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{57] ABSTRACT 
A method for causing suitably con?gured versions of 
the Apple Macintosh computer running the Apple Mac 
intosh operating system to operate in user mode while 
causing at least user programs to continue to perform as 
though operating in supervisor mode, and in conjunc 
tion therewith a further method for implementing vir 
tual memory on such Apple Macintosh computer sys 
tems. 

11 Claims, 10 Drawing Sheets 
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METHOD FOR CREATING A VIRTUAL 
MEMORY SYSTEM BY REDIRECTING ACCESS 
FOR USER STACK INSTEAD OF SUPERVISOR 
STACK DURING NORMAL SUPERVISOR MODE 

PROCESSING 

FIELD OF THE INVENTION 

This invention relates to virtual memory systems for 
computers, and more particularly relates to virtual 
memory systems for microprocessor-based computers 
using the Motorola 680XO series microprocessor and 
the Apple Macintosh operating system. 

BACKGROUND OF THE INVENTION 

Virtual memory has long been known for use with 
mainframe computers and minicomputers. Virtual 
memory basically refers to a technique for combining a 
quantity of physical memory, typically provided by 
semiconductor chips such as DRAM, with a block of 
peripheral storage, which has in the past usually been 
magnetic media-based storage such as a hard disk, to 
give to the computer user the impression that the 
amount of physical RAM is actually larger than the 
available physical RAM. 
The advantages of such techniques are well known in 

the art. Certain of these advantages are particularly 
noteworthy at present, including the substantial cost 
and relative unavailability of DRAM memory as com 
pared to hard disk memory, as well as nominal space 
and power requirements, and nonvolatility. 
A variety of virtual memory algorithms are known. 

Most use a memory management unit of some sort 
which maps a memory address in the virtual address 
space either to physical RAM or to the peripheral stor 
age. One such algorithm is referred to as “paging”, in 
which the virtual address space is divided into pages, 
and pages of information are swapped between the 
physical RAM and the peripheral storage. Various al 
gorithms also exist for determining when best to make 
such a page swap. One common approach is to swap 
pages on demand. 
Shown in FIG. la is a simpli?ed prior art implemen 

tation of virtual memory. As can be seen, when the 
system detects an attempted access to a location of 
memory not resident in physical RAM, it saves the state 
of the processor on the stack, swaps in the page of vir 
tual memory containing the necessary information, re 
trieves from the stack the state of the processor, and 
proceeds to execute the instruction that accessed the 
virtual space. 
Although such virtual memory techniques are well 

known, such techniques generally have not been ap 
plied in the microcomputer-based, personal computer 
environment. Thus, for example, virtual memory has 
not been used in the Apple Macintosh/Macintosh SE/ 
Macintosh II environment with the Macintosh operat 
ing system. These environments may, in general, be 
thought of as Motorola 68XXX-based microcomputers 
using the Apple Macintosh operating system. Other 
operating systems offered by Apple, for example 
A/UX, and certain other manufacturers, such as Sun 
Microsystems, for example, use different operating sys 
tems, for example UNIX, with the same classes of mi 
croprocessors and offer virtual memory in such differ 
ent environments. 
The Motorola 680X0 series of microprocessors are 

designed to have two modes of operation, usually re 
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2 
ferred to as supervisor mode and user mode. To imple 
ment virtual memory, user programs generally are not 
permitted to operate with the 680X0 microprocessor in 
supervisor mode. Instead, only the operating system 
and operating system calls may run the processor in 
supervisor mode, while user programs operate only in 
user mode. 

A difficulty arises with the Apple Macintosh series of 
personal computers using 680X0 microprocessors, be 
cause the Macintosh operating system permits user 
programs to operate the 680XO processor in supervisor 
mode. A key difficulty which results is that the user 
programs for the Macintosh computer, operating with 
the 680X0 processor in supervisor mode, may change 
the location of the supervisor stack. FIG. 1b is a simpli 
?ed block diagram of the arrangement of physical mem 
ory in a conventional Apple Macintosh computer, 
showing the operating system zone at the lowest ad 
dresses in memory, followed by a zone of memory for 
application programs. Above the zone for application 
programs is a stack zone, which in conventional Apple 
Macintosh computers is a supervisor-mode stack zone. 
Finally, at the top of memory is a zone referred to as 
static memory, where application programs can reserve 
a speci?c portion of memory to store needed informa 
tion, and the information in those addresses generally 
cannot be moved by other programs until the system is 
rebooted. 

Since most, if not all, virtual memory systems save 
the state of thprocessor to a stack, permitting the user 
program to alter the location of the supervisor stack 
while at the same time trying to run virtual memory 
may mean that the supervisor stack is moved, by the 
user program in supervisor mode, to a location which 
the virtual memory system already has swapped out to 
disk. When an attempt is later made to save the proces 
sor state on the stack, the state of the processor is effec 
tively lost, resulting in a fatal error. 
Thus, while the Macintosh operating system has 

many attractive features, including a popular graphics 
capability and user-friendly interface, the limitations of 
the Apple Macintosh operating system have posed sig 
nificant problems for users desiring more memory and 
the associated performance improvements. Thus. there 
has been a signi?cant need for a virtual memory system 
which is transparent to the normal user of the Apple 
Macintosh operating system with Apple Macintosh 
computers using the 68OXO processor. 

SUMMARY OF THE INVENTION 

The present invention overcomes the limitations of 
the prior art by implementing a page-swapping virtual 
memory algorithm for the Apple Macintosh series of 
computers having add-on or internal MMU functions 
and suitable disk space. The disk space, although typi 
cally a magnetic media hard disk, also can be provided 
by a floppy disk, tape drive, optical disk, or other suit 
able form of storage media. 

Stated simplistically, the present invention fools the 
Apple Macintosh operating system into believing that 
the system and all applications running under the sys 
tem are operating in supervisor mode. In fact, however, 
the system and the applications are operating at most 
times in user mode. In this manner, the stack address 
can be carefully controlled, and located where it will 
not be swapped out by the virtual memory algorithm. In 



5,063,499 
3 

this manner page swaps to the virtual address space can 
be readily performed for less critical information. 
More speci?cally, the present invention interposes a 

software layer of virtual memory code between hard 
ware and the operating system. The present invention 
therefore runs above the operating system and user 
programs. The process of the present invention then 
recognizes when the processor tries to execute an in 
struction not available in the unprivileged user mode, 
and performs a software emulation of that instruction. 
The emulation may either be a specially written emula 
tor, such as might be desirable for certain common 
instructions, or execution of the instruction in supervi 
sor mode under close scrutiny. 

Additionally, the process of the present invention 
intercepts other operations which might corrupt the 
state of the stack pointer, and relocates to the appropri 
ate new location, such as a user. stack, the information 
sought by or left from those operations. In some situa 
tions, user programs may attempt to alter the addresses 
used to perform such intercepts. Such difficulties are 
avoided by forcing the routine to alter a different ad 
dress, permitting the original vector exception table to 
be left intact. The appropriate jump may then be made 
after the process evaluates the requested exception. 
To permit the present invention to be implemented 

on an Apple Macintosh 11 computer using a Motorola 
68020 microprocessor, a memory management chip 
such as the Motorola 68851 PMMU must be added to 
the system. A socket for such a chip s provided on the 
currently available Macintosh II. Shown in FIG. 1c is a 
simpli?ed hardware schematic showing the interposing 
of a PMMU chip between the 68020 CPU and memory 
such as is found in the Apple Macintosh II computers. 

In addition, the process of the present invention oper 
ates Apple Macintosh computers using the Motorola 
68030 microprocessor and running under the Macintosh 
operating system, since the 68030 internally provides 
the memory management features necessary for opera 
tion of the present invention. 
To implement the present invention on existing mod 

els of the Macintosh line which use a 68000 processor, 
such as the Macintosh SE, Macintosh Plus, Macintosh 
51215, and others, it is necessary to add a 680X0 proces 
sor other than a 68000. Numerous accelerator boards 
for these Macintosh computers offer just such capabil 
ity, and use either a 68010, 68012, 68020 or 68030 pro~ 
cessor as well as providing a slot for a Motorola 68851 
MMU. As with the Macintosh II, an MMU must also be 
added (unless a 68030 processor is added) to permit the 
Macintosh SE and Plus computers to run the present 
invention. 

It is therefore one object of the present invention to 
provide a process for implementing a virtual memory 
algorithm on an Apple Macintosh computer having a 
680X0 processor and operating under the Macintosh 
operating system. 

It is another object of the present invention to pro 
vide a process by which an Apple Macintosh computer 
operating in user mode under the Apple Macintosh 
operating system emulates an Apple Macintosh com 
puter operating in supervisor mode under the Apple 
Macintosh operating system. 

Still another object of the present invention is to 
provide a process by which instructions normally pro 
cessed by an Apple Macintosh computer in supervisor 
mode can be emulated by an Apple Macintosh com 
puter in user mode. 
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4 
It is a further object of the present invention to pro 

vide a virtual memory system which is substantially 
transparent to the user of Apple Macintosh computers 
having 680X0 processors running under the Macintosh 
operating system. 

It is a further object of the present invention to pro 
vide a virtual memory system capable of modifying the 
Apple Macintosh operating system to require user pro 
grams to operate with the 680X0 microprocessor in user 
mode as opposed to supervisor mode. 

It is another object of the present invention to pro 
vide a process layered between the hardware and the 
operating system of the Macintosh computer which 
permits operation of a hard disk to provide virtual mem 
ory. 
Another object of the present invention is to provide 

a method of warm booting a Macintosh computer run 
ning the Macintosh operating system which prevents 
resetting of a memory management unit and permits 
operation of a virtual memory algorithm. 

It is yet another object of the present invention to 
provide a method for ensuring that no page fault occurs 
during time critical operations. 

Still another object of the present invention is to 
provide a method partitioning l/O operations into 
blocks small enough to be processed in the amount of 
available physical memory. 
A still further object of the present invention is to 

provide a method for performing an initialization which 
permits a virtual memory system to be automatically 
installed in an Apple Macintosh computer which per 
mits slot devices and drivers to install in apparently 
normal fashion but within the virtual memory space. 
These and other objects of the present invention will 

be more apparent from the following Detailed Descrip 
tion of the Invention, taken in conjunction with the 
FIGS. described below. 

THE FIGURES 

FIG. 1a is a simplified view of a prior art approach to 
virtual memory. 
FIG. 1b is a prior art view, in block diagram form, of 

the memory arrangement of a Macintosh computer 
running the Macintosh operating system. 
FIG. 1c is a prior art view of a computer system, such 

as the Apple Macintosh II, having a 68020 microproces: 
sor, a 6885i MMU, and memory, 
FIG. 2a is a flow diagram showing the installation of 

the process of the present invention upon initialization 
of a suitably con?gured Apple Macintosh computer 
system. 
FIG. 2b is a block diagram view of the memory ar 

rangement of a Macintosh computer running the pres 
ent invention with the Macintosh operating system. 

FIG. 3 is a ?ow diagram showing the process of the 
present invention by which exception vectors may be 
re-routed. 
FIG. 4 is a ?ow diagram of the process of the present 

invention directed to emulating execution of privileged 
instructions. 
FIG. 5 is a ?ow diagram of the process of the present 

invention which permits certain privileged instructions 
to run in supervisor mode under close scutiny, or super 
vision. 
FIG. 6 is a ?ow diagram of the process of the present 

invention directed to handling unimplemented instruc 
tion traps, referred to as line l0l0 system calls. within 
the Macintosh operating system. 
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FIG. 7 is a flow diagram of the process of the present 
invention for permitting the Macintosh operating sys 
tem and programs executing under it to run with virtual 
memory in 32-bit mode as well as 24-bit mode. 
FIG. 8 is a flow diagram of the process of the present 

invention for handling page swaps between the physical 
RAM and the virtual address space. 

FIG. 9 is a flow diagram of the process of the present 
invention for permitting the system to handle “double 
page faults" which can occur when an interrupt gener 
ates a page fault while a page fault is already in 
progress. 

FIG. 10 is a flow diagram describing the process by 
which the present invention selects pages of physical 
RAM to be swapped out to disk. 
FIGS. Ila-11b, taken together, are a flow diagram 

showing a "read” optimization routine in the present 
invention for transferring information from the virtual 
address space to physical RAM in anticipation of need. 

DETAILED DESCRIPTION OF THE 
INVENTION 

The process of the present invention basically is com 
prised of several routines which cooperate to permit 
implementation of a virtual memory algorithm on a 
suitably con?gured Macintosh computer running under 
the Macintosh operating system. As noted above, a 
suitably con?gured Macintosh must include a 680X0 
processor other than the 68000, MMU functions, and a 
suitable storage media such as a hard disk or other com 
parable device. With all but the 68030 processor, such 
MMU functions can be provided by adding a 68851 
PMMU chip. 
With the exception of the installation and page swap 

routines, each of these routines may generally be re 
ferred to as a "patch” which ?xes a problem the Macin 
tosh operating system trying to run a virtual memory 
algorithm would otherwise have. The routines which 
comprise the process of the present invention can gen 
erally be referred to as the INITIALIZATION ROU 
TINE (FIG. 2a), the RE-VECTORING PATCH 
(FIG. 3), the PRIVILEGE VIOLATION PATCH 
(FIG. 4), the TRACE PATCH (FIG. 5), the LINE 
1010 VECTOR PATCH (FIG. 6), the SWAP MMU 
MODE PATCH (FIG. 7), the BUS ERROR VEC 
TOR (FIGS. 8 and 9), the PAGE SELECTION ROU 
TINE (FIG. 10), the READ PATCH (FIGS. Ila-22b), 
and the WRITE PATCH, which is substantially identi 
cal to the READ PATCH. 

INITIALIZATION ROUTINE 

The INITIALIZATION ROUTINE. indicated gen 
erally at 10, is called at system startup by the Macintosh 
operating system. More speci?cally, the program by 
which the process of the present invention is imple 
mented is copied into the system folder (or system di 
rectory) of the suitably con?gured Apple Macintosh 
computer. Then, on the next boot of the system, the 
program of the present invention is started by the sys 
tem in the normal course of booting, as shown at step 
10. The INITIALIZATION ROUTINE of the present 
invention thereupon checks, at step 20, to determine 
whether the proper hardware (a 68020 processor with a 
PMMU, a 68030, or other processor offering compara 
ble functionality) and software (the Macintosh operat 
ing system or comparable) is present. If the proper 
hardware/software environment is not present, or upon 
user request, initialization is bypassed at step 111, typi 
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6 
cally without halting the system. The user may bypass 
installation by, for example, holding down the escape 
key during boot. 

If the proper environment does exist, the initialization 
continues at step 16 by determining whether the soft 
ware of the present invention has already been initial 
ized once since power was turned on. This step is signif‘ 
icant in the operation of the process of the present in 
vention. Because the operating system loads into mem 
ory ?rst at power up, the virtual memory process of the 
present invention initially runs under the operating 
system. By appropriate selection of the program name, 
such as by using a space as the initial character in the 
name, the process of the present invention will attempt 
to initialize, or install, immediately following boot by 
the operating system and prior to allowing other pro 
grams to initialize. 
The software of the present invention installs itself by 

de?ning the virtual memory space and setting the 
PMMU and then, as will be discussed in greater detail 
hereinafter, restarts the operating system by a warm 
re-boot. The restart, or re-boot, is limited and is prohib~ 
ited from incorrectly updating the values of the address 
at the top of memory, the buffer pointer address, or any 
part of the PMMU con?guration registers. Since the 
virtual memory space and the critical memory settings‘ 
are already de?ned, following the reboot the operating 
system runs in the virtual memory space set up by the 
?rst pass of the present invention, and runs under the 
present invention. The operating system then restarts 
the virtual memory process of the present invention, 
which detects that it has already initialized once since 
power up, and that the virtual memory space is avail 
able. The remainder of the installation can then be com 
pleted as discussed below. This “stutter start“ technique 
(starting once normally, and then performing a con 
trolled restart of the operating system under the virtual 
memory process) has been found to assist in providing a 
substantially transparent implementation of a virtual 
memory system on an Apple Macintosh II or similar 
computer. 
Assuming the software implementing the present 

invention has not already been initialized, the process 
inquires at step 18 whether the virtual memory software 
has ever (not just on this pass) been installed on this 
machine before. If not, a virtual address space is allo 
cated from the disk at step 20. In a preferred embodi 
ment, the disk space allocated at step 20 is contiguous, 
although it is not necessary in all instances that the disk 
space be contiguous. In addition, with the present re 
lease of the Macintosh operating system, only eight 
megabytes of RAM can be recognized by the operating 
system, and thus only eight megabytes are allocated at 
step 20. However, it is anticipated that such limitations 
will be removed from the operating system, in which 
case step 20 may be readily modi?ed to include selec 
tion of the amount of virtual memory space desired, 
which can then exceed eight megabytes. In addition, for 
performance reasons discussed below, the amount of 
disk space allocated is presently more than just the 
amount required to supplement the physical memory to 
eight megabytes, so that a copy of all data stored in 
physical RAM can also be maintained on disk. This 
increases performance by, among other things, avoiding 
the need to write to disk when swapping out unused 
pages. 
Whether the allocation of disk space was successful is 

determined at step 22. If the allocation was not success 
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ful, installation is bypassed at step 24. However, in most 
cases where sufficient free hard disk space exists, the 
allocation will be successful. At this point, the disk 
space is allocated, which was the purpose of the installa 
tion inquiry at step 18, and so the two paths converge. 
Of course, even if the virtual memory system of the 
present invention has been installed on this machine 
before, if the previously allocated space has been cor 
rupted or discarded since that installation, the present 
invention will simply proceed as though no prior instal 
lation had occurred. 

Following successful allocation of the disk space, the 
code which implements the present invention is copied 
at step 26 from the disk to a known location in physical 
memory. In some embodiments it may be desirable to 
oopy the code to a ?xed location in physical memory, 
although this is not always necessary. At a later time, 
the locations holding this code can be remapped to the 
top (highest address) of logical memory and locked 
(made immune to page swapping, described in greater 
detail hereinafter) to ensure that no portion of the code 
is swapped out to disk. The process then determines 
how much physical RAM exists, and determines how 
much to emulate before reaching the current limit of 
eight megabytes noted above. Although the present 
version of the Macintosh OS includes an eight mega 
byte limit, step 28 may also include selection of the 
amount of memory to emulate. Once the eight mega 
byte limit of the operating system is removed, the user 
may then size the virtual memory in accordance with 
the available space on the hard disk. 

Following the determination of how much virtual 
memory will be created, page translation tables are 
created at step 30. In a typical embodiment, a single 
table entry is made for each page of virtual memory. 
The tables are used by the 6885i PMMU (FIG. In) to 
address the physical and disk based, or peripheral, por 
tions of the virtual memory space. The tables are then 
initialized to recognize the existing amount of physical 
RAM, starting at address 0, followed by the allocated 
amount of disk-based virtual memory, starting with the 
next address following the physical RAM. Such disk 
based virtual memory is alternatively referred to herein 
as “non-resident”, or “paged out" memory. 

Following creation of the page translation tables, a 
portion (for example, half or other suitable portion) of 
physical memory is typically remapped at step 32 to the 
top of the virtual address space. A logical zone for the 
startup system stack is then created by remapping a 
suitable number of pages [for example, on the order of 
four 2K byte pages mapped at the very top of the virtual 
address space, although the exact number of pages can 
be increased substantially to avoid any possible over 
?ow] to a zone at the halfway point between logical 
address and the top of virtual memory. This complies 
with the manner in which the START MANAGER 
routine of the Macintosh OS (operating system) estab 
lishes the beginning location of the startup system stack. 
Numerous alternative approaches can be implemented 
for mapping and locating a startup system stack, as long 
as the logical address space which will hold the startup 
system stack is mapped to a location in physical mem 
ory, even though that location may change and may be 
unknown. The example described above is at present 
believed to provide good performance. An alternative 
technique, which would eliminate the requirement to 
map out a zone for the startup system stack (which is 
effectively the supervisor stack), is to perform the warm 
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8 
re-boot in user mode. Such an approach involves other 
complications, but does not require the stack integrity 
needed for operation in supervisor mode. 

Following the re-mapping of step 32, the page map is 
altered at step 34 to map the virtual memory code to the 
top of the virtual memory address space. This can fill 
the space vacated by the memory taken to create a 
mapped zone for the startup system stack. 
Once the page map is altered, certain frequently used 

pages of the system (and debugger, if any) are locked, or 
prevented from being swapped out to disk by the virtual 
memory algorithm described below, by setting an ap 
propriate ?ag at step 36. It is not necessary in all cases 
to lock such pages, although such an approach is gener 
ally preferable to ensure critical pages are not swapped 
out to disk, to maintain diagnostic integrity (for debug 
ging, if necessary), to maintain a zone of 1:1 logical to 
physical memory mapping for alternate bus masters, 
and to increase performance. The zone of 1:1 logical to 
physical mapping referred to above is typically on the 
order of 64K bytes, but could vary substantially. 

Following the page locking of step 36, the portions of 
memory zoned for the system and static memory are 
assigned slow aging status at step 38. As will be dis 
cussed hereinafter, assignment of such status simplifies 
determination of pages which cannot be swapped out to 
disk. Next, at step 40, the bus error vector is pointed to 
the bus error routine, and the Swap MMU Mode rou 
tine (FIG. 7) is pointed to the new Swap MMU address. 
tables set up by steps 30-38 by using a call to the Swap 
MMU routine. 

Finally, after the recon?guring of step 42, a warm 
re-boot of the machine is performed at step 44. The 
warm boot uses the same boot code as the original code 
in the ROMS of the Macintosh computer, but is tailored 
to avoid any call which initializes or otherwise affects 
critical memory locations, such as the size and speed of 
memory (including MEMTOP) and the start of the 
static memory zone (BUFPTR), or the state of the 
PMMU, so that the installed virtual memory code will 
not be disturbed. The warm reboot allows slot drivers 
and device drivers to re-install in the virtual address 
space, rather than just in the physical address space, 
causing the system to appear as it would if the same 
amount of physical memory as virtual memory existed. 
During the course of the warm reboot process, the 
INIT (step 10) will again be entered. 

Since this is a second pass installation, the decision at 
step 16 is yes, causing the process to branch to step 48. 
At step 48, the process opens the virtual memory ?le 
allocated during the first pass initialization, which pre 
vents the user from throwing the virtual memory ?le 
away during normal operation. Then during step 50, the 
read and write trap calls are redirected to the custom 
routines described hereinafter. 
At step 52, a new exception vector table is created in 

static memory and marked as protected, or immune 
from page swaps, and then initialized with all vectors in 
the table pointing to Re-Vectoring routine. Next, at step 
54, the Bus Error, Privilege, Trace and Line 1010 vec 
tors are patched to the routines in the new exception 
vector table. The Vector Base Register (VBR) is then 
pointed to the newly created vector table at step 56, and 
the user stack pointer is set to that stack‘s current value 
in step 58. In step 60, the supervisor stack pointer is set 
to a buffer protected from memory swaps to disk. Fi 
nally, at steps 62 and 64, the icon showing the loading of 
virtual memory is displayed and the processor is 
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switched to user mode from supervisor mode. The sys 
tem returns at step 66, ready to begin processing of user 
programs. 
Once the code of the present invention has been in 

stalled, the logical architecture of memory is substan 
tially as shown in FIG. 2b. The arrangement of FIG. 2b, 
which can be contrasted with the arrangement of con 
ventional Apple Macintosh memory in FIG. 1b, contin 
ues to show the operating system installed in memory 
beginning at address 0. Above the operating system 
zone is the application zone, followed by a user stack 
zone. The user stack zone of FIG. 2b corresponds gen 
erally to the stack zone shown in FIG. 1b, since user 
programs under the present invention are permitted 
only to modify the user stack zone. Those of ordinary 
skill in the art will appreciate that some programs for 
the Apple Macintosh, such as MultiFinder, create a 
plurality of application zones and user stack zones 
within what has been referred to here as a single user 
stack zone and application zone. Above the user stack 
zone is static memory, but static memory now includes 
a zone for conventional static memory, together with 
speci?c portions of static memory assigned to perform 
particular virtual memory functions. Those functions 
include a supervisor stack zone, a vector base table 
(pointed to by the vector base register, or VBR, history 
tables, code for the virtual memory process of the pres 
ent invention, and zones for the SWAP MMU process, 
translation tables and transient page storage, all as dis 
cussed hereinafter. The installation of the supervisor 
stack zone into static memory permits the supervisor 
stack zone to always be in a known location. The super 
visor stack zone, which is typically a few thousand 
bytes, for example 8K bytes, but could range to on the 
order of 32K bytes, located in physical memory, al 
though its logical address is very near to the top of 
memory. Those skilled in the art will appreciate that 
logical addresses need not map always to a physical 
address on a lzl basis. 

Re-Vectoring Patch 
With reference now to FIG. 3, the flow diagram 

shown therein describes the redirection of the exception 
vectors not treated speci?cally hereinafter. Basically 
the approach taken by the routine shown in FIG. 3 is to 
receive the exception vector, look up the value of the 
address currently stored in the original vector table, and 
jump to the routine at that address. This leaves the stack 
unaltered from what it would have been if handled 
direotly. Thus, programs can be fooled into not realiz~ 
ing the VBR has changed locations, while still being 
permitted to alter vector addresses in the original, zero 
vector table. The programs can also affect where the 
exception will be processed, while leaving the supervi 
sor stack protected. Optionally, to improve system per 
formance, interrupts can be re-enabled during the page 
fault caused by the exception vector, after saving a copy 
of the registers and the stack pointer on the stack. Sav 
ing such additional information will permit handling of 
secondary page faults, as will be described in greater 
detail hereinafter. 

In FIG. 3, when an exception vector is received, the 
routine is called up at step 80, and begins by determin 
ing at step 82 whether a page fault is currently being 
processed. If it is, a copy of the registers and the stack 
pointer is saved on the stack, and a pointer to the cur 
rent stack address is saved in a static location, all at step 
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84. This permits interrupts to be re-enabled, which im 
proves the apparent response of the system. 

If no page fault was beingprocessed at step 82, or 
following step 84 if a fault was being processed, the 
process continues at step 86 by obtaining the exception 
vector number from the exception stack frame. The 
current address pointed to by the exception vector num 
ber is then pushed on the stack in step 88, which permits 
execution to resume in step 90 at the original exception 
vector address. In this manner, the exception vectors set 
forth in Table above can be processed in essentially the 
same manner as for a non-virtual memory system. 

Privilege Violation Vector 

With reference now to FIG. 4. a solution is shown for 
another type of problem with occur with a virtual mem 
ory system on the Macintosh system. Since the proces 
sor is now normally running the operating system and 
programs in user mode, while the operating system and 
programs expect to be running in supervisor mode, 
there will be some occasions in which the CPU will be 
instructed to execute supervisor-only, or “privileged" 
instructions. This causes a privilege violation, which 
typically can be handled in either of two ways. First, 
the instruction can be emulated in software so that the 
user program does not know the instruction was not 
actually executed. The second alternative is to permit 
the instruction to execute in supervisor mode only 
under careful supervision, and to then switch the system 
back to user mode. A combination of these approaches 
is shown in FIG. 4, in which instructions prede?ned as 
"common” be emulated, but other instructions are exe 
cuted under careful supervision, typically through use 
of the TRACE instruction in the Macintosh operating 
system although other techniques are possible. 

Thus, when the privilege error occurs, the privilege 
patch routine is called at step 100. If the privilege error 
results from a system call by specially authorized code 
segments, including code of the present invention, the 
process branches at step 102 to permit a return to the 
system at step 104, with the system continuing in super 
visor mode. 
However, if the call is not from the privileged virtual 

memory code of the present invention, an inquiry is 
then made at step 106 to determine whether the call 
causing the privilege error is a “common" instruction. 
Common instructions, which are herein intended to 
mean those which are frequently used and easily emu 
lated, are then emulated in software at step 108, and the 
system returns from the privilege exception at step 109. 
Typical instructions which may be viewed as common 
are the move status register to A7 instruction (and its 
converse), and the change priority instruction. Other 
instructions, such as the stop instruction, any instruction 
which accesses or changes the address of the VBR, and 
the reset instruction are also defined as "common" even 
though they are infrequent. cannot readily be traced, or 
must provide different response in the emulated envi 
ronment. For example, emulation of the stop instruction 
involves executing a very tight loop to give the appear 
ance of a system halt, and cannot readily be performed 
under the supervision of the TRACE mode. 

In the event the call which led to the privilege viola 
tion is not a "common" instruction, the process 
branches to step 110, where memory-reference accesses 
are generated in a buffer zone around the user stack 
pointer. The creation of such a buffer zone ensures that 
the memory around the user stack pointer is not cur 
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rently paged out by causing a page fault if the zone is 
swapped out. if such a page fault occurs, the page will 
be reloaded, so that as long as the stack pointer points to 
any location in the buffer zone, the corresponding page 
should be resident. 

Following step 110, a dummy privilege exception 
frame is created on the user stack at step 112, followed 
further at step 114 by setting the exception frame status 
register value to trap after each instruction. Such trap 
ping may also be referred to as “trace", and may be 
thought of as step-by-step supervision of the execution. 
Next, at step 116, the exception frame status register 
value is set for supervisor status. This is followed by 
saving, at step 118, the current location of the supervi 
sor stack pointer in a static location and setting the 
supervisor stack pointer to the user stack pointer ad 
dress at step 120. Finally, a ?at is set at step 122 so that 
the trace exception routine knows to expect a trace 
exception from the instruction emulator. The process 
thus permits certain privileged instructions to execute in 
supervisor mode while at the same time protecting the 
pointers necessary for virtual memory. Once the in 
struction completes processing, the routine returns from 
the exception at step 109. 

Trace Patch 

As discussed above, in the preferred embodiment of 
the present invention, use of the TRACE instruction is 
helpful to emulate certain types of instructions which 
create a privilege violation. Other instruction emulation 
techniques could readily be used. In this preferred ap 
proach, however, it is necessary to trace, or supervise 
on a step-by-step basis, the execution of some of the 
system calls to avoid corruption of the stack. The trace 
patch, shown in FIG. 5, will permit such supervision, 
and used to allow execution of calls that cannot be 
easily emulated, or are not yet known to exist. In such 
event, the trace patch is called at step 130, and begins at 
step 132 by inquiring whether the trace was expected 
from an instruction emulation. If so, the process 
branches to step 134 so the processor mode will be reset 
to user mode upon return from this exception. Follow 
ing the reset, the routine determines at step 136 whether 
the user program has independently updated the status 
register. If not, the trace bit is reset at step 138, and the 
routine returns from the exception at step 140. The 
routine then returns from the trace exception, again at 
step 140. Thus, the instruction is allowed to execute in 
supervisor mode under scrutiny, the trace routine is 
then switched back out of supervisor mode, and the 
processor is allowed to continue with other instructions 
in user mode. 
However, if no trace was expected at step 132 from 

the instruction emulation, the routine branches to step 
142, where the routine inquires whether the system is in 
supervisor mode. If so, the routine jumps to the original 
trace vector at step 144. If not, the routine branches to 
step 146, where the trace exception frame is copied 
from the supervisor stack to the user stack. The supervi 
sor stack exception frame is then changed in step 148 to 
the return address of the original trace vector, followed 
in step 150 by clearing the supervisor and trace mode 
bits from the supervisor stack exception frame. Once 
this is complete. the routine returns from the exception 
to the original trace vector at step 152. 
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Line 1010 Vector Patch 

Many operating systems for 68XXX-based machines, 
such as the Macintosh, use line 1010 traps, or “A” traps, 
to handle system calls. Generally, the application desir 
ing to execute such a system call will set up either regis 
ters or the stack with the calling parameters, and then 
execute an instruction beginning “1010". The 1010 in 
struction in turn causes an exception to be generated to 
the “un-implemented instruction" exception vector, 
which effectively extends the instruction set of the pro 
cessor by causing the operating system to evaluate the 
instruction and generate the desired effects in software. 
However, such exceptions cause a transition from user 
mode to supervisor mode, even though the user pro 
grains which made the call are operating in user mode 
with the user stack rather than the supervisor stack. 
Thus, when such a call is made, it is necessary to substi 
tute the appropriate stack pointer to ensure that the 
pointer used by the system call is the same stack to 
which the parameters were originally passed. 
This is accomplished by the routine described in FIG. 

6, where the line 1010 vector patch is called at step 160. 
The routine begins by inquiring, at step 162, whether 
the system was in supervisor mode when the trap was 
called. If so, the routine jumps at step 164 to the original 
line 1010 vector address, taken from the original zero 
base vector table. 

If not, however, the routine branches to step 166, and 
copies the stack exception frame from the supervisor 
stack to the user stack. Next, at step 168, the return 
address of the current exception frame is replaced with 
the original line 1010 vector address, so that when the 
return from the exception is made, execution will con 
tinue with the appropriate information supplied to the 
appropriate stack at step 170. 

Sawp MMU Patch 

Under the current Maointosh operating system, there 
are two common modes of addressing. In twenty-four 
bit mode, only the least signi?cant 24 bits are ordinarily 
recognized. However, in some cases with the current 
operating system all 32 bits are used; presumably this 
trend will continue with future releases of the operating 
system, such that eventually all 32 bits will normally be 
used. When all 32 bits are used, it is necessary to alert 
the PMMU to fully decode the address, but to still point 
to the page translation tables set up by the virtual mem 
ory routines of the present invention. It is also necessary 
to be able to transfer back to 24 bit mode. This toggling 
can be accomplished by the routine shown in FIG. 7, 
which begins at step 180 by a call to the Set MMU 
Mode routine. The routine begins at step 182 by deter 
mining whether the system is already in the requested 
mode. If it is, the routine returns at step 184. However, 
if not, the routine inquires at step 186 whether 32-bit 
mode has been requested. If it has. the PMMU (shown 
in FIG. 1c) is set at step 188 to decode all 32 bits, but still 
uses the page translation tables to decode the physical 
address for any location in the virtual address space. A 
flag is then set at step 190 to indicate the current state is 
32 bit mode, and the routine returns at step 192. 
On the other hand, if the inquiry at step 186 deter 

mines 32-bit mode is not requested, the PMMU is set at 
step 194 to ignore the top byte, or top 8 bits, of the 
32-bit address, and the corresponding flag is set at step 
196. Again, the routine returns at step 192. 
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Bus Error Vector 

When a memory location is called for, but is not 
immediately available for referencing, a bus error is 
generated. In such an instance, it is necessary to deter 
mine whether the location is unavailable because it has 
been paged out to disk; this can be accomplished by the 
routine shown in FIG. 8. The bus error vector is called 
at step 200, and begins at step 202 by saving the state of 
the registers and the PMMU, followed by determining 
the address and the cause of the bus error at step 204. 

If, as determined at step 206, the bus error is not due 
to a page fault, the registers and PMMU setting are 
restored at step 208, and the routine jumps to the origi 
nal bus error address vector at step 210. However, 
where the inquiry at step 206 determines that a page 
fault has occurred, the routine inquires at step 212 
whether a page fault was already being corrected that 
is, the process of swapping information in from disk was 
already in progress) when this page fault occurred. If it 
was, it will simplify operations to ?nish correcting the 
?rst page fault before dealing with the second. This is 
accomplished in step 214 by saving, at a different loca 
tion, a copy of the stack from where the new page fault 
occurred to the current stack pointer. Next, at step 216, 
the registers are restored to their state prior to the oc 
currence of the second page fault-that is, their status 
during the handling of the ?rst page fault, which was 
saved at step 82 shown in FIG. 3. Then, at step 218, set 
the return address of the original page fault to resume 
execution at the double fault restoration routine shown 
in FIG. 9. The routine then preferably switches to a 
very high level of priority, so it will not again be inter 
rupted by the process which caused the second page 
fault, and returns at step 220 to ?nish handling the ?rst 
page fault. 

If, as should usually be the case, there was no prior 
page fault being handled when the inquiry was made at 
step 212, the routine continues by selecting at step 222 a 
page not likely to be needed soon. While various algo 
rithms exist for making this selection, one acceptable 
algorithm is shown in FIG. 10, which uses page usage 
history or aging tables. That page is then mapped out as 
non-resident, still at step 222. At step 224, a determina 
tion is made as to whether the page has been modi?ed 
since the last time it was written out to disk. If it has, the 
page is written to disk at step 226, and a flag is set that 
the page now has a disk image. 
An inquiry is made at step 228 as to whether the 

faulted page has a disk image. If it does, the disk image 
of the faulted page is read from disk at step 230 into the 
physical memory of the selected page, while the faulted 
page is temporarily mapped to an alternate location, 
which may be regarded as a transient page zone (FIG. 
2b), and the page modi?ed flag is cleared. The transient 
holding zone is used to prevent processing of incorrect 
code or data in the event an interrupt occurs which 
requires the use of code or data on the page before the 
code or data in that page can be fully updated from its 
disk image. If the answer to the inquiry at step 228 was 
no, or following the reading of the disk image in step 
230, the routine advances to step 232 and remaps the 
now-restored faulted page to the address where the 
page fault was detected. Thereafter, in step 234, the 
registers and PMMU status are restored, and the routine 
returns in step 236. 

If the inquiry at step 212 did not ?nd a second page 
fault, the return at step 236 will simply return to the 
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system. However, if a second page fault did exist, the 
return address supplied at step 236 will jump to the 
routine shown in FIG. 9 for double faults, so that the 
secondary fault(s) can now be handled. The routine is 
called at step 240, and begins at step 242 by copying the 
saved stack (caused by the second page fault) back to its 
original location. The registers are then restored in step 
244 to their state at the time of the second page fault. 
Next, the return address for the stack is altered in step 
246 to return to the routine to restore the registers and 
stack to the state they were in when the second page 
fault occurred. The system then resumes processing. If 
the page swap which solved the ?rst page fault also 
solves the second page fault, no error will be reported. 
However, if the solution to the ?rst fault does not solve 
the Second page fault. the second page fault will recur. 
However, upon recurrence, it will be the ?rst fault, and 
can be handled accordingly. The routine then returns at 
step 248 from the bus error exception. 

Page Selection Routine 

For any virtual memory system to work, it is some 
times necessary to retrieve pages of memory from disk. 
If physical RAM is full, as it presumably is, it is neces 
sary to mark to disk, or page out, pages in physical 
memory to make room for the pages retrieved from 
disk. Various criteria can be implemented which will 
accomplish this task with reasonable results. 
However, at the same time, certain critical pages 

should not be swapped out to disk. This set of critical 
pages includes, particularly, the pages of memory nec 
essary to execute a page swap. While these pages can, in 
some virtual memory processes, be readily identi?ed, 
such identi?cation may not be done so readily in the 
Apple Macintosh environment where the code which 
implements virtual memory is added to an existing oper 
ating system. Of course, with sufficient knowledge of 
both the operating system and the process of the present 
invention, it would be possible to identify, in advance, 
such critical pages and mark them as immune to page 
swaps. 
The routine shown in FIG. 10 has been optimized for 

aftermarket use in the Apple Macintosh environment. in 
part because it does not need advance identi?cation of 
the critical pages. More speci?cally, the page selection 
routine of FIG. 10 relies primarily on three factors: a 
history table (which is based on usage in the preferred 
embodiment but may be based on any of a wide variety 
of criteria), a “don't swap this page” flag, and a page 
modi?ed flag. 
The history table (see FIG. 2b) concept tracks. for 

example, how recently and frequently a page has been 
accessed. The “don’t swap“?ag, discussed further be 
low, protects certain key pages of physical RAM from 
ever being swapped to disk, and is designed to protect 
critical information such as the virtual memory code. 
and some sections of the device manager, disk driver, 
system traps, and trap patches. The page modi?ed flag 
determines whether a page has been modi?ed since 
retrieved from disk. 
One reason for determining whether a page has been 

modi?ed since retrieved from disk relates to the reasons 
for allocating, in the preferred embodiment, a disk ?le 
which is larger than the total amount of memory re 
quired to supplement the existing physical memory to 
the total amount of virtual memory. Thus, for example, 
for a current Macintosh [1 which is capable of address 
ing a maximum of eight megabytes under the current 
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release of the Macintosh operating system, the disk ?le 
may also eight megabytes, although either larger or 
somewhat smaller sizes would also work. This, effec 
tively, permits a disk image of each page to be main 
tained in physical memory (RAM). It will be apparent 
to those skilled in the art, given the foregoing discussion 
and the fact that a disk image can always be maintained 
for unmodi?ed pages in physical memory, that, where 
possible, an unmodi?ed page might generally be se 
lected for swapping out, since this eliminates the need 
for a disk write and correspondingly increases perfor 
mance. By weighing these factors. as discussed below in 
connection with FIG. 10, a reasonably optimized candi 
date for replacement is identi?ed. 

In general, the page selection routine shown in FIG. 
10 is a “winnowing out" process by which the system 
itself determines, on a long term iterative basis, what the 
critical page set is likely to be, and errs generally on the 
side of including non-critical pages to avoid swapping 
out critical pages. The first basic assumption is that all 
pages critical to performing a page swap are used dur 
ing each complete page swap, where a complete page 
swap includes both a read and a write. By basing selec 
tion of a page to be swapped out initially on page usage 
history, and not swapping out any page used during 
each complete swap, all the critical pages (plus some 
additional, non-critical pages) will be, at least prelimi 
narily, protected from being swapped out. 
At this point a potential problem exists. Depending 

on the size of physical memory, it is possible that the 
entirety of physical memory will consist of pages that 
are used during the period of time between each page 
swap, even though some of those pages are non-critical. 
This necessitates a second level criteria for deciding 
which pages are non-critical. While many such criteria 
will work, a presently preferred approach involves 
setting a flag bit for each page written in memory dur 
ing the initial installation of the virtual memory soft 
ware. This marks all critical pages, but also marks many 
non-critical pages. It will be apparent to those skilled in 
the art that the truly critical pages have both a heavy 
usage history (i.e., satisfy the ?rst criteria), and also 
have the flag bit set (the second criteria). 
The combination of the two criteria then permits 

selection of a non-critical page for swapping. By using 
the page usage history criteria to make a determination 
of which page to swap out so long as not every page is 
heavily used, non-critical pages including those pages 
with the flag bit set can be swapped out to disk. Then, 
in the somewhat unlikely event that every page in mem 
ory has a heavy usage history, those pages which do not 
have a flag bit set can still be selected as non-critical. In 
this manner, a non-critical page can always be selected 
to be swapped out to disk. 
The page selection routine described generally above 

can be appreciated in greater detail from the following. 
The page selection routine is called at step 300, and 
begins at step 302 by inquiring whether it is time to 
update the aging tables. The criterion for updating the 
aging tables can be varied over a fairly wide range, and 
might include real time, recent usage history of any one 
or more pages, frequency of occurrence of page faults, 
or number of page swaps since last update, as just some 
examples. Time and usage history have thus far been 
used in a preferred approach. If the inquiry at step 302 
determines that it is not time to update, the modi?ed and 
unmodi?ed pagse with the lowest usage history are 
identi?ed at step 304. 
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However, if an update is in order, the time out ?ag is 

reset at step 306. The aqing tables are then updated at 
step 308 with usage information since the last update, 
and the usage flag is reset. Next, the modi?ed and un 
modi?ed pages with the lowest usage history (as stored 
in the aging tables) are identi?ed at step 310. 

Regardless whether the aging tables were updated, 
the appropriate branch supplies the usage history of the 
modi?ed and unmodi?ed pages to step 312, where the 
usage history of the unmodi?ed page is compared to 
that of the modi?ed page in accordance with any suit 
able weighting criteria, and the least used page as deter 
mined by that criteria is then selected at either step 314 
or step 316, and passed to the next step. As noted above, 
it is faster to mark an unmodi?ed page as non-resident, 
and so in most cases it is preferable to use a weighting 
criteria that tends to select unmodi?ed pages to be made 
non-resident. 

In some cases, however, it will not be desirable to 
swap out the selected page, whether modi?ed or un~ 
modi?ed. Most such pages are marked with a “don't 
swap" ?ag. However, it might occur that a page that is 
not so marked will still be selected by the page selection 
routine because all pages are being used regularly. Such 
undesirable swap-outs can be avoided by keeping track 
of usage history, such as by the aging table discussed 
above, and imposing a rule that any page which has 
always been used during the period between any two 
disk swaps is not to be swapped out. This is shown at 
step 318, and if the selected, least used page does not 
have a full usage history, it is selected to be marked 
non-resident (swapped out) at step 320. 

Alternatively, if the page selected as least used does 
have a full usage history, that page cannot be selected, 
and the aging tables are again updated at step 322 so that 
another page can be selected. Pages having a full usage 
history but which are not marked with a “don't swap" 
?ag may be marked as slow aging pages. Then, as 
shown at step 324, the aging tables for the fast aging 
pages can be updated, new “lowest usage" unmodi?ed 
and modi?ed pages selected, and the routine returned to 
step 312 for further processing. 

Read Patch 

The read patch routine, shown in FIGS. Ila-11b, is 
essentially a pre-fetch of pages of disk data to physical 
memory. Such a pre-fetch is particularly helpful in the 
virtual memory context to avoid a page fault during 
time critical operations in which occurrence of a page 
fault during the operation can cause an error. An exam 
ple of such a time critical operation is a read (or write) 
from disk in which a page fault during the read can 
cause the status of the disk interface to be lost. More 
speci?cally, during a disk reads or writes, the spinning 
hard disk may not be able to wait and hold its place 
while a page fault is made good. Thus, it is helpful to 
avoid such situations by what is referred to herein as 
“pre-fetching”. 

Successful use of pre-fetching relies in part on the 
good programming practice that [/O operations are 
executed only through the operating system. That is, 
any program or peripheral that needs to perform an [/0 
operation posts that request to the operating system. 
The request to the operating system includes where the 
information is to be placed in memory, how much infor 
mation is to be transferred, and where the information 
can be found. The operating system then performs the 
operation and returns the result. By intercepting and 



5,063,499 
17 

managing such calls, it is possible to ensure that no page 
faults will be generated from the I/O request during the 
critical 1/0 period. 
The solution to this problem used in a preferred em 

bodiment of the present invention amounts to keeping a 
list of the pending I/O operations, and the locations to 
which those I/O operations have been directed. Those 
locations are temporarily marked with a “Don’t Swap" 
flag, and so can be regarded as temporarily locked in 
physical memory, or RAM. When the I/O operation 
has been completed, the “Don’t Swap" flag is removed 
for those temporarily locked locations, and they are 
again free to be swapped if appropriate. 

In rare instances, it is possible that an [/0 operation 
will request a single transfer which is larger than the 
number of available pages of physical memory. For 
example, a Macintosh computer having only one mega 
byte of RAM available for such an I/O call may receive 
a request for a ?ve megabyte transfer. There is not 
enough memory available to handle the operation in 
one step. In such event, the process of the present inven 
tion can break the large read request into a number of 
smaller read operations, each of which can be accom 
modated by the amount of available memory. Thus, for 
the example of a request for a ?ve megabyte read, the 
present invention can readjust the I/O call into five one 
megabyte reads. Following the last small read, the call 
is readjusted back to appear as if a single ?ve megabyte 
read occurred, so that the calling program is unaware 
that the read was not performed as one contiguous 
piece. 
To understand the foregoing in greater detail, refer 

ence is again made to FIGS. 11a and 11b. The read 
patch is entered at step 340, and inquires at step 342 
whether the call which entered the read patch is a file 
system call rather than an I/O call. If it is a ?le system 
call, the routine branches to step 344, where it jumps to 
the original read trap address. 
However, if the call which caused entry to the read 

patch is an I/O call, the routine branches from step 342 
to step 346, where supervisor mode is enabled. The 
system starts with the first block of information to be 
read from disk, at step 348, and determines at step 350 to 
what memory page the block will be written. It is then 
determined, at step 352, whether that page is resident. If 
not, a determination is made at step 354 whether the 
page of physical memory will be completely overwrit 
ten by the read from disk. If the page is to be overwrit 
ten, the disk image flag for the page is cleared at step 
356; if not, step 356 is bypassed. Either way, the page 
fault routine of FIG. 8, beginning at step 222 is then 
used to validate the page. 

If the page was not previously marked with a Don’t 
Swap" flag, the page is then temporarily locked at step 
360 by setting its “Don't Swap" flag, and the page is 
added to a list of temporarily locked pages. Once the 
page has been temporarily locked, a determination is 
made at step 362 as to whether additional blocks of data 
are to be read in. If they are not, the routine branches to 
step 364 where the requested read is performed, follow 
ing by unlocking the temporarily locked pages at step 
366, restoring the status register from the stack at step 
368, and ?nally returning at step 370. 

In many such cases, however, additional blocks of 
data will be called for, in which case the routine will 
branch from step 362 to step 372. At step 372, a determi 
nation is made whether the maximum number of tempo 
rarily lockable pages have already been locked. In most 
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cases, the answer will be no, and the routine will loop 
by examining the next block to be read from disk at step 
374 and then re-entering the routine at step 350. 

In some cases, however, the maximum number of 
pages will have been locked, as determined at step 372. 
In such event, it is necessary to break the read into a 
plurality of smaller reads. To accomplish this, the rou 
tine will branch to step 376, where the size of the origi 
nal read request will be stored. Then, at step 378, the 
read request is reduced to match the maximum number 
of allowable locked pages, followed at step by a read of 
that reduced size. 

After completion of the reduced read, another read is 
set up at step 382, extending from the end of the last 
block actually read to the end of the originally re 
quested read. Following set up, the next block of infor 
mation is read from disk at step 384 and, as before, the 
page to which that block is to be written is identi?ed. If 
the page is resident, as determined at step 388, the page 
is added to a second list of temporarily locked pages. 
As before, if the page is not resident, an inquiry is 

made at step 392 whether the page of physical memory 
will be completely overwritten by the read from disk. If 
the page is to be completely overwritten, the disk image 
flag for the page is cleared at step 394. If the page is not 
to be overwritten, or after clearing the disk image flag 
if to be overwritten, the routine continues with step 396, 
where the page fault routine shown beginning at step 
222 of FIG. 8 is used to validate the page. 

Thereafter, the successive next-last in the list of tem 
porarily locked pages is selected at step 398, and that 
page is swapped out at step 400. This frees up a page for 
this block of the read operation (previously no addi 
tional pages of physical memory were available since 
we had reached the maximum number of locked pages 
in performing the previous section of this 1/0 call), and 
so this logical page is then remapped into RAM at step 
402 to be ready for the next read, at which time it will 
overwritten. 
The results of either step 390 or step 402 then cause 

the routine to continue at step 404, where an inquiry is 
made as to whether there are more blocks to be read in 
this request. In some cases there will be more blocks to 
read, in which case the routine will branch to step 406, 
where a second inquiry is made as to whether the maxi 
mum number of temporarily lockable pages has already 
been locked. In a good percentage of cases the answer 
will be no, in which case the routine will loop back to 
step 386 through step 408, where the next block to be 
read from disk is examined. In some cases, however, the 
maximum number of temporarily locked pages again 
will have been met, so that a reduced size read is again 
required at step 410. In this case, the size of the read is 
reduced to the amount of validated memory, and then a 
read is performed at step 412, after which the routine 
loops back to step 382. 

Eventually, the looping will return to step 404, and 
no more blocks will be requested. At this point, the 
routine branches to perform the final read, at step 414, 
followed by unlocking the pages of the second list of 
temporarily locked pages at step 416. Next, the parame 
ter block pointed to by the original read request is re 
stored to the same state as if it had been completed in 
one pass, at step 418. and the status register is restored 
from the stack in step 420. The routine then returns 
control to the system at step 422. It can be appreciated 
that, in this manner, large size reads can be accom 
plished. Although not shown, in a similar fashion a 






























