

Buck 310 GC

Chromatography- Gas^{PeakSimple Software} Standard Operating Procedures (Preliminary)

(Detect Instrument Picture to Jump to that section of SOP)

Prepared by: Bob Morrison (STLCC-CPLS Instrumentation Specialist) and Mike Davies (NIDUS) Original Nov 10, Latest Revision Nov 11(add Varian manual)

Agilent/Varian 3800

The GC is in the Bio processing Room along the front windows. It is a Varian 3800CP (pretty fancy when set up correctly) with a flame ionization detector (FID). It has not been used at the college, but it was removed from Covidien's St. Louis plant in working condition. The column will need to be replaced as well as all of the fittings. The college does not have a software package such as Galaxie or TotalChrome at BRDG Park, but the machine's on-board screen allows the user to view results and adjust settings. Hydrogen and/or helium sources will be needed as well. That's all that I know about it, but Denise Heinz may be able to help more either personally or through her company.

STLCC_CPLS;Morrison 6/3/2013

Chromatography: Gas, Buck 310

- •Small size, full peformance
- •Dimensions: 12.5" wide x 13.5" high x 14.5" deep
- •Ambient to 400°C programmable column oven
- •Mounts up to four detectors

Hot link to BUCK 310 Product Brochure...pdf

Hot link to Quick Start Guide (SRI) ...pdf

Hot link to Gasless Education guide ...pdf

Hotlink to Free Technical Support at SRI http://www.srigc.com/2005catalog/cat109.htm

The Buck 310 portable gas chromatograph is Multi-detector system and can accommodate 2-4 detectors, depending on your combination. There are 9 specific detectors available for the Buck 310 GC. Price is for base unit, without detector(s).. Designed to be durable and portable, the compact 310-series is ideal for operation in the field, E.P.A. and A.S.T.M. methods can be easily performed on-site, even in adverse field environments. A GC with the versatility to meet your lab's specific needs. The unique architecture of the Buck GC systems allow various detector and injector combinations, so each GC can be configured to meet your specific lab requirements. Automated Analyses let the GC do the work so you don't have to -The Buck 310 offers total control of application parameters using PeakSimple software. PeakSimple allows unlimited temperature programming, electronic pressure control, carrier gas pressure, gas valve position, gas solenoid actuation, autosampler control and other options. Just program your application parameters into the computer and let the 310 do the rest. Over 12 different detector options to choose from for optimal measurement results

CCD on Column Oven

Chromatography: Gas, Buck310 CCD (Catalytic Combustion Detector)

CCD Detector and protective cap (cap is removed prior to installation)

The Catalytic Combustion Detector responds to all hydrocarbons with the selectivity of an FID and the sensitivity of a TCD. The entire detector's diameter is merely one centimeter. Its sensor element consists of a tiny coil of platinum wire embedded in a catalytic ceramic bead. Each CCD detector has a pair of sensor elements. The sensors are housed in high-grade, flame-

proof nylon, and protectively capped with a fine steel mesh. In SRI GCs, the CCD detector is mounted on the wall of the Column Ovenina brasshousing, as shown in the top left picture. The analytical column residing in the Column Oven is connected to the detector through the oven wall; the example shown at bottom left is an SRI Gas-less^{IM} Educational GC featuring a CCD detector and a 1m(3') Hayesep-D packed column. The

CCD detector is especially suited for gasless operation because it can operate on ambient air, requiring no high pressure

cylinder gases such as hydrogen or helium. In the GC system pictured at left, a built-in air compressor supplies the carrier gas for the CCD.

The CCD detector can also be used as a hydrocarbon monitor in non-chromatographic applications where the CCD senses the total hydrocarbon content of a flowing air stream, or as a hydrogen/hydrocarbon leak detector.

Chromatography: Gas, Buck310, PeakSimple Software

PeakSimple chromatography data systems consist of hardware and software. The hardware is available as a stand-alone data system for connection to almost any model GC, HPLC, or CE system. The same hardware is supplied as standard equipment with every SRI 8610C, 8610D, 410, and 310 GC. No hardware is installed in your computer, so a notebook or netbook PC may be used instead of a full-sized desktop PC. PeakSimple chromatography acquisition and integration software for

http://www.srigc.com/PeakSimple.htm (from SRI Instruments Co. Make detectors)

PeakSimple Version 3.88 for Windows Vista downloaded and installed On Stratagene Laptop 11/12/10 by Bob Morrison

Set Default COM 1 port ID to "1" under Edit-Overall toolbar

Chromatography Gas: Buck310

Chromagraphy: GAS, Basic Start Guide, Buck 310 HARDWARE:

- 1. On the Front panel of the GC, set the toggle switch to the UP position
- 2. Open the lid of the GC to expose the oven and "pot" set screw holes.
- 3. Retrieve the screwdriver and insert in the hole or "pot" above the TEMP column. While holding the top (LOCAL) row button, rotate the "pot to the 0000 position. This will indicate tha no increment is set above the current oven ambient/room temperature.
- 4. Close the GC lid. Press the STATUS row TEMP button and observe that the oven is at ambient temperature. The TOTAL row should show 0000 or close to it.
- 5. Turn off the GC device and proceed to the SOFTWARE setup which will control the device parameters for run and analysis.

SOFTWARE:

- 1. Download PeaksimpleSoftware to PC, attach RS232 line from GC device to COM port.
- 2. Turn on GC (toggle), Initiate Peaksimple Software and monitor initialization and communication process between device and software. If initialization fails, Go to PeakSimple Edit option in top toolbar, select Overall, then enter COM port ID where the RS232 connect was made. You may also need to change the type of connection (USB or Serial) on this same panel. Repeat startup process.
- 3. Select EDIT from the top toolbar, then Channels. Select the Active, Display, and Integrate options next to Channel 1. An "X" will show in the appropriate box.
- 4. From the EDIT-CHANNELS menu, Select DETAILS, then MAIN for channel 1. In the Control by section, select Temperature.
- 5. From the EDIT-CHANNELS menu, Select TEMPERATURE and enter the start, delay, and any ramp temperature conditions desired. You may optionally LOAD a saved TEMPERATURE profile or SAVE new or modified TEMPERATURE profiles for this or STLCEUTURE 05/3/2013

GC: Startup Screen; Initialization or "Waking-up" Pop-up Window will appear

GC: Edit- Channels- to Set Oven Temp and other Parameters

GC: Select Channels to Set Oven Temp, other Parameters

File Edit View Acquisition Help		
D 🚔 🖬 🎒 🎒 🖓 🗏 🗒 🦕 🚺 2	3 4 5 6 🛞 👔 🐉 🖏 3 4	
RUN1 CCD-CHANNEL 1	130.00 deg	1.66 min
128.000 c:\peak388-32bit\612.CHR/DEFA	ULT.CON	RUNNING 0.235 mV
	Channels Channel 1: CCD-CHANNEL 1 Active Details Display Integration Components Postrun Channel 2: Channels Temperature Events Details Display Integration Channel 2: Channels Temperature Active Details Temperature Events Display Integration Channel 3: Channel 3 Active Details Display Integration Components Postrun Channel 3: Channel 3 Active Details Display Integration Components Postrun Integration Components OK OK	Channel 4: Channel 4 Active Details Temperature Events Display Integration Components Postrum Channel 5: Channel 5 Active Details Temperature Events Display Integration Components Postrum Channel 6: Channel 2 Active Details Temperature Events Display Integration Components Postrum Carct Select to Activate the ACTIVE, DISPLAY, and INTEGRATE options for Channel 1 and any others in use.
-32.000		
0.000		7.000
QPCR Admin ernet Links 2010-07		

GC: On Temp Window, Load old profile or Enter new Data

GC: Edit-Channels to enter Description and Details

GC: Set Channels, then Components

PeakSimple - CO	OM1	CHEED - COLORADO	
	Acquisition Help		Select EDIT- then CHANNELS, then
	🚭 ½₃₄ 🗏 ⊑ ⊑ ⊑ 1 2 3 4 5 6		COMPONENTS to define Peaks
	CCD-CHANNEL 1 c:\peak388-32bit\612.CHR/DEFAULT.CON	130.00 deg	
128.000 <u>(</u> €	Channels Channel Active Display Integrate Channel	3 Toluene 2.500 2.770 TolueNEt 4 Chlorobenzene 3.430 3.680 CHLOROB. 5 Ethylbenzene 3.680 5.920 M-PDICHL.C 6 m_p-Dichlorobe 5.680 5.920 M-PDICHL.C 2: Channe 1 3: Channe 1 1	AL AL AL AL Events Events S Postrun S Postrun S Postrun
Ō	<	Add Change Remove Calibrate Load Save Clear Print OK	
QPCR Adn nternet Links 2010-(·□=== 〒 80%

BNC connector for 10 base 2 Ethernet cable

Humidity 5% to 95% (relative) GC System Type Modular Depth 56 cm Height 53 cm Width 66 cm Power Requirements 101V, 120V, 230V Weight 43 kg

Chromatography: Gas, Varian 3800

The Varian CP-3800 GC is Varian's top of line Gas Chromatograph with a flexible platform for single, dual, or three-channel configuration for maximum productivity.

Large LCD screen and straightforward user interface for easy viewing and editing of GC parameters.

Spacious column oven accommodates three or more columns.

Fast heat-up (100°C/min) and rapid cool-down column oven (400°C to 50°C in 4.5 min) allow for faster cycle times and increased productivity.

Concurrent installation and operation of up to three injectors and three detectors permanently on the GC.

Wide range of injectors and detectors to choose from for the most complicated application.

Choose from manual pneumatic control or electronic flow control for all injectors and detectors.

Wide range of autosamplers to choose from for complete sample introduction and preparation automation.

It is fully functional as a standalone GC or controlled through the Varian Star Workstation or the Galaxie Chromatography Data System.

Hot Link to Varian Brochure ... 18 pgs pdf

Hot Link to Varian, Basic Instructionspdf

Hot Link to Varian Laurier Sci User Manual

Hot Link to Varian Maintenance/Parts Brochure..pdf90 13

Hot Link to Varian 3800 User Manual pdf format (pages included in this document)

I. GC OPERATION	2
Overview	.2
Overview	0
Instrument Setup	ю.
Building a Method	.4
Automation	.5
Activating the GC Method	.5
Making a Single Injection	.6
Do You Need Help?	.6
GC Status	.7
GC Control	7
	0
II. HARDWARE INSTALLATION & SETUP	. 0
	- 8

Column Installation	
Optimum Capillary GC Carrier Flow Rate and Velocity	9
Optimum Velocities and Flow Rates for Capillary Columns	9
Detector, Carrier, and Make-up Gas Flow Rates and Gas Types	10

III. RECOMMENDED PARTS & SUPPLIES	11
Gas Filters	.11
Column and Injector Ferrules for Capillary Columns	.11
Column Forrulos for Micro-TCD	.12
Glass Injector Inserts	. TZ
Septa	.14
Column Quick Connect Kit	.15
IV. METHOD DEVELOPMENT	.16
Recommended Solvents for Capillary Columns	.16
Recommended Injector and GC Parameters	.17
Column Installation Measurements for Injectors & Detectors	.18

Chromatography: Gas, Varian, Manual Table of Contents.

Chromatography: Gas, Varian 3800, Keyboard/Controls

Action	
1.	Press SETUP.
2.	Choose View Setup/Edit Setup using cursor keys.
3.	Press ENTER.

"View Setup" allows you to check the current Instrument Configuration. Choose "Edit Setup" if you want to change the Instrument Configuration.

Use CURSOR keys to highlight section	Press ENTER to access section and modify		
TIME AND DATE	 Month / day / year 		
	Time / hour: min: sec		
HEATED ZONES	 Device installed in each heated zone 		
	 Temperature limit 		
	 Coolant type (Column oven, zones 1-3 only) 		
EFC	 Outlet pressure – atm/vacuum 		
	 Display units – psi, kPa, bar 		
	 Minimum flow – gas saver 		
	 Make-up gas type 		
COLUMN PARAMETERS	 Length (m) 		
	 ID (μm) 		
	 Carrier gas type (He, H₂, N₂) 		
VALVES	 Valve Numbers (1-7) 		
	 Valve Type (22 choices) 		
MISCELLANEOUS	 Ready-in Contact State 		
	 FID Flame-out Enable 		
	 Micro-TCD Filament Resistance 		

Chromatagraphy: Gas, Varian 3800, Setup, pg 3

Action

- 1. Press EDIT from the Method section of the keypad.
- 2. Use the INCR or DECR keys to choose desired method.

Press ENTER.

Typical parameters for a GC method are:

- Column, Injector and Detector temperatures
- Flow or Pressure program, if EFC is installed
- Detector range and autozero
- Valve program, if performing a manual pneumatics splitless injection, or rotating a sampling or switching valve
- 8200 AutoSampler

Follow the method sections below to build your GC method. You can advance to any section by pressing the appropriate section key.

The Following Method Section	Will allow you to modify these method parameters
COLUMN OVEN	 Column temperature (isothermal or programmable)
	 Stabilization time
	 Coolant on/off
	 Enable coolant on/off temperature
	 Coolant timeout
INJECTOR	 Injector temperature (isothermal and programmable)
	 Coolant on/off
I Ť	 Enable coolant temperature
	 Coolant timeout
	 Split state (EFC only)
Ų Į	 Split ratio (EFC only)
1002	
FLOW/PRESSURE	 Flow + Pressure (1079 + Valving)
(EFC Only)	 Flow (1041/1061)

Chromatography: Gas, Varian Manual, pg 4 Building a Method

The Following Method Section	Will allow	you to modif	v these method parameters	
DETECTOR	Will allow you to modify these method parameters			
	Detector temperature			
			ime programmable)	
	 Detector 	time constant		
	 TCD fila 	ment temperat	ture and polarity (time programmable)	
	■ PFPD →	PMT voltage,	gate width + delay, trigger level	
	 TSD bea 	d current and	power (time programmable)	
			and cell current	
	 Detector 	flow (EFC on	ly)	
SAMPLE DELIVERY/	 8200 Sampling Parameters 			
VALVE TABLE	 Timed programmed events for splitless injections 			
		(manual 1079 only), or switching valves		
	 For GCs with valves, consult your custom plumbing diagram for programming 		onsult your custom plumbing diagram	
	Events for a typical split and splitless injection are as follows:			
Jun Jun		Time	Split Valve	
	Split Mode	0.00 min	On (Split)	
	naoae			
(())) ()	Splitless	0.00 min	Off (Splitless)	
	Mode	1.00 min	On (Split)	

Automation

- Selects Automation Mode
- Method Automation Parameters
- Priority Sample

Activating the GC Method

Ac	Action	
1.	Press ACTIVATE from the Method section.	
2.	Use the INCR or DECR keys to choose desired method.	
	D	

Press the "ACTIVATE NOW" softkey.

STNOTE: If you edit the active method, you must re-activate it before running an analysis.

Chromatography: Gas, Manual, pg 5, Activating Method

Chromatography: Gas, Varian, Manual Pg 6, Single Injection Making a Single Injection

Use the following procedure if performing a single injection. If you are using the Star Chromatography Workstation, refer to the instrument's Operator's Manual.

Confirm that the GC is in the Ready state. The amber "Ready" light should be illuminated.

If you are making an injection with a	Then	Result
Syringe	Inject the sample into the injector.	The GC method will automatically start.
Gas or Liquid Sampling Valve using an air actuator	Confirm the sampling valve is in the fill position and the loop is loaded with sample. Press START	The gas or liquid sampling valve will rotate to the inject position and the GC method will start.

Chromatography: Gas, Varian, Manual Pg 7, Status

The Instrument STATUS key allows the user to view the current status of the various components of the CP-3800 instrument. Note that the current status of individual components can also be viewed by pressing the relevant key in the GC CONTROL keyboard section.

The primary status information provided using the STATUS key is the actual component temperature, carrier gas flow and pressure (if EFC is installed), and detector analog output signal. The following is an example of a status screen for a CP-3800 equipped with a 1079 injector and FID. Note that the status screen reflects the current state of the instrument. If the instrument is running a method, the status fields will update as the values change during the run at a rate of once per second. If a component is not ready or faulted, this will be indicated on the STATUS screen. Note that the status screens are presented in location order, i.e., Front, Middle and Rear.

Nethod	1 Nethod 1	1월 21일 등 문	0.00	20.00
	INSTRUMENT STATUS (FRONT)	Page 1	of 3	
	Component	Set	Actual	
	1075 Oven (°C)	250		
	Column Flow (ml/min)	3.0		
7.65	Column Pressure (psi)	15.0		
	Column Øven Temp (°C)	S 50 - 1997		
	FID Oven (°C)	300		
1.5466	FID Output (mV)	6.25	경우 분이 많다.	

Chromatography: Gas, Varian, Manual Pg 7, Control

When one of the six GC Control keys is pressed, the user is presented with a split display. The status information reflecting the current status of the CP-3800 appears above the bold line on the display. The information beneath the bold line is the method parameters of the EDIT METHOD Note that the EDIT METHOD and the ACTIVE METHOD may be different.

	ACT/ METH		EDIT METHOD CT	RUN RL TIME	END TIME
	Netho	d 1	Nethod 1	0.00	20.00
	Set (°C) Stabiliz	: SO ation Time (min): 2.00	Actua Column	1 (°C): 50 Oven: Off
ε.		C(LUMN OVEN- Pa	ge 1 of 2	
24	Step	Temp (°C)	Rate (°C/min) Hold (min)	Total (min)
	Initial	50	-	2.00	2-00
	1	150	30.0	1.00	13.00
	2	250	20.0	5-00	23-00
	Turn 0x	ven On	End Stabili	zation 1	urn öven öff
	C		0		0

Chromatagraphy: Gas, Varian, Manual Pg 8, Hardware, Column

Column Installation

Follow these steps to install the capillary column and set gas flow rates:

- 1. Cool all heated zones and replace depleted oxygen and moisture traps.
- 2. Replace critical injector inserts and septa.
- 3. Cut 2 cm from each column end.
- Thread the nut and ferrule over the column on both ends. The ferrule should be installed with the taper end into the nut.
- 5. Cut 2 cm from each column end to remove ferrule fragments.
- 6. Mount the capillary column in the oven.
- Install the column 7.5 cm into the 1079 injector, measured from the back of the nut. The 1041 and 1061 do not require measuring. They are installed all the way up into the injector.
- 8. Set the approximate column head pressure.
- 9. Set the split ratio and septum purge flows (1079 only).
- 10. Connect the column to the detector at the appropriate distance (see Page 18).
- 11. Check for leaks using a leak detector. Do not use soaps or liquid-based leak detectors.
- 12. Set make-up and detector gas flow rates (see Page 10).
- 13. Set injector and detector temperatures. Do not exceed the column's Tmax-
- 14. Condition the column at its recommended conditioning temperature for two hours.
- 15. Run test mixtures to confirm proper installation and column performance.
- CPLS:M 16. Calibrate instrument and inject samples.

Chromatography: Gas, Varian, Manual Pg 9, Flow Rate

After conditioning your column, the carrier gas flow rate should be set for optimum separation of sample components. Since the flow rate is dependent on column temperature in a pressure regulated system, it is important to set the carrier gas at the same column temperature for a given analysis. For convenience, the carrier gas is often set at the initial temperature of the analysis. For a slightly faster analysis and improved separation, set the optimum flow rate at the maximum temperature of the analysis. For critical or hard to separate peak pairs in the chromatogram, set the optimum linear velocity at the oven temperature where they elute.

If you have Electronic Flow Control installed in your GC, setting the column flows is as simple as entering the column dimensions and carrier gas type in SETUP and building the appropriate flow or pressure program in the Method.

If you don't have EFC installed, inject 5 μ L of a non-retained gaseous substance compatible with the detector (*Page 18*). Calculate the column velocity, then flow rate and split ratio, if applicable, using the equations below.

Chromatagraphy: Gas, Varian 3800, Manual Pg 9, Optimum Flow Rates

Optimum Velocities and Flow Rates for Capillary Columns

		Column ID (microns)							
		250 320 530							
Carrier Gas	mL/min cm/sec		mL/min	cm/sec	mL/min	cm/sec			
He	1.3	45	1.7	35	2.8	21			
H ₂	1.6	55	2.1	43	3.4	26			
N ₂	0.4	14	0.5	11	0.9	7			

Chromatography: Gas, Varian, Manual Pg 10, Optimum Flow Rates

Use the following guide for determining the appropriate gases for your GC system and setting detector, carrier gas, and make-up flow rates.

		Flow Rate:	s, mL/min		Gas Type		
Detector	Carrier + Make-up	Hydrogen*	Air 1	Air 2	Carrier Gas	Make-up Gas	
Micro-TCD	Max. ≤ 5 mL/min	-	-	-	H ₂ or He	None	
TCD	30/30 (reference gas)	-	-	-	He, N ₂ , H ₂ , Ar	Same as carrier	
FID (0.020" flame tip)	30	30	300	-	He, H ₂ , N ₂	He, N ₂	
ECD	30	_	-	-	N ₂ , Ar/CH ₄ (He, H ₂)**	N ₂ , Ar/CH ₄	
TSD	30	4.0	175	-	He, N ₂	He, N ₂	
PFPD	Element spe	cific – refer to	PFPD Operat	tor's Manual	He, H ₂ , N ₂	-	
Inlet Cylinder Pressure	80 psi ~560 kPa	40 psi ~280 kPa	60 psi ~420 kPa	60 psi ~420 kPa			
Purity (%)	99.999	99.999	Zero Grade	Zero Grade			

* Total H2 flow including any used for carrier or makeup gas.

STLCC ** He may be used only when capillary column flow rates are <10 mL/min.

Chromatography: Gas, Varian, Manual Pg 11, Filters

Carrier and detector filters should always be installed to further clean high purity gases, reduce detector noise, and protect the chromatography system from potential contamination. The following filters are recommended for GC systems:

Filter	Description	Part Number
Moisture Gas Filter	 Installed between gas tank and GC inlet 	CP17971
	 Molecular sieve 	
	 Removes water vapor 	
	 Filter should be changed when indicator shows filter is spent 	
Charcoal Gas Filter	 Installed between gas tank and GC inlet 	CP17972
	 Activated charcoal 	
	 Removes organic contaminants 	
	 Filter should be changed when indicator shows filter is spent 	
Oxygen Gas Filter	 Installed between carrier gas filter and GC inlet 	CP17970
	 Removes oxygen and water vapor 	
	 Recommended with capillary columns 	
	 Required for ECD 	
	 Filter should be changed when indicator shows tilter is spent 	

Chromatography: Gas, Varian, Manual Pg 11, Ferrules

Column and Injector Ferrules for Capillary Columns

		Ferrule						
Ferrule Size	Column ID (microns)	Polyimide Graphite (10/pk) (10/pk)		Polyimide/Graphite (10/pk)				
No hole 1/16" fitting	-	28-694503-01	-	28-694590-01				
0.4 mm ID 1/16" Fitting	180-250	28-694586-01	28-694583-01	28-694580-01				
0.5 mm ID 1/16" fitting	320	03-908361-01	28-694561-01	28-694581-01				
0.8 mm ID 1/16" fitting	530	28-694552-01	28-694042-01	28-694582-01				
5 mm ferrule for Split/Splitless Insert (1079)	_	_	03-925342-01	_				

Chromatography: Gas, Varian, Manual Pg 12, Micro-TCD Ferrules

Column Ferrules for Micro-TCD

Capillary column connection to the Micro-TCD requires a special series of graphite/Vespel ferrules (see table below).

Column ID	Ferrule ID	Ferrule Part Number
0.1 mm	0.4 mm	CP85889
0.25 mm	0.4 mm	CP85889
0.32 mm	0.5 mm	CP470100
0.53 mm	0.8 mm	CP470101

Chromatography: Gas, Varian, Manual Pg 12, Injector Inserts

Capillary injector inserts have a direct effect on analysis results. They are chosen depending on the injection mode (split, splitless, on-column, flash vaporization) and sample characteristics.

- The split and splitless inserts create a homogenous mixture of sample and carrier gas, transfer a representative sample into the column and minimizing molecular weight discrimination.
- The on-column temperature programmable inserts for the 1079 provide quantitative sample transfer and retain the liquid sample during cold sample introduction.
- The flash vaporization insert (1061) provides an expansion volume for large samples and minimizes non-volatile sample components from entering the column.

Insert variations for all injection modes are available for dirty sample matrices, labile compounds, and large volume injections. Inserts should be replaced as soon as a loss in chromatographic performance is seen. Note that all the 1079 inserts are deactivated.

Chromatography: Gas, Varian, Manual Pg 13, Insert Partnos

Chromatography: Gas, Varian, Manual Pg 14, Septa

Septa allow the syringe needle to enter the GC injector, yet maintain a leak-free seal in the GC system. They are available in several different types of materials and sizes depending on injector model and analysis needs. The septum chosen for a GC analysis should exhibit low bleed, resist leaks, and be easy to pierce when performing injections.

Septa should be changed every 50 to 100 injections or when you note a change in peak retention time or ghost peaks. It is preferable to change septa routinely, rather than after leaks develop, thus minimizing instrument downtime and sample loss. Change the septum at the end of the workday, then keep the column oven temperature hot enough to prevent bleed from accumulating overnight. Using a needle guide, a syringe free of burrs, or an autosampler will prolong the septum life because a single hole will be repeatedly pierced allowing easier re-sealing.

Chromatography: Gas, Varian, Manual Pg 14, Septa table

Septa	Description	Dimensions	Qty	Reference			
Ultrasep-R™	 Red silicone rubber 	10 mm	25	00-996881-01			
	 T_{max}: 350°C 	10 mm	100	00-996881-02			
	 Low bleed 						
	 Long injection life 						
	 Easy sample injection 						
ThermoGreen™	 Green silicone rubber 	11.5 mm	5	03-920357-01			
LB-2	 T_{max}: 300°C 	11.5 mm	50	03-920357-02			
	 Low bleed 						
	 Recommended for all 1079, GC/MS and ECD applications 						
Standard	 Beige silicone rubber with Teflon® face 	10 mm	25	00-997628-02			
	 T_{max}: 250°C 	10 mm	100	00-997628-03			
	 Standard septa for Varian GCs 	11.5 mm 11.5 mm	25 100	00-997630-02 00-997630-03			
	Size your septa here						
10 mm 1041 On-c 1061 Flasi	olumn h Vaporization	11.5 mm 1079 Injector					

Chromatography: Gas, Varian, Manual Pg 15, Connect Kit

This kit simplifies the installation of capillary columns into Varian injectors and detectors. The kit contains split capillary column nuts, reusable jacketed graphite ferrules (for 250µ, 320µ, 530µ ID columns) and a column depth scale. No felt tip pen, typewriter correction fluid or tape is needed to mark column depth for any injector or detector. The split nut design allows you to remove the nut from the column when the column is stored without having to remove the ferrule. The split capillary column nuts are knurled so that all tightening can be done by hand. No tools are required.

1177 CP-3800 1079 FID ECD VARIAN					
uliuu	แปลและในการไ	uluitana	նահան	ահայլատ	ահաստանություն

Included in This Kit (P/N 03-925751-90)

Description	Quantity
Column Depth Scale	1 each
Knurled Split Nut	2 each
Graphite Jacketed Ferrule (0.4 mm ID)	2 each
Graphite Jacketed Ferrule (0.5 mm ID)	2 each
Graphite Jacketed Ferrule (0.8 mm ID)	2 each

Description	Quantity	Part Number
Graphite Jacketed Ferrule (0.4 mm ID)	10 each	03-925384-04
Graphite Jacketed Ferrule (0.5 mm ID)	10 each	03-925384-05
Graphite Jacketed Ferrule (0.8 mm ID)	10 each	03-925384-06

Chromatography: Gas, Varian, Manual Pg 16, Solvents

The choice of solvents for a chromatographic analysis depends on the component solubility, detector, and the polarity of the analytical column. Solvents should ideally match the polarity of the column, especially when injecting large volumes and performing on-column or splitless injections. Non-polar columns perform best with non-polar solvents. Polar columns perform best with polar solvents, however, they also perform well with non-polar solvents.

Column Phase	Recommended Solvent	Boiling Point (°C)
Non-Polar	 Pentane 	36.1
 100% Methyl 	 n-Hexane 	69.0
 5% Phenyl, 95% Methyl 	 Cyclohexane 	80.7
	 Isooctane 	99.3
	 Benzene 	80.1
	 Toluene 	110.6
	 Ethyl Ether 	34.6
	 Methyl tert-butyl ether 	55.2
	 Methylene Chloride 	39.8
	 Carbon Tetrachloride 	76.7
	 Carbon Disulfide 	46.5
Intermediate	 Ethyl Acetate 	77.0
 50% Phenyl, 50% Methyl 	 Acctone 	56.5
	 Methyl iso-butyl ketone 	127.0
	 Acetonitrile 	81.6
Polar	 Methanol 	64.7
 Polyethylene Glycol 	 Ethanol 	78.5
	 n-Propanol 	97.2
	 n-Butanol 	117.7

Below are recommended solvents for non-polar, intermediate, and polar phase columns.

Injector	On-Column,		1079	1079	1079	10	79		
	Flash Vapor	izing, 1061	Using	Using	Using	Using			
	 For Large Bore Capillary Columns (530 μm ID) Packed Columns 				Split Insert	Splitless Insert	On-Column Insert	n High Performance Insert	
Column			For	For	For	For	For		
			Columns (530 µm ID)		All Capillary Columns	All Capillary Columns	Large Bore Capillary Columns (530 µm ID)	All Capi Column 320 µm	s (180-
Sample Volume in µL	0.1 - 0.5	0.5 - 5	0.1 - 1	0.5 - 3	0.1 - 5	0.2 - 1	1 - 5		
Injection Rate, in μL/sec	5	0.5 - 1	10	0.5 - 1	1 - 5	5	1		
Injection Time (Needle Residence Time in min)	0.05 - 0.1	0.1 - 0.2	0	0.05 - 0.2	0	0	0		
Hot Needle Time in min	0	0	0	0 - 0.1	0	0	0		
Solvent Plug Size in µL	1	1	1	1	1	1	1		
Column Oven	Isothermal or temp. program	Temp. program	Isothermal or temp. program	Temp. program; Initial temp. ≤20°C from the solvent boiling point	Temp. program	Temp, p Initial te ≤20°C fi solvent i point. V larger sa volumes focusing possible initial te 10-20°C solvent i point.	emp. rom the boiling With mple s, solute s, so		

Chromatography: Gas, Varian, Manual Pg 17, Recommended Injector and CG Parameters

Units of Measure

Name	Abbreviation	Weight/ weight	Weight/ volume	Volume/ volume
Parts per Thousand	%00	mg/g	μg/μL mg/mL g/L	mL/L
Parts per Million	ppm	μg/g mg/kg	ng/μL μg/mL mg/L	nL/mL μL/L
Parts per Billion	ррь	ng/g µg/kg	pg/μL ng/mL μg/L	nL/L
Parts per Trillion	ppt	pg/g ng/kg	fg/µL. pg/mL ng/L.	pL/L

Chromatography : Gas, Varian, Manual Pg 17, Measurements

Non-Retained Compounds for GC Detectors

Detector	Recommended Non-Retained Compounds	
FID	Methane, propane, butane	
TCD	Air, methane, butane	
ECD	Methylene chloride headspace vapors	
TSD	Acetonitrile headspace vapors, butane	
PFPD	Sulfur hexafluoride, methane, propane, butane	
MS	Carbon dioxide	
Micro-TCD	Air, methane, butane	

2 12 13 14 11 - 11 11 - 11 æ. 00 Pro-60 цю. **T 6**9. <u>evi</u> CENTIMETERS Ξ.

Capillary Column Insertion Guide

ECD 10.5 cm 9FPD 9.7 cm FD/ISD

9.5 cm

1079

TCD

3.9 cm 1177 3.7 cm

7.5 cm

S

Chromatography: Gas, FID Defined

FID stands for Flame Ionization Detector. What that means is that as the effluent (carrier gas and any organic compounds) comes out of the column they are ignited in a flame made of hydrogen and air. The compounds produce ions as they burn. These ions conduct electricity. Changes in current within the flame are measured and sent to the computer to be seen as peaks on the chromatogram.

FID is a good general detector for organic compounds, and is able to detect at the nanogram level.

