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ABSTRACT

Design and implementation of a non-linear dynamical system replicating spring

buckling behavior

By

Corey Baker

A device was designed and implemented to replicate spring buckling using a linear

motor. The device was designed using an off the shelf motor, microcontroller, DAQ,

and force transducer. Once the device was put together a program was written in

matlab to control the motor. Tests were done to replicate a spring damper system

and once this system was realized, tests were done to replicate the Duffing oscillater

that exhibits subcritical pitchfork bifurcation. The finished device can be used to

investigate how vision and tactile integration play a role in dynamic manipulation.
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Chapter 1

INTRODUCTION

The nervous system is key to integrating and managing dynamic sensorimotor in-

formation. Understanding neural control can be complicated because the intricate

behavior is non-linear and highly dimensional (3). Grasping objects with the fingers

and thumb is a simple task that humans perform daily. Vision is often not needed to

grasp an object, but when sensory feedback such as feeling in fingers is absent, vision

is more relied upon (1). Force vectors applied by the fingers on an object must be of

sufficient magnitude to prevent slipping in the presence of gravity and other external

loads (4).

Identifying how vision assists in grasping objects along with identifying time-

delays can aid in clinical efforts. To see how vision and time-delays play a role,

experiments where done and the results are in the paper, Manipulating the edge of

instability (1). Results from bifurcation theory suggests that many nonlinear dynam-

ical systems exhibit low-dimensional dynamics at the edge of of instability (5). Based

on the center manifold theorem, a low dimensional form on a center manifold can

represent the dynamics of high-dimentional systems at the edge of instability (5).

In the paper, the thumbpad was used to compress a slender spring as far as possible
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just before slipping. This brought the thumb+spring+nervous system to the edge of

instability (1). The experiments were done on 12 consenting young adults (9 male, 3

female), who were all right handed and had no recent hand impairments. All subjects

had no prior experience with the experimental setup. The experimental setup looks

like the figure below:

Figure 1.1: Schematic of original experimental setup (1)

Subjects wrapped their fingers around the vertical post and placed their thumb-

pad on top of the endcap in Figure 1.1. The bottom of the spring rests on a force

transducer that logged force at 1000Hz. The motion capture cameras captured the

3D location and orientation of the reflective markers at 200Hz using a 4-camera mo-

tion capture system. The palm of the hand never touched the spring or the vertical
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post and the subject can view the setup from any angle of their choosing. Feedback

was provided using an audible 500Hz tone that linearly decreased in volume as the

vertical compressive spring force increased (1).

The subjects were instructed to slowly compress the spring using only their thumpad

to make the tone volume as faint as possible without letting the spring slip. Once this

point was reached, the subjects needed to maintain this load force (hear a constant

tone) for 10s without letting the spring slip and then slowly release the spring. It did

not matter if the spring oscillated or bent, but that the volume remained constant

and the spring did not slip (1).

Experiments were performed over two days. Day 1 was a training day, used for

acclimating the subjects to the system. During this day, the subjects performed

100 compressions and the performance was measured before and after the training.

On day 2, the performance of the subject was measured using normal thumbpad

sensibility, both with and without vision. Thumbpad sensibility was then reduced

when a hand surgeon administered 5 cc of 1% Lidocaine solution on the ulnar and

radial sides of the base of the thumb (just below the metacarpophalangeal (MCP)

joint of the thumb, but away from the thenar eminence) to obtain a digital nerve-block

without affecting any musculature (and associated sensors) (1).

In order to perform experiments like the one mentioned above, the spring will

be taken out of the system and replaced by a linear motor. If successful, the device
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developed should provide us with a different set of testing abilities since we can

manipulate the edge of instability with a known low dimensional non-linear dynamical

system. The system of choice will be the Duffing oscillator which is known to model

chaotic behavior depending on the parameters chosen. If configured correctly, the

Duffing oscilator could resemble the subcritical pitchfork bifurcation(6) that models

spring buckling as seen in the paper Manipulating the edge of instability (1).
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Chapter 2

METHODS AND DESIGN

In order to design the system, off the shelf components such as: a linear motor, data

acquisition board, and a force transducer will be needed to make the new device used

to manipulate the edge of stability. Also, parts designed in solid works such as: a

transducer holder, and linear motor holder are designed to help combine all of the

devices together. Before making the motor behave like a non-linear system, we first

attempt a linear case using the Spring and Damper Equation. After implementing

and testing the linear case, we move on to a non-linear system using the Duffing

oscillator. The designed system setup is pictured below:

(a) Complete View (b) Top View

Figure 2.1: Designed System
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2.1 Linear System

2.1.1 Spring and Damper Equation

Hooke’s Law of elasticity is known to approximate the extension of a spring. The

variables used in Hooke’s Law in terms of our application are below:

• Fmotor - restoring force of the motor

• x - displacement of the motor

• k - spring constant

The equation is below:

Fmotor = −kx (2.1)

To approximate an oscillating spring whose oscillations reduce due to friction, we add

damping to the equation above. The following variables are added:

• c - damping coefficient

• ẋ - velocity

The equation turns into:

Fmotor = −kx− cẋ (2.2)
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Using Newton’s second law of motion, F = mẍ on the left side of the equation and

adding a forcing input, I on the right side, the equation becomes:

mẍ = −kx− cẋ+ I

ẍ = = − k

m
x− c

m
ẋ+ I (2.3)

The simulated response to an initial displacement of 0.03m, k = 1N/m, c = 0.5, I = 0

is below:
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Figure 2.2: Simulated Spring Response

The potential energy can be determined from equation 2.3 by putting all terms

on the left hand side and having no forcing input, I = 0 and integrating equation.
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The potential energy equation is below:

E(t) =
1

2
δẋ2 +

1

2
kx2 (2.4)

The graph of the potential energy when δ = 0, k > 0 is pictured below:
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Figure 2.3: Potential Energy

2.2 Non-Linear System

2.2.1 Duffing Oscillator

The linear motor is meant to replace the spring in the experimental setup and bring

the system to the edge of instability by replicating spring buckling. The Duffing

oscillator is a dynamical non-linear system that is known to model chaotic behavior(7).

The system will model different behaviors depending on the variables below:
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• δ - damping constant

• β - spring constant

• α - duffing constant

• γ - forcing constant

• ω - angle

• φ - phase angle

The Duffing equation is a non-linear second-order equation is seen below:

ẍ+ δẋ+ βx+ αx3 = γ cos(ωt+ φ) (2.5)

The Duffing Oscillator can take on different behaviors, for instance changing β from

positive to negative gives a supercritical pitchfork bifurcation. If β > 0 the restoring

force is

Fmotor = −βx− αx3 − αẋ (2.6)

When α > 0 and for small values of x, equation 2.7 is a hardening spring and when

α < 0 the equation is a softening spring (8). The case when β < 0 creates a double

well potential (6). The restoring force then becomes:

Fmotor = βx− αx3 − αẋ (2.7)

9



The potential energy when there is no forcing (γ = 0) can be found for the oscillator

by integrating equation 2.5. The solution is below:

E(t) =
1

2
δẋ2 +

1

2
βx2 +

1

4
αx4 (2.8)

The potential energy graph is pictured below:
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(a) β > 0, δ = 0, α < 0
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(b) β < 0, δ = 0, α < 0

Figure 2.4: Potential Energy

In order to manipulate the edge of instability, a subcritical pitchfork bifurcation

needs to be replicated. This done by changing β and α so that Figure 2.4(b) is

inverted. The graph of the subcritical bifurcation is pictured below:
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Figure 2.5: Subcritical Bifurcation, β > 0 and α < 0

There will always be an equilibrium point at (0, 0). To calculate the other two

equilibrium points, the equation below is used:

x = ±
√
β

α
(2.9)

The phase portrait for the subcritical pitchfork bifurcation created using pplane8

which was designed by John C. Polking at Rice University. The phase portrait is

pictured below:
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x ’ = y                      
y ’ = − (k x + c y + l x3)/m

c = 10
l = − 237500

k = 95
m = 1

 
 

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
x

Figure 2.6: Subcritical Bifurcation Phase Portrait, β > 0 and α < 0

The phase portrait shows the displacement versus the velocity. The middle point

is asymptotically stable and the points to the left and right are unstable which will

drive the system to positive or negative infinity. This phase portrait is used to see

how the system should behave.

2.3 Euler Integration

In order to handle linear and non-linear functions and calculate the the future dis-

placement, velocity, and acceleration for the motor, the acceleration is integrated over

a small interval, τ = ∆t. The acceleration is calculated by using the linear or non-

linear function of choice and using the force along the rod as the input force. The
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current displacement and velocity are also used. See variables below:

• xt - current displacement

• ẋt - current velocity

• Ft - current force applied along the rod of the motor

• xt+τ - future displacement

• ẋt+τ - future velocity

• ẍt+τ - future velocity

• f(xt, ẋt, Ft) - the linear or nonlinear function

So the future acceleration is:

ẍt+τ = f(xt, ẋt, Ft) (2.10)

The future velocity is:

˙xt+τ = ẋt +

∫ t+τ

t

ẍtdt

= ẋt + τ ẍt (2.11)

The future displacement is:

xt+τ = xt +

∫ 2τ

0

ẋt+τdt

= xt + 2τ ẋt+τ + 2τ 2ẍt+τ (2.12)
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2.4 Hardware

Multiple devices come together together to make the complete design. The block

diagram is below:

Microcontroller LM1247-080-01

Nano17

PC

NIDAQ

RS232

Nano 17 
Signal 

Conditioner

Figure 2.7: Complete Hardware Block Diagram

2.4.1 National Instruments Data Acquisition Board

The data acquisition board used is the National Instruments NI-PCI-6025E. This

board has 16 analog inputs at up to 200kS/s at 12 or 16-bit resolution(9). It also

has up to 2 analog outputs at 10kS/s at 12 or 16 bit(9). The analog inputs of the

NI-PCI-6025E will be used to power and read the force values from the Nano17. One

analog output is used to control the position of the linear motor. For the application

14



in this thesis, matlab will be used to control all DAQ operations.

2.4.2 Linear Motor and Microcontroller

The linear dc motor used to for the S-D test is the Faulhaber Quickshaft LM 1247-

080-01 and is displayed below: The Quickshaft LM1247-080-01 provides us with no

residual static force and an excellent relationship between linear force and current.

The motor also has built-in Hall sensors which allow position control (10).

The MCLM 3006 S is provides precise positioning and very low speeds because it

contains a high performance digital signal processor (DSP). The microcontroller will

allow the following (10):

• Velocity control

• Velocity profiles

• Positioning mode

• Stepper motor mode

• Analog positioning mode

• Force control

Analog Position Control is utilized to control the linear motor. Initial settings as

well query commands for getting the current position of the motor are sent over

15



RS232 communication. The maximum baudrate the microcontroller can be set to is

115 kBaud, but 56 kbaud was the highest baudrate the motor was able to operate

properly at.

The maximum force the motor can exert is 9.36N and can deliver this force for

2 seconds or until the motor reaches a temperature cut-off. After this, the motor

drops down to a maximum continuous force of 3.13N and doesn’t go over this force

until the temperature drops below the cut-off temperature. The maximum speed

and acceleration the motor can provide are 2.71 m/s and 91.57 m/s2 respectively.

Variables that are used to calculate various equations for the motor are:

• Force constant - kF

• Continuous current - Ie

• Peak current - Ip

The equations used to calculate the force of the motor at any given time are:

• Constant force

Fe,max = kF Ie,max (2.13)

• Peak force

Fp,max = kF Ip,max (2.14)

The circuit design for the microcontroller is below:

16



Figure 2.8: MCLM 3006 Circuit Design(2)

2.4.3 Force Transducer

To interpret the force a patient is exerting on the linear motor, an ATI Nano17 force

transducer is used. Force is detected and fed back into a data acquisition board and

used as in input for the linear or non-linear equation. The Nano17 measures force

in the x,y, and z directions. This allows not only the vertical force of a patient to

be measured, but also the force along the rod of the linear motor. The maximum

force the Nano17 can endure in the x,y, and z directions are 25N, 25N, and 35N

17



respectively(11). The transducer can also measure torque in the x,y and z directions,

but this is not being used at the moment.

2.4.4 Nano17 Transducer Holder

A custom device was designed in Solid Works and printed to hold the Nano17 to

the linear motor. The device had to be made to both the specifications of the linear

motor and the force transducer. The printed device is pictured below:

Figure 2.9: Nano17 Transducer Holder

2.4.5 Linear Motor Holder

A custom holder needed to be designed in order to holster the linear motor. This

holder needed to fit the specifications of the linear motor and also needed to provide

stability since the user will be applying different forces to the linear motor. The holder

is made out of aluminum and is screwed into another aluminum device, which will

18



be strapped down to a table. The holder is versatile and allows various adjustments

of the linear motor to provide comfort for the user. The initial design of the linear

motor holder is pictured below:

Figure 2.10: Linear Motor Holder

2.5 Software

Code was written in Matlab, C, and C++ to control all tasks of the device will

perform. The matlab code controls the NIDAQ board which has inputs and outputs

to the Nano17 and microcontroller. The C and C++ code is only used for controlling

the serial communication. A state machine showing how the motor cntrl function

works is below:
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While 
current_time < 

stop_time

Yes

No

Setup DAQ/Configure Motor

Get force from Load Cell

Call spring constant function

Call spring function

Set force of the motor

Set displacement of motor

Get displacement of motor

Save all values

Set default values for the motor

Plot all saved values

Turn off motor and force 
transducer

Figure 2.11: motor cntrl Function Block Diagram

The motor cntrl functions makes calls to many other Matlab, C and C++ func-

tions. These functions are described in the following sections.

2.5.1 spring const Function

This function sets the spring constant variable for the linear or non-linear function.

It has three inputs which are: spr const type, xy force, z force, and outputs the spring

20



constant to be used, k. The variable meanings are defined below:

• spr const type - string that will dictate how the spring constant is calculated

• xy force - horizontal force that is applied in the direction of the rod

• z force - vertical force applied

• k - the spring constant value that will be outputted

It works by first setting a default value to k const. The function checks spr const type

to see whether its’ value is “const” or “zforce”. If spr const type is “const”, then k

is set to k const. If spr const type is “zforce” then k becomes the product of k const

and z force. If spr const type is any other value, the function issues an error. The

block diagram for spring const is pictured below:
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spr_const_type

Initial State
k_const = const

Z Force State
k = k_const*z_force

Constant State
k = k_const

Output
k

Figure 2.12: spring const Function State Diagram

The pseudo code for spring const is below:

[k] = spring_const(spr_const_type,xy_force,z_force)

k_const = const

switch(spr_const_type)

const: k = k_const

zforce: k = k_const*z_force

otherwise: error, unrecognized spring constant type

The xy force input variable is not used in the block diagram or the pseudo code.

This is because it currently has no affect on the spring constant, but this feature can

be added at a later date.
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2.5.2 spring Function

This function determines what type of spring equation to use and makes calls to

calculate the future displacement, velocity, and acceleration. The function spring has

the following inputs: spr eq, m, k, x, v, f, t del. The outputs are: acc, x fut, and v fut.

These variables are defined below:

• spr eq - string that will dictate which equation will be used to calculate the

future acceleration, future displacement, and future velocity.

• m - mass of the system

• k - spring constant

• c - damping coefficient

• x - current displacement

• v - current velocity

• δ - damping constant

• α - duffing constant

• γ - current horizontal force applied to the system

• ω - angle

23



• φ - phase angle

• t del - current time delay

• acc - future acceleration

• x fut - future displacement

• v fut - future velocity

The function works by checking to see if spr eq equals “lin damp” or “non lin damp”.

If spr eq equals “lin damp”, it sets the damping coefficient c to a constant value,

calculates the future acceleration using k, m, c, v, and f, and plugging them into

the linear spring damper equation 2.3. If spr eq equals “non lin damp”, it sets the

damping coefficient c to a constant value, calculates the current acceleration using δ,

β, α, γ, ω, φ, c, v, and f and plugging them into equation (2.5). If spr eq is any other

value, the function issues an error. The block diagram for spring is pictured below:
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spr_eq

Linear Damping State
acc = -(k/m)*x - (c/m}*v + (1/m)*f

Non-Linear Damping State
acc = -omega_not^2 -alpha*x^3 - delta*v + gamma*cos(ft+phi)

Propogat State
Call propagate function 

Output
acc, x_future, v_future

Figure 2.13: spring Function State Diagram

The pseudo code for the spring function is below:

[acc,x_fut,v_fut] = spring(spr_eq,m,k,x,v,f,t_del)

switch(spr_eq)

lin_damp: c= 10

acc = -(k/m) - (c/m)*v + (1/m)*f

call propagate function

duffing: will be implemented later

otherwise: error, unrecognized spring constant type
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2.5.3 propagate Function

The propagate Function calculates the future displacement and velocity based off of

the the current displacement, current velocity, future acceleration, and time delay of

the last time the loop was implemented. The inputs are: acc calc, x val, v val, delta t.

The outputs arex next and v next. The variables are defined below:

• acc calc - future acceleration

• x val - current displacement

• v val - current velocity

• delta t - current time delay

• x next - future displacement

• v next - future velocity

The function works by implementing the integration equations mentioned in section

2.3. First the equation multiplies delta t by acc calc and adds it to v val based off of

equation 2.11 to get v next. Then the function multiplies 2 by delta t and v val adds

it to 2 multiplied by delta t2 and acc calc and adds that to x val to get x val based

off of equation 2.12. The state machine is pictured below:
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Output
x_next,v_next

V Next State
v_next = v_val + delta_t*acc_calc

X Next State
x_next = x_val + 2*delta_t*v_val + 2*dela_t^2) 

Figure 2.14: propagate Function State Diagram

The pseudo code for the spring function is below:

[x_next,v_next] = propagate(acc_calc,x_val,v_val, delta_t)

v_next = v_val + delta_t*acc_calc

x_next = x_val + 2*delta_t*v_val+ 2*(delta_t^2)*acc_calc

2.5.4 open serial Function

The open serial Function is one of the two MEX functions created. The function is

responsible for opening and configuring the serial port. The open serial Function has

no inputs and one output, output[0]. The MEX file for this function also has one

additional sub-function named SerialInit that has one input, BaudRate and returns

the serial object. The variables are defined below:
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• output[0] - the address of the serial port.

• BaudRate - baudrate used to open the serial port.

The function works by calling the SerialInit function which opens the serial port with

the BaudRate passed to it by open serial. Once the serial port is opened properly,

the function exits outputing the address of the open serial port object. The state

machine is below:

Output
Serial Port Address

Initial State
Declare all needed variables and 

call SerialInit

Open Port  State
Open Serial Port 5

Has the port 
opened 

properly?

Error  State
Issue open port error

Set Port Parameters State
Set default parameters

Able to set 
parameters?

Error  State
Issue config port error

No

Yes

Yes

No

Figure 2.15: open serial Function State Diagram
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2.5.5 wrc serial Function

The wrc serial Function is the last of the MEX function created. The function writes

to, reads from, and configures the linear motor. All of the commands are sent to

and received from the microcontroller of the linear motor. The function is very

versatile because the inputs and outputs of the function change based off of its’

second parameter. The wrc serial takes a minimum of two inputs and does not

need to output data. The first parameter is always the address of the serial port

object. The second parameter is always an integer value from “1” to “4” that tells

the function how to behave. Every case below uses the first parameter to read or

write to the serial port, so the use of the first parameter will be omitted for the rest

of the discussion. When every case below is entered, the function checks to make sure

the right amount of inputs and outputs have been passed to the function before it

proceeds. If the wrong amounts of inputs or outputs are passed, the function issues

an error and exits. The input and output checking is omitted from below but is seen

in the function state machine.

If the second parameter is “1”, the function needs two inputs and no outputs.

The second parameter value of “1” is used to configure the motor by calling the

subfunction ConfigMotor. The ConfigMotor calls another subfunction SerialWrite to

write all the configuration values to the motor.

If the second parameter is “2”, the function needs two inputs and one output. The
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second parameter value of “2” is used to set the position of the motor by using the

SerialWrite function to write the get position command, “POS” to the linear motor

and then using the SerialRead subfunction to receive the position value of the motor.

If the second parameter is “3”, the function has four inputs and no outputs. The

second parameter value of “3” sets the peak and continuous force of the motor using

the values of the third and fourth input parameters respectively. This is done by

calling the subfunction SerialWrite to write each value to the motor.

If the second parameter is “4”, the function has two inputs and no outputs. The

second parameter value of “4” is used to turn off the motor. The second parameter

value of “4” uses SerialWrite subfunction to send the disable command, “DI” to

the motor. After the motor has been disabled, the wrc serial Function calls the

subfunction CloseHandle to close the serial port.

The state machine for the wrc serial Function is pictured below:
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Initial State
Declare all needed variables 

Has the 
minimum inputs 

and outputs 
been passed?

Error  State
Issue open port error

Get Inputs State
Get the first and second input

Disable State
Call SerialWrite using "DI" is 

second input

Check 
Second 

Parameter

Set Motor Force StateGet Motor Position State
 

Configure Motor State
Call ConfigMotor function

Has the correct 
amount of inputs 
and outputs been 

passed?

Has the correct 
amount of inputs 
and outputs been 

passed?

Error  State
Issue open port error

Error  State
Issue open port error

Read Position State

Want Position State
Call SerialWrite using "POS" 

is second input

Output
output position

Write Peak Force State
Call SerialWrite using "LPC 
parameter3" is second input

Write Continuos Force State
Call SerialWrite using "LCC 
parameter4" is second input

Yes

No

1

2 3

4

Yes Yes

No No

Figure 2.16: wrc serial Function State Diagram
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Chapter 3

RESULTS

Once the design of the system and program was completed, tests were done to obtain

behavior that mimicked the spring and damper system and the Duffing oscillator. All

of the results shown have the forcing input set to 0.

3.1 Spring and Damper Equation

To test whether the linear motor behaved like a spring that produced the correct

amount of restoring force for the appropriate displacement, the following calculation

was done to compute the spring constant when no velocity is present:

k =
Fe,motor

xmaxdisplacement

k =
3.13N

0.033m

k ∼ 95 (3.1)

Using the spring constant above, tests out the max force of the motor at the max

displacements. It also gives us a starting point to increase the spring constant if

a harder spring needs to be replicated. The results for the motor displacements,
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simulated displacements, and force delivered are pictured below:
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Figure 3.1: Comparison of Motor Response to Simulated Response k = 95, δ = 10
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Figure 3.2: Comparison of Motor Response to Simulated Response k = 295, δ = 10

In both of the figures, the initial displacement was−0.024m and the initial velocity

was 0m/s. The motor response and the simulated response were similar for the two

test trials above. A closer response to the simulated response can be realized by

adjusting the PID in the linear motor. For these test cases and the ones to follow,

the PID values were set to default values. When considering the motor force plots,
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Figures 3.1(c) and 3.2(c), is the minimum value of the continuous force oscillates

from −1Nto 1N . This is because 1N is the lowest force the motor would respond

correctly at when told to move to a given displacement. Also note that the motor

always applies the continuous force and applies the peak force only if the force in the

opposing direction is greater than the continuos force.

3.2 Duffing Oscilator

After the linear spring could be realized by the motor, the next step was to replicate

the Duffing oscillator that exhibits subcritical bifurcation. The details on the potential

energy graphs are found in section 2.2.1. The spring constant, β was calculated using

equation 3.1. The x value in the equation was changed to 0.01 because the desired

equilibrium points were set to (−0.01m, 0), (0m, 0).(0.01m, 0). The α value was then

calculated using equation 2.9. The results for the motor displacements and forces for

different initial displacements are pictured below:
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Figure 3.3: Stable Motor Response β = 314, α = 3140000, δ = 10
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Figure 3.4: Stable Motor Response β = 314, α = 3140000, δ = 10

In Figure 3.3, the initial displacement was 0.009m and the initial velocity of 0m/s.

In Figure 3.4 the initial displacement was 0.009m and the initial velocity of 0m/s. The

system stayed stable and decreased with an exponential oscillation to the equilibrium
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point (0, 0). The behavior was similar to a spring since the motor was displaced in

between −0.01m and 0.01m. The behavior is different when the motor is displaced

beyond ±0.01m as pictured below:
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Figure 3.5: Unstable Motor Response β = 314, α = 3140000, δ = 10
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Figure 3.6: Unstable Motor Response β = 314, α = 3140000, δ = 10
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In Figure 3.5. the initial displacement was 0.012m and the initial velocity was

0m/s. In Figure 3.6. the initial displacement was −0.012m and the initial velocity

was 0m/s. The figure shows the system the motor attempting to go to positive and

negative infinity for Figures 3.5 and 3.6 respectively. The figures also show the motor

applying the maximum force at each of the above displacements. This force makes

it nearly impossible to stabilize the system and get back to the equilibrium point at

0m displacement.

The linear motor successfully modeled the linear spring equation and the Duffing

oscillator. Using the Duffing oscillator, the motor is able to replicate spring buckling

behavior. The results show how the motor is attracted to its’ center region as long as it

says within certain boundaries. When the motor is moved outside of these boundaries

or moved with a velocity that is too high, the system will become unstable and will

attempt to hit the end rails. Further test of the parameters will need to be done

to adjust the equilibrium points, increase the force the motor applies applies in the

stable region, and to increase oscillations within the stable region. Once the desired

behavior is found, the system can be used to conduct tests similar to the those in the

paper Manipulating the edge of instability (1).
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Chapter 4

INSTRUCTION MANUAL

I will go into details on how to setup the microcontroller and linear motor for usage.

There are some additional needed devices in order to get the system up and running

such as a data acquisition board and power supply.

4.1 Initial Setup

(1) Wire up the DAQ and the Nano17

(2) Connect one wire from the AO0 output channel of the DAQ to the analog input

of the microcontroller

(3) Connect one wire from the AO ground channel of the DAQ to the analog ground

of the microcontroller

(4) Hook up the RS232 cable to the microcontroller and the host computer

(5) Hook the power supply up to the microcontroller, the voltage range is 12V -

30V, I typically operate the system at 24V
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4.2 Code Modification

Once all connections are made, modifications to the matlab code need to be done in

order to get the correct functionality out of the system. The steps below will help

make these modifications:

(1) Set the path in matlab to the folder with all of the files

(2) Open up the open serial.c file and look in the function, SerialInit(int BaudRate)

and look for the line, hSerial = CreateFile( T(“COM5”) and change the value

in red to the communications port the microcontroller is hooked up to on the

host computer.

(3) If the baudrate needs to be changed, look in the open serial.c file, look in the

mexFunction(int nlhs...) and look for the line, *ptr =SerialInit(57600)) and

change the value in red to a baudrate of your choosing. To get further details

on how this function works look at section 2.5.4. Make sure to compile this file

if it is your first time using it or if you make changes to it. To compile, go to

the matlab window and type mex open serial.

(4) To configure the amount of time the program runs, look in the motor cntrl.m

file, and look for the line, stop time = 2 and change the value in red to the

amount of time in seconds you want the program to run.
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(5) To configure the inputs of the DAQ board look in the motor cntrl.m file. Look

for the line, ai = analoginput(’nidaq’, ’Dev5’) and change the device to the

DAQ you have the nano 17 connected to.

(6) Look at the next line, ch = “addchannel(ai, [0 1 2 3 4 5]) and change the

numbers in red to the channels the nano 17 is connected to.

(7) To configure the output device of the DAQ to the microcontroller, look for

the line ao = analogoutput(’nidaq’, ’Dev5’) and change it values in red to the

appropriate device.

(8) Look at the next line, ch = “addchannel(ai, [0]) and change the number in red

to the channel the microcontroller is connected to.

(9) If you need to configure the default parameters that are sent to the motor, open

up the file, wrc serial.c and look in the ConfigMotor(HANDLE...) function.

Each line is a configuration parameter sent to the motor. A brief description

of each of the commands are in the comments. For a full description of the

commands, look in the Operating Instructions of the microcontroller. A further

description of how the wrc serial.c file works can be found in section 2.5.5. Make

sure to compile this file using the ”mex” command after making changes to it.

(10) The default value used for the spring constant can be changed by looking into

the spring const.m file. Change the value of std spr const to change the default
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value of the spring constant. Additional variations of the spring constant can

be added by adding more case statements to this function or editing the current

case statements. Details on how the spring const.m function works can be found

in section 2.5.1

(11) The linear and non-linear equations the motor replicates can be modified by

editing the spring.m file. Additional equations can be added by adding more

case statements to the function and filling in the equation solved for the accelera-

tion. Each equation should always call the propagate function after acceleration

is computed. Further details on this function can be found in section 2.5.2.

4.3 Running the Program

Everything is now properly setup for usage. The function that controls the program

for the system is ”motor cntrl.c”. This function has five input parameters which are

spring type, k type, por, vi, pp. To run the program, do the following:

(1) Place the motor in the middle of the rod

(2) Turn on the power supply and make sure the applied voltage is correct.

(3) Type the following command in the matlab window, motor cntrl(‘duffing’,‘const’,40,10,80)

and hit enter.
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(4) The motor will collect baseline data from the Nano17. Do not touch the motor

while it is collecting this information

(5) The system will beep telling you the test is running and to put your hand on

the motor

(6) The system will beep again when the test is complete and tell you remove your

hand from the motor.

(7) To run the test again, go back to step 3.

(8) Turn off the power supply when you are finished

The first input to the function, spring type can be lin neg damp or duffing depending

which equation you want the spring to use. Further details of how this parameter is

used can be found in section 2.5.2. The second input k type can be const, rodforce,

zforce, or allforce. Further details of how this parameter is used can be found in

section 2.5.1. Further details on the motor cntrl function can be found in section 2.5.

Before running the program, make sure the motor is place in the middle of the rod.

This will serve is the 0 position of the motor. The program will tell you when to

place and remove your hand from the motor.
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