
United States Patent 1191
Garber

5,063,499
Nov. 5, 1991

[11] Patent Number:

[45] Date of Patent:

[54] METHOD FOR CREATING VIRTUAL
MEMORY SYSTEM BY REDIRECI'ING
ACCESS FOR USER STACK INSTEAD OF
SUPERVISOR STACK DURING NORMAL
SUPERVISOR MODE PROCESSING

[75] Inventor: Jonathan F. Garher, Oakland, Calif.

[73] Assignee: Connectix, Inc., Menlo Park, Calif.

[21] Appl. No.: 294,831

[22] Filed: Jan. 9, 1989

[51] Int. Cl.5 G06F 12/02
[52] US. Cl. 395/5011; 364/2443;

364/2461 l; 364/254.8; 364/261; 364/DIG. 1
[58] Field of Search 364/200 MS File, 900 MS File

[56] References Cited
U.S. PATENT DOCUMENTS

3,815,103 6/1974 Holtey et a1. 364/200
4,493,035 l/1985 MacGregor et al. 364/200
4,519,032 5/1985 Mendell 364/2“)

364/200 4,528,624 7/1985 Kamionka et al. .
4,542,458 9/1985 Kitajima et a1. 364/200
4,592,011 5/1986 Mantellina et al. .. 364/200
4,617,624 10/1986 Goodman 364/200

4,669,043 5/1987 Kaplinsky 364/200
4,714,993 12/1987 Livingston et a1. 364/200
4,825,358 4/1989 Letwin 364/200

4,849,878 7/1989 Roy 364/200

4,868,738 9/1989 Kish et a1. . 364/200

OTHER PUBLICATIONS ‘

“Editorial—'89 Won’t be Apple's Year of Multitask
ing", MacWeek, Jan. 3, 1989 p. 22.
“Virtual Memory Ends RAM Jam", MacWeek, Jan. 10,
1989 p. 1.
“Latest-Virtual Memory Draws Nearer”, MacWeek,
Jan. 31, 1989 p. 1.
"First Look-Virtual 2.0 Beats Mac's 8M-Byte RAM
Barrier", PC Week, Oct. 23, 1989, pp. 15, 18.
Designing Cards and Drivers for Macintosh II and
Macintosh SE Apple Computer, Inc., Addison-Wesley

PE-NAP PHYS. NEH TD
VIRYUAL ADD SPACE. CREATE

MAPPED ZDNE FOR 32
STQQTUF' SYSTEM STACK

MAP vmruat 11:» cent 11 m,
1 to top or V1111 nun SPACE 1 ._
—.,—_ ,

F 1 \ lEI

LUCK FREQUENTLY USED PAGES 36 EVEQ\\ ALLUCAIE WRIUAL 54

(lNSIALLiD>_. MEMUW FILE 1
\. 11 rm \ 1 ~11

:5’ :v: 1. sun: 115M \5 5/ 1 56, Penn v51:- m 1151.1 I

11:5 1150 no: Matt: 1:: __M,
1 14131.1 MUCH ,

1 1 REAL utncww E9

‘ scam 11am at-suut 1 u

1 1 CPEATE 1
east 11:51.2: 13“

“REFER
ENVIRONMENT’

PQUGRAH
ALREADY

WSTALLED“

Publishing Company, Inc. 1987; ISBN 0-201—19256-X
(pp. 14 to l-6).
Macintosh Family Hardware Reference Apple Com
puter, Inc., Addison-Wesley Publishing Company,
Inc., 1988; ISBN 0-201-19255-1 (pp. 16-10 and 16-11).
MC68020 32-Bit Microprocessor User’s Manual (Third
Edition), Motorola, Inc., Prentice-Hall, Inc. 1984, 1985;
ISBN 0-13-566951-0 (particularly Section 1.3).
“Eternal Ramdisk Program", Dec. 06, 1986, Com
puServe Information Service.
Byte, Nov. 1989, pp. 341-360.
“Connectix’s Virtual Memory Solution", Macintosh
News, Jun. 5, 1989, p. 8.
“Mac the Knite"-“No ?eld test for 3-slot ‘0301:0112“,
MacWeek, Nov. 29, 1988, p. 70.
MC68030 Enhanced 32-Bit Microprocessor User’s
Manual (Second Ed.) Motorola, Inc., Prentice-Hall,
Inc., 1989, ISBN 0-13-566951-0 (pp. 1-1 to 1-12).
MC68851 Paged Memory Management Unit User’s
Manual; Motorola, Inc., Prentice-Hall, Inc. 1986 ISBN
0-13-566902-2 (particularly Chap. 2 and Appendix C).
MC68851 Paged Memory Management Unit User’s
Manual, Second Ed.; Motorola, Inc., Prentice-Hall,
Inc., 1989, ISBN 0-13-566993-6 (as with the ?rst edi
tion, particularly Chap. 2 and Appendix C).
Operating Systems Design and Implementation, An
drew S. Tanenbaum, Prentice-Hall, Inc., 1987; ISBN
0-13-637406-9 (Chap. 4).

Primary Examiner-Thomas C. Lee
Attorney, Agent, or Firm-Harrison & Eaken

{57] ABSTRACT
A method for causing suitably con?gured versions of
the Apple Macintosh computer running the Apple Mac
intosh operating system to operate in user mode while
causing at least user programs to continue to perform as
though operating in supervisor mode, and in conjunc
tion therewith a further method for implementing vir
tual memory on such Apple Macintosh computer sys
tems.

11 Claims, 10 Drawing Sheets

l

12 A . areas: ‘ 1
1NS‘1AtL1 ta OPEN vlRTuAt MEMORY Fit:

1
so QEDIRECT P/v TRAP CALL:

1 1

52, CREATE NEv iXCEF'YlDN
“VEC‘OR TABLE 11\ Dan‘ 14:11

PATCH VECIDES 1121 M14
ixCEpIlElN VEITDF 1‘ABLE

62

A

68 ‘PE'URN 1
1

US. Patent Nov. 5, 1991 Sheet 2 of 10 5,063,499

zmkm>w UZCQWGQU MZEN ZEPQQInFE
W. MZUN

>~Ezmz QCQPw WEIPG mZUN MUQQ PZEMZQQP mmmu. 3Z2 nZBW MIKE; mwqm mmCum> mZDN VGQHw wrnim amE@Dm QZDGm

Q i 2&5 zmlw>m UZHFQWEALG ZUCQUIQQQ
osNZnCDm

mZUN vGxlw

WCnCDm

>mm2m2 ucqkw

QUFZUZ

gm 2&5

5,063,499

QEB> 02:25 5%: m2 2% 5 E86
:5: 2E

.ommhmfumm

US. Patent Nov. 5, 1991 Sheet 5 of 10

m2 Q1

zmjhmm 2D mam:

Dz

.eZGTZJDZU . FmZH ZONE muqmh m 2.; UZCUMEXM

Nahum; HEN; .055 OF @221

v:

@ 95mg

5,063,499
1

METHOD FOR CREATING A VIRTUAL
MEMORY SYSTEM BY REDIRECTING ACCESS
FOR USER STACK INSTEAD OF SUPERVISOR
STACK DURING NORMAL SUPERVISOR MODE

PROCESSING

FIELD OF THE INVENTION

This invention relates to virtual memory systems for
computers, and more particularly relates to virtual
memory systems for microprocessor-based computers
using the Motorola 680XO series microprocessor and
the Apple Macintosh operating system.

BACKGROUND OF THE INVENTION

Virtual memory has long been known for use with
mainframe computers and minicomputers. Virtual
memory basically refers to a technique for combining a
quantity of physical memory, typically provided by
semiconductor chips such as DRAM, with a block of
peripheral storage, which has in the past usually been
magnetic media-based storage such as a hard disk, to
give to the computer user the impression that the
amount of physical RAM is actually larger than the
available physical RAM.
The advantages of such techniques are well known in

the art. Certain of these advantages are particularly
noteworthy at present, including the substantial cost
and relative unavailability of DRAM memory as com
pared to hard disk memory, as well as nominal space
and power requirements, and nonvolatility.
A variety of virtual memory algorithms are known.

Most use a memory management unit of some sort
which maps a memory address in the virtual address
space either to physical RAM or to the peripheral stor
age. One such algorithm is referred to as “paging”, in
which the virtual address space is divided into pages,
and pages of information are swapped between the
physical RAM and the peripheral storage. Various al
gorithms also exist for determining when best to make
such a page swap. One common approach is to swap
pages on demand.
Shown in FIG. la is a simpli?ed prior art implemen

tation of virtual memory. As can be seen, when the
system detects an attempted access to a location of
memory not resident in physical RAM, it saves the state
of the processor on the stack, swaps in the page of vir
tual memory containing the necessary information, re
trieves from the stack the state of the processor, and
proceeds to execute the instruction that accessed the
virtual space.
Although such virtual memory techniques are well

known, such techniques generally have not been ap
plied in the microcomputer-based, personal computer
environment. Thus, for example, virtual memory has
not been used in the Apple Macintosh/Macintosh SE/
Macintosh II environment with the Macintosh operat
ing system. These environments may, in general, be
thought of as Motorola 68XXX-based microcomputers
using the Apple Macintosh operating system. Other
operating systems offered by Apple, for example
A/UX, and certain other manufacturers, such as Sun
Microsystems, for example, use different operating sys
tems, for example UNIX, with the same classes of mi
croprocessors and offer virtual memory in such differ
ent environments.
The Motorola 680X0 series of microprocessors are

designed to have two modes of operation, usually re

20

25

35

45

50

55

65

2
ferred to as supervisor mode and user mode. To imple
ment virtual memory, user programs generally are not
permitted to operate with the 680X0 microprocessor in
supervisor mode. Instead, only the operating system
and operating system calls may run the processor in
supervisor mode, while user programs operate only in
user mode.

A difficulty arises with the Apple Macintosh series of
personal computers using 680X0 microprocessors, be
cause the Macintosh operating system permits user
programs to operate the 680XO processor in supervisor
mode. A key difficulty which results is that the user
programs for the Macintosh computer, operating with
the 680X0 processor in supervisor mode, may change
the location of the supervisor stack. FIG. 1b is a simpli
?ed block diagram of the arrangement of physical mem
ory in a conventional Apple Macintosh computer,
showing the operating system zone at the lowest ad
dresses in memory, followed by a zone of memory for
application programs. Above the zone for application
programs is a stack zone, which in conventional Apple
Macintosh computers is a supervisor-mode stack zone.
Finally, at the top of memory is a zone referred to as
static memory, where application programs can reserve
a speci?c portion of memory to store needed informa
tion, and the information in those addresses generally
cannot be moved by other programs until the system is
rebooted.

Since most, if not all, virtual memory systems save
the state of thprocessor to a stack, permitting the user
program to alter the location of the supervisor stack
while at the same time trying to run virtual memory
may mean that the supervisor stack is moved, by the
user program in supervisor mode, to a location which
the virtual memory system already has swapped out to
disk. When an attempt is later made to save the proces
sor state on the stack, the state of the processor is effec
tively lost, resulting in a fatal error.
Thus, while the Macintosh operating system has

many attractive features, including a popular graphics
capability and user-friendly interface, the limitations of
the Apple Macintosh operating system have posed sig
nificant problems for users desiring more memory and
the associated performance improvements. Thus. there
has been a signi?cant need for a virtual memory system
which is transparent to the normal user of the Apple
Macintosh operating system with Apple Macintosh
computers using the 68OXO processor.

SUMMARY OF THE INVENTION

The present invention overcomes the limitations of
the prior art by implementing a page-swapping virtual
memory algorithm for the Apple Macintosh series of
computers having add-on or internal MMU functions
and suitable disk space. The disk space, although typi
cally a magnetic media hard disk, also can be provided
by a floppy disk, tape drive, optical disk, or other suit
able form of storage media.

Stated simplistically, the present invention fools the
Apple Macintosh operating system into believing that
the system and all applications running under the sys
tem are operating in supervisor mode. In fact, however,
the system and the applications are operating at most
times in user mode. In this manner, the stack address
can be carefully controlled, and located where it will
not be swapped out by the virtual memory algorithm. In

5,063,499
3

this manner page swaps to the virtual address space can
be readily performed for less critical information.
More speci?cally, the present invention interposes a

software layer of virtual memory code between hard
ware and the operating system. The present invention
therefore runs above the operating system and user
programs. The process of the present invention then
recognizes when the processor tries to execute an in
struction not available in the unprivileged user mode,
and performs a software emulation of that instruction.
The emulation may either be a specially written emula
tor, such as might be desirable for certain common
instructions, or execution of the instruction in supervi
sor mode under close scrutiny.

Additionally, the process of the present invention
intercepts other operations which might corrupt the
state of the stack pointer, and relocates to the appropri
ate new location, such as a user. stack, the information
sought by or left from those operations. In some situa
tions, user programs may attempt to alter the addresses
used to perform such intercepts. Such difficulties are
avoided by forcing the routine to alter a different ad
dress, permitting the original vector exception table to
be left intact. The appropriate jump may then be made
after the process evaluates the requested exception.
To permit the present invention to be implemented

on an Apple Macintosh 11 computer using a Motorola
68020 microprocessor, a memory management chip
such as the Motorola 68851 PMMU must be added to
the system. A socket for such a chip s provided on the
currently available Macintosh II. Shown in FIG. 1c is a
simpli?ed hardware schematic showing the interposing
of a PMMU chip between the 68020 CPU and memory
such as is found in the Apple Macintosh II computers.

In addition, the process of the present invention oper
ates Apple Macintosh computers using the Motorola
68030 microprocessor and running under the Macintosh
operating system, since the 68030 internally provides
the memory management features necessary for opera
tion of the present invention.
To implement the present invention on existing mod

els of the Macintosh line which use a 68000 processor,
such as the Macintosh SE, Macintosh Plus, Macintosh
51215, and others, it is necessary to add a 680X0 proces
sor other than a 68000. Numerous accelerator boards
for these Macintosh computers offer just such capabil
ity, and use either a 68010, 68012, 68020 or 68030 pro~
cessor as well as providing a slot for a Motorola 68851
MMU. As with the Macintosh II, an MMU must also be
added (unless a 68030 processor is added) to permit the
Macintosh SE and Plus computers to run the present
invention.

It is therefore one object of the present invention to
provide a process for implementing a virtual memory
algorithm on an Apple Macintosh computer having a
680X0 processor and operating under the Macintosh
operating system.

It is another object of the present invention to pro
vide a process by which an Apple Macintosh computer
operating in user mode under the Apple Macintosh
operating system emulates an Apple Macintosh com
puter operating in supervisor mode under the Apple
Macintosh operating system.

Still another object of the present invention is to
provide a process by which instructions normally pro
cessed by an Apple Macintosh computer in supervisor
mode can be emulated by an Apple Macintosh com
puter in user mode.

20

25

30

35

45

55

65

4
It is a further object of the present invention to pro

vide a virtual memory system which is substantially
transparent to the user of Apple Macintosh computers
having 680X0 processors running under the Macintosh
operating system.

It is a further object of the present invention to pro
vide a virtual memory system capable of modifying the
Apple Macintosh operating system to require user pro
grams to operate with the 680X0 microprocessor in user
mode as opposed to supervisor mode.

It is another object of the present invention to pro
vide a process layered between the hardware and the
operating system of the Macintosh computer which
permits operation of a hard disk to provide virtual mem
ory.
Another object of the present invention is to provide

a method of warm booting a Macintosh computer run
ning the Macintosh operating system which prevents
resetting of a memory management unit and permits
operation of a virtual memory algorithm.

It is yet another object of the present invention to
provide a method for ensuring that no page fault occurs
during time critical operations.

Still another object of the present invention is to
provide a method partitioning l/O operations into
blocks small enough to be processed in the amount of
available physical memory.
A still further object of the present invention is to

provide a method for performing an initialization which
permits a virtual memory system to be automatically
installed in an Apple Macintosh computer which per
mits slot devices and drivers to install in apparently
normal fashion but within the virtual memory space.
These and other objects of the present invention will

be more apparent from the following Detailed Descrip
tion of the Invention, taken in conjunction with the
FIGS. described below.

THE FIGURES

FIG. 1a is a simplified view of a prior art approach to
virtual memory.
FIG. 1b is a prior art view, in block diagram form, of

the memory arrangement of a Macintosh computer
running the Macintosh operating system.
FIG. 1c is a prior art view of a computer system, such

as the Apple Macintosh II, having a 68020 microproces:
sor, a 6885i MMU, and memory,
FIG. 2a is a flow diagram showing the installation of

the process of the present invention upon initialization
of a suitably con?gured Apple Macintosh computer
system.
FIG. 2b is a block diagram view of the memory ar

rangement of a Macintosh computer running the pres
ent invention with the Macintosh operating system.

FIG. 3 is a ?ow diagram showing the process of the
present invention by which exception vectors may be
re-routed.
FIG. 4 is a ?ow diagram of the process of the present

invention directed to emulating execution of privileged
instructions.
FIG. 5 is a ?ow diagram of the process of the present

invention which permits certain privileged instructions
to run in supervisor mode under close scutiny, or super
vision.
FIG. 6 is a ?ow diagram of the process of the present

invention directed to handling unimplemented instruc
tion traps, referred to as line l0l0 system calls. within
the Macintosh operating system.

5,063,499
5

FIG. 7 is a flow diagram of the process of the present
invention for permitting the Macintosh operating sys
tem and programs executing under it to run with virtual
memory in 32-bit mode as well as 24-bit mode.
FIG. 8 is a flow diagram of the process of the present

invention for handling page swaps between the physical
RAM and the virtual address space.

FIG. 9 is a flow diagram of the process of the present
invention for permitting the system to handle “double
page faults" which can occur when an interrupt gener
ates a page fault while a page fault is already in
progress.

FIG. 10 is a flow diagram describing the process by
which the present invention selects pages of physical
RAM to be swapped out to disk.
FIGS. Ila-11b, taken together, are a flow diagram

showing a "read” optimization routine in the present
invention for transferring information from the virtual
address space to physical RAM in anticipation of need.

DETAILED DESCRIPTION OF THE
INVENTION

The process of the present invention basically is com
prised of several routines which cooperate to permit
implementation of a virtual memory algorithm on a
suitably con?gured Macintosh computer running under
the Macintosh operating system. As noted above, a
suitably con?gured Macintosh must include a 680X0
processor other than the 68000, MMU functions, and a
suitable storage media such as a hard disk or other com
parable device. With all but the 68030 processor, such
MMU functions can be provided by adding a 68851
PMMU chip.
With the exception of the installation and page swap

routines, each of these routines may generally be re
ferred to as a "patch” which ?xes a problem the Macin
tosh operating system trying to run a virtual memory
algorithm would otherwise have. The routines which
comprise the process of the present invention can gen
erally be referred to as the INITIALIZATION ROU
TINE (FIG. 2a), the RE-VECTORING PATCH
(FIG. 3), the PRIVILEGE VIOLATION PATCH
(FIG. 4), the TRACE PATCH (FIG. 5), the LINE
1010 VECTOR PATCH (FIG. 6), the SWAP MMU
MODE PATCH (FIG. 7), the BUS ERROR VEC
TOR (FIGS. 8 and 9), the PAGE SELECTION ROU
TINE (FIG. 10), the READ PATCH (FIGS. Ila-22b),
and the WRITE PATCH, which is substantially identi
cal to the READ PATCH.

INITIALIZATION ROUTINE

The INITIALIZATION ROUTINE. indicated gen
erally at 10, is called at system startup by the Macintosh
operating system. More speci?cally, the program by
which the process of the present invention is imple
mented is copied into the system folder (or system di
rectory) of the suitably con?gured Apple Macintosh
computer. Then, on the next boot of the system, the
program of the present invention is started by the sys
tem in the normal course of booting, as shown at step
10. The INITIALIZATION ROUTINE of the present
invention thereupon checks, at step 20, to determine
whether the proper hardware (a 68020 processor with a
PMMU, a 68030, or other processor offering compara
ble functionality) and software (the Macintosh operat
ing system or comparable) is present. If the proper
hardware/software environment is not present, or upon
user request, initialization is bypassed at step 111, typi

l0

20

25

30

35

40

45

50

55

65

6
cally without halting the system. The user may bypass
installation by, for example, holding down the escape
key during boot.

If the proper environment does exist, the initialization
continues at step 16 by determining whether the soft
ware of the present invention has already been initial
ized once since power was turned on. This step is signif‘
icant in the operation of the process of the present in
vention. Because the operating system loads into mem
ory ?rst at power up, the virtual memory process of the
present invention initially runs under the operating
system. By appropriate selection of the program name,
such as by using a space as the initial character in the
name, the process of the present invention will attempt
to initialize, or install, immediately following boot by
the operating system and prior to allowing other pro
grams to initialize.
The software of the present invention installs itself by

de?ning the virtual memory space and setting the
PMMU and then, as will be discussed in greater detail
hereinafter, restarts the operating system by a warm
re-boot. The restart, or re-boot, is limited and is prohib~
ited from incorrectly updating the values of the address
at the top of memory, the buffer pointer address, or any
part of the PMMU con?guration registers. Since the
virtual memory space and the critical memory settings‘
are already de?ned, following the reboot the operating
system runs in the virtual memory space set up by the
?rst pass of the present invention, and runs under the
present invention. The operating system then restarts
the virtual memory process of the present invention,
which detects that it has already initialized once since
power up, and that the virtual memory space is avail
able. The remainder of the installation can then be com
pleted as discussed below. This “stutter start“ technique
(starting once normally, and then performing a con
trolled restart of the operating system under the virtual
memory process) has been found to assist in providing a
substantially transparent implementation of a virtual
memory system on an Apple Macintosh II or similar
computer.
Assuming the software implementing the present

invention has not already been initialized, the process
inquires at step 18 whether the virtual memory software
has ever (not just on this pass) been installed on this
machine before. If not, a virtual address space is allo
cated from the disk at step 20. In a preferred embodi
ment, the disk space allocated at step 20 is contiguous,
although it is not necessary in all instances that the disk
space be contiguous. In addition, with the present re
lease of the Macintosh operating system, only eight
megabytes of RAM can be recognized by the operating
system, and thus only eight megabytes are allocated at
step 20. However, it is anticipated that such limitations
will be removed from the operating system, in which
case step 20 may be readily modi?ed to include selec
tion of the amount of virtual memory space desired,
which can then exceed eight megabytes. In addition, for
performance reasons discussed below, the amount of
disk space allocated is presently more than just the
amount required to supplement the physical memory to
eight megabytes, so that a copy of all data stored in
physical RAM can also be maintained on disk. This
increases performance by, among other things, avoiding
the need to write to disk when swapping out unused
pages.
Whether the allocation of disk space was successful is

determined at step 22. If the allocation was not success

5,063,499
7

ful, installation is bypassed at step 24. However, in most
cases where sufficient free hard disk space exists, the
allocation will be successful. At this point, the disk
space is allocated, which was the purpose of the installa
tion inquiry at step 18, and so the two paths converge.
Of course, even if the virtual memory system of the
present invention has been installed on this machine
before, if the previously allocated space has been cor
rupted or discarded since that installation, the present
invention will simply proceed as though no prior instal
lation had occurred.

Following successful allocation of the disk space, the
code which implements the present invention is copied
at step 26 from the disk to a known location in physical
memory. In some embodiments it may be desirable to
oopy the code to a ?xed location in physical memory,
although this is not always necessary. At a later time,
the locations holding this code can be remapped to the
top (highest address) of logical memory and locked
(made immune to page swapping, described in greater
detail hereinafter) to ensure that no portion of the code
is swapped out to disk. The process then determines
how much physical RAM exists, and determines how
much to emulate before reaching the current limit of
eight megabytes noted above. Although the present
version of the Macintosh OS includes an eight mega
byte limit, step 28 may also include selection of the
amount of memory to emulate. Once the eight mega
byte limit of the operating system is removed, the user
may then size the virtual memory in accordance with
the available space on the hard disk.

Following the determination of how much virtual
memory will be created, page translation tables are
created at step 30. In a typical embodiment, a single
table entry is made for each page of virtual memory.
The tables are used by the 6885i PMMU (FIG. In) to
address the physical and disk based, or peripheral, por
tions of the virtual memory space. The tables are then
initialized to recognize the existing amount of physical
RAM, starting at address 0, followed by the allocated
amount of disk-based virtual memory, starting with the
next address following the physical RAM. Such disk
based virtual memory is alternatively referred to herein
as “non-resident”, or “paged out" memory.

Following creation of the page translation tables, a
portion (for example, half or other suitable portion) of
physical memory is typically remapped at step 32 to the
top of the virtual address space. A logical zone for the
startup system stack is then created by remapping a
suitable number of pages [for example, on the order of
four 2K byte pages mapped at the very top of the virtual
address space, although the exact number of pages can
be increased substantially to avoid any possible over
?ow] to a zone at the halfway point between logical
address and the top of virtual memory. This complies
with the manner in which the START MANAGER
routine of the Macintosh OS (operating system) estab
lishes the beginning location of the startup system stack.
Numerous alternative approaches can be implemented
for mapping and locating a startup system stack, as long
as the logical address space which will hold the startup
system stack is mapped to a location in physical mem
ory, even though that location may change and may be
unknown. The example described above is at present
believed to provide good performance. An alternative
technique, which would eliminate the requirement to
map out a zone for the startup system stack (which is
effectively the supervisor stack), is to perform the warm

0

5

25

40

45

50

8
re-boot in user mode. Such an approach involves other
complications, but does not require the stack integrity
needed for operation in supervisor mode.

Following the re-mapping of step 32, the page map is
altered at step 34 to map the virtual memory code to the
top of the virtual memory address space. This can fill
the space vacated by the memory taken to create a
mapped zone for the startup system stack.
Once the page map is altered, certain frequently used

pages of the system (and debugger, if any) are locked, or
prevented from being swapped out to disk by the virtual
memory algorithm described below, by setting an ap
propriate ?ag at step 36. It is not necessary in all cases
to lock such pages, although such an approach is gener
ally preferable to ensure critical pages are not swapped
out to disk, to maintain diagnostic integrity (for debug
ging, if necessary), to maintain a zone of 1:1 logical to
physical memory mapping for alternate bus masters,
and to increase performance. The zone of 1:1 logical to
physical mapping referred to above is typically on the
order of 64K bytes, but could vary substantially.

Following the page locking of step 36, the portions of
memory zoned for the system and static memory are
assigned slow aging status at step 38. As will be dis
cussed hereinafter, assignment of such status simplifies
determination of pages which cannot be swapped out to
disk. Next, at step 40, the bus error vector is pointed to
the bus error routine, and the Swap MMU Mode rou
tine (FIG. 7) is pointed to the new Swap MMU address.
tables set up by steps 30-38 by using a call to the Swap
MMU routine.

Finally, after the recon?guring of step 42, a warm
re-boot of the machine is performed at step 44. The
warm boot uses the same boot code as the original code
in the ROMS of the Macintosh computer, but is tailored
to avoid any call which initializes or otherwise affects
critical memory locations, such as the size and speed of
memory (including MEMTOP) and the start of the
static memory zone (BUFPTR), or the state of the
PMMU, so that the installed virtual memory code will
not be disturbed. The warm reboot allows slot drivers
and device drivers to re-install in the virtual address
space, rather than just in the physical address space,
causing the system to appear as it would if the same
amount of physical memory as virtual memory existed.
During the course of the warm reboot process, the
INIT (step 10) will again be entered.

Since this is a second pass installation, the decision at
step 16 is yes, causing the process to branch to step 48.
At step 48, the process opens the virtual memory ?le
allocated during the first pass initialization, which pre
vents the user from throwing the virtual memory ?le
away during normal operation. Then during step 50, the
read and write trap calls are redirected to the custom
routines described hereinafter.
At step 52, a new exception vector table is created in

static memory and marked as protected, or immune
from page swaps, and then initialized with all vectors in
the table pointing to Re-Vectoring routine. Next, at step
54, the Bus Error, Privilege, Trace and Line 1010 vec
tors are patched to the routines in the new exception
vector table. The Vector Base Register (VBR) is then
pointed to the newly created vector table at step 56, and
the user stack pointer is set to that stack‘s current value
in step 58. In step 60, the supervisor stack pointer is set
to a buffer protected from memory swaps to disk. Fi
nally, at steps 62 and 64, the icon showing the loading of
virtual memory is displayed and the processor is

5,063,499 9
switched to user mode from supervisor mode. The sys
tem returns at step 66, ready to begin processing of user
programs.
Once the code of the present invention has been in

stalled, the logical architecture of memory is substan
tially as shown in FIG. 2b. The arrangement of FIG. 2b,
which can be contrasted with the arrangement of con
ventional Apple Macintosh memory in FIG. 1b, contin
ues to show the operating system installed in memory
beginning at address 0. Above the operating system
zone is the application zone, followed by a user stack
zone. The user stack zone of FIG. 2b corresponds gen
erally to the stack zone shown in FIG. 1b, since user
programs under the present invention are permitted
only to modify the user stack zone. Those of ordinary
skill in the art will appreciate that some programs for
the Apple Macintosh, such as MultiFinder, create a
plurality of application zones and user stack zones
within what has been referred to here as a single user
stack zone and application zone. Above the user stack
zone is static memory, but static memory now includes
a zone for conventional static memory, together with
speci?c portions of static memory assigned to perform
particular virtual memory functions. Those functions
include a supervisor stack zone, a vector base table
(pointed to by the vector base register, or VBR, history
tables, code for the virtual memory process of the pres
ent invention, and zones for the SWAP MMU process,
translation tables and transient page storage, all as dis
cussed hereinafter. The installation of the supervisor
stack zone into static memory permits the supervisor
stack zone to always be in a known location. The super
visor stack zone, which is typically a few thousand
bytes, for example 8K bytes, but could range to on the
order of 32K bytes, located in physical memory, al
though its logical address is very near to the top of
memory. Those skilled in the art will appreciate that
logical addresses need not map always to a physical
address on a lzl basis.

Re-Vectoring Patch
With reference now to FIG. 3, the flow diagram

shown therein describes the redirection of the exception
vectors not treated speci?cally hereinafter. Basically
the approach taken by the routine shown in FIG. 3 is to
receive the exception vector, look up the value of the
address currently stored in the original vector table, and
jump to the routine at that address. This leaves the stack
unaltered from what it would have been if handled
direotly. Thus, programs can be fooled into not realiz~
ing the VBR has changed locations, while still being
permitted to alter vector addresses in the original, zero
vector table. The programs can also affect where the
exception will be processed, while leaving the supervi
sor stack protected. Optionally, to improve system per
formance, interrupts can be re-enabled during the page
fault caused by the exception vector, after saving a copy
of the registers and the stack pointer on the stack. Sav
ing such additional information will permit handling of
secondary page faults, as will be described in greater
detail hereinafter.

In FIG. 3, when an exception vector is received, the
routine is called up at step 80, and begins by determin
ing at step 82 whether a page fault is currently being
processed. If it is, a copy of the registers and the stack
pointer is saved on the stack, and a pointer to the cur
rent stack address is saved in a static location, all at step

25

30

45

60

65

10
84. This permits interrupts to be re-enabled, which im
proves the apparent response of the system.

If no page fault was beingprocessed at step 82, or
following step 84 if a fault was being processed, the
process continues at step 86 by obtaining the exception
vector number from the exception stack frame. The
current address pointed to by the exception vector num
ber is then pushed on the stack in step 88, which permits
execution to resume in step 90 at the original exception
vector address. In this manner, the exception vectors set
forth in Table above can be processed in essentially the
same manner as for a non-virtual memory system.

Privilege Violation Vector

With reference now to FIG. 4. a solution is shown for
another type of problem with occur with a virtual mem
ory system on the Macintosh system. Since the proces
sor is now normally running the operating system and
programs in user mode, while the operating system and
programs expect to be running in supervisor mode,
there will be some occasions in which the CPU will be
instructed to execute supervisor-only, or “privileged"
instructions. This causes a privilege violation, which
typically can be handled in either of two ways. First,
the instruction can be emulated in software so that the
user program does not know the instruction was not
actually executed. The second alternative is to permit
the instruction to execute in supervisor mode only
under careful supervision, and to then switch the system
back to user mode. A combination of these approaches
is shown in FIG. 4, in which instructions prede?ned as
"common” be emulated, but other instructions are exe
cuted under careful supervision, typically through use
of the TRACE instruction in the Macintosh operating
system although other techniques are possible.

Thus, when the privilege error occurs, the privilege
patch routine is called at step 100. If the privilege error
results from a system call by specially authorized code
segments, including code of the present invention, the
process branches at step 102 to permit a return to the
system at step 104, with the system continuing in super
visor mode.
However, if the call is not from the privileged virtual

memory code of the present invention, an inquiry is
then made at step 106 to determine whether the call
causing the privilege error is a “common" instruction.
Common instructions, which are herein intended to
mean those which are frequently used and easily emu
lated, are then emulated in software at step 108, and the
system returns from the privilege exception at step 109.
Typical instructions which may be viewed as common
are the move status register to A7 instruction (and its
converse), and the change priority instruction. Other
instructions, such as the stop instruction, any instruction
which accesses or changes the address of the VBR, and
the reset instruction are also defined as "common" even
though they are infrequent. cannot readily be traced, or
must provide different response in the emulated envi
ronment. For example, emulation of the stop instruction
involves executing a very tight loop to give the appear
ance of a system halt, and cannot readily be performed
under the supervision of the TRACE mode.

In the event the call which led to the privilege viola
tion is not a "common" instruction, the process
branches to step 110, where memory-reference accesses
are generated in a buffer zone around the user stack
pointer. The creation of such a buffer zone ensures that
the memory around the user stack pointer is not cur

5,063,499
11

rently paged out by causing a page fault if the zone is
swapped out. if such a page fault occurs, the page will
be reloaded, so that as long as the stack pointer points to
any location in the buffer zone, the corresponding page
should be resident.

Following step 110, a dummy privilege exception
frame is created on the user stack at step 112, followed
further at step 114 by setting the exception frame status
register value to trap after each instruction. Such trap
ping may also be referred to as “trace", and may be
thought of as step-by-step supervision of the execution.
Next, at step 116, the exception frame status register
value is set for supervisor status. This is followed by
saving, at step 118, the current location of the supervi
sor stack pointer in a static location and setting the
supervisor stack pointer to the user stack pointer ad
dress at step 120. Finally, a ?at is set at step 122 so that
the trace exception routine knows to expect a trace
exception from the instruction emulator. The process
thus permits certain privileged instructions to execute in
supervisor mode while at the same time protecting the
pointers necessary for virtual memory. Once the in
struction completes processing, the routine returns from
the exception at step 109.

Trace Patch

As discussed above, in the preferred embodiment of
the present invention, use of the TRACE instruction is
helpful to emulate certain types of instructions which
create a privilege violation. Other instruction emulation
techniques could readily be used. In this preferred ap
proach, however, it is necessary to trace, or supervise
on a step-by-step basis, the execution of some of the
system calls to avoid corruption of the stack. The trace
patch, shown in FIG. 5, will permit such supervision,
and used to allow execution of calls that cannot be
easily emulated, or are not yet known to exist. In such
event, the trace patch is called at step 130, and begins at
step 132 by inquiring whether the trace was expected
from an instruction emulation. If so, the process
branches to step 134 so the processor mode will be reset
to user mode upon return from this exception. Follow
ing the reset, the routine determines at step 136 whether
the user program has independently updated the status
register. If not, the trace bit is reset at step 138, and the
routine returns from the exception at step 140. The
routine then returns from the trace exception, again at
step 140. Thus, the instruction is allowed to execute in
supervisor mode under scrutiny, the trace routine is
then switched back out of supervisor mode, and the
processor is allowed to continue with other instructions
in user mode.
However, if no trace was expected at step 132 from

the instruction emulation, the routine branches to step
142, where the routine inquires whether the system is in
supervisor mode. If so, the routine jumps to the original
trace vector at step 144. If not, the routine branches to
step 146, where the trace exception frame is copied
from the supervisor stack to the user stack. The supervi
sor stack exception frame is then changed in step 148 to
the return address of the original trace vector, followed
in step 150 by clearing the supervisor and trace mode
bits from the supervisor stack exception frame. Once
this is complete. the routine returns from the exception
to the original trace vector at step 152.

20

25

35

40

45

SO

55

65

12

Line 1010 Vector Patch

Many operating systems for 68XXX-based machines,
such as the Macintosh, use line 1010 traps, or “A” traps,
to handle system calls. Generally, the application desir
ing to execute such a system call will set up either regis
ters or the stack with the calling parameters, and then
execute an instruction beginning “1010". The 1010 in
struction in turn causes an exception to be generated to
the “un-implemented instruction" exception vector,
which effectively extends the instruction set of the pro
cessor by causing the operating system to evaluate the
instruction and generate the desired effects in software.
However, such exceptions cause a transition from user
mode to supervisor mode, even though the user pro
grains which made the call are operating in user mode
with the user stack rather than the supervisor stack.
Thus, when such a call is made, it is necessary to substi
tute the appropriate stack pointer to ensure that the
pointer used by the system call is the same stack to
which the parameters were originally passed.
This is accomplished by the routine described in FIG.

6, where the line 1010 vector patch is called at step 160.
The routine begins by inquiring, at step 162, whether
the system was in supervisor mode when the trap was
called. If so, the routine jumps at step 164 to the original
line 1010 vector address, taken from the original zero
base vector table.

If not, however, the routine branches to step 166, and
copies the stack exception frame from the supervisor
stack to the user stack. Next, at step 168, the return
address of the current exception frame is replaced with
the original line 1010 vector address, so that when the
return from the exception is made, execution will con
tinue with the appropriate information supplied to the
appropriate stack at step 170.

Sawp MMU Patch

Under the current Maointosh operating system, there
are two common modes of addressing. In twenty-four
bit mode, only the least signi?cant 24 bits are ordinarily
recognized. However, in some cases with the current
operating system all 32 bits are used; presumably this
trend will continue with future releases of the operating
system, such that eventually all 32 bits will normally be
used. When all 32 bits are used, it is necessary to alert
the PMMU to fully decode the address, but to still point
to the page translation tables set up by the virtual mem
ory routines of the present invention. It is also necessary
to be able to transfer back to 24 bit mode. This toggling
can be accomplished by the routine shown in FIG. 7,
which begins at step 180 by a call to the Set MMU
Mode routine. The routine begins at step 182 by deter
mining whether the system is already in the requested
mode. If it is, the routine returns at step 184. However,
if not, the routine inquires at step 186 whether 32-bit
mode has been requested. If it has. the PMMU (shown
in FIG. 1c) is set at step 188 to decode all 32 bits, but still
uses the page translation tables to decode the physical
address for any location in the virtual address space. A
flag is then set at step 190 to indicate the current state is
32 bit mode, and the routine returns at step 192.
On the other hand, if the inquiry at step 186 deter

mines 32-bit mode is not requested, the PMMU is set at
step 194 to ignore the top byte, or top 8 bits, of the
32-bit address, and the corresponding flag is set at step
196. Again, the routine returns at step 192.

5,063,499
13

Bus Error Vector

When a memory location is called for, but is not
immediately available for referencing, a bus error is
generated. In such an instance, it is necessary to deter
mine whether the location is unavailable because it has
been paged out to disk; this can be accomplished by the
routine shown in FIG. 8. The bus error vector is called
at step 200, and begins at step 202 by saving the state of
the registers and the PMMU, followed by determining
the address and the cause of the bus error at step 204.

If, as determined at step 206, the bus error is not due
to a page fault, the registers and PMMU setting are
restored at step 208, and the routine jumps to the origi
nal bus error address vector at step 210. However,
where the inquiry at step 206 determines that a page
fault has occurred, the routine inquires at step 212
whether a page fault was already being corrected that
is, the process of swapping information in from disk was
already in progress) when this page fault occurred. If it
was, it will simplify operations to ?nish correcting the
?rst page fault before dealing with the second. This is
accomplished in step 214 by saving, at a different loca
tion, a copy of the stack from where the new page fault
occurred to the current stack pointer. Next, at step 216,
the registers are restored to their state prior to the oc
currence of the second page fault-that is, their status
during the handling of the ?rst page fault, which was
saved at step 82 shown in FIG. 3. Then, at step 218, set
the return address of the original page fault to resume
execution at the double fault restoration routine shown
in FIG. 9. The routine then preferably switches to a
very high level of priority, so it will not again be inter
rupted by the process which caused the second page
fault, and returns at step 220 to ?nish handling the ?rst
page fault.

If, as should usually be the case, there was no prior
page fault being handled when the inquiry was made at
step 212, the routine continues by selecting at step 222 a
page not likely to be needed soon. While various algo
rithms exist for making this selection, one acceptable
algorithm is shown in FIG. 10, which uses page usage
history or aging tables. That page is then mapped out as
non-resident, still at step 222. At step 224, a determina
tion is made as to whether the page has been modi?ed
since the last time it was written out to disk. If it has, the
page is written to disk at step 226, and a flag is set that
the page now has a disk image.
An inquiry is made at step 228 as to whether the

faulted page has a disk image. If it does, the disk image
of the faulted page is read from disk at step 230 into the
physical memory of the selected page, while the faulted
page is temporarily mapped to an alternate location,
which may be regarded as a transient page zone (FIG.
2b), and the page modi?ed flag is cleared. The transient
holding zone is used to prevent processing of incorrect
code or data in the event an interrupt occurs which
requires the use of code or data on the page before the
code or data in that page can be fully updated from its
disk image. If the answer to the inquiry at step 228 was
no, or following the reading of the disk image in step
230, the routine advances to step 232 and remaps the
now-restored faulted page to the address where the
page fault was detected. Thereafter, in step 234, the
registers and PMMU status are restored, and the routine
returns in step 236.

If the inquiry at step 212 did not ?nd a second page
fault, the return at step 236 will simply return to the

20

25

35

40

45

50

55

65

14
system. However, if a second page fault did exist, the
return address supplied at step 236 will jump to the
routine shown in FIG. 9 for double faults, so that the
secondary fault(s) can now be handled. The routine is
called at step 240, and begins at step 242 by copying the
saved stack (caused by the second page fault) back to its
original location. The registers are then restored in step
244 to their state at the time of the second page fault.
Next, the return address for the stack is altered in step
246 to return to the routine to restore the registers and
stack to the state they were in when the second page
fault occurred. The system then resumes processing. If
the page swap which solved the ?rst page fault also
solves the second page fault, no error will be reported.
However, if the solution to the ?rst fault does not solve
the Second page fault. the second page fault will recur.
However, upon recurrence, it will be the ?rst fault, and
can be handled accordingly. The routine then returns at
step 248 from the bus error exception.

Page Selection Routine

For any virtual memory system to work, it is some
times necessary to retrieve pages of memory from disk.
If physical RAM is full, as it presumably is, it is neces
sary to mark to disk, or page out, pages in physical
memory to make room for the pages retrieved from
disk. Various criteria can be implemented which will
accomplish this task with reasonable results.
However, at the same time, certain critical pages

should not be swapped out to disk. This set of critical
pages includes, particularly, the pages of memory nec
essary to execute a page swap. While these pages can, in
some virtual memory processes, be readily identi?ed,
such identi?cation may not be done so readily in the
Apple Macintosh environment where the code which
implements virtual memory is added to an existing oper
ating system. Of course, with sufficient knowledge of
both the operating system and the process of the present
invention, it would be possible to identify, in advance,
such critical pages and mark them as immune to page
swaps.
The routine shown in FIG. 10 has been optimized for

aftermarket use in the Apple Macintosh environment. in
part because it does not need advance identi?cation of
the critical pages. More speci?cally, the page selection
routine of FIG. 10 relies primarily on three factors: a
history table (which is based on usage in the preferred
embodiment but may be based on any of a wide variety
of criteria), a “don't swap this page” flag, and a page
modi?ed flag.
The history table (see FIG. 2b) concept tracks. for

example, how recently and frequently a page has been
accessed. The “don’t swap“?ag, discussed further be
low, protects certain key pages of physical RAM from
ever being swapped to disk, and is designed to protect
critical information such as the virtual memory code.
and some sections of the device manager, disk driver,
system traps, and trap patches. The page modi?ed flag
determines whether a page has been modi?ed since
retrieved from disk.
One reason for determining whether a page has been

modi?ed since retrieved from disk relates to the reasons
for allocating, in the preferred embodiment, a disk ?le
which is larger than the total amount of memory re
quired to supplement the existing physical memory to
the total amount of virtual memory. Thus, for example,
for a current Macintosh [1 which is capable of address
ing a maximum of eight megabytes under the current

5,063,499
15

release of the Macintosh operating system, the disk ?le
may also eight megabytes, although either larger or
somewhat smaller sizes would also work. This, effec
tively, permits a disk image of each page to be main
tained in physical memory (RAM). It will be apparent
to those skilled in the art, given the foregoing discussion
and the fact that a disk image can always be maintained
for unmodi?ed pages in physical memory, that, where
possible, an unmodi?ed page might generally be se
lected for swapping out, since this eliminates the need
for a disk write and correspondingly increases perfor
mance. By weighing these factors. as discussed below in
connection with FIG. 10, a reasonably optimized candi
date for replacement is identi?ed.

In general, the page selection routine shown in FIG.
10 is a “winnowing out" process by which the system
itself determines, on a long term iterative basis, what the
critical page set is likely to be, and errs generally on the
side of including non-critical pages to avoid swapping
out critical pages. The first basic assumption is that all
pages critical to performing a page swap are used dur
ing each complete page swap, where a complete page
swap includes both a read and a write. By basing selec
tion of a page to be swapped out initially on page usage
history, and not swapping out any page used during
each complete swap, all the critical pages (plus some
additional, non-critical pages) will be, at least prelimi
narily, protected from being swapped out.
At this point a potential problem exists. Depending

on the size of physical memory, it is possible that the
entirety of physical memory will consist of pages that
are used during the period of time between each page
swap, even though some of those pages are non-critical.
This necessitates a second level criteria for deciding
which pages are non-critical. While many such criteria
will work, a presently preferred approach involves
setting a flag bit for each page written in memory dur
ing the initial installation of the virtual memory soft
ware. This marks all critical pages, but also marks many
non-critical pages. It will be apparent to those skilled in
the art that the truly critical pages have both a heavy
usage history (i.e., satisfy the ?rst criteria), and also
have the flag bit set (the second criteria).
The combination of the two criteria then permits

selection of a non-critical page for swapping. By using
the page usage history criteria to make a determination
of which page to swap out so long as not every page is
heavily used, non-critical pages including those pages
with the flag bit set can be swapped out to disk. Then,
in the somewhat unlikely event that every page in mem
ory has a heavy usage history, those pages which do not
have a flag bit set can still be selected as non-critical. In
this manner, a non-critical page can always be selected
to be swapped out to disk.
The page selection routine described generally above

can be appreciated in greater detail from the following.
The page selection routine is called at step 300, and
begins at step 302 by inquiring whether it is time to
update the aging tables. The criterion for updating the
aging tables can be varied over a fairly wide range, and
might include real time, recent usage history of any one
or more pages, frequency of occurrence of page faults,
or number of page swaps since last update, as just some
examples. Time and usage history have thus far been
used in a preferred approach. If the inquiry at step 302
determines that it is not time to update, the modi?ed and
unmodi?ed pagse with the lowest usage history are
identi?ed at step 304.

15

25

35

45

50

60

65

16
However, if an update is in order, the time out ?ag is

reset at step 306. The aqing tables are then updated at
step 308 with usage information since the last update,
and the usage flag is reset. Next, the modi?ed and un
modi?ed pages with the lowest usage history (as stored
in the aging tables) are identi?ed at step 310.

Regardless whether the aging tables were updated,
the appropriate branch supplies the usage history of the
modi?ed and unmodi?ed pages to step 312, where the
usage history of the unmodi?ed page is compared to
that of the modi?ed page in accordance with any suit
able weighting criteria, and the least used page as deter
mined by that criteria is then selected at either step 314
or step 316, and passed to the next step. As noted above,
it is faster to mark an unmodi?ed page as non-resident,
and so in most cases it is preferable to use a weighting
criteria that tends to select unmodi?ed pages to be made
non-resident.

In some cases, however, it will not be desirable to
swap out the selected page, whether modi?ed or un~
modi?ed. Most such pages are marked with a “don't
swap" ?ag. However, it might occur that a page that is
not so marked will still be selected by the page selection
routine because all pages are being used regularly. Such
undesirable swap-outs can be avoided by keeping track
of usage history, such as by the aging table discussed
above, and imposing a rule that any page which has
always been used during the period between any two
disk swaps is not to be swapped out. This is shown at
step 318, and if the selected, least used page does not
have a full usage history, it is selected to be marked
non-resident (swapped out) at step 320.

Alternatively, if the page selected as least used does
have a full usage history, that page cannot be selected,
and the aging tables are again updated at step 322 so that
another page can be selected. Pages having a full usage
history but which are not marked with a “don't swap"
?ag may be marked as slow aging pages. Then, as
shown at step 324, the aging tables for the fast aging
pages can be updated, new “lowest usage" unmodi?ed
and modi?ed pages selected, and the routine returned to
step 312 for further processing.

Read Patch

The read patch routine, shown in FIGS. Ila-11b, is
essentially a pre-fetch of pages of disk data to physical
memory. Such a pre-fetch is particularly helpful in the
virtual memory context to avoid a page fault during
time critical operations in which occurrence of a page
fault during the operation can cause an error. An exam
ple of such a time critical operation is a read (or write)
from disk in which a page fault during the read can
cause the status of the disk interface to be lost. More
speci?cally, during a disk reads or writes, the spinning
hard disk may not be able to wait and hold its place
while a page fault is made good. Thus, it is helpful to
avoid such situations by what is referred to herein as
“pre-fetching”.

Successful use of pre-fetching relies in part on the
good programming practice that [/O operations are
executed only through the operating system. That is,
any program or peripheral that needs to perform an [/0
operation posts that request to the operating system.
The request to the operating system includes where the
information is to be placed in memory, how much infor
mation is to be transferred, and where the information
can be found. The operating system then performs the
operation and returns the result. By intercepting and

5,063,499
17

managing such calls, it is possible to ensure that no page
faults will be generated from the I/O request during the
critical 1/0 period.
The solution to this problem used in a preferred em

bodiment of the present invention amounts to keeping a
list of the pending I/O operations, and the locations to
which those I/O operations have been directed. Those
locations are temporarily marked with a “Don’t Swap"
flag, and so can be regarded as temporarily locked in
physical memory, or RAM. When the I/O operation
has been completed, the “Don’t Swap" flag is removed
for those temporarily locked locations, and they are
again free to be swapped if appropriate.

In rare instances, it is possible that an [/0 operation
will request a single transfer which is larger than the
number of available pages of physical memory. For
example, a Macintosh computer having only one mega
byte of RAM available for such an I/O call may receive
a request for a ?ve megabyte transfer. There is not
enough memory available to handle the operation in
one step. In such event, the process of the present inven
tion can break the large read request into a number of
smaller read operations, each of which can be accom
modated by the amount of available memory. Thus, for
the example of a request for a ?ve megabyte read, the
present invention can readjust the I/O call into five one
megabyte reads. Following the last small read, the call
is readjusted back to appear as if a single ?ve megabyte
read occurred, so that the calling program is unaware
that the read was not performed as one contiguous
piece.
To understand the foregoing in greater detail, refer

ence is again made to FIGS. 11a and 11b. The read
patch is entered at step 340, and inquires at step 342
whether the call which entered the read patch is a file
system call rather than an I/O call. If it is a ?le system
call, the routine branches to step 344, where it jumps to
the original read trap address.
However, if the call which caused entry to the read

patch is an I/O call, the routine branches from step 342
to step 346, where supervisor mode is enabled. The
system starts with the first block of information to be
read from disk, at step 348, and determines at step 350 to
what memory page the block will be written. It is then
determined, at step 352, whether that page is resident. If
not, a determination is made at step 354 whether the
page of physical memory will be completely overwrit
ten by the read from disk. If the page is to be overwrit
ten, the disk image flag for the page is cleared at step
356; if not, step 356 is bypassed. Either way, the page
fault routine of FIG. 8, beginning at step 222 is then
used to validate the page.

If the page was not previously marked with a Don’t
Swap" flag, the page is then temporarily locked at step
360 by setting its “Don't Swap" flag, and the page is
added to a list of temporarily locked pages. Once the
page has been temporarily locked, a determination is
made at step 362 as to whether additional blocks of data
are to be read in. If they are not, the routine branches to
step 364 where the requested read is performed, follow
ing by unlocking the temporarily locked pages at step
366, restoring the status register from the stack at step
368, and ?nally returning at step 370.

In many such cases, however, additional blocks of
data will be called for, in which case the routine will
branch from step 362 to step 372. At step 372, a determi
nation is made whether the maximum number of tempo
rarily lockable pages have already been locked. In most

20

25

30

45

60

65

18
cases, the answer will be no, and the routine will loop
by examining the next block to be read from disk at step
374 and then re-entering the routine at step 350.

In some cases, however, the maximum number of
pages will have been locked, as determined at step 372.
In such event, it is necessary to break the read into a
plurality of smaller reads. To accomplish this, the rou
tine will branch to step 376, where the size of the origi
nal read request will be stored. Then, at step 378, the
read request is reduced to match the maximum number
of allowable locked pages, followed at step by a read of
that reduced size.

After completion of the reduced read, another read is
set up at step 382, extending from the end of the last
block actually read to the end of the originally re
quested read. Following set up, the next block of infor
mation is read from disk at step 384 and, as before, the
page to which that block is to be written is identi?ed. If
the page is resident, as determined at step 388, the page
is added to a second list of temporarily locked pages.
As before, if the page is not resident, an inquiry is

made at step 392 whether the page of physical memory
will be completely overwritten by the read from disk. If
the page is to be completely overwritten, the disk image
flag for the page is cleared at step 394. If the page is not
to be overwritten, or after clearing the disk image flag
if to be overwritten, the routine continues with step 396,
where the page fault routine shown beginning at step
222 of FIG. 8 is used to validate the page.

Thereafter, the successive next-last in the list of tem
porarily locked pages is selected at step 398, and that
page is swapped out at step 400. This frees up a page for
this block of the read operation (previously no addi
tional pages of physical memory were available since
we had reached the maximum number of locked pages
in performing the previous section of this 1/0 call), and
so this logical page is then remapped into RAM at step
402 to be ready for the next read, at which time it will
overwritten.
The results of either step 390 or step 402 then cause

the routine to continue at step 404, where an inquiry is
made as to whether there are more blocks to be read in
this request. In some cases there will be more blocks to
read, in which case the routine will branch to step 406,
where a second inquiry is made as to whether the maxi
mum number of temporarily lockable pages has already
been locked. In a good percentage of cases the answer
will be no, in which case the routine will loop back to
step 386 through step 408, where the next block to be
read from disk is examined. In some cases, however, the
maximum number of temporarily locked pages again
will have been met, so that a reduced size read is again
required at step 410. In this case, the size of the read is
reduced to the amount of validated memory, and then a
read is performed at step 412, after which the routine
loops back to step 382.

Eventually, the looping will return to step 404, and
no more blocks will be requested. At this point, the
routine branches to perform the final read, at step 414,
followed by unlocking the pages of the second list of
temporarily locked pages at step 416. Next, the parame
ter block pointed to by the original read request is re
stored to the same state as if it had been completed in
one pass, at step 418. and the status register is restored
from the stack in step 420. The routine then returns
control to the system at step 422. It can be appreciated
that, in this manner, large size reads can be accom
plished. Although not shown, in a similar fashion a

