United States Patent [
Garber

5,063,499
Nov. §5, 1991

Patent Number:
Date of Patent:

(1]
[43]

{S4] METHOD FOR CREATING VIRTUAL
MEMORY SYSTEM BY REDIRECTING
ACCESS FOR USER STACK INSTEAD OF
SUPERVISOR STACK DURING NORMAL
SUPERVISOR MODE PROCESSING

[75] Inventor: Jonathan F. Garber, Oakland, Calif.

[73] Assignee: Connectix, Inc., Menlo Park, Calif.

[21] Appl. No.: 294,831

[22] Filed: Jan. 9, 1989

(51] Nt CLS oo GO6F 12/02

[52] US.CL oo, 395/500; 364/244.3;

364/246.11; 364/254.8; 364/261; 364/DIG. 1

[58] Field of Search ... 364,200 MS File, 900 MS File

[56] References Cited

U.S. PATENT DOCUMENTS
3,815,103 6/1974 Holtey et al. ..ecreeernrenene.e. 364/200
4,493,035 1/1985 MacGregor et al. . . 3647200
4,519,032 5/1985 Mendell 3647200
4,528,624 771985 Kamionka et al. 364/200
4,542,458 971985 Kitajima et al. 364/200
4,592,011 5/1986 Manteilina et al. ... 3647200
4,617,624 10/1986 Goodman 364/200
4,669,043 5/1987 Kaplinsky 364/200
4,714,993 12/1987 Livingston et al. ... 3647200
4,825,358 4/1989 Letwin 3647200
4,849,878 7/1989 Roy 364/200
4,868,738 9/1989 Kish et al.cccoevevnerrrenner, 364/200

OTHER PUBLICATIONS

“Editorial—'89 Won't be Apple’s Year of Multitask-
ing”, MacWeek, Jan. 3, 1989 p. 22,

“Virtual Memory Ends RAM Jam”, MacWeek, Jan. 10,
1989 p. 1.

*Latest—Virtual Memory Draws Nearer”, MacWeek,
Jan. 31, 1989 p. 1.

“First Look—Virtual 2.0 Beats Mac’s 8M-Byte RAM
Barrier”, PC Week, Oct. 23, 1989, pp. 15, 18.
Designing Cards and Drivers for Macintosh II and
Macintosh SE Apple Computer, Inc., Addison-Wesley

-

IN[T 1o

AROPER D
ENVIRONMENT>

PROGRAM
ALREADY
INSTALLED”

S—

RE-MAP PHYS, MEM TO
VIRTUAL ADD SPACE, CREATE
MAPPED ZONE FOR 3e
STARTUP SYSTEM STACK

I
[MaP vIRTUAL MEM. CODE |34 "
[TQ TOP OF VIRT ADD SPACE
r

—_

1El
Eka

L
[LOCK FREQUENTLY USED PAGES |36

\ 5 /»u
[T 5e™ svs b STATIC MEM. | ~BEFORE
1ZONES T8 SLOW-AGING STATUS |38 \(/
| rez

S

v SET BUS ERRQR VECTCP &
SwopMMmode ROUTINES

i CaPv PROGRAM 10| 26
‘ RECONFIG PMMU 1O 1 FIXED LOCATION |
| USE NEw PAGE TABLES | 42 __%‘
! HOW MGECH

| meaL wemgRy» 28

BEGIN WARM RE-BO0T [R S,
CREATE

SAGE TABLIZ

,//TU\\ ‘

f waRrM

| RE- 8007 | 46 ———
NG

30

22
ALLOCATION
SUCCESSFUL™

Publishing Company, Inc. 1987; ISBN 0-201-19256-X
(pp. 1-4 to 1-6).

Macintosh Family Hardware Reference Appie Com-
puter, Inc., Addison-Wesley Publishing Company,
Inc., 1988; ISBN 0-201-19255-1 (pp. 16~10 and 16-11).
MC68020 32-Bit Microprocessor User’s Manual (Third
Edition), Motorola, Inc., Prentice-Hall, Inc. 1984, 1985;
ISBN 0-13-566951-0 (particularly Section 1.3).

“Eternal Ramdisk Program”, Dec. 06, 1986, Com-
puServe Information Service.
Byte, Nov. 1989, pp. 341-360.
“Connectix’s Virtual Memory Solution”, Macintosh

News, Jun. 5, 1989, p. 8.

“Mac the Knite”-*No field test for 3-slot '030box2",
MacWeek, Nov. 29, 1988, p. 70.

MC68030 Enhanced 32-Bit Microprocessor User’s
Manual (Second Ed.) Motorola, Inc., Prentice-Hall,
Inc., 1989, ISBN 0-13-566951-0 (pp. 1-1 to 1-12).
MC68851 Paged Memory Management Unit User's
Manual; Motorola, Inc., Prentice-Hall, Inc. 1986 ISBN
0-13-566902-2 (particularly Chap. 2 and Appendix C).
MC68851 Paged Memory Management Unit User’s
Manual, Second Ed.; Motorola, Inc., Prentice-Hall,
Inc., 1989, ISBN 0-13-566993-6 (as with the first edi-
tion, particularly Chap. 2 and Appendix C).

Operating Systems Design and Implementation, An-
drew S. Tanenbaum, Prentice-Hall, Inc., 1987; ISBN
0-13-637406-9 (Chap. 4).

Primary Examiner—Thomas C. Lee
Attorney, Agent, or Firm—Harrison & Eaken

(57 ABSTRACT

A method for causing suitably configured versions of
the Apple Macintosh computer running the Apple Mac-
intosh operating system to operate in user mode while
causing at least user programs to continue to perform as
though operating in supervisor mode, and in conjunc-
tion therewith a further method for implementing vir-
tual memory on such Apple Macintosh computer sys-
tems.

11 Claims, 10 Drawing Sheets

14

|
msmu) }
i
i

—_—
i

«8[OPEN VIRTUAL MEMORY FIiLE |

\/

\
so[BEDIRECT R/w TRAP Carcs]

o) (CREATE NEw EXCERTION
IVECTOR TABLE (N PROT MEM

[

PATCH WELTORS 7O NEW

YES 1

20

[L_OCATE VIRTOAL | 5‘{ EXCEPTION VESTOR TABLE ’
INSTALLE D_ MEMORY TILE

POINT WBR TO NEw]

-
| ;
%' guCEPT vECTOR TAdLE

]
38| CET JIET STACK POINTER |

~g

| 60| SET SUPERVISOR STACK POINTER
‘ |
@\ -
{IEISTNS.L ! sa[Srlw {CON "
v s TwiTIe TCOUSER MODE |
——
< K
6o ! RETURN ;i
N

5,063,499

Sheet 1 of 10

Nov. §, 1991

U.S. Patent

\vln//

\\thh&uuxm

d0d43
SNA WOI4

NN

8v2
134

1NY4 39vd 9180 01
A0Tdd JLIVLES 01 NOVLS
NV S¥31ST193y 3401534

M HITHM NI LNOY

01 NaNL3y 0
A4 "Jaav

L AJIV1S SIHL
"N1J 3317V

O 2Jandiy
1dv d0ldd

El 4%

1INv4 39vd @2 1v 31vis
Cl SJ31SI93y 330153y

A4

NOT1v307 WNIOIy0 0L

AIVE AJIVLS

d3AVS AdOD

Adl

2%

N3

NO[1v301S3

17NV 4 Obe
379n0a

6 od

nsrg

AdOW3INW

AW Snd

HJ1¥1

vivd LV

e

sng aay

“.m>Ia "

MWW

e

SNE " 00V
Wl 1907

(—=

AWHHUHoGJ

Nd2

el oangiy
14V 401dd

NOTLMJ3X3 3WNS3y

ATVIS WOHY A0SS3Io0Yd
40 31VI1S 3a0iS3y

ANTLNOY dYMS 39vd 31N23x3

AIVLS NO dO0SS320dd 40
3LVLS IN3YaND 3JAVS

SS332v

J31dW3L1Y
13313a

Sheet 2 of 10 5,063,499

Nov. 5, 1991

U.S. Patent

ASOW3N
JILVLS

WILSAS ONILVd3IdO

NOZ
NOILV3I1ddVv

INOZ AJVYLS d3SN

AJOWIW OT1IVLS A3HIO

ANOZ 399Yd INIISNVL

SITMEVYL NOILVISNVL

AT NN dYMS

3003 AJOW3IW TYNLAIA

S3MGVL AdOLSIH

gVl 3ISvd d0123A

ANOZ YAIVLS o.dNS

d344N4g ANNOS

: q1 eangiy

WIALSAS ONILVHIHO

AWV ANOZ

NOTLVIT 1ddv

y1dang

ANOZ AJVLS

AJUOWAW JTLIVLS

TdaAn

qg 2andiyg

TdOLW3NW

dldind

dO1W3NW

Sheet 3 of 10 5,063,499

Nov. 5, 1991

U.S. Patent

99

Lo

[300w 33N 01 HOLIAS

|

| vo
[NOJI MOHS

4%
_

[¥31NI0d X0v1S JOSIA¥34NS 135 | 09

[¥3INIOd 9IS ¥3SN 135 ec

378v1 30LI3A 1d30X3
M3IN D1 ¥8A INIOJ %6

378Y1 ¥0133A NDILd430X3 be
M3N 01 SYOLI3A HILvd

WIW "108d NI 37991 30123A
NOILd33X3 M3N 3Lv3y)

_ STV dvdal MA/¥ 1039103 _om

[3714 A¥OW3IW_IWNISIA N3dO |8*

L

2s

1

o2INgJ1
.—m ot $314vL 39vd
EICERR,

_

82 CAIOWIN Y3y
H3OW MOH

"TIV1SNI

SSvdad

ve

NOI19207 q3XI4
01 WY3D08d AdOD

¢ N4SS3IINS

NOI[1vI0TY S3A S3A

4340434
J3INWLSNI
A3N3

A4 AJOW3NW
INLAIA 31207

02

¢3INIVLSN]
AQY3dY
WY390dd

ON

1Y LSNI
SSvdad

¢INIWNOSIANT
d3d08d

9y [1009-3y

3—

1008-33 Wavm NI938 |

=44

$37dvY1 3994 M3N 3SN
0L NWWd '9I4NOD3Y

|

1h4

SINILNOY apounuWdoms
3 d01J3A 30883 sng 13S

|

8¢

SALVLS 9NIDY-MO71S 01 S3NDZ
W3W JI1YLIS B 'SAS 13S

9 [$39vd G3SN ATLNINDIAI X307

vE

30vdS 'aav LAIA 40 401 OL
3000 'W3W WNLAIA dVW

2t

AJYLS W3ILSAS dNlavis
J04 3INOZ A3ddvW
J1V3dD 30vdS 'aav WNLAIA
Ol 'W3IW 'SAHd dvW-3d

Sheet 4 of 10 5,063,499

Nov. 5, 1991

U.S. Patent

- [

"1d43I0X3 3091 01V INWAI

S133d4X3 IANTINOY " 1d433X3
J0vdl OS 9v14 138

|

"ddv dLld MIYLS 33sSN
01 dld XIVY1S o, dNS 135

|

N.2307 J11v1S NI
dld AIVIS ¥.dNS 40
NOTLYI07 IN3JAND 3AYS

SN1YLS ¥.dNS 304
INTIYA 93y SNLVYLS
INVd 4 NOTLd3DX3 13S

(NOTLONALSNT HOWI ¥31 49
dvdl> 300W 3J0vdl 304
INIWA ¥3LS193y SN1YLS
JWVY4 NOI1d30X3 L3S

_

AJIVLS d3SN
NO 3WYy4 NOI1d432Xx3
J9ITIATId AWWNG 31¥38D

dAINIOd AIVLS
_d3SN aNNO¥y 3N0Z
434409 NI S3ISSIIIV
"43d-"W3AW 319¥3NID

221

021

81

911

149

arl

(U

3a0wW
d.dNS
NI 3INNILINOD
"NaN13y

v01

601 NaniL3y

R/S NI NOILINALSNI
NOWWOD 31vTINKW3

¢NOT1INYLSNI
NOWWOJ

9

43002
AVNLYIA

¢ 24nsLy

061{ NaN13Y

4O103A NOILd30X3 A8 Ot
Q3INIOd SS3¥Adv HSNd

a3937IATdd
W04 119D

201

HJ1vd

001 {3937TATdd

¥ aangiy

88

98 | H3GWNN ¥O1D3A
NOILJ30X3 139

SS3IHAQY MIVIS
01 ¥3INIOd
¥8 | 3IAVS HILINIOG
HOVIS 'SYILSIDIN
40 SNLVIS 3AvS

S1NVY 39vd
Y ONISS320¥d
ATINIHEND

28
H31vd
03340123A
08

=3y

Sheet 5 of 10 5,063,499

Nov. 5, 1991

U.S. Patent

NOT1d33X3
30Vl WO 4
Nan 13y

ov1

33vdL 1383y

8€1

LY31S193
SNLYLS 3HL
d31vadn " LINYLSNI
d33vyl
SVH

NJNL13d NO 300W
per | ¥3SN ¥3IINIIY 0L
WY MIVLS 13SIY

CNOTIVTINWI " ISNI
WOd4 33vd1l SIHL
ONT123dX3

061

8y 1

9t

30133A

OL dwWnr
124

JOLI3A
ONIOVY3T 30vdL
21\ 9180 01 1d42X3
WOd4 N1y

JWVd4 T 1d3IX3 ADVLS
ddNS W04 SL19 300W
30val 3 ddNS ¥v3D

A0LI3A 30vdL "9130
40 4dv Niad 0L 3IWvad
"1d30X3 MIVLIS ¥.dNS 9HD

AJVES ¥3ISN OL A, dNS WOHA
JWVd4 " 1d43DX3 30v¥L AdOD

30vdl 910

ON

G 24n31y

5,063,499

261 NO11d33X3
01 WOd 4
vel NJNi3y
[961
3d0W 119 2¢€
d04 Dvid L3S 3d0W 114 v2 SS$33aav J01I23A

_ d04 9v14 L3S 891 0101 3ANIT 9130/M

Wy ' N n
3IVdS SSIFJAAY WNIYIA ? ,ENCQQ%&Zu_.um_xuuu.—nﬁun_w_umm 7
d4 S3Tgvl 19vd

433X ‘Stid 2€ v SSIYaAaAY 40 3I1Ag9 JolL
300234 0L NWWd 13S JA0ONDTI 0L NWWE 13s

Sheet 6 of 10

Nov. §, 1991

U.S. Patent

= : MIVLS ¥3SN 0L XIVIS
991 4. dNS WOd4 3Wva4
"1d32X3 MIVLIS AdOD

881

ia, 1S9y
300w
31a-2¢€

S3A

¢d3nvo

“aav a123A

. dval
0101 3NIT 0140 NIHA I00W
3. dNS NI

¥91

300K
d31S3NB3y NI

AQY 3V mw
9 aanfiy oo

JOyY3 ON
‘Nani 3

), 2JN314]

NWW 325 | 081

Sheet 7 of 10 5,063,499

Nov. 5, 1991

U.S. Patent

-

N2t 3

el

veEe

f
Ov4 0. 4100W 399d av31D
ASTA WOYS 39YWI av3y

0€2

[

JOVWI MSId SwH
19Yd LvHL 9914 L3S
ASTA 0L 39YWI 3IAVS

922

Q o4angiy

022

:

SNLYLS WKW
"SY3LST93Y F301S3

I

"A00Y a3Lnvd Ly
399d Q3LMNVS dvW3d

T

ON 2ed

¢3OVNW]
AS 1A
JAYH 39vd
a31nvd

[INILNOY NOTLVd01S3y LNV
90 1Y NOILN33X3 3WNsS3y
01 17Nv4 3994 9130
40 SS33adv NanL3xd 13S

812

ALYLS Bl SY31SI93y 3¥01S3y

LdNAATINT LNV I-39vd 01 d01a8d

912

_

NOILYIDT 33HLONY
1V d3INIDOd MIVLS IN33ND
Ol 03330330 LdNAA3LNT M3IN
JA3HA MOVLS 40 AdOD 3AVS
T1Sd14 JNV4 1SAT4 HSINI A

vz _

<31 4100KW
N334 39vd
SVH

v

401I3A
SS3ydav
d0443 Snd
‘9130 0L
dWnr

0i1e

80¢2

|

NOOS a3sn 38 0Ot
d3133d4x3 LON 3I9vd
INIAIS3S LNO JdYW

2ae

¢d344N320
LINv4 39v¥d SIHY
N3IHM LNY 4 39vd
v ONI123¥300
AdY 39Ty

L1nv 3
39vd 01
INT 4093
ON sng

502

d0d43 SNg 40 3snvd
NV SS3¥0aY 3INIW3313a

02

SNLYLS NWWd ONY
SA31S193d 3AvS

ONTLLI3S NWKWJ
"SY31S193y 40153y

L

202

03

ooc sng

Sheet 8 of 10 5,063,499

Nov. §, 1991

U.S. Patent

S39vd J314100WNN
NV 0314100W dO4
A4OLSTH 399SN 1S3M0T
HLTA 39vYd ONT4
9vI4 399sSn 1383
318v1 399¥d 40 sS39vd
ONIOY 1Sv4 31vadn

12543

S$37avL ONIoY
30 31vadn
LX3N 404 9v14
1IN0 3WIL 1353y

22¢€

S3A

¢AJOLSTH
INI9OY

SV 39¥sSn N4

JAVH 0313373

39vd

—

| 39vd @, J1a0W 103135

91¢€

S3A

¢39vd
03T 4TA0OWNN NYHL
d3A0T ATINIIOIA44NS
39vd a313100W
30 AY0LSIH
39vsn

;

| 39vd a. J1a0WNn 103735
pie

ON

S39vd 031 41Q0WNN
UNY 0314100W 304
AJOLSTH 399Sn 1S3IM0ON
HLIA 39vd (ONI4

ro€E

ON

80¢

£S39vl
INIOV

Jivadn ol

AWIL

d¥AS 01
J9vd 1534
1337138

00¢€

1
$39vd G314100WNN

olg UNY a314100W A04

AdOLSIH 39vsn LS3M0O1
H1IA 39vd (QNI14

V14 399Sn 1353y 131vadn
1897 3ONIS "04NI 39vsSNn
HLIA 378Y1 ONI9Y 319ddn

[

S37dvl INI9v
40 31vddN LX3IN 304
OvI4 1IN0 3WIL 13S3y

J 90€

S3A

01 @andiyg

Sheet 9 of 10 5,063,499

Nov. 5, 1991

U.S. Patent

Nan g 3y 048

89¢

a1l '914 01

|

ATVLS WONS 331ST93H

$39vd a3X307T "dW3l 40 1S17 Ol
Iav TAIAVI0dWIL 39vd X007

CAJOWIW 40 30vd
STHL 31T3MA3A0
A3137dW0D

rGE

=445

oveE

T
SNLIYIS 3I¥DLISTY S3A 09¢€
99¢
XYW d3Ixaon LINITISIN PLE
ISI7 NI S39vd a3Ndo7 AdY 337V 39vd 3510 WOd4
s
ATT3VI0dWIL T HI07INN 2/€ oer S1 dv3y 39 01
_ oce 53079 IX3N
av3a 03LSINOIY WA0HA3d NI INIWYX3
— av3y 34 DL N3LLINM 39 TIM
v9¢ =< 01 s¥o078 2074 m_:H_uo¢a aNI4
J30OKW I
AS1A WONY av3y 34 0L ave
MI0719 IST HLIIA 1avisS
I
300W ¥.dNS 01 HJLIMS
39Yd 3Lvad1 VA D1
INILNOY LNV 39%d 3SN
11*
39vd SIHL d04 L7199
9v14 JOVWI NSIA 3v3I1) 0/1 10N ' ¥aqy
el mweH-menw ‘1D WILSAS dvdl 0v3y
. 9140 01
ERIE annr

Nov. 5, 1991 Sheet 10 of 10 5,063,499

U.S. Patent

22t

cly _

(av3d wandd3d)

dv4 0OS d3ILvdIivA
"WIW 0L av3d a. 150y
IX3N 40 3Z1S 303n03d

AIVLS
WOd 4 331S193y
SNLVYLS 3390183

02+

SSvd 3ND
NI NILLISM 41
SV 31Y.IS 3WvS
01 150y av3y

‘9140 A9 01
d3INIOd »2079
JIL1 3NV
330153

81y

$39vd
a3X307 "diW3lL
40 1SI7 e 40
$39vd 307NN

91y

((av3d wan3¥3d)
b1y

¢d31LSNYHX3
$39vd a3XI01
"dW3l 40
IR

Lav3y
SIHL
404 4. LSOy
$x207d
390W

ASTA WOAS A93d

ON

QI 1 2andiy

l

S39vd 034207 " dW3l
40 1S17 a2 0! qav

06t

LIN3AIS3Y
39vd
S1

ON
88¢€

98€

OL N3LLITHYM 39 MM
A3078 STHL 399d QNI 4

i

ASTA WON4 Qv3d
39 0L NOILYWS04AND 40
AJ078 IX3IN LY 1avLsS

¥8E |

80 39 01 »2079
1X3N 0L 09
20 Av3y LX3N 304 AdY3IN
39 0L 39vd dyW3y
|
00% 1IN0 39vd 1YHL dVYMS
I
86¢€ S$39vd A3XI07
AT1aVa0dW3L 40 1SI17 NI
1SYI-1X3N IX3IN 123713S
96€ I9%d JIVAIvA 0L

ANILNOY 1Nv4 3994 3SN

dv3d a31S3N03d
‘9130 40 ON3 01 av3d
A2078 LSYT 40 (N3 WOd4
Av3d ¥3HLONY dn L3S

30vYd STHL 304
Ov14 39YWI ASIA av3)

28€ -

L

y6E

LASOW3W 40 39vd
STHL 31Td4Md43A0
A13131dW00

Av3y 3ZIS A32N038 WYDJ33d

08E

_

S39vd a3IXNI01
3WYADTW XYW 01
1S3N03d av3y 30nd3y

[

"1S0d 0v3y "01d0
40 3ZIS 33018

|
Ol "914 WOd4

8L€

9LE

5,063,499

1

METHOD FOR CREATING A VIRTUAL
MEMORY SYSTEM BY REDIRECTING ACCESS
FOR USER STACK INSTEAD OF SUPERVISOR
STACK DURING NORMAL SUPERVISOR MODE

PROCESSING

FIELD OF THE INVENTION

This invention relates to virtual memory systems for
computers, and more particularly relates to virtual
memory systems for microprocessor-based computers
using the Motorola 680X0 series microprocessor and
the Apple Macintosh operating system.

BACKGROUND OF THE INVENTION

Virtual memory has long been known for use with
mainframe computers and minicomputers. Virtual
memory basically refers to a technique for combining a
quantity of physical memory, typically provided by

5

10

semiconductor chips such as DRAM, with a block of 20

peripheral storage, which has in the past usually been
magnetic media-based storage such as a hard disk, to
give to the computer user the impression that the
amount of physical RAM is actually larger than the
available physical RAM.

The advantages of such techniques are well known in
the art. Certain of these advantages are particularly
noteworthy at present, including the substantial cost
and relative unavailability of DRAM memory as com-
pared to hard disk memory, as well as nominal space
and power requirements, and nonvolatility.

A variety of virtual memory algorithms are known.
Most use a memory management unit of some sort
which maps a memory address in the virtual address
space either to physical RAM or to the peripheral stor-
age. One such algorithm is referred to as “paging”, in
which the virtual address space is divided into pages,
and pages of information are swapped between the
physical RAM and the peripheral storage. Various al-
gorithms also exist for determining when best to make
such a page swap. One common approach is to swap
pages on demand.

Shown in FIG. 14 is a simplified prior art implemen-
tation of virtual memory. As can be seen, when the

25

30

35

system detects an attempted access to a location of 45

memory not resident in physical RAM, it saves the state
of the processor on the stack, swaps in the page of vir-
tual memory containing the necessary information, re-
trieves from the stack the state of the processor, and
proceeds to execute the instruction that accessed the
virtual space.

Although such virtual memory techniques are well
known, such techniques generally have not been ap-
plied in the microcomputer-based, personal computer
environment. Thus, for example, virtual memory has
not been used in the Apple Macintosh/Macintosh SE/
Macintosh II environment with the Macintosh operat-
ing system. These environments may, in general, be
thought of as Motorola 68XXX-based microcomputers
using the Apple Macintosh operating system. Other
operating systems offered by Apple, for example
A/UX, and certain other manufacturers, such as Sun
Microsystems, for example, use different operating sys-
tems, for example UNIX, with the same classes of mi-
croprocessors and offer virtual memory in such differ-
ent environments.

The Motorola 680X0 series of microprocessors are
designed to have two modes of operation, usually re-

50

55

65

2

ferred to as supervisor mode and user mode. To imple-
ment virtual memory, user programs generally are not
permitted to operate with the 680X0 microprocessor in
supervisor mode. Instead, only the operating system
and operating system calls may run the processor in
supervisor mode, while user programs operate only in
user mode.

A difficulty arises with the Apple Macintosh series of
personal computers using 680X0 microprocessors, be-
cause the Macintosh operating system permits user
programs to operate the 680X0 processor in supervisor
mode. A key difficulty which results is that the user
programs for the Macintosh computer, operating with
the 680X0 processor in supervisor mode, may change
the location of the supervisor stack. FIG. 16 is a simpli-
fied block diagram of the arrangement of physical mem-
ory in a conventional Apple Macintosh computer,
showing the operating system zone at the lowest ad-
dresses in memory, followed by a zone of memory for
application programs. Above the zone for application
programs is a stack zone, which in conventional Apple
Macintosh computers is a supervisor-mode stack zone.
Finally, at the top of memory is a zone referred to as
static memory, where application programs can reserve
a specific portion of memory to store needed informa-
tion, and the information in those addresses generally
cannot be moved by other programs until the system is
rebooted.

Since most, if not all, virtual memory systems save
the state of thprocessor to a stack, permitting the user
program to alter the location of the supervisor stack
while at the same time trying to run virtual memory
may mean that the supervisor stack is moved, by the
user program in supervisor mode, to a location which
the virtual memory system already has swapped out to
disk. When an attempt is later made to save the proces-
sor state on the stack, the state of the processor is effec-
tively lost, resulting in a fatal error.

Thus, while the Macintosh operating system has
many attractive features, including a popular graphics
capability and user-friendly interface, the limitations of
the Apple Macintosh operating system have posed sig-
nificant problems for users desiring more memory and
the associated performance improvements. Thus, there
has been a significant need for a virtual memory system
which is transparent to the normal user of the Apple
Macintosh operating system with Apple Macintosh
computers using the 680X0 processor.

SUMMARY OF THE INvVENTION

The present invention overcomes the limitations of
the prior art by implementing a page-swapping virtual
memory algorithm for the Apple Maclntosh series of
computers having add-on or internal MMU functions
and suitable disk space. The disk space, although typi-
cally a magnetic media hard disk, also can be provided
by a floppy disk, tape drive, optical disk, or other suit-
able form of storage media.

Stated simplistically, the present invention fools the
Apple Macintosh operating system into believing that
the system and all applications running under the sys-
tem are operating in supervisor mode. In fact, however,
the system and the applications are operating at most
times in user mode. In this manner, the stack address
can be carefully controlled, and located where it will
not be swapped out by the virtual memory algorithm. In

5,063,499

3

this manner page swaps to the virtual address space can
be readily performed for less critical information.

More specifically, the present invention interposes a
software layer of virtual memory code between hard-
ware and the operating system. The present invention
therefore runs above the operating system and user
programs. The process of the present invention then
recognizes when the processor tries to execute an in-
struction not available in the unprivileged user mode,
and performs a software emulation of that instruction.
The emulation may either be a specially written emula-
tor, such as might be desirable for certain common
instructions, or execution of the instruction in supervi-
sor mode under close scrutiny.

Additionally, the process of the present invention
intercepts other operations which might corrupt the
state of the stack pointer, and relocates to the appropri-
ate new location, such as a user. stack, the information
sought by or left from those operations. In some situa-
tions, user programs may attempt to alter the addresses
used to perform such intercepts. Such difficulties are
avoided by forcing the routine to alter a different ad-
dress, permitting the original vector exception table to
be left intact. The appropriate jump may then be made
after the process evaluates the requested exception.

To permit the present invention to be implemented
on an Apple Macintosh II computer using a Motorola
68020 microprocessor, a memory management chip
such as the Motorola 68851 PMMU must be added to
the system. A socket for such a chip s provided on the
currently available Macintosh II. Shown in FIG. 1cis a
simplified hardware schematic showing the interposing
of a PMMU chip between the 68020 CPU and memory
such as is found in the Apple Macintosh II computers.

In addition, the process of the present invention oper-
ates Apple Macintosh computers using the Motorola
68030 microprocessor and running under the Macintosh
operating system, since the 68030 internally provides
the memory management features necessary for opera-
tion of the present invention.

To implement the present invention on existing mod-
els of the Macintosh line which use a 68000 processor,
such as the Macintosh SE, Macintosh Plus, Macintosh
512E, and others, it is necessary to add a 680X0 proces-
sor other than a 68000. Numerous accelerator boards
for these Macintosh computers offer just such capabil-
ity, and use either a 68010, 68012, 68020 or 68030 pro-
cessor as well as providing a slot for a Motorola 68851
MMU. As with the Macintosh II, an MMU must also be
added (unless a 68030 processor is added) to permit the
Macintosh SE and Plus computers to run the present
invention.

It is therefore one object of the present invention to
provide a process for implementing a virtual memory
algorithm on an Apple Macintosh computer having a
680X0 processor and operating under the Macintosh
operating system.

It is another object of the present invention to pro-
vide a process by which an Apple Macintosh computer
operating in user mode under the Apple Macintosh
operating system emulates an Apple Macintosh com-
puter operating in supervisor mode under the Apple
Macintosh operating system.

Still another object of the present invention is to
provide a process by which instructions normally pro-
cessed by an Apple Macintosh computer in supervisor
mode can be emulated by an Apple Macintosh com-
puter in user mode.

20

25

30

35

45

50

55

60

65

4

It is a further object of the present invention to pro-
vide a virtual memory system which is substantially
transparent to the user of Apple Macintosh computers
having 680X0 processors running under the Macintosh
operating system.

It is a further object of the present invention to pro-
vide a virtual memory system capable of modifying the
Apple Macintosh operating system to require user pro-
grams to operate with the 680X0 microprocessor in user
mode as opposed to supervisor mode.

It is another object of the present invention to pro-
vide a process layered between the hardware and the
operating system of the Macintosh computer which
permits operation of a hard disk to provide virtual mem-
ory.

Another object of the present invention is to provide
a method of warm booting a Macintosh computer run-
ning the Macintosh operating system which prevents
resetting of a memory management unit and permits
operation of a virtual memory algorithm.

It is vet another object of the present invention to
provide a method for ensuring that no page fault occurs
during time critical operations.

Still another object of the present invention is to
provide a method partitioning 1/0 operations into
blocks small enough to be processed in the amount of
available physical memory.

A still further object of the present invention is to
provide a method for performing an initialization which
permits a virtual memory system to be automatically
installed in an Apple Macintosh computer which per-
mits slot devices and drivers to install in apparently
normal fashion but within the virtual memory space.

These and other objects of the present invention will
be more apparent from the following Detailed Descrip-
tion of the Invention, taken in conjunction with the
FIGS. described below.

THE FIGURES

FIG. 1a is a simplified view of a prior art approach to
virtual memory.

FIG. 1b is a prior art view, in block diagram form, of
the memory arrangement of a Macintosh computer
running the Macintosh operating system.

FIG. Ic is a prior art view of a computer system, such
as the Apple Macintosh II, having a 68020 microproces-
sor, a 68851 MMU, and memory, '

FIG. 2a is a flow diagram showing the installation of
the process of the present invention upon initialization
of a suitably configured Apple Macintosh computer
system.

FIG. 2b is a block diagram view of the memory ar-
rangement of a Macintosh computer running the pres-
ent invention with the Macintosh operating system.

FIG. 3 is a flow diagram showing the process of the
present invention by which exception vectors may be
re-routed.

FIG. 4 is a flow diagram of the process of the present
invention directed to emulating execution of privileged
instructions.

FIG. 5 is a flow diagram of the process of the present
invention which permits certain privileged instructions
to run in supervisor mode under close scutiny, or super-
vision.

FIG. 6 is a flow diagram of the process of the present
invention directed to handling unimplemented instruc-
tion traps, referred to as line 1010 system calls, within
the Macintosh operating system.

5,063,499

5

FIG. 7 is a flow diagram of the process of the present
invention for permitting the Macintosh operating sys-
tem and programs executing under it to run with virtual
memory in 32-bit mode as well as 24-bit mode.

FIG. 8 is a flow diagram of the process of the present
invention for handling page swaps between the physical
RAM and the virtual address space.

FIG. 9 is a flow diagram of the process of the present
invention for permitting the system to handle “double
page faults” which can occur when an interrupt gener-
ates a page fault while a page fault is already in
progress.

FIG. 10 is a flow diagram describing the process by
which the present invention selects pages of physical
RAM to be swapped out to disk.

FIGS. 11a-115, taken together, are a flow diagram
showing a “read” optimization routine in the present
invention for transferring information from the virtual
address space to physical RAM in anticipation of need.

DETAILED DESCRIPTION OF THE
INVENTION

The process of the present invention basically is com-
prised of several routines which cooperate to permit
implementation of a virtual memory algorithm on a
suitably configured Macintosh computer running under
the Macintosh operating system. As noted above, a
suitably configured Macintosh must include a 680X0
processor other than the 68000, MMU functions, and a
suitable storage media such as a hard disk or other com-
parable device. With all but the 68030 processor, such
MMU functions can be provided by adding a 68851
PMMU chip.

With the exception of the installation and page swap
routines, each of these routines may generally be re-
ferred to as a “patch” which fixes a problem the Macin-
tosh operating system trying to run a virtual memory
algorithm would otherwise have. The routines which
comprise the process of the present invention can gen-
erally be referred to as the INITIALIZATION ROU-
TINE (FIG. 2a), the RE-VECTORING PATCH
(FIG. 3), the PRIVILEGE VIOLATION PATCH
(FIG. 4), the TRACE PATCH (FIG. 5), the LINE
1010 VECTOR PATCH (FIG. 6), the SWAP MMU
MODE PATCH (FIG. 7), the BUS ERROR VEC-
TOR (FIGS. 8 and 9), the PAGE SELECTION ROU-
TINE (FIG. 10), the READ PATCH (FIGS. 11a-225),
and the WRITE PATCH, which is substantially identi-
cal to the READ PATCH.

INITIALIZATION ROUTINE

The INITIALIZATION ROUTINE, indicated gen-
erally at 10, is called at system startup by the Macintosh
operating system. More specifically, the program by
which the process of the present invention is imple-
mented is copied into the system folder (or system di-
rectory) of the suitably configured Apple Macintosh
computer. Then, on the next boot of the system, the
program of the present invention is started by the sys-
tem in the normal course of booting, as shown at step
10. The INITIALIZATION ROUTINE of the present
invention thereupon checks, at step 20, to determine
whether the proper hardware (a 68020 processor with a
PMMU, a 68030, or other processor offering compara-
ble functionality) and software (the Macintosh operat-
ing system or comparable) is present. If the proper
hardware/software environment is not present, or upon
user request, initialization is bypassed at step 14, typi-

10

20

25

3o

35

45

50

55

65

6

cally without halting the system. The user may bypass
installation by, for example, holding down the escape
key during boot.

If the proper environment does exist, the initialization
continues at step 16 by determining whether the soft-
ware of the present invention has already been initial-
ized once since power was turned on. This step is signif-
icant in the operation of the process of the present in-
vention. Because the operating system loads into mem-
ory first at power up, the virtual memory process of the
present invention initially runs under the operating
system. By appropriate selection of the program name,
such as by using a space as the initial character in the
name, the process of the present invention will attempt
to initialize, or install, immediately following boot by
the operating system and prior to allowing other pro-
grams to initialize.

The software of the present invention installs itself by
defining the virtual memory space and setting the
PMMU and then, as will be discussed in greater detail
hereinafter, restarts the operating system by a warm
re-boot. The restart, or re-boot, is limited and is prohib-
ited from incorrectly updating the values of the address
at the top of memory, the buffer pointer address, or any
part of the PMMU configuration registers. Since the
virtual memory space and the critical memory settings*
are already defined, following the reboot the operating
system runs in the virtual memory space set up by the
first pass of the present invention, and runs under the
present invention. The operating system then restarts
the virtual memory process of the present invention,
which detects that it has already initialized once since
power up, and that the virtual memory space is avail-
able. The remainder of the installation can then be com-
pleted as discussed below. This “stutter start” technique
(starting once normally, and then performing a con-
trolled restart of the operating system under the virtual
memory process) has been found to assist in providing a
substantially transparent implementation of a virtual
memory system on an Apple Macintosh II or similar
computer.

Assuming the software implementing the present
invention has not already been initialized, the process
inquires at step 18 whether the virtual memory software
has ever (not just on this pass) been installed on this
machine before. If not, a virtual address space is allo-
cated from the disk at step 20. In a preferred embodi-
ment, the disk space allocated at step 20 is contiguous,
although it is not necessary in all instances that the disk
space be contiguous. In addition, with the present re-
lease of the Macintosh operating system, only eight
megabytes of RAM can be recognized by the operating
system, and thus only eight megabytes are allocated at
step 20. However, it is anticipated that such limitations
will be removed from the operating system, in which
case step 20 may be readily modified to include selec-
tion of the amount of virtual memory space desired,
which can then exceed eight megabytes. In addition, for
performance reasons discussed below, the amount of
disk space allocated is presently more than just the
amount required to supplement the physical memory to
eight megabytes, so that a copy of all data stored in
physical RAM can also be maintained on disk. This
increases performance by, among other things, avoiding
the need to write to disk when swapping out unused
pages.

Whether the allocation of disk space was successful is
determined at step 22. If the allocation was not success-

5,063,499

7

ful, installation is bypassed at step 24. However, in most
cases where sufficient free hard disk space exists, the
allocation will be successful. At this point, the disk
space is allocated, which was the purpose of the installa-
tion inquiry at step 18, and so the two paths converge.
Of course, even if the virtual memory system of the
present invention has been installed on this machine
before, if the previousiy allocated space has been cor-
rupted or discarded since that installation, the present
invention will simply proceed as though no prior instal-
lation had occurred.

Following successful allocation of the disk space, the
code which implements the present invention is copied
at step 26 from the disk to a known location in physical
memory. In some embodiments it may be desirable to
oopy the oode to a fixed location in physical memory,
although this is not always necessary. At a later time,
the locations holding this code can be remapped to the
top (highest address) of logical memory and locked
(made immune to page swapping, described in greater
detail hereinafter) to ensure that no portion of the code
is swapped out to disk. The process then determines
how much physical RAM exists, and determines how
much to emulate before reaching the current limit of
eight megabytes noted above. Although the present
version of the Macintosh OS includes an eight mega-
byte limit, step 28 may also include selection of the
amount of memory to emulate. Once the eight mega-
byte limit of the operating system is removed, the user
may then size the virtual memory in accordance with
the available space on the hard disk.

Following the determination of how much virtual
memory will be created, page translation tables are
created at step 30. In a typical embodiment, a single
table entry is made for each page of virtual memory.
The tables are used by the 68851 PMMU (FIG. 1¢) to
address the physical and disk based, or peripheral, por-
tions of the virtual memory space. The tables are then
initialized to recognize the existing amount of physical
RAM, starting at address 0, followed by the allocated
amount of disk-based virtual memory, starting with the
next address following the physical RAM. Such disk-
based virtual memory is alternatively referred to herein
as “‘non-resident”, or “paged out” memory.

Following creation of the page translation tables, a
portion (for example, half or other suitable portion) of
physical memory is typically remapped at step 32 to the
top of the virtual address space. A logical zone for the
startup system stack is then created by remapping a
suitable number of pages [for example, on the order of
four 2K byte pages mapped at the very top of the virtual
address space, although the exact number of pages can
be increased substantially to avoid any possible over-
flow] to a zone at the halfway point between logical
address and the top of virtual memory. This complies
with the manner in which the START MANAGER
routine of the Macintosh OS (operating system) estab-
lishes the beginning location of the startup system stack.
Numerous alternative approaches can be implemented
for mapping and locating a startup system stack, as long
as the logical address space which will hold the startup
system stack is mapped to a location in physical mem-
ory, even though that location may change and may be
unknown. The example described above is at present
believed to provide good performance. An alternative
technique, which would eliminate the requirement to
map out a zone for the startup system stack (which is
effectively the supervisor stack), is to perform the warm

0

5

23

40

45

60

8

re-boot in user mode. Such an approach involves other
complications, but does not require the stack integrity
needed for operation in supervisor mode.

Following the re-mapping of step 32, the page map is
altered at step 34 to map the virtual memory code to the
top of the virtual memory address space. This can fill
the space vacated by the memory taken to create a
mapped zone for the startup system stack.

Once the page map is altered, certain frequently used
pages of the system (and debugger, if any) are locked, or
prevented from being swapped out to disk by the virtual
memory algorithm described below, by setting an ap-
propriate flag at step 36. It is not necessary in all cases
to lock such pages, although such an approach is gener-
ally preferable to ensure critical pages are not swapped
out to disk, to maintain diagnostic integrity (for debug-
ging, if necessary), to maintain a zone of 1:1 logical to
physical memory mapping for alternate bus masters,
and to increase performance. The zone of 1:1 logical to
physical mapping referred to above is typically on the
order of 64K bytes, but could vary substantially.

Following the page locking of step 36, the portions of
memory zoned for the system and static memory are
assigned slow aging status at step 38. As will be dis-
cussed hereinafter, assignment of such status simplifies
determination of pages which cannot be swapped out to
disk. Next, at step 40, the bus error vector is pointed to
the bus error routine, and the Swap MMU Mode rou-
tine (FIG. 7) is pointed to the new Swap MMU address.
tables set up by steps 30-38 by using a call to the Swap
MMU routine.

Finally, after the reconfiguring of step 42, a warm
re-boot of the machine is performed at step 44. The
warm boot uses the same boot code as the original code
in the ROMs of the Macintosh computer, but is tailored
to avoid any call which initializes or otherwise affects
critical memory locations, such as the size and speed of
memory (including MEMTOP) and the start of the
static memory zone (BUFPTR), or the state of the
PMMU, so that the installed virtual memory code will
not be disturbed. The warm reboot allows slot drivers
and device drivers to re-install in the virtual address
space, rather than just in the physical address space,
causing the system to appear as it would if the same
amount of physical memory as virtual memory existed.
During the course of the warm reboot process, the
INIT (step lo) will again be entered.

Since this is a second pass installation, the decision at
step 16 is yes, causing the process to branch to step 48.
At step 48, the process opens the virtual memory file
allocated during the first pass initialization, which pre-
vents the user from throwing the virtual memory file
away during normal operation. Then during step 50, the
read and write trap calls are redirected to the custom
routines described hereinafter.

At step 52, a new exception vector table is created in
static memory and marked as protected, or immune
from page swaps, and then initialized with all vectors in
the table pointing to Re-Vectoring routine. Next, at step
54, the Bus Error, Privilege, Trace and Line 1010 vec-
tors are patched to the routines in the new exception
vector table. The Vector Base Register (VBR) is then
pointed to the newly created vector table at step 56, and
the user stack pointer is set to that stack’s current value
in step 58. In step 60, the supervisor stack pointer is set
to a buffer protected from memory swaps to disk. Fi-
nally, at steps 62 and 64, the icon showing the loading of
virtual memory is displayed and the processor is

5,063,499

9

switched to user mode from supervisor mode. The sys-
tem returns at step 66, ready to begin processing of user
programs.

Once the code of the present invention has been in-
stalled, the logical architecture of memory is substan-
tially as shown in FIG. 2b. The arrangement of FIG. 2b,
which can be contrasted with the arrangement of con-
ventional Apple Macintosh memory in FIG. 15, contin-
ues to show the operating system installed in memory
beginning at address 0. Above the operating system
zone is the application zone, followed by a user stack
zone. The user stack zone of FIG. 24 corresponds gen-
erally to the stack zone shown in FIG. 10, since user
programs under the present invention are permitted
only to modify the user stack zone. Those of ordinary
skill in the art will appreciate that some programs for
the Apple Macintosh, such as MultiFinder, create a
plurality of application zones and user stack zones
within what has been referred to here as a single user
stack zone and application zone. Above the user stack
zone is static memory, but static memory now includes
a zone for conventional static memory, together with
specific portions of static memory assigned to perform
particular virtual memory functions. Those functions
include a supervisor stack zone, a vector base table
(pointed to by the vector base register, or VBR, history
tables, code for the virtual memory process of the pres-
ent invention, and zones for the SWAP MMU process,
translation tables and transient page storage, all as dis-
cussed hereinafter. The installation of the supervisor
stack zone into static memory permits the supervisor
stack zone to always be in a known location. The super-
visor stack zone, which is typically a few thousand
bytes, for example 8K bytes, but could range to on the
order of 32K bytes, located in physical memory, al-
though its logical address is very near to the top of
memory. Those skilled in the art will appreciate that
logical addresses need not map always to a physical
address on a 1:1 basis.

Re-Vectoring Patch

With reference now to FIG. 3, the flow diagram
shown therein describes the redirection of the exception
vectors not treated specifically hereinafter. Basically
the approach taken by the routine shown in FIG. 3 is to
receive the exception vector, look up the value of the
address currently stored in the original vector table, and
Jjump to the routine at that address. This leaves the stack
unaltered from what it would have been if handled
direotly. Thus, programs can be fooled into not realiz-
ing the VBR has changed locations, while still being
permitted to alter vector addresses in the original, zero-
vector table. The programs can aiso affect where the
exception will be processed, while leaving the supervi-
sor stack protected. Optionally, to improve system per-
formance, interrupts can be re-enabled during the page
fault caused by the exception vector, after saving a copy
of the registers and the stack pointer on the stack. Sav-
ing such additional information will permit handling of
secondary page faults, as will be described in greater
detail hereinafter.

In FIG. 3, when an exception vector is received, the
routine is called up at step 80, and begins by determin-
ing at step 82 whether a page fault is currently being
processed. If it is, a copy of the registers and the stack
pointer is saved on the stack, and a pointer to the cur-
rent stack address is saved in a static location, all at step

—

5

20

25

30

45

60

65

10
84. This permits interrupts to be re-enabled, which im-
proves the apparent response of the system.

If no page fauit was being .processed at step 82, or
following step 84 if a fault was being processed, the
process continues at step 86 by obtaining the exception
vector number from the exception stack frame. The
current address pointed to by the exception vector num-
ber is then pushed on the stack in step 88, which permits
execution to resume in step 90 at the original exception
vector address. In this manner, the exception vectors set
forth in Table above can be processed in essentially the
same manner as for a non-virtual memory system.

Privilege Violation Vector

With reference now to FIG. 4, a solution is shown for
another type of problem with occur with a virtual mem-
ory system on the Macintosh system. Since the proces-
sor is now normally running the operating system and
programs in user mode, while the operating system and
programs expect to be running in supervisor mode,
there will be some occasions in which the CPU will be
instructed to execute supervisor-only, or “privileged”
instructions. This causes a privilege violation, which
typically can be handled in either of two ways. First,
the instruction can be emulated in software so that the
user program does not know the instruction was not
actually executed. The second alternative is to permit
the instruction to execute in supervisor mode only
under careful supervision, and to then switch the system
back to user mode. A combination of these approaches
is shown in FIG. 4, in which instructions predefined as
“common” be emulated, but other instructions are exe-
cuted under careful supervision, typically through use
of the TRACE instruction in the Macintosh operating
system although other techniques are possible.

Thus, when the privilege error occurs, the privilege
patch routine is called at step 100. If the privilege error
results from a system call by specially authorized code
segments, including code of the present invention, the
process branches at step 102 to permit a return to the
system at step 104, with the system continuing in super-
visor mode.

However, if the call is not from the privileged virtual
memory code of the present invention, an inquiry is
then made at step 106 to determine whether the call
causing the privilege error is a “common” instruction.
Common instructions, which are herein intended to
mean those which are frequently used and easily emu-
lated, are then emulated in software at step 108, and the
System returns from the privilege exception at step 109.
Typical instructions which may be viewed as common
are the move status register to A7 instruction (and its
converse), and the change priority instruction. Other
instructions, such as the stop instruction, any instruction
which accesses or changes the address of the VBR, and
the reset instruction are also defined as “common” even
though they are infrequent, cannot readily be traced, or
must provide different response in the emulated envi-
ronment. For example, emulation of the stop instruction
involves executing a very tight loop to give the appear-
ance of a system halt, and cannot readily be performed
under the supervision of the TRACE mode.

In the event the call which led to the privilege viola-
tion is not a “common” instruction, the process
branches to step 110, where memory-reference accesses
are generated in a buffer zone around the user stack
pointer. The creation of such a buffer zone ensures that
the memory around the user stack pointer is not cur-

5,063,499

11
rently paged out by causing a page fault if the zone is
swapped out. If such a page fault occurs, the page will
be reloaded, so that as long as the stack pointer points to
any location in the buffer zone, the corresponding page
should be resident.

Following step 110, a dummy privilege exception
frame is created on the user stack at step 112, followed
further at step 114 by setting the exception frame status
register value to trap after each instruction. Such trap-
ping may also be referred to as “trace”, and may be
thought of as step-by-step supervision of the execution.
Next, at step 116, the exception frame status register
value is set for supervisor status. This is followed by
saving, at step 118, the current location of the supervi-
sor stack pointer in a static location and setting the
supervisor stack pointer to the user stack pointer ad-
dress at step 120. Finally, a flat is set at step 122 so that
the trace exception routine knows to expect a trace
exception from the instruction emulator. The process
thus permits certain privileged instructions to execute in
supervisor mode whiie at the same time protecting the
pointers necessary for virtual memory. Once the in-
struction completes processing, the routine returns from
the exception at step 109.

Trace Patch

As discussed above, in the preferred embodiment of
the present invention, use of the TRACE instruction is
helpful to emulate certain types of instructions which
create a privilege violation. Other instruction emulation
techniques could readily be used. In this preferred ap-
proach, however, it is necessary to trace, or supervise
on a step-by-step basis, the execution of some of the
system calls to avoid corruption of the stack. The trace
patch, shown in FIG. 5, will permit such supervision,
and used to allow execution of calls that cannot be
easily emulated, or are not yet known to exist. In such
event, the trace patch is called at step 130, and begins at
step 132 by inquiring whether the trace was expected
from an instruction emulation. If so, the process
branches to step 134 so the processor mode will be reset
to user mode upon return from this exception. Follow-
ing the reset, the routine determines at step 136 whether
the user program has independently updated the status
register. If not, the trace bit is reset at step 138, and the
routine returns from the exception at step 140. The
routine then returns from the trace exception, again at
step 140. Thus, the instruction is allowed to execute in
supervisor mode under scrutiny, the trace routine is
then switched back out of supervisor mode, and the
processor is allowed to continue with other instructions
in user mode.

However, if no trace was expected at step 132 from
the instruction emulation, the routine branches to step
142, where the routine inquires whether the system is in
supervisor mode. If so, the routine jumps to the original
trace vector at step 144. If not, the routine branches to
step 146, where the trace exception frame is copied
from the supervisor stack to the user stack. The supervi-
sor stack exception frame is then changed in step 148 to
the return address of the original trace vector, followed
in step 150 by clearing the supervisor and trace mode
bits from the supervisor stack exception frame. Once
this is complete, the routine returns from the exception
to the original trace vector at step 152.

20

25

30

35

40

45

50

55

65

12

Line 1010 Vector Patch

Many operating systems for 68XXX-based machines,
such as the Macintosh, use line 1010 traps, or “A” traps,
to handle system calls. Generally, the application desir-
ing to execute such a system call will set up either regis-
ters or the stack with the calling parameters, and then
execute an instruction beginning *1010". The 1010 in-
struction in turn causes an exception to be generated to
the “un-implemented instruction” exception vector,
which effectively extends the instruction set of the pro-
cessor by causing the operating system to evaluate the
instruction and generate the desired effects in software.
However, such exceptions cause a transition from user
mode to supervisor mode, even though the user pro-
grams which made the call are operating in user mode
with the user stack rather than the supervisor stack.
Thus, when such a call is made, it is necessary to substi-
tute the appropriate stack pointer to ensure that the
pointer used by the system call is the same stack to
which the parameters were originally passed.

This is accomplished by the routine described in FIG.
6, where the line 1010 vector patch is called at step 160.
The routine begins by inquiring, at step 162, whether
the system was in supervisor mode when the trap was
called. If so, the routine jumps at step 164 to the original
line 1010 vector address, taken from the original zero-
base vector table.

If not, however, the routine branches to step 166, and
copies the stack exception frame from the supervisor
stack to the user stack. Next, at step 168, the return
address of the current exception frame is replaced with
the original line 1010 vector address, so that when the
return from the exception is made, execution will con-
tinue with the appropriate information supplied to the
appropriate stack at step 170.

Sawp MMU Patch

Under the current Maointosh operating system, there
are two common modes of addressing. In twenty-four
bit mode, only the least significant 24 bits are ordinarily
recognized. However, in some cases with the current
operating system all 32 bits are used; presumably this
trend will continue with future releases of the operating
system, such that eventually all 32 bits will normally be
used. When all 32 bits are used, it is necessary to alert
the PMMU to fully decode the address, but to still point
to the page translation tables set up by the virtual mem-
ory routines of the present invention. It is also necessary
to be able to transfer back to 24 bit mode. This toggling
can be accomplished by the routine shown in FIG. 7,
which begins at step 180 by a call to the Set MMU
Mode routine. The routine begins at step 182 by deter-
mining whether the system is already in the requested
mode. If it is, the routine returns at step 184. However,
if not, the routine inquires at step 186 whether 32-bit
mode has been requested. If it has, the PMMU (shown
in FIG. 1c¢) is set at step 188 to decode all 32 bits, but still
uses the page translation tables to decode the physical
address for any location in the virtual address space. A
flag is then set at step 1990 to indicate the current state is
32 bit mode, and the routine returns at step 192.

On the other hand, if the inquiry at step 186 deter-
mines 32-bit mode is not requested, the PMMU is set at
step 194 to ignore the top byte, or top 8 bits, of the
32-bit address, and the corresponding flag is set at step
196. Again, the routine returns at step 192.

5,063,499

13

Bus Error Vector

When a memory location is called for, but is not
immediately available for referencing, a bus error is
generated. In such an instance, it is necessary to deter-
mine whether the location is unavailable because it has
been paged out to disk; this can be accomplished by the
routine shown in FIG. 8. The bus error vector is called
at step 200, and begins at step 202 by saving the state of
the registers and the PMMU, followed by determining
the address and the cause of the bus error at step 204.

If, as determined at step 206, the bus error is not due
to a page fault, the registers and PMMU setting are
restored at step 208, and the routine jumps to the origi-
nal bus error address vector at step 210. However,
where the inquiry at step 206 determines that a page
fault has occurred, the routine inquires at step 212
whether a page fault was already being corrected that
is, the process of swapping information in from disk was
already in progress) when this page fault occurred. If it
was, it will simplify operations to finish correcting the
first page fault before dealing with the second. This is
accomplished in step 214 by saving, at a different loca-
tion, a copy of the stack from where the new page fault
occurred to the current stack pointer. Next, at step 216,
the registers are restored to their state prior to the oc-
currence of the second page fault—that is, their status
during the handling of the first page fault, which was
saved at step 82 shown in FIG. 3. Then, at step 218, set
the return address of the original page fault to resume
execution at the double fault restoration routine shown
in FIG. 9. The routine then preferably switches to a
very high level of priority, so it will not again be inter-
rupted by the process which caused the second page
fault, and returns at step 220 to finish handling the first
page fault.

If, as should usually be the case, there was no prior
page fault being handled when the inquiry was made at
step 212, the routine continues by selecting at step 222 a
page not likely to be needed soon. While various algo-
rithms exist for making this selection, one acceptable
algorithm is shown in FIG. 10, which uses page usage
history or aging tables. That page is then mapped out as
non-resident, still at step 222. At step 224, a determina-
tion is made as to whether the page has been modified
since the last time it was written out to disk. If it has, the
page is written to disk at step 226, and a flag is set that
the page now has a disk image.

An inquiry is made at step 228 as to whether the
faulted page has a disk image. If it does, the disk image
of the faulted page is read from disk at step 230 into the
physical memory of the selected page, while the faulted
page is temporarily mapped to an alternate location,
which may be regarded as a transient page zone (FIG.
2b), and the page modified flag is cleared. The transient
holding zone is used to prevent processing of incorrect
code or data in the event an interrupt occurs which
requires the use of code or data on the page before the
code or data in that page can be fully updated from its
disk image. If the answer to the inquiry at step 228 was
no, or following the reading of the disk image in step
230, the routine advances to step 232 and remaps the
now-restored faulted page to the address where the
page fault was detected. Thereafter, in step 234, the
registers and PMMU status are restored, and the routine
returns in step 236.

If the inquiry at step 212 did not find a second page
fault, the return at step 236 will simply return to the

20

25

30

35

40

45

55

65

14

system. However, if a second page fault did exist, the
return address supplied at step 236 will jump to the
routine shown in FIG. 9 for double faults, so that the
secondary fault(s) can now be handled. The routine is
called at step 240, and begins at step 242 by copying the
saved stack (caused by the second page fault) back to its
original location. The registers are then restored in step
244 1o their state at the time of the second page fault.
Next, the return address for the stack is altered in step
246 1o return to the routine to restore the registers and
stack to the state they were in when the second page
fault occurred. The system then resumes processing. If
the page swap which solved the first page fault also
solves the second page fault, no error will be reported.
However, if the solution to the first fault does not solve
the second page fault, the second page fault will recur.
However, upon recurrence, it will be the first fault, and
can be handled accordingly. The routine then returns at
step 248 from the bus error exception.

Page Selection Routine

For any virtual memory system to work, it is some-
times necessary to retrieve pages of memory from disk.
If physical RAM is full, as it presumably is, it is neces-
sary to mark to disk, or page out, pages in physical
memory to make room for the pages retrieved from
disk. Various criteria can be implemented which will
accomplish this task with reasonable results.

However, at the same time, certain critical pages
should not be swapped out to disk. This set of critical
pages includes, particularly, the pages of memory nec-
essary to execute a page swap. While these pages can, in
some virtual memory processes, be readily identified,
such identification may not be done so readily in the
Apple Macintosh environment where the code which
implements virtual memory is added to an existing oper-
ating system. Of course, with sufficient knowledge of
both the operating system and the process of the present
invention, it would be possible to identify, in advance,
such critical pages and mark them as immune to page
swaps.

The routine shown in FIG. 10 has been optimized for
aftermarket use in the Apple Macintosh environment, in
part because it does not need advance identification of
the critical pages. More specifically, the page selection
routine of FIG. 10 relies primarily on three factors: a
history table (which is based on usage in the preferred
embodiment but may be based on any of a wide variety
of criteria), a “don’t swap this page™ flag, and a page
modified flag.

The history table (see FIG. 2b) concept tracks, for
example, how recently and frequently a page has been
accessed. The “don’t swap*flag, discussed further be-
low, protects certain key pages of physical RAM from
ever being swapped to disk, and is designed to protect
critical information such as the virtual memory code,
and some sections of the device manager, disk driver,
system traps, and trap patches. The page modified flag
determines whether a page has been modified since
retrieved from disk.

One reason for determining whether a page has been
modified since retrieved from disk relates to the reasons
for allocating, in the preferred embodiment, a disk file
which is larger than the total amount of memory re-
quired to supplement the existing physical memory to
the total amount of virtual memory. Thus, for example,
for a current Macintosh II which is capable of address-
ing a maximum of eight megabytes under the current

5,063,499

15

release of the Macintosh operating system, the disk file
may also eight megabytes, although either larger or
somewhat smaller sizes would also work. This, effec-
tively, permits a disk image of each page to be main-
tained in physical memory (RAM). It will be apparent
to those skilled in the art, given the foregoing discussion
and the fact that a disk image can always be maintained
for unmodified pages in physical memory, that, where
possible, an unmodified page might generally be se-
lected for swapping out, since this eliminates the need
for a disk write and correspondingly increases perfor-
mance. By weighing these factors, as discussed below in
connection with FIG. 10, a reasonably optimized candi-
date for replacement is identified.

In general, the page selection routine shown in FIG.
10 is a “winnowing out” process by which the system
itself determines, on a long term iterative basis, what the
critical page set is likely to be, and errs generally on the
side of including non-critical pages to avoid swapping
out critical pages. The first basic assumption is that all
pages critical to performing a page swap are used dur-
ing each complete page swap, where a complete page
swap includes both a read and a write. By basing selec-
tion of a page to be swapped out initially on page usage
history, and not swapping out any page used during
each complete swap, all the critical pages (plus some
additional, non-critical pages) will be, at least prelimi-
narily, protected from being swapped out.

At this point a potential problem exists. Depending
on the size of physical memory, it is possible that the
entirety of physical memory will consist of pages that
are used during the period of time between each page
swap, even though some of those pages are non-critical.
This necessitates a second level criteria for deciding
which pages are non-critical. While many such criteria
will work, a presently preferred approach involves
setting a flag bit for each page written in memory dur-
ing the initial installation of the virtual memory soft-
ware. This marks all critical pages, but also marks many
non-critical pages. It will be apparent to those skilled in
the art that the truly critical pages have both a heavy
usage history (i.e., satisfy the first criteria), and also
have the flag bit set (the second criteria).

The combination of the two criteria then permits
selection of a non-critical page for swapping. By using
the page usage history criteria to make a determination
of which page to swap out so long as not every page is
heavily used, non-critical pages including those pages
with the flag bit set can be swapped out to disk. Then,
in the somewhat unlikely event that every page in mem-
ory has a heavy usage history, those pages which do not
have a flag bit set can still be selected as non-critical. In
this manner, a non-critical page can always be selected
to be swapped out to disk.

The page selection routine described generally above
can be appreciated in greater detail from the following.
The page selection routine is called at step 300, and
begins at step 302 by inquiring whether it is time to
update the aging tabies. The criterion for updating the
aging tables can be varied over a fairly wide range, and
might include real time, recent usage history of any one
or more pages, frequency of occurrence of page faults,
or number of page swaps since last update, as just some
examples. Time and usage history have thus far been
used in a preferred approach. If the inquiry at step 302
determines that it is not time to update, the modified and
unmodified pagse with the lowest usage history are
identified at step 304.

15

20

25

35

45

50

55

60

65

16

However, if an update is in order, the time out flag is
reset at step 306. The aqing tables are then updated at
step 308 with usage information since the last update,
and the usage flag is reset. Next, the modified and un-
modified pages with the lowest usage history (as stored
in the aging tables) are identified at step 310.

Regardless whether the aging tables were updated,
the appropriate branch supplies the usage history of the
modified and unmodified pages to step 312, where the
usage history of the unmodified page is compared to
that of the modified page in accordance with any suit-
able weighting criteria, and the least used page as deter-
mined by that criteria is then selected at either step 314
or step 316, and passed to the next step. As noted above,
it is faster to mark an unmodified page as non-resident,
and so in most cases it is preferable to use a weighting
criteria that tends to select unmodified pages to be made
non-resident.

In some cases, however, it will not be desirable to
swap out the selected page, whether modified or un-
modified. Most such pages are marked with a “don’t
swap” flag. However, it might occur that a page that is
not so marked will still be selected by the page selection
routine because all pages are being used regularly. Such
undesirable swap-outs can be avoided by keeping track
of usage history, such as by the aging table discussed
above, and imposing a rule that any page which has
always been used during the period between any two
disk swaps is not to be swapped out. This is shown at
step 318, and if the selected, least used page does not
have a full usage history, it is selected to be marked
non-resident (swapped out) at step 320.

Alternatively, if the page selected as least used does
have a full usage history, that page cannot be selected,
and the aging tables are again updated at step 322 so that
another page can be selected. Pages having a full usage
history but which are not marked with a “don’t swap™
flag may be marked as slow aging pages. Then, as
shown at step 324, the aging tables for the fast aging
pages can be updated, new “lowest usage” unmodified
and modified pages selected, and the routine returned to
step 312 for further processing.

Read Patch

The read patch routine, shown in FIGS. 11a-115, is
essentially a pre-fetch of pages of disk data to physical
memory. Such a pre-fetch is particularly helpful in the
virtual memory context to avoid a page fault during
time critical operations in which occurrence of a page
fault during the operation can cause an error. An exam-
ple of such a time critical operation is a read (or write)
from disk in which a page fault during the read can
cause the status of the disk interface to be lost. More
specifically, during a disk reads or writes, the spinning
hard disk may not be able to wait and hold its place
while a page fault is made good. Thus, it is helpful to
avoid such situations by what is referred to herein as
“pre-fetching”.

Successful use of pre-fetching relies in part on the
good programming practice that /O operations are
executed only through the operating system. That is,
any program or peripheral that needs to perform an [/O
operation posts that request to the operating system.
The request to the operating system includes where the
information is to be placed in memory, how much infor-
mation is to be transferred, and where the information
can be found. The operating system then performs the
operation and returns the result. By intercepting and

5,063,499

17

managing such calls, it is possible to ensure that no page
faults will be generated from the 1/0 request during the
critical I/0 period.

The solution to this problem used in a preferred em-
bodiment of the present invention amounts to keeping a
list of the pending 1/0 operations, and the locations to
which those 1/0 operations have been directed. Those
locations are temporarily marked with a “Don’t Swap”
flag, and so can be regarded as temporarily locked in
physical memory, or RAM. When the 1/0O operation
has been completed, the “Don’t Swap” flag is removed
for those temporarily locked locations, and they are
again free to be swapped if appropriate.

In rare instances, it is possible that an 1/0 operation
will request a single transfer which is larger than the
number of available pages of physical memory. For
example, 2 Macintosh computer having only one mega-
byte of RAM available for such an 1/0 call may receive
a request for a five megabyte transfer. There is not
enough memory available to handle the operation in
one step. In such event, the process of the present inven-
tion can break the large read request into a number of
smaller read operations, each of which can be accom-
modated by the amount of available memory. Thus, for
the example of a request for a five megabyte read, the
present invention can readjust the 1/O call into five one
megabyte reads. Following the last small read, the call
is readjusted back to appear as if a single five megabyte
read occurred, so that the calling program is unaware
that the read was not performed as one contiguous
piece.

To understand the foregoing in greater detail, refer-
ence is again made to FIGS. 114 and 115. The read
patch is entered at step 340, and inquires at step 342
whether the call which entered the read patch is a file
system call rather than an 1/0 call. If it is a file system
call, the routine branches to step 344, where it jumps to
the original read trap address.

However, if the call which caused entry to the read
patch is an 170 call, the routine branches from step 342
to step 346, where supervisor mode is enabled. The
system starts with the first block of information to be
read from disk, at step 348, and determines at step 350 to
what memory page the block will be written. It is then
determined, at step 352, whether that page is resident. If
not, a determination is made at step 354 whether the
page of physical memory will be completely overwrit-
ten by the read from disk. If the page is to be overwrit-
ten, the disk image flag for the page is cleared at step
356; if not, step 356 is bypassed. Either way, the page
fault routine of FIG. 8, beginning at step 222 is then
used to validate the page.

If the page was not previously marked with a Don’t
Swap” flag, the page is then temporarily locked at step
360 by setting its “Don’t Swap” flag, and the page is
added to a list of temporarily locked pages. Once the
page has been temporarily locked, a determination is
made at step 362 as to whether additional blocks of data
are to be read in. If they are not, the routine branches to
step 364 where the requested read is performed, follow-
ing by unlocking the temporarily locked pages at step
366, restoring the status register from the stack at step
368, and finally returning at step 370.

In many such cases, however, additional blocks of
data will be called for, in which case the routine will
branch from step 362 to step 372. At step 372, a determi-
nation is made whether the maximum number of tempo-
rarily lockable pages have already been locked. In most

5

10

20

25

30

35

45

50

55

60

65

18
cases, the answer will be no, and the routine will loop
by examining the next block to be read from disk at step
374 and then re-entering the routine at step 350.

In some oases, however, the maximum number of
pages will have been locked, as determined at step 372.
In such event, it is necessary to break the read into a
plurality of smaller reads. To accomplish this, the rou-
tine will branch to step 376, where the size of the origi-
nal read request will be stored. Then, at step 378, the
read request is reduced to match the maximum number
of allowable locked pages, followed at step by a read of
that reduced size.

After completion of the reduced read, another read is
set up at step 382, extending from the end of the last
block actually read to the end of the originally re-
quested read. Following set up, the next block of infor-
mation is read from disk at step 384 and, as before, the
page to which that block is to be written is identified. If
the page is resident, as determined at step 388, the page
is added to a second list of temporarily locked pages.

As before, if the page is not resident, an inquiry is
made at step 392 whether the page of physical memory
will be completely overwritten by the read from disk. If
the page is to be completely overwritten, the disk image
flag for the page is cleared at step 394. If the page is not
to be overwritten, or after clearing the disk image flag
if to be overwritten, the routine continues with step 396,
where the page fauit routine shown beginning at step
222 of FIG. 8 is used to validate the page.

Thereafter, the successive next-last in the list of tem-
porarily locked pages is selected at step 398, and that
page is swapped out at step 400. This frees up a page for
this block of the read operation (previously no addi-
tional pages of physical memory were available since
we had reached the maximum number of locked pages
in performing the previous section of this I/O call), and
so this logical page is then remapped into RAM at step
402 to be ready for the next read, at which time it will
overwritten.

The results of either step 390 or step 402 then cause
the routine to continue at step 404, where an inquiry is
made as to whether there are more blocks to be read in
this request. In some cases there will be more blocks to
read, in which case the routine will branch to step 406,
where a second inquiry is made as to whether the maxi-
mum number of temporarily lockable pages has already
been locked. In a good percentage of cases the answer
will be no, in which case the routine will loop back to
step 386 through step 408, where the next block to be
read from disk is examined. In some cases, however, the
maximum number of temporarily locked pages again
will have been met, so that a reduced size read is again
required at step 410. In this case, the size of the read is
reduced to the amount of validated memory, and then a
read is performed at step 412, after which the routine
loops back to step 382,

Eventually, the looping will return to step 404, and
no more blocks will be requested. At this point, the
routine branches to perform the final read, at step 414,
followed by unlocking the pages of the second list of
temporarily locked pages at step 416. Next, the parame-
ter block pointed to by the original read request is re-
stored to the same state as if it had been completed in
one pass, at step 418, and the status register is restored
from the stack in step 420. The routine then returns
control to the system at step 422. It can be appreciated
that, in this manner, large size reads can be accom-
plished. Although not shown, in a similar fashion a

5,063,499

19

write patch routine may be implemented which breaks
write operations from the virtual memory space to a
conventional disk file into small enough operations to
be processed with the amount of available physical
memory. The WRITE PATCH is essentially identical
to the READ PATCH, except that steps 354, 356, 392
and 394 may be deleted. A similar technique can be used
for any critical operation which cannot tolerate the
occurrence of a page fault during the operation.

Attached hereto as Appendix A is a printout, in ob-
ject code form, of the code necessary to implement the
present invention on an Apple Macintosh II operating

This is sector 0000
It is absolute

0000
0000
096D
1081
0820
4954
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
4D45
2049
0000
3FFC
Q00E
31F8
OFE6
B8Ol
1FF8
0000
0000
3E3C
FFFF
FFFF
FFFF

0002
0100
9C37
0BO1
5669
564D
494E
0000
9F94
0004
0004
0000
0000
0000
0000
0000
0000
0007
4000
434E
0000
0000
D007
380c
3806
D007
0000
0000
0000
0000
D007
F80F
F8Q?

0300
0000
0000
0447
7274
454D
4954
0000
ASES
E400
E400
0000
0000
0000
0000
0000
0000
494E
0000
2300
0000
FOOF
001C
31FC
OF03
FFFF
07EQ
0000
0000
F80F
FFFF
FEFF
FFFF

0000
26A5
0400
6172
7561
2000
564D
0000
0000
0000
0139
0000
0000
0000
0000
0000
0000
4954
0146
0000
0000
0001
7006
380C
3806
FOOl
0000
0000
0000
0001
F007
F80F
F80?

9FCC
0000
0000
624D
6C69
0000
454D
0000
0000
0139
0139
0000
0000
0000
0000
0000
0000
0000
5245
00FF
0000
€003
E3B8
130C
OEO3
£007
0000
0000
0000
co03
FFFF
FFFF
FFFF

6432
25A5
1000
4143
0200
0040
2000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
4600
8000
0000
8007
300E
38o0cC
BOO?
8000
0000
0000
0000
8007
FOOF
F80F
F007

Tags:

0000/000:
0010/016:
0020/032:
0030/048:
0040/064:
0050/080:
0060/096:
0070/112:
0080/128:
0090/144:
O00AQ/160:
00BO/176:
00C0/192:
0op0/208:
00E0/224:
00F0/240:
0100/256:
0110/272:
0120/288:
0130/304:
0140/320:
0150/336:
0160/352:
0170/368:
0180/384:
0190/400:
01A0/416:
01B0/432:
01C0/448:
01D0/464:
01E0/480:
01FQ/496:

0001
sector 25

This is sector
It is absolute

0000
FFFF
1FF8
0000
o001
0000
00cCo
0000

0002
D007
0000
0000
0000
0000
0000
1004

0300
FFFF
07E0
0000
0000
00Co
00Co
E338

0001
Fgo1
0000
0000
0000
0000
0007
1004

SAlD
8000
0000
0000
0000
0000
FOO04
1024

9rcC
E0Q3
0000
0000
0000
01E0
FFFF
6198

Tags:

0000/000:
0010/016:
0020/032:
0030/048:
0040/064:
0050/080:
0060/096:

10

20

under the current version (6.0.2) of the Macintosh oper-
ating system.

From the foregoing teachings, it can be appreciated
by those skilled in the art that a new, novel and unobvi-
ous virtual memory system for use on Apple Macintosh
personal computers using the 680X0 microprocessors
with appropriate memory management has been dis-
closed. It is to be understood that numerous alternatives
and equivalents will be apparent to those of ordinary
skill in the art, given the teachings herein, such that the
present invention is not to be limited by the foregoing
description but only by the appended claims.

(0) of file " Virtual"
sector 24 located at track 2,

sector 0

0000
000D
2049
0000
0000
0000
0000
2780
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0001
OFFQ0
FFFF
61F8
1BES6
1CQ0
781E
0000
0000
OFF0
FFEF
FEFF
FFFF
FFFF

00DB Cenenns &...%
0000 .
4949
494E :.
0000 :
0040 t..
0000
0000 eereseennacs el
0000 e
0000 fhecenns 9.9
0000
0000 L eercensinesaanenl
0000
0000
0000
0000
1C56
Q0FO0
0000
0000
F0QS i U
380C :

isoc :
7005 :..8...8
0000 :

0000
0000
0000
FOO0S
F8OF
FBOF
FQO0S5S

......

.............

.....

..................

..................

..................

.....
......
............

.........

.
..................

..................

..................
..................

..................

(1) of file " Virtual"
located at track 2,

secter 1

601E
0000
0000
0000
00Co
0000
31pC

0000 - T ieeennoanana DA
0000
0000
0000
0000
1004 eeacessanannssent
127¢C S-S a..

..................
.

..................

0070/112: 31DC
0080/128: 0CO3
0090/144: 00CO
00A0/160: 00CO
00B0/176: 0000
00C0/192: 0080
00D0/208: 01CO
00EQ/224: FFFF
00F0/240: FFFF
0100/256: FFFF
0110/272: 01CO
0120/288: 0180
0130/304: 0000
0140/320: 0000
0150/336: 00CO
0160/352: 0000
0170/368: 31DC
0180/384: 0CO3
0190/400: FFFF
0l1A0/416: O01lE0
01B0/432: 0000
01C0/448: 0000
01D0/464: 00CO
01E0/480: FFFF
01F0/496: FFFF

This is sector
It is absolute

Tags: 0000
0000/000: FFFF
0010/016: FFFF
0020/032: 01EQ
0030/048: 0000
0040/064: 736F
0050/080: 9ASS
0060/096: OBOO
0070/112: 6972
0080/128: 7465
0090/144: 6D6F
O0A0/160: 6173
00B0/176: 6F66
00C0/192: 6265
00D0/208: 6EGE
00E0/224: 706F
00F0/240: 6D6F
0100/256: 7400
0110/272: 616D
0120/288: 0308
0130/304: 6C6C
0140/320: 7567
0150/336: 6F6C
0160/352: 2063
0170/368: 6372
0180/384: 7079
0190/400: 6E65
01A0/416: 6F6E
01B0/432: 204A
01C0/448: 6265

21

1F7C 1A66
9004 0000
0000 00CO
0000 0000
0080 00CO
0808 0180
E00C 01CO
FOQ07 FFFF
FFFF FFFF
FOQ7 FFFF
0007 01C0
1010 0080
0100 0001
0000 0000
0000 00CO
1004 0000
127¢C 31o0C
1004 0CO03
FO00 00CO
0000 00CO
0000 0000
0000 0000
0000 00Co
FOO07 FFFF
F27F FFFF

1F24
1004
0000
0000
0140
1005
0007
FQ27
FF7B
F007
EQ03
o820
0ooo
0000
0000
1004
1F7C
9004
0000
0000
0000
0000
0000
F007
FFIF

1A66
0000
0oco
0000
0000
03EC
FFFF
FFFF
FFFF
FEFFF
01C0
0000
0000
00Co
00CO
E398
1A66
0000
00Co
0000
0000
00Co
00CO
FFFF
FFFF

5,063,499

1204
1007
0000
0000
0220
AQQ3
FOO7
F27B
EF27
F00?
C005
0440
0000
0000
0007
1004
1F24
1004
0000
0000
0000
0000
0007
FO07
FF27

0co3
FFFF
01EQ
0000
0000
01¢Co
FFFF
FFFF
FFFE
FFFF
03EQ
0000
0000
01EQ
FFEF
6198
1A66
0000
00CO
0000
0000
01lEQ
FFEFF
FFFF
FFFF

0002 (2) of file " WVirtual"
located at track 2,

sector 26

0002 8300
F0Q7 FFFF
FO0Q 00CO
0000 00CO
0000 0000
6E00 0000
5500 0001
SE01 7108
7475 616C
6420 6120
7279 2065
6520 6D61
2074 €865
722C 2061
6563 7469
7274 3A0D
7273 2045
0000 0000
6E21 Al100
5343 6F6E
2070 726F
6820 6ES6F
7574 6520
6175 7365
6173 683A
7269 6768
6374 6978
0000 001D
6F6E 6174
7200 000C

0002
FO07
0000
0000
0000
0Co0
2000
9955
2068
7669
7272
6B65
2065
6E64
7820
0D56
7272
7201
0000
7469
6261
7420
€365
2061
0000
7420
2043
5772
6861
3800

9rccC
FFFF
00Co
0000
0000
6400
0200
682D
6173
1274
6872
2061
7272
2063
5465
6972
6F72
1800
0000
6E7S
626C
7769
7274
2073
0020
3139
6F72
6974
6E20
030C

6431
FOQ?
0000
0000
0120
8E01
0000
4r68
2064
7561
2E20
206E
6F72
616C
6368
7461
2023
8601l
6500
696E
7920
7468
6169
7973
8860
e3s
706F
7465
462E
Bl66

FFFF
00co
0000
6576
0202
0000
2120
6574
6C20
2050
6F74
206E
6C20
2053
6C20
225E
5704
0AQ0
6720
2874
2061
6E74
7465
4824
2043
7261
6E20
2047
001E

1004
FO00
0000
0000
0410
097
F007
EFFF
F207
F000
A008
0280
0000
0000
F004
1024
1204
1007
0000
0000
0000
0000
F0Q?7
Fo27
F207

sector 2

FO0?
0000
0000
696E
0102
0800
2056
6563
6065
6C65
6520
756D
436F
7570
4D65
3022
0544

9601

1769
686F
6273
7929
6020
436F
6F6E
7469
6279
6172
EAOC

.
..................

.......

.
..................

..................

..................

..................

..................

.

..................

..................

t..*.q..Uh-0h!t V:
:irtual has detec:
sted a virtual me:
:mory error. Ple:
iase make a note :
:0f the error num:
:ber, and call Co:
:nnectix Tech Sup:
:port:..virtal Me:
:mory Error #"40":

:..SContinuing wi:
:11 probably (tho:
:ugh not with abs:
:olute certainty):
: cause a system :
:crash:... . HS$Co:
:pyright 1988 Con:
snectix Corporati:
son,...Written by:
: Jonathan F. Gar:

:ber...

5,063,499

23
01D0/464: 3800 0201 2F65 OOlE EO30 3802 8E02 40CO :8.../e...08...8.:
O1E0/480: 0066 OO1E D441 FAOC 9420 33900 7F40 00BOQ : £ AL 9..8..:
01F0/496: 9067 001D BO60 0017 8400 0000 0000 0000 Y« :

This is sector 0003 (3) of file " Virtual®
It is absolute sector 27 located at track 2, sector 3

Tags: 0000 0002 0300 0003 9FCC S5AlD

0000/000: 0000 0000 0000 0000 0000 0000 0000 0000 O S
0010/016: 0000 0000 0000 0000 0000 0000 0000 0000 N :
0020/032: 0000 0000 0000 0000 0000 0000 0000 0000 Teenresenannnnnast
0030/048: 0000 0000 0000 0000 0000 0000 0000 0000 S P
0040/064: 0000 0000 000C 0000 0000 0000 0000 0000 et
0050/080: 0000 0000 0000 0000 0000 0000 0000 0000 fetrenserrenananant
0060/096: 0000 0000 0000 0000 0000 0000 0000 0000 S atieroneionaanast
0070/112: 0000 0000 000C G000 0000 0000 0800 QAOO N
0080/128: 0808 0AOQ0 0810 OAQ0 0818 OAQ0 0820 OAOQO heesoanannann cel
0090/144: 0828 0A00 0830 OA0O 0838 OA40 0000 1SF3I t.{...0...8.8....:
00A0/160: 0000 S9FA 0000 59FB 0000 S9FC 0000 S9FD .Y
00B0O/176: 0000 S9FE 0000 5950 0000 5900 0840 B8Al0 L §
00C0/192: 0000 5920 000C 5930 0000 5940 0000 5950 .. .Y
00D0/208: 0000 5960 0000 5970 0000 5380 0000 5390 HES
00ED/224: 0000 59A0 0000 S9BO 00QG0 59CO 0000 SSDO LI RN
00F0/240: 0000 S9EO 0000 SSFO 0000 S900 0840 CAO1 HI 4
0100/256: 0000 5902 0000 5903 0000 5904 0000 5905 I ¢
0110/272: 0000 5906 0000 5907 0000 59508 0000 5909 .. Y
0120/288: 0000 S90A 0000 590B 0000 S590C 000C 590D I 4
0130/304: 0000 530E 0000 590F 0000 5500 0800 OAQQ LI S .
0140/320: 0808 QACQ 0B10 OA0Q 0818 QAOQGC 0820 OAOQO Tesesonnnannes .l
0150/336: 0828 OA0O 0830 OAGO 0838 OAQO0 8000 1300 oo 000080
0160/352: 9000 1900 A0OO 1900 BQOO 1900 C000 1300 P
0170/368: DOOO 1900 E00O 1900 FOO0 1900 0000 0000 T
0180/384: 0000 0000 Q000 0000 000G 0000 Q0G0 0000 e ii i ae et
0190/400: 0000 0000 0000 0000 0000 0000 0000 0000 PP
01A0/416: 0000 0000 0000 0000 0000 0000 0000 00Q0 Teernnarannaaansst
01B0/432: 0000 0000 0000 0000 0000 0000 0000 0000 PN :
01C0/448: 0000 0000 0000 0000 0000 0000 0000 0000 liieraeaan et
01D0/464: 0000 0000 0000 0000 0000 0000 0000 0000 £
01E0/480: 0000 0000 0000 0000 0000 000Q 0000 0000 ensaeraasaoanant
01F0/496: 0000 0000 0000 0000 0000 0000 0000 0000 i es s e :

This is sector 0004 (4) of file " Virtual"
It is absolute sector 28 located at track 2, sector 4

Tags: 0000 0002 0300 0004 9FCC SA1D

0000/000: 0000 0000 0000 0000 0000 0000 0000 0000 £
0010/016: 0000 0000 0000 0000 0000 0000 ©QO0 0000 N :
0020/032: 0000 0000 0000 0000 0000 0000 0000 0000 H P
0030/048: 0000 0000 0000 0000 000C 0000 0000 0000 P
0040/064: 0000 0000 0000 0000 0000 0000 0000 0000 Piierenaecaaeaaat
0050/080: 0000 0000 0000 0000 0000 0000 0000 0000 HE
0060/096: 0000 0000 0000 0000 0000 0000 0000 0000 iirsceaaneneaaant
0070/112: 0000 0000 0000 0000 0000 0040 E712 380C e ’..8.:
0080/128: B23F 0102 8000 0000 FF67 QE22 3C80 BO44 S S g."<..D:
0090/144: 492F 3C00 0840 4060 0C22 3CB80 B849 002F :1/<..08° . "<, . I./:
00A0/160: 3C00 0840 002F 3CT7F FF02 0200 7C07 0011 1<..8. /<. too.:
00BO/176: COOC B2F0 1F4C OOFO0 0040 QOFQ 0140 OOFO HINRPS AR N T
00C0/192: 0024 O04E 7A00 0208 C000 O34E 7800 0230 HES- 20 . + SN N{..0:
00D0/208: 1F02 4000 FF46 DF4E 7502 8000 0000 FFBO t..@. F.Nu.......¢

00E0/224: 380C
00F0/240: 1700
0100/256: 004A
0110/272: 6768
0120/288: 6978
0130/304: 001D
0140/320: 6174
0150/336: 0000
0160/352: 0000
0170/368: 0000
0180/384: 0000
0190/400: 0000
01A0/416: FF0O
01B0/432: 0000
01C0/448: 0000
' 01D0/464: 0000
01E0/480: 0000
01F0/496: 0000

This is sector
It is absolute

Tags: 0000
0000/000: 0000
0010/016: 0000
0020/032: 0000
0030/048: 2762
0040/064: 6F00
0050/080: 3ES8
0060/096: 0100
0070/112: 40ED
0080/128: B803
0090/144: 0061
00A0/160: 8FFO
00B0O/176: 004C
00C0/192: BC43
00D0/208: EEOQO
00E0/224: C4BS
Q0F0/240: 1842
0100/256: 4CS52
0110/272: 043D
0120/288: 4A00
0130/304: 8FE2
0140/320: FC2D
0150/336: C12D
0160/352: 004C
0170/368: 6E0Q
0180/384: F23F
0180/400: 7F43
01A0/416: 574E
01B0/432: F228
01C0/448: CA20
01D0/464: 0002
01E0/480: FCEO
01F0/496: 100E

This is sector
It is absolute

Tags: 0000
0000/000: 7542

25

B266
0D66
52CS
7420
2043
5772
6861
0000
0000
0000
0oo00
0000
0000
6900
0000
0000
0000
0000

0005

964E
122F
4F24
3139
EF72
6974
6E20
0000
0000
0000
TF04
O8FF
0000
TF3F
0000
0000
0000
0000

754E
OAJE
524E
3838
706F
7465
462E
0000
0000
0000
0000
DFO1
0000
TCOF
0000
00Co
0000
0000

Fo81
6A4A
7524
2043
7261
6E20
2047
0000
0000
0000
0000
8352
0000
BFOO
0000
0000
0000
0000

5,063,499

E100
6A08
436F
6F6E
7469
6279
6172
0000
0000
0000
0000
0000
0000
0000
Q000
0000
0000
0000

7C40
004A
7079
6E65
6F6E
204A
6265
0000
0000
0000
0000
0104
0000
0000
7¥81
0000
0000
0000

(5) of file " Virtual”
located at track 2,

sector 29

0002
0000
0000
0000
0055
4C60
8860
OF67
Cooo
1A0C
2860
1F60
DFSF
FAFE
0700
D666
9100
6E00
4000
4CS2
8853
SF00
4900
DFSF
5020
2151
44DE
7S4A
4E61
1667
8200
4090
D200

0006

0300
0000
0000
0000
8F32
220C
0420
4655
0667
8000
OA08
004C
FF4E
BCS2
1466
o842
6A01
4A46
5452
6E00
8022
4420
5049
FFOO
2158
C8FF
FCOO
9666
0000
DE22
0007
Cl66
8066

(6) of file

0005
0000
0000
0000
2F00
6FBO
6F00
88F0
1EOC
8000
0100
DFSF
Fo81
AEQOQ
0A2D
96BS
0100
DF4E
6E00
4A50
0022
SFS54
FAOO
5706
802E
FC2D
404E
104aA
D44A
1167
0084
BC61
OAFO

9FcC
0000
0000
0000
4608
0000
6008
108F
4000
0064
0767
FF4E
E100
2840
4F00
D167
02F0
7530
4808
EEQOQ
S§E0O
8822
1420
004E
65141
4900
732F
9167
9166
DA26
8300
1E20
0024

SAlD
0000
0000
0048
0100
4264
0100
57F0
0566
2005
10F0
7354
0824
E700
4046
0660
0024
1FBO
EAQO
5620
5032
c822
8Cs54
734D
FAQC
S04E
AFQ0
062C
0628
40286
4200
1208
0042

0000
0000
E7FF
0867
0820
OE66
0062
2E20
FCO00
1020
8FF0
124D
7C06
DFE0
06B5
002D
6E00Q
0800
2E00
DFS1
D022
8FF0
FAFE
1E23
7523
0481
9142
4961
1302
0976
0000
2E00

" Virtual”

sector 30 located at track 2,

0002 0300 0006 9FCC 5Al1D
2E00 144E 7508 0200 0967 7600

E708
6AF8
7269
6374
0000
6F6E
7200
0000
0000
0000
0000
OO0FF
0000
0000
0000
0000
0000
0000

sector $

0000
0000
FAFO
0620
6F00
0808
0048
08C0
7700
0954
1reé0
FAFE
0008
0000
D166
4A00
5463
0220
4490
C8FF
Cr22
1r60
0E22
48FF
DFOO
S12E
9160
0000
43F8
000E
0066
144E

sector 6

4200

26
;8. .f.NuN. ... l@..:
1o E./.N3T3. .05,

:.JR.0$RNuSCopyri:
:ght 1988 Connect:
:ix Corporation..:
:..Written by Jon:
:athan F. Garber.:

..................
.

..................
..................

.

..................

.
..................
..................
.

..................

..................

.
..................

.......... d ...w

t.alt..... g.. T
eee L. .NsT

L. N..... S.M

:.C...R..(R..}

...... f.-0.8F

: f.B...g."...f:

HI - J, PR $.-J.:

:LRn.JF.Nu0..n.T¢:
=2 TRn.H...... -

:.=I.PI... .T... :
:.L._..W..NsM...":
:n.P IX..aA...#H.:
$.2'Q...-1I.PNu#..:
:.CD...@8Ns/....Q.:
:WNuJ.£f.J.g9.,.B."

t.{Na...J.f. (Ia..:

tuB...Nu,...gv.B.:

0010/016: 1923
0020/032: 0A6l
0030/048: TF43
0040/064: 0648
0050/080: DFQ7
0060/096: DFQO
0070/112: 5C60
0080/128: 6EO0Q
0090/144: ECA4S
00A0/160: 4A26
00BO/176: 007E
00C0/192: 0300
00D0/208: 0830
Q0EQ/224: FF38
00F0Q/240: 4138
0100/256: 0000
0110/272: 44fFF
0120/288: 0000
0130/304: 422C
0140/320: OOE2
0150/336: 4933
0160/352: 0167
0170/368: 8874
0180/384: FF66
0190/400: 0000
0l1A0/416: AE32
01B0/432: 3162
01C0/448: 0026
01D0/464: 0652
01E0/480: 440C
01F0/496: 4748

This is sector
It is absolute

Tags: 0000
0000/000: EB08
0010/016: BC8C
0020/032: 8261
0030/048: 0866
0040/064: OATE
0050/080: 0652
0060/096: 440C
0070/112: 4B0O
0080/128: 300C
0090/144: FA26
00A0/160: 2C41
00B0O/176: FC26
00C0/192: 0007
00D0/208: 104A
00EQ/224: E760
00F0/240: 064A
0100/256: 7r43
0110/272: C300
0120/288: EEQOC
0130/304: OOFD
0140/320: CoOCl1
0150/336: FAFA
0160/352: 6800

27

c200
000A
104A
E760
064A
TF43
9E23
5Co8
FAOC
3801
0042
3E66
3AFC
0020
0053
0867
FFé6
0067
0008
4908
8162
0001
0051
9A60
0866
3le62
00E2
48136
4725
44FF
4192

0007

0002
0300
0062
O0FE
242¢C
0026
4725
44FF
0824
46FF
132C
FAFS
83F0
F4D0
F900
E032
4067
1008
0060
0100
5820
0466
2742
1Ca2

TF3F
8200
F900
E032
4067
1008
DFQO
8200
EQ2E
6AB6
6EQ0
5842
E422
TAFC
8448
1251
E2A9
4E08
8000
€100
ocB6
0460
CCEF
0000
422C
00EZ2
4933
0167
8874
FF66
4726

7CFO
AEOQO
7F43
3Caz2
1CBO
2A00
TF43
044E
120C
AEQOQ
2C2D
2E00
0804
CE60
4420
CCFF
FFS8
0000
0367
0F &0
4165
ococ
A820
E220
0008
4908
8le62
0000
0051
A060
7214

0024
1C21
1067
024E
6ECO
0000
1008
7S7A
6E00
3065
4300
3E60
8100
QEE4
2008
F020
8876
0866
1020
0BEA
1n67
4701
TAFC
2008
8000
C100
00B6
AQ60
CCFF
TE4A
0026

5,063,499

0041
4000
0652
BB81
SC66
0366
EEQQ
OB2F
0800
0001
3061
0000
TF00
8938
0000
TAFC
FF4E
4808
80EA
AE32
0C7E
0064
A48
0000
0367
QF60
4165
ococ
AE20
4767
1308

FAFB
2E2F
6E00O
61FD
0260
163D
0000
OA43
2C65
3ED6
100C
BC20
806A
0148
0067
A48
7520
0000
AE32
3162
0026
0652
440C
0067
1020
08EA
1A67
4701
TAFB
3422
0300

(7) of file ™ Virtual"
sector 31 located at track 2,

0300
0866
0020
AA20

_00EA

4836
8874
FF66
SF3C
FF66
03EA
pazse
0024
AEQO
1743
aCAz2
20B0O
2B0O
8ca23
3E08
1308
EB843
A800
0767

0007
E224
4B0O0O
2008
AE32
0167
0051
BE38
036A
O0A26
AEJ]
8B23
0008
1c21
1067
034E
6EQO
0000
DFOO
C300
0000
FAFA
0c42

024E

SFCC
g872¢C
0852
oooe
3162
1E60
CCFF
0748
182D
1308
BC80
c300
0300
4000
0652
BB81
5C66
0366
7F43
0908
0066
384E
A800
7130

5A1D
0324
6E00
0067
ooBs
ococ
cc20
473E
7C00
0300
0062
TF3F
0467
2E2F
6EQO
61FB
0260
223D
1042
8300
00FD
7541
1242
6800

SFEA
2C80
2A08
4165
4701
7AFB
0424
0000
OAé66
0052
7C02
7020
3300
SAAO
164C
1823
4000
6E00
0428
4EOE
FAFS
6800
4400

SE20
3900
SAAQ
BO4C
1423
4000
3E42
FALQ
0001
BAFD
2E0Q0
6EQD
0A78
4490
0608
440C
2008
QA66
3162
00E2
4836
4725
44FF
4808
BOEA
AE32
0C7E
0064
D648
0753
0067

sector 7

AE33
0000
0000
1867
0064
5648
872D
0200
Q0FD
6ECO
43FE
0B61
TF43
0648
DFQ07
DFO0
5Co8
5cos8
1467
FCBO
2E4D
1642
1A26

.CJ..CanZ'
< B, .2<..N, L
:...J8g..n. \f .4
t...CLr L =R

+J88.4...0e..>...:
:.~.Bn.,-C.0a....:
..>fXB..> ... not

iDL X, Nu

:...gN....fH....f:
) - PR g. ...21b:
s..I21b.
:I3.b..Ae.g.~.&HE:
$.g..."..G..d.RG}:
1.t.Q... 2.:HD.D.:
L. ...GHL:

.21b. .
:1b 13 b Ae g
.&H6.9.. .G.
:.RG%.t.Q... z..
:D.D..£. ~JGg4".
:GHA.GSr. . &.....

(n:l:ﬂ-lN-

[Te]

1. £5, .. 21b Ae g
.~.8H6.g9.7..G..d:
.RG%.t.Q... 2z.VH:
:D.D..£.8. HG>.$.-:
1K..§ <. d.-e.l :
:0.F. f &.....5..:
s G.,...3...b.Rn.:
AL (LR 21.CL

.2<. . N..a..L..:

:.C. f"-@ \

v
.
o]

~wx-

t...£.C..8NuA. .
:..*B...B...Bh..
..g.Ng=h.D..

0170/368:
0180/384:
0190/400:
01A0/416:
01B0/432:
01C0/448:
01D0/464:
01EQ/480:
01F0/496:

2800
SACO
08A2
7C00
6800
003a
4500
6900
6EQQ

This is sector
It is absolute

Tags:

0000/000:
0010/016:
0020/032:
0030/048:
0040/064:
0050/080:
0060/096:
0070/112:
0080/128:
0050/144:
00A0/160:
00BO/176:
00C0/192:
00D0/208:
00EQ/224:
00F0/240:
0100/256:
0110/272:
0120/288:
0130/304:
0140/320:
0150/336:
0160/352:
0170/368:
0180/384:
01390/400:
01A0/416:
01B0/432:
01C0/448;
01D0/464:
01E0/480:
01FQ/496:

0000
0008
7500
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

This 1is sector
It is absolute

Tags:

0000/000:
0010/016:
0020/032:
0030/048:
0040/064:
0050/080:
0060/096:
0070/112:

0000
0000
0000
0000
0000
0000
0000
0000
0000

29
3078

0038

1842 aA800

6067
0300
1800
2900
1c4ac
1430
1A00

024E
1B42
2E22
263C
0360
2900
1821

2800
1C43
7142
A800
7803
2900
06BC
483D
7C00

38cs
FAQ9
Ag80C
1Ca0
4ED2
284C
A900
4000
7EF8

5,063,499

FCO2
cazl
0C42
0067
E800
0350
0Ce7
1831
0000

0031
4900
2800
024E
187a
O5DA
024E
4000
2021

0008 (B) of file " Vvirtual"®
located at track 2,

sector 32

0002
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
00600
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0300
2431
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
00090
0000
0000
0000
0000
0000
0000
0000
0000
0000

0008
7C00
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
Qo000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

9FCC
0100
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
00090
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
6000
0000
0000
0000
0000

Sal1D
2C42
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

ABOO
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0009 (9) of file " Virtual™

sector 33

0002
0000
0000
0000
0000
0000
0000
0000
0000

0300
0000
0000
0000
0000
0000
0000
0000
0000

located at track 2,

0009
0000
0000
0000
0000
0000
0000
0000
0000

9FCC
0000
0000
0600
0000
0000
Q000
0000
0000

SAlD
0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0coo
0000
0000
0000

780A
1270
ia11
713D
007C
842D
7122
1631
7C00

sector 8

OC4E
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0oo00
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

sector 9

0000
0000
0000
0000
0000
0000
0000
0000

30
s (.0x.8(.8....1x.:
:2..B...C...'I..p:
:..'g.NgB...B{...:
tl....Boo.. g.Ng=:
tho..."x.N....z.1]:

:4..0) . H=Q,.18..1:
H A i I T I

..................

..................
..................

..................
..................
..................
.

..................
..................

..................
..................
..................
..................
..................
..................

..................

..................
..................

.
..................

..................

..................
..................

..................

0080/128: 0000
0090/144: 0000
00AO0/160: 0000
00BO/176: 0000
00C0/182: 0000
0000/208: 0000
00E0/224: 0000
00F0/240: 0000
0100/256: 0000
0110/272: 0000
0120/288: 0000
0130/304: 0000
0140/320: 0000
0150/336: 0000
0160/352: 0000
0170/368: 0000
0180/384: 0000
0190/400: 0000
0lA0/416: 0000
01B0/432: 0000
01C0/448: 0000
01D0/464: 0000
01E0/480: 0000
01F0/496: 0000

This is sector
It is absolute

Tags: 0000
0000/000: 0000
0010/016: 0000
0020/032: 064E
0030/048: E7FF
0040/064: 2800
0050/080: 20C6
0060/096: 0032
0070/112: CC66
0080/128: 0C02
0090/144: OEA48
OO0A0/160: 0800
00BO/176: 0028
00C0/192: DFSF
00D0/208: DF4A
00E0/224: 044A
00F0/240: EA42
0100/256: 1426
0110/272: 0257
0120/288: 084E
0130/304: 6800
0140/320: 2492
0150/336: 0001
0160/352: DFSF
0170/368: 8200
0180/384: A800
0190/400: 4300
01A0/416: 4322
01B0/432: FCOO
01C0/448: 6AFC
01D0/464: EICO
01E0/480: 0002
01F0/496: 1808

k) |

0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0006
0000 0000
0000 0000
0000 0000

000A (10)
sector 34

0002 0300
0000 0000
0000 0000
FB81 61F5
FA4D FAFS
24B0 AEQO
B803 1A28
3C00 FFFO
16D2 FCO8
6AFC FFOO
E7D0 D861
0266 0C4A
49B0 8CS3
FF66 0461
404E 7550
4067 oCOC
3300 7F43
1B66 0260
CBFF F64A
1526 834D
2C00 642D
8026 0102
FFDO 832D
FF6l OOFF
2C4D FAF4
2E20 3AF4
2000 81306
1C57 812F
7700 00BC
FFOO 02F0C
C041 FAF1
8200 0007
C200 0820

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

of file

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

5,063,499

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

® Virtual"”

located at track 2,

000A
0000
0000
D840
4642
7463
43D0
149D
00BO
0260
00Fs
4366
COFF
0E60
F900
40FF
104E
1453
436B
FAF4
6800
41FE
4000
7048
0649
6221
8300
14FQ
8965
8800
A661
0084
1208

SrccC
0000
0000
E742
6E00
042D
8302
5705
8965
04D2
244C
0226
AES2
0461
7F43
E£567
7548
4308
0260
542D
2EQ0
0021
6C33
ETFF
FAFA
4000
0001
119D
0C4A
4C26
00F8
8300
0000

SALD
0000
004A
672F
7847
4000
43F8
FCO0
124A
FCo8
DF1B
1352
4167
OA6l
104E
FOOC
E710
B300O
EE42
6800
6890
4100
C32D0
FA70
9A20
2426
FFO2
5702
6F00
7414
C824
4200
0066

0000
6800
3AFS
FAFB
7426
0022
7700
6F00
00F0Q
0BO8
8327
6626
2CSC
B781
40FF
1047
0835
A34C
2400
8922
2402
4900
0lEF
2800
3AF4
43F8
FC08
3Cé66
0426
1202
1961
00F6

0000
0000
0000
6000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
Jelols]
0000
0000
0000
0000
0000
0000
0000
0000

sector 10

0000
1868
CE48
D620
2800
4376
0083
3C66
8800
EARCO
BA34
834cC
8F46
6100
EF67
FAFB
1200
DFO8
603D
2800
8300
704C
E803
2401
SE21
0022
00DS
0602
1348
43F8
00F6
040E

..................

..................

..................
..................
..................
..................

..................

..................
..................

..................
..................
..................
..................
..................
..................
..................
.

..................

..................

:.N..a..8.Bg/:..H:
t...M..FBn.xG... :
t(.8...tc.-@. 5 (.:

PR { o F o A

:.H...a..%L...... :
:...E.JCE. &R, .4:
;. (I..8...RAgfe.L:
t._.f.a.".a.a,\.F:
:.J@NuP.,.C.N..a.:
:.Jeg..8..9..8..9:

:+.B9..C.NuH...G..:
s.6.£.7.8C....5..:
s W...JCk.".B.L..:

:.Nug.M..T-h.$. =
:h.,.d=h...h.." (.
tS..&..A . 'ALS. ..

5,063,499
KX} ‘ M
This is sector 000B (11) of file " Virtual"
It is absolute sector 35 located at track 2, sector 11

Tags: 0000 0002 0300 000B 9FCC S5AlD

0000/000: D200 8066 OOFS FC29 BAld4 Q4FO0 0024 004C LIS NS PR $.L:
0010/016: DF0O3 0308 EAO0 0800 0266 1E4A 4167 1008 Teeiaenaes f.JAg..:
0020/032: B400 0815 2200 0400 0229 BAl4 0460 OACS T I
0030/048: B700 0881 5200 022E BABO 8953 CIFF 6A28 t...RaL.l, S..3¢(:
0040/064: 9F52 4166 1222 2C00 0429 6C03 FCOO0 0429 t.RAL.", 0100 0):
0050/080: 4103 FC60 OOFE E64C DFSF FF61 OOFE 7861 AL, ...L._.a..xa:
0060/096: OOFE 9821 7AF3 7600 2421 7AF3 7000 2831 o tlzav.Slzop. (1
0070/112: 7AF3 6E00 2C60 OOFE 564A 6800 186B 064E tz.n., .. VJh. . k.N:
0080/128: FB31 61F3 7E40 E73F 3CFF FF2F 3AF3 7248 t..a,~@.2<../:.CH:
0090/144: E7FF FA4D FAF2 E650 EEQQ 7860 QOFD 9ECO Tl ML PLLxT L
00A0/160: B803 1A02 8007 FFFE OOEF 8848 4006 8000 ettt HE...:
00B0/176: 7F00 OQ4E 7504 8000 7F00 0048 40EE B84E LI 11 HR..N:
00C0/192: 7508 1700 0D67 064E FO81 E100 282F OA4E tu....g.N....(/.N:
00D0/208: 6A25 2F00 0825 2F00 044E 6224 SF2F 7800 3%/, .%/ . NBS_/x.:
00E0/224: 2800 0202 S573F FF4E 7324 SF4E BB81 61F3 :{...W?.Ns§_N..a
O00F0/240: 1A4E F081 E100 200C AFO00 7F50 7C00 0264 t.N....Pl..d
0100/256: 140C AF00 7F00 0000 0265 QA3F 5700 0654 P ianans LW, LT
0110/272: AF00 024E 772F OACS BA34 3781 6100 060C te..Nw/, 47 a.
0120/288: 4240 E767 0000 A20C 4200 7C67 0000 BOOC :BR.g. B Ig....:
0130/304: 4246 DF67 0000 BEOC 424E 7366 0CCS 8A4S5 :BF.g....BNsf. .E:
0140/320: FAF2 B434 FC80 8060 600C 4240 C067 0000 :...4...".8@.9..:
0150/336: B60C 424E 7A67 480C 424 7B67 420C 42F3 :..BNzgH.BN(gB.B.:
0160/352; SFE7 0000 BAOC 42F3 2767 0000 COOC 4240 :_g....B.'g....B@:
0170/368: C167 0000 9EOC 4246 FCE7 0000 BEOC 4202 :.g....BF.g....B.:
0180/384: 7C67 0000 C80C 420A 7C67 0000 D40C 424E :lg....B.1g....BN:
0190/400: 7267 0000 E002 42FF COOC 4246 C067 9ECS :rg....B...BF.qg..
01A0/416: BA45 FAF2 5234 FC80 0024 B8F4E 6A25 2r00 :.E..R4...5.N3Y/.
01B0/432: 082S 2F00 0400 S2A0 004A 6A00 1324A 6AFE . %/ .. .R..J3.27F.:
01C0/448: 00CS 4F24 524E 73CS BA4E 6A35 2F00 0408 :..O$RNs. .N35/...:
01D0/464: D200 OD4E 6254 AFQ0 0660 0000 AC34 3781 .. NDT.LL L. 4T
01E0/480: 6200 0600 0285 6F00 04C5 BAS8 AF00 0660 ho.... 0....X...7:
01F0/496: 0000 96CS 8A4E 6A3F SAOO0 044E 6254 AFOO H Nj’z NDBT..:

This is sector 000C (12) of file " Virtual"
It is absolute sector 36 located at track 3, sector O

Tags: 0000 0002 0300 000C 9FCC SAlD

0000/000: 0660 0000 84CS5S BA30 2FQ0 04S4 AF00Q 0660 O 0/..T...%:
0010/016: 76C5 8A32 2F00 0454 AF0Q0 0660 6ACS BA4E v, .2/, ... T3 N
0020/032: 6AF3 SA4E 6254 AF00 0660 S5CCS BA4E 6AF3 ¢3.ZNBT..." \..Nj..
0030/048: 224E 6254 AFQ0 0660 4ECS B8A3F 7781 6200 :"NBT... 'N..?w.b.:
0040/064: 0600 0200 0458 AFO0 0660 3C34 3781 6200 HIRPR X... <47.b.:
0050/080: 0600 02CS 6F00 04CS5 BAS8 AFQ0 0660 2834 IR TR SO §
0060/096: 3781 6200 0600 02B5 6FO00 04CS BAS8 AF00 7.b..... 0....X..:
0070/112: 0660 14CS SA3F 7781 6200 0600 0200 043F t .. 2w bolLl L, ?:
0080/128: BCS0 FE81 6100 0624 SFO8 9700 OD4E 732F :.'..a..S_....Ns/:
0090/144: OA45S FAFl 6208 9A00 0767 4208 SA00 0766 .E..b....gB. f
OOA0/160: 1E24 5225 6F00 0800 0424 AF00 0402 S525F .$R%o0. S.. .
00BO/176: FFCS 4FD4 FCOO 104E 6224 6AFF FO4E 7324 O.... Nij NsS
00C0/192: 5225 6F00 0800 0424 AFOQ 0408 5200 ODCS ‘R%o....$
00D0/208: 4FD4 FCOO0 104E 6224 6AFF FO4E 7308 2F00 :Nij..Ns./.:
00E0/224: ODOQ 0467 QA24 SF44 D74E FO081 E100 244E T...g.S_D.N....SN:
00F0/240: 6A25 2F0Q0 0C2S 2FQ0 0825 2F00 044E 6224 e L VRS TS VAN |- 1N
0100/256: SF2F 7800 2400 0202 S73F FF4E 734A 3900 _/x.5...W?2.NsJS.:

0110/272: 7F43 1467 2848 EIFF FAFO 2762 0055 B8F2F :.C.g(H....'b.U./:

0120/288: 3900
0130/304: 443F
0140/320: 0602
0150/336: 7500
0160/352: 0000
0170/368: 0000
0180/384: 0000
01%0/400: 0000
01A0/416: 0000
01B0/432: 0000
01C0/448: 0000
01D0/464: 0000
01E0/480: 0000
O01F0/4%6: 000D

This is sector
It is absolute

Tags: 0000
0000/000: 0000
0010/016: 0000
0020/032: 0000
0030/048: 0000
0040/064: 0000
0050/080: 0000
0060/096: 0000
0070/112: 0000
0080/128: 0000
0090/144: 0000
00AQ0/160: 0000
00BO/176: 0000
00C0/182: 0000
0000/208: 0000
00E0/224: 0000
Q0F0/240: 0000
0100/256: 0000
0110/272: 0000
0120/288: 0000
0130/304: 0000
0140/320: 0000
0150/336: 0000
0160/352: 0000
0170/368: 0000
0180/384: 0000
0190/400: 0000
01A0/416: 0000
01B0/432: 0000
01C0/448: 0000
01D0/464: 0000
01E0/480: 0000
01F0/496: 0000

This is sector
It is absolute

Tags: 0000
0000/000: 0000
0010/016: 0000
0020/032: 0000

35
TF43
2F00
S70F
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

000D
secto

0002
0000
0000
0000
0000
0000
0000
0000
0000
Q000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

000E
secto

0002
0000
0000
0000

402r
4A48
FF42
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

{13)
r 37

0300
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

(14)
r 38

0300
0000
0000
0000

3900
TAF2
672E
0000
0000
0000
6000
0000
0000
0000
0000
0000
0000
0000

TF43
S63F
B781
Q000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

of file *
located at track 3,

000D
0000
0000
0000
0000
0C00
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

SFCC
0000
0000
0000
0000
0000
Qo0
0000
0000
0000
0000
0000
0000
0000
0000
00090
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

of file "
located at track 3,

5,063,499

4423
2F00
5144
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

CFo0
4A3F
EF00
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

Virtual"®

SAlD
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
o000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
ccoo
0000
0000
0000
Qooo
0000
0000
0000
0000
0000
0000
0000
0000

Virtual”

000E SFCC SAlD
0000 0000 0000 0000
0000 0000 0000 Q000
0000 0000 0000 0000

36 .
7F43 :9..CR/9..CD%...C:
2F00 :D?/.JHz . V2/.J2/.:
044E :..W..Bg...QD...N:
0000 TUsveeeencosanans :
0000 L eirsecesoraaanns :
0000 S terecaraasaaans :
0000 N s
0000 N :
0000 S eeersacsnaaneenn :
0000 L eeeersstecunensal
0000 i eeerraaantaanens :
0000 f i e eeennrecnaeea
0000 i iecenr e :
0000 feenacscnncacanss :

sector 1

0000 f e ieetene el
0000 S eteeroetesansanal
0000 S teerrs e :
0000 e rresescnennanaat
0000 P :
0000 e rectsccesronons :
0000 leencceonaonsnonst
0000 e raccsesassacas :
0000 ieecesessasoacsan :
0000 L raereaaseaasensl
0000 e ereatraaraanst
0000 feeecrestenoassant
0000 L reeeraera e :
0000 L ieeereaeeaaaeantl
0000 -
0000 L e i easeee et
0000 ieenoenseensasest
0000 i evnsecrtasesocent
0000 fvasesectananasset
0000 it eersertenasnan H
0000 ereanas cheseeaeet
0000 S eeeeesaerasnnansl
0000 feenacasoraaananst
0000 i teeene et aaal
0000 it teracaseaaasast
0000 e enestaeeeasons :
0000 e iaeeecnas e :
0000 e enaecr e aaat
0000 it e e :
0000 e reca et
0000 et ecet et
0000 £

sector 2

0030/048: 0000
0040/064: 0000
0050/080: 0000
0060/096: 0000
0070/1i2: 0000
0080/128: 0000
0090/144: 0000
O00A0/160: 0000
00B0O/176: 0000
00C0/192: 0000
0000/208: 0000
00EQ/224: 0000
00F0/240: 0000
0100/256: 0000
0110/272: 0000
0120/288: 0000
0130/304: 0000
0140/320: 0000
0150/336: 0000
0160/352: 0000
0170/368: 0000
0180/384: OFAS
0190/400: FAE9
01A0/416: 0007
01B0/432: 2800
01C0/448: 1C43
01D0/464: EB42
01EQ/480: A800
01F0/496: 7803

This 1s sector
It is absolute

Tags: 0000
0000/000: 8000
0010/016: 0000
0020/032: 2900
0030/048: 06BC
0040/064: 1430
0050/080: 0C31
0060/096: 6EQ0C
0070/112: 123F
0080/128: 9546
0090/144: 4041
00A0/160: FAE7
00B0/176: CBFF
00C0/192: 4942
00D0/208: 0000
00EQ/224: 0122
00F0/240: CBFF
0100/256: 8042
0110/272: 0051
-0120/288: 8000
0130/304: 0800
0140/320: 7C00
0150/336: 0420
0160/352: F220
0170/368: 0800
0180/384: 3FO08

37

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
7608
EA4D
1630
3Jecs
FAFB
A800
1caQ
4ED2

000F

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
2F00
FAEB
6800
FC02
8E21
0C42
0066
E800

{13)

sector 39

0002
0000
1cao
284C
AS00
2900
7C00
1A00
3coo
FC2?
FAEB
DA22
FC20
9951

‘0010

7C00
F620
9951
C8FF
0100
0022
0000
D122
9342
0258
E900

0300
24A2
12a0
0350
0865
483D
0100
1821
023F
004A
2091
7C00
3801
C8FF
0038
0800
0690
C8FF
F678
004C
4020
0002
D342
9330
8951
0AQO

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
3500
E642
4400
0031
4900
2800
0006
184A

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
Q000
0000
0000
0000
0000
0000
0000
0000
0000
0000
064E
A8QQ
1A26
780A
1270
1a11
003D
A900

of file "
located at track 3,

000F
1066
457A
0SDA
0006
4000
2c21
7C00
3coo
B8Ol
9041
0840
084C
FC2A
0006
0022
854C
FC30
1F26
7C00
06E2
0006
9808
0422
C8FF
pz2s8

9rCC
0006
007C
842D
802cC
1831
7C00
0008
03Aa8
2067
FAEB
0030
7C00
3s01
4000
Cl06
7C00
0422
7C00
0000
8804
8000
E900
7C00
F622
8951

5,063,499

0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
004E 36FF
SE66 0007
O0CAO0 14A2
2800 3078
SA00 1842
0BA2 6066
7C00 0300
6800 1800
0866 1A21

Virtual”

SA1D

AE21 7C00
003A 2300
4500 1C4C
2900 0822
4000 1642
7EF8 0000
0000 2448
953F 3C00
1420 3C00
1EE4 8891
3C05 BF22
0000 0010
0820 054C
2004 4400
8100 0008
0000 0008
Cl06 8100
0804 0020
0002 0006
8000 0100
0800 0020
08FF FES1
0800 0008
7C00 0800
C8FF F620

0000 i emrneananssean :
0000 et ernnensaaannent
0000 L eeennanasoncnnsn :
0000 S
0000 feeeenssasoananant
0000 D et e :
0000 L eesernesnnaananal
0000 i eeeescasssssnnat
0000 L et ieenc e :
0000 | 3
0000 D it eeeene e :
0000 i i eseersaaae et
0000 D tsesecesiaeanes :
0000 i i e caen s :
0000 L ereasersccanaas :
0000 terens P
0000 et e et
0000 e eononsenconnenat
0000 et
0000 i vemeonr et
FO2F L et e et NV../:
2241 touv. /. 5. N fL LA
0766 t...M.L Bl £f:
0038 :...=h.D..&(.0x.8:
ABQ0 :(.8....1x.2..B..:
0006 :.C. . 1TLp. L
1B42 :.B...B(...]....B:
2822 A f...=h....":
7C00 ix.N....J...£..¢

sector 3

8000 PRI - U S I R
263C et Ez.l.:).&<:
0360 :).(L.P...~E..L.":
6900 HEN e...,).."i.:
A800 :.0).H=Q, .18, .B..:
2031 0 S I N I D -
TAQ0 Meeeo e SHz.:
02A8 1.27<..2<,...2<,,.
0001 :.FL'.d.. g <ol
5041 sBA.. .ALL.... PA:
D851 t..."1..0.0<..".Q:
0024 te.. Bl $:
7C00 :IB.Q...*8.. .Ll.:
2272 P 8..8. .D."r:
Q0s1 P [Q:
0053 VP 7 RN S:
0008 :.B.Q...0.". ..., :
0604 c. Q.. .x.&1... .
8000 teenns) 7 PR
004C PR - EE O L:
4020 35 [1
C8FF . JUBiieae.. Q..:
ES00 t. B0l
0070 HPRUS 9% o TRV IR < M
0604 Hir S X.Q...

0190/400:
01a0/416:
01BO/432:
01C0/448:
01D0/464:
01E0/480:
01F0/496:

8000
0002
E900
0B76
8022
0E08
A935

This is sector
It is absolute

0000
ES00
3C00
4008
FCO0
1C00
004E
380D
2041
7C00
0031
FCO0
B801
0C46
F020
BS40
780D
SDAZ2
B3940
224E
B80OE
8007
4CS3
8002
B3940
9E4E
00A0Q
D001
0011

Tags:

0000/000:
0010/016:
0020/032:
0030/048:
0040/064:
0050/080:
0060/096:
0070/112:
0080/128:
0090/144:
00A0/160:
00BO/176:
00C0/192:
0000/208:
00EQ/224:
00F0/240:
0100/256:
0110/272:
0120/288:
0130/304:
0140/320:
0150/336:
0160/352:
0170/368:
0180/384:
0190/400:
01A0/416:
01B0/432:
01C0/448: 4CS3
01D0/464: C801
01E0/480Q: 0100
01F0/496: AEQO

This is sector
It is absolute

0000
EEFC
8011
6800
D841
954A
F940
047E
6E0QQ
67A9
062F

Tags:

0000/000:
0010/016:
0020/032:
0030/048:
0040/064:
0050/080:
0060/096:
0070/112:
0080/128:
0090/144:

39

0100
0006
0A00
FF78
7C00
0100
8312

0010

0090
8000
0258
2020
0800
OA66
0051

(16)

sector 40

0002
0500
7F80
E900
TF43
TF42
soz2cC
A641
F80C
8000
C40D
7F42
204E
FC27
0011
8004
BC4E
474E
8002
B940
3246
E620
430C
302E
8060
B340
5720
1440
7CQ0
430C
1821
4467
0230

0011

0300
0302
0061
0500
BOOO
SE30
7801
F8o01
BC43
0021
A64D
000D
B940
0070
7C00
B64E
9020
B940
3E4E
B8QCE
FC20
4F22
FC6?
4890
724E
8008
7802
EF04
821C
FC4E
c802
O0A02
2E00

{17)

sector 41

0002
0031
AE42
SE20
EEOQO
SF6A
8011
0060
4AA9
BC20
2800

0300
7802
AB00
2800
0A70
1041
AE70
0620
9736
1F67
0241

8500
07FF
B89B3
064C
0022
08EA
C8FF

B8Ol
FCo02
FCOO
7C00
1967
A93S
E022

of file ™
located at track 3,

0010
FC3F
00Fs6
0323
0821
3CAQ
081E
0043
F81E
CEOl
FAQQ
BC21
8002
0120
021C
B940
5F20
8004
B340
804E
004E
7801
064E
FC20
B940
B820
A621
004B
004E
B940
AA2Z1
0100
7CA0

9FCC
FCos
8804
F800
FCO0
SDA2
3801
F80C
004E
0811
084E
FCS7
DE21
780D
004E
800D
7C00
784E
BOO4
B940
B940
oczc
B840
00AO
8266
7802
caol
EF01
B9440
801S
D001
cogc
6D30

of file "
located at track 3,

0011
1000
1242
SA4E
10A0
EEFC
Q04E
4521
1FroC
4224
EEFE

9rcc
16A0
6800
B340
2ES55
0042
B340
D002
43FF
40A0
024A

5,063,499

0c4cC
40FF
083F
0000
1A08
8412
7C00

7C00
FC22
FC63
s]e]o]]
0100
0060
0800

Virtual®

SAlD
£900
8000
0800
7742
4741
2F26
BO4E
B940
c701
F940
4cS3
FCO0
BCAE
8940
OA70
1F42
B940
644E
8002
806D
7801
802B
2p43
364E
A620
1821
9020
8002
1€20
1412
0100
2E00

0500
7700
0843
000D
FAES
380D
B940
8002
2r2l
8020
430C
7EF8
9020
8003
002F
SE30
800E
B940
CAJE
804E
080C
BC4E
F803
B940
s0o00
€802
7Cs50
7Cc21
7802
2E0Q0
C066
TAAQ

Virtual”

SAlD
OFe67
1CA2
8012
4F42
AB00
8011
BAAS
FF67
2920
6800

064E
0766
7643
BAOA
12A0
EQ2A
FE42
5042
522F
046A

0000
4008
FO7A
0053
0866
06EA
0008

sector 4

0320
0022
8821
BC20
2E70
0038
8002
202¢C
C3¢D
5021
FC42
0001
7CS50
004E
0820
3cAa0
044E
800E
B940
B940
B83S?
B940
084E
800D
FC40
AA21
FO20
FCS7
A621
060C
044E
6C41

sector 5

F940
OE28
F80A
F2A9
QE4E
0066
6748
A742
2800
0420

................

HIPRPIS oS SURDRI - DR
:}{..B*0<.]).GA...p:
+.N.,x...8./58..8:
..A...C...N.@..:
..N.Q.. ,:

PR T

[
X
z
[

.
oo o0

..................

t.~.". E
:n.J..6..C..gPB.B:
:g.. .gBse.) R/ (.:
t /(. LALL TR LS.

5,063,499

41 42
O0A0/160: 5020 S048 6800 0648 EF00 O044E B940 8012 :P PHh..Ho..N.®,.:
00B0/176: 984E B940 8018 A42F 0A48 6F00 04A8 FESO :.N.8.../.Ho....P:
00C0/192: 8F3F 03A%9 SAS1 C760 603F 03A9 9A43 EE0O t.?2...Q.772...CLLe
00D0/208: 4A76 014E B940 8012 0656 C766 4C2F 3CO01 tJv.N.R., .V fL/<.:
OCE0/224: 5602 0042 A73F 3C00 4048 6E08 0045 EEFE :V,..B.?<.QHn. . E..:
O0F0/240: 024A 6A00 046A 0424 5224 522F 3CO01 5602 :.J3..3.8RSR/<. .V, :
0100/256: 0042 A748 6A00 0648 6F00 044E B940 8012 :.B.Hj..Ho..N.R..:
0110/272: 9848 6F00 082F OA48 6F00 1648 EF00 0C42 :.Ho../.Ho. .Ho..B:
0120/288: 6742 A7A8 ECDE FCOO0 1684A 0767 064E B940 :gB....... J.g.N.@:
0130/304: 8018 A470 284E B940 8011 DBO4 B8OO 0004 t...p(N.@........:
0140/320: 0001 0C43 EEOO 2A4E B940 8012 0467 OAOS t...C..2N.8...g..:
0150/336: BBOO 0004 0001 OC60 204E 9170 FE4E B940 e * N.p.N.@:
0160/352: B0O11 DB43 EEOC 3A4E B940 8012 0466 OA4E t...C..iN.@LLUELN:
0170/368: 9170 FS4E B940 8011 D843 F80A D876 FF4E :.p.N.Q...C...v.N:
0180/384: B940 8012 0666 164E 9148 E780 8020 7C00 1.8, . f.N.H. {.:
0190/400: 7F42 5E30 3CAO0 SDA2 474C DFO1 014E F940 :.B*0<.).GL N.Q:
01A0/416: 8010 3822 7900 7F43 0822 1908 0100 0066 LBy Gl £:
01BO/432: F859 8%20 7C00 7F3F 7C22 1002 41FC 0022 HPD U B 3 Y DR
01C0/448: 8123 C900 7F43 0020 7C00 7F42 SE30 3CAQ I C. 1..B"0<
01D0/464: SDA2 4720 7C00 7F48 DO4E 9061 0000 CE30 :].G |..H.N.a 0
01EQ/480: 3CAO 02Al 4623 C800 7F43 8020 7C00 7F4D i<...F¥...C. 1. .M
01F0/496: A030 3CAOQ 02A0 4730 3CAO0 03Al1 4623 €800 :.0<...G0<,. .. .F§..:
This is sector 0012 (18) of file " Virtual”
It is absolute sector 42 located at track 3, sector 6
Tags: 0000 0002 0300 0012 SFCC SAlD
0000/000: 7F43 8420 7C00 7F4F FE30 3CAC 03A0 472F t.C. 1..0.0<...G/:
0010/016: 3C00 7F42 723F 3C00 083F 3C00 03A8 9520 1<, .Br?<..2<.... :
0020/032: 7C00 7FFD 0042 A042 6021 1F42 604E 672E :1....B.B" ! .B'Ng.:
0030/048: 4891 €822 7C00 7FBO 0022 D822 D822 3ICO0 Y SR I L
0040/064: 7FS2 9230 3C00 3D22 C151 CBFF FC20 3C00 t.R.0<. =" Q... <.:
0050/080: 0001 0042 9951 CBFF FC30 3CAS FFAl 4623 :...B.Q...0<...F#:
0060/096: C800 7F43 8C23 FCO0 7F43 BOOO 7F80 0823 t...C.HE...C..... $:
0070/112: FCOO 7FS0 7C00 7FB0 2023 FCOO 7FS2 1400 te..Plo.. #...R..:
0080/128: 7F80 2423 FCOO 7FS50 4600 7F80 2823 FCOO LT S -3 S § IR
0030/144: 7r42 6CO0 7FB80 7C22 7C00 7F80 004E 7B98 s Bl...1"l....N(.:
00A0/160: 0121 F900 7F43 8800 0B4E 733F 3CF0 203F tota . Cll NS¢, 2
00B0/176: 3CFF FF61 OE4E 753F 3CFO 203F 3CFF FF61 :<..a.Nu?<.0?2<, . a:
00C0/192: 024E 7S4E 5600 002F 0B42 AT2F 3C49 434E :.NuNV../.B./<ICN:
0000/208: 233F 2EQ0 OAA9 A020 1F67 2020 40A0 2926 H2..... .g B.)&:
00E0/224: 482F 103F 2E0C O84E BAOO 1420 4BAO 2A2F tH/.?2...N... K.*/:
00F0/240: 0BA9 A326 SF4E SE2E 9F4E 7560 F64E S56FD fe. & _N*, Nu'.NV.:
0100/256: 5C48 E73F 1C4B EEFD 5C48 G6EFE FBAB 6E48 :\H.?.K..\Hn,..nH:
0110/272: SEFF 0OA8 7448 6EFF 04A8 6F30 3809 2CE3 tn...tHn...008.,.:
0120/288: SB0A 4010 21BO 7809 2E67 180C B85S0 6175 :X.8.!.x..g...Pau:
0130/304: 6COA 7867 0831 FCOO 0809 2C60 0631 F80OA (loxg il ..., 1.,
0140/320: 7E09 2C41 EEFF 0430 2800 0C04 4000 2848 t~.,AL..0(...8, (H:
0150/336: 4030 3809 2C2D 40FF F82D 40FF FCO06 6EQO :R08.,-@..-8...n.:
0160/352: 20FF FEO6 6EQQ 20FF FC26 6E00 OA61 3630 : ...N. ..&n..ab60:
0170/368: 3809 2C32 2E00 0B6A 0432 3C00 28D0 4131 :8.,2...5.2<.(.A1:
0180/384: C009 2CE3 580A 4010 2131 CO09 2E48 6EFF t.., X211, Hn.:
0190/400: 04A8 7D2F 2EFF 00A8 734C DF38 FC4E S5E20 tw.}/...sL.8.N"
01A0/416: SFSC 8F4E D049 EEFF DC28 8BO6 9400 0000 P NNLTL L.l
01B0/432: 8039 7C00 0400 0442 ACO0 0629 7C00 2000 HIE: 1 RS - DU B ISR
01C0/448: 2000 OA2F 0C4S EEFF 0448 6A00 0248 7A00 : ../.E...Hj. . H=z.:
01D0/464: 2C48 GEFF F83F 3C00 0342 A7A8 ECO4 9400 s,Hn..2<,. . B...... :
01E0/480: 0000 802F 0C48 6A00 0248 7A00 1048 6EFF t.../.Hj..Hz, .Hn.:

,'01F0/496: F83F 3C00 0142 A7A8 EC4E 7500 0000 0000 t.2<..B...Nu.,.... :

This is sector
It is absolute

5,063,499

43

1. A method of utilizing physical memory and periph-

eral storage in an Apple MacIntosh computer running

under an Apple Macintosh operating system, wherein
the Apple Macintosh computer includes a suitable mi-

croprocessor capable of coacting with memory man-

agement logic either internal or external to the micro-
processor, and an amount of physical memory, and
wherien the Apple Macintosh computer is capable of

operating in both user and supervisor modes, as virtual

memory comprising the steps of:

allocating a portion of the peripheral storage as a
virtual memory file,

determining the amount of the physical memory resi-
dent in the Apple Macintosh computer,

setting the memory management logic to address at
least part of the physical memory and at least part
of the virtual memory file as virtual memory space,
whereby there is a first portion of the virtual mem-
ory space in the physical memory and a second
portion of the virtual memory space in the periph-
eral storage,

establishing a supervisor stack in the physical mem-
ory,

50

55

65

4

0013 (19) of file " Virtual”
sector 43 located at track 3,

sector 7

Logical End Of File is after position 017F(383) in this sector
Tags: 0000 0002 8300 0013 SFCC 6431
0000/000: 2000 2000 0000 9E3F 302E 39330 2056 6972 : .e..20.90 Vir:
0010/016: 7475 616C 204D 656D 6F72 7920 4F70 6572 :tual Memory Oper:
0020/032: 6174 696E 6720 5379 7374 656D 2049 6E6? sating System Ini:
0030/048: 7469 616C 697A 6572 2066 6F72 2074 6865 stializer for the:
0040/064: 204D 6163 2049 492E 2020 436F 7079 7269 + Mac II. Copyri:
00S0/080: 6768 7420 3139 3838 2C20 436F 6EEE 6563 :ght 13588, Connec:
0060/096: 7469 7820 436F 7270 6F72 6174 636F 6E2E :tix Corporation.:
0070/112: 2020 S772 6974 7465 6E20 6279 204A 6F6E : Written by Jon:
0080/128: 6174 6861 6E20 462E 2047 6172 6265 722E sathan F. Garber.:
0090/144: 2041 6C6C 2072 6967 6874 7320 7265 7365 ¢ All rights rese:
OOA0/160: 7276 6564 2E00 0001 0000 0026 A500 0025 txrved....... & LE
00B0/176: AS00 0000 DBOO 6AlE 9804 0C00 0000 1C00 Theeeen Jeeeiaas
00C0/192: D600 0756 4D4S5S 4D0OO0 0000 4246 5245 4600 $...VMEM. ., . BFREF
00D0/208: 0000 4E42 4E44 4C00 0000 5A49 434E 2300 :..NBNDL...Z2ICN#
Q0E0/224: 0200 6649 4E49 S400 0000 8AS3 4552 2300 :..fINIT....SER}
00F0/240: 0000 9641 4CS52 5400 0000 A244 4954 4C00 ‘...ALRT....DITL.
0100/256: 0000 AEQQ OOFF FF00 0025 0300 0000 OOFO fheeninans $...... :
0110/272: 20FF FFOQ 0000 0000 0000 OOF0 20FF FFOQO T ieeenaanenn R
0120/288: 0000 0BOO 0000 QOFQ 30FF FF20 0000 2B0OO feinaenon 0.. ..+.:
0130/304: 0000 OOFF 80FF FF20 0001 2F00 0000 OOFO HESR Y
0140/320: 20FF FF20 0002 3300 0000 0000 OAOQO 0000 T oe. .3t
0150/336: 0004 7700 0000 0000 O8FF FFO0 0003 3700 T 7.:
0160/352: 6A8D 8802 9AFF FFQO0 0003 4300 0000 0002 E IR C..... :
0170/368: 9AFF FFO0O 0003 5300 0000 0004 4D61 696E eaeens S..... Main
0180/384: 0000 0000 0000 0000 0000 0000 0000 0QQ0 :f.......ceeencnrest
0190/400: 0000 0000 0000 0000 0000 0000 0000 0000 et et :
01A0/416: 0000 0000 0000 0000 0000 0000 0000 0000 :...........o..nnt
01B0/432: 0000 0000 0000 0000 0000 0000 000Q 0000 :...........envnant
01C0/448: 0000 0000 0000 0000 0000 0000 0000 0000 :......e.c.ivecnnnnt
01D0/464: 0000 0000 0000 0000 0000 0000 0000 0000 :.......c.cviernnns
01E0/480: 0000 0000 0000 0000 0000 0000 0000 0000 :........eo.nvnnns
01F0/496: 0000 0000 0000 Q000 0000 0000 0000 0000 :.......eovcennnns
I claim: 45 reconfiguring the Apple Macintosh computer to con-

tinue processing, normally performed in supervisor
mode, in the user mode, including establishing at
least one user stack in the virtual memory space in
response to an attempt by the Apple Macintosh
operating system to establish a stack and forcing
the Apple Macintosh operating system or at least
one currently executing application program to use
the at least one user stack instead of the supervisor
stack as if the Apple Macintosh operating system
or the at least one currently executing application
program was still operating in the normal supervi-
sor mode by redirecting the microprocessor to use
the at least one user stack when the Apple Macin-
tosh operating system or the at least one currently
executing application program attempts to address
any stack during processing normally performed in
supervisor mode, and

swapping between the first and second portions of the
virtual memory space, in accordance with a prede-
termined criteria, non-critical information.

2. The method of claim 1 further including the step of

retaining critical information in the first portion of the
virtual memory space.

5,063,499

45

3. The method of claim 2 wherein critical information
includes at least the location of the supervisor stack.

4. The method of claim 3 further including the steps
of switching to supervisor mode to perform the infor-
mation swapping step.

§. The method of claim 1 further including the step of
organizing the virtual memory space into pages, and
wherein the predetermined criteria includes consider-
ation of page usage history.

6. The method of claim 2 further including the step of
causing the macintosh operating system to recognize
the entire virtual memory space as available physical
memory by rebotting the Apple Macintosh computer,
after allocating the virtual memory file and setting the
memory management logic, without resetting the mem-
ory management logic or critical memory configuration
values.

7. The invention of claim 1 further including the step
of retaining the supervisor stack in a known location in
the physical memory.

8. The invention of claim 6 wherein oen of the critical
memory configuration values is the value of MEM-
TOP.

9. The invention of claim 6 wherein one of the critical
memory configuration values is the initial value of
BUFPTR.

10. A method of installing virtual memory compris-
ing a combination of physical memory and peripheral
storage in an Apple Macintosh computer capable of
operating in privileged and protected modes running
under an Apple Macintosh operating system wherein
the Apple Macintosh computer includes a suitable mi-
croprocessor capable of coacting with memory man-
agement logic either internal or external to the micro-
processor, and an amount of physical memory, compris-
ing the steps of:

allocating a portion of the peripheral storage as a

block,

setting the memory management logic to address at

least a portion of the physical memry and at least a
portion of the block of the peripheral storage as
virtual memory space,

reconfiguring the Macintosh operating system with-

out further resetting the memory management
logic to cause the Macintosh operating system to
recognize the virtual memory space as available
physical memory nd to cause the Apple Macintosh
computer to continue processing, normally per-
formed in priviledged mode, in the protected
mode, including establishing at least one user stack
in the virtual memory space in response to an at-
tempt by the Macintosh operating system to estab-

20

30

35

45

50

35

65

46

lish a stack and forcing the Macintosh operating
system or at least one currently executing applica-
tion program to use the at least one user stack as if
the macintosh operating system or the at least one
currently executing application program was still
operating in normal privileged mode by redirecting
the microprocessor to use the at least one user stack
when the Macintosh operating system or the at
least one currently executing application program
attempts to address any stack during processing
normally performed in privileged mode.

11. A method of utilizing physical memory and pe-
ripheral storage in a computer system running under an
operating system, wherein the computer system in-
cludes a suitable microprocessor capable of coacting
with memory management logic either internal or ex-
ternal to the microprocessor, and an amount of physical
memory, and wherein the computer system is capable of
operating in both user and supervisor modes, as virtual
memory comprising the steps of:

allocating a portion of the peripheral storage as a

virtual memory file,

determining the amount of the physical memory resi-

dent in the computer system,

setting the memory management logic to address at

least part of the physical memory and at least part
of the virtual memory file as virtual memory space,
whereby there is a first portion of the virtual mem-
ory space in the physical memory and a second
portion of the virtual memory space in the periph-
eral storage,
establishing a supervisor stack in the physical mem-
ory,
reconfiguring the computer system to continue pro-
cessing, normally performed in supervisor mode, in
the user mode, including establishing at least one
user stack in the virtual memory space in response
to an attempt by the operating system to establish a
stack and forcing the operating system or at least
one currently executing application program to use
the at least one user stack instead of the supervisor
stack as if the operating system or the at least one
currently executing application program was still
operating in the normal supervisor mode by redi-
recting the microprocessor to use the at least one
user stack when the operating system or the at least
one currently executing application program at-
tempts to address any stack during processing nor-
mally performed in supervisor mode, and
swapping between the first and second portions of the
virtual memory space, in accordance with a prede-

termined criteria, non-critical information.
L =] * []

