

TABLE OF CONTENTS

GENERAL INSTRUCTIONS

Part 1: Safety – Mounting the Tire
Part 2: Mounting and Demounting Tubeless Tires
Part 3: Mounting and Demounting Tube-Type Tires
HIGHWAY/REGIONAL TIRES
ST244 [™]
ST230 [™] 11
TR144 [™] 12
DR444 [™] 13
ON/OFF ROAD TIRES
ST576 [™] 14
DR675 [™] 15
ST565 [™] Wide Base
Load/Inflation Table
General Information

GENERAL INSTRUCTIONS PART 1: SAFETY – MOUNTING THE TIRE

IMPORTANT: BE SURE TO READ THIS SAFETY INFORMATION.

Make sure that everyone who services tires or vehicles in your operation has read and understands these warnings.

SERIOUS INJURY OR DEATH CAN RESULT FROM FAILURE TO FOLLOW SAFETY WARNINGS. No matter how well any tire is constructed, punctures, impact damage, improper inflation, improper maintenance, or service factors may cause tire failure creating a risk of property damage and serious or fatal injury. Truck operators should examine their tires frequently for snags, bulges, excessive treadwear, separations, or cuts. If such conditions appear, demount the tire and see a truck dealer immediately.

The US Department of Labor Occupational Safety and Health Administration (OSHA) provides regulations and

publications for safe operating procedures in the servicing of wheels. Please refer to OSHA Standard 29 CFR Part 1910.177 (Servicing Multi-Piece and Single Piece Rim Wheels).

Specifically, note that the employer shall provide a program to train all employees who service wheels in the hazards involved in servicing those wheels and the safety procedures to be followed. The employer shall ensure that no employee services any wheel unless the employee has been trained and instructed in correct procedures of servicing the type of wheel being serviced, and shall establish safe operating procedures for such service.

BFGoodrich® Truck Tires provides the following information to further assist employers to comply with that initiative.

Tire and wheel servicing can be dangerous and must be done only by trained personnel using proper tools and procedures. Failure to read and comply with all procedures may result in serious injury or death to you or others.

Re-inflation of any type of tire and wheel assembly that has been operated in a run-flat or underinflated condition (80% or less of recommended operating pressure) can result in serious injury or death. The tire may be damaged on the inside and can explode during inflation. The wheel parts may be worn, damaged, or dislodged and can explosively separate. Refer to RMA Tire Information Service Bulletin on potential "zipper ruptures" – TISB Volume 33, Number 3 (December 2007).

RMA (Rubber Manufacturers Association) recommends that any tire suspected of having been run underinflated and/or overloaded must remain in the safety cage, be inflated to 20 psi OVER maximum pressure marked on the sidewall, and then be inspected. Do not exceed the maximum inflation pressure for the wheel.

Be sure to reduce pressure to regular operating pressure before placing back in service if the tire has been deemed serviceable.

Use of starting fluid, ether, gasoline, or any other flammable material to lubricate, seal, or seat the beads of a tubeless tire can cause the tire to explode or can cause the explosive separation of the tire and wheel assembly resulting in serious injury or death. The use of any flammable material during tire servicing is absolutely prohibited.

Any inflated tire mounted on a wheel contains explosive energy. The use of damaged, mismatched, or improperly assembled tire and wheel parts can cause the assembly to burst apart with explosive force. If you are struck by an exploding tire, wheel part, or the blast, you can be seriously injured or killed.

Re-assembly and inflation of mismatched parts can result in serious injury or death. Just because parts fit together does not mean that they belong together. Check for proper matching of all wheel parts before putting any parts together.

Mismatching tire and wheel component is dangerous. A mismatched tire and wheel assembly may explode and can result in serious injury or death. This warning applies to any combination of mismatched components and wheel combinations. Never assemble a tire and wheel unless you have positively identified and correctly matched the parts.

ZIPPER RUPTURES

A fatigue-related damage, with or without a rupture, occurs in the sidewall flex area of steel radial light and medium truck tires when it is subjected to excessive flexing or heat. This zipper rupture is a spontaneous burst of compressed gas, and the resulting rupture can range in length anywhere from 12 inches to 3 feet circumferentially around the tire. This is caused by the damage and weakening of the radial steel cables as a result of run-flat, underinflation, or overload. Eventually, the pressure becomes too great for the weakened cables to hold, and the area ruptures with tremendous force.

The RMA (Rubber Manufacturers Association) states that permanent tire damage due to underinflation and/or overloading cannot always be detected. Any tire known or suspected of having been run at 80% or less of normal operating inflation pressure and/or overloaded, could possibly have permanent structural damage (steel cord fatigue).

The RMA has issued a revised Tire Industry Service Bulletin for procedures to address zipper ruptures in certain commercial vehicle tires. The purpose of the bulletin is to describe the inspection procedures for identifying potential sidewall circumferential ruptures (also known as "zipper ruptures") on truck/bus tires and light-truck tires of steel cord radial construction. Zipper ruptures can be extremely hazardous to tire repair technicians. Careful adherence to proper repair procedures is crucial.

For more information contact RMA at info@rma.org or visit www.rma.org.

TIRE INSPECTION

Tire inspection should always include a thorough inspection of both sidewalls and inner liner, as this may reveal any potential damage condition that would cause the tire to become scrap. Examine the inner liner for creases, wrinkling, discoloration, or insufficient repairs, and examine the exterior for signs of bumps or undulations, as well as broken cords, any of which could be potential out of service causes. Proper OSHA regulations must be followed when putting any tire and wheel back in service. After the tire has been inflated to 20 psi in a safety cage, it should undergo another sidewall inspection for distortions, undulations, or popping noises indicating a breaking of the steel cords. If this is the case, immediately fully deflate and scrap the tire. If no damage is detected, continue to inflate to the maximum pressure marked on the sidewall. Do not exceed the maximum inflation pressure for the wheel. Any tire suspected of having been run underinflated and/or overloaded must remain in the safety cage, be inflated to 20 psi OVER maximum pressure marked on the sidewall, and then be inspected.

PART 2: MOUNTING AND DEMOUNTING TUBELESS TIRES

In order for a tire to perform properly, it must be mounted on the correct size wheel. The following are general instructions for mounting and demounting BFGoodrich® Truck tubeless tires.

Specifics for 19.5" wheels are detailed in the Mounting Tubeless Tire section (Page 5). For additional detailed instructions on mounting and demounting truck tires on particular types of wheels, refer to the instructions of the wheel manufacturer or the RMA wall charts.

TUBELESS TIRE MOUNTING/DEMOUNTING USING A MOUNTING MACHINE

There are several tire changing machines available for the mount and demount procedure. Consult the manufacturer's user manual for the machine you are using as each operates differently. Full lubrication of the wheel and beads is still required. Inflation process requirements remain the same.

DIRECTIONAL TIRES

Truck tires featuring directional tread designs have arrows molded into the shoulder/edge of the outer ribs to indicate the intended direction of tire rotation. It is important, to maximize tire performance, that directional tires be mounted correctly on wheels to ensure that the directionality is respected when mounted on the vehicle.

For example, when mounting directional drive tires on a set of 8 wheels, use the drop centers as a reference. Four tires should be mounted with the arrows pointing to the left of the technician and four tires with the arrows pointing to the right. This ensures that when the assemblies are fitted onto the vehicle that all tires can be pointed in the desired direction of rotation.

Directional steer tires should be mounted in a similar fashion, one each direction, to ensure both are pointed forward.

Once directional tires are worn greater than 50%, there is generally no negative effect of running them in a direction opposite to the indicated direction of rotation.

Operating directional tires from new to 50% worn in the opposite direction of that indicated on the tire will result in the premature onset of irregular wear, excessive noise levels, and significantly reduced tread life.

1. SELECTION OF PROPER COMPONENTS AND MATERIALS

- a. All tires must be mounted on the proper wheel as indicated in the specification tables. For complete tire specifications, refer to application specific data books.
- b. Make certain that wheel is proper for the tire dimension.
- c. Always install new valve cores and metal valve caps containing plastic or rubber seals.
- d. Always replace the rubber valve stem on a 16" through 19.5" wheel.
- e. Always use a safety device such as an inflation cage or other restraining device that will constrain all wheel

components during the sudden release of the contained gas of a single piece wheel. Refer to current OSHA standards for compliance. Do not bolt safety cages to the floor nor add any other restraints or accessories. Cage should be placed 3 feet from anything, including the wall. Never stand over a tire or in front of a tire when inflating. Always use a clip-on valve chuck with an in-line valve fitted with a pressure gauge or use a presettable regulator. Additionally, ensure there is a sufficient length of hose between the clip-on chuck and the in-line valve (if one is used) to allow the service technician to stand outside the trajectory zone when inflating.

Trajectory zone means any potential path or route that a wheel component may travel during an explosive separation or the sudden release of the pressurized gas, or an area at which the blast from a single piece wheel may be released. The trajectory may deviate from paths that are perpendicular to the assembled position of the wheel at the time of separation or explosion. See Rubber Manufacturers Association Tire Information Service Bulletin Volume 33, Number 3 (December 2007) for more information.

2. TIRE AND WHEEL LUBRICATION

It is essential that an approved tire mounting lubricant be used. Preferred materials for use as bead lubricants are vegetable based and mixed with proper water ratios per manufacturer's instructions. Never use antifreeze, silicones, or petroleum-base lubricants as this will damage the rubber. Lubricants not mixed to the manufacturer's specifications may have a harmful effect on the tire and wheel.

The lubricant serves the following three purposes:

- Helps minimize the possibility of damage to the tire beads from the mounting tools.
- Helps ease the insertion of the tire onto the wheel by lubricating all contacting surfaces.
- Assists proper bead seating (tire and wheel centering) and helps to prevent eccentric mountings.

Apply a clean lubricant to all portions of the tire bead area and the exposed portion of the flap using sufficient but sparing quantities of lubricant. Also, lubricate the entire rim surface of the wheel. Avoid using excessive amounts of lubricant, which can become trapped between the tire and tube and can result in tube damage and rapid air loss.

<u>CAUTION</u>: It is important that tire lubricant be clean and free of dirt, sand, metal shavings, or other hard particles. The following practice is recommended:

- Use a fresh supply of tire lubricant each day, drawing from a clean supply source and placing the lubricant in a clean portable container.
- Provide a cover for the portable container and/or other means to prevent contamination of the lubricant when not in use.
 For lubricants in solution, we suggest the following method

that has proven to be successful in helping to minimize contamination and prevent excess lubricant from entering the tire casing: provide a special cover for the portable container that has a funnel-like device attached. The small opening of the funnel should be sized so that when a swab is inserted through the opening into the reserve of lubricant and then withdrawn, the swab is compressed, removing excess lubricant. This allows the cover to be left in place providing added protection. A mesh false bottom in the container is a further protection against contaminants. The tire should be mounted and inflated promptly before lubricant dries.

3. PREPARATION OF WHEELS AND TIRES

- a. Always wear safety goggles or face shields when buffing or grinding wheels.
- b. Inspect wheel assemblies for cracks, distortion, and deformation of flanges. Using a file and/or emery cloth, smooth all burrs, welds, dents, etc. that are present on the tire side of the wheel. Inspect the condition of bolt holes on the wheels. Rim flange gauges and ball tapes are available for measuring wear and circumference of aluminum wheels.
- c. Remove rust with a wire brush and apply a rust inhibiting paint on steel wheels. The maximum paint thickness is 0.0035" on the disc face of the wheel.
- d. Remove any accumulation of rubber or grease that might be stuck to the tire, being careful not to damage it. Wipe the beads down with a dry rag.

MOUNTING TUBELESS

- 1. Inspect the condition of the bolt holes on the wheels, and look for signs of fatigue. Check flanges for excessive wear by using the wheel manufacturer's flange wear indicator.
- Replace valve core, and inspect valve stem for damage and wear. Michelin recommends always replacing the valve stem and using a new valve stem grommet. Ensure valve stem is installed using the proper torque value. 80-125 in/lbs (7-11 ft/lbs) for standard aluminum wheels and 35-55 in/lbs (3-5 ft/lbs) for standard tubeless steel wheels. Ensure the valve core is installed using the proper torque value of 1.5-4 in/lbs. To prevent galvanic corrosion on aluminum wheels, lubricate the threads and O-ring of the valve stem with a non-waterbased lubricant before installation.
- Apply the tire and wheel lubricant to the rim surface of the wheel and bead area of the tire. When applying lubricant to the wheel, lubricate the entire rim surface from flange to flange. The tire should be mounted and inflated before the lubricant dries.
- 4. With short ledge up, lay the tire over the wheel opposite the valve side and work it on with proper tubeless tire tools, making full use of the drop center well. Drop center wheels are typically designed with an off-set drop center to accommodate wheel width and brake clearance. This creates a "short side" and a "long side" on the wheel. (Some drop center wheels are designed with a

symmetric wheel profile facilitating tire mounting from either side.) It is imperative that the tire always be mounted and dismounted only from the short side. Failure to do this will likely result in damaged tire beads that could eventually cause rapid gas loss due to casing rupture. This is particularly important on 19.5 inch RW (reduced well) aluminum wheels which, contrary to the norm, have their drop center located close to the disc side. Do not use 19.5×7.50 wheel for the 305/70R19.5 tire size. All 19.5 inch tubeless wheels should be mounted from the short side. Care should be taken to ensure that any internal monitoring system molded in the tire or on the wheel is not damaged or dislodged during this service.

 Do not use any kind of hammer. Severe inner liner damage may occur resulting in sidewall separation and tire destruction. Use only proper mounting levers;

DO NOT USE A DUCK BILL HAMMER.

Re-inflation of any type of tire and wheel assembly that has been operated in a run-flat or underinflated condition (less than 80% of normal recommended operating pressure) can result in serious injury or death. The tire may be damaged on the inside and can explode during inflation. The wheel parts may be worn, damaged or dislodged and can explosively separate.

INFLATION OF TUBELESS TIRES

- 1. Lay tire/wheel assembly horizontally and inflate to no more than 5 psi to position the beads on the flanges. **OSHA dictates** no more than 5 psi outside the cage to seat the beads.
- To complete the seating of the beads, place the assembly in an OSHA (Occupational Safety and Health Administration) compliant inflation restraining device (i.e. safety cage) and inflate to 20 psi. Check the assembly carefully for any signs of distortion or irregularities from run-flat. If run-flat is detected, scrap the tire.
- 3. If no damage is detected, continue to inflate to the maximum pressure marked on the sidewall. RMA (Rubber Manufacturers Association) recommends that if any tire suspected of having been underinflated and/or overloaded must remain in the safety cage at 20 psi over the maximum pressure marked on the sidewall. Do not exceed the maximum inflation pressure for the wheel. RMA requires that all steer sidewall tires are inflated without a valve core.
- 4. Ensure that the guide rib (GG Ring/mold line) is positioned concentrically to the rim flange with no greater than 2/32" of difference found circumferentially. Check for this variation by

measuring at four sidewall locations (12, 3, 6, 9 o'clock). If bead(s) did not seat, deflate tire, re-lubricate the bead seats and re-inflate.

Note: As a general guide in vibration analysis, the 30/60/90 rule may apply:

- .030-.060 (1/32 to 2/32 inch) = No action is required. Limited possibility for vibration exists, and this range maximizes the ability to balance properly.
- .061-.090 (2/32 to 3/32 inch) = Corrective action would be to perform the 3 R's, after deflating the tire.
- Rotate the tire on the wheel
- Re-lubricate the tire and wheel (ensure the wheel is very clean)
- Re-inflate ensuring your initial inflation is with the tire lying horizontal (3-5 psi max)
- >.090 (>3/32 inch) = Perform 3 R's if mismount is indicated; however, when the reading is this high, it usually requires checking runout on these component parts: wheels/hubs/drums/wheel bearings.
- 5. After beads are properly seated, place the tire in safety cage and inflate assembly to maximum pressure rating shown on the sidewall, then reduce to operating pressure. Check valve core for leakage, then install suitable valve cap. Consider the use of inflate-thru or double seal valve caps for easier pressure maintenance.

DEMOUNTING OF TUBELESS TIRES

- If still fitted on the vehicle, completely deflate the tire by removing the valve core. In the case of a dual assembly, completely deflate both tires before removing them from the vehicle (OSHA requirement). Run a wire or a pipe cleaner through the valve stem to ensure complete deflation.
- 2. With the tire assembly lying flat (after deflating the tire), break the bead seat of both beads with a bead breaking tool. Do not use hammers of any type to seat the bead. Striking a wheel assembly with a hammer of any type can damage the tire or wheel and endanger the installer. Use a steel duck bill hammer only as a wedge. Do not strike the head of a hammer with another hard faced hammer use a rubber mallet.
- 3. Apply the vegetable-based lubricant to all surfaces of the bead area of the tire.
- 4. Beginning at the valve, remove the tire from the wheel. Starting at the valve will minimize chances of damaging the valve assembly. Make certain that the rim flange with the tapered ledge that is closest to the drop center is facing up. Insert the curved ends of the tire irons between the tire and rim flange. Step forward into the drop center and drop the bars down, lifting the tire bead over the rim flange. Hold one tire iron in position with your foot. Pull the second tire iron out and reposition it about 90 degrees from the first iron. Pull the second tire iron towards the center of the wheel. Continue to work tools around wheel until first bead is off the wheel.
- 5. Lift the assembly, place and rotate the tire iron to lock on the back rim flange, allow the tire to drop, and with a rocking motion remove the tire from the wheel.

PART 3: MOUNTING AND DEMOUNTING TUBE-TYPE TIRES

A tire cannot perform properly unless it is mounted properly on the correct size wheel. The following are general instructions for demounting and mounting BFGoodrich® tube-type tires. For detailed instructions on mounting and demounting truck tires on particular types of wheels, refer to the instructions of the wheel manufacturer or the RMA wall charts.

Do not re-inflate any tires that have been run underinflated or flat without careful inspection for damage. If run-flat damage is detected, scrap the tire. A tire is considered run-flat if it is found to be less than 80% of normal recommended operating pressure. This can result in serious injury or death. The tire may be damaged on the inside and can explode during inflation. The wheel parts may be worn, damaged or dislodged and can explosively separate.

1. SELECTION OF PROPER COMPONENTS AND MATERIALS

- a. All tires must be mounted with the proper tube and flap (if required) and wheel as indicated in the specification tables.
 For complete tire specifications, refer to application specific data books.
- b. Make certain that wheel components are properly matched and of the correct dimensions for the tire.
- c. Always fit a new tube in a new mounting. Since a tube will exhibit growth in size through normal use, an old tube used in a new mounting increases the possibility of tube creasing and chafing, possibly resulting in failure.
- d. Always install a new flap in a new mounting. A flap, through extended use, becomes hard and brittle. After a limited time, it will develop a set to match the tire and wheel in which it is fitted. Therefore, it will not exactly match a new tire and wheel combination.
- Always install new valve cores and metal valve caps containing plastic or rubber seals. For tires requiring O-rings, be sure to properly install a new silicone O-ring at every tire change.
- f. Always use a safety device such as an inflation cage or other restraining device that will constrain all wheel components during an explosive separation of a multi-piece wheel, or during the sudden release of the contained gas of a single piece wheel that is in compliance with OSHA (Occupational Safety and Health Administration) standards. Do not bolt restraining device to the floor. Never stand over a tire or in front of a tire when inflating. Always use a clip-on valve chuck with an in-line valve with a pressure gauge or a presettable regulator. Additionally, ensure there is a sufficient length of hose between the clip-on chuck and the in line valve (if one is used) to allow the service technician to stand outside the trajectory path when inflating. Trajectory zone means any potential path or route that a wheel component may travel during an explosive separation, or the sudden release of the pressurized gas, or an area at which the blast from a single piece wheel may be released. The trajectory

may deviate from paths that are perpendicular to the assembled position of the wheel at the time of separation or explosion.

NEVER WELD OR APPLY HEAT TO A WHEEL ON WHICH A TIRE IS MOUNTED.

2. TIRE AND WHEEL LUBRICATION

It is essential that an approved tire mounting lubricant be used. Preferred materials for use as bead lubricants are vegetable based and mixed with proper water ratios per manufacturer's instructions. Never use antifreeze, silicones, or petroleum-base lubricants as this will damage the rubber. Lubricants not mixed to the manufacturer's specifications may have a harmful effect on the tire and wheel.

The lubricant serves the following three purposes:

- Helps minimize the possibility of damage to the tire beads from the mounting tools.
- Helps ease the insertion of the tire onto the wheel by lubricating all contacting surfaces.
- Assists proper bead seating (tire and wheel centering) and helps to prevent eccentric mountings.

Apply a <u>clean lubricant</u> to all portions of the tire bead area and the exposed portion of the flap using sufficient but sparing quantities of lubricant. Also, lubricate the entire rim surface. Avoid using excessive amounts of lubricant, which can become trapped between the tire and tube and can result in tube damage and rapid gas loss.

<u>CAUTION</u>: It is important that tire lubricant be clean and free of dirt, sand, metal shavings, or other hard particles. The following practice is recommended:

- Use a fresh supply of tire lubricant each day, drawing from a clean supply source and placing the lubricant in a clean portable container.
- b. Provide a cover for the portable container and/or other means to prevent contamination of the lubricant when not in use. For lubricants in solution, we suggest the following method, which has proven to be successful in helping to minimize contamination and prevent excess lubricant from entering the

tire casing: provide a special cover for the portable container that has a funnel-like device attached. The small opening of the funnel should be sized so that when a swab is inserted through the opening into the reserve of lubricant and then withdrawn, the swab is compressed, removing excess lubricant. This allows the cover to be left in place providing added protection. A mesh false bottom in the container is a further protection against contaminants. The tire should be mounted and inflated promptly before lubricant dries.

3. PREPARATION OF WHEELS AND TIRES

- a. Always wear safety goggles or face shields when buffing or grinding wheels.
- b. Inspect wheel assemblies for cracks, distortion, and deformation of flanges. Using a file and/or emery cloth, smooth all burrs, welds, dents, etc. that are present on the tire side of the wheel. Inspect the condition of bolt holes on the wheels. Rim flange gauges and ball tapes are available for measuring wear and circumference of aluminum wheels.
- c. Remove rust with a wire brush and apply a rust inhibiting paint on steel wheels. The maximum paint thickness is .0035" on the disc face of the wheel.
- d. Remove any accumulation of rubber or grease stuck to the tire, being careful not to damage it. Wipe the beads down with a dry rag.

Any inflated tire mounted on a wheel contains explosive energy. The use of damaged, mismatched or improperly assembled tire and wheel parts can cause the assembly to burst apart with explosive force. If you are struck by an exploding tire, wheel part or the blast, you can be seriously injured or killed. Do not attempt to dismount the tire while the assembly is still installed on the vehicle. Use proper tools to demount or mount wheel parts. Never use a steel hammer to seat wheel parts – use only rubber, plastic, or brass-tipped mallets. Striking a wheel assembly with a hammer of any type can damage the tire or wheel and endanger the installer. Use a steel duck bill hammer only as a wedge. Do not strike the head of a hammer with another hard-faced hammer - use a rubber mallet.

DEMOUNTING TUBE-TYPE TIRE

- Before loosening any nuts securing the tire and wheel assembly to the vehicle, remove the valve core and deflate completely.
 If working on a dual assembly, completely deflate both tires.
 Run a wire or pipe cleaner through the valve stem to ensure complete deflation. This is to prevent a possible accident.
- 2. Remove the tire and wheel assembly from the vehicle and place on the floor with the side ring up.
- 3. Run a wire or pipe cleaner through the valve stem to clear the valve stem.
- 4. Apply lubricant to all surfaces of the bead area of the tire. Use the duck bill hammer, with the rubber mallet as a wedge, or a slide hammer.
- 5. For two-piece wheels, remove the side ring by pushing the tire bead down. Insert the tapered end of the rim tool into the notch and pry the side ring out of the gutter. Pry progressively around the tire until the side ring is free of the gutter.
- 6. For three-piece wheels, remove the lock ring by pushing the side rings and the tire bead down. Insert the tapered end of the rim tool into the notch near the split in the lock ring, push the tool downward, and pry the lock ring outward to remove the gutter from the base. Use the hooked end of the rim tool progressively around the tire to complete the removal, then lift off the side ring.
- 7. Turn the assembly over.
- 8. Unseat the remaining tire bead from the rim, and lift the rim from the tire.

Re-assembly and inflation of mismatched parts can result in serious injury or death. Just because parts fit together does not mean that they belong together. Check for proper matching of all wheel parts before putting any parts together. Inspect the tire and the wheel for any damage that would require them to be placed out of service.

Mismatching tire and wheel components is dangerous. A mismatched tire and wheel assembly may explode and can result in serious injury or death. This warning applies to any combination of mismatched components, and wheel combinations. Never assemble a tire and wheel unless you have positively identified and correctly matched the parts.

MOUNTING TUBE-TYPE TIRE

- Insert the proper size tube into the tire and partially inflate (3 psi) to round out the tube (with larger sizes it may be necessary to use bead spreaders – see below for mounting instructions).
- 2. Insert the valve through the flap valve hole. (Make sure the reinforced patch that is directly over the flap valve hole is facing outwards.) Then insert the remainder of the flap into the tire.
- Check the flap wings to ensure against folding. This is easily accomplished by placing your hand into one tire side, then the other, and then running your hand along the entire flap wing.
- 4. Inflate the tube until the flap is secured against the tire wall and the beads start to spread apart, making sure **not to exceed** 3 psi.
- Apply a proper tire lubricant to both beads, exposed flap, and fully to the rim. Make sure that excess lubricant does not run down into the tire.
- 6. Lay the wheel flat on the floor with the gutter side up. Place tire, tube, and flap on the wheel, taking care to center the valve in the slot.
- 7. For two-piece wheels, place the side ring on the rim base so that the ring split is opposite the valve stem by placing the leading end (end without the notch) of the ring into the groove in the wheel, and progressively walk the side ring into place. Ensure the ring is fully seated in the gutter.
- 8. For three-piece wheel, place the side ring on the rim base and stand on the ring to position it below the gutter rim base. Snap the leading end (end without the notch) of the lock ring into the gutter of the rim base, and progressively walk the lock ring into place. Ensure the ring is fully seated in the gutter.

MOUNTING OF TUBE-TYPE TIRES USING MANUAL SPREADERS

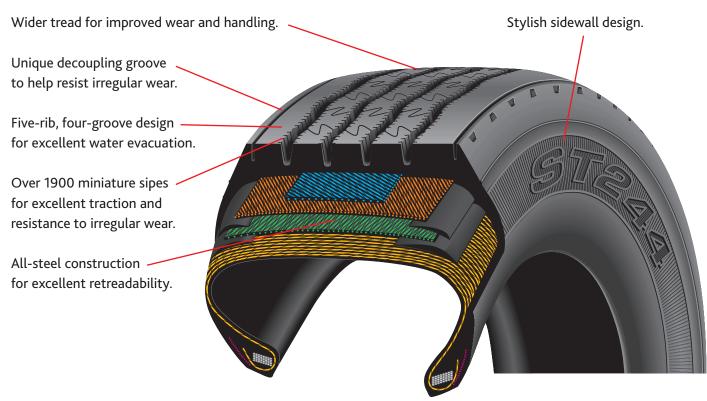
- Follow Steps 1 through 3 of the "Mounting of Tube-Type Tires."
 However, before inserting the flap into the tire, position two
 bead spreaders in the following manner:
 - a. Place the first at a 90° angle to the valve.(Flap is positioned between the spreader and the tube.)
 - b. Place the second directly opposite the first.
 - c. Spread the beads and insert the flap.
 - d. Close the beads, remove spreaders.
- 2. Follow Steps 4 through 8 of the "Mounting of Tube-Type Tires."

MOUNTING OF TUBE-TYPE TIRES USING AUTOMATIC SPREADERS

- 1. Spread the tire beads.
- 2. Inflate the tube to approximately 3 psi.
- 3. Insert the tube into the tire.
- Insert the valve through the flap valve hole.
 (As mentioned, the flap reinforced valve area must face outwards.) Insert the remainder of the flap into the tire.
- 5. Close the beads.

- 6. Apply a proper tire lubricant to the inside and outside surfaces of both beads and to that portion of the flap that appears between the beads. Make sure that excess lubricant does not run down into the tire.
- 7. Follow Steps 4 through 8 of the "Mounting of Tube-Type Tires."

INFLATION OF TUBE-TYPE TIRES


- An inflation line with an extension (30" minimum), in-line gauge, and a clip-on valve chuck should be used for inflation.
 Remove valve core and lay the assembly flat on the ground.
 Using an approved restraining device, inflate partially to seat beads to no more than 3 psi. While the tire is still in the restraining device, make sure all wheel components are centered and locked properly. If not, the tire must be deflated, broken down, relubricated and reinflated. Do not attempt to seat the lock ring by means of a hammer.
- 2. Deflate the tire by removing the inflation line. This is to allow the tube to relax, thus, eliminating any wrinkles or uneven stretching that may have occurred during primary inflation.
- 3. With the valve core still removed, place the dual and wheel assembly into an approved safety cage or other approved restraining device meeting OSHA (Occupational Safety and Health Administration) standards, and reinflate the tire to the pressure shown on the sidewall in order to ensure proper bead seating. Then adjust the tire to the proper operating pressure. Never stand over a tire or in front of a tire when inflating. Always use a clip-on valve chuck with an in-line valve with a pressure gauge or a presettable regulator and a sufficient length of hose between the clip-on chuck and in-line valve (if one is used) to allow the employee to stand outside the trajectory path when inflating. RMA (Rubber Manufacturers Association) requires that all steel sidewall radial tires are inflated without a valve core.
- 4. Reinspect the assembly for proper positioning and seating of all components.
- 5. Check for leaks, and install a suitable valve cap.

Do not re-inflate any tires that have been run underinflated or flat without careful inspection for damage.

If run-flat damage is detected, scrap the tire. A tire is considered run-flat if it is found to be less than 80% of normal recommended operating pressure.

ST244[™] All-wheel position highway radial optimized for the steer axle.

Technical Data

Size	Load Range	Catalog Number				ded lius		erall neter		l Width 2)	Approved Wheels (Measuring wheel		Dual ng (2)	Revs per	١		d Per Tir gle	e	١		d Per Tiro ual	e
	Runge	rtuniber	32nds	mph	in.	mm.	in.	mm.	in.	mm.	listed first.)	in.	mm	Mile	lbs.	psi	kg.	kPa	lbs.	psi	kg.	kPa
11R22.5	G	40525	18	75	19.1	486	41.1	1043	10.5	267	8.25, 7.50	12.5	318	505	6175	105	2800	720	5840	105	2650	720
11R22.5	Н	92401	18	75	19.2	487	41.1	1044	12.2	309	8.25, 7.50	12.5	318	505	6610	120	3000	830	6005	120	2725	830
275/80R22.5	G	61456	18	75	18.6	472	40.0	1016	10.9	277	8.25, 7.50	12.2	311	519	6175	110	2800	760	5675	110	2575	760
11R24.5	G	51477	18	75	20.2	513	43.3	1100	11.0	279	8.25, 7.50	12.5	318	478	6610	105	3000	720	6005	105	2725	720
11R24.5	Н	58109	18	75	20.2	513	43.3	1100	11.0	279	8.25, 7.50	12.5	318	478	7160	120	3250	830	6610	120	3000	830
275/80R24.5	G	77897	18	75	19.2	488	41.3	1049	10.6	269	8.25, 7.50	12.2	311	502	6175	110	2800	760	5675	110	2575	760

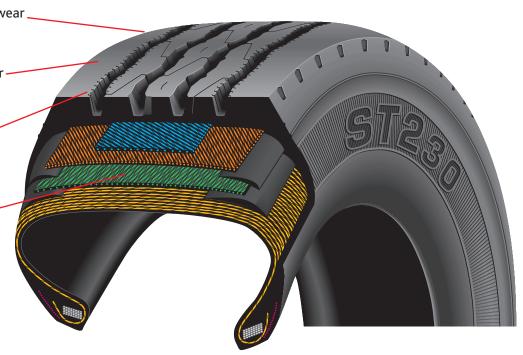
Note: Wheel listed first is the measuring wheel.

(1) Exceeding the lawful speed limit is neither recommended nor endorsed.

(2) Tire section widths and overall widths will change 0.1 inch (2.5 mm) for each 1/4 inch change in wheel width. Minimum dual spacing should be adjusted accordingly. BFGoodrich® tires are subject to a continuous development program. BFGoodrich® Commercial Truck Tires reserves the right to change product specifications at any time without notice or obligation.

▲ Recommended Application

ST230[™]


All-wheel position highway radial optimized for high scrub applications.

Solid shoulders to help resist wear in high scrub environments.

Five-rib, four-groove design forexceptional water evacuation.

Over 1900 miniature sipes for excellent traction and resistance to irregular wear.

All-steel construction for excellent retreadability.

Technical Data

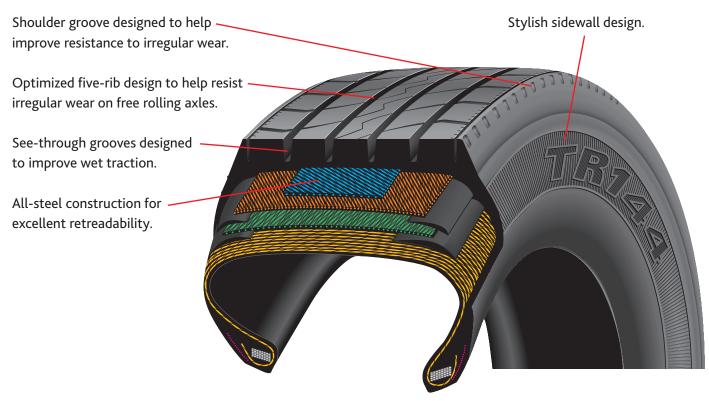
Size	Load Range	Catalog Number	Tread Depth	Max. Speed	Loa Rac	ded lius		erall neter		l Width 2)	Approved Wheels (Measuring wheel	Spaci	Dual ng (2)	Revs per	١		d Per Tire	e	1		d Per Tire ual	e
	Runge	raumber	32nds	mph	in.	mm.	in.	mm.	in.	mm.	listed first.)	in.	mm	Mile	lbs.	psi	kg.	kPa	lbs.	psi	kg.	kPa
225/70R19.5	G	74208	15	75	14.8	376	32.1	815	9.2	233	6.00, 6.75	10.0	254	647	3970	110	1800	760	3750	110	1700	760
245/70R19.5	G	89688	16	75	15.6	396	33.5	852	9.7	246	6.75, 7.50	10.9	277	624	4540	110	2060	760	4300	110	1950	760
10R22.5	G	62086	17	75	18.6	472	39.8	1012	10.0	255	7.50, 6.75, 8.25	11.4	288	521	5675	115	2575	790	5355	115	2430	790
11R22.5	Н	68045	18	75	19.1	486	41.1	1043	11.1	282	8.25, 7.50	12.5	318	505	6610	120	3000	830	6005	120	2725	830
12R22.5	Н	63223	19	75	19.8	503	42.4	1077	11.3	286	8.25, 9.00	13.2	335	487	7390	120	3350	830	6780	120	3075	830
255/70R22.5	Н	95971	17	75	17.1	435	36.6	929	10.2	258	8.25, 7.50	11.6	295	566	5510	120	2500	830	5070	120	2300	830
275/80R22.5	G	50614	18	75	18.6	472	40.0	1016	10.9	277	8.25, 7.50	12.2	311	518	6175	110	2800	760	5675	110	2575	760
315/80R22.5	L	55458	17	75	19.6	499	42.4	1076	12.5	317	9.00	13.8	351	489	9090	130	4125	900	8270	130	3750	900
11R24.5	Н	79184	18	75	20.2	513	43.3	1100	11.0	279	8.25, 7.50	12.5	318	478	7160	120	3250	830	6610	120	3000	830
275/80R24.5	G	71892	18	75	19.2	488	41.3	1049	10.6	269	8.25, 7.50	12.2	311	503	6175	110	2800	760	5675	110	2575	760

Note: Wheel listed first is the measuring wheel.

(1) Exceeding the lawful speed limit is neither recommended nor endorsed.

(2) Tire section widths and overall widths will change 0.1 inch (2.5 mm) for each 1/4 inch change in wheel width. Minimum dual spacing should be adjusted accordingly. BFGoodrich® tires are subject to a continuous development program. BFGoodrich® Commercial Truck Tires reserves the right to change product specifications at any time without notice or obligation.

▲ Recommended Application



TR144[™] Highway radial optimized for the free rolling axles.

Technical Data

Size	Load Range	Catalog Number				ded lius		erall neter		l Width 2)	Approved Wheels (Measuring wheel		Dual ng (2)	Revs per	١		d Per Tir	e	٨		d Per Tiro Jal	e
	Kange	Number	32nds		in.	mm.	in.	mm.	in.	mm.	listed first.)	in.	mm	Mile	lbs.	psi	kg.	kPa	lbs.	psi	kg.	kPa
11R22.5	G	02041	12	75	19.0	484	40.8	1036	11.2	285	8.25, 7.50	12.5	318	508	6175	105	2800	720	5840	105	2650	720
275/80R22.5	G	39833	12	75	18.4	468	39.7	1008	11.1	281	8.25, 7.50	12.2	311	523	6175	110	2800	760	5675	110	2575	760
11R24.5	G	06457	12	75	20.0	508	43.0	1092	11.1	283	8.25, 7.50	12.5	318	482	6610	105	3000	720	6005	105	2725	720
275/80R24.5	G	27373	12	75	19.1	485	40.8	1036	10.8	274	8.25, 7.50	12.2	311	507	6175	110	2800	760	5675	110	2575	760

Note: Wheel listed first is the measuring wheel.

(1) Exceeding the lawful speed limit is neither recommended nor endorsed.

(2) Tire section widths and overall widths will change 0.1 inch (2.5 mm) for each 1/4 inch change in wheel width. Minimum dual spacing should be adjusted accordingly. BFGoodrich® tires are subject to a continuous development program. BFGoodrich® Commercial Truck Tires reserves the right to change product specifications at any time without notice or obligation.

▲ Recommended Application

DR444[™] Highway drive radial optimized for long mileage and even wear.

Aggressive tread design to help deliver high traction.

Deep 28/32nds tread to promote long tread life.

V-shape groove design to help improve self-cleaning of the tread surface.

All-steel construction for excellent retreadability.

Technical Data

Size		Catalog Number				ded lius		erall neter	Overal	l Width 2)	Approved Wheels (Measuring wheel	Min. Spaci		Revs per	٨		d Per Tir	e	٨	lax. Loa Dı	d Per Tiro Jal	e
	Kange	rvuilibei	32nds	mph	in.	mm.	in.	mm.	in.	mm.	listed first.)	in.	mm	Mile	lbs.	psi	kg.	kPa	lbs.	psi	kg.	kPa
11R22.5	G	77081	28	75	19.4	493	41.8	1062	11.2	284	8.25, 7.50	12.5	318	497	6175	105	2800	720	5840	105	2650	720
11R22.5	Н	98035	28	75	19.4	493	41.8	1062	11.2	284	8.25, 7.50	12.5	318	497	6610	120	3000	830	6005	120	2725	830
275/80R22.5	G	90375	28	75	18.9	480	40.6	1032	10.9	277	8.25, 7.50	12.2	311	511	6175	110	2800	760	5675	110	2575	760
11R24.5	G	52321	28	75	20.5	521	43.9	1116	11.0	279	8.25, 7.50	12.5	318	472	6610	105	3000	720	6005	105	2725	720
11R24.5	Н	89861	28	75	20.5	521	43.9	1116	11.0	279	8.25, 7.50	12.5	318	472	7160	120	3250	830	6610	120	3000	830
275/80R24.5	G	55617	28	75	19.5	495	41.9	1064	10.6	269	8.25, 7.50	12.2	311	500	6175	110	2800	760	5675	110	2575	760

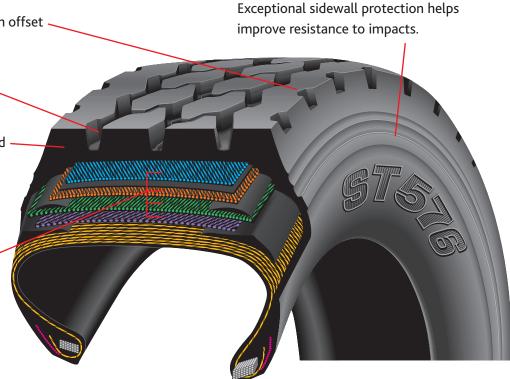
Note: Wheel listed first is the measuring wheel.

(1) Exceeding the lawful speed limit is neither recommended nor endorsed.

(1) Executing the latitude special minimum change 0.1 inch (2.5 mm) for each 1/4 inch change in wheel width. Minimum dual spacing should be adjusted accordingly. BFGoodrich® tires are subject to a continuous development program. BFGoodrich® Commercial Truck Tires reserves the right to change product specifications at any time without notice or obligation.

▲ Recommended Application

ST576[™]


All-wheel position radial optimized to help withstand the rigor of on/off road applications.

Aggressive shoulder design with offset blocks for exceptional traction.

Deep 21/32nds tread depth for long original tread life.

Specially formulated compound - for optimized tread life and resistance to the abrasion and cutting associated with on/off road use.

Robust 4-belt construction for excellent protection against road hazards and dependable retreadability.

Technical Data

Size		Catalog Number				ded lius		erall neter	Overal	l Width 2)	Approved Wheels (Measuring wheel	Min. Spaci		Revs per	٨	lax. Loa Sin	d Per Tir gle	e	٨		d Per Tir ual	e
	i.a.i.ge		32nds	mph	in.	mm.	in.	mm.	in.	mm.	listed first.)	in.	mm	Mile	lbs.	psi	kg.	kPa	lbs.	psi	kg.	kPa
11R22.5	Н	50677	21	65	19.3	489	41.2	1047	11.2	284	8.25, 7.50	12.5	318	502	6610	120	3000	830	6005	120	2725	830
11R24.5	Н	86409	21	65	20.2	512	43.2	1098	11.2	284	8.25, 7.50	12.5	318	479	7160	120	3250	830	6610	120	3000	830

Note: Wheel listed first is the measuring wheel.

(1) Exceeding the lawful speed limit is neither recommended nor endorsed.

(2) Tire section widths and overall widths will change 0.1 inch (2.5 mm) for each 1/4 inch change in wheel width. Minimum dual spacing should be adjusted accordingly. BFGoodrich® tires are subject to a continuous development program. BFGoodrich® Commercial Truck Tires reserves the right to change product specifications at any time without notice or obligation.

- ▲ Recommended Application
- △ Acceptable Application

DR675[™]

Drive radial optimized to help provide excellent traction in on/off road applications.

Aggressive shoulder design with offset
blocks for exceptional traction.

Deep 30/32nds tread
for long tread life.

Tread compound tailored
for rigor of on/off road
applications.

Robust 4-belt construction
for excellent protection
against road hazards and
dependable retreadability.

Technical Data

Size	Load Range	Catalog Number			Loa Rac	ded lius	Ove Dian			l Width 2)	Approved Wheels (Measuring wheel	Min. Spaci		Revs per	М	lax. Loa Sin	d Per Tir	e	٨		d Per Tiro ual	e
	, tunge	· tumber	32nds	mph	in.	mm.	in.	mm.	in.	mm.	listed first.)	in.	mm	Mile	lbs.	psi	kg.	kPa	lbs.	psi	kg.	kPa
11R22.5	Н	47237	30	65	19.6	498	41.9	1064	11.2	284	8.25, 7.50	12.5	318	494	6610	120	3000	830	6005	120	2725	830
11R24.5	Н	80401	30	65	20.5	521	44.0	1118	11.3	287	8.25, 7.50	12.5	318	471	7160	120	3250	830	6610	120	3000	830

Note: Wheel listed first is the measuring wheel.

(1) Exceeding the lawful speed limit is neither recommended nor endorsed.

(2) Tire section widths and overall widths will change 0.1 inch (2.5 mm) for each 1/4 inch change in wheel width. Minimum dual spacing should be adjusted accordingly. BFGoodrich® tires are subject to a continuous development program. BFGoodrich® Commercial Truck Tires reserves the right to change product specifications at any time without notice or obligation.

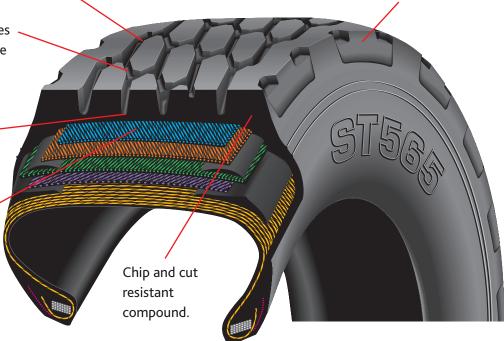
▲ Recommended Application

△ Acceptable Application

ST565[™] Wide Base

All-wheel-position wide base radial optimized to help withstand the rigor of on/off road applications.

Deep circumferential grooves channel water to help improve wet road traction.


Size specific bridging (high bridges in 385, low bridges in 445) define smooth ride and high traction where necessary.

Variable pitch wall angles designed to help reduce the risk of stone retention and stone drilling.

Wide-protector ply for resistance to penetrating objects.

improve traction in soft soil.

Offset shoulder block design helps

Technical Data

Size	Load Range	Catalog Number	Tread Depth	Max. Speed	2.2	ded lius		erall neter		l Width 2)	Approved Wheels (Measuring wheel	Revs per			d Per Tire gle	
	Runge	ranibei	32nds	mph	in.	mm.	in.	mm.	in.	mm.	listed first.)	Mile	lbs.	psi	kg.	kPa
385/65R22.5	J	64873	19	65	19.5	496	42.2	1071	14.9	378	11.75, 12.25	493	9370	120	4250	830
425/65R22.5	L	49039	19	65	20.4	518	44.4	1128	16.5	420	13.00, 12.25	470	11400	120	5150	830
445/65R22.5	L	42131	20	65	20.9	530	45.5	1156	17.7	450	14.00, 13.00	458	12300	120	5600	830

Note: Wheel listed first is the measuring wheel.

(1) Exceeding the lawful speed limit is neither recommended nor endorsed.

(2) Tire section widths and overall widths will change 0.1 inch (2.5 mm) for each 1/4 inch change in wheel width. Minimum dual spacing should be adjusted accordingly. BFGoodrich® tires are subject to a continuous development program. BFGoodrich® Commercial Truck Tires reserves the right to change product specifications at any time without notice or obligation.

▲ Recommended Application

MAXIMUM LOADS PER AXLE AT COLD INFLATION PRESSURES

		PSI	65	70	75	80	85	90	95	100	105	110	115	120	125	130
		kPa	450	480	520	550	590	620	660	690	720	760	790	830	860	900
		SINGLE	5510	5790	6080	6390	6630	6900	7280	7430	7690	7940 (G)				
	LBS	DUAL	10400	10880	11440	12000	12460	12980	13660	13960	14460	15000 (G)				
225/70R19.5		SINGLE	2500	2620	2760	2900	3000	3140	3300	3380	3480	3600 (G)				
	KG	DUAL	4720	4920	5200	5440	5640	5880	6200	6320	6560	6800 (G)				
		SINGLE				7280	7480	7780	8160	8380	8670	9080 (G)				
	LBS	DUAL				13660	14060	14620	15440	15760	16300	17200 (G)				
245/70/R19.5		SINGLE				3300	3400	3540	3700	3800	3940	4120 (G)				
	KG	DUAL				6200	6360	6640	7000	7160	7400	7800 (G)				
		SINGLE		8160	8560	8960	9350	9700	10050	10410	10720	11030	11350 (G)			
	LBS	DUAL		15440	16180	16920	17640	18340	19040	19760	20300	20840	21420 (G)			
10R22.5		SINGLE		3700	3880	4060	4240	4400	4560	4720	4860	5000	5150 (G)			
	KG	DUAL		7000	7320	7640	8000	8320	8640	8960	9200	9440	9720 (G)			
		SINGLE		9060	9540	9980	10440	11020	11460	11900	12350 (G)	12640	12930	13220 (H)		
	LBS	DUAL		17520	18320	19040	19800	20820	21660	22500	23360 (G)	23580	23800	24020 (H)		
11R22.5		SINGLE		4100	4320	4520	4740	5000	5200	5400	5600 (G)	5740	5880	6000 (H)		
	KG	DUAL		7960	8320	8640	9000	9440	9840	10240	10600 (G)	10720	10840	10900 (H)		
		SINGLE		9880	10400	10900	11380	12010	12410	12810	13220	13740	14260	14780 (H)		
	LBS	DUAL		19120	19960	20760	21560	22700	23140	23580	24020	25060	26100	27120 (H)		
12R22.5		SINGLE		4480	4720	4940	5160	5450	5640	5820	6000	6240	6480	6700 (H)		
	KG	DUAL		8680	9040	9400	9760	10300	10520	10720	10900	11360	11840	12300 (H)		
		SINGLE			30.0	8380	8740	9100	9350	9790	10130	10410	10800	11020 (H)		
	LBS	DUAL				15880	16440	17100	17640	17820	18440	18700	19660	20280 (H)		
255/70R22.5		SINGLE				3800	3960	4120	4240	4440	4600	4720	4900	5000 (H)		
	KG	DUAL				7200	7440	7760	8000	8080	8360	8480	8920	9200 (H)		
		SINGLE		9000	9450	9880	10310	10740	11020	11560	11960	12350 (G)	0320	3200 (11)		
	LBS	DUAL		16380	17200	18160	18760	19540	20280	21040	21760	22700 (G)				
275/80R22.5		SINGLE		4080	4280	4480	4680	4880	5000	5240	5420	5600 (G)				
	KG	DUAL		7440	7800	8240	8520	8880	9200	9560	9880	10300 (G)				
		SINGLE		7110	7000	12350	12830	13340	13880	14380	14880	15220	15840	16540	17620	18180 (L)
	LBS	DUAL				22700	23360	24280	25580	26180	27080	27760	28840	30440	32040	33080 (L)
315/80R22.5*		SINGLE				5600	5820	6060	6300	6520	6740	6900	7180	7500	7960	8250 (L)
	KG	DUAL				10300	10600	11000	11600	11880	12280	12600	13080	13800	14480	15000 (L)
	LBS	DOAL		12760	13440	13880	14700	15300	16100	16460	17020	17640	18100	18740 (J)	14400	15000 (E)
385/65R22.5	KG	SINGLE		5760	6120	6300	6700	6940	7300	7480	7700	8000	8200	8500 (J)		
	LBS			15180	15980	16540	17480	18200	18740	19580	20200	21000	21400	22800 (L)		
425/65R22.5	KG	SINGLE		6860	7280	7500	7960	8260	8500	8880	9160	9500	9760	10300 (L)		
	LBS			16460	17320	18180	18960	19740	20400	21200	22000	22800	23400	24600 (L)		
445/65R22.5	KG	SINGLE		7440	7900	8250	8640	8940	9250	9640	9920	10300	10580	11200 (L)		
	ΛŪ	SINGLE		9640	10140	10620	11100	11680	12190	12700	13220 (G)	13580	13940	14320 (H)		
	LBS	DUAL		18640	19480	20280	21040	22040	22700	23360	24020 (G)	24820	25620	26440 (H)		
11R24.5		SINGLE		4380	4600	4820	5040	5300	5540	5780	6000 (G)	6160	6320	6500 (H)		
	KG	DUAL		8440							10900 (G)		11640			
				9090	9540	9200	9560	10000	10320	10640		11280	11040	12000 (H)		
	LBS	SINGLE				9880	10420	10840	11350	11670	12080	12350 (G)				
275/80R24.5		DUAL		16540	17360	18160	18960	19720	20820	21240	21980	22700 (G)				
	KG	SINGLE		4120	4320	4480	4720	4920	5150	5300	5480	5600 (G)				
		DUAL		7480	7880	8240	8600	8960	9440	9640	9960	10300 (G)				

D = Dual (4 tires per axle), S = Single (2 tires per axle) * For use with 8.25" wheel, consult your BFG dealer.

BFGoodrich® tires are subject to a continuous development program. BFGoodrich® Commercial Truck Tires reserves the right to change product specifications at any time without notice or obligations.

GENERAL INFORMATION

UNITS

Quantity	S.I. Units	Other Units
Length	m (meter)	1 inch (") = 0.0254 m or 25.4 mm 1 mile = 1609 m (1.609 km) 1 kilometer = 0.621 mile
Mass	kg (Kilogram)	1 pound (lb) = 0.4536 kg 1 kilogram (kg) = 2.205 lbs.
Pressure	kPa (Pascal)	1 bar* = 100 kPa 1 psi = 6.895 kPa 1 pound per square inch 1 kg/cm2 - 98.066 kPa
Speed	m/s (meter per second)	1 kilometer per hour (kph)* = 0.27778 m/s 1 mile per hour (mph) = 0.4470 m/s (or 1.60935 kph)

^{*} Non S.I. unit to be retained for use in specialized fields.

LOAD RANGE/PLY RATING

B - 4	F – 12	L – 20
C – 6	G – 14	M – 22
D - 8	H – 16	
E - 10	J – 18	

SPEED SYMBOL

The ISO* SPEED SYMBOL indicates the speed at which the tire can carry a load corresponding to its Load Index under service conditions specified by the tire manufacturer.**

Speed	Sp	eed	Speed	Sp	eed	Speed	Sp	eed
Symbol	(kph)	mph	Symbol	(kph)	mph	Symbol	(kph)	mph
A1	5	2.5	A7	35	22.5	F	80	50
A2	10	5	A8	40	25	G	90	56
A3	15	10	В	50	30	J	100	62
A4	20	12.5	С	60	35	K	110	68
A5	25	15	D	65	40	L	120	75
A6	30	20	E	70	43	М	130	81
						N	140	87

^{*} International Standardization Organization
** Exceeding the legal speed limit is neither recommended nor endorsed.

GENERAL INFORMATION

LOAD INDEX

The ISO LOAD INDEX is a numerical code associated with the maximum load a tire can carry at the speed indicated by its SPEED* SYMBOL under service conditions specified by the tire manufacturer. (1 kg = 2.205 lbs.)

Load Index	kg	lbs.
120	1,400	3,085
121	1,450	3,195
122	1,500	3,305
123	1,550	3,415
124	1,600	3,525
125	1,650	3,640
126	1,700	3,750
127	1,750	3,860
128	1,800	3,970
129	1,850	4,080
130	1,900	4,190
131	1,950	4,300
132	2,000	4,410
133	2,060	4,540
134	2,120	4,675
135	2,180	4,805
136	2,240	4,940
137	2,300	5,070
138	2,360	5,205
139	2,430	5,355
140	2,500	5,510
141	2,575	5,675
142	2,650	5,840
143	2,725	6,005
144	2,800	6,175
145	2,900	6,395

Load Index	kg	lbs.
146	3,000	6,610
147	3,075	6,780
148	3,150	6,940
149	3,250	7,160
150	3,350	7,390
151	3,450	7,610
152	3,550	7,830
153	3,650	8,050
154	3,750	8,270
155	3,875	8,540
156	4,000	8,820
157	4,125	9,090
158	4,250	9,370
159	4,375	9,650
160	4,500	9,920
161	4,625	10,200
162	4,750	10,500
163	4,875	10,700
164	5,000	11,000
165	5,150	11,400
166	5,300	11,700
167	5,450	12,000
168	5,600	12,300
169	5,800	12,800
170	6,000	13,200

^{**} Exceeding the legal speed limit is neither recommended nor endorsed.

NOTES

