caller procedure is returned an
‘e_temp_failure’ exception, and the callout is scheduled for processing by
a callout server. The exception normally causes the milter session to return
a temporary error to the sender, urging it to retry the connection later.

In the meantime, the callout server runs the sender verification again
using another set of timeouts, called hard timeouts, which are normally much
longer than ‘soft’ ones (they default to the values required by RFC 2822).
If it gets a definitive result (e.g. ‘email found’ or ‘email not found’, the
server stores it in the cache database. If the callout ends due to a timeout,
a ‘not_found’ result is stored in the database.

Some time later, the remote server retries the delivery, and the mailfromd
script is run again. This time, the callout function will immediately obtain
the already cached result from the database and proceed accordingly. If the
callout server has not finished the request by the time the sender retries the
connection, the latter is again returned a temporary error, and the process
continues until the callout is finished.

Chapter 3: Tutorial 23

For a detailed information about callout timeouts and their configuration,
see Section 7.6 [conf-timeout], page 177.

For a description of how to configure mailfromd to use callout servers,
see Section 7.3 [conf-server], page 174.

3.8 Avoiding Verification Loops
An envfrom program consisting only of the on poll statement will work
smoothly for incoming mails, but will create infinite loops for outgoing mails.
This is because upon sending an outgoing message mailfromd will start the
verification procedure, which will initiate an SMTP transaction with the
same mail server that runs it. This transaction will in turn trigger execu-
tion of on poll statement, etc. ad infinitum. To avoid this, any properly
written filter script should not run the verification procedure on the email
addresses in those domains that are relayed by the server it runs on. This
can be achieved using relayed function. The function returns true if its
argument is contained in one of the predefined domain list files. These files
correspond to Sendmail plain text files used in F class definition forms (see
Sendmail Installation and Operation Guide, chapter 5.3), i.e. they contain
one domain name per line, with empty lines and lines started with ‘#’ be-
ing ignored. The domain files consulted by relayed function are defined
in the relayed-domain-file configuration file statement (see Section 7.2
[conf-base], page 174):

relayed-domain-file (/etc/mail/local-host-names,

/etc/mail/relay-domains);

or:

relayed-domain-file /etc/mail/local-host-names;

relayed-domain-file /etc/mail/relay-domains;

The above example declares two domain list files, most commonly used
in Sendmail installations to keep hostnames of the server2 and names of the
domains, relayed by this server3.

Given all this, we can improve our filter program:

2 class ‘w’, see Sendmail Installation and Operation Guide, chapter 5.2.
3 class ‘R’

24 Mailfromd Manual

require ’dns’

prog envfrom

do

if $f == ""

accept

elif relayed(hostname(${client_addr}))

accept

else

on poll $f do

when success:

accept

when not_found or failure:

reject 550 5.1.0 "Sender validity not confirmed"

when temp_failure:

tempfail 450 4.1.0 "Try again later"

done

fi

done

If you feel that your Sendmail’s relayed domains are not restrictive enough
for mailfromd filters (for example you are relaying mails from some third-
party servers), you can use a database of trusted mail server addresses. If
the number of such servers is small enough, a single ‘or’ statement can be
used, e.g.:

elif ${client_addr} = "10.10.10.1"

or ${client_addr} = "192.168.11.7"

accept

...

otherwise, if the servers’ IP addresses fall within one or several CIDRs, you
can use the match_cidr function (see Section 5.17 [Internet address manip-
ulation functions], page 130), e.g.:

elif match_cidr (${client_addr}, "199.232.0.0/16")

accept

...

or combine both methods. Finally, you can keep a DBM database of relayed
addresses and use dbmap or dbget function for checking (see Section 5.20
[Database functions], page 137).

elif dbmap("%__statedir__/relay.db", ${client_addr})

accept

...

3.9 HELO Domain
Some of the mail filtering conditions may depend on the value of helo domain
name, i.e. the argument to the SMTP EHLO (or HELO) command. If you
ever need such conditions, take into account the following caveats. Firstly,
although Sendmail passes the helo domain in $s macro, it does not do this
consistently. In fact, the $s macro is available only to the helo handler, all
other handlers won’t see it, no matter what the value of the corresponding

Chapter 3: Tutorial 25

Milter.macros.handler statement. So, if you wish to access its value from
any handler, other than helo, you will have to store it in a variable in the
helo handler and then use this variable value in the other handler. This
approach is also recommended for another MTAs. This brings us to the
concept of variables in mailfromd scripts.

A variable is declared using the following syntax:
type name

where variable is the variable name and type is ‘string’, if the variable is to
hold a string value, and ‘number’, if it is supposed to have a numeric value.

A variable is assigned a value using the set statement:
set name expr

where expr is any valid MFL expression.
The set statement can occur within handler or function declarations as

well as outside of them.
There are two kinds of Mailfromd variables: global variables, that are

visible to all handlers and functions, and automatic variables, that are avail-
able only within the handler or function where they are declared. For our
purpose we need a global variable (See Section 4.9 [Variables], page 62, for
detailed descriptions of both kinds of variables).

The following example illustrates an approach that allows to use the HELO
domain name in any handler:

Declare the helohost variable
string helohost

prog helo

do

Save the host name for further use
set helohost $s

done

prog envfrom

do

Reject hosts claiming to be localhost
if helohost = "localhost"

reject 570 "Please specify real host name"

fi

done

Notice, that for this approach to work, your MTA must export the ‘s’
macro (e.g., in case of Sendmail, the Milter.macros.helo statement in the
‘sendmail.cf’ file must contain ‘s’. see Section 9.1 [Sendmail], page 195).
This requirement can be removed by using the handler argument of helo.
Each mailfromd handler is given one or several arguments. The exact num-
ber of arguments and their meaning are handler-specific and are described
in Section 4.11 [Handlers], page 66, and Figure 3.1. The arguments are ref-
erenced by their ordinal number, using the notation $n . The helo handler

26 Mailfromd Manual

takes one argument, whose value is the helo domain. Using this information,
the helo handler from the example above can be rewritten as follows:

prog helo

do

Save the host name for further use
set helohost $1

done

3.10 SMTP RSET and Milter Abort Handling
In previous section we have used a global variable to hold certain information
and share it between handlers. In the majority of cases, such information
is session specific, and becomes invalid if the remote party issues the SMTP
RSET command. Therefore, mailfromd clears all global variables when it
receives a Milter ‘abort’ request, which is normally generated by this com-
mand.

However, you may need some variables that retain their values even across
SMTP session resets. In mailfromd terminology such variables are called
precious. Precious variables are declared by prefixing their declaration with
the keyword precious. Consider, for example, this snippet of code:

precious number rcpt_counter

prog envrcpt

do

set rcpt_counter rcpt_counter + 1

done

Here, the variable ‘rcpt_counter’ is declared as precious and its value
is incremented each time the ‘envrcpt’ handler is called. This way,
‘rcpt_counter’ will keep the total number of SMTP RCPT commands is-
sued during the session, no matter how many times it was restarted using
the RSET command.

3.11 Controlling Number of Recipients
Any MTA provides a way to limit the number of recipients per message. For
example, in Sendmail you may use the MaxRecipientsPerMessage option4.
However, such methods are not flexible, so you are often better off using
mailfromd for this purpose.

Mailfromd keeps the number of recipients collected so far in variable
rcpt_count, which can be controlled in envrcpt handler as shown in the
example below:

4 Sendmail (tm) Installation and Operation Guide, chapter 5.6, ‘O -- Set Option’.

Chapter 3: Tutorial 27

prog envrcpt

do

if rcpt_count > 10

reject 550 5.7.1 "Too many recipients"

fi

done

This filter will accept no more than 10 recipients per message. You may
achieve finer granularity by using additional conditions. For example, the
following code will allow any number of recipients if the mail is coming from
a domain relayed by the server, while limiting it to 10 for incoming mail
from other domains:

prog envrcpt

do

if not relayed(hostname($client_addr)) and rcpt_count > 10

reject 550 5.7.1 "Too many recipients"

fi

done

There are three important features to notice in the above code. First of
all, it introduces two boolean operators: and, which evaluates to true only
if both left-side and right-side expressions are true, and not, which reverses
the value of its argument.

Secondly, the scope of an operation is determined by its precedence, or
binding strength. Not binds more tightly than and, so its scope is limited
by the next expression between it and and. Using parentheses to underline
the operator scoping, the above if condition can be rewritten as follows:

if (not (relayed(hostname($client_addr)))) and (%rcpt_count > 10)

Finally, it is important to notice that all boolean expressions are com-
puted using shortcut evaluation. To understand what it is, let’s consider the
following expression: x and y . Its value is true only if both x and y are
true. Now suppose that we evaluate the expression from left to right and
we find that x is false. This means that no matter what the value of y is,
the resulting expression will be false, therefore there is no need to compute
y at all. So, the boolean shortcut evaluation works as follows:

x and y If x ⇒ false, do not evaluate y and return false.

x or y If x ⇒ true, do not evaluate y and return true.

Thus, in the expression not relayed(hostname($client_addr)) and
rcpt_count > 10, the value of the rcpt_count variable will be compared
with ‘10’ only if the relayed function yielded false.

To further enhance our sample filter, you may wish to make the reject
output more informative, to let the sender know what the recipient limit is.
To do so, you can use the concatenation operator ‘.’ (a dot):

28 Mailfromd Manual

set max_rcpt 10

prog envrcpt

do

if not relayed(hostname($client_addr)) and rcpt_count > 10

reject 550 5.7.1 "Too many recipients, max=" . max_rcpt

fi

done

When evaluating the third argument to reject, mailfromd will first con-
vert max_rcpt to string and then concatenate both strings together, produc-
ing string ‘Too many recipients, max=10’.

3.12 Sending Rate
We have introduced the notion of mail sending rate in Section 1.4 [Rate
Limit], page 8. Mailfromd keeps the computed rates in the special rate
database (see Section 3.15 [Databases], page 34). Each record in this data-
base consists of a key, for which the rate is computed, and the rate value,
in form of a double precision floating point number, representing average
number of messages per second sent by this key within the last sampling
interval. In the simplest case, the sender email address can be used as a
key, however we recommend to use a conjunction email-sender ip instead,
so the actual email owner won’t be blocked by actions of some spammer
abusing his/her address.

Two functions are provided to control and update sending rates. The
rateok function takes three mandatory arguments:

bool rateok(string key, number interval, number threshold)

The key meaning is described above. The interval is the sampling in-
terval, or the number of seconds to which the actual sending rate value is
converted. Remember that it is stored internally as a floating point number,
and thus cannot be directly used in mailfromd filters, which operate only on
integer numbers. To use the rate value, it is first converted to messages per
given interval, which is an integer number. For example, the rate 0.138888
brought to 1-hour interval gives 500 (messages per hour).

When the rateok function is called, it recomputes rate record for the
given key . If the new rate value converted to messages per given interval
is less than threshold, the function updates the database and returns True.
Otherwise it returns False and does not update the database.

This function must be required prior to use, by placing the following
statement somewhere at the beginning of your script:

require rateok

For example, the following code limits the mail sending rate for each
‘email address’-‘IP’ combination to 180 per hour. If the actual rate value
exceeds this limit, the sender is returned a temporary failure response:

Chapter 3: Tutorial 29

require rateok

prog envfrom

do

if not rateok($f . "-" . ${client_addr}, 3600, 180)

tempfail 450 4.7.0 "Mail sending rate exceeded. Try again later"

fi

done

Notice argument concatenation, used to produce the key.
It is often inconvenient to specify intervals in seconds, therefore a special

interval function is provided. It converts its argument, which is a textual
string representing time interval in English, to the corresponding number of
seconds. Using this function, the function invocation would be:

rateok($f . "-" . ${client_addr}, interval("1 hour"), 180)

The interval function is described in [interval], page 114, and time
intervals are discussed in [time interval specification], page 173.

The rateok function begins computing the rate as soon as it has collected
enough data. By default, it needs at least four mails. Since this may lead to
a big number of false positives (i.e. overestimated rates) at the beginning of
sampling interval, there is a way to specify a minimum number of samples
rateok must collect before starting to actually compute rates. This number
of samples is given as the optional fourth argument to the function. For
example, the following call will always return True for the first 10 mails, no
matter what the actual rate:

rateok($f . "-" . ${client_addr}, interval("1 hour"), 180, 10)

The tbf_rate function allows to exercise more control over the mail rates.
This function implements a token bucket filter (TBF) algorithm.

The token bucket controls when the data can be transmitted based on the
presence of abstract entities called tokens in a container called bucket. Each
token represents some amount of data. The algorithm works as follows:
• A token is added to the bucket at a constant rate of 1 token per t

microseconds.
• A bucket can hold at most m tokens. If a token arrives when the bucket

is full, that token is discarded.
• When n items of data arrive (e.g. n mails), n tokens are removed from

the bucket and the data are accepted.
• If fewer than n tokens are available, no tokens are removed from the

bucket and the data are not accepted.

This algorithm allows to keep the data traffic at a constant rate t with
bursts of up to m data items. Such bursts occur when no data was being
arrived for m*t or more microseconds.

Mailfromd keeps buckets in a database ‘tbf’. Each bucket is identified
by a unique key. The tbf_rate function is defined as follows:

bool tbf_rate(string key, number n, number t, number m)

30 Mailfromd Manual

The key identifies the bucket to operate upon. The rest of arguments
is described above. The tbf_rate function returns ‘True’ if the algorithm
allows to accept the data and ‘False’ otherwise.

Depending on how the actual arguments are selected the tbf_rate func-
tion can be used to control various types of flow rates. For example, to
control mail sending rate, assign the arguments as follows: n to the number
of mails and t to the control interval in microseconds:

prog envfrom

do

if not tbf_rate($f . "-" . $client_addr, 1, 10000000, 20)

tempfail 450 4.7.0 "Mail sending rate exceeded. Try again later"

fi

done

The example above permits to send at most one mail each 10 seconds.
The burst size is set to 20.

Another use for the tbf_rate function is to limit the total delivered mail
size per given interval of time. To do so, the function must be used in
prog eom handler, because it is the only handler where the entire size of the
message is known. The n argument must contain the number of bytes in
the email (or email bytes * number of recipients), and the t must be set to
the number of bytes per microsecond a given user is allowed to send. The
m argument must be large enough to accommodate a couple of large emails.
E.g.:

prog eom

do

if not tbf_rate("$f-$client_addr",

message_size(current_message()),

10240*1000000, # At most 10 kb/sec

10*1024*1024)

tempfail 450 4.7.0 "Data sending rate exceeded. Try again later"

fi

done

See Section 5.26 [Rate limiting functions], page 150, for more information
about rateok and tbf_rate functions.

3.13 Greylisting
Greylisting is a simple method of defending against the spam proposed
by Evan Harris. In few words, it consists in recording the ‘sender IP’-
‘sender email’-‘recipient email’ triplet of mail transactions. Each time
the unknown triplet is seen, the corresponding message is rejected with the
tempfail code. If the mail is legitimate, this will make the originating
server retry the delivery later, until the destination eventually accepts it. If,
however, the mail is a spam, it will probably never be retried, so the users
will not be bothered by it. Even if the spammer will retry the delivery,
the greylisting period will give spam-detection systems, such as DNSBLs,
enough time to detect and blacklist it, so by the time the destination host

Chapter 3: Tutorial 31

starts accepting emails from this triplet, it will already be blocked by other
means.

You will find the detailed description of the method in The Next Step in
the Spam Control War: Greylisting, the original whitepaper by Evan Harris.

The mailfromd implementation of greylisting is based on greylist func-
tion. The function takes two arguments: the key, identifying the greylisting
triplet, and the interval. The function looks up the key in the greylisting
database. If such a key is not found, a new entry is created for it and the
function returns true. If the key is found, greylist returns false, if it was
inserted to the database more than interval seconds ago, and true other-
wise. In other words, from the point of view of the greylisting algorithm, the
function returns true when the message delivery should be blocked. Thus,
the simplest implementation of the algorithm would be:

prog envrcpt

do

if greylist("${client_addr}-$f-${rcpt_addr}", interval("1 hour"))

tempfail 451 4.7.1 "You are greylisted"

fi

done

However, the message returned by this example, is not informative
enough. In particular, it does not tell when the message will be accepted.
To help you produce more informative messages, greylist function stores
the number of seconds left to the end of the greylisting period in the global
variable greylist_seconds_left, so the above example could be enhanced
as follows:

prog envrcpt

do

set gltime interval("1 hour")

if greylist("${client_addr}-$f-${rcpt_addr}", gltime)

if greylist_seconds_left = gltime

tempfail 451 4.7.1

"You are greylisted for %gltime seconds"

else

tempfail 451 4.7.1

"Still greylisted for %greylist_seconds_left seconds"

fi

fi

done

In real life you will have to avoid greylisting some messages, in particular
those coming from the ‘<>’ address and from the IP addresses in your relayed
domain. It can easily be done using the techniques described in previous
sections and is left as an exercise to the reader.

Mailfromd provides two implementations of greylisting primitives, which
differ in the information stored in the database. The one described above
is called traditional. It keeps in the database the time when the greylisting
was activated for the given key, so the greylisting function uses its second

http://projects.puremagic.com/greylisting/whitepaper.html
http://projects.puremagic.com/greylisting/whitepaper.html

32 Mailfromd Manual

argument (interval) and the current timestamp to decide whether the key
is still greylisted.

The second implementation is called by the name of its inventor Con
Tassios. This implementation stores in the database the time when the
greylisting period is set to expire, computed by the greylist when it is first
called for the given key, using the formula ‘current_timestamp + interval’.
Subsequent calls to greylist compare the current timestamp with the one
stored in the database and ignore their second argument. This implementa-
tion is enabled by one of the following pragmas:

#pragma greylist con-tassios

or

#pragma greylist ct

When Con Tassios implementation is used, yet another function becomes
available. The function is_greylisted (see Section 5.27 [is greylisted],
page 151) returns ‘True’ if its argument is greylisted and ‘False’ otherwise.
It can be used to check for the greylisting status without actually updating
the database:

if is_greylisted("${client_addr}-$f-${rcpt_addr}")

...

fi

One special case is whitelisting, which is often used together with greylist-
ing. To implement it, mailfromd provides the function dbmap, which takes
two mandatory arguments: dbmap(file, key) (it also allows an optional
third argument, see [dbmap], page 137, for more information on it). The first
argument is the name of the DBM file where to search for the key, the second
one is the key to be searched. Assuming you keep your whitelist database
in file ‘/var/run/whitelist.db’, a more practical example will be:

prog envrcpt

do

set gltime interval("1 hour")

if not ($f = "" or relayed(hostname(${client_addr}))

or dbmap("/var/run/whitelist.db", ${client_addr}))

if greylist("${client_addr}-$f-${rcpt_addr}", gltime)

if greylist_seconds_left = gltime

tempfail 451 4.7.1

"You are greylisted for %gltime seconds"

else

tempfail 451 4.7.1

"Still greylisted for %greylist_seconds_left seconds"

fi

fi

fi

done

Chapter 3: Tutorial 33

3.14 Local Account Verification
In your filter script you may need to verify if the given user name is served
by your mail server, in other words, to verify if it represents a local account.
Notice that in this context, the word local does not necessarily mean that
the account is local for the server running mailfromd, it simply means any
account whose mailbox is served by the mail servers using mailfromd.

The validuser function may be used for this purpose. It takes one ar-
gument, the user name, and returns true if this name corresponds to a local
account. To verify this, the function relies on libmuauth, a powerful authen-
tication library shipped with GNU mailutils. More precisely, it invokes a
list of authorization functions. Each function is responsible for looking up
the user name in a particular source of information, such as system ‘passwd’
database, an SQL database, etc. The search is terminated when one of the
functions finds the name in question or the list is exhausted. In the former
case, the account is local, in the latter it is not. This concept is discussed
in detail in see Section “Authorization and Authentication Principles” in
GNU Mailutils Manual). Here we will give only some practical advices for
implementing it in mailfromd filters.

The actual list of available authorization modules depends on your
mailutils installation. Usually it includes, apart from traditional UNIX
‘passwd’ database, the functions for verifying PAM, RADIUS and SQL data-
base accounts. Each of the authorization methods is configured using special
configuration file statements. For the description of the Mailutils configura-
tion files, See Section “Mailutils Configuration File” in GNU Mailutils Man-
ual. You can obtain the template for mailfromd configuration by running
mailfromd --config-help.

For example, the following ‘mailfromd.conf’ file:

auth {

authorization pam:system;

}

pam {

service mailfromd;

}

sets up the authorization using PAM and system ‘passwd’ database. The
name of PAM service to use is ‘mailfromd’.

The function validuser is often used together with dbmap, as in the
example below:

#pragma dbprop /etc/mail/aliases.db null

if dbmap("/etc/mail/aliases.db", localpart($rcpt_addr))

and validuser(localpart($rcpt_addr))

...

fi

34 Mailfromd Manual

For more information about dbmap function, see [dbmap], page 137.
For a description of dbprop pragma, see Section 5.20 [Database functions],
page 137.

3.15 Databases
Some mailfromd functions use DBM databases to save their persistent state
data. Each database has a unique identifier, and is assigned several pieces of
information for its maintenance: the database file name and the expiration
period, i.e. the time after which a record is considered expired.

To obtain the list of available databases along with their preconfigured
settings, run mailfromd --show-defaults. You will see an output similar
to this:

version: 7.99.90

script file: /etc/mailfromd.mf

user: mail

statedir: /var/run/mailfromd

socket: unix:/var/run/mailfromd/mailfrom

pidfile: /var/run/mailfromd/mailfromd.pid

default syslog: blocking

database format: Berkeley DB 2.x

dns database: /var/run/mailfromd/dns.db

dns negative expiration: 3600

cache database: /var/run/mailfromd/mailfromd.db

cache expiration: 86400

cache negative expiration: 43200

greylist database: /var/run/mailfromd/greylist.db

greylist expiration: 86400

rate database: /var/run/mailfromd/rates.db

rate expiration: 86400

The text below ‘database format’ line describes all available databases.
Notice that the ‘cache’ database, in contrast to the rest of databases, has
two expiration periods associated with it. This is explained in the next
subsection.

3.15.1 Database Formats

The version 7.99.90 runs the following database types (or formats):

‘dns’ DNS database caches DNS lookups. The key consists of the
lookup type and the actual lookup key, separated by a single
space. The type can be one of ‘A’, ‘PTR’, ‘MX’. The value is
an ASCII string built up of one or more fields, separated by a
single space. The first field is always the expiration date for
this record in seconds since the Epoch (00:00:00 UTC, January
1, 1970). The meaning of the rest of the fields depends on the
lookup type as described in the following table:

A Each field contains the next IP address correspond-
ing to the lookup key. Notice, that currently (ver-

Chapter 3: Tutorial 35

sion 7.99.90) there can be at most one field here, but
it may change in the future.

PTR Each field contains a host name corresponding to the
lookup key. Notice, that currently (version 7.99.90)
there can be at most one field here, but it may
change in the future.

MX Each field contains a host name of an ‘MX’ record for
the lookup key.

See [DNS Cache Management], page 135, for more information
of DNS cache database and its management.

‘cache’ Cache database keeps the information about external emails,
obtained using sender verification functions (see Section 3.6
[Checking Sender Address], page 20). The key entry to this
database is an email address or email:sender-ip string, for ad-
dresses checked using strict verification. The data its stores for
each key are:
1. Address validity. This field can be either success or not_

found, meaning the address is confirmed to exists or it is
not.

2. The time when the entry was entered into the database. It
is used to check for expired entries.

The ‘cache’ database has two expiration periods: a positive
expiration period, that is applied to entries with the first field
set to success, and a negative expiration period, applied to
entries marked as not_found.

‘rate’ The mail sending rate data, maintained by rate function (see
Section 5.26 [Rate limiting functions], page 150). A record con-
sists of the following fields:

timestamp The time when the entry was entered into the data-
base.

interval Interval during which the rate was measured (sec-
onds).

count Number of mails sent during this interval.

‘tbf’ This database is maintained by tbf_rate function (see [TBF],
page 29). Each record represents a single bucket and consists of
the following keys:

timestamp Timestamp of most recent token, as a 64-bit un-
signed integer (microseconds resolution).

expirytime
Estimated time when this bucket expires (seconds
since epoch).

36 Mailfromd Manual

tokens Number of tokens in the bucket (size_t).

‘greylist’
This database is maintained by greylist function (see
Section 3.13 [Greylisting], page 30). Each record holds only
the timestamp. Its semantics depends on the greylisting
implementation in use (see [greylisting types], page 31). In
traditional implementation, it is the time when the entry was
entered into the database. In Con Tassios implementation, it is
the time when the greylisting period expires.

3.15.2 Basic Database Operations

To list the contents of a database, use ‘--list’ option. When used without
any arguments it will list the ‘cache’ database:

$ mailfromd --list

abrakat@mail.com success Thu Aug 24 15:28:58 2006

baccl@EDnet.NS.CA not_found Fri Aug 25 10:04:18 2006

bhzxhnyl@chello.pl not_found Fri Aug 25 10:11:57 2006

brqp@aaanet.ru:24.1.173.165 not_found Fri Aug 25 14:16:06 2006

You can also list data for any particular key or keys. To do so, give the
keys as arguments to mailfromd:

$ mailfromd --list abrakat@mail.com brqp@aaanet.ru:24.1.173.165

abrakat@mail.com success Thu Aug 24 15:28:58 2006

brqp@aaanet.ru:24.1.173.165 not_found Fri Aug 25 14:16:06 2006

To list another database, give its format identifier with the ‘--format’
(‘-H’) option. For example, to list the ‘rate’ database:

$ mailfromd --list --format=rate

sam@mail.net-62.12.4.3 Wed Sep 6 19:41:42 2006 139 3 0.0216 6.82e-06

axw@rame.com-59.39.165.172 Wed Sep 6 20:26:24 2006 0 1 N/A N/A

The ‘--format’ option can be used with any database management op-
tion, described below.

Another useful operation you can do while listing ‘rate’ database is the
prediction of estimated time of sending, i.e. the time when the user will
be able to send mail if currently his mail sending rate has exceeded the
limit. This is done using ‘--predict’ option. The option takes an argu-
ment, specifying the mail sending rate limit, e.g. (the second line is split for
readability):

$ mailfromd --predict="180 per 1 minute"

ed@fae.net-21.10.1.2 Wed Sep 13 03:53:40 2006 0 1 N/A N/A; free to send

service@19.netlay.com-69.44.129.19 Wed Sep 13 15:46:07 2006 7 2

0.286 0.0224; in 46 sec. on Wed Sep 13 15:49:00 2006

Notice, that there is no need to use ‘--list --format=rate’ along with this
option, although doing so is not an error.

To delete an entry from the database, use ‘--delete’ option, for example:
mailfromd --delete abrakat@mail.com. You can give any number of keys
to delete in the command line.

Chapter 3: Tutorial 37

3.15.3 Database Maintenance

There are two principal operations of database management: expiration and
compaction. Expiration consists in removing expired entries from the data-
base. In fact, it is rarely needed, since the expired entries are removed in the
process of normal mailfromd work. Nevertheless, a special option is pro-
vided in case an explicit expiration is needed (for example, before dumping
the database to another format, to avoid transferring useless information).

The command line option ‘--expire’ instructs mailfromd to delete ex-
pired entries from the specified database. As usual, the database is specified
using ‘--format’ option. If it is not given explicitly, ‘cache’ is assumed.

While removing expired entries the space they occupied is marked as free,
so it can be used by subsequent inserts. The database does not shrink after
expiration is finished. To actually return the unused space to the file system
you should compact your database.

This is done by running mailfromd --compact (and, optionally, speci-
fying the database to operate upon with ‘--format’ option). Notice, that
compacting a database needs roughly as much disk space on the partition
where the database resides as is currently used by the database. Database
compaction runs in three phases. First, the database is scanned and all non-
expired records are stored in the memory. Secondly, a temporary database
is created in the state directory and all the cached entries are flushed into
it. This database is named after the PID of the running mailfromd process.
Finally, the temporary database is renamed to the source database.

Both ‘--compact’ and ‘--expire’ can be applied to all databases by
combining them with ‘--all’. It is useful, for example, in ‘crontab’ files.
For example, I have the following monthly job in my ‘crontab’:

0 1 1 * * /usr/local/sbin/mailfromd --compact --all

3.16 Testing Filter Scripts
It is important to check your filter script before actually starting to use it.
There are several ways to do so.

To test the syntax of your filter script, use the ‘--lint’ option. It will
cause mailfromd to exit immediately after attempting to compile the script
file. If the compilation succeeds, the program will exit with code 0. Other-
wise, it will exit with error code 78 (‘configuration error’). In the latter
case, mailfromd will also print a diagnostic message, describing the error
along with the exact location where the error was diagnosed, for example:

mailfromd: /etc/mailfromd.mf:39: syntax error, unexpected reject

The error location is indicated by the name of the file and the number of
the line when the error occurred. By using the ‘--location-column’ option
you instruct mailfromd to also print the column number. E.g. with this
option the above error message may look like:

mailfromd: /etc/mailfromd.mf:39.12 syntax error, unexpected reject

38 Mailfromd Manual

Here, ‘39’ is the line and ‘12’ is the column number.
For complex scripts you may wish to obtain a listing of variables used in

the script. This can be achieved using ‘--xref’ command line option:
The output it produces consists of four columns:

Variable name
Data type Either number or string.

Offset in data segment
Measured in words.

References A comma-separated list of locations where the variable was ref-
erenced. Each location is represented as file:line. If several
locations pertain to the same file, the file name is listed only
once.

Here is an example of the cross-reference output:
$ mailfromd --xref

Cross-references:

cache_used number 5 /etc/mailfromd.mf:48

clamav_virus_name string 9 /etc/mailfromd.mf:240,240

db string 15 /etc/mailfromd.mf:135,194,215

dns_record_ttl number 16 /etc/mailfromd.mf:136,172,173

ehlo_domain string 11

gltime number 13 /etc/mailfromd.mf:37,219,220,222,223

greylist_seconds_left number 1 /etc/mailfromd.mf:220,226,227

last_poll_host string 2

If the script passes syntax check, the next step is often to test if it works
as you expect it to. This is done with ‘--test’ (‘-t’) command line option.
This option runs the envfrom handler (or another one, see below) and prints
the result of its execution.

When running your script in test mode, you will need to supply the
values of Sendmail macros it needs. You do this by placing the necessary
assignments in the command line. For example, this is how to supply initial
values for f and client_addr macros:

$ mailfromd --test f=gray@gnu.org client_addr=127.0.0.1

You may also need to alter initial values of some global variables your
script uses. To do so, use ‘-v’ (‘--variable’) command line option. This
option takes a single argument consisting of the variable name and its initial
value, separated by an equals sign. For example, here is how to change the
value of ehlo_domain global variable:

$ mailfromd -v ehlo_domain=mydomain.org

The ‘--test’ option is often useful in conjunction with options ‘--debug’,
‘--trace’ and ‘--transcript’ (see Section 3.18 [Logging and Debugging],
page 43. The following example shows what the author got while debugging
the filter script described in Section 4.23 [Filter Script Example], page 107:

Chapter 3: Tutorial 39

$ mailfromd --test --debug=50 f=gray@gnu.org client_addr=127.0.0.1

MX 20 mx20.gnu.org

MX 10 mx10.gnu.org

MX 10 mx10.gnu.org

MX 20 mx20.gnu.org

getting cache info for gray@gnu.org

found status: success (0), time: Thu Sep 14 14:54:41 2006

getting rate info for gray@gnu.org-127.0.0.1

found time: 1158245710, interval: 29, count: 5, rate: 0.172414

rate for gray@gnu.org-127.0.0.1 is 0.162162

updating gray@gnu.org-127.0.0.1 rates

SET REPLY 450 4.7.0 Mail sending rate exceeded. Try again later

State envfrom: tempfail

To test any handler, other than ‘envfrom’, give its name as the argument
to ‘--test’ option. Since this argument is optional, it is important that it
be given immediately after the option, without any intervening white space,
for example mailfromd --test=helo, or mailfromd -thelo.

This method allows to test one handler at a time. To test the script as a
whole, use mtasim utility. When started it enters interactive mode, similar to
that of sendmail -bs, where it expects SMTP commands on its standard in-
put and sends answers to the standard output. The ‘--port=auto’ command
line option instructs it to start mailfromd and to create a unique socket for
communication with it. For the detailed description of the program and the
ways to use it, See Chapter 10 [mtasim], page 201.

3.17 Run Mode
Mailfromd provides a special option that allows to run arbitrary MFL scripts.
This is an experimental feature, intended for future use of MFL as a scripting
language.

When given the ‘--run’ command line option, mailfromd loads the script
given in its command line and executes a function called ‘main’.

The function main must be declared as:
func main(...) returns number

Mailfromd passes all command line arguments that follow the script name
as arguments to that function. When the function returns, its return value
is used by mailfromd as exit code.

As an example, suppose the file ‘script.mf’ contains the following:
func main (...)

returns number

do

loop for number i 1,

while i <= $#,

set i i + 1

do

echo "arg %i=" . $(i)

done

done

40 Mailfromd Manual

This function prints all its arguments (See [variadic functions], page 75,
for a detailed description of functions with variable number of arguments).
Now running:

$ mailfromd --run script.mf 1 file dest

displays the following:� �
arg 1=1

arg 2=file

arg 3=dest
 	
Note, that MFL does not have a direct equivalent of shell’s $0 argument.

If your function needs to know the name of the script that is being executed,
use __file__ built-in constant instead (see Section 4.8.1 [Built-in constants],
page 60.

You may name your start function with any name other than the default
‘main’. In this case, give its name as an argument to the ‘--run’ option.
This argument is optional, therefore it must be separated from the option
by an equals sign (with no whitespace from either side). For example, given
the command line below, mailfromd loads the file ‘script.mf’ and execute
the function named ‘start’:

$ mailfromd --run=start script.mf

3.17.1 Parsing Command Line Arguments

A special function is provided to break (parse) options in command lines,
and to check for legal options. It uses the GNU getopt routines (see Section
“Getopt” in The GNU C Library Reference Manual).

[Built-in Function]string getopt (number argc , pointer argv , ...)
The getopt function parses the command line arguments, as supplied by
argc and argv . The argc argument is the argument count, and argv is an
opaque data structure, representing the array of arguments5. The opera-
tor vaptr (see [vaptr], page 43) is provided to initialize this argument.
An argument that starts with ‘-’ (and is not exactly ‘-’ or ‘--’), is an
option element. An argument that starts with a ‘-’ is called short or
traditional option. The characters of this element, except for the initial
‘-’ are option characters. Each option character represents a separate
option. An argument that starts with ‘--’ is called long or GNU option.
The characters of this element, except for the initial ‘--’ form the option
name.
Options may have arguments. The argument to a short option is supplied
immediately after the option character, or as the next word in command
line. E.g., if option ‘-f’ takes a mandatory argument, then it may be
given either as ‘-farg’ or as ‘-f arg’. The argument to a long option

5 When MFL has array data type, the second argument will change to array of strings.

Chapter 3: Tutorial 41

is either given immediately after it and separated from the option name
by an equals sign (as ‘--file=arg’), or is given as the next word in the
command line (e.g. ‘--file arg’).
If the option argument is optional, i.e. it may not necessarily be given,
then only the first form is allowed (i.e. either ‘-farg’ or ‘--file=arg’.
The ‘--’ command line argument ends the option list. Any arguments
following it are not considered options, even if they begin with a dash.
If getopt is called repeatedly, it returns successively each of the option
characters from each of the option elements (for short options) and each
option name (for long options). In this case, the actual arguments are
supplied only to the first invocation. Subsequent calls must be given two
nulls as arguments. Such invocation instructs getopt to use the values
saved on the previous invocation.
When the function finds another option, it returns its character or name
updating the external variable optind (see below) so that the next call
to getopt can resume the scan with the following option.
When there are no more options left, or a ‘--’ argument is encountered,
getopt returns an empty string. Then optind gives the index in argv of
the first element that is not an option.
The legitimate options and their characteristics are supplied in additional
arguments to getopt. Each such argument is a string consisting of two
parts, separated by a vertical bar (‘|’). Any one of these parts is op-
tional, but at least one of them must be present. The first part specifies
short option character. If it is followed by a colon, this character takes
mandatory argument. If it is followed by two colons, this character takes
an optional argument. If only the first part is present, the ‘|’ separator
may be omitted. Examples:

"c"
"c|" Short option ‘-c’.

"f:"
"f:|" Short option ‘-f’, taking a mandatory argument.

"f::"
"f::|" Short option ‘-f’, taking an optional argument.

If the vertical bar is present and is followed by any characters, these
characters specify the name of a long option, synonymous to the short
one, specified by the first part. Any mandatory or optional arguments
to the short option remain mandatory or optional for the corresponding
long option. Examples:

"f:|file" Short option ‘-f’, or long option ‘--file’, requiring an argu-
ment.

"f::|file" Short option ‘-f’, or long option ‘--file’, taking an optional
argument.

42 Mailfromd Manual

In any of the above cases, if this option appears in the command line,
getopt returns its short option character.
To define a long option without a short equivalent, begin it with a bar,
e.g.:

"|help"

If this option is to take an argument, this is specified using the mechanism
described above, except that the short option character is replaced with
a minus sign. For example:

"-:|output"
Long option ‘--output’, which takes a mandatory argument.

"-::|output"
Long option ‘--output’, which takes an optional argument.

If an option is returned that has an argument in the command line,
getopt stores this argument in the variable optarg.
After each invocation, getopt sets the variable optind to the index of
the next argv element to be parsed. Thus, when the list of options is
exhausted and the function returned an empty string, optind contains
the index of the the first element that is not an option.
When getopt encounters an option that is not described in its arguments
or if it detects a missing option argument it prints an error message using
mailfromd logging facilities, stores the offending option in the variable
optopt, and returns ‘?’.
If printing error message is not desired (e.g. the application is going to
take care of error messaging), it can be disabled by setting the variable
opterr to ‘0’.
The third argument to getopt, called controlling argument, may be used
to control the behavior of the function. If it is a colon, it disables printing
the error message for unrecognized options and missing option arguments
(as setting opterr to ‘0’ does). In this case getopt returns ‘:’, instead
of ‘?’ to indicate missing option argument.
If the controlling argument is a plus sign, or the environment variable
POSIXLY_CORRECT is set, then option processing stops as soon as a non-
option argument is encountered. By default, if options and non optional
arguments are intermixed in argv , getopt permutes them so that the
options go first, followed by non-optional arguments.
If the controlling argument is ‘-’, then each non-option element in argv
is handled as if it were the argument of an option with character code 1
(‘"\001"’, in MFL notation. This can used by programs that are written
to expect options and other argv-elements in any order and that care
about the ordering of the two.
Any other value of the controlling argument is handled as an option def-
inition.

Chapter 3: Tutorial 43

A special language construct is provided to supply the second argument
(argv) to getopt and similar functions:

vaptr(arg)

where argv is a positional parameter, from which to start the array of argv .
For example:

func main(...)

returns number

do

set rc getopt($#, vaptr($1), "|help")

...

Here, vaptr($1) constructs the argv array from all the arguments, sup-
plied to the function main.

To illustrate the use of getopt function, let’s suppose you write a script
that takes the following options:

‘-f file ’
‘--file=file ’
‘--output[=dir]’
‘--help’

Then, the corresponding getopt invocation will be:
func main(...)

returns number

do

loop for string rc getopt($#, vaptr($1),

"f:|file", "-::|output", "h|help"),

while rc != "",

set rc getopt(0, 0)

do

switch rc

do

case "f":

set file optarg

case "output"

set output 1

set output_dir optarg

case "h"

help()

default:

return 1

done

...

3.18 Logging and Debugging
Depending on its operation mode, mailfromd tries to guess whether it is
appropriate to print its diagnostics and informational messages on standard
error or to send them to syslog. Standard error is used if the program
is given one of the database management options (see Section 3.15 [Data-
bases], page 34), or ‘--test’ option (see Section 3.16 [Testing Filter Scripts],

44 Mailfromd Manual

page 37). Otherwise, syslog is used. To alter these defaults, two command
line options are provided: ‘--stderr’ to print everything to standard error
and ‘--syslog’ to output all diagnostics to syslog.

Diagnostics can be sent to syslog in two ways: using the syslog func-
tion from the system ‘libc’ library, which is a blocking implementa-
tion in most cases, or via internal, asynchronous, syslog implementation.
See [syslog-async], page 11, for more information on these implementa-
tions and for information on how to select the default one. Two op-
tions are provided to select the implementation to use at run time: the
‘--syslog-async’ option instructs mailfromd to use asynchronous version,
and the ‘--no-syslog-async’ option instructs it to use the blocking version.

The default syslog facility is ‘mail’; it can be changed with the
‘--log-facility’ option. Argument to this option is a valid facility name,
i.e. one of: ‘user’, ‘daemon’, ‘auth’, ‘authpriv’, ‘mail’, and ‘local0’
through ‘local7’. The argument can be given in upper, lower or mixed
cases, and it can be prefixed with ‘log_’

Another syslog-related parameter that can be configured is the tag used
to identify mailfromd messages. Default tag is the program name. The
‘--log-tag’ option can be used to change it.

As any other UNIX utility, mailfromd is very quiet unless it has some-
thing important to communicate, such as, e.g. an error condition. A set of
command line options is provided for controlling the verbosity of its output.

The ‘--trace’ option enables tracing Sendmail actions executed during
message verifications. When this option is given, any accept, discard,
continue, etc. triggered during execution of your filter program will leave
their traces in the log file. Here is an example of how it looks like (syslog
time stamp, tag and PID removed for readability):

k8DHxvO9030656: /etc/mailfromd.mf:45: reject 550 5.1.1 Sender validity

not confirmed

This shows that while verifying the message with ID ‘k8DHxvO9030656’ the
reject action was executed by filter script ‘/etc/mailfromd.mf’ at line 45.

The use of message ID in the log deserves a special notice. The program
will always identify its log messages with the ‘Message-Id’, when it is avail-
able. Your responsibility as an administrator is to make sure it is available
by configuring your MTA to export the macro ‘i’ to mailfromd. The rule of
thumb is: make ‘i’ available to the very first handler mailfromd executes. It
is not necessary to export it to the rest of the handlers, since mailfromd will
cache it. For example, if your filter script contains ‘envfrom’ and ‘envrcpt’
handlers, export ‘i’ for ‘envfrom’. The exact instructions on how to ensure it
depend on the MTA you use. For ‘Sendmail’, refer to Section 9.1 [Sendmail],
page 195. For MeTA1, see Section 9.2 [MeTA1], page 196, and Section 11.1.2
[pmult-macros], page 210. For ‘Postfix’, see Section 9.3 [Postfix], page 199.

To push log verbosity further, use the debug configuration statement (see
Section 7.5 [conf-debug], page 176) or its command line equivalent, ‘--debug’

Chapter 3: Tutorial 45

(‘-d’, see [–debug], page 188). It takes a numeric argument specifying the
relative global verbosity level in the range between 0 and 100. Zero means
disabling verbose output, while 100 produces impractically verbose output,
suitable only for developers of mailfromd.

There is a more sophisticated form of the ‘--debug’ option, that allows
for setting debugging levels individually, for certain source modules. In this
form, the argument to the option consists of a comma-separated list of debug
specifications. Known debug specifications are:

module=level
Sets debugging level for module to level. Here, module is the
name of a mailfromd source file, without suffix, and level is the
debugging level for that module (an integer between 0 and 100)

module Sets debugging level for module to 100.

!module Unsets debugging level for module.

The global debugging level applies only to modules whose level has been
unset (by default all module levels are unset).

For example, the following invocation sets the global debugging level to
1, the level for functions from ‘prog.c’ to 10, for ‘engine.c’ to 100, and for
‘srvman’ to 0:

$ mailfromd --debug=1,prog=10,engine,srvman=0

Notice that setting ‘srvman=0’ has a different effect from unsetting it
(‘!srvman’). The former disables all debugging output for that module, and
the latter applies to it the global verbosity level.

You need to have sufficient knowledge about mailfromd internal structure
to use this form of the ‘--debug’ option.

To control the execution of the sender verification functions (see
Section 5.16 [Polling functions], page 129), you may use ‘--transcript’
(‘-X’) command line option which enables transcripts of SMTP sessions in
the logs. Here is an example of the output produced running mailfromd
--debug=1 --transcript:

k8DHxlCa001774: RECV: 220 spf-jail1.us4.outblaze.com ESMTP Postfix

k8DHxlCa001774: SEND: HELO mail.gnu.org.ua

k8DHxlCa001774: RECV: 250 spf-jail1.us4.outblaze.com

k8DHxlCa001774: SEND: MAIL FROM: <>

k8DHxlCa001774: RECV: 250 Ok

k8DHxlCa001774: SEND: RCPT TO: <t1Kmx17Q@malaysia.net>

k8DHxlCa001774: RECV: 550 <>: No thank you rejected: Account

Unavailable: Possible Forgery

k8DHxlCa001774: poll exited with status: not_found; sent

"RCPT TO: <t1Kmx17Q@malaysia.net>", got "550 <>: No thank you

rejected: Account Unavailable: Possible Forgery"

k8DHxlCa001774: SEND: QUIT

46 Mailfromd Manual

3.19 Runtime Errors
A runtime error is a special condition encountered during execution of the
filter program, that makes further execution of the program impossible.
There are two kinds of runtime errors: fatal errors, and uncaught excep-
tions. Whenever a runtime error occurs, mailfromd writes into the log file
the following message:

RUNTIME ERROR near file:line: text

where file:line indicates approximate source file location where the error
occurred and text gives the textual description of the error.

Fatal runtime errors

Fatal runtime errors are caused by a condition that is impossible to fix at
run time. For version 7.99.90 these are:

Not enough memory
There is not enough memory for the execution of the program.
Try to make more memory available for mailfromd or to reduce
its memory requirements by rewriting your filter script.

Out of stack space; increase #pragma stacksize
Heap overrun; increase #pragma stacksize
memory chunk too big to fit into heap

These errors are reported when there is not enough space left
on stack to perform the requested operation, and the attempt to
resize the stack has failed. Usually mailfromd expands the stack
when the need arises (see [automatic stack resizing], page 53).
This runtime error indicates that there were no more memory
available for stack expansion. Try to make more memory avail-
able for mailfromd or to reduce its memory requirements by
rewriting your filter script.

Stack underflow
Program attempted to pop a value off the stack but the stack
was already empty. This indicates an internal error in the MFL
compiler or mailfromd runtime engine. If you ever encounter
this error, please report it to bug-mailfromd@gnu.org.ua. In-
clude the log fragment (about 10-15 lines before and after this
log message) and your filter script. See Chapter 12 [Reporting
Bugs], page 217, for more information about bug reporting.

pc out of range
The program counter is out of allowed range. This is a
severe error, indicating an internal inconsistency in mailfromd
runtime engine. If you encounter it, please report it to
bug-mailfromd@gnu.org.ua. Include the log fragment (about
10-15 lines before and after this log message) and your filter

mailto:bug-mailfromd@gnu.org.ua
mailto:bug-mailfromd@gnu.org.ua

Chapter 3: Tutorial 47

script. See Chapter 12 [Reporting Bugs], page 217, for more
information about how to report a bug.

Programmatic runtime errors

These indicate a programmatic error in your filter script, which the MFL
compiler was unable to discover at compilation stage:

Invalid exception number: n
The throw statement used a not existent exception number n.
Fix the statement and restart mailfromd. See [throw], page 98,
for the information about throw statement and see Section 4.19
[Exceptions], page 93, for the list of available exception codes.

No previous regular expression
You have used a back-reference (see Section 4.10 [Back refer-
ences], page 65), where there is no previous regular expression
to refer to. Fix this line in your code and restart the program.

Invalid back-reference number
You have used a back-reference (see Section 4.10 [Back refer-
ences], page 65), with a number greater than the number of
available groups in the previous regular expression. For exam-
ple:

if $f matches "(.*)@gnu.org"

Wrong: there is only one group in the regexp above!
set x \2

...

Fix your code and restart the daemon.

Uncaught exceptions

Another kind of runtime errors are uncaught exceptions, i.e. exceptional
conditions for which no handler was installed (See Section 4.19 [Exceptions],
page 93, for information on exceptions and on how to handle them). These
errors mean that the programmer (i.e. you), made no provision for some
specific condition. For example, consider the following code:

prog envfrom

do

if $f mx matches "yahoo.com"

foo()

fi

done

It is syntactically correct, but it overlooks the fact that mx matches may
generate e_temp_failure exception, if the underlying DNS query has timed
out (see Section 4.14.6 [Special comparisons], page 80). If this happens,
mailfromd has no instructions on what to do next and reports an error.
This can easily be fixed using a catch statement, e.g.:

prog envfrom

48 Mailfromd Manual

do

Catch DNS errors
catch e_temp_failure or e_failure

do

tempfail 451 4.1.1 "MX verification failed"

done

if $f mx matches "yahoo.com"

foo()

fi

done

Another common case are undefined Sendmail macros. In this case the
e_macroundef exception is generated:

RUNTIME ERROR near foo.c:34: Macro not defined: {client_adr}

These can be caused either by misspelling the macro name (as in the example
message above) or by failing to export the required name in Sendmail milter
configuration (see [exporting macros], page 195). This error should be fixed
either in your source code or in ‘sendmail.cf’ file, but if you wish to provide
a special handling for it, you can use the following catch statement:

catch e_macroundef

do

...

done

Sometimes the location indicated with the runtime error message is not
enough to trace the origin of the error. For example, an error can be gener-
ated explicitly with throw statement (see [throw], page 98):

RUNTIME ERROR near match_cidr.mf:30: invalid CIDR (text)

If you look in module ‘match_cidr.mf’, you will see the following code
(line numbers added for reference):

23 func match_cidr(string ipstr, string cidr) returns number

24 do

25 number netmask

26

27 if cidr matches ’^(([0-9]{1,3}\.){3}[0-9]{1,3})/([0-9][0-9]?)’

28 return inet_aton(ipstr) & len_to_netmask(\3) = inet_aton(\1)

29 else

30 throw invcidr "invalid CIDR (%cidr)"

31 fi

32 return 0

33 done

Now, it is obvious that the value of cidr argument to match_cidr was
wrong, but how to find the caller that passed the wrong value to it? The
special command line option ‘--stack-trace’ is provided for this. This
option enables dumping stack traces when a fatal error occurs. The traces
contain information about function calls. Continuing our example, using the
‘--stack-trace’ option you will see the following diagnostics:

RUNTIME ERROR near match_cidr.mf:30: invalid CIDR (127%)

mailfromd: Stack trace:

Chapter 3: Tutorial 49

mailfromd: 0077: match_cidr.mf:30: match_cidr

mailfromd: 0096: test.mf:13: bar

mailfromd: 0110: mailfromd.mf:18: foo

mailfromd: Stack trace finishes

mailfromd: Execution of the configuration program was not finished

Each trace line describes one stack frame. The lines appear in the order
of most recently called to least recently called. Each frame consists of:
1. Value of the program counter at the time of its execution;
2. Source code location, if available;
3. Name of the function called.

Thus, the example above can be read as: “the function match_cidr was
called by the function bar in file ‘test.mf’ at line 13. This function was
called from the function bar, in file ‘test.mf’ at line 13. In its turn, bar
was called by the function foo, in file ‘mailfromd.mf’ at line 18”.

Examining caller functions will help you localize the source of the error
and fix it.

You can also request a stack trace any place in your code, by calling the
stack_trace function. This can be useful for debugging, or in your catch
statements.

3.20 Notes and Cautions
This section discusses some potential culprits in the MFL.

It is important to execute special caution when writing format strings
for sprintf (see Section 5.3 [String formatting], page 117) and strftime
(see [strftime], page 144) functions. They use ‘%’ as a character introducing
conversion specifiers, while the same character is used to expand a MFL
variable within a string. To prevent this misinterpretation, always enclose
format specification in single quotes (see [singe-vs-double], page 58). To
illustrate this, let’s consider the following example:

echo sprintf ("Mail from %s", $f)

If a variable s is not declared, this line will produce the ‘Variable s is
not defined’ error message, which will allow you to identify and fix the bug.
The situation is considerably worse if s is declared. In that case you will see
no warning message, as the statement is perfectly valid, but at the run-time
the variable s will be interpreted within the format string, and its value will
replace %s. To prevent this from happening, single quotes must be used:

echo sprintf (’Mail from %s’, $f)

This does not limit the functionality, since there is no need to fall back
to variable interpretation in format strings.

Yet another dangerous feature of the language is the way to refer to
variable and constant names within literal strings. To expand a variable or
a constant the same notation is used (See Section 4.9 [Variables], page 62,

50 Mailfromd Manual

and see Section 4.8 [Constants], page 59). Now, lets consider the following
code:

const x 2

string x "X"

prog envfrom

do

echo "X is %x"

done

Does %x in echo refers to the variable or to the constant? The correct
answer is ‘to the variable’. When executed this code will print ‘X is X’.

As of version 7.99.90, mailfromd will always print a diagnostic message
whenever it stumbles upon a variable having the same name as a previ-
ously defined constant or vice versa. The resolution of such name clashes is
described in detail in See [variable–constant shadowing], page 85.

Future versions of the program may provide a non-ambiguous way of
referring to variables and constants from literal strings.

Chapter 4: Mail Filtering Language 51

4 Mail Filtering Language

The mail filtering language, or MFL, is a special language designed for writing
filter scripts. It has a simple syntax, similar to that of Bourne shell. In
contrast to the most existing programming languages, MFL does not have
any special terminating or separating characters (like, e.g. newlines and
semicolons in shell)1. All syntactical entities are separated by any amount
of white-space characters (i.e. spaces, tabulations or newlines).

The following sections describe MFL syntax in detail.

4.1 Comments
Two types of comments are allowed: c-style, enclosed between ‘/*’ and ‘*/’,
and shell-style, starting with ‘#’ character and extending up to the end of
line:

/* This is

a comment. */

And this too.

There are, however, several special cases, where the characters following
‘#’ are not ignored.

If ‘#’ is followed by word ‘include’ (with optional whitespace between
them), this statement requires inclusion of the specified file, as in c. There
are two forms of the ‘#include’ statement:
1. #include <file>

2. #include "file"

The quotes around file in the second form quotes are optional.
Both forms are equivalent if file is an absolute file name. Otherwise, the

first form will look for file in the include search path. The second one will
look for it in the current working directory first, and, if not found there, in
the include search path.

The default include search path is:
1. ‘prefix/share/mailfromd/7.99.90/include’
2. ‘prefix/share/mailfromd/include’
3. ‘/usr/share/mailfromd/include’
4. ‘/usr/local/share/mailfromd/include’

Where prefix is the installation prefix.

New directories can be appended in front of it using ‘-I’ (‘--include’)
command line option, or include-path configuration statement (see
Section 7.2 [conf-base], page 174).

For example, invoking

1 There are two noteworthy exceptions: require and from ... import statements, which
must be terminated with a period. See Section 4.21.3 [import], page 103.

52 Mailfromd Manual

$ mailfromd -I/var/mailfromd -I/com/mailfromd

creates the following include search path
1. ‘/var/mailfromd’
2. ‘/com/mailfromd’
3. ‘prefix/share/mailfromd/7.99.90/include’
4. ‘prefix/share/mailfromd/include’
5. ‘/usr/share/mailfromd/include’
6. ‘/usr/local/share/mailfromd/include’

Along with #include, there is also a special form #include_once, that
has the same syntax:

#include_once <file>

#include_once "file"

This form works exactly as #include, except that, if the file has already
been included, it will not be included again. As the name suggests, it will
be included only once.

This form should be used to prevent re-inclusions of a code, which can
cause problems due to function redefinitions, variable reassignments etc.

A line in the form
#line number "identifier"

causes the MFL compiler to believe, for purposes of error diagnostics, that
the line number of the next source line is given by number and the current
input file is named by identifier. If the identifier is absent, the remembered
file name does not change.

4.2 Pragmatic comments
If ‘#’ is immediately followed by word ‘pragma’ (with optional whitespace
between them), such a construct introduces a pragmatic comment, i.e. an
instruction that controls some configuration setting.

The available pragma types are described in the following subsections.

4.2.1 Pragma stacksize

The stacksize pragma sets the initial size of the run-time stack and may
also define the policy of its growing, in case it becomes full. The default
stack size is 4096 words. You may need to increase this number if your
configuration program uses recursive functions or does an excessive amount
of string manipulations.

[pragma]stacksize size [incr [max]]
Sets stack size to size units. Optional incr and max define stack growth
policy (see below). The default units are words. The following example
sets the stack size to 7168 words:

Chapter 4: Mail Filtering Language 53

#pragma stacksize 7168

The size may end with a unit size suffix:

Suffix Meaning
k Kiloword, i.e. 1024 words
m Megawords, i.e. 1048576 words
g Gigawords,
t Terawords (ouch!)
Table 4.1: Unit Size Suffix
File suffixes are case-insensitive, so the following two pragmas are equiv-
alent and set the stack size to 7*1048576 = 7340032 words:

#pragma stacksize 7m

#pragma stacksize 7M

When the MFL engine notices that there is no more stack space available,
it attempts to expand the stack. If this attempt succeeds, the operation
continues. Otherwise, a runtime error is reported and the execution of
the filter stops.
The optional incr argument to #pragma stacksize defines growth policy
for the stack. Two growth policies are implemented: fixed increment
policy, which expands stack in a fixed number of expansion chunks, and
exponential growth policy, which duplicates the stack size until it is able
to accomodate the needed number of words. The fixed increment policy
is the default. The default chunk size is 4096 words.
If incr is the word ‘twice’, the duplicate policy is selected. Otherwise
incr must be a positive number optionally suffixed with a size suffix (see
above). This indicates the expansion chunk size for the fixed increment
policy.
The following example sets initial stack size to 10240, and expansion
chunk size to 2048 words:

#pragma stacksize 10M 2K

The pragma below enables exponential stack growth policy:
#pragma stacksize 10240 twice

In this case, when the run-time evaluator hits the stack size limit, it
expands the stack to twice the size it had before. So, in the example
above, the stack will be sequentially expanded to the following sizes:
20480, 40960, 81920, 163840, etc.
The optional max argument defines the maximum size of the stack. If
stack grows beyond this limit, the execution of the script will be aborted.

If you are concerned about the execution time of your script, you may
wish to avoid stack reallocations. To help you find out the optimal stack
size, each time the stack is expanded, mailfromd issues a warning in its log
file, which looks like this:

54 Mailfromd Manual

warning: stack segment expanded, new size=8192

You can use these messages to adjust your stack size configuration set-
tings.

4.2.2 Pragma regex

The ‘#pragma regex’, controls compilation of expressions. You can use any
number of such pragma directives in your ‘mailfromd.mf’. The scope of
‘#pragma regex’ extends to the next occurrence of this directive or to the
end of the script file, whichever occurs first.

[pragma]regex [push|pop] flags
The optional push|pop parameter is one of the words ‘push’ or ‘pop’
and is discussed in detail below. The flags parameter is a whitespace-
separated list of regex flags. Each regex-flag is a word specifying some
regex feature. It can be preceded by ‘+’ to enable this feature (this is
the default), by ‘-’ to disable it or by ‘=’ to reset regex flags to its value.
Valid regex-flags are:

‘extended’
Use POSIX Extended Regular Expression syntax when inter-
preting regex. If not set, POSIX Basic Regular Expression
syntax is used.

‘icase’ Do not differentiate case. Subsequent regex searches will be
case insensitive.

‘newline’ Match-any-character operators don’t match a newline.
A non-matching list (‘[^...]’) not containing a newline does
not match a newline.
Match-beginning-of-line operator (‘^’) matches the empty
string immediately after a newline.
Match-end-of-line operator (‘$’) matches the empty string
immediately before a newline.

For example, the following pragma enables POSIX extended, case insen-
sitive matching (a good thing to start your ‘mailfromd.mf’ with):

#pragma regex +extended +icase

Optional modifiers ‘push’ and ‘pop’ can be used to maintain a stack of
regex flags. The statement

#pragma regex push [flags]

saves current regex flags on stack and then optionally modifies them as
requested by flags.

The statement
#pragma regex pop [flags]

does the opposite: restores the current regex flags from the top of stack and
applies flags to it.

Chapter 4: Mail Filtering Language 55

This statement is useful in module and include files to avoid disturbing
user regex settings. E.g.:

#pragma regex push +extended +icase

.

.

.

#pragma regex pop

4.2.3 Pragma dbprop

[pragma]dbprop pattern prop . . .
This pragma configures properties for a DBM database. See Section 5.20
[Database functions], page 137, for its detailed description.

4.2.4 Pragma greylist

[pragma]greylist type
Selects the greylisting implementation to use. Allowed values for type
are:

traditional
gray Use the traditional greylisting implementation. This is the

default.

con-tassios
ct Use Con Tassios greylisting implementation.

See [greylisting types], page 31, for a detailed description of these greylist-
ing implementations.

Notice, that this pragma can be used only once. A second use of this
pragma would constitute an error, because you cannot use both greylisting
implementations in the same program.

4.2.5 Pragma miltermacros

[pragma]miltermacros handler macro . . .
Declare that the Milter stage handler uses MTA macro listed as the rest of
arguments. The handler must be a valid handler name (see Section 4.11
[Handlers], page 66).

The mailfromd parser collects the names of the macros referred to by
a ‘$name ’ construct within a handler (see Section 4.7 [Sendmail Macros],
page 59) and declares them automatically for corresponding handlers. It is,
however, unable to track macros used in functions called from handler as
well as those referred to via getmacro and macro_defined functions. Such
macros should be declared using ‘#pragma miltermacros’.

During initial negotiation with the MTA, mailfromd will ask it to ex-
port the macro names declared automatically or by using the ‘#pragma

56 Mailfromd Manual

miltermacros’. The MTA is free to honor or to ignore this request. In
particular, Sendmail versions prior to 8.14.0 and Postfix versions prior to
2.5 do not support this feature. If you use one of these, you will need to
export the needed macros explicitly in the MTA configuration. For more
details, refer to the section in Chapter 9 [MTA Configuration], page 195
corresponding to your MTA type.

4.3 Data Types
The mailfromd filter script language operates on entities of two types: nu-
meric and string.

The numeric type is represented internally as a signed long integer. De-
pending on the machine architecture, its size can vary. For example, on
machines with Intel-based CPUs it is 32 bits long.

A string is a string of characters of arbitrary length. Strings can contain
any characters except ASCII nul.

There is also a generic pointer, which is designed to facilitate certain
operations. It appears only in body handler. See [body handler], page 69,
for more information about it.

4.4 Numbers
A decimal number is any sequence of decimal digits, not beginning with ‘0’.

An octal number is ‘0’ followed by any number of octal digits (‘0’ through
‘7’), for example: 0340.

A hex number is ‘0x’ or ‘0X’ followed by any number of hex digits (‘0’
through ‘9’ and ‘a’ through ‘f’ or ‘A’ through ‘F’), for example: 0x3ef1.

4.5 Literals
A literal is any sequence of characters enclosed in single or double quotes.

After tempfail and reject actions two special kinds of literals are recog-
nized: three-digit numeric values represent RFC 2821 reply codes, and literals
consisting of tree digit groups separated by dots represent an extended reply
code as per RFC 1893/2034. For example:

510 # A reply code
5.7.1 # An extended reply code

Double-quoted strings

String literals enclosed in double quotation marks (double-quoted strings)
are subject to backslash interpretation, macro expansion, variable interpre-
tation and back reference interpretation.

Backslash interpretation is performed at compilation time. It consists
in replacing the following escape sequences with the corresponding single
characters:

Chapter 4: Mail Filtering Language 57

Sequence Replaced with
\a Audible bell character (ASCII 7)
\b Backspace character (ASCII 8)
\f Form-feed character (ASCII 12)
\n Newline character (ASCII 10)
\r Carriage return character (ASCII

13)
\t Horizontal tabulation character

(ASCII 9)
\v Vertical tabulation character

(ASCII 11)
Table 4.2: Backslash escapes
In addition, the sequence ‘\newline ’ has the same effect as ‘\n’, for

example:
"a string with\

embedded newline"

"a string with\n embedded newline"

Any escape sequence of the form ‘\xhh ’, where h denotes any hex digit
is replaced with the character whose ASCII value is hh. For example:

"\x61nother" ⇒ "another"

Similarly, an escape sequence of the form ‘\0ooo ’, where o is an octal
digit, is replaced with the character whose ASCII value is ooo.

Macro expansion and variable interpretation occur at run-time. Dur-
ing these phases all Sendmail macros (see Section 4.7 [Sendmail Macros],
page 59), mailfromd variables (see Section 4.9 [Variables], page 62), and
constants (see Section 4.8 [Constants], page 59) referenced in the string are
replaced by their actual values. For example, if the Sendmail macro f has
the value ‘postmaster@gnu.org.ua’ and the variable last_ip has the value
‘127.0.0.1’, then the string2

2 Implementation note: actually, the references are not interpreted within the string,
instead, each such string is split at compilation time into a series of concatenated
atoms. Thus, our sample string will actually be compiled as:

$f . " last connected from " . last_ip . ";"

See Section 4.14.3 [Concatenation], page 79, for a description of this construct. You
can easily see how various strings are interpreted by using ‘--dump-tree’ option (see
[–dump-tree], page 188). In this case, it will produce:

CONCAT:

CONCAT:

CONCAT:

SYMBOL: f

CONSTANT: " last connected from "

VARIABLE last_ip (13)

CONSTANT: ";"

58 Mailfromd Manual

"$f last connected from %last_ip;"

will be expanded to
"postmaster@gnu.org.ua last connected from 127.0.0.1;"

A back reference is a sequence ‘\d ’, where d is a decimal number. It refers
to the dth parenthesized subexpression in the last matches statement3. Any
back reference occurring within a double-quoted string is replaced by the
value of the corresponding subexpression. See Section 4.14.6 [Special com-
parisons], page 80, for a detailed description of this process. Back reference
interpretation is performed at run time.

Single-quoted strings

Any characters enclosed in single quotation marks are read unmodified.
The following examples contain pairs of equivalent strings:
"a string"

’a string’

"\\(.*\\):"

’\(.*\):’

Notice the last example. Single quotes are particularly useful in writing
regular expressions (see Section 4.14.6 [Special comparisons], page 80).

4.6 Here Documents
Here-document is a special form of a string literal is, allowing to specify
multiline strings without having to use backslash escapes. The format of
here-documents is:

<<[flags]word

...

word

The <<word construct instructs the parser to read all the following lines
up to the line containing only word, with possible trailing blanks. The lines
thus read are concatenated together into a single string. For example:

set str <<EOT

A multiline

string

EOT

The body of a here-document is interpreted the same way as double-
quoted strings (see [Double-quoted strings], page 56). For example, if Send-
mail macro f has the value jsmith@some.com and the variable count is set
to 10, then the following string:

set s <<EOT

<$f> has tried to send %count mails.

Please see docs for more info.

EOT

3 The subexpressions are numbered by the positions of their opening parentheses, left
to right.

Chapter 4: Mail Filtering Language 59

will be expanded to:
<jsmith@some.com> has tried to send 10 mails.

Please see docs for more info.

If the word is quoted, either by enclosing it in single quote characters or
by prepending it with a backslash, all interpretations and expansions within
the document body are suppressed. For example:

set s <<’EOT’

The following line is read verbatim:

<$f> has tried to send %count mails.

Please see docs for more info.

EOT

Optional flags in the here-document construct control the way leading
white space is handled. If flags is - (a dash), then all leading tab characters
are stripped from input lines and the line containing word. Furthermore, if
- is followed by a single space, all leading whitespace is stripped from them.
This allows here-documents within configuration scripts to be indented in a
natural fashion. Examples:

<<- TEXT

<$f> has tried to send %count mails.

Please see docs for more info.

TEXT

Here-documents are particularly useful with reject actions (see [reject],
page 87.

4.7 Sendmail Macros
Sendmail macros are referenced exactly the same way they are in
‘sendmail.cf’ configuration file, i.e. ‘$name ’, where name represents the
macro name. Notice, that the notation is the same for both single-character
and multi-character macro names. For consistency with the Sendmail
configuration the ‘${name}’ notation is also accepted.

Another way to reference Sendmail macros is by using function getmacro
(see Section 5.1 [Macro access], page 113).

Sendmail macros evaluate to string values.
Notice, that to reference a macro, you must properly export it in your

MTA configuration. Attempt to reference a not exported macro will result in
raising a e_macroundef exception at the run time (see [uncaught exceptions],
page 47).

4.8 Constants
A constant is a symbolic name for an MFL value. Constants are defined
using const statement:

[qualifier] const name expr

where name is an identifier, and expr is any valid MFL expression evaluating
immediately to a constant literal or numeric value. Optional qualifier defines

60 Mailfromd Manual

the scope of visibility for that constant (see Section 4.21.2 [scope of visibility],
page 103): either public or static.

After defining, any appearance of name in the program text is replaced
by its value. For example:

const x 10/5

const text "X is "

defines the numeric constant ‘x’ with the value ‘5’, and the literal constant
‘text’ with the value ‘X is ’.

Constants can also be used in literals. To expand a constant within a
literal string, prepend a percent sign to its name, e.g.:

echo "New %text %x" ⇒ "New X is 2"

This way of expanding constants creates an ambiguity if there happen
to be a variable of the same name as the constant. See [variable–constant
clashes], page 49, for more information of this case and ways to handle it.

4.8.1 Built-in constants

Several constants are built into the MFL compiler. To discern them from
user-defined ones, their names start and end with two underscores (‘__’).

The following constants are defined in mailfromd version 7.99.90:

[Built-in constant]string __file__
Expands to the name of the current source file.

[Built-in constant]string __function__
Expands to the name of the current lexical context, i.e. the function or
handler name.

[Built-in constant]string __git__
This built-in constant is defined for alpha versions only. Its value is
the Git tag of the recent commit corresponding to that version of the
package. If the release contains some uncommitted changes, the value of
the ‘__git__’ constant ends with the suffix ‘-dirty’.

[Built-in constant]number __line__
Expands to the current line number in the input source file.

[Built-in constant]number __major__
Expands to the major version number.
The following example uses __major__ constant to determine if some
version-dependent feature can be used:

if __major__ > 2

Use some version-specific feature
fi

[Built-in constant]number __minor__
Expands to the minor version number.

Chapter 4: Mail Filtering Language 61

[Built-in constant]string __module__
Expands to the name of the current module (see Section 4.21 [Modules],
page 102).

[Built-in constant]string __package__
Expands to the package name (‘mailfromd’)

[Built-in constant]number __patch__
For alpha versions and maintenance releases expands to the version patch
level. For stable versions, expands to ‘0’.

[Built-in constant]string __defpreproc__
Expands to the default external preprocessor command line, if the pre-
processor is used, or to an empty string if it is not, e.g.:

__defpreproc__ ⇒ "/usr/bin/m4 -s"

See Section 4.22 [Preprocessor], page 104, for information on preprocessor
and its features.

[Built-in constant]string __preproc__
Expands to the current external preprocessor command line, if the pre-
processor is used, or to an empty string if it is not. Notice, that
it equals __defpreproc__, unless the preprocessor was redefined using
‘--preprocessor’ command line option (see Section 4.22 [Preprocessor],
page 104).

[Built-in constant]string __version__
Expands to the textual representation of the program version (e.g.
‘3.0.90’)

[Built-in constant]string __defstatedir__
Expands to the default state directory (see [statedir], page 11).

[Built-in constant]string __statedir__
Expands to the current value of the program state directory (see [statedir],
page 11). Notice, that it is the same as __defstatedir__ unless the state
directory was redefined at run time.

Built-in constants can be used as variables, this allows to expand them
within strings or here-documents. The following example illustrates the
common practice used for debugging configuration scripts:

func foo(number x)

do

echo "%__file__:%__line__: foo called with arg %x"

...

done

If the function foo were called in line 28 of the script file
/etc/mailfromd.mf, like this: foo(10), you will see the following string in
your logs:

/etc/mailfromd.mf:28: foo called with arg 10

62 Mailfromd Manual

4.9 Variables
Variables represent regions of memory used to hold variable data. These
memory regions are identified by variable names. A variable name must
begin with a letter or underscore and must consist of letters, digits and
underscores.

Each variable is associated with its scope of visibility, which defines the
part of source code where it can be used (see Section 4.21.2 [scope of visi-
bility], page 103). Depending on the scope, we discern three main classes of
variables: public, static and automatic (or local).

Public variables have indefinite lexical scope, so they may be referred
to anywhere in the program. Static are variables visible only within their
module (see Section 4.21 [Modules], page 102). Automatic or local variables
are visible only within the given function or handler.

Public and static variables are sometimes collectively called global.
These variable classes occupy separate namespaces, so that an automatic

variable can have the same name as an existing public or static one. In this
case this variable is said to shadow its global counterpart. All references to
such a name will refer to the automatic variable until the end of its scope is
reached, where the global one becomes visible again.

Likewise, a static variable may have the same name as a static variable
defined in another module. However, it may not have the same name as a
public variable.

A variable is declared using the following syntax:
[qualifiers] type name

where name is the variable name, type is the type of the data it is supposed
to hold. It is ‘string’ for string variables and ‘number’ for numeric ones.

For example, this is a declaration of a string variable ‘var’:
string var

Optional qualifiers are allowed only in global declarations, i.e. in the vari-
able declarations that appear outside of functions. They specify the scope
of the variable. The public qualifier declares the variable as public and the
static qualifier declares it as static. The default scope is ‘public’, unless
specified otherwise in the module declaration (see Section 4.21.1 [module
structure], page 102).

Additionally, qualifiers may contain the word precious, which instructs
the compiler to mark this variable as precious. (see Section 3.10 [precious
variables], page 26). The value of the precious variable is not affected by the
SMTP ‘RSET’ command. If both scope qualifier and precious are used, they
may appear in any order, e.g.:

static precious string rcpt_list

or
precious static string rcpt_list

Chapter 4: Mail Filtering Language 63

The declaration can be followed by any valid MFL expression, which
supplies the initial value for the variable, for example:

string var "test"

If a variable declaration occurs within a function (see Section 4.13 [Func-
tions], page 73) or handler (see Section 4.11 [Handlers], page 66), it declares
an automatic variable, local to this function or handler. Otherwise, it de-
clares a global variable.

A variable is assigned a value using set statement:
set name expr

where name is the variable name and expr is a mailfromd expression (see
Section 4.14 [Expressions], page 79). The effect of this statement is that the
expr is evaluated and the value it yields is assigned to the variable name.

If the set statement is located outside a function or handler definition,
the expr must be a constant expression, i.e. the compiler should be able to
evaluate it immediately.

It is not an error to assign a value to a variable that is not declared. In this
case the assignment first declares a global or automatic variable having the
type of expr and then assigns a value to it. Automatic variable is created
if the assignment occurs within a function or handler, global variable is
declared if it occurs at topmost lexical level. This is called implicit variable
declaration.

Variables are referenced using the notation ‘%name ’. The variable being
referenced must have been declared earlier (either explicitly or implicitly).

4.9.1 Predefined Variables

Several variables are predefined. In mailfromd version 7.99.90 these are:

[Variable]Predefined Variable number cache used
This variable is set by stdpoll and strictpoll built-ins (and, conse-
quently, by the on poll statement). Its value is ‘1’ if the function used
the cached data instead of directly polling the host, and ‘0’ if the polling
took place. See Section 5.16 [Polling functions], page 129.
You can use this variable to make your reject message more informative
for the remote party. The common paradigm is to define a function,
returning empty string if the result was obtained from polling, or some
notice if cached data were used, and to use the function in the reject
text, for example:

func cachestr() returns string

do

if cache_used

return "[CACHED] "

else

return ""

fi

done

64 Mailfromd Manual

Then, in prog envfrom one can use:
on poll $f

do

when not_found or failure:

reject 550 5.1.0 cachestr() . "Sender validity not confirmed"

done

[Predefined Variable]string clamav_virus_name
Name of virus identified by ClamAV. Set by clamav function (see
[ClamAV], page 150).

[Predefined Variable]number greylist_seconds_left
Number of seconds left to the end of greylisting period. Set by greylist
and is_greylisted functions (see Section 5.28 [Special test functions],
page 152).

[Predefined Variable]string ehlo_domain
Name of the domain used by polling functions in SMTP EHLO or HELO
command. Default value is the fully qualified domain name of the host
where mailfromd is run. See Section 4.20 [Polling], page 98.

[Variable]Predefined Variable string last poll greeting
Polling functions (see Section 5.16 [Polling functions], page 129) set this
variable before returning. It contains the initial SMTP reply from the
last polled host.

[Variable]Predefined Variable string last poll helo
Polling functions (see Section 5.16 [Polling functions], page 129) set this
variable before returning. It contains the reply to the HELO (EHLO) com-
mand, received from the last polled host.

[Variable]Predefined Variable string last poll host
Polling functions (see Section 5.16 [Polling functions], page 129) set this
variable before returning. It contains the host name or IP address of the
last polled host.

[Variable]Predefined Variable string last poll recv
Polling functions (see Section 5.16 [Polling functions], page 129) set this
variable before returning. It contains the last SMTP reply received from
the remote host. In case of multi-line replies, only the first line is stored.
If nothing was received the variable contains the string ‘nothing’.

[Variable]Predefined Variable string last poll send
Polling functions (see Section 5.16 [Polling functions], page 129) set this
variable before returning. It contains the last SMTP command sent to
the polled host. If nothing was sent, last_poll_send contains the string
‘nothing’.

Chapter 4: Mail Filtering Language 65

[Predefined Variable]string mailfrom_address
Email address used by polling functions in SMTP MAIL FROM command
(see Section 4.20 [Polling], page 98.). Default is ‘<>’. Here is an example
of how to change it:

set mailfrom_address "postmaster@my.domain.com"

You can set this value to a comma-separated list of email addresses, in
which case the probing will try each address until either the remote party
accepts it or the list of addresses is exhausted, whichever happens first.
It is not necessary to enclose emails in angle brackets, as they will be
added automatically where appropriate. The only exception is null return
address, when used in a list of addresses. In this case, it should always
be written as ‘<>’. For example:

set mailfrom_address "postmaster@my.domain.com, <>"

[Predefined Variable]number sa_code
Spam score for the message, set by sa function (see [sa], page 148).

[Predefined Variable]number rcpt_count
The variable rcpt_count keeps the number of recipients given so far by
RCPT TO commands. It is defined only in ‘envrcpt’ handlers.

[Predefined Variable]number sa_threshold
Spam threshold, set by sa function (see [sa], page 148).

[Predefined Variable]string sa_keywords
Spam keywords for the message, set by sa function (see [sa], page 148).

[Predefined Variable]number safedb_verbose
This variable controls the verbosity of the exception-safe database func-
tions. See [safedb verbose], page 139.

4.10 Back references
A back reference is a sequence ‘\d ’, where d is a decimal number. It refers
to the dth parenthesized subexpression in the last matches statement4. Any
back reference occurring within a double-quoted string is replaced with the
value of the corresponding subexpression. For example:

if $f matches ’.*@\(.*\)\.gnu\.org\.ua’

set host \1

fi

If the value of f macro is ‘smith@unza.gnu.org.ua’, the above code will
assign the string ‘unza’ to the variable host.

Notice, that each occurrence of matches will reset the table of back ref-
erences, so try to use them as early as possible. The following example

4 The subexpressions are numbered by the positions of their opening parentheses, left
to right.

66 Mailfromd Manual

illustrates a common error, when the back reference is used after the refer-
ence table has been reused by another matching:

Wrong!
if $f matches ’.*@\(.*\)\.gnu\.org\.ua’

if $f matches ’some.*’

set host \1

fi

fi

This will produce the following run time error:
mailfromd: RUNTIME ERROR near file.mf:3: Invalid back-reference number

because the inner match (‘some.*’) does not have any parenthesized subex-
pressions.

See Section 4.14.6 [Special comparisons], page 80, for more information
about matches operator.

4.11 Handlers
Milter stage handler (or handler, for short) is a subroutine responsible for
processing a particular milter state. There are eight handlers available.
Their order of invocation and arguments are described in Figure 3.1.

A handler is defined using the following construct:
prog handler-name

do

handler-body

done

where handler-name is the name of the handler (see [handler names],
page 15), handler-body is the list of filter statements composing the han-
dler body. Some handlers take arguments, which can be accessed within the
handler-body using the notation $n, where n is the ordinal number of the
argument. Here we describe the available handlers and their arguments:

[Handler]connect (string $1, number $2, number $3, string $4)

Invocation:
This handler is called once at the beginning of each SMTP
connection.

Arguments:
1. string; The host name of the message sender, as re-

ported by MTA. Usually it is determined by a reverse
lookup on the host address. If the reverse lookup fails,
‘$1’ will contain the message sender’s IP address enclosed
in square brackets (e.g. ‘[127.0.0.1]’).

2. number; Socket address family. You need to require the
‘status’ module to get symbolic definitions for the ad-
dress families. Supported families are:

Chapter 4: Mail Filtering Language 67

Constant Value Meaning
FAMILY STDIO 0 Standard input/output (the

MTA is run with ‘-bs’ option)
FAMILY UNIX 1 UNIX socket
FAMILY INET 2 IPv4 protocol

3. number; Port number if ‘$2’ is ‘FAMILY_INET’.
4. string; Remote IP address if ‘$2’ is ‘FAMILY_INET’ or

full file name of the socket if ‘$2’ is ‘FAMILY_UNIX’. If
‘$2’ is ‘FAMILY_STDIO’, ‘$4’ is an empty string.

The actions (see Section 4.16.1 [Actions], page 86) appearing in this han-
dler are handled by Sendmail in a special way. First of all, any textual
message is ignored. Secondly, the only action that immediately closes the
connection is tempfail 421. Any other reply codes result in Sendmail
switching to nullserver mode, where it accepts any commands, but an-
swers with a failure to any of them, except for the following: QUIT, HELO,
NOOP, which are processed as usual.
The following table summarizes the Sendmail behavior depending on the
action used:

tempfail 421 excode message
The caller is returned the following error message:

421 4.7.0 hostname closing connection

Both excode and message are ignored.

tempfail 4xx excode message
(where xx represents any digits, except ‘21’) Both excode and
message are ignored. Sendmail switches to nullserver mode.
Any subsequent command, excepting the ones listed above,
is answered with

454 4.3.0 Please try again later

reject 5xx excode message
(where xx represents any digits). All arguments are ignored.
Sendmail switches to nullserver mode. Any subsequent com-
mand, excepting ones listed above, is answered with

550 5.0.0 Command rejected

Regarding reply codes, this behavior complies with RFC 2821 (section
3.9), which states:

An SMTP server must not intentionally close the connection ex-
cept:
[. . .]
- After detecting the need to shut down the SMTP service and
returning a 421 response code. This response code can be issued
after the server receives any command or, if necessary, asyn-
chronously from command receipt (on the assumption that the
client will receive it after the next command is issued).

68 Mailfromd Manual

However, the RFC says nothing about textual messages and extended
error codes, therefore Sendmail’s ignoring of these is, in my opinion, ab-
surd. My practice shows that it is often reasonable, and even neces-
sary, to return a meaningful textual message if the initial connection
is declined. The opinion of mailfromd users seems to support this
view. Bearing this in mind, mailfromd is shipped with a patch for
Sendmail, which makes it honor both extended return code and tex-
tual message given with the action. Two versions are provided: ‘etc/
sendmail-8.13.7.connect.diff’, for Sendmail versions 8.13.x, and
‘etc/sendmail-8.14.3.connect.diff’, for Sendmail versions 8.14.3.

[Handler]helo (string $1)

Invocation:
This handler is called whenever the SMTP client sends HELO or
EHLO command. Depending on the actual MTA configuration,
it can be called several times or even not at all.

Arguments:
1. string; Argument to HELO (EHLO) commands.

Notes: According to RFC 28221, $1 must be domain name of the
sending host, or, in case this is not available, its IP address
enclosed in square brackets. Be careful when taking decisions
based on this value, because in practice many hosts send arbi-
trary strings. We recommend to use heloarg_test function
(see [heloarg test], page 152) if you wish to analyze this value.

[Handler]envfrom (string $1, string $2)

Invocation:
Called when the SMTP client sends MAIL FROM command, i.e.
once at the beginning of each message.

Arguments:
1. string; First argument to the MAIL FROM command, i.e.

the email address of the sender.
2. string; Rest of arguments to MAIL FROM separated by

space character. This argument can be ‘""’.

Notes

1. $1 is not the same as $f Sendmail variable, because the
latter contains the sender email after address rewriting
and normalization, while $1 contains exactly the value
given by sending party.

2. When the array type is implemented, $2 will contain an
array of arguments.

[Handler]envrcpt (string $1, string $2)

Chapter 4: Mail Filtering Language 69

Invocation:
Called once for each RCPT TO command, i.e. once for each
recipient, immediately after envfrom.

Arguments:
1. string; First argument to the RCPT TO command, i.e.

the email address of the recipient.
2. string; Rest of arguments to RCPT TO separated by

space character. This argument can be ‘""’.

Notes: When the array type is implemented, $2 will contain an array
of arguments.

[Handler]data ()

Invocation:
Called after the MTA receives SMTP ‘DATA’ command. Notice
that this handler is not supported by Sendmail versions prior
to 8.14.0 and Postfix versions prior to 2.5.

Arguments:
None

[Handler]header (string $1, string $2)

Invocation:
Called once for each header line received after SMTP DATA
command.

Arguments:
1. string; Header field name.
2. string; Header field value. The content of the header

may include folded white space, i.e., multiple lines with
following white space where lines are separated by lf
(ASCII 10). The trailing line terminator (cr/lf) is re-
moved.

[Handler]eoh

Invocation:
This handler is called once per message, after all headers have
been sent and processed.

Arguments:
None.

[Handler]body (pointer $1, number $2)

Invocation:
This header is called zero or more times, for each piece of the
message body obtained from the remote host.

70 Mailfromd Manual

Arguments:
1. pointer; Piece of body text. See ‘Notes’ below.
2. number; Length of data pointed to by $1, in bytes.

Notes: The first argument points to the body chunk. Its size may
be quite considerable and passing it as a string may be costly
both in terms of memory and execution time. For this reason
it is not passed as a string, but rather as a generic pointer,
i.e. an object having the same size as number, which can be
used to retrieve the actual contents of the body chunk if the
need arises.
A special function body_string is provided to convert this
object to a regular MFL string (see Section 5.10 [Mail body
functions], page 124). Using it you can collect the entire
body text into a single global variable, as illustrated by the
following example:

string text

prog body

do

set text text . body_string($1,$2)

done

The text collected this way can then be used in the eom handler (see
below) to parse and analyze it.

If you wish to analyze both the headers and mail body, the following code
fragment will do that for you:

string text

Collect all headers.
prog header

do

set text text . $1 . ": " . $2 . "\n"

done

Append terminating newline to the headers.
prog eoh

do

set text "%text\n"

done

Collect message body.
prog body

do

set text text . body_string($1, $2)

done

[Handler]eom

Chapter 4: Mail Filtering Language 71

Invocation:
This handler is called once per message, when the terminating
dot after DATA command has been received.

Arguments:
None

Notes: This handler is useful for calling message capturing functions,
such as sa or clamav. For more information about these,
refer to Section 5.25 [Interfaces to Third-Party Programs],
page 147.

For your reference, the following table shows each handler with its argu-
ments:

Handler $1 $2 $3 $4
connect Hostname Socket

Family
Port Remote

address
helo HELO

domain
N/A N/A N/A

envfrom Sender email
address

Rest of
arguments

N/A N/A

envrcpt Recipient
email
address

Rest of
arguments

N/A N/A

header Header
name

Header
value

N/A N/A

eoh N/A N/A N/A N/A
body Body

segment
(pointer)

Length of
the segment
(numeric)

N/A N/A

eom N/A N/A N/A N/A
Table 4.3: State Handler Arguments

4.12 The ‘begin’ and ‘end’ special handlers
Apart from the milter handlers described in the previous section, MFL defines
two special handlers, called ‘begin’ and ‘end’, which supply startup and
cleanup instructions for the filter program.

The ‘begin’ special handler is executed once for each SMTP session, after
the connection has been established but before the first milter handler has
been called. Similarly, the ‘end’ handler is executed exactly once, after the
connection has been closed. Neither of them takes any arguments.

The two handlers are defined using the following syntax:
Begin handler
begin

72 Mailfromd Manual

do

...

done

End handler
end

do

...

done

where ‘...’ represent any MFL statements.
An MFL program may have multiple ‘begin’ and ‘end’ definitions. They

can be intermixed with other definitions. The compiler combines all ‘begin’
statements into a single one, in the order they appear in the sources. Sim-
ilarly, all ‘end’ blocks are concatenated together. The resulting ‘begin’ is
called once, at the beginning of each SMTP session, and ‘end’ is called once
at its termination.

Multiple ‘begin’ and ‘end’ handlers are a useful feature for writing mod-
ules (see Section 4.21 [Modules], page 102), because each module can thus
have its own initialization and cleanup blocks. Notice, however, that in this
case the order in which subsequent ‘begin’ and ‘end’ blocks are executed
is not defined. It is only warranted that all ‘begin’ blocks are executed at
startup and all ‘end’ blocks are executed at shutdown. It is also warranted
that all ‘begin’ and ‘end’ blocks defined within a compilation unit (i.e. a
single abstract source file, with all #include and #include_once statements
expanded in place) are executed in order of their appearance in the unit.

Due to their special nature, the startup and cleanup blocks impose certain
restrictions on the statements that can be used within them:
1. return cannot be used in ‘begin’ and ‘end’ handlers.
2. The following Sendmail actions cannot be used in them: accept,

continue, discard, reject, tempfail. They can, however, be used
in catch statements, declared in ‘begin’ blocks (see example below).

3. Header manipulation actions (see [header manipulation], page 88) can-
not be used in ‘end’ handler.

The ‘begin’ handlers are the usual place to put global initialization code
to. For example, if you do not want to use DNS caching, you can do it this
way:

begin

do

db_set_active("dns", 0)

done

Additionally, you can set up global exception handling routines there.
For example, the following ‘begin’ statement disables DNS cache and, for all
exceptions not handled otherwise, installs a handler that logs the exception
along with the stack trace and continues processing the message:

Chapter 4: Mail Filtering Language 73

begin

do

db_set_active("dns", 0)

catch *

do

echo "Caught exception $1: $2"

stack_trace()

continue

done

done

4.13 Functions
A function is a named mailfromd subroutine, which takes zero or more pa-
rameters and optionally returns a certain value. Depending on the return
value, functions can be subdivided into string functions and number func-
tions. A function may have mandatory and optional parameters. When
invoked, the function must be supplied exactly as many actual arguments
as the number of its mandatory parameters.

Functions are invoked using the following syntax:
name (args)

where name is the function name and args is a comma-separated list of
expressions. For example, the following are valid function calls:

foo(10)

interval("1 hour")

greylist("/var/my.db", 180)

The number of parameters a function takes and their data types compose
the function signature. When actual arguments are passed to the function,
they are converted to types of the corresponding formal parameters.

There are two major groups of functions: built-in functions, that are
implemented in the mailfromd binary, and user-defined functions, that are
written in MFL. The invocation syntax is the same for both groups.

Mailfromd is shipped with a rich set of library functions. These are
described in Chapter 5 [Library], page 113. In addition to these you can
define your own functions.

Function definitions can appear anywhere between the handler decla-
rations in a filter program, the only requirement being that the function
definition occur before the place where the function is invoked.

The syntax of a function definition is:
[qualifier] func name (param-decl) returns data-type

do

function-body

done

where name is the name of the function to define, param-decl is a comma-
separated list of parameter declarations. The syntax of the latter is the same
as that of variable declarations (see Section 4.9 [Variables], page 62), i.e.:

74 Mailfromd Manual

type name

declares the parameter name having the type type. The type is string or
number.

Optional qualifier declares the scope of visibility for that function (see
Section 4.21.2 [scope of visibility], page 103). It is similar to that of variables,
except that functions cannot be local (i.e. you cannot declare function within
another function).

The public qualifier declares a function that may be referred to from any
module, whereas the static qualifier declares a function that may be called
only from the current module (see Section 4.21 [Modules], page 102). The
default scope is ‘public’, unless specified otherwise in the module declaration
(see Section 4.21.1 [module structure], page 102).

For example, the following declares a function ‘sum’, that takes two nu-
meric arguments and returns a numeric value:

func sum(number x, number y) returns number

Similarly, the following is a declaration of a static function:
static func sum(number x, number y) returns number

Parameters are referenced in the function-body by their name, the same
way as other variables. Similarly, the value of a parameter can be altered
using set statement.

A function can be declared to take a certain number of optional ar-
guments. In a function declaration, optional abstract arguments must be
placed after the mandatory ones, and must be separated from them with
a semicolon. The following example is a definition of function foo, which
takes two mandatory and two optional arguments:

func foo(string msg, string email; number x, string pfx)

Mandatory parameters are: msg and email. Optional parameters are: x and
pfx. The actual number of arguments supplied to the function is returned
by a special construct $#. In addition, the special construct @arg evaluates
to the ordinal number of variable arg in the list of formal parameters (the
first argument has number ‘0’). These two constructs can be used to verify
whether an argument is supplied to the function.

When an actual argument for parameter n is supplied, the number of
actual arguments ($#) is greater than the ordinal number of that parameter
in the declaration list (@n). Thus, the following construct can be used to
check if an optional argument arg is actually supplied:

func foo(string msg, string email; number x, string arg)

do

if $# > @arg

...

fi

The default mailfromd installation provides a special macro for this pur-
pose: see [defined], page 105. Using it, the example above could be rewritten
as:

Chapter 4: Mail Filtering Language 75

func foo(string msg, string email; number x, string arg)

do

if defined(arg)

...

fi

Within a function body, optional arguments are referenced exactly the
same way as the mandatory ones. Attempt to dereference an optional ar-
gument for which no actual parameter was supplied, results in an undefined
value, so be sure to check whether a parameter is passed before dereferencing
it.

A function can also take variable number of arguments (such functions
are called variadic). This is indicated by the use of ellipsis as the last ab-
stract parameter. The statement below defines a function foo taking one
mandatory, one optional and any number of additional arguments:

func foo (string a ; string b, ...)

All actual arguments passed in a list of variable arguments are coerced
to string data type. To refer to these arguments in the function body, the
following construct is used:

$(expr)

where expr is any valid MFL expression, evaluating to a number n. This
construct refers to the value of nth actual parameter from the variable argu-
ment list. Parameters are numbered from ‘1’, so the first variable parameter
is $(1), and the last one is $($# - Nm - No), where Nm and No are numbers
of mandatory and optional parameters to the function.

For example, the function below prints all its arguments:
func pargs (string text, ...)

do

echo "text=%text"

loop for number i 1,

while i <= $# - 1,

set i i + 1

do

echo "arg %i=" . $(i)

done

done

Note the loop limits. The last variable argument has number $# - 1, because
the function takes one mandatory argument.

The function-body is any list of valid mailfromd statements. In addition
to the statements discussed below (see Section 4.16 [Statements], page 86) it
can also contain the return statement, which is used to return a value from
the function. The syntax of the return statement is

return value

As an example of this, consider the following code snippet that defines
the function ‘sum’ to return a sum of its two arguments:

76 Mailfromd Manual

func sum(number x, number y) returns number

do

return x + y

done

The returns part in the function declaration is optional. A declaration
lacking it defines a procedure, or void function, i.e. a function that is not
supposed to return any value. Such functions cannot be used in expressions,
instead they are used as statements (see Section 4.16 [Statements], page 86).
The following example shows a function that emits a customized temporary
failure notice:

func stdtf()

do

tempfail 451 4.3.5 "Try again later"

done

A function may have several names. An alternative name (or alias) can
be assigned to a function by using alias keyword, placed after param-decl
part, for example:

func foo()

alias bar

returns string

do

...

done

After this declaration, both foo() and bar() will refer to the same func-
tion.

The number of function aliases is unlimited. The following fragment
declares a function having three names:

func foo()

alias bar

alias baz

returns string

do

...

done

Although this feature is rarely needed, there are sometimes cases when
it may be necessary.

A variable declared within a function becomes a local variable to this
function. Its lexical scope ends with the terminating done statement.

Parameters, local variables and global variables are using separate names-
paces, so a parameter name can coincide with the name of a global, in which
case a parameter is said to shadow the global. All references to its name
will refer to the parameter, until the end of its scope is reached, where the
global one becomes visible again. Consider the following example:

Chapter 4: Mail Filtering Language 77

number x

func foo(string x)

do

echo "foo: %x"

done

prog envfrom

do

set x "Global"

foo("Local")

echo x

done

Running mailfromd --test with this configuration will display:� �
foo: Local

Global
 	
4.13.1 Some Useful Functions

To illustrate the concept of user-defined functions, this subsection shows
the definitions of some of the library functions shipped with mailfromd5.
These functions are contained in modules installed along with the mailfromd
binary. To use any of them in your code, require the appropriate module
as described in Section 4.21.3 [import], page 103, e.g. to use the revip
function, do require ’revip’.

Functions and their definitions:

1. revip

The function revip (see [revip], page 116) is implemented as follows:

func revip(string ip) returns string

do

return inet_ntoa(ntohl(inet_aton(ip)))

done

Previously it was implemented using regular expressions. Below we
include this variant as well, as an illustration for the use of regular
expressions:

5 Notice that these are intended for educational purposes and do not necessarily coincide
with the actual definitions of these functions in Mailfromd version 7.99.90.

78 Mailfromd Manual

#pragma regex push +extended

func revip(string ip) returns string

do

if ip matches ’([0-9]+)\.([0-9]+)\.([0-9]+)\.([0-9]+)’

return "\4.\3.\2.\1"

fi

return ip

done

#pragma regex pop

2. strip_domain_part

This function returns at most n last components of the domain name
domain (see [strip domain part], page 116).

#pragma regex push +extended

func strip_domain_part(string domain, number n) returns string

do

if n > 0 and

domain matches ’.*((\.[^.]+){’ . $2 . ’})’

return substring(\1, 1, -1)

else

return domain

fi

done

#pragma regex pop

3. valid_domain

See [valid domain], page 152, for a description of this function. Its
definition follows:

require dns

func valid_domain(string domain) returns number

do

return not (resolve(domain) = "0" and not hasmx(domain))

done

4. match_dnsbl

The function match_dnsbl (see [match dnsbl], page 155) is defined as
follows:

require dns

require match_cidr

#pragma regex push +extended

func match_dnsbl(string address, string zone, string range)

returns number

do

string rbl_ip

if range = ’ANY’

Chapter 4: Mail Filtering Language 79

set rbl_ip ’127.0.0.0/8’

else

set rbl_ip range

if not range matches ’^([0-9]{1,3}\.){3}[0-9]{1,3}$’

return 0

fi

fi

if not (address matches ’^([0-9]{1,3}\.){3}[0-9]{1,3}$’

and address != range)

return 0

fi

if address matches

’^([0-9]{1,3})\.([0-9]{1,3})\.([0-9]{1,3})\.([0-9]{1,3})$’

if match_cidr (resolve ("\4.\3.\2.\1", zone), rbl_ip)

return 1

else

return 0

fi

fi

never reached

done

4.14 Expressions
Expressions are language constructs, that evaluate to a value, that can sub-
sequently be echoed, tested in a conditional statement, assigned to a variable
or passed to a function.

4.14.1 Constant Expressions

Literals and numbers are constant expressions. They evaluate to string and
numeric types.

4.14.2 Function Calls

A function call is an expression. Its type is the return type of the function.

4.14.3 Concatenation

Concatenation operator is ‘.’ (a dot). For example, if $f is ‘smith’, and
$client_addr is ‘10.10.1.1’, then:

$f . "-" . $client_addr ⇒ "smith-10.10.1.1"

Any two adjacent literal strings are concatenated, producing a new string,
e.g.

"GNU’s" " not " "UNIX" ⇒ "GNU’s not UNIX"

80 Mailfromd Manual

4.14.4 Arithmetic Operations

The filter script language offers the common arithmetic operators: ‘+’, ‘-’,
‘*’ and ‘/’. All of them follow usual precedence rules and work as you would
expect them to.

4.14.5 Relational Expressions

Relational expressions are:

Expression Result
x < y True if x is less than y .
x <= y True if x is less than or equal to y .
x > y True if x is greater than y .
x >= y True if x is greater than or equal to y .
x = y True if x is equal to y .
x != y True if x is not equal to y .

Table 4.4: Relational Expressions

The relational expressions apply to string as well as to numbers. When
a relational operation applies to strings, case-sensitive comparison is used,
e.g.:

"String" = "string" ⇒ False

"String" < "string" ⇒ True

4.14.6 Special Comparisons

In addition to the traditional relational operators, described above,
mailfromd provides two operators for regular expression matching:

Expression Result
x matches y True if the string x matches the regexp denoted by y .
x fnmatches y True if the string x matches the globbing pattern de-

noted by y .
Table 4.5: Regular Expression Matching

The type of the regular expression used by matches operator is controlled
by #pragma regex (see [pragma regex], page 54). For example:

$f ⇒ "gray@gnu.org.ua"

$f matches ’.*@gnu\.org\.ua’ ⇒ true

$f matches ’.*@GNU\.ORG\.UA’ ⇒ false

#pragma regex +icase

$f matches ’.*@GNU\.ORG\.UA’ ⇒ true

The fnmatches operator compares its left-hand operand with a globbing
pattern (see glob(7)) given as its right-hand side operand. For example:

Chapter 4: Mail Filtering Language 81

$f ⇒ "gray@gnu.org.ua"

$f fnmatches "*ua" ⇒ true

$f fnmatches "*org" ⇒ false

$f fnmatches "*org*" ⇒ true

Both operators have a special form, for ‘MX’ pattern matching. The ex-
pression:

x mx matches y

is evaluated as follows: first, the expression x is analyzed and, if it is an email
address, its domain part is selected. If it is not, its value is used verbatim.
Then the list of ‘MX’s for this domain is looked up. Each of ‘MX’ names is
then compared with the regular expression y . If any of the names matches,
the expression returns true. Otherwise, its result is false.

Similarly, the expression:

x mx fnmatches y

returns true only if any of the ‘MX’s for (domain or email) x match the
globbing pattern y .

These operators examine at most 32 ‘MX’ records. To change this limit,
use the max-match-mx configuration statement (see Section 7.11 [conf-other],
page 182).

Both mx matches and mx fnmatches can signal the following exceptions:
e_temp_failure, e_failure.

The value of any parenthesized subexpression occurring within the right-
hand side argument to matches or mx matches can be referenced using the
notation ‘\d ’, where d is the ordinal number of the subexpression (subex-
pressions are numbered from left to right, starting at 1). This notation is
allowed in the program text as well as within double-quoted strings and
here-documents, for example:

if $f matches ’.*@\(.*\)\.gnu\.org\.ua’

set message "Your host name is \1;"

fi

Remember that the grouping symbols are ‘\(’ and ‘\)’ for basic regular
expressions, and ‘(’ and ‘)’ for extended regular expressions. Also make
sure you properly escape all special characters (backslashes in particular) in
double-quoted strings, or use single-quoted strings to avoid having to do so
(see [singe-vs-double], page 58, for a comparison of the two forms).

4.14.7 Boolean Expressions

A boolean expression is a combination of relational or matching expressions
using the boolean operators and, or and not, and, eventually, parentheses
to control nesting:

82 Mailfromd Manual

Expression Result
x and y True only if both x and y are true.
x or y True if any of x or y is true.
not x True if x is false.

table 4.1: Boolean Operators
Binary boolean expressions are computed using shortcut evaluation:

x and y If x ⇒ false, the result is false and y is not evaluated.

x or y If x ⇒ true, the result is true and y is not evaluated.

4.14.8 Operator Precedence

Operator precedence is an abstract value associated with each language op-
erator, that determines the order in which operators are executed when they
appear together within a single expression. Operators with higher prece-
dence are executed first. For example, ‘*’ has a higher precedence than ‘+’,
therefore the expression a + b * c is evaluated in the following order: first b
is multiplied by c, then a is added to the product.

When operators of equal precedence are used together they are evaluated
from left to right (i.e., they are left-associative), except for comparison op-
erators, which are non-associative (these are explicitly marked as such in the
table below). This means that you cannot write:

if 5 <= x <= 10

Instead, you should write:
if 5 <= x and x <= 10

The precedences of the mailfromd operators where selected so as to match
that used in most programming languages.6

The following table lists all operators in order of decreasing precedence:

(...) Grouping

$ % Sendmail macros and mailfromd variables

* / Multiplication, division

+ - Addition, subtraction

< <= >= > Relational operators (non-associative)

6 The only exception is ‘not’, whose precedence in MFL is much lower than usual (in
most programming languages it has the same precedence as unary ‘-’). This allows to
write conditional expressions in more understandable manner. Consider the following
condition:

if not x < 2 and y = 3

It is understood as “if x is not less than 2 and y equals 3”, whereas with the usual
precedence for ‘not’ it would have meant “if negated x is less than 2 and y equals 3”.

Chapter 4: Mail Filtering Language 83

= != matches fnmatches
Equality and special comparison (non-associative)

& Logical (bitwise) and

^ Logical (bitwise) xor

| Logical (bitwise) or

not Boolean negation

and Logical ‘and’.

or Logical ‘or’

. String concatenation

4.14.9 Type Casting

When two operands on each side of a binary expression have different type,
mailfromd evaluator coerces them to a common type. This is known as
implicit type casting. The rules for implicit type casting are:
1. Both arguments to an arithmetical operation are cast to numeric type.
2. Both arguments to the concatenation operation are cast to string.
3. Both arguments to ‘match’ or ‘fnmatch’ function are cast to string.
4. The argument of the unary negation (arithmetical or boolean) is cast

to numeric.
5. Otherwise the right-hand side argument is cast to the type of the left-

hand side argument.

The construct for explicit type cast is:
type(expr)

where type is the name of the type to coerce expr to. For example:
string(2 + 4*8) ⇒ "34"

4.15 Variable and Constant Shadowing
When any two named entities happen to have the same name we say that a
name clash occurs. The handling of name clashes depends on types of the
entities involved in it.

function – any

A name of a constant or variable can coincide with that of a function, it
does not produce any warnings or errors because functions, variables and
constants use different namespaces. For example, the following code is cor-
rect:

const a 4

func a()

84 Mailfromd Manual

do

echo a

done

When executed, it prints ‘4’.

function – function, handler – function, and function –
handler

Redefinition of a function or using a predefined handler name (see
Section 4.11 [Handlers], page 66) as a function name results in a fatal error.
For example, compiling this code:

func a()

do

echo "1"

done

func a()

do

echo "2"

done

causes the following error message:
mailfromd: sample.mf:9: syntax error, unexpected

FUNCTION_PROC, expecting IDENTIFIER

handler – variable

A variable name can coincide with a handler name. For example, the fol-
lowing code is perfectly OK:

string envfrom "M"

prog envfrom

do

echo envfrom

done

handler – handler

If two handlers with the same name are defined, the definition that appears
further in the source text replaces the previous one. A warning message is
issued, indicating locations of both definitions, e.g.:

mailfromd: sample.mf:116: Warning: Redefinition of handler

‘envfrom’

mailfromd: sample.mf:34: Warning: This is the location of the

previous definition

variable – variable

Defining a variable having the same name as an already defined one results in
a warning message being displayed. The compilation succeeds. The second
variable shadows the first, that is any subsequent references to the variable
name will refer to the second variable. For example:

Chapter 4: Mail Filtering Language 85

string x "Text"

number x 1

prog envfrom

do

echo x

done

Compiling this code results in the following diagnostics:
mailfromd: sample.mf:4: Redeclaring ‘x’ as different data type

mailfromd: sample.mf:2: This is the location of the previous

definition

Executing it prints ‘1’, i.e. the value of the last definition of x.
The scope of the shadowing depends on storage classes of the two vari-

ables. If both of them have external storage class (i.e. are global ones),
the shadowing remains in effect until the end of input. In other words, the
previous definition of the variable is effectively forgotten.

If the previous definition is a global, and the shadowing definition is an
automatic variable or a function parameter, the scope of this shadowing ends
with the scope of the second variable, after which the previous definition
(global) becomes visible again. Consider the following code:

set x "initial"

func foo(string x) returns string

do

return x

done

prog envfrom

do

echo foo("param")

echo x

done

Its compilation produces the following warning:
mailfromd: sample.mf:3: Warning: Parameter ‘x’ is shadowing a global

When executed, it produces the following output:
param

initial

State envfrom: continue

variable – constant

If a constant is defined which has the same name as a previously defined vari-
able (the constant shadows the variable), the compiler prints the following
diagnostic message:

file:line: Warning: Constant name ‘name’ clashes with a variable name

file:line: Warning: This is the location of the previous definition

A similar diagnostics is issued if a variable is defined whose name coincides
with a previously defined constant (the variable shadows the constant).

86 Mailfromd Manual

In any case, any subsequent notation %name refers to the last defined
symbol, be it variable or constant.

Notice, that shadowing occurs only when using %name notation. Refer-
ring to the constant using its name without ‘%’ allows to avoid shadowing
effects.

If a variable shadows a constant, the scope of the shadowing depends
on the storage class of the variable. For automatic variables and function
parameters, it ends with the final done closing the function. For global
variables, it lasts up to the end of input.

For example, consider the following code:
const a 4

func foo(string a)

do

echo a

done

prog envfrom

do

foo(10)

echo a

done

When run, it produces the following output:
$ mailfromd --test sample.mf

mailfromd: sample.mf:3: Warning: Variable name ‘a’ clashes with a

constant name

mailfromd: sample.mf:1: Warning: This is the location of the previous

definition

10

4

State envfrom: continue

constant – constant

Redefining a constant produces a warning message. The latter definition
shadows the former. Shadowing remains in effect until the end of input.

4.16 Statements
Statements are language constructs, that, unlike expressions, do not return
any value. Statements execute some actions, such as assigning a value to a
variable, or serve to control the execution flow in the program.

4.16.1 Action Statements

An action statement instructs mailfromd to perform a certain action over
the message being processed. There are two kinds of actions: return actions
and header manipulation actions.

Chapter 4: Mail Filtering Language 87

Reply Actions

Reply actions tell Sendmail to return given response code to the remote
party. There are five such actions:

accept Return an accept reply. The remote party will continue trans-
mitting its message.

reject code excode message-expr
reject (code-expr, excode-expr, message-expr)

Return a reject reply. The remote party will have to cancel
transmitting its message. The three arguments are optional,
their usage is described below.

tempfail code excode message
tempfail (code-expr, excode-expr, message-expr)

Return a ‘temporary failure’ reply. The remote party can
retry to send its message later. The three arguments are op-
tional, their usage is described below.

discard Instructs Sendmail to accept the message and silently discard
it without delivering it to any recipient.

continue Stops the current handler and instructs Sendmail to continue
processing of the message.

Two actions, reject and tempfail can take up to three optional param-
eters. There are two forms of supplying these parameters.

In the first form, called literal or traditional notation, the arguments are
supplied as additional words after the action name, and are separated by
whitespace. The first argument is a three-digit RFC 2821 reply code. It
must begin with ‘5’ for reject and with ‘4’ for tempfail. If two arguments
are supplied, the second argument must be either an extended reply code
(RFC 1893/2034) or a textual string to be returned along with the SMTP
reply. Finally, if all three arguments are supplied, then the second one must
be an extended reply code and the third one must give the textual string.
The following examples illustrate the possible ways of using the reject
statement:

reject

reject 503

reject 503 5.0.0

reject 503 "Need HELO command"

reject 503 5.0.0 "Need HELO command"

The notion textual string, used above means either a literal string or an
MFL expression that evaluates to string. However, both code and extended
code must always be literal.

The second form of supplying arguments is called functional notation,
because it resembles the function syntax. When used in this form, the ac-
tion word is followed by a parenthesized group of exactly three arguments,
separated by commas. Each argument is a MFL expression. The meaning

88 Mailfromd Manual

and ordering of the arguments is the same as in literal form. Any or all of
these three arguments may be absent, in which case it will be replaced by the
default value. To illustrate this, here are the statements from the previous
example, written in functional notation:

reject(,,)

reject(503,,)

reject(503, 5.0.0)

reject(503, , "Need HELO command")

reject(503, 5.0.0, "Need HELO command")

Notice that there is an important difference between the two notations.
The functional notation allows to compute both reply codes at run time,
e.g.:

reject(500 + dig2*10 + dig3, "5.%edig2.%edig2")

Header Actions

Header manipulation actions provide basic means to add, delete or modify
the message RFC 2822 headers.

add name string
Add the header name with the value string . E.g.:

add "X-Seen-By" "Mailfromd 7.99.90"

(notice argument quoting)

replace name string
The same as add, but if the header name already exists, it will
be removed first, for example:

replace "X-Last-Processor" "Mailfromd 7.99.90"

delete name
Delete the header named name:

delete "X-Envelope-Date"

These actions impose some restrictions. First of all, their first argument
must be a literal string (not a variable or expression). Secondly, there is no
way to select a particular header instance to delete or replace, which may be
necessary to properly handle multiple headers (e.g. ‘Received’). For more
elaborate ways of header modifications, see Section 5.6 [Header modification
functions], page 121.

4.16.2 Variable Assignments

An assignment is a special statement that assigns a value to the variable. It
has the following syntax:

set name value

where name is the variable name and value is the value to be assigned to it.
Assignment statements can appear in any part of a filter program. If an

assignment occurs outside of function or handler definition, the value must
be a literal value (see Section 4.5 [Literals], page 56). If it occurs within a

Chapter 4: Mail Filtering Language 89

function or handler definition, value can be any valid mailfromd expression
(see Section 4.14 [Expressions], page 79). In this case, the expression will be
evaluated and its value will be assigned to the variable. For example:

set delay 150

prog envfrom

do

set delay delay * 2

...

done

4.16.3 The pass statement

The pass statement has no effect. It is used in places where no statement
is needed, but the language syntax requires one:

on poll $f do

when success:

pass

when not_found or failure:

reject 550

done

4.16.4 The echo statement

The echo statement concatenates all its arguments into a single string and
sends it to the syslog using the priority ‘info’. It is useful for debugging
your script, in conjunction with built-in constants (see Section 4.8.1 [Built-in
constants], page 60), for example:

func foo(number x)

do

echo "%__file__:%__line__: foo called with arg %x"

...

done

4.17 Conditional Statements
Conditional expressions, or conditionals for short, test some conditions and
alter the control flow depending on the result. There are two kinds of con-
ditional statements: if-else branches and switch statements.

The syntax of an if-else branching construct is:
if condition then-body [else else-body] fi

Here, condition is an expression that governs control flow within the state-
ment. Both then-body and else-body are lists of mailfromd statements. If
condition is true, then-body is executed, if it is false, else-body is executed.
The ‘else’ part of the statement is optional. The condition is considered
false if it evaluates to zero, otherwise it is considered true. For example:

90 Mailfromd Manual

if $f = ""

accept

else

reject

fi

This will accept the message if the value of the Sendmail macro $f is an
empty string, and reject it otherwise. Both then-body and else-body can
be compound statements including other if statements. Nesting level of
conditional statements is not limited.

To facilitate writing complex conditional statements, the elif keyword
can be used to introduce alternative conditions, for example:

if $f = ""

accept

elif $f = "root"

echo "Mail from root!"

else

reject

fi

Another type of branching instruction is switch statement:

switch condition

do

case x1 [or x2 ...]:

stmt1

case y1 [or y2 ...]:

stmt2

.

.

.

[default:

stmt]

done

Here, x1, x2, y1, y2 are literal expressions; stmt1, stmt2 and stmt are arbi-
trary mailfromd statements (possibly compound); condition is the control-
ling expression. The vertical dotted row represent another eventual ‘case’
branches.

This statement is executed as follows: the condition expression is evalu-
ated and if its value equals x1 or x2 (or any other x from the first case),
then stmt1 is executed. Otherwise, if condition evaluates to y1 or y2 (or
any other y from the second case), then stmt2 is executed. Other case
branches are tried in turn. If none of them matches, stmt (called the default
branch) is executed.

There can be as many case branches as you wish. The default branch
is optional. There can be at most one default branch.

An example of switch statement follows:

Chapter 4: Mail Filtering Language 91

switch x

do

case 1 or 3:

add "X-Branch" "1"

accept

case 2 or 4 or 6:

add "X-Branch" "2"

default:

reject

done

If the value of mailfromd variable x is 2 or 3, it will accept the message
immediately, and add a ‘X-Branch: 1’ header to it. If x equals 2 or 4 or 6,
this code will add ‘X-Branch: 2’ header to the message and will continue
processing it. Otherwise, it will reject the message.

The controlling condition of a switch statement may evaluate to numeric
or string type. The type of the condition governs the type of comparisons
used in case branches: for numeric types, numeric equality will be used,
whereas for string types, string equality is used.

4.18 Loop Statements
The loop statement allows for repeated execution of a block of code, con-
trolled by some conditional expression. It has the following form:

loop [label]

[for stmt1] [,while expr1] [,stmt2]

do

stmt3

done [while expr2]

where stmt1, stmt2, and stmt3 are statement lists, expr1 and expr2 are
expressions.

The control flow is as follows:
1. If stmt1 is specified, execute it.
2. Evaluate expr1. If it is zero, go to 6. Otherwise, continue.
3. Execute stmt3.
4. If stmt2 is supplied, execute it.
5. If expr2 is given, evaluate it. If it is zero, go to 6. Otherwise, go to 2.
6. End.

Thus, stmt3 is executed until either expr1 or expr2 yield a zero value.
The loop body – stmt3 – can contain special statements:

break [label]
Terminates the loop immediately. Control passes to ‘6’ (End) in
the formal definition above. If label is supplied, the statement
terminates the loop statement marked with that label. This
allows to break from nested loops.
It is similar to break statement in c or shell.

92 Mailfromd Manual

next [label]
Initiates next iteration of the loop. Control passes to ‘4’ in
the formal definition above. If label is supplied, the statement
starts next iteration of the loop statement marked with that
label. This allows to request next iteration of an upper-level
loop from a nested loop statement.

The loop statement can be used to create iterative statements of arbitrary
complexity. Let’s illustrate it in comparison with c.

The statement:
loop

do

stmt-list

done

creates an infinite loop. The only way to exit from such a loop is to call
break (or return, if used within a function), somewhere in stmt-list.

The following statement is equivalent to while (expr1) stmt-list in
c:

loop while expr

do

stmt-list

done

The c construct for (expr1; expr2; expr3) is written in MFL as fol-
lows:

loop for stmt1, while expr2, stmt2

do

stmt3

done

For example, to repeat stmt3 10 times:
loop for set i 0, while i < 10, set i i + 1

do

stmt3

done

Finally, the c ‘do’ loop is implemented as follows:
loop

do

stmt-list

done while expr

As a real-life example of a loop statement, let’s consider the implemen-
tation of function ptr_validate, which takes a single argument ipstr, and
checks its validity using the following algorithm:

Perform a DNS reverse-mapping for ipstr, looking up the corresponding
PTR record in ‘in-addr.arpa’. For each record returned, look up its IP
addresses (A records). If ipstr is among the returned IP addresses, return 1
(true), otherwise return 0 (false).

The implementation of this function in MFL is:

Chapter 4: Mail Filtering Language 93

#pragma regex push +extended

func ptr_validate(string ipstr) returns number

do

loop for string names dns_getname(ipstr) . " "

number i index(names, " "),

while i != -1,

set names substr(names, i + 1)

set i index(names, " ")

do

loop for string addrs dns_getaddr(substr(names, 0, i)) . " "

number j index(addrs, " "),

while j != -1,

set addrs substr(addrs, j + 1)

set j index(addrs, " ")

do

if ipstr == substr(addrs, 0, j)

return 1

fi

done

done

return 0

done

4.19 Exceptional Conditions
When the running program encounters a condition it is not able to handle, it
signals an exception. To illustrate the concept, let’s consider the execution
of the following code fragment:

if primitive_hasmx(domainpart($f))

accept

fi

The function primitive_hasmx (see [primitive hasmx], page 133) tests
whether the domain name given as its argument has any ‘MX’ records. It
should return a boolean value. However, when querying the Domain Name
System, it may fail to get a definite result. For example, the DNS server can
be down or temporary unavailable. In other words, primitive_hasmx can
be in a situation when, instead of returning ‘yes’ or ‘no’, it has to return
‘don’t know’. It has no way of doing so, therefore it signals an exception.

Each exception is identified by exception type, an integer number associ-
ated with it.

4.19.1 Built-in Exceptions

The numbers from 0 to 16 are reserved for built-in exceptions. The module
‘status.mf’ defines symbolic exception names for each of these. The fol-
lowing table summarizes all the exception types implemented by mailfromd
version 7.99.90:

94 Mailfromd Manual

e_dbfailure
General database failure. For example, the database cannot be
opened. This exception can be signaled by any function that
queries any DBM database.

e_divzero
Division by zero.

e_eof Function reached end of file while reading. See Section 5.21
[I/O functions], page 140, for a description of functions that can
signal this exception.

e_failure
failure
e_failure

A general failure has occurred. In particular, this exception is
signaled by DNS lookup functions when any permanent failure
occurs. This exception can be signaled by any DNS-related func-
tion (hasmx, poll, etc.) or operation (mx matches).

e_invcidr
Invalid CIDR notation. This is signaled by match_cidr function
when its second argument is not a valid CIDR.

e_invip Invalid IP address. This is signaled by match_cidr function
when its first argument is not a valid IP address.

e_invtime
Invalid time interval specification. It is signaled by interval
function if its argument is not a valid time interval (see [time
interval specification], page 173).

e_io An error occurred during the input-output operation. See
Section 5.21 [I/O functions], page 140, for a description of func-
tions that can signal this exception.

e_macroundef
A Sendmail macro is undefined.

e_noresolve
The argument of a DNS-related function cannot be resolved
to host name or IP address. Currently only ismx (see [ismx],
page 134) raises this exception.

e_range The supplied argument is outside the allowed range. This is
signalled, for example, by substring function (see [substring],
page 115).

e_regcomp
Regular expression cannot be compiled. This can happen when
a regular expression (a right-hand argument of a matches opera-
tor) is built at the runtime and the produced string is an invalid
regex.

Chapter 4: Mail Filtering Language 95

e_ston_conv
String-to-number conversion failed. This can be signaled when
a string is used in numeric context which cannot be converted
to the numeric data type. For example:

set x "10a"

if x / 2

...

The if condition will signal ston_conv, since ‘10a’ cannot be
converted to a number.

e_temp_failure
temp_failure
e_temp_failure

A temporary failure has occurred. This can be signaled by DNS-
related functions or operations.

e_url The supplied URL is invalid. See Section 5.25 [Interfaces to
Third-Party Programs], page 147.

In addition to these, two symbols are defined that are not exception
types in the strict sense of the world, but are provided to make writing filter
scripts more convenient. These are success, meaning successful return from
a function, and not_found, meaning that the required entity (e.g. domain
name or email address) was not found. See Figure 4.1, for an illustration on
how these can be used. For consistency with other exception codes, these
can be spelled as e_success and e_not_found.

4.19.2 User-defined Exceptions

You can define your own exception types using the dclex statement:
dclex type

In this statement, type must be a valid MFL identifier, not used for an-
other constant (see Section 4.8 [Constants], page 59). The dclex statement
defines a new exception identified by the constant type and allocates a new
exception number for it.

The type can subsequently be used in throw and catch statements, for
example:

dclex myrange

number fact(number val)

returns number

do

if val < 0

throw myrange "fact argument is out of range"

fi

...

done

96 Mailfromd Manual

4.19.3 Exception Handling

Normally when an exception is signalled, the program execution is termi-
nated and the MTA is returned a tempfail status. Additional informa-
tion regarding the exception is then output to the logging channel (see
Section 3.18 [Logging and Debugging], page 43). However, the user can
intercept any exception by installing his own exception-handling routines.

An exception-handling routine is introduced by a try–catch statement,
which has the following syntax:

try

do

stmtlist

done

catch exception-list

do

handler-body

done

where stmtlist and handler-body are sequences of MFL statements and
exception-list is the list of exception types, separated by the word or. A
special exception-list ‘*’ is allowed and means all exceptions.

This construct works as follows. First, the statements from stmtlist are
executed. If the execution finishes successfully, control is passed to the first
statement after the ‘catch’ block. Otherwise, if an exception is signalled
and this exception is listed in exception-list, the execution is passed to the
handler-body . If the exception is not listed in exception-list, it is handled
as usual.

The following example shows a ‘try--catch’ construct used for handling
seventual exceptions, signalled by primitive_hasmx.

try

do

if primitive_hasmx(domainpart($f))

accept

else

reject

fi

done

catch e_failure or e_temp_failure

do

echo "primitive_hasmx failed"

continue

done

The ‘try--catch’ statement can appear anywhere inside a function or a
handler, but it cannot appear outside of them. It can also be nested within
another ‘try--catch’, in either of its parts. Upon exit from a function or
milter handler, all exceptions are restored to the state they had when it has
been entered.

A catch block can also be used alone, without preceding try part. Such
a construct is called a standalone catch. It is mostly useful for setting

Chapter 4: Mail Filtering Language 97

global exception handlers in a begin statement (see Section 4.12 [begin/end],
page 71). When used within a usual function or handler, the exception han-
dlers set by a standalone catch remain in force until either another stand-
alone catch appears further in the same function or handler, or an end of
the function is encountered, whichever occurs first.

A standalone catch defined within a function must return from it by
executing return statement. If it does not do that explicitly, the default
value of 1 is returned. A standalone catch defined within a milter handler
must end execution with any of the following actions: accept, continue,
discard, reject, tempfail. By default, continue is used.

It is not recommended to mix ‘try--catch’ constructs and standalone
catches. If a standalone catch appears within a ‘try--catch’ statement, its
scope of visibility is undefined.

Upon entry to a handler-body , two implicit positional arguments are
defined, which can be referenced in handler-body as $1 and $2. The first
argument gives the numeric code of the exception that has occurred. The
second argument is a textual string containing a human-readable description
of the exception.

The following is an improved version of the previous example, which uses
these parameters to supply more information about the failure:

try

do

if primitive_hasmx(domainpart($f))

accept

else

reject

fi

done

catch e_failure or e_temp_failure

do

echo "Caught exception $1: $2"

continue

done

The following example defines the function hasmx that returns true if the
domain part of its argument has any ‘MX’ records, and false if it does not or
if an exception occurs7.

func hasmx (string s)

returns number

do

try

do

return primitive_hasmx(domainpart(s))

done

catch *

do

return 0

7 This function is part of the mailfromd library, See [hasmx], page 133.

98 Mailfromd Manual

done

done

The same function can written using standalone catch:
func hasmx (string s)

returns number

do

catch *

do

return 0

done

return primitive_hasmx(domainpart(s))

done

All variables remain visible within catch body, with the exception of po-
sitional arguments of the enclosing handler. To access positional arguments
of a handler from the catch body, assign them to local variables prior to the
‘try--catch’ construct, e.g.:

prog header

do

string hname $1

string hvalue $2

try

do

...

done

catch *

do

echo "Exception $1 while processing header %hname: %hvalue"

echo $2

tempfail

done

You can also generate (or raise) exceptions explicitly in the code, using
throw statement:

throw excode descr

The arguments correspond exactly to the positional parameters of the
catch statement: excode gives the numeric code of the exception, descr
gives its textual description. This statement can be used in complex scripts
to create non-local exits from deeply nested statements.

Notice, that the the excode argument must be an immediate value: an
exception identifier (either a built-in one or one declared previously using a
dclex statement).

4.20 Sender Verification Tests
The filter script language provides a wide variety of functions for sender ad-
dress verification or polling, for short. These functions, which were described
in Section 5.16 [Polling functions], page 129, can be used to implement any
sender verification method. The additional data that can be needed is nor-
mally supplied by two global variables: ehlo_domain, keeping the default

Chapter 4: Mail Filtering Language 99

domain for the EHLO command, and mailfrom_address, which stores the
sender address for probe messages (see Section 4.9.1 [Predefined variables],
page 63).

For example, a simplest way to implement standard polling would be:

prog envfrom

do

if stdpoll($1, ehlo_domain, mailfrom_address) == 0

accept

else

reject 550 5.1.0 "Sender validity not confirmed"

fi

done

However, this does not take into account exceptions that stdpoll can
signal. To handle them, one will have to use catch, for example thus:

require status

prog envfrom

do

try

do

if stdpoll($1, ehlo_domain, mailfrom_address) == 0

accept

else

reject 550 5.1.0 "Sender validity not confirmed"

fi

done

catch e_failure or e_temp_failure

do

switch $1

do

case failure:

reject 550 5.1.0 "Sender validity not confirmed"

case temp_failure:

tempfail 450 4.1.0 "Try again later"

done

done

done

If polls are used often, one can define a wrapper function, and use it
instead. The following example illustrates this approach:

100 Mailfromd Manual

func poll_wrapper(string email) returns number

do

catch e_failure or e_temp_failure

do

return email

done

return stdpoll(email, ehlo_domain, mailfrom_address)

done

prog envfrom

do

switch poll_wrapper($f)

do

case success:

accept

case not_found or failure:

reject 550 5.1.0 "Sender validity not confirmed"

case temp_failure:

tempfail 450 4.1.0 "Try again later"

done

done

Figure 4.1: Building Poll Wrappers

Notice the way envfrom handles success and not_found, which are not
exceptions in the strict sense of the word.

The above paradigm is so common that mailfromd provides a special
language construct to simplify it: the on statement. Instead of manually
writing the wrapper function and using it as a switch condition, you can
rewrite the above example as:

prog envfrom

do

on stdpoll($1, ehlo_domain, mailfrom_address)

do

when success:

accept

when not_found or failure:

reject 550 5.1.0 "Sender validity not confirmed"

when temp_failure:

tempfail 450 4.1.0 "Try again later"

done

done

Figure 4.2: Standard poll example

As you see the statement is pretty similar to switch. The major syntactic
difference is the use of the keyword when to introduce conditional branches.

General syntax of the on statement is:

Chapter 4: Mail Filtering Language 101

on condition

do

when x1 [or x2 ...]:

stmt1

when y1 [or y2 ...]:

stmt2

.

.

.

done

The condition is either a function call or a special poll statement (see below).
The values used in when branches are normally symbolic exception names
(see [exception names], page 93).

When the compiler processes the on statement it does the following:
1. Builds a unique wrapper function, similar to that described in

Figure 4.1; The name of the function is constructed from the condition
function name and an unsigned number, called exception mask, that
is unique for each combination of exceptions used in when branches;
To avoid name clashes with the user-defined functions, the wrapper
name begins and ends with ‘$’ which normally is not allowed in the
identifiers;

2. Translates the on body to the corresponding switch statement;

A special form of the condition is poll keyword, whose syntax is:
poll [for] email

[host host]

[from domain]

[as email]

The order of particular keywords in the poll statement is arbitrary, for
example as email can appear before email as well as after it.

The simplest form, poll email , performs the standard sender verification
of email address email. It is translated to the following function call:

stdpoll(email, ehlo_domain, mailfrom_address)

The construct poll email host host , runs the strict sender verification
of address email on the given host. It is translated to the following call:

strictpoll(host, email, ehlo_domain, mailfrom_address)

Other keywords of the poll statement modify these two basic forms.
The as keyword introduces the email address to be used in the SMTP MAIL
FROM command, instead of mailfrom_address. The from keyword sets the
domain name to be used in EHLO command. So, for example the following
construct:

poll email host host from domain as addr

is translated to
strictpoll(host, email, domain, addr)

To summarize the above, the code described in Figure 4.2 can be written
as:

102 Mailfromd Manual

prog envfrom

do

on poll $f do

when success:

accept

when not_found or failure:

reject 550 5.1.0 "Sender validity not confirmed"

when temp_failure:

tempfail 450 4.1.0 "Try again later"

done

done

4.21 Modules
A module is a logically isolated part of code that implements a separate
concern or feature and contains a collection of conceptually united functions
and/or data. Each module occupies a separate compilation unit (i.e. file).
The functionality provided by a module is incorporated into another module
or the main program by requiring this module or by importing the desired
components from it.

4.21.1 Declaring Modules

A module file must begin with a module declaration:
module modname [interface-type].

Note the final dot.
The modname parameter declares the name of the module. It is recom-

mended that it be the same as the file name without the ‘.mf’ extension.
The module name must be a valid MFL literal. It also must not coincide
with any defined MFL symbol, therefore we recommend to always quote it
(see example below).

The optional parameter interface-type defines the default scope of vis-
ibility for the symbols declared in this module. If it is ‘public’, then all
symbols declared in this module are made public (importable) by default,
unless explicitly declared otherwise (see Section 4.21.2 [scope of visibility],
page 103). If it is ‘static’, then all symbols, not explicitly marked as public,
become static. If the interface-type is not given, ‘public’ is assumed.

The actual MFL code follows the ‘module’ line.
The module definition is terminated by the logical end of its compilation

unit, i.e. either by the end of file, or by the keyword bye, whichever occurs
first.

Special keyword bye may be used to prematurely end the current com-
pilation unit before the physical end of the containing file. Any material
between bye and the end of file is ignored by the compiler.

Let’s illustrate these concepts by writing a module ‘revip’:

Chapter 4: Mail Filtering Language 103

module ’revip’ public.

func revip(string ip)

returns string

do

return inet_ntoa(ntohl(inet_aton(ip)))

done

bye

This text is ignored. You may put any additional

documentation here.

4.21.2 Scope of Visibility

Scope of Visibility of a symbol defines from where this symbol may be re-
ferred to. Symbols in MFL may have either of the following two scopes:

Public Public symbols are visible from the current module, as well as
from any external modules, including the main script file, pro-
vided that they are properly imported (see Section 4.21.3 [im-
port], page 103).

Static Static symbols are visible only from the current module. There
is no way to refer to them from outside.

The default scope of visibility for all symbols declared within a module
is defined in the module declaration (see Section 4.21.1 [module structure],
page 102). It may be overridden for any individual symbol by prefixing its
declaration with an appropriate qualifier: either public or static.

4.21.3 Require and Import

Functions or variables declared in another module must be imported prior
to their actual use. MFL provides two ways of doing so: by requiring the
entire module or by importing selected symbols from it.

[Module Import]require modname
The require statement instructs the compiler to locate the module mod-
name and to load all public interfaces from it.

The compiler looks for the file ‘modname.mf’ in the current search path
(see [include search path], page 51). If no such file is found, a compilation
error is reported.

For example, the following statement:
require revip

imports all interfaces from the module ‘revip.mf’.
Another, more sophisticated way to import from a module is to use the

‘from ... import’ construct:
from module import symbols.

104 Mailfromd Manual

Note the final dot. The ‘from’ and ‘module’ statements are the only two
constructs in MFL that require the delimiter.

The module has the same semantics as in the require construct. The
symbols is a comma-separated list of symbol names to import from module.
A symbol name may be given in several forms:
1. Literal

Literals specify exact symbol names to import. For example, the fol-
lowing statement imports from module ‘A.mf’ symbols ‘foo’ and ‘bar’:

from A import foo,bar.

2. Regular expression
Regular expressions must be surrounded by slashes. A regular expres-
sion instructs the compiler to import all symbols whose names match
that expression. For example, the following statement imports from
‘A.mf’ all symbols whose names begin with ‘foo’ and contain at least
one digit after it:

from A import ’/^foo.*[0-9]/’.

The type of regular expressions used in the ‘from’ statement is controlled
by #pragma regex (see Section 4.2.2 [regex], page 54).

3. Regular expression with transformation
Regular expression may be followed by a s-expression, i.e. a sed-like
expression of the form:

s/regexp/replace/[flags]

where regexp is a regular expression, replace is a replacement for each
part of the input that matches regexp. S-expressions and their parts
are discussed in detail in Appendix C [s-expression], page 225.
The effect of such construct is to import all symbols that match the
regular expression and apply the s-expression to their names.
For example:

from A import ’/^foo.*[0-9]/s/.*/my_&/’.

This statement imports all symbols whose names begin with ‘foo’ and
contain at least one digit after it, and renames them, by prefixing their
names with the string ‘my_’. Thus, if ‘A.mf’ declared a function ‘foo_1’,
it becomes visible under the name of ‘my_foo_1’.

4.22 MFL Preprocessor
Before compiling the script file, mailfromd preprocesses it. The built-in
preprocessor handles only file inclusion (see [include], page 51), while the
rest of traditional facilities, such as macro expansion, are supported via m4,
which is used as an external preprocessor.

The detailed description of m4 facilities lies far beyond the scope of this
document. You will find a complete user manual in Section “GNU M4” in

Chapter 4: Mail Filtering Language 105

GNU M4 macro processor. For the rest of this section we assume the reader
is sufficiently acquainted with m4 macro processor.

The external preprocessor is invoked with ‘-s’ flag, instructing it to in-
clude line synchronization information in its output, which is subsequently
used by MFL compiler for purposes of error reporting. The initial set of
macro definitions is supplied in file ‘pp-setup’, located in the library search
path8, which is fed to the preprocessor input before the script file itself. The
default ‘pp-setup’ file renames all m4 built-in macro names so they all start
with the prefix ‘m4_’9. It changes comment characters to ‘/*’, ‘*/’ pair,
and leaves the default quoting characters, grave (‘‘’) and acute (‘’’) accents
without change. Finally, ‘pp-setup’ defines the following macros:

[M4 Macro]boolean defined (identifier)
The identifier must be the name of an optional abstract argument to the
function. This macro must be used only within a function definition. It
expands to the MFL expression that yields true if the actual parameter
is supplied for identifier. For example:

func rcut(string text; number num)

returns string

do

if (defined(num))

return substr(text, length(text) - num)

else

return text

fi

done

This function will return last num characters of text if num is supplied,
and entire text otherwise, e.g.:

rcut("text string") ⇒ "text string"

rcut("text string", 3) ⇒ "ing"

Invoking the defined macro with the name of a mandatory argument
yields true

[M4 Macro]printf (format , . . .)
Provides a printf statement, that formats its optional parameters in
accordance with format and sends the resulting string to the current
log output (see Section 3.18 [Logging and Debugging], page 43). See
Section 5.3 [String formatting], page 117, for a description of format.
Example usage:

printf(’Function %s returned %d’, funcname, retcode)

[M4 Macro]string _ (msgid)
A convenience macro. Expands to a call to gettext (see Section 5.33
[NLS Functions], page 162).

8 It is usually located in ‘/usr/local/share/mailfromd/7.99.90/include/pp-setup’.
9 This is similar to GNU m4 ‘--prefix-builtin’ options. This approach was chosen to

allow for using non-GNU m4 implementations as well.

106 Mailfromd Manual

[M4 Macro]N_ (msgid)
A convenience macro, that expands to msgid verbatim. It is intended to
mark the literal strings that should appear in the ‘.po’ file, where actual
call to gettext (see Section 5.33 [NLS Functions], page 162) cannot be
used. For example:

/* Mark the variable for translation: cannot use gettext here */

string message N_("Mail accepted")

prog envfrom

do

...

/* Translate and log the message */

echo gettext(message)

You can obtain the preprocessed output, without starting actual compi-
lation, using ‘-E’ command line option:

$ mailfromd -E file.mf

The output is in the form of preprocessed source code, which is sent to
the standard output. This can be useful, among others, to debug your own
macro definitions.

Macro definitions and deletions can be made on the command line, by
using the ‘-D’ and ‘-U’ options. They have the following format:

‘-D name[=value]’
‘--define=name[=value]’

Define a symbol name to have a value value. If value is not
supplied, the value is taken to be the empty string. The value
can be any string, and the macro can be defined to take argu-
ments, just as if it was defined from within the input using the
m4_define statement.
For example, the following invocation defines symbol COMPAT to
have a value 43:

$ mailfromf -DCOMPAT=43

‘-U name ’

‘--undefine=name ’
A counterpart of the ‘-D’ option is the option ‘-U’
(‘--undefine’). It undefines a preprocessor symbol whose
name is given as its argument. The following example undefines
the symbol COMPAT:

$ mailfromf -UCOMPAT

The following two options are supplied mainly for debugging purposes:

‘--no-preprocessor’
Disables the external preprocessor.

Chapter 4: Mail Filtering Language 107

‘--preprocessor=command ’
Use command as external preprocessor. Be especially careful
with this option, because mailfromd cannot verify whether com-
mand is actually some kind of a preprocessor or not.

4.23 Example of a Filter Script File
In this section we will discuss a working example of the filter script file.
For the ease of illustration, it is divided in several sections. Each section is
prefaced with a comment explaining its function.

This filter assumes that the ‘mailfromd.conf’ file contains the following:
relayed-domain-file (/etc/mail/sendmail.cw,

/etc/mail/relay-domains);

io-timeout 33;

database cache {

negative-expire-interval 1 day;

positive-expire-interval 2 weeks;

};

Of course, the exact parameter settings may vary, what is important is
that they be declared. See Chapter 7 [Mailfromd Configuration], page 173,
for a description of mailfromd configuration file syntax.

Now, let’s return to the script. Its first part defines the configuration
settings for this host:

#pragma regex +extended +icase

set mailfrom_address "<>"

set ehlo_domain "gnu.org.ua"

The second part loads the necessary source modules:
require ’status’

require ’dns’

require ’rateok’

Next we define envfrom handler. In the first two rules, it accepts all
mails coming from the null address and from the machines which we relay:

prog envfrom

do

if $f = ""

accept

elif relayed hostname($client_addr)

accept

elif hostname($client_addr) = $client_addr

reject 550 5.7.7 "IP address does not resolve"

Next rule rejects all messages coming from hosts with dynamic IP ad-
dresses. A regular expression used to catch such hosts is not 100% fail-proof,
but it tries to cover most existing host naming patterns:

elif hostname($client_addr) matches

".*(adsl|sdsl|hdsl|ldsl|xdsl|dialin|dialup|\

ppp|dhcp|dynamic|[-.]cpe[-.]).*"

reject 550 5.7.1 "Use your SMTP relay"

108 Mailfromd Manual

Messages coming from the machines whose host names contain something
similar to an IP are subject to strict checking:

elif hostname($client_addr) matches

".*[0-9]{1,3}[-.][0-9]{1,3}[-.][0-9]{1,3}[-.][0-9]{1,3}.*"

on poll host $client_addr for $f do

when success:

pass

when not_found or failure:

reject 550 5.1.0 "Sender validity not confirmed"

when temp_failure:

tempfail

done

If the sender domain is relayed by any of the yahoo.com or
nameserver.com ‘MX’s, no checks are performed. We will greylist this
message in envrcpt handler:

elif $f mx fnmatches "*.yahoo.com"

or $f mx fnmatches "*.namaeserver.com"

pass

Finally, if the message does not meet any of the above conditions, it is
verified by the standard procedure:

else

on poll $f do

when success:

pass

when not_found or failure:

reject 550 5.1.0 "Sender validity not confirmed"

when temp_failure:

tempfail

done

fi

At the end of the handler we check if the sender-client pair does not
exceed allowed mail sending rate:

if not rateok("$f-$client_addr", interval("1 hour 30 minutes"), 100)

tempfail 450 4.7.0 "Mail sending rate exceeded. Try again later"

fi

done

Next part defines the envrcpt handler. Its primary purpose is to greylist
messages from some domains that could not be checked otherwise:

prog envrcpt

do

set gltime 300

if $f mx fnmatches "*.yahoo.com"

or $f mx fnmatches "*.namaeserver.com"

and not dbmap("/var/run/whitelist.db", $client_addr)

if greylist("$client_addr-$f-$rcpt_addr", gltime)

if greylist_seconds_left = gltime

tempfail 450 4.7.0

"You are greylisted for %gltime seconds"

else

Chapter 4: Mail Filtering Language 109

tempfail 450 4.7.0

"Still greylisted for " .

%greylist_seconds_left . " seconds"

fi

fi

fi

done

4.24 Reserved Words
For your reference, here is an alphabetical list of all reserved words:
• defpreproc
• defstatedir
• file
• function
• line
• major
• minor
• module
• package
• patch
• preproc
• statedir
• version
• accept
• add
• and
• alias
• begin
• break
• bye
• case
• catch
• const
• continue
• default
• delete
• discard
• do
• done

110 Mailfromd Manual

• echo
• end
• elif
• else
• fi
• fnmatches
• for
• from
• func
• if
• import
• loop
• matches
• module
• next
• not
• number
• on
• or
• pass
• precious
• prog
• public
• reject
• replace
• return
• returns
• require
• set
• static
• string
• switch
• tempfail
• throw
• try
• vaptr
• when

Chapter 4: Mail Filtering Language 111

• while

Several keywords are context-dependent: mx is a keyword if it appears
before matches or fnmatches. Following strings are keywords in on context:
• as
• host
• poll

The following keywords are preprocessor macros:
• defined
• (an underscore)
• N

Any keyword beginning with a ‘m4_’ prefix is a reserved preprocessor
symbol.

Chapter 5: The MFL Library Functions 113

5 The MFL Library Functions

This chapter describes library functions available in Mailfromd version
7.99.90.

5.1 Sendmail Macro Access Functions

[Built-in Function]string getmacro (string macro)
Returns the value of Sendmail macro macro. If macro is not defined,
raises the e_macroundef exception.
Calling getmacro(name) is completely equivalent to referencing ${name},
except that it allows to construct macro names programmatically, e.g.:

if getmacro("auth_%var") = "foo"

...

fi

[Built-in Function]number macro_defined (string name)
Return true if Sendmail macro name is defined.

Notice, that if your MTA supports macro name negotiation1, you will
have to export macro names used by these two functions using ‘#pragma
miltermacros’ construct. Consider this example:

func authcheck(string name)

do

string macname "auth_%name"

if macro_defined(macname)

if getmacro(macname)

...

fi

fi

done

#pragma miltermacros envfrom auth_authen

prog envfrom

do

authcheck("authen")

done

In this case, the parser cannot deduce that the envfrom handler will
attempt to reference the ‘auth_authen’ macro, therefore the ‘#pragma
miltermacros’ is used to help it.

1 That is, if it supports Milter protocol 6 and upper. Sendmail 8.14.0 and Postfix 2.6
and newer do. MeTA1 (via pmult) does as well. See Chapter 9 [MTA Configuration],
page 195, for more details.

114 Mailfromd Manual

5.2 String Manipulation Functions

[Built-in Function]string domainpart (string str)
Returns the domain part of str, if it is a valid email address, otherwise
returns str itself.

domainpart("gray") ⇒ "gray"

domainpart("gray@gnu.org.ua") ⇒ "gnu.org.ua"

[Built-in Function]number index (string s , string t)
[Built-in Function]number index (string s , string t , number start)

Returns the index of the first occurrence of the string t in the string s, or
-1 if t is not present.

index("string of rings", "ring") ⇒ 2

Optional argument start, if supplied, indicates the position in string where
to start searching.

index("string of rings", "ring", 3) ⇒ 10

To find the last occurrence of a substring, use the function rindex (see
[rindex], page 115).

[Built-in Function]number interval (string str)
Converts str, which should be a valid time interval specification (see [time
interval specification], page 173), to seconds.

[Built-in Function]number length (string str)
Returns the length of the string str in bytes.

length("string") ⇒ 6

[Built-in Function]string dequote (string str)
Removes ‘<’ and ‘>’ surrounding str. If str is not enclosed by angle
brackets or these are unbalanced, the argument is returned unchanged:

dequote("<root@gnu.org.ua>") ⇒ "root@gnu.org.ua"

dequote("root@gnu.org.ua") ⇒ "root@gnu.org.ua"

dequote("there>") ⇒ "there>"

[Built-in Function]string localpart (string str)
Returns the local part of str if it is a valid email address, otherwise returns
str unchanged.

localpart("gray") ⇒ "gray"

localpart("gray@gnu.org.ua") ⇒ "gray"

[Built-in Function]string replstr (string s , number n)
Replicate a string, i.e. return a string, consisting of s repeated n times:

replstr("12", 3) ⇒ "121212"

[Built-in Function]string revstr (string s)
Returns the string composed of the characters from s in reversed order:

revstr("foobar") ⇒ "raboof"

Chapter 5: The MFL Library Functions 115

[Built-in Function]number rindex (string s , string t)
[Built-in Function]number rindex (string s , string t , number

start)
Returns the index of the last occurrence of the string t in the string s, or
-1 if t is not present.

rindex("string of rings", "ring") ⇒ 10

Optional argument start, if supplied, indicates the position in string where
to start searching. E.g.:

rindex("string of rings", "ring", 10) ⇒ 2

See also [String manipulation], page 114.

[Built-in Function]string substr (string str , number start)
[Built-in Function]string substr (string str , number start ,

number length)
Returns the at most length-character substring of str starting at start. If
length is omitted, the rest of str is used.
If length is greater than the actual length of the string, the e_range
exception is signalled.

substr("mailfrom", 4) ⇒ "from"

substr("mailfrom", 4, 2) ⇒ "fr"

[Built-in Function]string substring (string str , number start ,
number end)

Returns a substring of str between offsets start and end, inclusive. Neg-
ative end means offset from the end of the string. In other words, yo ob-
tain a substring from start to the end of the string, use substring(str,
start, -1):

substring("mailfrom", 0, 3) ⇒ "mail"

substring("mailfrom", 2, 5) ⇒ "ilfr"

substring("mailfrom", 4, -1) ⇒ "from"

substring("mailfrom", 4, length("mailfrom") - 1) ⇒ "from"

substring("mailfrom", 4, -2) ⇒ "fro"

This function signals e_range exception if either start or end are outside
the string length.

[Built-in Function]string tolower (string str)
Returns a copy of the string str, with all the upper-case characters trans-
lated to their corresponding lower-case counterparts. Non-alphabetic
characters are left unchanged.

tolower("MAIL") ⇒ "mail"

[Built-in Function]string toupper (string str)
Returns a copy of the string str, with all the lower-case characters trans-
lated to their corresponding upper-case counterparts. Non-alphabetic
characters are left unchanged.

toupper("mail") ⇒ "MAIL"

116 Mailfromd Manual

[Library Function]string sa_format_score (number code ,
number prec)

Format code as a floating-point number with prec decimal digits:
sa_format_score(5000, 3) ⇒ "5.000"

This function is convenient for formatting SpamAssassin scores for use in
message headers and textual reports. It is defined in module ‘sa.mf’.
See [sa], page 148, for examples of its use.

[Library Function]string sa_format_report_header (string
text)

Format a SpamAssassin report text in order to include it in a RFC 822
header. This function selects the score listing from text, and prefixes each
line with ‘* ’. Its result looks like:

* 0.2 NO_REAL_NAME From: does not include a real name

* 0.1 HTML_MESSAGE BODY: HTML included in message

See [sa], page 148, for examples of its use.

[Library Function]string strip_domain_part (string domain ,
number n)

Returns at most n last components of the domain name domain. If n is
0 the function returns domain.
This function is defined in ‘strip_domain_part.mf’ module (see
Section 4.21 [Modules], page 102).
Examples:

require strip_domain_part

strip_domain_part("puszcza.gnu.org.ua", 2) ⇒ "org.ua"

strip_domain_part("puszcza.gnu.org.ua", 0) ⇒ "puszcza.gnu.org.ua"

[Library Function]boolean is_ip (string str)
Returns ‘true’ if str is a valid IPv4 address. This function is defined in
‘is_ip.mf’ module (see Section 4.21 [Modules], page 102).
For example:

require is_ip

is_ip("1.2.3.4") ⇒ 1

is_ip("1.2.3.x") ⇒ 0

is_ip("blah") ⇒ 0

is_ip("255.255.255.255") ⇒ 1

is_ip("0.0.0.0") ⇒ 1

[Library Function]string revip (string ip)
Reverses octets in ip, which must be a valid string representation of an
IPv4 address.
Example:
revip("127.0.0.1") ⇒ "1.0.0.127"

Chapter 5: The MFL Library Functions 117

[Library Function]string verp_extract_user (string email ,
string domain)

If email is a valid VERP-style email address for domain, this function
returns the user name, corresponding to that email. Otherwise, it returns
empty string.

verp_extract_user("gray=gnu.org.ua@tuhs.org", ’gnu\..*’)
⇒ "gray"

5.3 String formatting

[Built-in Function]string sprintf (string format , . . .)
The function sprintf formats its argument according to format (see be-
low) and returns the resulting string. It takes varying number of param-
eters, the only mandatory one being format.

Format string

The format string is a simplified version of the format argument to C printf-
family functions.

The format string is composed of zero or more directives: ordinary char-
acters (not ‘%’), which are copied unchanged to the output stream; and
conversion specifications, each of which results in fetching zero or more sub-
sequent arguments. Each conversion specification is introduced by the char-
acter ‘%’, and ends with a conversion specifier. In between there may be
(in this order) zero or more flags, an optional minimum field width, and an
optional precision.

Notice, that in practice that means that you should use single quotes
with the format arguments, to protect conversion specifications from being
recognized as variable references (see [singe-vs-double], page 58).

No type conversion is done on arguments, so it is important that the sup-
plied arguments match their corresponding conversion specifiers. By default,
the arguments are used in the order given, where each ‘*’ and each conver-
sion specifier asks for the next argument. If insufficiently many arguments
are given, sprintf raises ‘e_range’ exception. One can also specify explic-
itly which argument is taken, at each place where an argument is required,
by writing ‘%m$’, instead of ‘%’ and ‘*m$’ instead of ‘*’, where the decimal
integer m denotes the position in the argument list of the desired argument,
indexed starting from 1. Thus,

sprintf(’%*d’, width, num);

and
sprintf(’%2$*1$d’, width, num);

are equivalent. The second style allows repeated references to the same
argument.

118 Mailfromd Manual

Flag characters

The character ‘%’ is followed by zero or more of the following flags:

‘#’ The value should be converted to an alternate form. For ‘o’
conversions, the first character of the output string is made zero
(by prefixing a ‘0’ if it was not zero already). For ‘x’ and ‘X’
conversions, a non-zero result has the string ‘0x’ (or ‘0X’ for ‘X’
conversions) prepended to it. Other conversions are not affected
by this flag.

‘0’ The value should be zero padded. For ‘d’, ‘i’, ‘o’, ‘u’, ‘x’, and
‘X’ conversions, the converted value is padded on the left with
zeros rather than blanks. If the ‘0’ and ‘-’ flags both appear, the
‘0’ flag is ignored. If a precision is given, the ‘0’ flag is ignored.
Other conversions are not affected by this flag.

‘-’ The converted value is to be left adjusted on the field bound-
ary. (The default is right justification.) The converted value is
padded on the right with blanks, rather than on the left with
blanks or zeros. A ‘-’ overrides a ‘0’ if both are given.

‘’ ’ (a space)’
A blank should be left before a positive number (or empty string)
produced by a signed conversion.

‘+’ A sign (‘+’ or ‘-’) always be placed before a number produced by
a signed conversion. By default a sign is used only for negative
numbers. A ‘+’ overrides a space if both are used.

Field width

An optional decimal digit string (with nonzero first digit) specifying a min-
imum field width. If the converted value has fewer characters than the
field width, it will be padded with spaces on the left (or right, if the left-
adjustment flag has been given). Instead of a decimal digit string one may
write ‘*’ or ‘*m$’ (for some decimal integer m) to specify that the field width
is given in the next argument, or in the m-th argument, respectively, which
must be of numeric type. A negative field width is taken as a ‘-’ flag followed
by a positive field width. In no case does a non-existent or small field width
cause truncation of a field; if the result of a conversion is wider than the field
width, the field is expanded to contain the conversion result.

Precision

An optional precision, in the form of a period (‘.’) followed by an optional
decimal digit string. Instead of a decimal digit string one may write ‘*’ or
‘*m$’ (for some decimal integer m) to specify that the precision is given in
the next argument, or in the m-th argument, respectively, which must be of
numeric type. If the precision is given as just ‘.’, or the precision is negative,
the precision is taken to be zero. This gives the minimum number of digits to

Chapter 5: The MFL Library Functions 119

appear for ‘d’, ‘i’, ‘o’, ‘u’, ‘x’, and ‘X’ conversions, or the maximum number
of characters to be printed from a string for the ‘s’ conversion.

Conversion specifier

A character that specifies the type of conversion to be applied. The conver-
sion specifiers and their meanings are:

d
i The numeric argument is converted to signed decimal notation.

The precision, if any, gives the minimum number of digits that
must appear; if the converted value requires fewer digits, it is
padded on the left with zeros. The default precision is ‘1’. When
‘0’ is printed with an explicit precision ‘0’, the output is empty.

o
u
x
X The numeric argument is converted to unsigned octal (‘o’), un-

signed decimal (‘u’), or unsigned hexadecimal (‘x’ and ‘X’) no-
tation. The letters ‘abcdef’ are used for ‘x’ conversions; the
letters ‘ABCDEF’ are used for ‘X’ conversions. The precision, if
any, gives the minimum number of digits that must appear; if
the converted value requires fewer digits, it is padded on the left
with zeros. The default precision is ‘1’. When ‘0’ is printed with
an explicit precision 0, the output is empty.

s The string argument is written to the output. If a precision is
specified, no more than the number specified of characters are
written.

% A ‘%’ is written. No argument is converted. The complete con-
version specification is ‘%%’.

5.4 Character Type
These functions check whether all characters of str fall into a certain charac-
ter class according to the ‘C’ (‘POSIX’) locale2. ‘True’ (1) is returned if they
do, ‘false’ (0) is returned otherwise. In the latter case, the global variable
ctype_mismatch is set to the index of the first character that is outside of
the character class (characters are indexed from 0).

[Built-in Function]number isalnum (string str)
Checks for alphanumeric characters:

isalnum("a123") ⇒ 1

isalnum("a.123") ⇒ 0 (ctype_mismatch = 1)

2 Support for other locales is planned for future versions.

120 Mailfromd Manual

[Built-in Function]number isalpha (string str)
Checks for an alphabetic character:

isalnum("abc") ⇒ 1

isalnum("a123") ⇒ 0

[Built-in Function]number isascii (string str)
Checks whether all characters in str are 7-bit ones, that fit into the ASCII
character set.

isascii("abc") ⇒ 1

isascii("ab\0200") ⇒ 0

[Built-in Function]number isblank (string str)
Checks if str contains only blank characters; that is, spaces or tabs.

[Built-in Function]number iscntrl (string str)
Checks for control characters.

[Built-in Function]number isdigit (string str)
Checks for digits (0 through 9).

[Built-in Function]number isgraph (string str)
Checks for any printable characters except spaces.

[Built-in Function]number islower (string str)
Checks for lower-case characters.

[Built-in Function]number isprint (string str)
Checks for printable characters including space.

[Built-in Function]number ispunct (string str)
Checks for any printable characters which are not a spaces or alphanu-
meric characters.

[Built-in Function]number isspace (string str)
Checks for white-space characters, i.e.: space, form-feed (‘\f’), newline
(‘\n’), carriage return (‘\r’), horizontal tab (‘\t’), and vertical tab (‘\v’).

[Built-in Function]number isupper (string str)
Checks for uppercase letters.

[Built-in Function]number isxdigit (string str)
Checks for hexadecimal digits, i.e. one of ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’,
‘8’, ‘9’, ‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’.

5.5 Envelope Modification Functions
Envelope modification functions add or delete recipient addresses from the
message envelope. This allows MFL scripts to redirect messages to another
addresses.

Chapter 5: The MFL Library Functions 121

[Built-in Function]void rcpt_add (string address)
Add the e-mail address to the envelope.

[Built-in Function]void rcpt_delete (string address)
Remove address from the envelope.

The following example code uses these functions to implement a simple
alias-like capability:

prog envrcpt

do

string alias dbget(aliasdb, $1, "NULL", 1)

if alias != "NULL"

rcpt_delete($1)

rcpt_add(alias)

fi

done

5.6 Header Modification Functions
There are two ways to modify message headers in a MFL script. First is
to use header actions, described in Section 4.16.1 [Actions], page 86, and
the second way is to use message modification functions. Compared with
the actions, the functions offer a series of advantages. For example, using
functions you can construct the name of the header to operate upon (e.g.
by concatenating several arguments), something which is impossible when
using actions. Moreover, apart from three basic operations (add, modify and
remove), as supported by header actions, header functions allow to insert a
new header into a particular place.

[Built-in Function]void header_add (string name , string value [,
number idx])

Adds a header ‘name: value ’ to the message. If idx is given, it specifies
a 0-based index in the header list where to insert this header.
If idx is not supplied, the header is appended to the end of the header
list.
In contrast to the add action, this function allows to construct the header
name using arbitrary MFL expressions.

[Built-in Function]void header_insert (string name , string value ,
number idx)

This function is equivalent to header_add with three arguments, i.e. it
inserts a header ‘name: ‘value’’ at idxth header position in the message.

[Built-in Function]void header_delete (string name [, number
index])

Delete header name from the envelope. If index is given, delete indexth
instance of the header name.
Notice the differences between this function and the delete action:

122 Mailfromd Manual

1. It allows to construct the header name, whereas delete requires it
to be a literal string.

2. Optional index argument allows to select a particular header instance
to delete.

[Built-in Function]void header_replace (string name , string
value [, number index])

Replace the value of the header name with value. If index is given, replace
indexth instance of header name.
Notice the differences between this function and the replace action:
1. It allows to construct the header name, whereas replace requires it

to be a literal string.
2. Optional index argument allows to select a particular header instance

to replace.

5.7 Body Modification Functions
Body modification is an experimental feature of MFL. The version 7.99.90
provides only one function for that purpose.

[Built-in Function]void replbody (string text)
Replace the body of the message with text. Notice, that text must not
contain RFC 822 headers. See the previous section if you want to manip-
ulate message headers.
Example:

replbody("Body of this message has been removed by the mail filter.")

No restrictions are imposed on the format of text.

5.8 Message Modification Queue
Message modification functions described in the previous subsections do not
take effect immediately, in the moment they are called. Instead they store
the requested changes in the internal message modification queue. These
changes are applied at the end of processing, before ‘eom’ stage finishes (see
Figure 3.1).

One important consequence of this way of operation is that calling any
MTA action (see Section 4.16.1 [Actions], page 86), causes all prior modifica-
tions to the message to be ignored. That is because after receiving the action
command, MTA will not call filter for that message any more. In particular,
the ‘eom’ handler will not be called, and the message modification queue will
not be flushed. While it is logical for such actions as reject or tempfail,
it may be quite confusing for accept. Consider, for example, the following
code:

Chapter 5: The MFL Library Functions 123

prog envfrom

do

if $1 == ""

header_add("X-Filter", "foo")

accept

fi

done

Obviously, the intention was to add a ‘X-Filter’ header and accept the
message if it was sent from the null address. What happens in reality, how-
ever, is a bit different: the message is accepted, but no header is added to
it. If you need to accept the message and retain any modifications you have
done to it, you need to use an auxiliary variable, e.g.:

number accepted 0

prog envfrom

do

if $1 == ""

header_add("X-Filter", "foo")

set accepted 1

fi

done

Then, test this variable for non-zero value at the beginning of each sub-
sequent handler, e.g.:

prog data

do

if accepted

continue

fi

...

done

To help you trace such problematic usages of accept, mailfromd emits
the following warning:

RUNTIME WARNING near /etc/mailfromd.mf:36: ‘accept’ causes previous

message modification commands to be ignored; call mmq_purge() prior

to ‘accept’, to suppress this warning

If it is OK to lose all modifications, call mmq_purge, as suggested in this
message.

[Built-in Function]void mmq_purge ()
Remove all modification requests from the queue. This function undoes
the effect of any of the following functions, if they had been called previ-
ously: rcpt_add, rcpt_delete, header_add, header_insert, header_
delete, header_replace, replbody, quarantine.

5.9 Mail Header Functions

[Built-in Function]string message_header_encode (string text ,
[string enc , string charset])

Encode text in accordance with RFC 2047. Optional arguments:

124 Mailfromd Manual

enc Encoding to use. Valid values are ‘quoted-printable’, or ‘Q’
(the default) and ‘base64’, or ‘B’.

charset Character set. By default ‘UTF-8’.

If the function is unable to encode the string, it raises the exception
e_failure.
For example:

set string "Keld Jørn Simonsen <keld@dkuug.dk>"

message_header_encode(string, "ISO-8859-1")
⇒ "=?ISO-8859-1?Q?Keld_J=F8rn_Simonsen?= <keld@dkuug.dk>"

[Built-in Function]string message_header_decode (string text ,
[string charset])

text must be a header value encoded in accordance with RFC 2047. The
function returns the decoded string. If the decoding fails, it raises e_
failure exception. The optional argument charset specifies the character
set to use (default – ‘UTF-8’).

set string "=?ISO-8859-1?Q?Keld_J=F8rn_Simonsen?= <keld@dkuug.dk>"

message_header_decode(string)
⇒ "Keld Jørn Simonsen <keld@dkuug.dk>"

[Built-in Function]string unfold (string text)
If text is a “folded” multi-line RFC 2822 header value, unfold it. If text
is a single-line string, return its unchanged copy.
For example, suppose that the message being processed contained the
following header:

List-Id: Sent bugreports to

<some-address@some.net>

Then, applying unfold to its value3 will produce:
Sent bugreports to <some-address@some.net>

5.10 Mail Body Functions

[Built-in Function]string body_string (pointer text , number
count)

Convert first count bytes from the memory location pointed to by text
into a regular string.
This function is intended to convert the $1 argument passed to a body
handler to a regular MFL string. For more information about its use, see
[body handler], page 69.

3 For example:

prog header

do

echo unfold($2)

done

Chapter 5: The MFL Library Functions 125

5.11 EOM Functions
The following function is available only in the ‘eom’ handler:

[Built-in Function]void progress ()
Notify the MTA that the filter is still processing the message. This causes
MTA to restart its timeouts and allows additional amount of time for
execution of ‘eom’.
Use this function if your ‘eom’ handler needs additional time for processing
the message (e.g. for scanning a very big MIME message). You may call
it several times, if the need be, although such usage is not recommended.

5.12 Current Message Functions

[Built-in Function]number current_message ()
This function can be used in eom handlers only. It returns a message
descriptor referring to the current message. See Section 5.14 [Message
functions], page 127, for a description of functions for accessing messages.

The functions below access the headers from the current message. They
are available in the following handlers: eoh, body, eom.

[Built-in Function]number current_header_count ([string name])
Return number of headers in the current message. If name is specified,
return number of headers that have this name.

current_header_count() ⇒ 6

current_header_count("Subject") ⇒ 1

[Built-in Function]string current_header_nth_name (number n)
Return the name of the nth header. The index n is 1-based.

[Built-in Function]string current_header_nth_value (number
n)

Return the value of the nth header. The index n is 1-based.

[Built-in Function]string current_header (string name [, number
n])

Return the value of the named header, e.g.:
set s current_header("Subject")

Optional second argument specifies the header instance, if there are more
than 1 header of the same name, e.g.:

set s current_header("Received", 2)

Header indices are 1-based.

All current header function raise the e_not_found exception if the re-
quested header was not found.

126 Mailfromd Manual

5.13 Mailbox Functions
A set of functions is provided for accessing mailboxes and messages within
them. In this subsection we describe the functions for accessing mailboxes.

A mailbox is opened using mailbox_open function:

[Built-in Function]number mailbox_open (string url [, string mode ,
string perms])

Open a mailbox identified by url. Return a mailbox descriptor: a unique
numeric identifier that can subsequently be used to access this mailbox.
The optional mode argument specifies the access mode for the mailbox.
Its valid values are:

Value Meaning
r Open mailbox for reading. This is the default.
w Open mailbox for writing. If the mailbox does not

exist, it is created.
rw Open mailbox for reading and writing. If the mail-

box does not exist, it is created.
wr Same as ‘rw’.
w+ Open mailbox for reading and writing. If the mail-

box does not exist, it is created.
a Open mailbox for appending messages to it. If the

mailbox does not exist, an exception is signalled.
a+ Open mailbox for appending messages to it. If the

mailbox does not exist, it is created.

The number of mailbox descriptors available for simultaneous opening
is 64. This value can be changed using the max-open-mailboxes runtime
configuration statement (see Section 7.10 [conf-runtime], page 181).

[Built-in Function]number mailbox_messages_count (number
nmbx)

Return the number of messages in mailbox. The argument nmbx is a
valid mailbox descriptor as returned by a previous call to mailbox_open.

[Built-in Function]number mailbox_get_message (number mbx ,
number n)

Retrieve nth message from the mailbox identified by descriptor mbx. On
success, the function returns a message descriptor, an integer number
that can subsequently be used to access that message (see Section 5.14
[Message functions], page 127). On error, an exception is raised.
Messages in a mailbox are numbered starting from 1.

[Built-in Function]void mailbox_close (number nmbx)
Close a mailbox previously opened by mailbox_open.

Chapter 5: The MFL Library Functions 127

[Built-in Function]void mailbox_append_message (number nmbx ,
number nmsg)

Append message nmsg to mailbox nmbx. The message descriptor nsmg
must be obtained from a previous call to mailbox_get_message or
current_message (see [current message], page 125).

5.14 Message Functions
The functions described below retrieve information from RFC822 messages.
The message to operate upon is identified by its descriptor, an integer num-
ber returned by the previous call to mailbox_get_message (see Section 5.13
[Mailbox functions], page 126) or current_message (see [current message],
page 125) function. The maximum number of message descriptors is limited
by 1024. You can change this limit using the max-open-messages runtime
configuration statement (see Section 7.10 [conf-runtime], page 181).

[Built-in Function]number message_size (number nmsg)
Return the size of the message nmsg , in bytes. Notice, that if nmsg refers
to current message (see [current message], page 125), the returned value
is less than the size seen by the MTA, because mailfromd recodes CR-
LF sequences to LF, i.e. removes carriage returns (ASCII 13) occurring
before line feeds (ASCII 10. To obtain actual message length as seen by
the MTA, add the number of lines in the message:

set actual_length message_size(nmsg) + message_lines(nmsg)

[Built-in Function]number message_body_size (number nmsg)
Return the size, in bytes, of the body of message nmsg . See the note to
the message_size, above.

[Built-in Function]number message_header_size (number nmsg)
Return the size, in bytes of the headers of message nmsg . See the note
to the message_size, above.

[Built-in Function]number message_body_lines (number nmsg)
Return number of lines in the body of message referred to by descriptor
nmsg .

[Built-in Function]void message_body_rewind (number nmsg)
Rewind stream associated with the body of message referred to by de-
scriptor nmsg .
A call to message_body_read_line (see below) after calling this function
will return the first line from the message body.

[Built-in Function]void message_close (number nmsg)
Close the message identified by descriptor nmsg .

[Built-in Function]number message_count_parts (number nmsg)
Return number of parts in message nmsg , if it is a multipart (MIME)
message. If it is not, return ‘1’.

128 Mailfromd Manual

Use message_is_multipart to check whether message is a multipart one.

[Built-in Function]string message_find_header (number nmsg ,
string name [, number idx]) Return value of header name from the mes-
sage nmsg . If the message contains several headers with the same name,
optional parameter idx may be used to select one of them. Headers are
numbered from ‘1’.
If no matching header is not found, the not_found exception is raised. If
another error occurs, the failure exception is raised.
The returned string is a verbatim copy of the message contents (except
for eventual CR-LF -> LF translation, see above). You might need to
apply the unfold function to it (see Section 5.9 [Mail header functions],
page 123).

[Built-in Function]number message_get_part (number nmsg,
number n)

Extract nth part from the multipart message nmsg . Numeration of parts
begins from ‘1’. Return message descriptor referring to the extracted
part. Message parts are regarded as messages, so any message functions
can be applied to them.

[Built-in Function]boolean message_has_header (number nmsg ,
string name [, number idx])

Return true if message nmsg contains header with the given name. If
there are several headers with the same name, optional parameter idx
may be used to select one of them.

[Built-in Function]number message_header_count (number nmsg)
Return number of headers in message nmsg .

[Built-in Function]number message_header_lines (number nmsg)
Return number of lines occupied by headers in message nmsg .

[Built-in Function]boolean message_is_multipart (number
nmsg)

Return true if message nmsg is a multipart (MIME) message.

[Built-in Function]number message_lines (number nmsg)
Return total number of lines in message nmsg . The following relation
holds true:

message_lines(x) = message_body_lines(x)

+ message_header_lines(x) + 1

[Built-in Function]string message_read_body_line (number
nmsg)

Read and return next line from the body of the message nmsg . If there
are no more lines to read, raise the eof exception.
Use message_body_rewind (see above) to rewind the body stream and
read its contents again.

Chapter 5: The MFL Library Functions 129

[Built-in Function]string message_read_line (number nmsg)
Read and return next line from the message nmsg . If there are no more
lines to read, raise the eof exception.
Use message_rewind to rewind the message stream and read its contents
again.

[Built-in Function]void message_rewind (number nmsg)
Rewind the stream associated with message referred to by descriptor
nmsg .

5.15 Quarantine Functions

[Built-in Function]void quarantine (string text)
Place the message to the quarantine queue, using text as explanatory
reason.

5.16 Polling Functions
We have described the base notions about sender address verification (or
polling, for short) in Section 3.6 [Checking Sender Address], page 20. Here
we will describe the functions mailfromd offers for this purpose.

[Built-in Function]number _pollhost (string ip , string email ,
string domain , string mailfrom)

Poll SMTP host ip for email address email, using domain as EHLO domain
and mailfrom as MAIL FROM. Returns 0 or 1 depending on the result of the
test. In contrast to the strictpoll function, this function does not use
cache database and does not fall back to polling MX servers if the main
poll tempfails. The function can throw one of the following exceptions:
e_failure, e_temp_failure.

[Built-in Function]number _pollmx (string ip , string email , string
domain , string mailfrom)

Poll MXs of the domain for email address email, using domain as EHLO
domain and mailfrom as MAIL FROM address. Returns 0 or 1 depending
on the result of the test. In contrast to the stdpoll function, _pollmx
does not use cache database and does not fall back to polling the ip if
the poll fails. The function can throw one of the following exceptions:
e_failure, e_temp_failure.

[Built-in Function]number stdpoll (string email , string domain ,
string mailfrom)

Performs standard poll for email, using domain as EHLO domain and mail-
from as MAIL FROM address. Returns 0 or 1 depending on the result of
the test. Can raise one of the following exceptions: e_failure, e_temp_
failure.
In on statement context, it is synonymous to poll without explicit host.

130 Mailfromd Manual

[Built-in Function]number strictpoll (string host , string email ,
string domain , string mailfrom)

Performs strict poll for email on host host. See the description of stdpoll
for the detailed information.
In on context, it is synonymous to poll host host .

The mailfrom argument can be a comma-separated list of email addresses,
which can be useful for servers that are unusually picky about sender ad-
dresses. It is advised, however, that this list always contain the ‘<>’ address.
For example:

_pollhost($client_addr, $f, "domain", "postmaster@my.net,<>")

See also Section 7.7 [conf-callout], page 179.
Before returning, all described functions set the following built-in vari-

ables:

Variable Contains
last poll host Host name or IP address of the last polled host.
last poll send Last SMTP command, sent to this host. If nothing

was sent, it contains literal string ‘nothing’.
last poll recv Last SMTP reply received from this host. In case

of multi-line replies, only the first line is stored.
If nothing was received the variable contains the
string ‘nothing’.

cache used 1 if cached data were used instead of polling, 0
otherwise. This variable is set by stdpoll and
strictpoll. If it equals 1, none of the above
variables are modified. See [cache used example],
page 63, for an example.

Table 5.1: Variables set by polling functions

5.17 Internet address manipulation functions
Following functions operate on IPv4 addresses and CIDRs.

[Built-in Function]number ntohl (number n)
Converts the number n, from host to network byte order. The argument
n is treated as an unsigned 32-bit number.

[Built-in Function]number htonl (number n)
Converts the number n, from network to host byte order. The argument
n is treated as an unsigned 32-bit number.

[Built-in Function]number ntohs (number n)
The argument n is treated as an unsigned 16-bit number. The function
converts this number from network to host order.

Chapter 5: The MFL Library Functions 131

[Built-in Function]number htons (number n)
The argument n is treated as an unsigned 16-bit number. The function
converts this number from host to network order.

[Built-in Function]number inet_aton (string s)
Converts the Internet host address s from the standard numbers-and-dots
notation into the equivalent integer in host byte order.

inet_aton("127.0.0.1") ⇒ 2130706433

The numeric data type in MFL is signed, therefore on machines with 32
bit integers, this conversion can result in a negative number:

inet_aton("255.255.255.255") ⇒ -1

However, this does not affect arithmetical operations on IP addresses.

[Built-in Function]string inet_ntoa (number n)
Converts the Internet host address n, given in host byte order to string
in standard numbers-and-dots notation:

inet_ntoa(2130706433) ⇒ "127.0.0.1"

[Built-in Function]number len_to_netmask (number n)
Convert number of masked bits n to IPv4 netmask:

inet_ntoa(len_to_netmask(24)) ⇒ 255.255.255.0

inet_ntoa(len_to_netmask(7)) ⇒ 254.0.0.0

If n is greater than 32 the function raises e_range exception.

[Built-in Function]number netmask_to_len (number mask)
Convert IPv4 netmask mask into netmask length (number of bits pre-
served by the mask):

netmask_to_len(inet_aton("255.255.255.0")) ⇒ 24

netmask_to_len(inet_aton("254.0.0.0")) ⇒ 7

[Library Function]boolean match_cidr (string ip , string cidr)
This function is defined in ‘match_cidr.mf’ module (see Section 4.21
[Modules], page 102).
It returns true if the IP address ip pertains to the IP range cidr. The
first argument, ip, is a string representation of an IP address. The second
argument, cidr, is a string representation of a IP range in CIDR notation,
i.e. "A.B.C.D/N", where A.B.C.D is an IPv4 address and N specifies the
prefix length – the number of shared initial bits, counting from the left
side of the address.
The following example will reject the mail if the IP address of the sending
machine does not belong to the block 10.10.1.0/19:

if not match_cidr(${client_addr}, "10.10.1.0/19")

reject

fi

132 Mailfromd Manual

5.18 DNS Functions
Most DNS-related functions cache their results in the database ‘dns’, so no
matter how many times you use a particular function in your startup pro-
gram, it will result in at most one actual DNS lookup. See [DNS Cache
Management], page 135, for the description of the database and its manage-
ment.

The functions are implemented in two layers: primitive built-in functions
which raise exceptions if the lookup fails, and library calls that are warranted
to always return meaningful value without throwing exceptions.

The built-in layer is always available. The library calls become available
after requesting ‘dns.mf’ module (see Section 4.21 [Modules], page 102):

require dns

[Built-in Function]string dns_getaddr (string domain)
Returns a whitespace-separated list of IP addresses (A records) for do-
main. At most 64 addresses are returned. See Section 7.10 [conf-runtime],
page 181, for a description of how to change this limit.
This function does not use the DNS cache.

[Built-in Function]string dns_getname (string ipstr)
Returns a whitespace-separated list of domain names (PTR records) for
the IPv4 address ipstr. At most 64 names are returned. See Section 7.10
[conf-runtime], page 181, for a description of how to change this limit.
This function does not use the DNS cache.

[Built-in Function]string getmx (string domain [, number ip])
Returns a whitespace-separated list of ‘MX’ names (if ip is not given or if
it is 0) or ‘MX’ IP addresses (if ip!=0)) for domain. Within the returned
string, items are sorted in order of increasing ‘MX’ priority. If domain has
no ‘MX’ records, an empty string is returned. If the DNS query fails, getmx
raises an appropriate exception.
Examples:

getmx("mafra.cz") ⇒ "smtp1.mafra.cz smtp2.mafra.cz relay.iol.cz"

getmx("idnes.cz") ⇒ "smtp1.mafra.cz smtp2.mafra.cz relay.iol.cz"

getmx("gnu.org") ⇒ "mx10.gnu.org mx20.gnu.org"

getmx("org.pl") ⇒ ""

Notes:

1. The number of MX names or IP addresses returned by getmx is lim-
ited by the value of max-dns-reply-mx configuration statement (de-
fault 32). See Section 7.10 [conf-runtime], page 181.

2. The number of items returned by getmx(domain) can differ from
that obtained from getmx(domain, 1), e.g.:

Chapter 5: The MFL Library Functions 133

getmx("aol.com")
⇒ mailin-01.mx.aol.com mailin-02.mx.aol.com

mailin-03.mx.aol.com mailin-04.mx.aol.com

getmx("aol.com", 1)
⇒ 64.12.137.89 64.12.137.168 64.12.137.184

64.12.137.249 64.12.138.57 64.12.138.88

64.12.138.120 64.12.138.185 205.188.155.89

205.188.156.185 205.188.156.249 205.188.157.25

205.188.157.217 205.188.158.121 205.188.159.57

205.188.159.217

3. This interface will change in future releases, when array data types
are implemented.

[Built-in Function]boolean primitive_hasmx (string domain)
Returns true if the domain name given by its argument has any ‘MX’
records.
If the DNS query fails, this function throws failure or temp_failure.

[Library Function]boolean hasmx (string domain)
Returns true if the domain name given by its argument has any ‘MX’
records.
Otherwise, if domain has no ‘MX’s or if the DNS query fails, hasmx returns
false.

[Built-in Function]string primitive_hostname (string ip)
The ip argument should be a string representing an IP address in dotted-
quad notation. The function returns the canonical name of the host with
this IP address obtained from DNS lookup. For example

primitive_hostname (${client_addr})

returns the fully qualified domain name of the host represented by Send-
mail variable ‘client_addr’.
If there is no ‘PTR’ record for ip, primitive_hostname raises the exception
e_not_found.
If DNS query fails, the function raises failure or temp_failure, depend-
ing on the character of the failure.

[Library Function]string hostname (string ip)
The ip argument should be a string representing an IP address in dotted-
quad notation. The function returns the canonical name of the host with
this IP address obtained from DNS lookup.
If there is no ‘PTR’ record for ip, or if the lookup fails, the function returns
ip unchanged.
The previous mailfromd versions used the following paradigm to check if
an IP address resolves:

if hostname(ip) != ip

...

134 Mailfromd Manual

[Built-in Function]boolean primitive_ismx (string domain , string
host)

The domain argument is any valid domain name, the host is a host name
or IP address.
The function returns true if host is one of the ‘MX’ records for the domain.
If domain has no ‘MX’ records, primitive_ismx raises exception e_not_
found.
If DNS query fails, the function raises failure or temp_failure, depend-
ing on the character of the failure.
The number of ‘MX’ records examined by this function is limited by the
value of the max-dns-reply-mx configuration statement (see Section 7.10
[conf-runtime], page 181.

[Library Function]boolean ismx (string domain , string host)
The domain argument is any valid domain name, the host is a host name
or IP address.
The function returns true if host is one of the ‘MX’ records for the domain.
Otherwise it returns false.
If domain has no ‘MX’ records, or if the DNS query fails, the function
returns false.
The number of ‘MX’ records examined by this function is limited by the
value of the max-dns-reply-mx configuration statement (see Section 7.10
[conf-runtime], page 181.

[Built-in Function]string primitive_resolve (string host ,
[string domain])

Reverse of primitive_hostname. The primitive_resolve function re-
turns the IP address for the host name specified by host argument. If
host has no A records, the function raises the exception e_not_found.
If DNS lookup fails, the function raises failure or temp_failure, de-
pending on the character of the failure.
If the optional domain argument is given, it will be appended to host
(with an intermediate dot), before querying the DNS. For example, the
following two expressions will return the same value:

primitive_resolve("puszcza.gnu.org.ua")

primitive_resolve("puszcza", "gnu.org.ua")

There is a considerable internal difference between one-argument and two-
argument forms of primitive_resolve: the former queries DNS for an ‘A’
record, whereas the latter queries it for any record matching host in the
domain domain and then selects the most appropriate one. For example,
the following two calls are equivalent:

primitive_hostname("213.130.0.22")

primitive_resolve("22.0.130.213", "in-addr.arpa")

This makes it possible to use primitive_resolve for querying DNS black
listing domains. See [match dnsbl], page 155, for a working example of

Chapter 5: The MFL Library Functions 135

this approach. See also [match rhsbl], page 155, for another practical
example of the use of the two-argument form.

[Library Function]string resolve (string host , [string domain])
Reverse of hostname. The resolve function returns IP address for the
host name specified by host argument. If the host name cannot be re-
solved, or a DNS failure occurs, the function returns ‘"0"’.
This function is entirely equivalent to primitive_resolve (see above),
except that it never raises exceptions.

All the functions above use DNS cache database for caching DNS answers.
The database is normally named ‘statedir/dns.db’ (See [statedir], page 11,
for the description of statedir), but its actual name and location can be
set at the run time using database dns configuration file statement (see
Section 7.9 [conf-database], page 180). Each record in the database consists
of expiration time in seconds since the Epoch and the actual answer, which
depends on the type of the query (see below).

When called, any DNS function first looks if the corresponding query is
in the ‘dns’ database. It does so by building a lookup key, which consists
of query type and query argument separated by a single whitespace. The
query type is:
‘A’ for resolve
‘PTR’ for hostname
‘MX’ for hasmx and ismx

If the lookup key is present in the database and its expiration time is
not yet reached, the corresponding answer from the database is returned.
Otherwise, the function performs actual DNS lookup, stores the obtained
data in the database and returns it.

The expiration date for each new record is obtained by increasing the
current system timestamp by the value of TTL obtained from the DNS reply.
If the latter carried several TTLs (e.g. if it was an ‘MX’ request), the smallest
of them is used.

If the DNS lookup failed, the result is stored in the database as well. In
this case, the value part of the record consists only of the expiration time
(negative caching). It is computed by adding to the current timestamp the
negative expiration period, which defaults to 3600 seconds. The negative
expiration period can be configured using the negative-expire-interval
configuration file statement (see Section 7.9 [conf-database], page 180).

Thus, there are two statements in the configuration file that control the
settings of the DNS databases. The following example illustrates them:

database dns {

file "/var/run/mailfromd/dns.db";

negative-expire-interval 7200;

}

The contents of the DNS database can be listed using the following com-
mand:

136 Mailfromd Manual

$ mailfromd --list --format=dns

or:
$ mailfromd --list -Hdns

You can look up a particular entry as well. For example:
$ mailfromd --list -Hdns "A mx10.gnu.org"

A mx10.gnu.org: Sun Dec 3 10:56:12 2006 199.232.76.166

The above example shows that the IP address of ‘mx10.gnu.org’ and that
it expires on Sunday, December 3d, at 10:56:12.

Of course, the rest of database management options are also valid for
DNS database. See Section 3.15.3 [Database Maintenance], page 37, for
more information on these.

5.19 Geolocation functions
The geolocation functions allow to identify the country where the given
IP address or host name is located. These functions are available only if
the ‘GeoIP’ library is installed and mailfromd is compiled with the ‘GeoIP’
support. The ‘GeoIP’ is a geolocational package distributed by ‘MaxMind’
under the terms of the GNU Lesser General Public License. The library is
available from http://www.maxmind.com/app/c.

[Built-in Function]string geoip_country_code_by_addr (string
ip [, bool tlc])

Look up the ‘ISO 3166-1’ country code corresponding to the IP address
ip. If tlc is given and is not zero, return the 3 letter code, otherwise
return the 2 letter code.

[Built-in Function]string geoip_country_code_by_name (string
name [, bool tlc])

Look up the ‘ISO 3166-1’ country code corresponding to the host name
name. If tlc is given and is not zero, return the 3 letter code, otherwise
return the 2 letter code.

If it is impossible to locate the country, both functions raise the e_not_
found exception. If an error internal to the ‘GeoIP’ library occurs, they raise
the e_failure exception.

Applications may test whether the GeoIP support is present and enable
corresponding code blocks conditionally by testing if the ‘WITH_GEOIP’ m4
macro is defined. For example, the following code adds to the message the
‘X-Originator-Country’ header, containing the 2 letter code of the coun-
try where the client machine is located. If mailfromd is compiled without
‘GeoIP’ support, it does nothing:

m4_ifdef(‘WITH_GEOIP’,‘

header_add("X-Originator-Country", geoip_country_code_by_addr($client_addr))

’)

http://www.maxmind.com/app/c

Chapter 5: The MFL Library Functions 137

5.20 Database Functions
The functions described below provide a user interface to DBM databases.

Each DBM database is a separate disk file that keeps key/value pairs.
The interface allows to retrieve the value corresponding to a given key. Both
‘key’ and ‘value’ are null-terminated character strings. To lookup a key, it
is important to know whether its length includes the terminating null byte.
By default, it is assumed that it does not.

Another important database property is the file mode of the database
file. The default file mode is ‘640’ (i.e. ‘rw-r----’, in symbolic notation).

Both properties can be configured using the dbprop pragma:
#pragma dbprop pattern prop [prop]

The pattern is the database name or shell-style globbing pattern. Prop-
erties defined by that pragma apply to each database whose name matches
this pattern. If several dbprop pragmas match the database name, the one
that matches exactly is preferred.

The rest of arguments define properties for that database. The valid
values for prop are:
1. The word ‘null’, meaning that the terminating null byte is included in

the key length.
Setting ‘null’ property is necessary, for databases created with makemap
-N hash command.

2. File mode for the disk file. It can be either an octal number, or a
symbolic mode specification in ls-like format. E.g., the following two
formats are equivalent:

640

rw-r----

For example, consider the following pragmas:
#pragma dbprop /etc/mail/whitelist.db 640

It tells that the database file ‘whitelist.db’ has privileges ‘640’ and do
not include null in the key length.

Similarly, the following pragma:
#pragma dbprop ‘/etc/mail/*.db’ null 600

declares that all database files in directory ‘/etc/mail’ have privileges ‘640’
and include null terminator in the key length. Notice, the use of m4 quoting
characters in the example below. Without them, the sequence ‘/*’ would
have been taken as the beginning of a comment.

Additionally, for compatibility with previous versions (up to 5.0), the
terminating null property can be requested via an optional argument to the
database functions (in description below, marked as null).

[Built-in Function]boolean dbmap (string db , string key , [number
null])

Looks up key in the DBM file db and returns true if it is found.

138 Mailfromd Manual

See above for the meaning of null.
See [whitelisting], page 32, for an example of using this function.

[Built-in Function]string dbget (string db , string key [, string
default , number null])

Looks up key in the database db and returns the value associated with
it. If the key is not found returns default, if specified, or empty string
otherwise.
See above for the meaning of null.

[Built-in Function]void dbput (string db , string key , string value
[, number null , number mode])

Inserts in the database a record with the given key and value. If a record
with the given key already exists, its value is replaced with the supplied
one.
See above for the meaning of null. Optional mode allows to explicitly
specify the file mode for this database. See also #pragma dbprop, de-
scribed above.

[Built-in Function]void dbdel (string db , string key [, number
null , number mode])

Delete from the database the record with the given key . If there are no
such record, return without signalling error.
If the optional null argument is given and is not zero, the terminating
null character will be included in key length.
Optional mode allows to explicitly specify the file mode for this database.
See also #pragma dbprop, described above.

The functions above have also the corresponding exception-safe interfaces,
which return cleanly if the ‘e_dbfailure’ exception occurs. To use these
interfaces, request the ‘safedb.mf’ module:

require safedb

The exception-safe interfaces are:

[Library Function]string safedbmap (string db , string key [, string
default , number null])

This is an exception-safe interface to dbmap. If a database error occurs
while attempting to retrieve the record, safedbmap returns default or ‘0’,
if it is not defined.

[Library Function]string safedbget (string db , string key [, string
default , number null])

This is an exception-safe interface to dbget. If a database error occurs
while attempting to retrieve the record, safedbget returns default or
empty string, if it is not defined.

Chapter 5: The MFL Library Functions 139

[Library Function]void safedbput (string db , string key , string
value [, number null])

This is an exception-safe interface to dbput. If a database error occurs
while attempting to retrieve the record, the function returns without
raising exception.

[Library Function]void safedbdel (string db , string key [, number
null])

This is an exception-safe interface to dbdel. If a database error occurs
while attempting to delete the record, the function returns without raising
exception.

The verbosity of ‘safedb’ interfaces in case of database error is controlled
by the value of safedb_verbose variable. If it is ‘0’, these functions return
silently. This is the default behavior. Otherwise, if safedb_verbose is not
‘0’, these functions log the detailed diagnostics about the database error and
return.

The following functions provide a sequential access to the contents of a
DBM database:

[Built-in Function]number dbfirst (string name)
Start sequential access to the database name. The return value is an
opaque identifier, which is used by the remaining sequential access func-
tions. This number is ‘0’ if the database is empty.

[Built-in Function]number dbnext (number dn)
Select next record form the database. The argument dn is the access
identifier, returned by a previous call to dbfirst or dbnext.
Returns new access identifier. This number is ‘0’ if all records in the
database have been visited.

The usual approach for iterating over all records in a database dbname
is:

loop for number dbn dbfirst(dbname)

do

...

done while dbnext(dbn)

The following two functions can be used to access values of the currently
selected database record. Their argument, dn, is the access identifier, re-
turned by a previous call to dbfirst or dbnext.

[Built-in Function]string dbkey (number dn)
Return the key from the selected database record.

[Built-in Function]string dbvalue (number dn)
Return the value from the selected database record.

140 Mailfromd Manual

[Built-in Function]number db_expire_interval (string fmt)
The fmt argument is a database format identifier (see Section 3.15.1
[Database Formats], page 34). If it is valid, the function returns the ex-
piration interval for that format. Otherwise, db_expire_interval raises
the e_not_found exception.

[Built-in Function]string db_name (string fmtid)
The fmt argument is a database format identifier (see Section 3.15.1
[Database Formats], page 34). The function returns the file name for
that format. If fmtid does not match any known format, db_name raises
the e_not_found exception.

[Built-in Function]number db_get_active (string fmtid)
Returns the flag indicating whether the cache database fmtid is currently
enabled. If fmtid does not match any known format, db_name raises the
e_not_found exception.

[Built-in Function]void db_set_active (string fmtid , number
enable)

Enables the cache database fmtid if enable is not null, or disables it
otherwise. For example, to disable DNS caching, do:

db_set_active("dns", 0)

[Built-in Function]boolean relayed (string domain)
Returns true if the string domain is found in one of relayed domain files
(see Section 7.2 [conf-base], page 174). The usual construct is:

if relayed(hostname(${client_addr}))

...

which yields true if the IP address from Sendmail variable ‘client_addr’
is relayed by the local machine.

5.21 I/O functions
MFL provides a set of functions for writing to disk files, pipes or sockets
and reading from them. The idea behind them is the same as in most other
programming languages: first you open the resource with a call to open
which returns a descriptor i.e. an integer number uniquely identifying the
resource. Then you can write or read from it using this descriptor. Finally,
when the resource is no longer needed, you can close it with a call to close.

The number of available resource descriptors is limited. The default limit
is 1024. You can tailor it to your needs using the max-streams runtime
configuration statement. See Section 7.10 [conf-runtime], page 181, for a
detailed description.

[Built-in Function]number open (string name)
The name argument specifies the name of a resource to open and the
access rights you need to have on it. The function returns a descriptor

Chapter 5: The MFL Library Functions 141

of the opened stream, which can subsequently be used as an argument to
other I/O operations.
First symbols of name determine the type of the resource to be opened
and the access mode:

‘>’ The rest of name is a name of a file. Open the file for read-
write access. If the file exists, truncate it to zero length,
otherwise create the file.

‘>>’ The rest of name is a name of a file. Open the file for ap-
pending (writing at end of file). The file is created if it does
not exist.

‘|’ Treat the rest of name as the command name and its argu-
ments. Run this command and open its standard input for
writing. The standard error is closed before launching the
program. This can be altered by using the following versions
of this construct:

|2>null: command
Standard error is redirected to ‘/dev/null’.

|2>file:name command
Execute command with its standard error redi-
rected to the file name. If the file exists, it will
be truncated.

|2>>file:name command
Standard error of the command is appended to
the file name. If file does not exist, it will be
created.
The ‘|2>null:’ construct described above is a
shortcut for

|2>>file:/dev/null command

|2>syslog:facility [.priority] command
Standard error is redirected to the given syslog
facility and, optionally, priority . If the latter is
omitted, ‘LOG_ERR’ is assumed.
Valid values for facility are: ‘user’, ‘daemon’,
‘auth’, ‘authpriv’, ‘mail’, and ‘local0’ through
‘local7’. Valid values for priority are: ‘emerg’,
‘alert’, ‘crit’, ‘err’, ‘warning’, ‘notice’,
‘info’, ‘debug’. Both facility and priority may
be given in upper, lower or mixed cases.

Notice, that no whitespace characters are allowed between ‘|’
and ‘2>’.

142 Mailfromd Manual

‘|&’ Treat the rest of name as the command name and its ar-
guments. Run this command and set up for two-way com-
munication with it, i.e writes to the descriptor returned by
open will send data to the program’s standard input, reads
from the descriptor will get data from the program’s standard
output.
The standard error is treated as described above (see ‘|’). For
example, the folowing redirects it to syslog ‘mail.debug’:

|&2>syslog:mail.debug command

‘@’ Treat the rest of name as the URL of a socket to connect to.
Valid URL forms are described in [milter port specification],
page 173.

If none of these prefixes is used, name is treated as a name of an existing
file and open will attempt to open this file for reading.
The open function will signal exception e_failure if it is unable to open
the resource or get the required access to it.

[Built-in Function]void close (number rd)
The argument rd is a resource descriptor returned by a previous call to
open. The function close closes the resource and deallocates any memory
associated with it.
close will signal e_range exception if rd lies outside of allowed range of
resource descriptors. See Section 7.10 [conf-runtime], page 181.

Notice that you are not required to close resources opened by open. Any
unclosed resource will be closed automatically upon the termination of the
filtering program.

The following functions provide basic read/write capabilities.

[Built-in Function]void write (number rd , string str [, number
size])

Writes the string str to the resource descriptor rd. If the size argument
is given, writes this number of bytes.
The function will signal e_range exception if rd lies outside of allowed
range of resource descriptors, and e_io exception if an I/O error occurs.

[Built-in Function]string read (number rd , number n)
Read and return n bytes from the resource descriptor rd.
The function may signal the following exceptions:

e range rd lies outside of allowed range of resource descriptors.

e eof End of file encountered.

e io An I/O error occurred.

Chapter 5: The MFL Library Functions 143

[Built-in Function]string getdelim (number rd , string delim)
Read and return the next string terminated by delim (which must be a
string of length 1) from the resource descriptor rd. The terminating delim
character will be removed from the return value.
The function may signal the following exceptions:

e range rd lies outside of allowed range of resource descriptors.

e eof End of file encountered.

e io An I/O error occurred.

[Built-in Function]string getline (number rd)
Read and return the next newline-terminated string from the resource
descriptor rd. The terminating newline character will be removed from
the return value.
This function is equivalent to:

getdelim(rd, "\n")

The function may signal the following exceptions:

e range rd lies outside of allowed range of resource descriptors.

e eof End of file encountered.

e io An I/O error occurred.

The following example shows how mailfromd I/O functions can be used
to automatically add IP addresses to an RBL zone:

set nsupdate_cmd

"/usr/bin/nsupdate -k /etc/bind/Kmail.+157+14657.private"

func block_address(string addr)

do

number fd

string domain

set fd open "|%nsupdate_cmd"

set domain revip(addr) . ".rbl.myzone.come"

write(fd, "prereq nxrrset %domain A\n"

"update add %domain 86400 A %addr\n\n"

done

The function revip is defined in [revip], page 116.

5.22 System functions

[Built-in Function]string gethostname ([bool fqn])
Return the host name of this machine.
If the optional fqn is given and is ‘true’, the function will attempt to
return fully-qualified host name, by attempting to resolve it using DNS.

144 Mailfromd Manual

[Built-in Function]string getdomainname ()
Return the domain name of this machine. Note, that it does not neces-
sarily coincide with the actual machine name in DNS.
Depending on the underlying ‘libc’ implementation, this call may return
empty string or the string ‘(none)’. Do not rely on it to get the real
domain name of the box mailfromd runs on, use localdomain (see below)
instead.

[Library Function]string localdomain ()
Return the local domain name of this machine.
This function first uses getdomainname to make a first guess. If it does
not return a meaningful value, localdomain calls gethostname(1) to
determine the fully qualified host name of the machine, and returns its
domain part.
To use this function, require ‘localdomain.mf’ module (see Section 4.21
[Modules], page 102), e.g.: require localdomain.

[Built-in Function]number time ()
Return the time since the Epoch (00:00:00 UTC, January 1, 1970), mea-
sured in seconds.

[Built-in Function]string strftime (string fmt , number
timestamp)

[Built-in Function]string strftime (string fmt , number
timestamp , boolean gmt)

Formats the time timestamp (seconds since the Epoch) according to the
format specification format. Ordinary characters placed in the format
string are copied to the output without conversion. Conversion specifiers
are introduced by a ‘%’ character. See Appendix B [Time and Date For-
mats], page 221, for a detailed description of the conversion specifiers.
We recommend using single quotes around fmt to prevent ‘%’ specifiers
from being interpreted as Mailfromd variables (See Section 4.5 [Literals],
page 56, for a discussion of quoted literals and variable interpretation
within them).
The timestamp argument can be a return value of time function (see
above).
For example:

strftime(’%Y-%m-%d %H:%M:%S %Z’, 1164477564)
⇒ 2006-11-25 19:59:24 EET

strftime(’%Y-%m-%d %H:%M:%S %Z’, 1164477564, 1)
⇒ 2006-11-25 17:59:24 GMT

[Built-in Function]string uname (string format)
This function returns system information formatted according to the for-
mat specification format. Ordinary characters placed in the format string
are copied to the output without conversion. Conversion specifiers are in-
troduced by a ‘%’ character. The following conversions are defined:

Chapter 5: The MFL Library Functions 145

%s Name of this system.

%n Name of this node within the communications network to
which this node is attached. Note, that it does not necessarily
coincide with the actual machine name in DNS.

%r Kernel release.

%v Kernel version.

%m Name of the hardware type on which the system is running.

For example:
uname(’%n runs %s, release %r on %m’)
⇒ "Trurl runs Linux, release 2.6.26 on i686"

Notice the use of single quotes.

[Built-in Function]number system (string str)
The function system executes a command specified in str by calling
/bin/sh -c string, and returns -1 on error or the return status of the
command otherwise.

[Built-in Function]void sleep (number secs [, usec])
Sleep for secs seconds. If optional usec argument is given, it specifies
additional number of microseconds to wait for. For example, to suspend
execution of the filter for 1.5 seconds:

sleep(1,500000)

This function is intended mostly for debugging and experimental pur-
poses.

[Built-in Function]number umask (number mask)
Set the umask to mask & 0777. Return the previous value of the mask.

5.23 System User Database

[Built-in Function]string getpwnam (string name)
[Built-in Function]string getpwuid (number uid)

Look for the user name (getpwnam) or user ID uid (getpwuid) in the
system password database and return the corresponding record, if found.
If not found, raise the ‘e_not_found’ exception.
The returned record consists of six fields, separated by colon sign:

uname:passwd:uid:gid:gecos:dir:shell

Field Meaning
uname user name
passwd user password
uid user ID
gid group ID
gecos real name

146 Mailfromd Manual

dir home directory
shell shell program
For example:

getpwnam("gray")
⇒ "gray:x:1000:1000:Sergey Poznyakoff:/home/gray:/bin/bash"

Following two functions can be used to test for existence of a key in the
user database:

[Built-in Function]boolean mappwnam (string name)
[Built-in Function]boolean mappwuid (number uid)

Return ‘true’ if name (or uid) is found in the system user database.

5.24 Sieve Interface
‘Sieve’ is a powerful mail filtering language, defined in RFC 3028. Mailfromd
supports an extended form of this language. For a description of the language
and available extensions, See Section “Sieve Language” in GNU Mailutils
Manual.

[Built-in Function]boolean sieve (string script [, number flags])
Compile the Sieve source file script and execute it over the collected
message. This function can be used only in eom handler.
Optional flags define additional debugging and verbosity settings. It is a
bit-mask field, consisting of a bitwise or of one or more of the following
flags, defined in ‘sieve.mfh’:

MF_SIEVE_LOG
Log every executed ‘Sieve’ action.

MF_SIEVE_DEBUG_TRACE
Trace execution of ‘Sieve’ tests.

MF_SIEVE_DEBUG_INSTR
Log every instruction, executed in the compiled ‘Sieve’ code.
This produces huge amounts of output and is rarely useful,
unless you suspect some bug in ‘Sieve’ implementation and
wish to trace it.

MF_SIEVE_DEBUG_MAILUTILS
Log debugging information about the underlying Mailutils
calls.

MF_SIEVE_DEBUG_PROT
Trace networking protocols.

For example, MF_SIEVE_LOG|MF_SIEVE_DEBUG_TRACE enables logging
‘Sieve’ actions and tests.
The sieve function returns true if the message was accepted by the
script program, and false otherwise. Here, the word accepted means

Chapter 5: The MFL Library Functions 147

that some form of ‘KEEP’ action (see Section “Actions” in GNU Mailutils
Manual) was executed over the message.

The following example discards each message not accepted by the ‘Sieve’
program ‘/etc/mail/filter.siv’:

#include_once <sieve.mfh>

group eom

do

if not sieve("/etc/mail/filter.siv", MF_SIEVE_LOG)

discard

fi

done

The example below illustrates how one can adjust logging flags depending
on the current debugging level:

#include_once <sieve.mfh>

prog eom

do

number flags 0

number level debug_level("bi_sieve")

if level >= 1

set flags flags | MF_SIEVE_LOG

fi

if level >= 2

set flags flags | MF_SIEVE_DEBUG_TRACE

fi

if level > 9

set flags flags | MF_SIEVE_DEBUG_INSTR

fi

if level > 19

set flags flags | MF_SIEVE_DEBUG_MAILUTILS

fi

if level > 20

set flags flags | MF_SIEVE_DEBUG_PROT

fi

if not sieve("/etc/mail/filter.siv", flags)

discard

fi

done

5.25 Interfaces to Third-Party Programs
A set of functions is defined for interfacing with other filters via TCP. Cur-
rently implemented are interfaces with SpamAssassin spamd daemon and
with ClamAV anti-virus.

These functions can be used only in eom handler.
Both interfaces work much the same way: the remote filter is connected

and the message is passed to it. If the remote filter confirms that the message
matches its requirements, the function returns true. Notice that in practice
that means that such a message should be rejected or deferred.

148 Mailfromd Manual

The address of the remote filter is supplied as the first argument in the
form of a standard URL:

proto://path[:port]

The proto part specifies the connection protocol. It should be ‘tcp’ for
the TCP connection and ‘file’ or ‘socket’ for the connection via UNIX
socket. In the latter case the proto part can be omitted. When using TCP
connection, the path part gives the remote host name or IP address and the
optional port specifies the port number or service name to use. For example:

connect to ‘remote.filter.net’ on port 3314:
tcp://remote.filter.net:3314

the same, using symbolic service name (must be defined in
‘/etc/services’):
tcp://remote.filter.net:spamd

Connect via a local UNIX socket (equivalent forms):
/var/run/filter.sock

file:///var/run/filter.sock

socket:///var/run/filter.sock

The description of the interface functions follows.

[Built-in Function]boolean sa (string url , number prec)
[Built-in Function]boolean sa (string url , number prec , number

report)
Pass the message to the SpamAssassin daemon (spamd) at url. Return
true if SpamAssassin considers it a spam, false otherwise. The sec-
ond arguments, prec, gives the precision, in decimal digits, to be used
when converting SpamAssassin diagnostic data and storing them into
mailfromd variables. The floating point SpamAssassin data are con-
verted to the integer mailfromd variables using the following relation:

var = int(sa-var * prec)

where sa-var stands for the SpamAssassin value and var stands for the
corresponding mailfromd one. int() means taking the integer part.

Optional third argument, report, controls what kind of data is returned
in the sa_keywords variable. See below for its description.

The function returns additional information via the following variables:

sa_score The spam score, converted to integer as described above.
To convert it to a floating-point representation, use sa_
format_score function (see Section 5.2 [String manipula-
tion], page 114). See also the example below.

sa_threshold
The threshold, converted to integer form.

Chapter 5: The MFL Library Functions 149

sa_keywords
If report is not supplied or is null, this variable contains a
string of comma-separated SpamAssassin keywords identify-
ing this message, e.g.:

ADVANCE_FEE_1,AWL,BAYES_99

Otherwise, if report is not null, the value of this variable is
a spam report message. It is a multi-line textual message,
containing detailed description of spam scores in a tabular
form. It consists of the following parts:
1. A preamble.
2. Content preview.

The words ‘Content preview’, followed by a colon and
an excerpt of the message body.

3. Content analysis details.
It has the following form:

Content analysis details: (score points, max required)

where score and max are spam score and threshold in
floating point.

4. Score table.
The score table is formatted in three columns:

pts The score, as a floating point number with
one decimal digit.

rule name SpamAssassin rule name that contributed
this score.

description
Textual description of the rule

The score table can be extracted from sa_keywords us-
ing sa_format_report_header function (see Section 5.2
[String manipulation], page 114), as illustrated in the ex-
ample below.

The sa function can signal the following exceptions: e_failure if the
connection fails, e_url if the supplied URL is invalid and e_range if the
supplied port number is out of the range 1–65535.
The simplest way to use the function is:

prog eom

do

if sa("tcp://192.168.10.1:3333", 3)

reject 550 5.7.0

"Spam detected, score %sa_score with threshold %sa_threshold"

fi

done

Here is a more advanced example:

150 Mailfromd Manual

prog eom

do

set prec 3

if sa("tcp://192.168.10.1:3333", prec, 1)

add "X-Spamd-Status" "SPAM"

else

add "X-Spamd-Status" "OK"

fi

add "X-Spamd-Score" sa_format_score(sa_score, prec)

add "X-Spamd-Threshold" sa_format_score(sa_threshold, prec)

add "X-Spamd-Keywords" sa_format_report_header(sa_keywords)

done

[Built-in Function]boolean clamav (string url)
Pass the message to the ClamAV daemon at url. Return true if it detects
a virus in it. Return virus name in clamav_virus_name global variable.
The clamav function can signal the following exceptions: e_failure if
connection failed, e_url if the supplied URL is invalid and e_range if the
supplied port number is out of the range 1–65535.
An example usage:

prog eom

do

if clamav("tcp://192.168.10.1:6300")

reject 550 5.7.0 "Infected with %clamav_virus_name"

fi

done

5.26 Rate limiting functions

[Built-in Function]number rate (string key , number
sample-interval , [number min-samples , number
threshold])

Returns the mail sending rate for key per sample-interval. Optional min-
samples, if supplied, specifies the minimal number of mails needed to
obtain the statistics. The default is 2. Optional threshold controls rate
database updates. If the observed rate (per sample-interval seconds) is
higher than the threshold, the hit counters for that key are not incre-
mented and the database is not updated. Although the threshold argu-
ment is optional4, its use is strongly encouraged. Normally, the value of
threshold equals the value compared with the return from rate, as in:

if rate("$f-$client_addr", rate_interval, 4, maxrate) > maxrate

tempfail 450 4.7.0 "Mail sending rate exceeded. Try again later"

fi

This function is a low-level interface. Instead of using it directly, we
advise to use the rateok function, described below.

4 It is made optional in order to provide backward compatibility with the releases of
mailfromd prior to 5.0.93.

Chapter 5: The MFL Library Functions 151

[Library Function]boolean rateok (string key , number
sample-interval , number threshold ,

[number min-samples])
To use this function, require ‘rateok.mf’ module (see Section 4.21 [Mod-
ules], page 102), e.g.: require rateok.
The rateok function returns ‘True’ if the mail sending rate for key , com-
puted for the interval of sample-interval seconds is less than the threshold.
Optional min-samples parameter supplies the minimal number of mails
needed to obtain the statistics. It defaults to 4.

See Section 3.12 [Sending Rate], page 28, for a detailed description of the
rateok and its use. The interval function (see [interval], page 114) is often
used in the second argument to rateok or rate.

[Built-in Function]boolean tbf_rate (string key , number cost ,
number sample-interval , number burst-size)

This function implements a classical token bucket filter algorithm. Tokens
are added to the bucket identified by the key at constant rate of 1 token
per sample-interval microseconds, to a maximum of burst-size tokens.
If no bucket is found for the specified key, a new bucket is created and
initialized to contain burst-size tokens. If the bucket contains cost or more
tokens, cost tokens are removed from it and tbf_rate returns ‘True’.
Otherwise, the function returns ‘False’.
For a detailed description of the Token Bucket Algorithm and its use to
limit mail rates, see [TBF], page 29.

5.27 Greylisting functions

[Built-in Function]boolean greylist (string key , number
interval)

Returns ‘True’ if the key is found in the greylist database (controlled
by database greylist configuration file statement, see Section 7.9 [conf-
database], page 180). The argument interval gives the greylisting interval
in seconds. The function stores the number of seconds left to the end of
greylisting period in the global variable greylist_seconds_left. See
Section 3.13 [Greylisting], page 30, for a detailed explanation.
The function greylist can signal e_dbfailure exception.

[Built-in Function]boolean is_greylisted (string key
Returns ‘True’ if the key is still greylisted. If ‘true’ is returned, the
function also stores the number of seconds left to the end of greylisting
period in the global variable greylist_seconds_left.
This function is available only if Con Tassios implementation of greylisting
is used. See [greylisting types], page 31, for a discussion of available
greylisting implementations. See Section 4.2.4 [greylist], page 55, for a
way to switch to Con Tassios implementation.

152 Mailfromd Manual

5.28 Special Test Functions

[Built-in Function]boolean listens (string host , [number port])
Returns true if the IP address or host name given by host argument
listens on the port number port (default 25).

[Built-in Function]boolean validuser (string name)
Returns true if authenticity of the user name is confirmed using mailutils
authentication system. See Section 3.14 [Local Account Verification],
page 33, for more details.

[Library Function]boolean valid_domain (string domain)
Returns true if the domain name domain has a corresponding A record
or if it has any ‘MX’ records, i.e. if it is possible to send mail to it.
To use this function, require ‘valid_domain.mf’ module (see Section 4.21
[Modules], page 102):

require valid_domain

[Library Function]number heloarg_test (string arg , string
remote_ip , string local_ip)

Verify if an argument of ‘HELO’ (‘EHLO’) command is valid. To use this
function, load ‘heloarg_test.mf’ module (see Section 4.21 [Modules],
page 102).
Arguments:
arg ‘HELO’ (‘EHLO’) argument. Typically, the value of $s Sendmail

macro;
remote ip IP address of the remote client. Typically, the value of

$client_addr Sendmail macro;
local ip IP address of this SMTP server;
The function returns a number describing the result of the test, as de-
scribed in the following table.

Code Meaning
HELO SUCCESS arg successfully passes all tests.
HELO MYIP arg is our IP address.
HELO IPNOMATCH arg is an IP, but it does not match the re-

mote party IP address.
HELO ARGNORESOLVE arg is an IP, but it does not resolve.
HELO ARGNOIP arg is in square brackets, but it is not an

IP address.
HELO ARGINVALID arg is not an IP address and does not re-

solve to one.
HELO MYSERVERIP arg resolves to our server IP.
HELO IPMISMATCH arg does not resolve to the remote client IP

address.

Chapter 5: The MFL Library Functions 153

5.29 Mail Sending Functions
The mail sending functions are new interfaces, introduced in version 3.1.

The underlying mechanism for sending mail, called mailer, is specified
by ‘--mailer’ command line option. This global setting can be overridden
using the last optional argument to a particular function. In any case, the
mailer is specified in the form of a URL.

Mailer URL begins with a protocol specification. Two protocol specifica-
tions are currently supported: ‘sendmail’ and ‘smtp’. The former means to
use a sendmail-compatible program to send mails. Such a program must
be able to read mail from its standard input and must support the following
options:

‘-oi’ Do not treat ‘.’ as message terminator.

‘-f addr ’ Use addr as the address of the sender.

‘-t’ Get recipient addresses from the message.

These conditions are met by most existing MTA programs, such as exim
or postfix (to say nothing of sendmail itself).

Following the protocol specification is the mailer location, which is sepa-
rated from it with a colon. For the ‘sendmail’ protocol, the mailer location
sets the full file name of the sendmail-compatible MTA binary, for example:

sendmail:/usr/sbin/sendmail

A special form of a sendmail URL, consisting of protocol specification
only (‘sendmail:’) is also allowed. It means “use the sendmail binary from
the _PATH_SENDMAIL macro in your ‘/usr/include/paths.h’ file”. This is
the default mailer.

The ‘smtp’ protocol means to use an SMTP server directly. In this case
the mailer location consists of two slashes, followed by the IP address or
host name of the SMTP server, and, optionally, the port number. If the
port number is present, it is separated from the rest of URL by a colon. For
example:

smtp://remote.server.net

smtp://remote.server.net:24

[Built-in Function]void send_mail (string msg , string to [, string
from , string mailer])

Sends message msg to the email address to. The value of msg must
be a valid RFC 2822 message, consisting of headers and body. The to
argument can contain several email addresses. In this case the message
will be sent to each recipient specified in to.
Optional arguments are:

from Sets the sender address. By default ‘<>’ is used.

mailer The URL of the mailer to use

Sample usage:

154 Mailfromd Manual

set message <<- EOT

Subject: Test message

To: Postmaster <postmaster@gnu.org.ua>

From: Mailfromd <devnull@gnu.org.ua>

X-Agent: %__package__ (%__version__)

Dear postmaster,

This is to notify you that our /etc/mailfromd.mf

needs a revision.

--

Mailfromd filter administrator

EOT

send_mail(message, "postmaster@gnu.org.ua")

[Built-in Function]void send_text (string text , string headers ,
string to [, string from , string mailer])

A more complex interface to mail sending functions.
Mandatory arguments:
text Text of the message to be sent.
headers Headers for the message.
to Recipient email address.
Optional arguments:
from Sender email address.
mailer URL of the mailer to use.
The above example can be rewritten using send_text as follows:

set headers << -EOT

Subject: Test message

To: Postmaster <postmaster@gnu.org.ua>

From: Mailfromd <devnull@gnu.org.ua>

X-Agent: %__package__ (%__version__)

EOT

set text <<- EOT

Dear postmaster,

This is to notify you that our /etc/mailfromd.mf

needs a revision.

--

Mailfromd filter administrator

EOT

send_text(text, headers, "postmaster@gnu.org.ua")

[Built-in Function]void send_dsn (string to , string sender , string
rcpt , string text [, string headers , string from , string
mailer])

This is an experimental interface which will change in the future versions.
It sends a message disposition notification (RFC 2298, RFC 1894), of type
‘deleted’ to the email address to. Arguments are:

Chapter 5: The MFL Library Functions 155

to Recipient email address.

sender Original sender email address.

rcpt Original recipient email address.

text Notification text.

Optional arguments:

headers Message headers

from Sender address.

mailer URL of the mailer to use.

5.30 Blacklisting Functions
The functions described in this subsection allow to check whether the given
IP address is listed in certain black list DNS zone.

[Library Function]boolean match_dnsbl (string address , string
zone , string range)

This function looks up address in the DNS blacklist zone zone and checks
if the return falls into the given range of IP addresses.
It is intended as a replacement for the Sendmail macros ‘dnsbl’ and
‘enhdnsbl’.
To use match_dnsbl, require ‘match_dnsbl.mf’ module (see Section 4.21
[Modules], page 102).
Arguments:

address IP address of the SMTP server to be tested.

zone FQDN of the DNSbl zone to test against.

range The range of IP addresses in CIDR notation or the word ‘ANY’,
which stands for ‘127.0.0.0/8’.

The function returns true if dns lookup for address in the zone dnsbl
yields an IP that falls within the range, specified by cidr. Otherwise, it
returns false.
This function raises the following exceptions: e_invip if address is invalid
and e_invcidr if cidr is invalid.

[Library Function]boolean match_rhsbl (string email , string
zone , string range)

This function checks if the IP address, corresponding to the domain part
of email is listed in the RHS DNS blacklist zone zone, and if so, whether
its record falls into the given range of IP addresses range.
It is intended as a replacement for the Sendmail macro ‘rhsbl’ by Derek
J. Balling.

156 Mailfromd Manual

To use this function, require ‘match_rhsbl.mf’ module (see Section 4.21
[Modules], page 102).
Arguments:

email E-mail address, whose domain name should be tested (usu-
ally, it is $f)

zone Domain name of the RHS DNS blacklist zone.

range The range of IP addresses in CIDR notation.

5.31 SPF Functions
Sender Policy Framework, or SPF for short, is an extension to SMTP pro-
tocol that allows to identify forged identities supplied with the MAIL FROM
and HELO commands. The framework is explained in detail in RFC 4408
(http://tools.ietf.org/html/rfc4408) and on the SPF Project Site.
The following description is a short introduction only, and the users are
encouraged to refer to the original specification for the detailed description
of the framework.

The domain holder publishes an SPF record – a special DNS resource
record that contains a set of rules declaring which hosts are, and are not,
authorized to use a domain name for HELO and MAIL FROM identities. This
resource record is usually of type TXT.5

The MFL script can verify if the identity matches the published SPF
record by calling check_host function and analyzing its return code. The
function can be called either in helo or in envfrom handler. Its arguments
are:

ip The IP address of the SMTP client that is emitting the mail.
Usually it is $client_addr.

domain The domain that provides the sought-after authorization infor-
mation; Normally it is the domain portion of the MAIL FROM or
HELO identity.

sender The MAIL FROM identity.

helo domain
The HELO identity.

my domain
The SMTP domain served by the local server.

The function returns a numeric result code. For convenience, all possible
return values are defined as macros in module ‘spf.mf’. The table below
describes each value along with the recommended actions for it:

5 Although RFC 4408 introduces a special SPF record type for this purpose, it is not yet
widely used. As of version 7.99.90, MFL does not support SPF DNS records.

http://tools.ietf.org/html/rfc4408
http://www.openspf.org/

Chapter 5: The MFL Library Functions 157

None A result of None means that no records were published by the
domain or that no checkable sender domain could be determined
from the given identity. The checking software cannot ascertain
whether or not the client host is authorized. Such a message can
be subject to further checks that will decide about its fate.

Neutral The domain owner has explicitly stated that he cannot or does
not want to assert whether or not the IP address is authorized.
This result must be treated exactly like None; the distinction
between them exists only for informational purposes

Pass The client is authorized to send mail with the given identity. The
message can be subject to further policy checks with confidence
in the legitimate use of the identity or it can be accepted in the
absence of such checks.

Fail The client is not authorized to use the domain in the given iden-
tity. The proper action in this case can be to mark the message
with a header explicitly stating it is spam, or to reject it outright.
If you choose to reject such mails, we suggest to use reject 550
5.7.1, as recommended by RFC 4408. The reject can return
either a default explanation string, or the one supplied by the
domain that published the SPF records, as in the example below:

reject 550 5.7.1 "SPF check failed:\n%spf_explanation"

(see below for the description of spf_explanation variable.)

SoftFail The domain believes the host is not authorized but is not willing
to make that strong of a statement. This result code should be
treated as somewhere in between a Fail and a Neutral. It is not
recommended to reject the message based solely on this result.

TempError
A transient error occurred while performing SPF check. The
proper action in this case is to accept or temporarily reject the
message. If you choose the latter, we suggest to use SMTP reply
code of ‘451’ and DSN code ‘4.4.3’, for example:

tempfail 451 4.4.3

"Transient error while performing SPF verification"

PermError
This result means that the domain’s published records could not
be correctly interpreted. This signals an error condition that
requires manual intervention to be resolved, as opposed to the
TempError result.

The following example illustrates the use of SPF verification in envfrom
handler:

#include_once <status.mfh>

require spf

158 Mailfromd Manual

prog envfrom

do

switch check_host($client_addr, domainpart($f), $f, $s)

do

case Fail:

string text ""

if spf_explanation != ""

set text "%text\n%spf_explanation"

fi

reject 550 5.7.1 "SPF MAIL FROM check failed: %text"

case Pass:

accept

case TempError:

tempfail 451 4.4.3

"Transient error while performing SPF verification"

default:

on poll $f do

when success:

accept

when not_found or failure:

reject 550 5.1.0 "Sender validity not confirmed"

when temp_failure:

tempfail 450 4.7.0 "Temporary failure during sender verification"

done

done

done

The SPF support is implemented in MFL in two layers: a built-in layer
that provides basic support, and a library layer that implements result
caching.

The library layer is implemented in ‘spf.mf’ module (see Section 4.21
[Modules], page 102).

The rest of this node describes available SPF functions and variables.

[Built-in Function]number spf_check_host (string ip , string
domain , string sender , string helo_domain , string
my_domain)

This function is the basic implementation of the check_host function,
defined in RFC 4408, chapter 4. It fetches SPF records, parses them, and
evaluates them to determine whether a particular host (ip) is or is not
permitted to send mail from a given email address (sender). The function
returns an SPF result code.
Arguments are:

ip The IP address of the SMTP client that is emitting the mail.
Usually it is $client_addr.

Chapter 5: The MFL Library Functions 159

domain The domain that provides the sought-after authorization in-
formation; Normally it is the domain portion of the MAIL
FROM or HELO identity.

sender The MAIL FROM identity.

helo domain
The HELO identity.

my domain
The SMTP domain served by the local server.

Before returning the spf_check_host function stores additional informa-
tion in global variables:

spf_explanation
If the result code is not Pass, this variable contains the ex-
planation string as returned by the publishing domain, pre-
fixed with the value of the global variable spf_explanation_
prefix.
For example, if spf_explanation_prefix contains ‘The
domain %{o} explains: ’, and the publishing domain
‘example.com’ returns the explanation string ‘Please see
http://www.example.com/mailpolicy.html’, than the
value of spf_explanation will be:

The domain example.com explains:

Please see http://www.example.com/mailpolicy.html

(see RFC 4408, chapter 8, for the description of SPF macro
facility).

spf_mechanism
Set to the name of a SPF mechanism that decided about the
result code of the SPF record.

spf_ttl Set to the minimum interval of time, in seconds, during which
it is safe to cache the result value. This value is used by
check_host function.

[Built-in Function]number spf_test_record (string record , string
ip , string domain , string sender , string helo_domain , string
my_domain)

Evaluate SPF record record as if it were published by domain. The rest
of arguments are the same as for spf_check_host above.
This function is designed primarily for testing and debugging purposes.
You would hardly need to use it.
The spf_test_record function sets the same global variables as spf_
check_host.

http://tools.ietf.org/html/rfc4408

160 Mailfromd Manual

[Library Function]number check_host (string ip , string domain ,
string sender , string helo)

This function implements the check_host function, defined in RFC 4408,
chapter 4. It fetches SPF records, parses them, and evaluates them to
determine whether a particular host (ip) is or is not permitted to send
mail from a given email address (sender). The function returns an SPF
result code.
This function differs from the built-in spf_check_host in that it imple-
ments caching of the results, thereby reducing network traffic.
The arguments are:

ip The IP address of the SMTP client that is emitting the mail.
Usually it is the same as the value of $client_addr.

domain The domain that provides the sought-after authorization in-
formation; Normally it is the domain portion of the MAIL
FROM or HELO identity.

sender The MAIL FROM identity.

helo The HELO identity.

Before returning, the check_host function stores additional informa-
tion in the same global variables, as spf_check_host. See [spf-globals],
page 159, for details. In addition, it sets the variable spf_cached to ‘1’
if cached data were used, or to ‘0’ otherwise.

[Library Function]string spf_status_string (number code)
Converts numeric SPF result code to its string representation.

[Variable]Built-in variable string spf explanation
If the result code of check_host (or spf_check_host or spf_test_
record function is not Pass, this variable contains the explanation string
as returned by the publishing domain, prefixed with the value of the
global variable spf_explanation_prefix.
For example, if spf_explanation_prefix contains ‘The
domain %{o} explains: ’, and the publishing domain
‘example.com’ returns the explanation string ‘Please see
http://www.example.com/mailpolicy.html’, than the value of
spf_explanation will be:

The domain example.com explains:

Please see http://www.example.com/mailpolicy.html

[Variable]Built-in variable string spf mechanism
Set to the name of a SPF mechanism that decided about the result code
of the SPF record.

[Variable]Built-in variable number spf ttl
Set to the minimum interval of time, in seconds, during which it is safe
to cache the result value. This value is used by check_host function.

Chapter 5: The MFL Library Functions 161

[Variable]Built-in variable string spf explanation prefix
The prefix to be appended to the explanation string before storing it in
the spf_explanation variable. This string can contain valid SPF macros
(see RFC 4408, chapter 8), for example:

set spf_explanation_prefix "%{o} explains: "

The default value is ‘""’ (an empty string).

[Variable]Library variable string spf database
Sets the full name of DBM file used to cache the results of the SPF func-
tions. By default is is ‘%__statedir__/spf.db’.

[Variable]Library variable number spf negative ttl
Sets the interval of time during which negative replies (result code None)
will be stored in the database. By default it is 1 day.

[Variable]Library variable number spf cached
Set by check_host function to ‘1’ if the function made the decision based
on the cached data, or to ‘0’ otherwise.

5.32 Sockmap Functions
Socket map (sockmap for short) is a special type of database used in Send-
mail and MeTA1. It uses a simple server/client protocol over INET or UNIX
stream sockets. The server listens on a socket for queries. The client con-
nects to the server and sends it a query, consisting of a map name and a
key separated by a single space. Both map name and key are sequences of
non-whitespace characters. The map name serves to identify the type of the
query. The server replies with a response consisting of a status indicator
and result, separated by a single space. The result part is optional.

For example, following is the query for key ‘smith’ in map ‘aliases’:
11:aliases news,

A possible reply is:
18:OK root@domain.net,

This reply means that the key ‘news’ was found in the map, and the value
corresponding to that key is ‘root@domain.net’.

The following reply means the key was not found:
8:NOTFOUND,

For a detailed description of the sockmap protocol, see Section “Protocol”
in Smap manual.

The MFL library provides two primitives for dealing with sockmaps. Both
primitives become available after requiring the ‘sockmap.mf’ module.

[Library Function]string sockmap_lookup (number fd , string
map , string key)

This function look ups the key in the map. The fd refers to the sockmap
to use. It must be obtained as a result of a previous call to open with the

http://tools.ietf.org/html/rfc4408

162 Mailfromd Manual

URL of the sockmap as its first argument (see Section 5.21 [I/O functions],
page 140). For example:

number fd open("@ unix:///var/spool/meta1/smap/socket")

string ret sockmap_query(fd, "aliases", $rcpt_to)

if ret matches "OK (.+)"

set alias \1

fi

close(fd)

[Library Function]string sockmap_single_lookup (string url ,
string map , string key)

This function connects to the sockmap identified by the url, queries for
key in map and closes the connection. It is useful when you need to
perform only a single lookup on the sockmap.

5.33 National Language Support Functions
The National Language Support functions allow you to write your scripts in
such a way, that any textual messages they display are automatically trans-
lated to your native language, or, more precisely, to the language required
by your current locale.

This section assumes the reader is familiar with the concepts of program
internationalization and localization. If not, please refer to Section “The
Purpose of GNU gettext” in GNU gettext manual, before reading further.

In general, internationalization of any MFL script follows the same rules as
described in the GNU gettext manual. First of all, you select the program
message domain, i.e. the identifier of a set of translatable messages your
script contain. This identifier is then used to select appropriate translation.
The message domain is set using textdomain function. For the purposes of
this section, let’s suppose the domain name is ‘myfilter’. All NLS functions
are provided by ‘nls.mf’ module, so you must require this module prior to
using any of them.

To find translations of textual message to the current lo-
cale, the underlying gettext mechanism will look for file
‘dirname/locale/LC_MESSAGES/domainname.mo’, where dirname is
the message catalog hierarchy name, locale is the locale name, and
domainname is the name of the message domain. By default dirname is
‘/usr/local/share/locale’, but you may change it using bindtextdomain
function. The right place for this initial NLS setup is in the ‘begin’ block
(see Section 4.12 [begin/end], page 71). To summarize all the above, the
usual NLS setup will look like:

require nls

begin

do

textdomain("myfilter")

bindtextdomain("myfilter", "/usr/share/locale");

Chapter 5: The MFL Library Functions 163

done

For example, given the settings above, and supposing the environ-
ment variable LC_ALL is set to ‘pl’, translations will be looked in file
‘/usr/share/locale/pl/LC_MESSAGES/myfilter.mo’.

Once this preparatory work is done, you can request each message to be
translated by using gettext function, or _ (underscore) macro. For example,
the following statement will produce translated textual description for ‘450’
response:

tempfail 450 4.1.0 _("Try again later")

Of course it assumes that the appropriate ‘myfile.mo’ file already exists.
If it does not, nothing bad happens: in this case the macro _ (as well as
gettext function) will simply return its argument unchanged, so that the
remote party will get the textual message in English.

The ‘mo’ files are binary files created from ‘po’ source files using msgfmt
utility, as described in Section “Producing Binary MO Files” in GNU gettext
manual. In turn, the format of ‘po’ files is described in Section “The Format
of PO Files” in GNU gettext manual.

[Built-in Function]string bindtextdomain (string domain , string
dirname)

This function sets the base directory of the hierarchy containing message
catalogs for a given message domain.
domain is a string identifying the textual domain. If it is not empty,
the base directory for message catalogs belonging to domain domain is
set to dirname. It is important that dirname be an absolute pathname;
otherwise it cannot be guaranteed that the message catalogs will be found.
If domain is ‘""’, bindtextdomain returns the previously set base direc-
tory for domain domain.

The rest of this section describes the NLS functions supplied by the
‘nls.mf’ module.

[Built-in Function]string dgettext (string domain , string msgid)
dgettext attempts to translate the string msgid into the currently active
locale, according to the settings of the textual domain domain. If there
is no translation available, dgettext returns msgid unchanged.

[Built-in Function]string dngettext (string domain , string msgid ,
string msgid_plural , number n)

The dngettext functions attempts to translate a text string into the
language specified by the current locale, by looking up the appropriate
singular or plural form of the translation in a message catalog, set for the
textual domain domain.
See Section “Additional functions for plural forms” in GNU gettext util-
ities, for a discussion of the plural form handling in different languages.

164 Mailfromd Manual

[Library Function]string textdomain (string domain)
The textdomain function sets the current message domain to domain,
if it is not empty. In any case the function returns the current message
domain. The current domain is ‘mailfromd’ initially. For example, the
following sequence of textdomain invocations will yield:

textdomain("") ⇒ "mailfromd"

textdomain("myfilter") ⇒ "myfilter"

textdomain("") ⇒ "myfilter"

[Library Function]string gettext (string msgid)
gettext attempts to translate the string msgid into the currently active
locale, according to the settings of the current textual domain (set us-
ing textdomain function). If there is no translation available, gettext
returns msgid unchanged.

[Library Function]string ngettext (string msgid , string
msgid_plural , number n)

The ngettext functions attempts to translate a text string into the lan-
guage specified by the current locale, by looking up the appropriate sin-
gular or plural form of the translation in a message catalog, set for the
current textual domain.
See Section “Additional functions for plural forms” in GNU gettext util-
ities, for a discussion of the plural form handling in different languages.

5.34 Debugging Functions
These functions allow to enable debugging and tracing for a certain piece of
code.

[Built-in Function]void debug (string spec)
Enable debugging. The value of spec sets the debugging level. See
[debugging level specification], page 45, for a description of its format.

[Built-in Function]number debug_level ([string srcname])
This function returns the debugging level currently in effect for the source
module srcname, or the global debugging level, if called without argu-
ments.
For example, if the program was started with ‘--debug=20,engine=8’
option, then:

debug_level() ⇒ 20

debug_level("engine") ⇒ 8

debug_level("db") ⇒ 0

[Built-in Function]number callout_transcript ([number value])
Returns the current state of the callout SMTP transcript. The result is
1 if the transcript is enabled and 0 otherwise. The transcript is normally
enabled either by the use of the ‘--transcript’ command line option

Chapter 5: The MFL Library Functions 165

(see [SMTP transcript], page 45) or via the ‘transcript’ configuration
statement (see Section 7.3 [conf-server], page 174).
The optional value, supplies the new state for SMTP transcript. Thus,
calling ‘callout_transcript(0)’ disables the transcript.
This function can be used in bracket-like fashion to enable transcript for
a certain part of MFL program, e.g.:

number xstate callout_transcript(1)

on poll $f do

...

done

set xstate callout_transcript(0)

Note, that the use of this function (as well as the use of the
‘--transcript’ option) makes sense only if callouts are performed by
the mailfromd daemon itself. It will not work if a dedicated callout
server is used for that purpose.

[Built-in Function]string debug_spec ([string srcnames , number
minlevel , bool showunset])

Returns the current debugging level specification, as given by ‘--debug’
command line option or by the debug configuration statement (see
Section 7.5 [conf-debug], page 176).
If the argument srcnames is specified, it is treated as a comma-separated
list of source names for which the debugging specification is to be re-
turned.
For example, if mailfromd was started with ‘--debug=20,spf=50,
engine=8,db=30’ option, then:

debug_spec("all,engine") ⇒ "20,engine=8"

debug_spec("engine,db") ⇒ "db=30,engine=8"

debug_spec("prog") ⇒ "!prog"

When called without arguments, debug_spec returns a full debugging
level specification, as shown in the example below:

debug_spec()
⇒ "20,!debug,!cache,!dnscache,db=30,!dns,!dnsbase,!engine,

!gram,!lex,!main,!mf-status,!mu_dbm,!optab,!prog,

!spf,!stack,!symtab,!rate,!bi_db,bi_dns=98,!bi_io,

!bi_ipaddr,!bi_mail,!bi_poll,!bi_sa,!bi_spf,!bi_string,

!bi_system,!bi_other,!bi_vars"

Use the optional second argument to select only those specifications,
whose debugging level is greater than or equal to minlevel. For example:

debug_spec("engine,db") ⇒ "db=30,engine=8"

debug_spec("engine,db", 8) ⇒ "engine=8"

To print all debugging specifications with a non-zero level, use:
debug_spec("any", 1)

Optional showunset parameters controls whether to return unset module
specifications. It defaults to ‘1’ (‘true’).

166 Mailfromd Manual

These three functions are intended to complement each other. The calls to
debug can be placed around some piece of code you wish to debug, to enable
specific debugging information for this code fragment only. For example:

/* Save debugging level for ‘dns.c’ source */

set dlev debug_level("dns")

/* Set new debugging level */

debug("dns=80")

.

.

.

/* Restore previous level */

debug("dns=%dlev")

You can also change debugging levels for several modules simultaneously:
/* Save debugging specifications for the sources we are
* interested in:
*/

set dspec debug_spec("dns,dnsbase,db")

/* Set new debugging spec */

debug("dns=80,dnsbase=100,db=1")

.

.

.

/* Restore previous debug specification */

debug("%dspec")

[Built-in Function]void program_trace (string module)
Enable tracing for a set of modules given in module argument. See [–
trace-program], page 190, for a description of its format.

[Built-in Function]void cancel_program_trace (string module)
Disable tracing for given modules.

This pair of functions is also designed to be used together in a bracket-
like fashion. They are useful for debugging mailfromd, but are not advised
to use otherwise, since tracing slows down the execution considerably.

[Built-in Function]void stack_trace ()
Generate a stack trace in this point. See [tracing runtime errors], page 48,
for the detailed description of stack traces.

[Built-in Function]void mailutils_set_debug_level (string
level)

Set debug level for the GNU Mailutils library. The level argument is a
valid debugging level, as described in Section “Debug Statement” in GNU
Mailutils Manual.
For example:

mailutils_set_debug_level("mailbox=trace7")

This function always succeeds. If level is not a valid Mailutils debugging
level, the function issues appropriate diagnostics using currently estab-
lished logging channel and returns normally.

Chapter 5: The MFL Library Functions 167

This function is useful when debugging MFL scripts that use mailbox
(see Section 5.13 [Mailbox functions], page 126) or message functions (see
Section 5.14 [Message functions], page 127).

Chapter 6: Using the GNU Emacs MFL Mode 169

6 Using the GNU Emacs MFL Mode

MFL sources are usual ASCII files and you may edit them with any editor
you like. However, the best choice for this job (as well as for many others)
is, without doubt, GNU Emacs. To ease the work of editing script files, the
mailfromd package provides a special Emacs mode, called MFL mode.

The elisp source file providing this mode, ‘mfl-mode.el’, is installed au-
tomatically, provided that GNU Emacs is present on your machine. To
enable the mode, add the following lines to your Emacs setup file (either
system-wide ‘site-start.el’, or your personal one, ‘~/.emacs’):

(autoload ’mfl-mode "mfl-mode")

(setq auto-mode-alist (append auto-mode-alist

’(("/etc/mailfromd.mf" . mfl-mode)

("\\.mf$" . mfl-mode))))

The first directive loads the MFL mode, and the second one tells Emacs
to apply it to any file whose name ends in ‘/etc/mailfromd.mf’1 or in a
‘.mf’ suffix.

MFL mode provides automatic indentation and syntax highlighting for
MFL sources. The default indentation setup is the same as the one used
throughout this book:
• Handler and function definitions start at column 1;
• A block statement, i.e. ‘do’, ‘done’, ‘if’, ‘else’, ‘elif’ and ‘fi’, oc-

cupies a line by itself, with the only exception that ‘do’ after an ‘on’
statement is located on the same line with it;

• A ‘do’ statement that follows function or handler definition is placed in
column 1.

• Each subsequent level of nesting is indented two columns to the right
(see [mfl-basic-offset], page 170).

• A closing statement (‘done’, ‘else’, ‘elif’, ‘fi’) is placed at the same
column as the corresponding opening statement;

• Branch statements (‘case’ and ‘when’) are placed in the same column
as their controlling keyword (‘switch’ and ‘on’, correspondingly (see
[mfl-case-line-offset], page 171).

• Loop substatements (see Section 4.18 [Loops], page 91) are offset 5
columns to the right from the controlling loop keyword. (see [mfl-
loop-statement-offset], page 171). Continuation statements within loop
header are offset 5 columns from the indentation of their controlling key-
word, either for or while (see [mfl-loop-continuation-offset], page 171).

The mode provides two special commands that help navigate through the
complex filter scripts:

1 This will match most existing installations. In the unlikely case that your $sysconfdir
does not end in ‘/etc’, you will have to edit the directive accordingly.

170 Mailfromd Manual

C-M-a Move to the beginning of current function or handler definition.

C-M-e Move to the end of current function or handler definition.

Here, current function or handler means the one within which your cursor
currently stays.

You can use C-M-e repeatedly to walk through all function and handler
definitions in your script files. Similarly, repeatedly pressing C-M-a will visit
all the definitions in the opposite direction (from the last up to the very first
one).

Another special command, C-c C-c, allows to verify the syntax of your
script file. This command runs mailfromd in syntax check mode (see
Section 3.16 [Testing Filter Scripts], page 37) and displays its output in
a secondary window, which allows to navigate through eventual diagnostic
messages and to jump to source locations described by them.

All MFL mode settings are customizable. To change any of them, press
M-x customize and visit ‘Environment/Unix/Mfl’ customization group.
This group offers two subgroups: ‘Mfl Lint group’ and ‘Mfl Indentation
group’.

‘Mfl Lint group’ controls invocation of mailfromd by C-c C-c. This
group contains two variables:

[MFL-mode setting]mfl-mailfromd-command
The mailfromd to be invoked. By default, it is ‘mailfromd’. You will
have to change it, if mailfromd cannot be found using PATH environment
variable, or if you wish to pass it some special options. However, do not
include ‘--lint’ or ‘-I’ options in this variable. The ‘--lint’ option is
given automatically, and include paths are controlled by mfl-include-
path variable (see below).

[MFL-mode setting]mfl-include-path
A list of directories to be appended to mailfromd include search path
(see [include search path], page 51). By default it is empty.

‘Mfl Indentation group’ controls automatic indentation of MFL scripts.
This group contains the following settings:

[MFL-mode setting]mfl-basic-offset
This variable sets the basic indentation increment. It is set to 2, by
default, which corresponds to the following indentation style:

prog envfrom

do

if $f = ""

accept

else

...

fi

done

Chapter 6: Using the GNU Emacs MFL Mode 171

[MFL-mode setting]mfl-case-line-offset
Indentation offset for case and when lines, relative to the column of their
controlling keyword. The default is 0, i.e.:

switch x

do

case 0:

...

default:

...

done

[MFL-mode setting]mfl-returns-offset
Indentation offset of returns and alias statements, relative to the con-
trolling func keyword. The default value is 2, which corresponds to:

func foo()

alias bar

returns string

[MFL-mode setting]mfl-comment-offset
Indentation increment for multi-line comments. The default value is 1,
which makes:

/* first comment line

second comment line */

[MFL-mode setting]mfl-loop-statement-offset
Indentation increment for parts of a loop statement. The default value
is 5, which corresponds to the following style:

loop for stmt,

while cond,

incr

do

[MFL-mode setting]mfl-loop-continuation-offset
If any of the loop parts occupies several lines, the indentation of con-
tinuation lines relative to the first line is controlled by mfl-loop-
continuation-offset, which defaults to 5:

loop for set n 0

set z 1,

while n != 10

or z != 2,

set n n + 1

Chapter 7: Configuring mailfromd 173

7 Configuring mailfromd

Upon startup, mailfromd reads its setting from one or more con-
figuration files. First of all, if the GNU Mailutils configuration
file exists, it is read. This file is usually ‘/etc/mailutils.rc’ or
‘/usr/local/etc/mailutils.rc’, depending on where GNU Mailutils was
installed. See Section “configuration” in GNU Mailutils Manual, for a
description of GNU Mailutils configuration system. Secondly, mailfromd
looks for its main configuration file, ‘sysconfdir/mailfromd.conf’. Here,
sysconfdir stands for the system configuration directory set when building
mailfromd (see Chapter 2 [Building], page 9). Usually it is ‘/etc’ or
‘/usr/local/etc’. Finally, if any additional configuration file is requested
via the ‘--config-file’ command line option (see Section “Common
Options” in GNU Mailutils Manual), it is read and parsed as well.

All configuration files use the same syntax, which is described in detail
in Section “conf-syntax” in GNU Mailutils Manual.

7.1 Special Configuration Data Types
In addition to the usual data types (see Section “Statements” in GNU Mailu-
tils Manual), mailfromd configuration introduces the following two special
ones:

time interval specification
The time interval specification is a string that defines an interval,
much the same way we do this in English: it consists of one or
more pairs ‘number’-‘time unit’. For example, the following are
valid interval specifications:

1 hour

2 hours 35 seconds

1 year 7 months 2 weeks 2 days 11 hours 12 seconds

The pairs can occur in any order, however unusual it may sound
to a human ear, e.g. ‘2 days 1 year’. If the ‘time unit’ is
omitted, seconds are supposed.

Connection URL
unix://file
unix:file
local://file
local:file A named pipe (socket).

inet://address:port
inet:port@address

An IPv4 connection to host address at port port.
Port must be specified either as a decimal num-
ber or as a string representing the port name in
‘/etc/services’.

174 Mailfromd Manual

inet6:port@address
An IPv6 connection to host address at port port.
This port type is not yet supported.

7.2 Base Mailfromd Configuration

[Mailfromd Conf]script-file file
Read filter script from file. By default it is read from
‘sysconfdir/mailfromd.mf’.

[Mailfromd Conf]setvar name value
Initialize MFL variable name to value.

[Mailfromd Conf]include-path path
Add directories to the list of directories to be searched for header files.
See [include search path], page 51.
Argument is a list of directory names separated by colons.

[Mailfromd Conf]state-directory dir
Set program state directory. See [statedir], page 11.

[Mailfromd Conf]relayed-domain-file file
Append domain names from the named file to the list of relayed domains.
This list can be inspected from MFL script using the ‘relayed’ function
(see [relayed], page 140).
The file argument is either a single file name or a list of file names, e.g.:

relayed-domain-file /etc/mail/sendmail.cw;

relayed-domain-file (/etc/mail/sendmail.cw, /etc/mail/relay-domains);

[Mailfromd Conf]source-ip ipaddr
Set source IP address for outgoing TCP connections.

[Mailfromd Conf]pidfile file
Set the name of the file to store PID value in. The file must be writable
for the user or group mailfromd runs as (see Section 7.8 [conf-priv],
page 180).

7.3 Server Configuration
A single mailfromd daemon can run several servers. These are configured
in the following statement:

server type {

id name;

listen url;

max-instances num;

single-process bool;

reuseaddr bool;

default bool;

acl { ... }

}

Chapter 7: Configuring mailfromd 175

[Mailfromd Conf]server type
Define a server. The type is either ‘milter’ or ‘callout’. See Section 3.7
[SMTP Timeouts], page 22, for a description of various types of servers.
The substatements in the server block provide parameters for configur-
ing this server.

[server]id name
Assign an identifier to this server. This identifier is used as a suffix to
syslog tag (see [syslog tag], page 44) in messages related to this server.
For example, if a server block had the following statement in it:

id main;

then all messages related to this server will be marked with tag
‘mailfromd#main’.
The part before the ‘#’ is set using the tag statement in logging block
(see Section “Logging Statement” in GNU Mailutils Manual).

[server]listen url
Listen for connections on the given URL. See [milter port specification],
page 173, for a description of allowed url formats.
Example:

listen inet://10.10.10.1:3331;

[server]max-instances number
Sets the maximum number of instances allowed for this server.

[server]single-process bool
When set to ‘yes’, this server will run in single-process mode, i.e. it will
not fork sub-processes to serve requests. This option is meant exclusively
to assist in debugging mailfromd. Don’t use it for anything else but for
debugging!

[server]reuseaddr bool
When set to ‘yes’, mailfromd will attempt to reuse existing socket ad-
dresses. This is the default behavior.

If the server type is ‘callout’, the following statement is also allowed:

[server]default bool
When set to ‘yes’, this server is marked as a default callout server for all
milter servers declared in the configuration.

if the server type is ‘milter’, you can use the following statement to
query a remote callout server:

[server]callout url
Use a callout server at url (see [milter port specification], page 173).

You can also set a global callout server, which will be used by all milter
servers that do not set the callout statement:

176 Mailfromd Manual

[Mailfromd Conf]callout-url url
Set global callout server. See [milter port specification], page 173, for
allowed url formats.

7.4 Milter Connection Configuration

[Mailfromd Conf]listen url
Listen for milter connections on the given URL. See [milter port specifi-
cation], page 173, for a description of allowed url formats.
Example:

listen inet://10.10.10.1:3331;

[Mailfromd Conf]milter-timeout time
Sets the timeout value for connection between the filter and the MTA.
Default value is 7210 seconds. You normally do not need to change this
value.

[Mailfromd Conf]acl
This block statement configures access control list for incoming Milter
connections. See Section “ACL Statement” in GNU Mailutils Manual,
for a description of its syntax. E.g.:

acl {

allow from 10.10.10.0/24;

deny from any;

}

7.5 Logging and Debugging configuration

[Mailfromd Conf]syslog-async bool
Use asynchronous syslog implementation. See Section 3.18 [Logging and
Debugging], page 43, for more information about two syslog flavors, and
see [syslog-async], page 11, for information on how to set default syslog
implementation at compile time.
See also [–syslog-async], page 191.

[Mailfromd Conf]debug spec
Set mailfromd debug verbosity level. The spec argument is a decimal
number in the range 0 – 100. Level 0 effectively disables debugging,
while level 100 enables the most verbose debugging output. E.g.:

debug 1;

You can also selectively set different debug levels for different source code
modules. In this case spec is a string formatted as a comma-separated
list of debug specifications, each of which has the following syntax:

module=level
Sets debugging level for module to level.

Chapter 7: Configuring mailfromd 177

module Sets debugging level for module to 100.
!module Unsets debugging level for module.

debug "prog=1, db=10";

See Section 3.18 [Logging and Debugging], page 43, for the detailed de-
scription of available debug specifications.

[Mailfromd Conf]source-info bool
When bool is ‘true’ (see Section “Statements” in GNU Mailutils Manual)
include mailfromd source locations in the debugging output. This is
intended mainly for mailfromd developers.

[Mailfromd Conf]stack-trace bool
Enables stack trace dumps on runtime errors. This feature is useful for
locating the source of an error, especially in complex scripts. See [tracing
runtime errors], page 48, for a detailed description.

[Mailfromd Conf]trace-actions bool
Enable action tracing. If bool is ‘true’, mailfromd will log all executed
actions. See Section 3.18 [Logging and Debugging], page 43, for a detailed
description of action tracing.

[Mailfromd Conf]trace-program modlist
Enable program instruction tracing for modules in modlist, a comma-
separated list of source code modules, e.g.:

trace-program (bi_io,bi_db);

This statement enables tracing for functions from modules ‘bi_io.c’ and
‘bi_db.c’ (notice, that you need not give file suffixes).
This tracing is useful for debugging mailfromd, but is not advised to use
otherwise, since it is very time-costly.

[Mailfromd Conf]transcript bool
Enable transcripts of call-out SMTP sessions. See [SMTP transcript],
page 45, for a detailed description of SMTP transcripts.

7.6 Timeout Configuration
The SMTP timeouts used in callout sessions are configured via smtp-timeout
statement:

Syntax
smtp-timeout type {

connection interval;

initial-response interval;

helo interval;

mail interval;

rcpt interval;

rset interval;

quit interval;

}

178 Mailfromd Manual

[Mailfromd Conf]smtp-timeout type
Declare SMTP timeouts of the given type, which may be ‘soft’ or ‘hard’.
Callout SMTP sessions initiated by polling functions, are controlled by
two sets of timeouts: ‘soft’ and ‘hard’. Soft timeouts are used by the
mailfromd milter servers. Hard timeouts are used by callout servers (see
[callout server], page 22). When a soft timeout is exceeded, the calling
procedure is delivered an ‘e_temp_failure’ exception and the session is
scheduled for processing by a callout server. The latter re-runs the session
using hard timeouts. If a hard timeout is exceeded, the address is marked
as ‘not_found’ and is stored in the cache database with that status.
Normally, soft timeouts are set to shorter values, suitable for use in MFL
scripts without causing excessive delays. Hard timeouts are set to large
values, as requested by RFC 2822 and guarantee obtaining a definite
answer (see below for the default values).

Statements

The time argument for all smtp-timeout sub-statements is expressed in time
interval units, as described in [time interval specification], page 173.

[smtp-timeout]connection time
Sets initial connection timeout for callout tests. If the connection is not
established within this time, the corresponding callout function returns
temporary failure.

[smtp-timeout]initial-response time
Sets the time to wait for the initial SMTP response.

[smtp-timeout]helo time
Timeout for a response to ‘HELO’ (or ‘EHLO’) command.

[smtp-timeout]mail time
Timeout for a response to ‘MAIL’ command.

[smtp-timeout]rcpt time
Timeout for a response to ‘RCPT’ command.

[smtp-timeout]rset time
Timeout for a response to ‘RSET’ command.

[smtp-timeout]quit time
Timeout for a response to ‘QUIT’ command.

Default Values

The default timeout settings are:

Chapter 7: Configuring mailfromd 179

Timeout Soft Hard
connection 10s 5m
initial-response 30s 5m
helo I/O 5m
mail I/O 10m
rcpt I/O 5m
rset I/O 5m
quit I/O 2m

Table 7.1: Default SMTP timeouts

[Mailfromd Conf]io-timeout time
Sets a general SMTP I/O operation timeout. This timeout is used as the
default for entries marked with ‘I/O’ in the above table. The default is 3
seconds.

This timeout can also be set from the command line using the ‘--timeout’
option (see [timeout option], page 187).

7.7 Call-out Configuration

[Mailfromd Conf]ehlo-domain string
Sets default domain used in ‘EHLO’ (or ‘HELO’) SMTP command when
probing the remote host. This value can be overridden by ‘from’ param-
eter to poll command (see [poll], page 101).

This statement assigns the value string to the ‘ehlo_domain’ variable (see
[ehlo domain], page 64), and is therefore equivalent to

setvar ehlo_domain string;

[Mailfromd Conf]mail-from-address string
Sets default email addresses used in ‘MAIL FROM:’ SMTP command when
probing the remote host. This value can be overridden by ‘as’ parameter
to poll command (see [poll], page 101).

This statement assigns the value string to the ‘mailfrom_address’ vari-
able (see [mailfrom address], page 65), and is therefore equivalent to

setvar mailfrom_address string;

[Mailfromd Conf]max-callout-mx number
Sets the maximum number of MXs to be polled during a callout verifica-
tion. Defaults to 32.

180 Mailfromd Manual

7.8 Privilege Configuration

[Mailfromd Conf]user name
Switch to this user’s privileges after startup. See Section 8.2 [Starting
and Stopping], page 191, for a discussion of the privileges mailfromd
runs under and the options that affect them. See also group below.

[Mailfromd Conf]group name
Retain the supplementary group name when switching to user privi-
leges. By default mailfromd clears the list of supplementary groups when
switching to user privileges, but this statement allows to retain the given
group. It can be specified multiple times to retain several groups. This
option may be necessary to maintain proper access rights for various files.
See Section 8.2 [Starting and Stopping], page 191.

7.9 Database Configuration

Syntax
database dbname {

file name;

enable bool;

expire-interval interval;

positive-expire-interval interval;

negative-expire-interval interval;

}

[Mailfromd Conf]database dbname
The database statement controls run-time parameters of a DBM database
identified by dbname. Allowed values for the latter are: ‘cache’, ‘dns’,
‘rate’ and ‘greylist’ for main cache, DNS lookup, sending rate and
greylisting databases, correspondingly.

Statements

[database]file name
Set the database file name.

[database]enable bool
Enable or disable this database.

[database]expire-interval time
Set the expiration interval for this database dbname. See [time interval
specification], page 173, for a description of time format.
Notice, that for ‘dns’ database this statement is equivalent to negative-
expire-interval (see below): the DNS lookup cache uses DNS TTL as
expiration interval for records representing positive lookups. See [DNS
Cache Management], page 135, for more information of DNS cache data-
base and its management.

Chapter 7: Configuring mailfromd 181

[database]positive-expire-interval time
This statement is valid only for ‘cache’ database. It sets the expiration
interval for positive (‘success’) cache entries.

[database]negative-expire-interval time
This statement is valid only for ‘cache’ and ‘dns’ databases.
For ‘cache’ database, it sets expiration interval for negative (‘not_found’)
cache entries.
For ‘dns’ database, it sets expiration interval for negative DNS cache
entries.

Additional Statements

The following statements are used to tune database file locking:

[Mailfromd Conf]lock-retry-count number
Set maximum number of attempts to acquire the lock. The time between
each two successive attempts is given by lock-retry-timeout statement
(see below). After the number of failed attempts, mailfromd gives up.

[Mailfromd Conf]lock-retry-timeout time
Set the time span between the two locking attempts. Any valid time
interval specification (see [time interval specification], page 173) is allowed
as argument.

[Mailfromd Conf]expire-interval time
Sets expiration interval for all databases.

7.10 Runtime Constants Configuration

[Mailfromd Conf]runtime { statements }
The statements in the runtime section configure various values used by
MFL builtin functions.

[runtime]max-streams number
Sets the maximum number of stream descriptors that can be opened si-
multaneously. Default is 1024. See Section 5.21 [I/O functions], page 140.

[runtime]max-open-mailboxes number
Sets the maximum number of available mailbox descriptors. This value
is used by MFL mailbox functions (see Section 5.13 [Mailbox functions],
page 126).

[runtime]max-open-messages number
Sets the maximum number of messages that can be opened simultaneosly
using the mailbox_get_message function. See Section 5.14 [Message
functions], page 127, for details.

182 Mailfromd Manual

[runtime]max-dns-reply-a number
Sets the maximum number of DNS ‘A’ records to be returned in a reply.
This affects the dns_getaddr function (see Section 5.18 [DNS functions],
page 132). The default value is 64.

[runtime]max-dns-reply-ptr number
Sets the maximum number of DNS ‘PTR’ records to be returned in a reply.
This affects the dns_getname function (see Section 5.18 [DNS functions],
page 132). The default value is 64.

[runtime]max-dns-reply-mx number
Sets the maximum number of DNS ‘MX’ records to be returned in a reply.
This affects the following functions: getpx, ismx, primitive_mx (see
Section 5.18 [DNS functions], page 132). The default value is 32.

7.11 Other Configuration Statements

[Mailfromd Conf]max-match-mx number
Sets the maximum number of MXs to use in ‘mx matches’ operations (see
[mx matches], page 81). Defaults to 32.

7.12 Standard Mailutils Statements
The following standard Mailutils statements are understood:

Statement Reference
auth See Section “Auth Statement” in GNU

Mailutils Manual.
debug See Section “Debug Statement” in GNU

Mailutils Manual.
include See Section “Include” in GNU Mailutils

Manual.
logging See Section “Logging Statement” in GNU

Mailutils Manual.
mailer See Section “Mailer Statement” in GNU

Mailutils Manual.

Chapter 8: Mailfromd Command Line Syntax 183

8 Mailfromd Command Line Syntax

The mailfromd binary is started from the command line using the following
syntax (brackets indicate optional parts):

$ mailfromd [options] [asgn] [‘script’]

The meaning of each invocation part is described in the table below:

options The command line options (see Section 8.1 [options], page 183).

asgn Sendmail macro assignments. These are currently meaningful
only with the ‘--test’ option (see [test mode], page 38), but
this may change in the future. Each assignment has the form:

var=value

where var is the name of a Sendmail macro and value is the
value to be assigned to it.

script The file name of the filter script, if other than the default one.

8.1 Command Line Options.

8.1.1 Operation Modifiers

‘--compact’
Compact database (see [compaction], page 37). By default,
‘cache’ database is compacted. To specify another database,
use ‘--format’ option (see [–format], page 185). Full database
name can be given in the command line (see ‘--file’ option
below), if it differs from the one specified in the script file.
Use with the option ‘--all’ (see [–all], page 184) to compact all
databases.
This option implies ‘--stderr’ (see [–stderr], page 190).

‘--daemon’
Run in daemon mode (default).

‘--delete’
Delete given entries from the database (see [deleting from data-
bases], page 36). By default, ‘cache’ database is assumed. To
specify another database, use ‘--format’ option (see [–format],
page 185).
This option implies ‘--stderr’ (see [–stderr], page 190).

‘--expire’
Delete all expired entries from the database (see Section 3.15.3
[Database Maintenance], page 37). By default, ‘cache’ database
is assumed. To specify another database, use ‘--format’ option
(see [–format], page 185). Full database name can be given in

184 Mailfromd Manual

the command line (see ‘--file’ option below), if it differs from
the one specified in the script file.
Use with the option ‘--all’ (see [–all], page 184) to expire all
databases.
This option implies ‘--stderr’ (see [–stderr], page 190).

‘-f filename ’
‘--file=filename ’

Set the name of the database to operate upon (for ‘--compact’,
‘--delete’, ‘--expire’, and ‘--list’ options). Useful if, for
some reason, you need to operate on a database whose file name
does not match the one mailfromd is configured to use.

‘--list’ List the database. By default, ‘cache’ database is assumed.
To list another database, use ‘--format’ option (see [–format],
page 185).
This option implies ‘--stderr’ (see [–stderr], page 190).
See Section 3.15.2 [Basic Database Operations], page 36.

‘--run[=start]’
Load the script named in the command line and execute the
function named start, or ‘main’, if start is not given. See
Section 3.17 [Run Mode], page 39, for a detailed description
of this feature.

‘--show-defaults’
Show compilation defaults. See Section 3.15 [Databases],
page 34.

‘-t[state]’
‘--test[=state]’

Run in test mode. See Section 3.16 [Testing Filter Scripts],
page 37. Default state is ‘envfrom’. This option implies
‘--stderr’ (see [–stderr], page 190).

8.1.2 General Settings

‘--all’ When used with ‘--compact’ or ‘--expire’ option, applies the
action to all available databases. See [compact cronjob], page 37.

‘-e interval ’
‘--expire-interval=interval ’

Set expiration intervals for all databases to the specified inter-
val. See [time interval specification], page 173, for a description
of interval format. The option overrides the expire-interval
configuration statement (see [expire-interval-conf], page 181),
which you are advised to use instead.

Chapter 8: Mailfromd Command Line Syntax 185

‘--foreground’
Stay in foreground. When given this option, mailfromd will not
disconnect itself from the controlling terminal and will run in
the foreground.

‘-H dbformat ’
‘--format=dbformat ’

Use database of the given format, instead of the default ‘cache’.
See Section 3.15.2 [Basic Database Operations], page 36.

‘-g name ’
‘--group=name ’

Retain the group name when switching to user privileges. See
Section 8.2 [Starting and Stopping], page 191.
This option complements the group configuration statement (see
Section 7.8 [conf-priv], page 180).

‘--ignore-failed-reads’
Ignore records that cannot be retrieved while compacting the
database. Without this option, mailfromd will abort the com-
paction if any such error is encountered.

‘--include=dir ’
‘-I dir ’ Add the directory dir to the list of directories to be searched for

header files. This will affect the functioning of #include state-
ment. See [include], page 51, for a discussion of file inclusion.

‘--lock-retry-count=number ’
Set maximum number of attempts to acquire the lock on a data-
base. See the description of the lock-retry-count configura-
tion statement, Section 7.9 [conf-database], page 180, for more
information about the database locking.

‘--lock-retry-timeout=interval ’
Set the time span between the two locking attempts. See
the description of the lock-retry-count configuration state-
ment, Section 7.9 [conf-database], page 180, for more informa-
tion about database locking.
This option overrides the value set by the lock-retry-timeout
configuration statement (see Section 7.9 [conf-database],
page 180.
See [time interval specification], page 173, for a description of
valid interval formats.

‘--mailer=url ’
‘-M url ’ Set the URL of the mailer to use. See Section 5.29 [Mail Sending

Functions], page 153.
‘--mtasim’

This option is reserved for use by mtasim (see Chapter 10
[mtasim], page 201).

186 Mailfromd Manual

‘-O[level]’
‘--optimize[=level]’

Set optimization level for code generator. Two levels are im-
plemented: ‘0’, meaning no optimization, and ‘1’, meaning full
optimization.

‘-p string ’
‘--port=string ’

Set communication socket. Overrides the listen configuration
statement, which you are advised to use instead (see Section 7.4
[conf-milter], page 176).

‘--pidfile=file ’
Set pidfile name. Overrides the pidfile configuration state-
ment, which you are advised to use instead (see Section 7.2
[conf-base], page 174).

‘--predict=rate-limit ’
Used with ‘--list’ enables printing of the estimated times of
sending along with the ‘rate’ database dump. Implies ‘--list
--format=rate’. See [estimated time of sending], page 36.

‘--relayed-domain-file=file ’
Read relayed domains from file. Overrides the relayed-
domain-file configuration statement (see Section 7.2
[conf-base], page 174), which you are advised to use instead.
See Section 3.8 [Avoiding Verification Loops], page 23, and the
description of relayed function (see [relayed], page 140) for
more information.

‘-r’
‘--remove’

Force removing local socket file, if it already exists. Unless this
option is specified, mailfromd will refuse to start if this file
exists.

‘--state-directory=dir ’
Set new program state directory. See [statedir], page 11, for the
description of this directory and its purposes. This option over-
rides the settings of state-directory configuration statement,
described in Section 7.2 [conf-base], page 174.

‘-S’
‘--source’

Set source address for TCP connections. Overrides the
‘source-ip’ configuration statement, which you are advised to
use instead (see Section 7.2 [conf-base], page 174).

‘--time-format=format ’
Set format to be used for timestamps in listings, produced by
‘--list’. The format is any valid strftime format string, see

Chapter 8: Mailfromd Command Line Syntax 187

Appendix B [Time and Date Formats], page 221, for a detailed
description. The default format is ‘%c’ (see [%c time format],
page 221). To analyze mailfromd --list output using text
tools, such as awk or grep, the following format might be useful:
‘%s’ (see [%s time format], page 222). Another format I find
useful is ‘%Y-%m-%d_%H:%M:%S’.

‘-u name ’
‘--user name ’

Switch to this user privileges after startup. Overrides the user
configuration file statement, which you are advised to use instead
(see Section 7.8 [conf-priv], page 180). Default user is ‘mail’.

‘-v var=value ’
‘--variable var=value ’

Assign value to the global variable var. The variable must be
declared in your startup script. See [overriding initial values],
page 38, for a detailed discussion of this option.

8.1.3 Preprocessor Options

Following command line options control the preprocessor feature. See
Section 4.22 [Preprocessor], page 104, for a detailed discussion of these.

‘--no-preprocessor’
Do not run the preprocessor.

‘--preprocessor=command ’
Use command as the external preprocessor instead of the default
m4.

‘-D name[=value]’
‘--define=name[=value]’

Define a preprocessor symbol name to have a value value.

‘-U name ’
‘--undefine=name ’

Undefine the preprocessor symbol name.

‘-E’ Stop after the preprocessing stage; do not run the compiler
proper. The output is in the form of preprocessed source code,
which is sent to the standard output.

8.1.4 Timeout Control

See [time interval specification], page 173, for information on interval format.

‘--milter-timeout=interval ’
Set MTA connection timeout. Overrides milter-timeout state-
ment in the mailfromd configuration file, which you are advised
to use instead (see Section 7.4 [conf-milter], page 176).

188 Mailfromd Manual

‘--timeout=number ’
Sets the I/O operation timeout (seconds). Overrides io-timeout
configuration file statement, which you are advised to use instead
(see Section 7.6 [conf-timeout], page 177).

8.1.5 Logging and Debugging Options

Mention column number in error messages. See Section 3.16
[location-column], page 37.

‘-d string ’
‘--debug=string ’

Set debugging level. Overrides ‘#pragma option debug’. See
Section 3.18 [Logging and Debugging], page 43.

‘--dump-code’
Parse and compile the script file and dump the disassembled
listing of the produced code to the terminal. See Section 3.18
[Logging and Debugging], page 43.

‘--dump-grammar-trace’
Enable debugging the script file parser. While parsing the file,
the detailed dump of the parser states and tokens seen will be
output.

‘--dump-lex-trace’
Enable debugging the lexical analyzer. While parsing the script
file, the detailed dump of the lexer states and matched rules will
be output.

‘--dump-macros’
Show Sendmail macros used in the script file. The macro names
are displayed as comma-separated lists, grouped by handler
names. See Section 9.1 [Sendmail], page 195, for a detailed de-
scription of this option and its usage.

‘--dump-tree’
Parse and compile the script file and dump the parse tree in a
printable form to the terminal.

‘--dump-xref’
Print a cross-reference of variables used in the filter script. See
Section 3.16 [Testing Filter Scripts], page 37.

‘-E’ Stop after the preprocessing stage; do not run the compiler
proper. The output is in the form of preprocessed source code,
which is sent to the standard output. See Section 4.22 [Prepro-
cessor], page 104.

‘--lint’ Check script file syntax and exit. If the file is ok, return 0 to
the shell, otherwise print appropriate messages to stderr and
exit with code 78 (‘configuration error’).

Chapter 8: Mailfromd Command Line Syntax 189

‘--single-process’
Do not fork sub-processes to serve requests. This option is meant
to assist in debugging mailfromd. Don’t use it for anything else
but for debugging, as it terribly degrades performance!

‘--stack-trace’
Add MFL stack trace information to runtime error output. Over-
rides stack-trace configuration statement, which you are ad-
vised to use instead (see Section 7.5 [conf-debug], page 176). See
[tracing runtime errors], page 48, for more information on this
feature.

‘--gacopyz-log=level ’
Set desired logging level for gacopyz library (see Appendix A
[Gacopyz], page 219). There are five logging levels. The follow-
ing table lists them in order of decreasing priority:

fatal Log fatal errors.

err Log error messages.

warn Log warning messages.

info Log informational messages. In particular, this en-
ables printing messages on each subprocess startup
and termination, which look like that:

Apr 28 09:00:11 host mailfromd[9411]: connect

from 192.168.10.1:50398

Apr 28 09:00:11 host mailfromd[9411]: finishing

connection

This level can be useful for debugging your scripts.

debug Log debugging information.

proto Log Milter protocol interactions. This level prints
huge amounts of information, in particular it dis-
plays dumps of each Milter packet sent and received.

Although it is possible to set these levels independently of
each other, it is seldom practical. Therefore, the option
‘--gacopyz-log=level ’ enables all logging levels from level up.
For example, ‘--gacopyz-log=warn’ enables log levels ‘warn’,
‘err’ and ‘fatal’. It is the default. If you need to trace each
subprocess startup and shutdown, set ‘--gacopyz-log=info’.
Setting the logging level to ‘proto’ can be needed only for
Gacopyz developers, to debug the protocol.
See Section 3.16 [Testing Filter Scripts], page 37.

‘--log-facility=facility ’
Output logs to syslog facility .

190 Mailfromd Manual

‘--log-tag=string ’
Tag syslog entries with the given string , instead of the program
name.

‘--no-syslog-async’
Use system libc syslog implementation. See Section 3.18 [Log-
ging and Debugging], page 43, for more information about two
syslog flavors. See Section 7.5 [conf-debug], page 176, for the cor-
responding configuration statement. See [syslog-async], page 11,
for information on how to set default syslog implementation at
compile time.

To inspect the default syslog implementation, use the
‘--show-defaults’ command line option (see Section 3.15
[Databases], page 34).

‘-s’
‘--stderr’

Log to stderr (by default logging goes to syslog). See Section 3.18
[Logging and Debugging], page 43.

This option is turned on implicitly by any of the following
options: ‘--compact’, ‘--delete’, ‘--expire’, ‘--test’, and
‘--list’.

‘--source-info’
Include c source information in debugging messages. You do
not need this option, unless you are developing and debugging
mailfromd.

‘--syntax-check’
Synonym for ‘--lint’.

‘--trace’ Enable action tracing. With this option mailfromd will log all
executed actions. See Section 3.18 [Logging and Debugging],
page 43.

‘--trace-program[=string]’
Enable program instruction tracing. With this option
mailfromd will log execution of every instruction in the
compiled filter program. The optional arguments allows to
specify a comma-separated list of source code modules for
which the tracing is to be enabled, for example --trace-
program=bi_io,bi_db enables tracing for functions from
modules ‘bi_io.c’ and ‘bi_db.c’ (notice, that you need not
give file suffixes in string).

This option is useful for debugging mailfromd, but is not advised
to use otherwise, since it is very time-costly.

Chapter 8: Mailfromd Command Line Syntax 191

‘-X’
‘--transcript’

Enable transcript of the SMTP sessions to the log channel. See
Section 3.18 [Logging and Debugging], page 43.

‘--syslog’
Output logs to syslog. This is the default, unless any of the
following options is used: ‘--compact’, ‘--delete’, ‘--expire’,
‘--test’, and ‘--list’.

‘--syslog-async’
Use asynchronous syslog implementation. See Section 3.18 [Log-
ging and Debugging], page 43, for more information about two
syslog flavors. See Section 7.5 [conf-debug], page 176, for the cor-
responding configuration statement. See [syslog-async], page 11,
for information on how to set default syslog implementation at
compile time.
To inspect the default syslog implementation, use the
‘--show-defaults’ command line option (see Section 3.15
[Databases], page 34).

‘--xref’ Same as ‘--dump-xref’. See Section 3.18 [Logging and Debug-
ging], page 43.

8.1.6 Informational Options

‘-?’
‘--help’ Give a short help summary.

‘--usage’ Give a short usage message.

‘-V’
‘--version’

Print program version.

8.2 Starting and Stopping
Right after startup, when mailfromd has done the operations that require
root privileges, it switches to the privileges of the user it is configured to run
as (see [default user privileges], page 10) or the one given in its configuration
file (see Section 7.8 [conf-priv], page 180). During this process it will drop
all supplementary groups and switch to the principal group of that user.

Such limited privileges of the daemon can cause difficulties if your filter
script needs to access some files (e.g. Sendmail databases) that are not
accessible to that user and group. For example, the following fragment
using dbmap function:

if dbmap("/etc/mail/aliases.db", $f, 1)

...

fi

192 Mailfromd Manual

will normally fail, because ‘/etc/mail/aliases.db’ is readable only to the
root and members of the group ‘smmsp’.

In such situations you need to instruct mailfromd to retain the privileges
of one or several supplementary groups when switching to the user privileges.
This is done using group statement in the mailfromd configuration file (see
Section 7.8 [conf-priv], page 180). In example above, you need to use the
following settings:

group smmsp;

(The same effect can be achieved with ‘--group’ command line option:
mailfromd --group=smmsp).

To stop a running instance of mailfromd use one of the following sig-
nals: SIGQUIT, SIGTERM, SIGINT. All three signals have the same effect: the
program cancels handling any pending requests, uninitializes the communi-
cation socket (if it is a UNIX socket, the program unlinks it) and exits.

To restart the running mailfromd instance, send it SIGHUP. For restart
to be possible, two conditions must be met: mailfromd must be invoked
with the full file name, and the configuration file name must be full as well.
If either of them is not met, mailfromd displays a similar warning message:

warning: script file is given without full file name

warning: restart (SIGHUP) will not work

or:
warning: mailfromd started without full file name

warning: restart (SIGHUP) will not work

The reaction of mailfromd on SIGHUP in this case is the same as on the
three signals described previously, i.e. cleanup and exit immediately.

The PID of the master instance of mailfromd is kept on the pidfile, which
is named ‘mailfromd.pid’ and is located in the program state directory.
Assuming the default location of the latter, the following command will stop
the running instance of the daemon:

kill -TERM ‘head -n1 /usr/local/var/mailfromd/mailfromd.pid‘

The default pidfile location is shown in the output of mailfromd --show-
defaults (see Section 3.15 [Databases], page 34), and can be changed at run
time using pidfile statement (see Section 7.2 [conf-base], page 174).

To facilitate the use of mailfromd, it is shipped with a shell script that can
be used to launch it on system startup and shut it down when the system
goes down. The script, called ‘rc.mailfromd’, is located in the directory
‘/etc’ of the distribution. It takes a single argument, specifying the action
that should be taken:

start Start the program.

stop Shut down the program

reload Reload the program, by sending it SIGHUP signal.

restart Shut down the program and start it again.

Chapter 8: Mailfromd Command Line Syntax 193

status Display program status. It displays the PID of the master pro-
cess and its command line, for example:

$ /etc/rc.d/rc.mailfromd status

mailformd appears to be running at 26030

26030 /usr/local/sbin/mailfromd --remove --group smmsp

If the second line is not displayed, this most probably mean that
there is a ‘stale’ pidfile, i.e. the one left though the program is
not running.
An empty rc.mailfromd status output means that mailfromd
is not running.

configtest [file]
Check the script file syntax, report any errors found and exit. If
file is given it is checked instead of the default one.

macros [-c] [file]
Parse the script file (or file, if it is given, extract the names
of Sendmail macros it uses and generate corresponding export
statements usable in the Sendmail configuration file. By default,
‘mc’ statements are generated. If ‘-c’ (‘--cf’) is given, the state-
ments for ‘sendmail.cf’ are output. See the next chapter for
the detailed description of this mode.

You can pass any additional arguments to mailfromd by editing ARGS
variable near line 22.

The script is not installed by default. You will have to copy it to the
directory where your system start-up scripts reside and ensure it is called
during the system startup and shut down. The exact instructions on how to
do so depend on the operating system you use and are beyond the scope of
this manual.

Chapter 9: Using mailfromd with Various MTAs 195

9 Using mailfromd with Various MTAs

The following sections describe how to configure various Milter-capable
MTAs to work with mailfromd.

9.1 Using mailfromd with Sendmail.
This chapter assumes you are familiar with Sendmail configuration in general
and with Milter configuration directives in particular. It concentrates only
on issues, specific for mailfromd.

To prepare Sendmail to communicate with mailfromd you need first to
set up the milter port. This is done with INPUT_MAIL_FILTER statement in
your Sendmail file:

INPUT_MAIL_FILTER(‘mailfrom’, ‘S=unix:/usr/local/var/mailfromd/mailfrom’)

Make sure that the value of ‘S’ matches the value of listen statement in
your ‘mailfromd.conf’ file (see Section 7.4 [conf-milter], page 176). Notice,
however, that they may not be literally the same, because listen allows
to specify socket address in various formats, whereas Sendmail’s ‘S’ accepts
only milter format.

If you prefer to fiddle directly with ‘sendmail.cf’ file, use this statement
instead:

Xmailfrom, S=unix:/usr/local/var/mailfromd/mailfrom

If you are using Sendmail version 8.14.0 or newer, you may skip to the
end of this section. These versions implement newer Milter protocol that
enables mailfromd to negotiate with the MTA the macros it needs for each
state.

Older versions of Sendmail do not offer this feature. For Sendmail ver-
sions prior to 8.14.0, you need to manually configure Sendmail to export
macros you need in your mailfromd.mf file. The simplest way to do so is
using rc.mailfromd script, introduced in the previous chapter. Run it with
macros command line argument and copy its output to your ‘sendmail.mc’
configuration file:

$ rc.mailfromd macros

If you prefer to work with ‘sendmail.cf’ directly, use ‘-c’ (‘--cf’) com-
mand line option:

$ rc.mailfromd macros -c

Finally, if you use other mailfromd script file than that already installed
(for example, you are preparing a new configuration while the old one is still
being used in production environment), give its name in the command line:

$ rc.mailfromd macros newscript.mf

or:
$ rc.mailfromd macros -c newscript.mf

If you use this method, you can skip the rest of this chapter. However, if
you are a daring sort of person and prefer to do everything manually, follow
the instructions below.

196 Mailfromd Manual

First of all you need to build a list of macros used by handlers in your
‘mailfromd.mf’ file. You can obtain it running mailfromd --dump-macros.
This will display all macros used in your handlers, grouped by handler name,
for example:

envfrom i, f, {client_addr}

envrcpt f, {client_addr}, {rcpt_addr}

Now, modify confMILTER_MACROS_handler macros in your ‘mc’ file.
Here, handler means the uppercase name of the mailfromd handler you want
to export macros to, i.e. the first word on each line of the above mailfromd -
-dump-macros output. Notice, that in addition to these macros, you should
also export the macro i for the very first handler (rc.mailfromd macros
takes care of it automatically, but you preferred to do everything yourself...)
It is necessary in order for mailfromd to include ‘Message-ID’ in its log
messages (see [Message-ID], page 44).

For example, given the above macros listing, which corresponds to our
sample configuration (see Section 4.23 [Filter Script Example], page 107),
the ‘sendmail.mc’ snippet will contain:

define(‘confMILTER_MACROS_ENVFROM’,dnl

confMILTER_MACROS_ENVFROM ‘, i, f, {client_addr}’)

define(‘confMILTER_MACROS_ENVRCPT’,dnl

confMILTER_MACROS_ENVRCPT ‘, f, {client_addr}, {rcpt_addr}’)

Special attention should be paid to s macro (‘HELO’ domain name). In
Sendmail versions up to 8.13.7 (at least) it is available only to helo handler.
If you wish to make it available elsewhere you will need to use the method
described in Section 3.9 [HELO Domain], page 24

Now, if you are a really daring person and prefer to do everything man-
ually and to hack your ‘sendmail.cf’ file directly, you certainly don’t need
any advices. Nonetheless, here’s how the two statements above could look
in this case:

O Milter.macros.envfrom=i, {auth_type}, {auth_authen}, \

{auth_ssf}, {auth_author}, {mail_mailer}, {mail_host}, \

{mail_addr} ,{mail_addr}, {client_addr}, f

O Milter.macros.envrcpt={rcpt_mailer}, {rcpt_host}, \

{rcpt_addr} ,i, f, {client_addr}

9.2 Using mailfromd with MeTA1.
MeTA1 (http://www.meta1.org) is an MTA of next generation which is
designed to provide the following main features:
• Security
• Reliability
• Efficiency
• Configurability
• Extendibility

http://www.meta1.org

Chapter 9: Using mailfromd with Various MTAs 197

Instead of using Sendmail-compatible Milter protocol, it implements a
new protocol, called policy milter, therefore an additional program is re-
quired to communicate with mailfromd. This program is a Pmilter–Milter
multiplexer pmult, which is part of the ‘Mailfromd’ distribution. See
Chapter 11 [pmult], page 209, for a detailed description of its configuration.

The configuration of ‘Meta1--Mailfromf’ interaction can be subdivided
into three tasks.
1. Configure mailfromd

This was already covered in previous chapters. No special ‘MeTA1’-
dependent configuration is needed.

2. Configure pmult to communicate with mailfromd

This is described in detail in Chapter 11 [pmult], page 209.
3. Set up MeTA1 to communicate with pmult

The MeTA1 configuration file is located in ‘/etc/meta1/meta1.conf’.
Configure the smtps component, by adding the following section:

policy_milter {

socket {

type = type;

address = addr;

[path = path;]

[port = port-no;]

};

[timeout = interval;]

[flags = { flag };]

};

Statements in square brackets are optional. The meaning of each in-
struction is as follows:

type = type
Set the type of the socket to communicate with pmult. Al-
lowed values for type are:

inet Use INET socket. The socket address and port
number are set using the address and port
statements (see below).

unix Use UNIX socket. The socket path is given by
the path statement (see below).

Notice, that depending on the type setting you have to set
up either address/port or path, but not both.

address = addr
Configure the socket address for type = inet. Addr is the
IP address on which pmult is listening (see Section 11.1.1
[pmult-conf], page 210).

198 Mailfromd Manual

port = port-no
Port number pmult is listening on (see Section 11.1.1
[pmult-conf], page 210).

path = socket-file
Full pathname of the socket file, if type = unix.

timeout = interval
Sets the maximum amount of time to wait for a reply from
pmult.
The behavior of smtps in case of time out depends on the
flags settings:

flags = { flag }
Flag is one of the following:

abort If pmult does not respond, abort the current
SMTP session with a ‘421’ error.

accept but reconnect
If pmult does not respond, continue the current
session but try to reconnect for the next session.

For example, if the pmult configuration has:
listen inet://127.0.0.1:3333;

then the corresponding part in ‘/etc/meta1/meta1.conf’ will be
smtps {

policy_milter {

socket {

type = inet;

address = 127.0.0.1;

port = 3333;

};

...

};

...

};

Similarly, if the pmult configuration has:
listen unix:///var/spool/meta1/pmult/socket;

then the ‘/etc/meta1/meta1.conf’ should have:
smtps {

policy_milter {

socket {

type = unix;

path = /var/spool/meta1/pmult/socket;

};

...

};

...

};

Chapter 9: Using mailfromd with Various MTAs 199

9.3 Using mailfromd with Postfix
To configure postfix to work with your filter, you need to inform it about
the socket your filter is listening on. The smtpd_milters (or non_smtpd_
milters) statement in ‘/etc/postfix/main.cf’ serves this purpose. If the
filter is to handle mail that arrives via SMTP, use smtpd_milters. If it is
to handle mail submitted locally to the queue, use non_smtpd_milters. In
both cases, the value is a whitespace-separated list of socket addresses. Note,
that Postfix syntax for socket addresses differs from that used by Sendmail
and mailfromd. The differences are summarized in the following table:

Sendmail Mailfromd Postfix
inet:port@host inet://host:port inet:port:host
unix:file unix://file unix:file

Table 9.1: Socket addresses in various formats
For example, if your mailfromd listens on ‘inet://127.0.0.1:4111’,

add the following to ‘/etc/postfix/main.cf’:
smtpd_milters = inet:4111:127.0.0.1

Mailfromd uses Milter protocol version 6. Postfix, starting from version
2.6 uses the same version. Older versions of Postfix use Milter protocol 2 by
default. Normally, it should not be a problem, as mailfromd tries to detect
what version the server is speaking. If, however, it fails to select the proper
version, you will have to instruct Postfix what version to use. To do so, add
the following statement to ‘/etc/postfix/main.cf’:

milter_protocol = 6

The way Postfix handles macros differs from that of Sendmail. Postfix
emulates a limited subset of Sendmail macros, and not all of them are are
available when you would expect them to. In particular, the ‘i’ macro
is not available before the ‘DATA’ stage, which brings two consequences.
First, mailfromd log messages will not include message ID until the ‘DATA’
stage is reached. Secondly, you cannot use ‘i’ in handlers ‘connect’, ‘helo’,
‘envfrom’ and ‘envrcpt’,

If you wish to tailor Postfix defaults to export the actual macros
used by your filter, run mailfromd --dump-macros and filter its output
through the ‘postfix-macros.sed’ filter, which is installed to the ‘pre-
fix/libexec/mailfromd’ directory, e.g.:

$ mailfromd --dump-macro | \

sed -f /usr/libexec/mailfromd/postfix-macros.sed

milter_helo_macros = {s}

milter_mail_macros = {client_addr} {s} {f}

milter_rcpt_macros = {rcpt_addr} {f} {client_addr}

milter_end_of_data_macros = {i}

Cut and paste its output to your ‘/etc/postfix/main.cf’.

200 Mailfromd Manual

For more details regarding Postfix interaction with Milter and available
Postfix configuration options, see Postfix before-queue Milter support.

http://www.postfix.org/MILTER_README.html

Chapter 10: mtasim — a testing tool 201

10 mtasim — a testing tool

The mtasim utility is a MTA simulator for testing mailfromd filter scripts.
By default it operates in stdio mode, similar to that of sendmail -bs. In this
mode it reads SMTP commands from standard input and sends its responses
to the standard output. There is also another mode, called daemon, where
mtasim opens a TCP socket and listens on it much like any MTA does. In
both modes no actual delivery is performed, the tool only simulates the
actions an MTA would do and responses it would give.

This tool is derived from the program mta, which I wrote for GNU Anubis
test suite.

10.1 mtasim interactive mode mode
If you start mtasim without options, you will see the following:

220 mtasim (mailfromd 7.99.90) ready

(mtasim) _

The first line is an usual RFC 2821 reply. The second one is a prompt,
indicating that mtasim is in interactive mode and ready for input. The
prompt appears only if the package is compiled with GNU Readline and
mtasim determines that its standard input is connected to the terminal.
This is called interactive mode and is intended to save the human user some
typing by offering line editing and history facilities (see Section “Command
Line Editing” in GNU Readline Library). If the package is compiled without
GNU Readline, you will see:

220 mtasim (mailfromd 7.99.90) ready

_

where ‘_’ represents the cursor. Whatever the mode, mtasim will wait for
further input.

The input is expected to consist of valid SMTP commands and special
mtasim statements. The utility will act exactly like a RFC 2821-compliant
MTA, except that it will not do actual message delivery or relaying. Try
typing HELP to get the list of supported commands. You will see something
similar to:

250-mtasim (mailfromd 7.99.90); supported SMTP commands:

250- EHLO

250- HELO

250- MAIL

250- RCPT

250- DATA

250- HELP

250- QUIT

250- HELP

250 RSET

You can try a simple SMTP session now:
220 mtasim (mailfromd 7.99.90) ready

202 Mailfromd Manual

(mtasim) ehlo localhost

250-pleased to meet you

250 HELP

(mtasim) mail from: <me@localhost>

250 Sender OK

(mtasim) rcpt to: <him@domain>

250 Recipient OK

(mtasim) data

354 Enter mail, end with ‘.’ on a line by itself

(mtasim) .

250 Mail accepted for delivery

(mtasim) quit

221 Done

Notice, that mtasim does no domain checking, so such thing as ‘rcpt to:
<him@domain>’ was eaten without complaints.

So far so good, but what all this has to do with mailfromd? Well, that’s
what we are going to explain. To make mtasim consult any milter, use
‘--port’ (‘-X’) command line option. This option takes a single argument
that specifies the milter port to use. The port can be given either in the
usual Milter format (See [milter port specification], page 173, for a short
description), or as a full ‘sendmail.cf’ style X command, in which case it
allows to set timeouts as well:

$ mtasim --port=inet:999@localhost

This is also valid:
$ mtasim --port=’mailfrom, S=inet:999@localhost, F=T, T=C:100m;R:180s’

If the milter is actually listening on this port, mtasim will connect to it
and you will get the following initial prompt:

220-mtasim (mailfromd 7.99.90) ready

220 Connected to milter inet:999@localhost

(mtasim)

Notice, that it makes no difference what implementation is listening on
that port, it may well be some other filter, not necessarily mailfromd.

However, let’s return to mailfromd. If you do not want to connect to an
existing mailfromd instance, but prefer instead to create a new one and run
your tests with it (a preferred way, if you already have a stable filter running
but wish to test a new script without disturbing it), use ‘--port=auto’. This
option instructs mtasim to do the following:
1. Create a unique temporary directory in ‘/tmp’ and create a communi-

cation socket within it.
2. Spawn a new instance of mailfromd. The arguments and options for

that instance may be given in the invocation of mtasim after a double-
dash marker (‘--’)

3. Connect to that filter.

When mtasim exits, it terminates the subsidiary mailfromd process and
removes the temporary directory it has created. For example, the following
command will start mailfromd -I. -I../mflib test.rc:

Chapter 10: mtasim — a testing tool 203

$ mtasim -Xauto -- -I. -I../mflib test.rc

220-mtasim (mailfromd 7.99.90) ready

220 Connected to milter unix:/tmp/mtasim-j6tRLC/socket

(mtasim)

The ‘/tmp/mtasim-j6tRLC’ directory and any files within it will exist as
long as mtasim is running and will be removed when you exit from it.1 You
can also instruct the subsidiary mailfromd to use this directory as its state
directory (see [statedir], page 11). This is done by ‘--statedir’ command
line option:

$ mtasim -Xauto --statedir -- -I. -I../mflib test.rc

(notice that ‘--statedir’ is the mtasim option, therefore it must appear
before ‘--’)

Special care should be taken when using mtasim from root account, es-
pecially if used with ‘-Xauto’ and ‘--statedir’. The mailfromd utility
executed by it will switch to privileges of the user given in its configuration
(see Section 8.2 [Starting and Stopping], page 191) and will not be able to
create data in its state directory, because the latter was created using ‘root’
as owner. To help in this case, mtasim understands ‘--user’ and ‘--group’
command line options, that have the same meaning as for mailfromd.

Now, let’s try HELP command again:
250-mtasim (mailfromd 7.99.90); supported SMTP commands:

250- EHLO

250- HELO

250- MAIL

250- RCPT

250- DATA

250- HELP

250- QUIT

250- HELP

250- RSET

250-Supported administrative commands:

250- \Dname=value [name=value...] Define Sendmail macros

250- \Ecode Expect given SMTP reply code

250- \L[name] [name...] List macros

250 \Uname [name...] Undefine Sendmail macros

While the SMTP commands do not need any clarification, some words
about the administrative commands are surely in place. These commands
allow to define, undefine and list arbitrary Sendmail macros. Each adminis-
trative command consists of a backslash followed by a command letter. Just
like SMTP ones, administrative commands are case-insensitive. If a com-
mand takes arguments, the first argument must follow the command letter
without intervening whitespace. Subsequent arguments can be delimited by
arbitrary amount of whitespace.

1 However, this is true only if the program is exited the usual way (via QUIT or end-
of-file). If it is aborted with a signal like SIGINTR, the temporary directory is not
removed.

204 Mailfromd Manual

For example, the \D command defines Sendmail macros:
(mtasim) \Dclient_addr=192.168.10.1 f=sergiusz@localhost i=testmsg

(mtasim)

Notice that mailfromd does not send any response to the command, except
if there was some syntactic error, in which case it will return a ‘502’ response.

Now, you can list all available macros:
(mtasim) \L

220-client_addr=192.168.10.1

220-f=sergiusz@localhost

220 i=testmsg

(mtasim)

or just some of them:
(mtasim) \Lclient_addr

220 client_addr=192.168.10.1

(mtasim)

To undefine a macro, use \U command:
(mtasim) \Ui

(mtasim) \l

220-client_addr=192.168.10.1

220 f=sergiusz@localhost

(mtasim)

Now, let’s try a real-life example. Suppose you wish to test the greylist-
ing functionality of the filter script described in Section 4.23 [Filter Script
Example], page 107. To do this, you start mtasim:

$ mtasim -Xauto -- -I. -I../mflib test.rc

220-mtasim (mailfromd 7.99.90) ready

220 Connected to milter unix:/tmp/mtasim-ak3DEc/socket

(mtasim)

The script in ‘test.rc’ needs to know client_addr macro, so you supply
it to mtasim:

(mtasim) \Dclient_addr=10.10.1.13

Now, you try an SMTP session:
(mtasim) ehlo yahoo.com

250-pleased to meet you

250 HELP

(mtasim) mail from: <gray@yahoo.com>

250 Sender OK

(mtasim) rcpt to: <gray@localhost>

450 4.7.0 You are greylisted for 300 seconds

OK, this shows that the greylisting works. Now quit the session:
(mtasim) quit

221 Done

10.2 mtasim expect commands
Until now we were using mtasim interactively. However, it is often useful
in shell scripts, for example the mailfromd test suite is written in shell

Chapter 10: mtasim — a testing tool 205

and mtasim. To avoid the necessity to use auxiliary programs like expect
or DejaGNU, mtasim contains a built-in expect feature. The administrative
command \E introduces the SMTP code that the next command is expected
to yield. For example,

\E250

rcpt to: <foo@bar.org>

tells mtasim that the response to RCPT TO command must begin with ‘250’
code. If it does, mtasim continues execution. Otherwise, it prints an error
message and terminates with exit code 1. The error message it prints looks
like:

Expected 250 but got 470

The expect code given with the \E command may have less than 3 digits.
In this case it specifies the first digits of expected reply. For example, the
command ‘\E2’ matches replies ‘200’, ‘220’, etc.

This feature can be used to automate your tests. For example, the fol-
lowing script tests the greylisting functionality (see the previous section):

Test the greylisting functionality
#

\E220

\Dclient_addr=10.10.1.13

\E250

ehlo yahoo.com

\E250

mail from: <gray@yahoo.com>

\E450

rcpt to: <gray@localhost>

\E221

quit

This example also illustrates the fact that you can use ‘#’-style comments
in the mtasim input. Such a script can be used in shell programs, for exam-
ple:

mtasim -Xauto --statedir -- -I. -I../mflib test.rc < ‘scriptfile’

if $? -ne 0; then

echo "Greylisting test failed"

fi

10.3 Trace Files
It is possible to log an entire SMTP session to a file. This is called session
tracing. Two options are provided for this purpose:

‘--trace-file=file ’
Sets the name of the trace file, i.e. a file to which the session
transcript will be written. Both the input commands, and the
mtasim responses are logged. If the file file exists, it will be
truncated before logging. This, however, can be changed using
the following option:

206 Mailfromd Manual

‘-a’
‘--append’

If the trace file exists, append new trace data to it.

10.4 Daemon Mode
To start mtasim in daemon mode, use the ‘--daemon’ (or ‘-bd’) command
line option. This mode is not quite the same as Sendmail ‘-bd’ mode. When
started in daemon mode, mtasim selects the first available TCP port to use
from the range ‘1024 -- 65535’. It prints the selected port number on the
standard output and starts listening on it. When a connection comes, it
serves a single SMTP session and exits immediately when it is ended.

This mode is designed for use in shell scripts and automated test cases.

10.5 mtasim command line options
This section summarizes all available mtasim command line options.

‘--append’
‘-a’ Append to the trace file. See Section 10.3 [traces], page 205.

‘--body-chunk=number ’
Set the body chunk length (bytes) for xxfi_body calls.

‘--daemon’
‘-bd’ Run as daemon. See Section 10.4 [daemon mode], page 206.

‘--define=macro=value ’
‘-D macro=value ’

Define Sendmail macro macro to the given value. It is similar
to the \D administrative command (see [D command], page 203)

‘--gacopyz-log=level ’
Set desired logging level for gacopyz library (see Appendix A
[Gacopyz], page 219). See [gacopyz-log option], page 189, for
a detailed description of level. Notice, that unless this option
is used, the ‘--verbose’ (‘-v’) command line option implies
‘--gacopyz-log=debug’.

‘--group=name ’
‘-g name ’ When switching to user’s privileges as requested by the ‘--user’

command line option, retain the additional group name. Any
number of ‘--group’ options may be given to supply a list of
additional groups.

‘--user=name ’
‘-u name ’ Run with this user privileges. This option and the ‘--group’

option have effect only if mtasim was started with root privileges.

‘--help’
‘-?’ Display a short help summary

Chapter 10: mtasim — a testing tool 207

‘--milter-version=version ’
Force using the given Milter protocol version number. The ver-
sion argument is either a numeric version (e.g. ‘2’), or a version
string in form ‘major.minor[.patch]’, where square brackets
indicate optional part. The default is ‘1.0.0’. If version is any
of ‘2’, ‘3’ or ‘1.0.0’, the default protocol capabilities and actions
for that version are set automatically. This option is intended for
development and testing of the Gacopyz library (see Appendix A
[Gacopyz], page 219).

‘--milter-proto=bitmask ’
Set Milter protocol capabilities. See ‘gacopyz/gacopyz.h’ for
the meaning of various bits in the bitmask. Look for the C
macros with the prefix ‘SMFIP_’.

‘--milter-timeout=values ’
Set timeouts for various Milter operations. Values is a comma-
separated list of assignments ‘T=V ’, where T is a timeout code,
indicating which timeout to set, and V is its new value. Valid
timeout codes are:

C Timeout for connecting to a filter.

W
S Timeout for reading reply from the filter.

R Timeout for sending information from the simulator
to a filter.

E Overall timeout between sending end-of-message to
filter and waiting for the final acknowledgment. In-
directly, it configures the upper limit on the exe-
cution time of the eom handler (see [eom handler],
page 70).

‘--milter-actions=bitmask ’
Set Milter actions. See ‘gacopyz/gacopyz.h’ for the meaning
of various bits in the bitmask. Look for the C macros with the
prefix ‘SMFIF_’.

‘--no-interactive’
Not-interactive mode (disable readline). See Section “Command
Line Editing” in GNU Readline Library .

‘--port=port ’
‘-X port ’ Communicate with given Milter port. See [mtasim milter port],

page 202.

‘--prompt=string ’
Set readline prompt. The default prompt string is ‘(mtasim) ’.

208 Mailfromd Manual

‘--statedir’
When using ‘-Xauto’, use the temporary directory name
as mailfromd state directory (see [statedir mtasim option],
page 203).

‘--stdio’
‘-bs’ Use the SMTP protocol on standard input and output. This

is the default mode for mtasim. See Section 10.1 [interactive
mode], page 201.

‘--trace-file=file ’
Set name of the trace file. See Section 10.3 [traces], page 205.

‘--usage’ Display option summary

‘--verbose’
‘-v’ Increase verbosity level. Implies ‘--gacopyz-log=debug’, unless

that option is used explicitly.

‘--version’
‘-V’ Print program version

Chapter 11: Pmilter multiplexer program. 209

11 Pmilter multiplexer program.

Pmult is a Pmilter–Milter multiplexer, i.e. a program that acts as a mediator
between the Pmilter server and one or several Milter clients. Usually, the
former is an instance of smtps from MeTA1, and the latter are running
mailfromd instances. Pmult receives Pmilter commands from the server,
translates them into equivalent Milter commands and passes the translated
requests to a preconfigured set of Milter filters. When the filters reply, the
reverse operation is performed: Milter responses are translated into their
Pmilter equivalents and are sent back to the server.

+-----------------+

+----->| Milter Client 1 |

| +-----------------+

|

+-----------+ +---------+ | +-----------------+

| MeTA1 |<=====>| Pmult |<--+----->| Milter Client 1 |

+-----------+ +---------+ | +-----------------+

|

+---------> //

|

| +-----------------+

+----->| Milter Client N |

+-----------------+

Due to the specifics nature of the threaded MeTA1 libraries, pmult does
not detach from the controlling terminal (i.e. does not become a daemon).
To run it as a background process, we recommend to use pies daemon.
‘Pies’ is a powerful utility that allows you to launch several foreground-
designed programs in the background and control their execution. See
Section “Pies” in Pies Manual, for a detailed description of the program.
For a practical advice on how to use it with pmult, see Section “Simple
Pies” in Pies Manual. For a description on how to start both pmult and
MeTA1 from the same pies configuration file, see Section “Hairy Pies” in
Pies Manual.

11.1 Pmult Configuration
Pmult reads its configuration from the main Mailutils configuration file. See
Section “configuration” in GNU Mailutils Manual, for a description of GNU
Mailutils configuration system. The following standard Mailutils statements
are understood:

Statement Reference
debug See Section “Debug Statement” in GNU

Mailutils Manual.
logging See Section “Logging Statement” in GNU

Mailutils Manual.

210 Mailfromd Manual

include See Section “Include” in GNU Mailutils
Manual.

11.1.1 Multiplexer Configuration.

Pmult listens for Pmilter requests on a socket, configured using listen state-
ment:

[Pmult Conf]listen url
Listen on the given url. Argument is a valid Mailutils URL. See [milter
port specification], page 173, for a description of url.

Since pmult runs as a foreground program, it does not write its PID
number to a file by default. If this behavior is required, it can be enabled
using the following statement:

[Pmult Conf]pidfile file
Store PID of the pmult process in file.

The following three limits require MeTA1 version ‘PreAlpha30.0’ or
later.

[Pmult Conf]max-threads-soft n
“Soft” limit on the number of ‘pmilter’ threads. Default is 2.

[Pmult Conf]max-threads-hard n
“Hard” limit on the number of ‘pmilter’ threads. This is roughly equiva-
lent to the number of emails pmult is able to handle simultaneously. The
default value is 6. Raise this limit if you experience long delays when
connecting to the SMTP port.

[Pmult Conf]max-pmilter-fd n
Maximum number of file descriptors ‘pmilter’ library is allowed to open
simultaneously. Default is 10.

11.1.2 Translating MeTA1 macros.

MeTA1’s notion of macros differs considerably from that of Sendmail.
Macros in MeTA1 are identified by integer numbers and only a limited num-
ber of macros can be provided for each Pmilter stage. Pmilter stages mostly
correspond to Milter states (see [handler names], page 15), except that there
are no distinct header and body stages, instead these two are combined into
a single ‘data’ stage. This comes unnoticed to mailfromd scripts, because
pmult takes care to invoke right Milter handlers within the single ‘data’
Pmilter state. Therefore in the discussion that follows we will refer to Mail-
fromd handlers, rather than to Pmilter stages.

The most important standard Milter macros are always provided by
pmult itself. These are:

Chapter 11: Pmilter multiplexer program. 211

client addr
The IP address of the SMTP client. As of version 7.99.90, only
IPv4 addresses are supported. Defined in all handlers.

client port
The port number of the SMTP client. Defined in all handlers.

i MeTA1 session ID. Defined in all handlers.

f The envelope sender (from) address. Defined in envfrom and
subsequent handlers.

nbadrcpts The number of bad recipients for a single message. Defined in
envfrom and envrcpt handlers.

ntries The number of delivery attempts. As of version 7.99.90 it is
always ‘1’. Defined in envfrom and subsequent handlers.

nrcpts The number of validated recipients for a single message. Defined
in envfrom and envrcpt handlers.

r Protocol used to receive the message. The value of this macro
is always ‘SMTP’. Defined in all handlers.

rcpt host The host from the resolved triple of the address given for the
SMTP RCPT command. Defined in envrcpt handler.

rcpt addr The address part of the resolved triple of the address given for
the SMTP RCPT command. Defined in envrcpt handler.

s Sender’s helo domain (parameter to EHLO or HELO command).

Two additional macros are provided for all handlers that allow to identify
whether the message is processed via pmult:

multiplexer
Canonical name of the multiplexer program, i.e. ‘pmult’.

mult version
Version of pmult.

These macros can be used in mailfromd filters to provide alternative
processing for messages coming from a MeTA1 server.

Macros defined in MeTA1 can be made available in Mailfromd handlers
using the define-macros statement.

[Pmult Conf]define-macros handler macros
Define a set of Sendmail macros for the given Mailfromd handler. Allowed
values for handler are: ‘connect’, ‘helo’, ‘mail’ (or ‘envfrom’), ‘rcpt’
(or ‘envrcpt’), ‘data’ (or ‘header’ or ‘body’), ‘dot’ (‘eom’). A list of these
values is also accepted, in which case macros are defined for each handler
from the list.
The second argument specifies a list of names of the macros that should
be defined in this handler. Allowed macro names are:

212 Mailfromd Manual

hostname Hostname of SMTP server.

client resolve
Result of client lookup.

tls version TLS/SSL version used.

tls cipher suite
TLS cipher suite used.

tls cipher bits
Effective key length of the symmetric encryption algorithm.

tls cert subject
The DN (distinguished name) of the presented certificate.

tls cert issuer
The DN (distinguished name) of the CA (certificate author-
ity) that signed the presented certificate (the cert issuer).

tls alg bits
Maximum key length of the symmetric encryption algorithm.
This may be less than the effective key length for export
controlled algorithms.

tls vrfy The result of the verification of the presented cert.

tls cn subject
cn subject The CN (common name) of the presented certificate.

tls cn issuer
cn issuer The CN (common name) of the CA that signed the presented

certificate.

auth type The mechanism used for SMTP authentication (only set if
successful).

auth authen
The client’s authentication credentials as determined by au-
thentication (only set if successful). The actual format de-
pends on the mechanism used, it might be just ‘user’, or
‘user@realm’, or something similar.

auth author
The authorization identity, i.e. the ‘AUTH=’ parameter of the
SMTP MAIL command if supplied.

taid MeTA1 transaction id.

msgid Message-Id of the message.

c The hop count. Basically, this is the number of ‘Received:’
headers.

Notice the following limitations:

Chapter 11: Pmilter multiplexer program. 213

1. ‘taid’ cannot be requested before ‘mail’ stage.
2. ‘msgid’ can be requested only in ‘dot’ stage.
3. All ‘tls_*’ macros are valid only after a STARTTLS command.
4. The number of MeTA1 macros per stage is limited by PM_MAX_MACROS

define in ‘include/sm/pmfdef.h’. In MeTA1 versions up to and in-
cluding 1.0.PreAlpha28.0, this number is 8. If you need more macros,
increase this number and recompile MeTA1.

[Pmult Conf]auth-macros bool
If bool is true (see Section “Statements” in GNU Mailutils Manual), pass
auth macros to mailfromd ‘mail’ handler. It is equivalent to:

define-macros mail (auth_type, auth_authen, auth_author);

11.1.3 Pmult Client Configuration.

In pmult terminology, remote Milters are clients. The number of clients
pmult is able to handle is not limited. Each client is declared using client
statement:

client [ident] {

Set remote protocol type.
type protocol-type;

Set remote client URL.
url arg;

Set write timeout.
write-timeout duration;

Set read timeout.
read-timeout duration;

Set timeout for EOM.
eom-timeout duration;

Set connect timeout.
connect-timeout duration;

Set log verbosity level.
log-level level;

};

[Pmult Conf]client [ident] { statements }
Declare a Milter client. Optional ident gives the identifier of this client,
which will be used in diagnostics messages.
Statements are described below.

[Pmult Conf]type typestr
This statement is reserved for future use. In version 7.99.90 it is a no-op.
If given, the value of typestr must be ‘milter’.
In future versions this statement will declare the protocol to be used to
interact with this client. The syntax for typestr is

type [version]

where type is either ‘milter’ or ‘pmilter’, and optional version is mini-
mal protocol version.

214 Mailfromd Manual

[Pmult Conf]url arg
Set remote client URL. See [milter port specification], page 173, for a
description of url.

[Pmult Conf]connect-timeout interval
Configure Milter initial connection timeout. Default is 5 minutes.
See [time interval specification], page 173, for information on interval
format.

[Pmult Conf]write-timeout interval
Configure Milter write timeout. Default is 10 seconds.
See [time interval specification], page 173, for information on interval
format.

[Pmult Conf]read-timeout interval
Configure Milter read timeout. Default is 10 seconds.
See [time interval specification], page 173, for information on interval
format.

[Pmult Conf]eom-timeout interval
Configure Milter end of message timeout. Default is 5 minutes.
See [time interval specification], page 173, for information on interval
format.

[Pmult Conf]log-level arg
Set Milter log verbosity level for this client. Argument is a list of items
separated by commas or whitespace. Each item is a log level optionally
prefixed with ‘!’ to indicate “any level except this”, ‘<’, meaning “all
levels up to and including this”, or with ‘>’, meaning “all levels starting
from this”.
Log levels in order of increasing priority are: ‘proto’, ‘debug’, ‘info’,
‘warn’, ‘err’, ‘fatal’. The first two levels are needed for debugging
libgacopyz and Milter protocol. See Appendix A [Gacopyz], page 219,
for the description of the libgacopyz library. See also the following sub-
section.

11.1.4 Debugging Pmult

If needed, pmult can be instructed to provide additional debugging informa-
tion. The amount of this information is configured by three configuration
statements. First of all, the standard debug block statement controls debug-
ging of the underlying GNU Mailutils libraries (see Section “Debug State-
ment” in GNU Mailutils Manual). Secondly, the debug statement controls
debugging output of the pmult utility itself. The pmilter-debug statement
controls debugging output of the underlying MeTA1 libraries, and, finally,
the log-level statement, described in the previous subsection, defines de-
bugging level for the Milter library (libgacopyz).

Chapter 11: Pmilter multiplexer program. 215

[Pmult Conf]debug spec
Set debugging level for the pmult code. See Section “Debug Statement”
in GNU Mailutils Manual, for a description of spec syntax. The following
debugging levels are used:

trace1 Prints the following information:
• opening and closing incoming connections;
• entering particular Pmilter stage handlers;
• received requests with unknown command code;
• header modification requests that does not match any

headers.

trace2 Information about milter to Pmilter request translation.

trace7 Detailed dump of message body chunks received during Pmil-
ter ‘DATA’ stage.

error Bad recipient addresses.

This information is printed using the output channel defined in the
logging statement (see Section “Logging Statement” in GNU Mailutils
Manual).

[Pmult Conf]pmilter-debug level
Set debug verbosity level for the Pmilter library. Argument is a positive
integer between zero (no debugging, the default), and 100 (maximum
debugging).
Pmilter debugging information is printed on the standard error. Use pies
stderr statement to capture this stream and redirect it to the syslog or
file (see Section “Output Redirectors” in Pies Manual).

11.2 Pmult Example
The following is an example of a working pmult configuration. The multi-
plexer listens on localhost, port ‘3333’. It prints its diagnostics using syslog
facility local2. A single Mailfromd client is declared, which listens on UNIX
socket ‘/usr/local/var/mailfromd/mailfrom’. The log verbosity level for
this client is set to ‘info’ and higher, i.e.: ‘info’, ‘warn’, ‘err’ and ‘fatal’.

listen inet://127.0.0.1:3333;

logging { facility local2; };

debug "<trace7";

define-macros envmail (auth_type, auth_authen, auth_author, tls_vrfy);

define-macros envrcpt (auth_type, auth_authen, auth_author);

client {

type milter;

url /usr/local/var/mailfromd/mailfrom;

216 Mailfromd Manual

log-level ">info";

Set write timeout.

write-timeout 30 seconds;

Set read timeout.

read-timeout 5 minutes;

Set timeout for EOM.

eom-timeout 5 minutes;

}

11.3 Pmult Invocation
Normally, pmult is invoked without command line arguments. However,
it does support several command line options. First of all, the common
GNU Mailutils options are understood, which are useful for checking pmult
configuration file for syntax errors. See Section “Common Options” in GNU
Mailutils Manual, for a detailed description of these.

The rest of command line options supported by pmult is useful mostly
for debugging. These options are summarized in the table below:

‘--log-tag=string ’
Set the identifier used in syslog messages to string . This option
mostly is for debugging purposes. We advise to use logging
configuration statement for this purpose (see Section “Logging
Statement” in GNU Mailutils Manual).

‘--no-signal-handler’
Disable signal handling in the main thread. This is for debugging
purposes.

‘--syslog’
Log to the syslog. This is the default. See Section “Logging
Statement” in GNU Mailutils Manual, for information on how
to configure syslog logging.

‘-s’
‘--stderr’

Log to the standard error stream.

‘--url=url ’
Listen on the given url. This overrides the url configuration
statement (see Section 11.1.3 [pmult-client], page 213).

‘-x’
‘--debug=level ’

Set debug verbosity level. This overrides the debug configura-
tion statement. See Section 11.1.4 [pmult-debug], page 214, for
more information.

Chapter 12: How to Report a Bug 217

12 How to Report a Bug

Documentation is like sex: when it is good, it is very, very good;
and when it is bad, it is better than nothing.
Dick Brandon

Although the author has tried to make this documentation as detailed as
is possible and practical, he is well aware that the result is rather “better than
nothing”, than “very good”. So, if you find that some piece of explanation
is lousy or if you find anything that should have been mentioned here, but
is not, please report it to bug-mailfromd@gnu.org.ua.

Similarly, if the program itself fails to meet your expectations, or does not
do what is described in this document; if you have found a bug or happen
to have any suggestion... or have written a useful function you wish to share
with the rest of mailfromd users, or wish to express your thanks, email it
to the same address, bug-mailfromd@gnu.org.ua.

If you think you’ve found a bug, please be sure to include maximum
information needed to reliably reproduce it, or at least to analyze it. The
information needed is:
• Version of the package you are using.
• Compilation options used when configuring the package.
• Run-time configuration (‘mailfromd.mf’ file and the command line op-

tions used).
• Conditions under which the bug appears.

mailto:bug-mailfromd@gnu.org.ua
mailto:bug-mailfromd@gnu.org.ua

Appendix A: Gacopyz 219

Appendix A Gacopyz

Gacopyz, panie, to mówia̧ ze to mysa... Ze to tako mysa co świeckȩ
w kościele zjad la i wniebowsta̧pienia dosta̧pi la. A to nie je mysa,
ino gacopyz! To nadprzyrodz lune, to g lowa̧ na dó l śpi!
Kazimierz Grześkowiak

‘Gacopyz’ is the client library implementing Milter protocol. It differs
considerably from the Sendmail implementation and offers a new and more
flexible API. The old API is supported for compatibility with libmilter.

The library name comes from the song ‘Rozprawa o robokach’ by
Kazimierz Grzeskowiak. The phrase ‘A to nie je mysa, ino gacopyz’
exactly describes what the library is: ‘That is no libmilter, but
gacopyz’.

Future versions of this documentation will include a detailed description
of the library.

http://grzeskowiak.art.pl

Appendix B: Time and Date Formats 221

Appendix B Time and Date Formats

This appendix documents the time format specifications understood by the
command line option ‘--time-format’ (see [–time-format], page 186). Es-
sentially, it is a reproduction of the man page for GNU strftime function.

Ordinary characters placed in the format string are reproduced without
conversion. Conversion specifiers are introduced by a ‘%’ character, and are
replaced as follows:
%a The abbreviated weekday name according to the

current locale.

%A The full weekday name according to the current
locale.

%b The abbreviated month name according to the cur-
rent locale.

%B The full month name according to the current lo-
cale.

%c The preferred date and time representation for the
current locale.

%C The century number (year/100) as a 2-digit integer.

%d The day of the month as a decimal number (range
01 to 31).

%D Equivalent to ‘%m/%d/%y’.

%e Like ‘%d’, the day of the month as a decimal num-
ber, but a leading zero is replaced by a space.

%E Modifier: use alternative format, see below (see
[conversion specs], page 223).

%F Equivalent to ‘%Y-%m-%d’ (the ISO 8601 date for-
mat).

%G The ISO 8601 year with century as a decimal num-
ber. The 4-digit year corresponding to the ISO
week number (see ‘%V’). This has the same format
and value as ‘%y’, except that if the ISO week num-
ber belongs to the previous or next year, that year
is used instead.

222 Mailfromd Manual

%g Like ‘%G’, but without century, i.e., with a 2-digit
year (00-99).

%h Equivalent to ‘%b’.

%H The hour as a decimal number using a 24-hour
clock (range 00 to 23).

%I The hour as a decimal number using a 12-hour
clock (range 01 to 12).

%j The day of the year as a decimal number (range
001 to 366).

%k The hour (24-hour clock) as a decimal number
(range 0 to 23); single digits are preceded by a
blank. (See also ‘%H’.)

%l The hour (12-hour clock) as a decimal number
(range 1 to 12); single digits are preceded by a
blank. (See also ‘%I’.)

%m The month as a decimal number (range 01 to 12).

%M The minute as a decimal number (range 00 to 59).

%n A newline character.

%O Modifier: use alternative format, see below (see
[conversion specs], page 223).

%p Either ‘AM’ or ‘PM’ according to the given time
value, or the corresponding strings for the current
locale. Noon is treated as ‘pm’ and midnight as ‘am’.

%P Like ‘%p’ but in lowercase: ‘am’ or ‘pm’ or a corre-
sponding string for the current locale.

%r The time in ‘a.m.’ or ‘p.m.’ notation. In the
POSIX locale this is equivalent to ‘%I:%M:%S %p’.

%R The time in 24-hour notation (‘%H:%M’). For a ver-
sion including the seconds, see ‘%T’ below.

%s The number of seconds since the Epoch, i.e., since
1970-01-01 00:00:00 UTC.

Appendix B: Time and Date Formats 223

%S The second as a decimal number (range 00 to 61).

%t A tab character.

%T The time in 24-hour notation (‘%H:%M:%S’).

%u The day of the week as a decimal, range 1 to 7,
Monday being 1. See also ‘%w’.

%U The week number of the current year as a decimal
number, range 00 to 53, starting with the first Sun-
day as the first day of week 01. See also ‘%V’ and
‘%W’.

%V The ISO 8601:1988 week number of the current
year as a decimal number, range 01 to 53, where
week 1 is the first week that has at least 4 days in
the current year, and with Monday as the first day
of the week. See also ‘%U’ and ‘%W’.

%w The day of the week as a decimal, range 0 to 6,
Sunday being 0. See also ‘%u’.

%W The week number of the current year as a deci-
mal number, range 00 to 53, starting with the first
Monday as the first day of week 01.

%x The preferred date representation for the current
locale without the time.

%X The preferred time representation for the current
locale without the date.

%y The year as a decimal number without a century
(range 00 to 99).

%Y The year as a decimal number including the cen-
tury.

%z The time-zone as hour offset from GMT. Required
to emit RFC822-conformant dates (using ‘%a, %d
%b %Y %H:%M:%S %z’)

%Z The time zone or name or abbreviation.

%+ The date and time in date(1) format.

%% A literal ‘%’ character.

224 Mailfromd Manual

Some conversion specifiers can be modified by preceding them by the
‘E’ or ‘O’ modifier to indicate that an alternative format should be used.
If the alternative format or specification does not exist for the current lo-
cale, the behaviour will be as if the unmodified conversion specification were
used. The Single Unix Specification mentions ‘%Ec’, ‘%EC’, ‘%Ex’, ‘%EX’, ‘%Ry’,
‘%EY’, ‘%Od’, ‘%Oe’, ‘%OH’, ‘%OI’, ‘%Om’, ‘%OM’, ‘%OS’, ‘%Ou’, ‘%OU’, ‘%OV’, ‘%Ow’,
‘%OW’, ‘%Oy’, where the effect of the ‘O’ modifier is to use alternative nu-
meric symbols (say, roman numerals), and that of the ‘E’ modifier is to use
a locale-dependent alternative representation.

Appendix C: S-Expression 225

Appendix C S-Expression

An s-expression is a sed-like transformation expression:
s/regexp/replace/[flags]

where regexp is a regular expression, replace is a replacement for each part
of the input that matches regexp. Both regexp and replace are described in
detail in Section “The ‘s’ Command” in GNU sed.

As in sed, you can give several replace expressions, separated by a semi-
colon.

Supported flags are:

‘g’ Apply the replacement to all matches to the regexp, not just
the first.

‘i’ Use case-insensitive matching

‘x’ regexp is an extended regular expression (see Section “Extended
regular expressions” in GNU sed).

‘number ’ Only replace the numberth match of the regexp.
Note: the POSIX standard does not specify what should happen
when you mix the ‘g’ and number modifiers. Mailfromd follows
the GNU sed implementation in this regard, so the interaction
is defined to be: ignore matches before the numberth, and then
match and replace all matches from the numberth on.

Any delimiter can be used in lieue of ‘/’, the only requirement being
that it be used consistently throughout the expression. For example, the
following two expressions are equivalent:

s/one/two/

s,one,two,

Changing delimiters is often useful when the regex contains slashes. For
instance, it is more convenient to write s,/,-, than s/\//-/.

Appendix D: Upgrading 227

Appendix D Upgrading

The following sections describe procedures for upgrading between the con-
secutive Mailfromd releases.

D.1 Upgrading from 7.0 to 7.1
The 7.1 release fixes the bugs found in 7.0. It is fully backward compatible
with its predecessor. No special actions are needed when upgrading.

D.2 Upgrading from 6.0 to 7.0
The release 7.0 removes the features which were declared as obsolete in 6.0
and introduces important new features, both syntactical, at the MFL level,
and operational.

Unless your filter used any deprecated features, it should work correctly
after upgrade to this version. It will, however, issue warning messages re-
garding the deprecated features (e.g. the use of ‘%’ in front of identifiers, as
described below). To fix these, follow the upgrade procedure described in
[upgrade procedure], page 229.

The removed features are:
• Old-style functional notation
• The use of functional operators
• Implicit concatenations
• #pragma option
• #pragma database

The MFL syntax has changed: it is no longer necessary to use ‘%’ in front
of a variable to get its value. To reference a variable, simply use its name,
e.g.:

set x var + z

The old syntax is still supported, so the following statement will also
work:

set x %var + %z

It will, however, generate a warning message.
Of course, the use of ‘%’ to reference variables within a string literal

remains mandatory.
Another important changes to MFL are user-defined exceptions (see

Section 4.19.2 [User-defined Exceptions], page 95) and the try–catch con-
struct (see Section 4.19.3 [Catch and Throw], page 96).

Several existing MFL functions have been improved. In particular, it is
worth noticing that the open function, when opening a pipe to or from a
command, provides a way to control where the command’s standard error
would go (see [open], page 140).

228 Mailfromd Manual

The accept function (or action) issues a warning if its use would cancel
any modifications to the message applied by, e.g., header_add and similar
functions. See Section 5.8 [Message modification queue], page 122, for a
detailed discussion of this feature.

The most important change in mailfromd operation is that the version
7.0 is able to run several servers (see Section 7.3 [conf-server], page 174).
Dedicated callout servers make it possible to run sender verifications in
background, using a set of long timeouts, as prescribed by RFC 2822 (see
Section 3.7 [SMTP Timeouts], page 22). This diminishes the number of
false positives, allows for coping with servers showing large delays and also
reduces the number of callouts performed for such servers.

This release no longer includes the smap utility. It was moved into a
self-standing project, which by now provides much more functionality and is
way more flexible than this utility was. If you are interested in using smap,
visit http://www.gnu.org.ua/software/smap, for a detailed information,
including pointers to file downloads.

D.3 Upgrading from 5.x to 6.0
The 6.0 release is aimed to fix several logical inconsistencies that affected the
previous versions. The most important one is that until version 5.2, the filter
script file contained both the actual filter script, and the run-time configu-
ration for mailfromd (in form of ‘#pragma option’ and ‘#pragma database’
statements). The new version separates run-time configuration from the fil-
ter script by introducing a special configuration file ‘mailfromd.conf’ (see
Chapter 7 [Mailfromd Configuration], page 173).

Consequently, the ‘#pragma option’ and ‘#pragma database’ statements
become deprecated. Furthermore, the following deprecated pragmas are re-
moved: ‘#pragma option ehlo’, ‘#pragma option mailfrom’. These prag-
mas became deprecated in version 4.0 (see Section D.10 [31x-400], page 233).

The second problem was that the default filter script file had ‘.rc’ suffix,
which usually marks a configuration file, not the source. In version 6.0 the
script file is renamed to ‘mailfromd.mf’. In the absence of this file, the
legacy file ‘mailfromd.rc’ is recognized and parsed. This ensures backward
compatibility.

This release also fixes various inconsistencies and dubious features in the
MFL language.

The support for unquoted literals is discontinued. This feature was
marked as deprecated in version 3.0.

The following features are deprecated: ‘#pragma option’ (pragma-option
and ‘#pragma database’ (pragma-database) directives, the legacy style of
function declarations (old-style function declarations), calls to functions of
one argument without parentheses (operational notation), the ‘#require’
statement (See Section 4.21.3 [import], page 103, for the new syntax) and

http://www.gnu.org.ua/software/smap
http://mailfromd.man.gnu.org.ua/historic/6/html_node/pragma_002doption.html
http://mailfromd.man.gnu.org.ua/historic/6/html_node/pragma_002ddatabase.html
http://mailfromd.man.gnu.org.ua/historic/6/html_node/old_002dstyle-function-declarations.html
http://mailfromd.man.gnu.org.ua/historic/6/html_node/implicit-concatenation.html

Appendix D: Upgrading 229

implicit concatenation (implicit concatenation). See Deprecated Features,
for more information about these.

This release also introduces important new features, which are summa-
rized in the table below:

Feature Reference
Configuration See Chapter 7 [Mailfromd Configu-

ration], page 173.
Module system See Section 4.21 [Modules],

page 102.
Explicit type casts See [explicit type casts], page 83.
Concatenation operator See Section 4.14.3 [Concatenation],

page 79.
Scope of visibility See Section 4.21.2 [scope of visibil-

ity], page 103.
Precious variables See Section 3.10 [rset], page 26.

Mailfromd version ‘6.0’ will work with unchanged scripts from ‘5.x’.
When started, it will verbosely warn you about any deprecated constructs
that are used in your filter sources and will create a script for upgrading
them.

To upgrade your filter scripts, follow the steps below:
1. Run ‘mailfromd --lint’. You will see a list of warnings similar to this:

mailfromd: Warning: using legacy script file

/usr/local/etc/mailfromd.rc

mailfromd: Warning: rename it to /usr/local/etc/mailfromd.mf

or use script-file statement in /usr/local/etc/mailfromd.conf

to disable this warning

mailfromd: /usr/local/etc/mailfromd.rc:19: warning: this pragma is

deprecated: use relayed-domain-file configuration statement instead

mailfromd: /usr/local/etc/mailfromd.rc:23: warning: this pragma is

deprecated: use io-timeout configuration statement instead

mailfromd: Info: run script /tmp/mailfromd-newconf.sh

to fix the above warnings

...

2. At the end of the run mailfromd will create a shell script
‘/tmp/mailfromd-newconf.sh’ for fixing these warnings. Run it:

$ sh /tmp/mailfromd-newconf.sh

3. When the script finishes, run mailfromd --lint again. If it shows no
more deprecation warnings, the conversion went correctly. Now you can
remove the upgrade script:

$ rm /tmp/mailfromd-newconf.sh

Notice, that the conversion script attempts to fix only deprecation warn-
ings. It will not try to correct any other type of warnings or errors. For
example, you may get warning messages similar to:

http://mailfromd.man.gnu.org.ua/historic/6/html_node/implicit-concatenation.html
http://mailfromd.man.gnu.org.ua/historic/6/html_node/Deprecated-Features.html

230 Mailfromd Manual

mailfromd: /etc/mailfromd.mf:7: warning: including a module file is unre-

liable and may cause subtle errors

mailfromd: /etc/mailfromd.mf:7: warning: use ‘require dns’ instead

This means that you use ‘#include’ where you should have used
‘require’. You will have to fix such warnings manually, as suggested in the
warning message.

If, for some reason, you cannot upgrade your scripts right now, you
may suppress deprecation warnings by setting the environment variable
MAILFROMD_DEPRECATION to ‘no’ before starting mailfromd. Nonetheless,
I recommend to upgrade as soon as possible, because the deprecated fea-
tures will be removed in version ‘6.1’.

D.4 Upgrading from 5.0 to 5.1
Upgrading from 5.0 to 5.1 does not require any changes in your filter scripts.
Notice, however, the following important points:
• Starting from this release mailfromd supports Milter protocol version

6, which is compatible with Sendmail 8.14.0 and newer. While being
backward compatible with earlier Sendmail releases, it allows you to use
the new ‘prog data’ handler (see Section 4.11 [Handlers], page 66). It
also supports macro negotiation, a feature that enables Mailfromd to
ask MTA to export the macros it needs for each particular handler. This
means that if you are using Sendmail 8.14.0 or higher (or Postfix 2.5 or
higher), you no longer need to worry about exporting macro names in
‘sendmail.cf’ file.
The same feature is also implemented on the server side, in mtasim and
pmult. Consequently, using define-macros in pmult configuration file
is not strictly necessary. However, keep in mind that due to the specifics
of MeTA1, the number of symbols that may be exported for each stage
is limited (see Section 11.1.2 [pmult-macros], page 210).

• The semantics of __preproc__ and __statedir__ built-in constant is
slightly different from what it used to be in 5.0. These constants now re-
fer to the current values of the preprocessor command line and program
state directory, correspondingly. This should not affect your script, un-
less you redefine the default values on run time. If your script needs
to access default values, use __defpreproc__ and __defstatedir__,
correspondingly (see Section 4.8.1 [Built-in constants], page 60). The
following example explains the difference between these:

$ cat pval.mf

prog envfrom

do

echo "Default value: " __defstatedir__

echo "Current value: " __statedir__

done

$ mailfromd --state-directory=/var/mfd --test pval.mf

Default value: /usr/local/var/mailfromd

Appendix D: Upgrading 231

Current value: /var/mfd

• If your filter uses the rate function, you might consider using the new
function rateok or tbf_rate instead. For a detailed discussion of these
functions, see Section 3.12 [Sending Rate], page 28.

• If your script extensively uses database access functions, you might
be interested in the new #pragma dbprop (see Section 4.2.3 [dbprop],
page 55).

D.5 Upgrading from 4.4 to 5.0
This version of Mailfromd requires GNU mailutils version 2.0 or later.

Upgrading from version 4.4 to 5.0 requires no additional changes. The
major differences between these two versions are summarized below:
1. Support for ‘MeTA1’.
2. New ‘Mailutils’ configuration file.
3. New MFL functions.

a. Message functions. See Section 5.14 [Message functions], page 127.
b. Mailbox functions. See Section 5.13 [Mailbox functions], page 126.
c. Mail body functions. See Section 5.10 [Mail body functions],

page 124.
d. Header modification functions. See Section 5.6 [Header modifica-

tion functions], page 121.
e. Envelope modification functions. See Section 5.5 [Envelope modi-

fication functions], page 120.
f. Quarantine functions. See Section 5.15 [Quarantine functions],

page 129.
g. getopt and varptr. See Section 3.17.1 [getopt], page 40.
h. Macro access functions. See Section 5.1 [Macro access], page 113.
i. Character type functions. See Section 5.4 [Character Type],

page 119.
j. New string functions (see Section 5.2 [String manipulation],

page 114): verp_extract_user, sa_format_report_header,
sa_format_score.

k. Sequential access to DBM files. See [dbm-seq], page 139.
4. Changes in MFL

1. See [variadic functions], page 75.
2. See [function alias], page 76.

5. New operation mode: See Section 3.17 [Run Mode], page 39.
6. Improved stack growth technique.

The stack can be grown either by fixed size blocks, or exponentially.
Upper limit can be specified. See Section 4.2.1 [stacksize], page 52.

http://www.gnu.org/software/mailutils

232 Mailfromd Manual

7. Milter ports can be specified using URL notation.
8. Removed deprecated features.

Support for some deprecated features has been withdrawn. These are:
a. Command line options ‘--ehlo’, ‘--postmaster-email’, and

‘--mailfrom’. These became deprecated in version 4.0. See
Section D.10 [31x-400], page 233.

D.6 Upgrading from 4.3.x to 4.4
The deprecated ‘--domain’ command line option has been withdrawn. The
short option ‘-D’ now defines a preprocessor symbol (see Section 8.1.3 [Pre-
processor Options], page 187).

This version correctly handles name clashes between constants and vari-
ables, which remained unnoticed in previous releases. See [variable–constant
shadowing], page 85, for a detailed description of it.

To minimize chances of name clashes, all symbolic exception codes has
been renamed by prefixing them with the ‘e_’, thus, e.g. divzero became e_
divzero, etc. The ioerr exception code is renamed to e_io. See [status.mf],
page 93, for a full list of the new exception codes.

For consistency, the following most often used codes are available without
the ‘e_’ prefix: success, not found, failure, temp failure. This makes most
existing user scripts suitable for use with version 4.4 without any modifica-
tion. If your script refers to any exception codes other than these four, you
can still use it by defining a preprocessor symbol OLD_EXCEPTION_CODES, for
example:

$ mailfromd -DOLD_EXCEPTION_CODES

D.7 Upgrading from 4.2 to 4.3.x
Upgrading from 4.2 to 4.3 or 4.3.1 does not require any changes to your
configuration and scripts. The only notable change in these versions is the
following:

The asynchronous syslog implementation was reported to malfunction on
some systems (notably on Solaris), so this release does not enable it by de-
fault. The previous meaning of the ‘--enable-syslog-async’ configuration
option is also restored. Use this option in order to enable asynchronous syslog
feature. To set default syslog implementation, use DEFAULT_SYSLOG_ASYNC
configuration variable (see [syslog-async], page 11).

The following deprecated features are removed:
1. #pragma option ehlo statement.

It became deprecated in version 4.0. See [pragma-option-ehlo], page 234.
2. #pragma option mailfrom statement.

It became deprecated in version 4.0. See [pragma-option-ehlo], page 234.

Appendix D: Upgrading 233

3. The ‘--config-file’ command line option.
It became deprecated in version 3.1. See Section D.11 [30x-31x],
page 234.

4. Built-in exception codes in catch statements.
They are deprecated since version 4.0. See Section D.10 [31x-400],
page 233.

D.8 Upgrading from 4.1 to 4.2
Upgrading to this version does not require any special efforts. You can
use your configuration files and filter scripts without any changes. The
only difference worth noticing is that starting from this version mailfromd
is always compiled with asynchronous syslog implementation. The
‘--enable-syslog-async’ configuration file option is still available, but
its meaning has changed: it sets the default syslog implementation to use
(see [syslog-async], page 11). Thus, it can be used the same way it was in
previous versions. You can also select the syslog implementation at run
time, see Section 3.18 [Logging and Debugging], page 43, for more detailed
information.

D.9 Upgrading from 4.0 to 4.1
Upgrading to this version does not require any special efforts. You can use
your configuration files and filter scripts without any changes. Notice only
the following major differences between 4.1 and 4.0:
• Input files are preprocessed before compilation. See Section 4.22 [Pre-

processor], page 104, for more information.
• There is a way to discern between a not-supplied optional parameter,

and a supplied one, having null value (see [defined], page 105).
• The version 4.1 implements sprintf function (see Section 5.3 [String

formatting], page 117) and printf macro (see Section 4.22 [Preproces-
sor], page 104).

• Support for some obsolete features is withdrawn. These include:
1. Using ‘&code ’ to specify exception codes
2. Pragma options: retry, io-retry, and connect-retry.

D.10 Upgrading from 3.1.x to 4.0
Before building this version, please re-read the chapter See Chapter 2 [Build-
ing], page 9, especially the section [syslog-async], page 11.

Starting from the version 4.0, MFL no longer uses the predefined sym-
bolic names for exception codes (previous versions used the ‘&’ prefix to
dereference them). Instead, it relies on constants defined in the include file
‘status.mfh’ (see [status.mf], page 93).

234 Mailfromd Manual

However, the script files from 3.1 series will still work, but the following
warning messages will be displayed:

Warning: obsolete constant form used: &failure

Warning: remove leading ’&’ and include <status.mfh>

Warning: Using built-in exception codes is deprecated

Warning: Please include <status.mfh>

Another important difference is that pragmatic options ‘ehlo’ and
‘mailfromd’ are now deprecated, as well as their command line equivalents
‘--ehlo’ and ‘--domain’. These options became superfluous after the intro-
duction of mailfrom_address and ehlo_domain built-in variables. For com-
patibility with the previous versions, they are still supported by mailfromd
4.0, but a warning message is issued if they are used:

warning: ‘#pragma option ehlo’ is deprecated,

consider using ‘set ehlo_domain "domain.name"’ instead

To update your startup scripts for the new version follow these steps:
1. Change #pragma option mailfrom value to set mailfrom_address

value . Refer to [mailfrom address], page 65, for a detailed discussion
of this variable.

2. Change #pragma option ehlo value to set ehlo_domain value . Re-
fer to [ehlo domain], page 64, for a detailed discussion of this variable.

3. Include ‘status.mfh’. Add the following line to the top of your startup
file:

#include_once <status.mfh>

4. Remove all instances of ‘&’ in front of the constants. You can use the
following sed expression: ‘s/&\([a-z]\)/\1/g’.

5. If your code uses any of the following functions: hostname, resolve,
hasmx or ismx, add the following line to the top of your script:

#require dns

See Section 4.21 [Modules], page 102, for a detailed description of the
module system.

6. Replace all occurrences of next with pass.
7. If your code uses function match_cidr, add the following line to the top

of your script:
#require match_cidr

See Section 4.21 [Modules], page 102, for a description of MFL module
system.

D.11 Upgrading from 3.0.x to 3.1

1. The mailfromd binary no longer supports ‘--config-file’ (‘-c’) op-
tion. To use an alternative script file, give it as an argument, i.e. instead
of:

Appendix D: Upgrading 235

$ mailfromd --config-file file.rc

write:
$ mailfromd file.rc

For backward compatibility, the old style invocation still works but pro-
duces a warning message. However, if mailfromd encounters the ‘-c’
option it will print a diagnostic message and exit immediately. This is
because the semantics of this option will change in the future releases.

2. If a variable is declared implicitly within a function, it is created as
automatic. This differs from the previous versions, where all variables
were global. It is a common practice to use global variables to pass
additional information between handlers (See Section 3.9 [HELO Do-
main], page 24, for an example of this approach). If your filter uses it,
make sure the variable is declared as global. For example, this code:

prog helo

do

Save the host name for further use
set helohost $s

done

Figure D.1: Implicit declaration, old style

has to be rewritten as follows:

set helohost ""

prog helo

do

Save the host name for further use
set helohost $s

done

Figure D.2: Implicit declaration, new style

3. Starting from version 3.1 the function dbmap takes an optional third
argument indicating whether or not to count the terminating null char-
acter in key (see [dbmap], page 137). If your startup script contained
any calls to dbmap, change them as follows:

in 3.0.x in 3.1
dbmap(db, key) dbmap(db, key , 1)

D.12 Upgrading from 2.x to 3.0.x
Update your startup scripts and/or crontab entries. The mailfromd binary
is now installed in ‘${prefix}/sbin’.

We also encourage you to update the startup script (run cp
etc/rc.mailfromd /wherever-your-startup-lives), since the new
version contains lots of enhancements.

236 Mailfromd Manual

D.13 Upgrading from 1.x to 2.x
If you are upgrading from version 1.x to 2.0, you will have to do the following:
1. Edit your script file and enclose the entire code section into:

prog envfrom

do

...

done

See Section 4.11 [Handlers], page 66, for more information about the
prog statement.

2. If your code contained any rate statements, convert them to function
calls (see Section 5.26 [Rate limiting functions], page 150), using the
following scheme:

Old statement: if rate key limit / expr

New statement: if rate(key, interval("expr")) > limit

For example,
rate $f 180 / 1 hour 25 minutes

should become
rate($f, interval("1 hour 25 minutes")) > 180

3. Rebuild your databases using the following command:
mailfromd --compact --all

This is necessary since the format of mailfromd databases has changed
in version 2.0: the key field now includes the trailing ‘NUL’ character,
which is also reflected in its length. This allows for empty (zero-length)
keys. See Section 3.15.3 [Database Maintenance], page 37, for more
information about the database compaction.

Appendix E: GNU Free Documentation License 237

Appendix E GNU Free Documentation
License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other
functional and useful document free in the sense of freedom: to assure
everyone the effective freedom to copy and redistribute it, with or with-
out modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get credit
for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It com-
plements the GNU General Public License, which is a copyleft license
designed for free software.
We have designed this License in order to use it for manuals for free soft-
ware, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the soft-
ware does. But this License is not limited to software manuals; it can
be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally
for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium,
that contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work
under the conditions stated herein. The “Document”, below, refers to
any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or
distribute the work in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifica-
tions and/or translated into another language.
A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the pub-
lishers or authors of the Document to the Document’s overall subject (or
to related matters) and contains nothing that could fall directly within

238 Mailfromd Manual

that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice that
says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to
be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then
there are none.

The “Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general
public, that is suitable for revising the document straightforwardly with
generic text editors or (for images composed of pixels) generic paint pro-
grams or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modi-
fication by readers is not Transparent. An image format is not Trans-
parent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii
without markup, Texinfo input format, LaTEX input format, SGML or
XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque for-
mats include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output
purposes only.

The “Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this
License requires to appear in the title page. For works in formats which
do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

Appendix E: GNU Free Documentation License 239

A section “Entitled XYZ” means a named subunit of the Document
whose title either is precisely XYZ or contains XYZ in parentheses fol-
lowing text that translates XYZ in another language. (Here XYZ stands
for a specific section name mentioned below, such as “Acknowledge-
ments”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that
it remains a section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice
which states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either com-
mercially or noncommercially, provided that this License, the copyright
notices, and the license notice saying this License applies to the Docu-
ment are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical mea-
sures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in ex-
change for copies. If you distribute a large enough number of copies you
must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other
respects.
If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the
actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque

240 Mailfromd Manual

copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the
public.
It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and
modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct

from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or enti-
ties responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adja-

cent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice

giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add

to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If

Appendix E: GNU Free Documentation License 241

there is no section Entitled “History” in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least
four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”,
Preserve the Title of the section, and preserve in the section all the
substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in
their text and in their titles. Section numbers or the equivalent are
not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may
not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements”
or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from
the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties—
for example, statements of peer review or that the text has been ap-
proved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through ar-
rangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrange-
ment made by the same entity you are acting on behalf of, you may not
add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

242 Mailfromd Manual

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and
that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single copy.
If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice
of the combined work.
In the combination, you must combine any sections Entitled “History”
in the various original documents, forming one section Entitled “His-
tory”; likewise combine any sections Entitled “Acknowledgements”, and
any sections Entitled “Dedications”. You must delete all sections Enti-
tled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other docu-
ments released under this License, and replace the individual copies of
this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an “aggregate” if the copyright resulting
from the compilation is not used to limit the legal rights of the com-
pilation’s users beyond what the individual works permit. When the
Document is included an aggregate, this License does not apply to the
other works in the aggregate which are not themselves derivative works
of the Document.
If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one half of the entire

Appendix E: GNU Free Documentation License 243

aggregate, the Document’s Cover Texts may be placed on covers that
bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing
Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, pro-
vided that you also include the original English version of this License
and the original versions of those notices and disclaimers. In case of
a disagreement between the translation and the original version of this
License or a notice or disclaimer, the original version will prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedi-
cations”, or “History”, the requirement (section 4) to Preserve its Title
(section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document ex-
cept as expressly provided for under this License. Any other attempt
to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, par-
ties who have received copies, or rights, from you under this License will
not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such
new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

http://www.gnu.org/copyleft/

244 Mailfromd Manual

E.1 ADDENDUM: How to use this License for
your documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices
just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the “with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other com-
bination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we rec-
ommend releasing these examples in parallel under your choice of free soft-
ware license, such as the GNU General Public License, to permit their use
in free software.

Concept Index 245

Concept Index

This is a general index of all issues discussed in this manual

!
! (exclamation point), != operator 80

#
#include . 51
#include statement 51
#line . 52
#pragma . 52
#pragma dbprop . 137
#pragma statement 52

$
$#, special construct 74

-
‘--prefix’, configure option 10
–sysconfdir, configure option 11
‘--with-berkeley-db’, configure option

. 9
‘--with-gdbm’, configure option 9

/
/etc/postfix/main.cf 199

<
< (left angle bracket), < operator 80
< (left angle bracket), <= operator 80

=
= (equals sign), = operator 80

>
> (right angle bracket), > operator 80
> (right angle bracket), >= operator 80

@
@var, special construct 74

_ . 105
__defpreproc__ . 61
__defstatedir__ . 61
__file__ . 60
__function__ . 60
__git__ . 60
__line__ . 60
__major__ . 60
__minor__ . 60
__module__ . 61
__package__ . 61
__patch__ . 61
__preproc__ . 61
__statedir__ . 61
__version__ . 61
_pollhost . 129
_pollmx . 129

~
~/.emacs . 169

A
a, -a, mtasim option, summary 206
accept . 87
accept action, defined 87
accept action, introduced 15
accept in ‘begin’ . 72
accept in ‘end’ . 72
accessing variables from catch 98
account probing . 6
acl . 176
actions . 86
actions, header manipulation 88
actions, introduced . 17
actions, using in connect handler 67
add . 88
add action, defined . 88
add in ‘begin’ . 72
add in ‘end’ . 72
Alan Dobkin . 3
alias . 76
aliases . 76
aliases, looking up . 33

246 Mailfromd Manual

all, --all option, introduced 37
all, --all option, summary 184
and . 81
append, --append, mtasim option,

described . 205
append, --append, mtasim option,

summary . 206
argument number in the list of arguments

. 74
arguments, catch . 97
arguments, optional 74
as . 101
assignment to variable 25
assignment, defined 88
associativity, operators 82
asynchronous syslog 44
auth-macros . 213
automatic variables 76

B
back reference interpretation 58
back references, in program text 65
backslash interpretation 56
begin . 71
‘begin’ and accept . 72
‘begin’ and add . 72
‘begin’ and continue 72
‘begin’ and delete . 72
‘begin’ and discard 72
‘begin’ and reject . 72
‘begin’ and replace 72
‘begin’ and return . 72
‘begin’ and tempfail 72
‘begin’, handler restrictions 72
begin, special handler 15, 71
Ben McKeegan . 3
Berkeley DB . 9
bindtextdomain . 163
body . 69
body, handler . 15
body-chunk, --body-chunk, mtasim

option, summary 206
body_string . 124
break . 91
break statement . 91
Brent Spencer . 3
bs, -bd, mtasim option, summary . . . 206
bs, -bs, mtasim option, summary . . . 208
building mailfromd . 9
built-in and library functions, introduced

. 19

built-in constants . 60
bye . 102

C
cache database . 35
cache, disabling . 140
cache, getting status 140
cache_used variable, usage example . . . 63
cache used, global variable, introduced

. 130
caching DNS requests 7
callout . 175
callout server . 22
callout, described . 6
callout-url . 176
callout_transcript 164
cancel_program_trace 166
case . 90
case, switch statement 90
catch . 96
catch arguments . 97
catch scope . 96
catch statement . 96
catch, accessing variables from 98
catch, returning from 97
catch, standalone . 96
check_host . 160
check_host function, introduced 156
checking SPF host records 156
clamav . 150
ClamAV . 150
clamav_virus_name 64
clamav virus name, global variable . . . 150
cleanup handler . 71
client . 213
client addr, Sendmail macro 195
close . 142
command line arguments, parsing in MFL

. 40
command line, mailfromd invocation

syntax . 183
comments . 51
compact, --compact option, introduced

. 37
compact, --compact option, summary

. 183
compaction, database 37
Con Tassios . 3
Con Tassios greylisting type 32
concatenation . 79
conditional statements 89

Concept Index 247

confMAPDEF, Sendmail macro 9
confMILTER MACROS ENVFROM, mc

file directive . 195
connect . 66
connect, handler . 15
connect-timeout . 214
connection . 178
const . 59
constants, built-in . 60
constants, defining . 59
constants, using in literals 60
constants, using in program text 60
continue . 87
continue action, defined 87
continue action, introduced 15
continue in ‘begin’ 72
continue in ‘end’ . 72
controlling argument, getopt 42
cross-reference . 38
ctype mismatch, global variable 119
current_header . 125
current_header_count 125
current_header_nth_name 125
current_header_nth_value 125
current_message . 125
customization, Emacs 170
customization, MFL mode 170

D
D, -D option, described 106
D, -D option, summary 187
D, -D, mtasim option, summary 206
D, \D, a mtasim command 203
daemon, --daemon option, summary . . 183
daemon, --daemon, mtasim option,

described . 206
daemon, --daemon, mtasim option,

summary . 206
data . 69
data, handler . 15
database . 180
database compaction 37
database formats . 34
database maintenance 37
database, listing . 36
databases used by mailfromd 34
db_expire_interval 140
db_get_active . 140
db_name . 140
db_set_active . 140
dbdel . 138

dbfirst . 139
dbget . 138
dbkey . 139
DBM . 9
dbmap . 137
dbnext . 139
dbprop . 55
dbprop, . 137
dbprop, pragma . 137
dbput . 138
dbvalue . 139
dclex . 95
debug . 164, 176, 215
debug, --debug option, introduced 44
debug, --debug option, summary 188
debug_level . 164
debug_spec . 165
debugging . 89
debugging level . 44
debugging the filter script 38
debugging, pmult . 210
declaring milter state handler 17
default . 175
default communication port 11
default communication socket 11
default exception handling 96
default expiration interval 11
default syslog facility 44
default user privileges 10
DEFAULT DNS NEGATIVE EXPIRE

INTERVAL, configure variable . . 11
DEFAULT EXPIRE INTERVAL,

configure variable 11
DEFAULT EXPIRE RATES INTERVAL,

configure variable 11
DEFAULT SOCKET, configure variable

. 11
DEFAULT STATE DIR, configure

variable . 11
DEFAULT_SYSLOG_ASYNC, configure

variable . 12, 232
DEFAULT_USER, configure variable 10
define, --define option, described . . 106
define, --define option, summary . . 187
define, --define, mtasim option,

summary . 206
define-macros . 211
defined . 105
delete . 88
delete action, defined 88
delete in ‘begin’ . 72
delete in ‘end’ . 72

248 Mailfromd Manual

delete, --delete option, introduced . . 36
delete, --delete option, summary . . 183
dequote . 114
dgettext . 163
diagnostics channel . 43
disabling cache . 140
discard . 87
discard action, defined 87
discard action, introduced 15
discard in ‘begin’ . 72
discard in ‘end’ . 72
dngettext . 163
DNS cache database 135
DNS cache database, expiration times

. 135
DNS cache database, listing 135
DNS cache database, lookup key 135
DNS cache database, negative caching

. 135
DNS cache database, negative expiration

interval . 135
DNS cache management 135
dns database . 34
dns.mf . 132
dns_getaddr . 132
dns_getname . 132
do loop . 92
domainpart . 114
dump-code, --dump-code option,

summary . 188
dump-grammar-trace,

--dump-grammar-trace option,
summary . 188

dump-lex-trace, --dump-lex-trace

option, summary 188
dump-macros, --dump-macros option,

described . 195
dump-macros, --dump-macros option,

summary . 188
dump-tree, --dump-tree option,

summary . 188
dump-xref, --dump-xref option,

summary . 188

E
E, -E option, described 106
E, -E option, summary 187, 188
E, \E, a mtasim command 204
e dbfailure, exception type 93
e divzero, exception type 94
e eof, exception type 94

e failure, exception type 94
e invcidr, exception type 94
e invip, exception type 94
e invtime, exception type 94
e io, exception type 94
e macroundef, exception type 94
e noresolve, exception type 94
e not found, exception type 95
e range, exception type 94
e regcomp, exception type 94
e ston conv, exception type 94
e success, exception type 95
e temp failure, exception type 95
e url, exception type 95
echo . 89
ehlo-domain . 179
ehlo_domain . 64
elif . 89
else . 89
Emacs, MFL mode 169
enable . 180
enable-syslog-async,

‘--enable-syslog-async’, configure
option . 11

Enabling MFL mode 169
end . 71
‘end’ and accept . 72
‘end’ and add . 72
‘end’ and continue . 72
‘end’ and delete . 72
‘end’ and discard . 72
‘end’ and reject . 72
‘end’ and replace . 72
‘end’ and return . 72
‘end’ and tempfail . 72
‘end’, handler restrictions 72
end, special handler 15, 71
envfrom . 68
envfrom, handler . 15
envrcpt . 68
envrcpt, handler . 15
eoh . 69
eoh, handler . 15
eom . 70
eom, handler . 15
eom-timeout . 214
equals sign (=), = operator 80
estimated time of sending, prediction of

. 36
exception handler scope 96
exception handler, returning from 97
exception handlers . 96

Concept Index 249

exception types . 93
exception-handling routines 96
exceptions, default handling 96
exceptions, defined . 93
exceptions, raising from code 98
exceptions, symbolic names 93
exclamation point (!), != operator 80
expect mode, mtasim 204
expiration time, DNS cache database . . 135
expire, --expire option, introduced . . 37
expire, --expire option, summary . . 183
expire-interval 180, 181
expire-interval, --expire-interval

option, summary 184
explicit type casts . 83
expressions . 79

F
f, Sendmail macro 195
Fail, SPF result code 157
failure, exception type 94
FAMILY INET . 66
FAMILY STDIO . 66
FAMILY UNIX . 66
fatal runtime errors 46
FDL, GNU Free Documentation License

. 237
fi . 89
file . 180
file, --file option, summary 184
filter script, debugging 38
filter script, described 15
filter script, running in test mode 38
Finding function definition 169
fnmatches . 80
for loop . 92
foreground, --foreground option,

summary . 184
format, --format option, introduced . . 36
format, --format option, summary . . 185
format, --format option, using with

‘--list’ . 36
from . 101
from . 103
from ... import . 103
func statement, function definition 73
function arguments, counting 74
function arguments, getting the number of

. 74
function calls . 19
function definition, syntax of 73

function returning void 76
function, defined . 19

G
g, -g, mtasim option, summary 206
g, ‘transform’ flag 225
gacopyz-log, --gacopyz-log option,

summary . 189
gacopyz-log, --gacopyz-log, mtasim

option, summary 206
GDBM . 9
GeoIP . 136
geoip_country_code_by_addr 136
geoip_country_code_by_name 136
geolocation . 136
getdelim . 143
getdomainname . 144
gethostname . 143
getline . 143
getmacro . 113
getmx . 132
getopt . 40
getpwnam . 145
getpwuid . 145
gettext . 164
getting cache status 140
globbing patterns . 80
GNU Emacs, MFL mode 169
GNU Readline . 201
greylist . 55, 151
greylist database . 36
greylist_seconds_left 64
greylist seconds left, global variable . . 151
greylist seconds left, global variable,

introduced . 31
greylisting types . 31
greylisting, Con Tassios type 32
greylisting, traditional 31
group . 180
group, --group option, summary 185
group, --group, mtasim option, described

. 203
group, --group, mtasim option, summary

. 206
groups . 191
growth policy, stack 53

H
handler arguments . 71
handler declaration . 17

250 Mailfromd Manual

handler, cleanup . 71
handler, defined . 66
handler, described . 15
handler, initialization 71
handler, startup . 71
hard STMP timeout 22
hasmx . 133
hasmx, definition of the function 97
header . 69
header manipulation actions 88
header modification 121
header, handler . 15
header_add . 121
header_delete . 121
header_insert . 121
header_replace . 122
‘Heap overrun; increase #pragma

stacksize’, runtime error 46
helo . 68, 178
helo, handler . 15
heloarg_test . 152
heloarg_test.mf . 152
HELP, mtasim statement 201
here document . 58
hostname . 133
htonl . 130
htons . 131

I
i, Sendmail macro . 195
i, Sendmail macro in MeTA1 210
i, Sendmail macro in Postfix 199
i, ‘transform’ flag . 225
i18n . 162
id . 175
if . 89
ignore-failed-reads,

--ignore-failed-reads option,
summary . 185

implicit type casts . 83
import . 103
importing from modules 103
include search path, introduced 51
include, --include option, summary

. 185
include-path . 174
include once . 52
including files . 51
indentation, MFL, default 169
index . 114
inet_aton . 131

inet_ntoa . 131
infinite loop . 92
initial-response 178
INPUT MAIL FILTER, mc file directive

. 195
internationalization 162
interval . 114
‘Invalid back-reference number’,

runtime error . 47
‘Invalid exception number’, runtime

error . 47
invocation . 183
io-timeout . 179
is_greylisted . 151
is_ip . 116
is_ip.mf . 116
isalnum . 119
isalpha . 120
isascii . 120
isblank . 120
iscntrl . 120
isdigit . 120
isgraph . 120
islower . 120
ismx . 134
isprint . 120
ispunct . 120
isspace . 120
isupper . 120
isxdigit . 120

J
Jan Rafaj . 3
Jeff Ballard . 3
John McEleney . 3

K
keywords . 109

L
L, \L, a mtasim command 204
l10n . 162
last poll host, global variable, introduced

. 130
last poll recv, global variable, introduced

. 130
last poll send, global variable, introduced

. 130
left angle bracket (<), < operator 80

Concept Index 251

left angle bracket (<), <= operator 80
len_to_netmask . 131
length . 114
libGeoIP . 136
library and built-in functions, introduced

. 19
line, #line statement 52
lint mode . 37
lint, --lint option, introduced 37
lint, --lint option, summary 188
list, --list option, described 36
list, --list option, summary 184
listen . 175, 176, 210
listens . 152
listing a database contents 36
listing DNS cache database 135
literal concatenation 79
literals . 56
local state directory 11
local variables . 76
localdomain . 144
localdomain.mf . 144
localization . 162
localpart . 114
location-column, --location-column

option, described 37
location-column, --location-column

option, summary 188
lock-retry-count 181
lock-retry-count, --lock-retry-count

option, summary 185
lock-retry-timeout 181
lock-retry-timeout,

--lock-retry-timeout option,
summary . 185

log-facility, --log-facility option,
summary . 189

log-level . 214
log-tag, --log-tag option, introduced

. 44
log-tag, --log-tag option, summary

. 189
loop . 91
loop body . 91
loop statement . 91
loop, do-style . 92
loop, for-style . 92
loop, infinite . 92
loop, while-style . 92

M
m4 . 104
macro expansion . 57
macro_defined . 113
macros, MeTA1 . 210
macros, referencing . 59
mail . 178
mail filtering language 51
mail sending rate, explained 8
Mail Transfer Agent (MTA) 15
mail-from-address 179
mailbox functions . 126
mailbox_append_message 127
mailbox_close . 126
mailbox_get_message 126
mailbox_messages_count 126
mailbox_open . 126
mailer URL . 153
mailer, --mailer option, summary . . 185
mailfrom_address . 65
mailfromd, building . 9
mailutils_set_debug_level 166
main, MFL function 39
maintenance, database 37
mappwnam . 146
mappwuid . 146
match_cidr . 131
match_cidr.mf . 131
match_dnsbl . 155
match dnsbl, definition 78
match_dnsbl.mf . 155
match_rhsbl . 155
match_rhsbl.mf . 155
matches . 80
max-callout-mx . 179
max-dns-reply-a . 182
max-dns-reply-mx 182
max-dns-reply-ptr 182
max-instances . 175
max-match-mx . 182
max-open-mailboxes 181
max-open-messages 181
max-pmilter-fd . 210
max-streams . 181
max-threads-hard 210
max-threads-soft 210
MaxRecipientsPerMessage, sendmail

option . 26
‘memory chunk too big to fit into heap’,

runtime error . 46
message functions . 127
message modification queue 122

252 Mailfromd Manual

Message-ID, exporting 44
Message-ID, exporting in ‘mc’ file 195
Message-ID, using in mailfromd logs . . . 44
message_body_lines 127
message_body_rewind 127
message_body_size 127
message_close . 127
message_count_parts 127
message_find_header 128
message_get_part 128
message_has_header 128
message_header_count 128
message_header_decode 124
message_header_encode 123
message_header_lines 128
message_header_size 127
message_is_multipart 128
message_lines . 128
message_read_body_line 128
message_read_line 129
message_rewind . 129
message_size . 127
meta1 . 196
meta1 macros . 210
MFL . 51
MFL mode, . 169
MFL mode, enabling 169
MFL mode, GNU Emacs 169
mfl-basic-offset 170
mfl-case-line-offset 171
mfl-comment-offset 171
mfl-include-path 170
mfl-loop-continuation-offset 171
mfl-loop-statement-offset 171
mfl-mailfromd-command 170
mfl-mode.el . 169
mfl-returns-offset 171
milter abort . 26
milter stage handler arguments 71
milter stage handler, defined 66
milter state handler, declaring 17
milter state handler, described 15
milter-actions, --milter-actions,

mtasim option, summary 207
milter-proto, --milter-proto, mtasim

option, summary 207
milter-timeout . 176
milter-timeout, --milter-timeout

option, summary 187
milter-timeout, --milter-timeout,

mtasim option, summary 207

milter-version, --milter-version,

mtasim option, summary 206
miltermacros . 55
mmq_purge . 123
module . 102
module declaration 102
module, defined 19, 102
MTA . 15
mtasim administrative commands 203
mtasim auto mode 202
mtasim daemon mode 206
mtasim expect mode 204
mtasim, --mtasim option, summary . . 185
mtasim, defining Sendmail macros 203
mtasim, described . 201
mtasim, introduced . 39
mtasim, listing Sendmail macros 204
mtasim, undefining Sendmail macros . . 204
mtasim, using in shell scripts 205
multiline strings . 58
multiple sender addresses 65
multiple sender addresses, using with

polling commands. 130
mx fnmatches . 81
mx matches . 81

N
N_ . 106
Nacho González López 3
name clashes . 83
National Language Support 162
Navigating through function definitions

. 169
negative caching, DNS cache database

. 135
negative expiration period, defined 35
negative-expire-interval 181
netmask_to_len . 131
Neutral, SPF result code 157
next . 91
next statement . 91
ngettext . 164
NLS . 162
nls.mf . 162
‘No previous regular expression’,

runtime error . 47
no-interactive, --no-interactive,

mtasim option, summary 207
no-preprocessor, --no-preprocessor

option, summary 187

Concept Index 253

no-preprocessor, --no-preprocessor

option, usage . 106
no-syslog-async, --no-syslog-async

option, introduced 44
no-syslog-async, --no-syslog-async

option, summary 190
non-blocking syslog 44
non smtpd milters, postfix configuration

. 199
None, SPF result code 156
not . 81
‘Not enough memory’, runtime error 46
not found, exception type 95
ntohl . 130
ntohs . 130
number . 63, 160, 161
number of actual arguments 74

O
OLD_EXCEPTION_CODES, preprocessor

symbol . 232
on statement . 100
open . 140
operator associativity 82
operator precedence, defined 82
optarg . 42
opterr . 42
optimize, --optimize option, summary

. 185
optind . 42
optional arguments to a function 74
optional arguments, checking if supplied

. 74
optopt . 42
or . 81
‘Out of stack space; increase #pragma

stacksize’, runtime error 46
overriding initial variable values 38

P
parsing command line arguments 40
pass . 89
Pass, SPF result code 157
‘pc out of range’, runtime error 46
Peter Markeloff . 3
Phil Miller . 3
pidfile . 174
pidfile . 192
pidfile . 210

pidfile, --pidfile option, summary
. 186

pies . 209
pmilter-debug . 215
pmult . 209
pmult debugging . 210
pmult, described . 209
poll command, standard verification

. 101
poll command, strict verification 101
poll keyword . 101
poll statement, defined 101
port, --port option, summary 186
port, --port, mtasim option, described

. 202
port, --port, mtasim option, summary

. 207
positive expiration period, defined 35
positive-expire-interval 181
Postfix . 199
postfix-macros.sed 199
pp-setup . 105
pragmatic comments 52
precedence, operators 82
precious . 26, 62
precious variables . 26
predefined variables 63
predict, --predict option, introduced

. 36
predict, --predict option, summary

. 186
preprocessor . 104
preprocessor, --preprocessor option,

summary . 187
preprocessor, --preprocessor option,

usage . 106
primitive_hasmx . 133
primitive_hostname 133
primitive_ismx . 134
primitive_resolve 134
printf . 105
probe message . 6
procedures . 76
prog . 66
program_trace . 166
progress . 125
prompt, --prompt, mtasim option,

summary . 207
public . 62, 74

254 Mailfromd Manual

Q
qualifier, function declaration 74
qualifiers, variable declaration 62
quarantine . 129
quit . 178

R
raising exceptions . 98
rate . 150
rate database . 35
rateok . 151
rateok.mf . 151
‘rc.mailfromd’ . 192
rcpt . 178
rcpt_add . 121
rcpt_count . 65
rcpt_delete . 121
read . 142
read-timeout . 214
readline . 201
regex . 54
regular expression matching 80
reject . 87
reject action, defined 87
reject action, introduced 15
reject in ‘begin’ . 72
reject in ‘end’ . 72
reject messages, marking cached rejects

. 63
relayed . 140
relayed-domain-file 174
relayed-domain-file,

--relayed-domain-file option,
summary . 186

remove, --remove option, summary . . 186
replace . 88
replace action, defined 88
replace in ‘begin’ . 72
replace in ‘end’ . 72
replbody . 122
replstr . 114
require . 19, 103
requiring modules . 103
reserved words . 109
resolve . 135
return in ‘begin’ . 72
return in ‘end’ . 72
return statement, defined 75
returning from a catch 97
returning from an exception handler . . . 97

returns statement, function definition
. 73

reuseaddr . 175
revip . 116
revip, definition of . 77
revstr . 114
right angle bracket (>), > operator 80
right angle bracket (>), >= operator 80
rindex . 115
rset . 178
RSET . 26
run mode . 39
run, --run option, described 39
run, --run option, summary 184
runtime . 181
runtime error . 46
runtime errors, fatal 46
runtime errors, tracing 48

S
s, Sendmail macro 24, 196
s-expression . 225
sa . 148
sa.mf . 116
sa_code . 65
sa_format_report_header 116
sa_format_score . 116
sa_keywords . 65
sa keywords, global variable 148
sa score, global variable 148
sa_threshold . 65
sa threshold, global variable 148
safedb.mf . 138
safedb_verbose 65, 139
safedbdel . 139
safedbget . 138
safedbmap . 138
safedbput . 139
scope of a catch . 96
scope of exception handlers 96
scope of visibility . 103
scope of visibility, functions 74
scope of visibility, variables 62
script file checking . 37
script-file . 174
scripting, parsing command line

arguments . 40
selecting syslog facility 44
send_dsn . 154
send_mail . 153
send_text . 154

Concept Index 255

sender address verification, described . . . 6
sender address verification, limitations . . 7
Sender Policy Framework 8
Sender Policy Framework, defined 156
sender verification, writing tests 98
sending rate, explained 8
Sendmail macros, exporting 195
Sendmail macros, referencing 59
sendmail macros, setting from the

command line . 38
Sergey Afonin . 3
server . 175
server, callout . 22
set . 63, 88
setvar . 174
shadowing, constant–constant 86
shadowing, defined . 83
shadowing, variable 84
shadowing, variable–constant 85
show-defaults, --show-defaults option,

introduced . 34
show-defaults, --show-defaults option,

summary . 184
sieve . 146
Sieve . 146
sieve.mfh . 146
SIGHUP . 192
SIGINT . 192
signals . 192
SIGQUIT . 192
SIGTERM . 192
Simon Christian . 3
Simon Kelley . 11
single-process . 175
single-process, --single-process

option, summary 188
site-start.el . 169
sleep . 145
smtp-timeout 177, 178
smtpd milters, postfix configuration . . 199
socket map . 161
sockmap.mf . 161
sockmap_lookup . 161
sockmap_single_lookup 162
soft SMTP timeout 22
SoftFail, SPF result code 157
source modules, setting debugging levels

. 45
source, --source option, summary . . 186
source-info . 177
source-info, --source-info option,

summary . 190

source-ip . 174
SpamAssassin . 148
spamd . 148
SPF . 8
SPF, checking host record 156
SPF, defined . 156
spf.mf . 158
spf_check_host . 158
spf_status_string 160
spf_test_record . 159
sprintf . 117
stack growth policy 53
stack traces, reading 49
‘Stack underflow’, runtime error 46
stack-trace . 177
stack-trace, --stack-trace option,

explained . 48
stack-trace, --stack-trace option,

summary . 189
stack_trace . 166
stack_trace function, introduced 49
stacksize . 52
stage handler arguments 71
stage handler, defined 66
standalone catch . 96
standard address verification 6
standard error, using for diagnostics

output . 43
standard verification with poll 101
startup . 191
startup handler . 71
state handler, declaring 17
state-directory . 174
state-directory, --state-directory

option, summary 186
statedir, --statedir, mtasim option,

described . 203
statedir, --statedir, mtasim option,

summary . 207
statements . 86
statements, conditional 89
static . 62, 74
‘status.mf’, module 93
stderr, --stderr option, summary . . 190
stdio, --stdio, mtasim option, summary

. 208
stdpoll . 129
strftime . 144
strict address verification 7
strict verification with poll 101
strictpoll . 130
string . 64, 160, 161

256 Mailfromd Manual

strip_domain_part 116
strip domain part, definition of 78
strip_domain_part.mf 116
substr . 115
substring . 115
success, exception type 95
supplementary groups 191
switch . 90
switch statement . 90
syntax check . 37
syntax-check, --syntax-check option,

introduced . 37
syntax-check, --syntax-check option,

summary . 190
syslog facility, default 44
syslog facility, selecting 44
syslog tag . 44
syslog, --syslog option, summary . . 191
syslog, asynchronous 44
syslog, default implementation 44
syslog, non-blocking 11, 44
syslog, using for diagnostics output 43
syslog-async . 176
syslog-async, --syslog-async option,

introduced . 44
syslog-async, --syslog-async option,

summary . 191
system . 145
system-wide startup script 192

T
tbf database . 35
tbf_rate . 151
temp failure, exception type 95
tempfail . 87
tempfail action, defined 87
tempfail action, introduced 15
tempfail in ‘begin’ 72
tempfail in ‘end’ . 72
test, --test option, introduced 38
test, --test option, specifying handler

name . 39
test, --test option, summary 184
Texinfo . 5
textdomain . 164
Thomas Lynch . 3
throw . 98
time . 144
time formats, for ‘--time-format’ option

. 221
Time Interval Specification 173

time-format, --time-format option,
summary . 186

timeout escalation . 22
timeout, --timeout option, summary

. 187
tolower . 115
toupper . 115
trace file, mtasim . 205
trace, --trace option, introduced 44
trace, --trace option, summary 190
trace-actions . 177
trace-file, --trace-file, mtasim

option, described 205
trace-file, --trace-file, mtasim

option, summary 208
trace-program . 177
trace-program, --trace-program option,

summary . 190
transcript . 177
transcript, --transcript option,

introduced . 45
transcript, --transcript option,

output example 45
transcript, --transcript option,

summary . 190
try statement . 96
try–catch construct 96
trying several sender addresses 130
type . 213
type casts, explicit . 83
type casts, implicit . 83

U
U, -U option, described 106
U, -U option, summary 187
u, -u, mtasim option, summary 206
U, \U, a mtasim command 204
umask . 145
uname . 144
undefine, --undefine option, described

. 106
undefine, --undefine option, summary

. 187
unfold . 124
upgrading from 1.x to 2.x 236
upgrading from 2.x to 3.0.x 235
upgrading from 3.0.x to 3.1 234
upgrading from 3.1.x to 4.0 233
Upgrading from 4.0 to 4.1 233
Upgrading from 4.1 to 4.2 233
Upgrading from 4.2 to 4.3.x 232

Concept Index 257

Upgrading from 4.3.x to 4.4 232
Upgrading from 4.4 to 5.0 231
Upgrading from 5.0 to 5.1 230
Upgrading from 5.x to 6.0 228
Upgrading from 6.0 to 7.0 227
url . 214
URL, mailer . 153
user . 180
user privileges . 191
user, --user option, summary 187
user, --user, mtasim option, described

. 203
user, --user, mtasim option, summary

. 206

V
v, -v, mtasim option, summary 208
valid_domain . 152
valid domain, definition 78
valid_domain.mf . 152
validuser . 152
vaptr . 43
variable assignment 25, 63, 88
variable declaration 25
variable declarations 62
variable interpretation 57
variable lexical scope 62
variable number of arguments 75
variable shadowing . 84
variable values, setting from the command

line . 38
variable, --variable option, introduced

. 38
variable, --variable option, summary

. 187
variable, assigning a value 63

variable, precious . 26
variables, accessing from catch 98
variables, automatic 76
variables, declaring . 62
variables, defined . 62
variables, introduced 25
variables, local . 76
variables, precious . 62
variables, predefined 63
variables, referencing 63
variadic function . 75
verbose, --verbose, mtasim option,

summary . 208
verbosity level . 44
Verifying script syntax 170
verp_extract_user 117
void functions . 76

W
when keyword . 100
while . 91
while loop . 92
whitelisting . 32
WITH_GEOIP . 136
write . 142
write-timeout . 214

X
X, -X, mtasim option, summary 207
x, ‘transform’ flag 225
xref, --xref option, summary 191

Z
Zeus Panchenko . 3

	Preface
	Short history of mailfromd.
	Acknowledgments

	Introduction to mailfromd
	Typographical conventions
	Overview of Mailfromd
	Sender Address Verification.
	Limitations of Sender Address Verification

	Controlling Mail Sending Rate.
	SPF

	Building the Package
	Tutorial
	Start Up
	Simplest Configurations
	Conditional Execution
	Functions and Modules
	Domain Name System
	Checking Sender Address
	SMTP Timeouts
	Avoiding Verification Loops
	HELO Domain
	SMTP RSET and Milter Abort Handling
	Controlling Number of Recipients
	Sending Rate
	Greylisting
	Local Account Verification
	Databases
	Database Formats
	Basic Database Operations
	Database Maintenance

	Testing Filter Scripts
	Run Mode
	Parsing Command Line Arguments

	Logging and Debugging
	Runtime Errors
	Notes and Cautions

	Mail Filtering Language
	Comments
	Pragmatic comments
	Pragma stacksize
	Pragma regex
	Pragma dbprop
	Pragma greylist
	Pragma miltermacros

	Data Types
	Numbers
	Literals
	Here Documents
	Sendmail Macros
	Constants
	Built-in constants

	Variables
	Predefined Variables

	Back references
	Handlers
	The begin and end special handlers
	Functions
	Some Useful Functions

	Expressions
	Constant Expressions
	Function Calls
	Concatenation
	Arithmetic Operations
	Relational Expressions
	Special Comparisons
	Boolean Expressions
	Operator Precedence
	Type Casting

	Variable and Constant Shadowing
	Statements
	Action Statements
	Variable Assignments
	The pass statement
	The echo statement

	Conditional Statements
	Loop Statements
	Exceptional Conditions
	Built-in Exceptions
	User-defined Exceptions
	Exception Handling

	Sender Verification Tests
	Modules
	Declaring Modules
	Scope of Visibility
	Require and Import

	MFL Preprocessor
	Example of a Filter Script File
	Reserved Words

	The MFL Library Functions
	Sendmail Macro Access Functions
	String Manipulation Functions
	String formatting
	Character Type
	Envelope Modification Functions
	Header Modification Functions
	Body Modification Functions
	Message Modification Queue
	Mail Header Functions
	Mail Body Functions
	EOM Functions
	Current Message Functions
	Mailbox Functions
	Message Functions
	Quarantine Functions
	Polling Functions
	Internet address manipulation functions
	DNS Functions
	Geolocation functions
	Database Functions
	I/O functions
	System functions
	System User Database
	Sieve Interface
	Interfaces to Third-Party Programs
	Rate limiting functions
	Greylisting functions
	Special Test Functions
	Mail Sending Functions
	Blacklisting Functions
	SPF Functions
	Sockmap Functions
	National Language Support Functions
	Debugging Functions

	Using the GNU Emacs MFL Mode
	Configuring mailfromd
	Special Configuration Data Types
	Base Mailfromd Configuration
	Server Configuration
	Milter Connection Configuration
	Logging and Debugging configuration
	Timeout Configuration
	Call-out Configuration
	Privilege Configuration
	Database Configuration
	Runtime Constants Configuration
	Other Configuration Statements
	Standard Mailutils Statements

	Mailfromd Command Line Syntax
	Command Line Options.
	Operation Modifiers
	General Settings
	Preprocessor Options
	Timeout Control
	Logging and Debugging Options
	Informational Options

	Starting and Stopping

	Using mailfromd with Various MTAs
	Using mailfromd with Sendmail.
	Using mailfromd with MeTA1.
	Using mailfromd with Postfix

	mtasim --- a testing tool
	mtasim interactive mode mode
	mtasim expect commands
	Trace Files
	Daemon Mode
	mtasim command line options

	Pmilter multiplexer program.
	Pmult Configuration
	Multiplexer Configuration.
	Translating MeTA1 macros.
	Pmult Client Configuration.
	Debugging Pmult

	Pmult Example
	Pmult Invocation

	How to Report a Bug
	Gacopyz
	Time and Date Formats
	S-Expression
	Upgrading
	Upgrading from 7.0 to 7.1
	Upgrading from 6.0 to 7.0
	Upgrading from 5.x to 6.0
	Upgrading from 5.0 to 5.1
	Upgrading from 4.4 to 5.0
	Upgrading from 4.3.x to 4.4
	Upgrading from 4.2 to 4.3.x
	Upgrading from 4.1 to 4.2
	Upgrading from 4.0 to 4.1
	Upgrading from 3.1.x to 4.0
	Upgrading from 3.0.x to 3.1
	Upgrading from 2.x to 3.0.x
	Upgrading from 1.x to 2.x

	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Concept Index

