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7.  Intro to Object-Oriented Classes
Now that you have a basic understanding of standard 
types, variables, and functions, and how to organize a 
multi-module program, we will venture forth into 
advanced types.  Advanced types are programmer 
defined, and usually aggregate (sometimes called 
composite) types.  By this I mean that YOU will be able 
to specify the details of a new type, each instance of 
which is possibly made up of several standard types.   
For instance, a string of characters, or a university’s 
student record (e.g. name, address, phone number).  

Readings: 
• Chapter 4 [Savitch2001]
• It is optional, if you understand the lectures, whether you 

read Chapter 5.   The same material is taught in my lectures 
the way I like (e.g. static functions and static attributes, 
overloading, constructors, design info hiding).  Some of 
these topics will definitely be on the midterm.  I would 
encourage you to read Chapter 5 (except 5.6-5.8), though I 
would not say it is a requirement if you fully understand 
this section of the lecture notes.  But if you are struggling 
with the material in this course, there is no substitute for 
seeing more code and more source code explanations like 
that in Chapter 5.0-5.5.

• Chapter 5.6-5.8 are relevant for good students, or those 
going on in Computing Science, or will be covered much 
later in the course.
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7.1  Structure/Records

The C and C++ programming languages have an 
aggregate/composite ’structure’ type.  Pascal has 
something similar called RECORD.  Java does NOT 
have structures.   However, I want to introduce 
structures to you so that you can see why Java and C++ 
have the class construct, and why C++ doesn’t really 
need structures, and Java even have have structures.  

Structures are way of allowing programmers to define a 
new kind of type, and give it a type name of the 
programmer’s own choosing!  Thus our programming 
will not just be confined to the primitive types like int, 
float, etc.   For example, we could define a new 
composite type called ‘Student’ which had record 
fields within it for name, address, phone number, date 
of birth.  Once you have a new type name, you can 
create many variables of that new type (just like 
creating many variables of type int).  e.g.

Student student1;
Student graduatingStudent;

Each variable is called an ‘instance’ of the type.
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The nice thing about structures is that:
• they can hold several different types of fields (e.g. name 

string, integer age) in one composite container (i.e. in one 
composite variable; think of it like an ice cube tray.).

• they can be assigned from one to another as a whole.  This 
is easy in Pascal/C++, and possible but not as direct in 
Java.  In C++:

graduatingStudent = student1   //C++

Note that we do not have to assign the various parts of 
student1 (e.g. name, address, phone, age), each 
individually, to graduatingStudent.  We can treat 
student records as a whole.

Structures are the first step on the road of encapsulation 
and abstraction:  putting things together that belong 
together, and be able to treat the composite as a whole.  
Often a client programmer can treat structures as a 
whole without needing or wanting to know their 
internal details.  Client programmers are those who use 
composites types defined and programmed by other 
programmers.  (Do you really need to know how 
System.out works as long as it does its job?)
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7.1.1  Example of Struct

Here is how you declare a new, programmer-defined  
structure type called AirPosition in C++.  You use the 
keyword struct, create your own name for the type, and 
in braces {} specify the list of elements you want in 
your new type.

struct AirPosition{        //C++
double latitude;
double longitude;
long altitude;

};

It is convention to name user defined types to begin 
with an upper case letter!

Note why the individual record fields have their own 
names:  If a structure contains two data attributes of the 
same type, we must have a field/attribute name for each 
so that we can later specify which one we may want to 
assign to or from (if we want to mess with the 
individual parts of the structure). In Pascal these would 
be called (record) ‘field names’.  In C++ they are called 
structure or class ‘data members’ or ‘member 
attributes’, or just ‘attributes’ (as in the attributes of a 
student).

For those unfamiliar with geographic position terms, 
latitude is a measure of the angle north or south of the 
equator.  Let us assume the south pole has a latitude of 
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-90 degrees.  Longitude is a measure of East-West 
position relative to Greenwich, England.  

Here is how you can use a structure in C++.

AirPosition pos1, pos2;

pos1.latitude = -23.;
pos1.longitude = 49.5;
pos1.altitude = 35000;

pos2 = pos1; //C++ only.

int height = pos1.altitude;

//Here is how you do output in C++.
cout << pos2.latitute

<< pos2.longitude
<< pos2.altitude;

That is all there is to structures.  You define as many 
instances of AirPosition as you need.  You use the so-
called ‘dot operator’ to ‘reach’ into a structure to 
either set or access the individual record fields.  
Assignment of a whole structure instance is possible in 
C++ and most languages because the three fields are 
stored adjacent to one and other in RAM, and the 
compiler just arranges to have the whole section of 
RAM occupied by the source record instance copied to 
pos2’s record location.
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One thing that doesn’t work is outputting a structure 
instance as a whole:

cout << pos2;    // <--does not work!

This is because the compiler doesn’t know which of the 
many possible ways you might like the output 
presented:
• -123   49.5   35000
• -123,  49.5,  35000
• (-123, 49.5, 35000)
• -123 deg. longitude, 49.50000 deg. latitude, 35000 feet

There are 3 ways to handle this:
1) As shown above, specify the attributes separately in a 

compound output statement.

2) Write a print function that prints the individual attributes 
one of a time, then call that function any time you need 
the record printed.

3) In C++ only, overload ‘<< ‘ with a new meaning to 
handle AirPositions (not possible in Java).
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7.2  Modules as Abstract Types

Since we find it nice to put all the attributes of a record 
together into one entity, it is interesting to ask the 
question where do we put the functions that are 
particularly related to the record?

It is very good program design to put all the stuff that is 
related (e.g. attributes and functions) together.  This is 
for a number of reasons:
• Humans like the simplicity of working with abstract 

concepts that are cohesive (belong together) and 
encapsulated (located together).   This applies to the 
functions that go with new programmer defined composite 
types.  Programmers begin to think of the attributes and 
functions together as a whole entity, just like we began to 
think of Student and AirPosition as whole ‘things’.

• Putting such program elements together is good, because if 
we have to change something about the way we 
programmed AirPositions, it would be nice if the attributes 
and functions are all in one single source code module/file, 
rather than scattered about several 100,000 lines of code in 
100s of source code files.

• It turns out that such program entities are very good 
intermediate level building blocks with which to construct 
programs.   Though we may in future maintenance need to 
add an attribute to a Student entity, or change or add a 
function that deals with students, it is unlikely that we will 
need to rip a student module apart, or join two together.   
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This is because the ‘Student type’ is fundamental to our 
University Registration system, and the Airplane type is 
fundamental to an airline computer application.

So how do we provide functions that can be put 
together with the structure?  Java does not have 
structures/records, at least not in the way that C++ and 
PASCAL have them.   However, in Java and almost any 
other language you can define both variables and 
functions in one source code file.   Here is a crude way 
to do it using static attributes and static functions;
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class AirPosition{

static double latitude;
static double longitude;
static long altitude;

static void drop(int dropHt){
altitude = altitude - dropHt;

}

static void climb(int climbIncr){
altitude = altitude + climbIncr;

}

static void initialize(
double lat, 
double myLong,
long alt){

latitude = lat;
longitude = myLong;
altitude = alt;

}

}

So here we have a useful source code module.  We can 
do lots of things with it.  From another Java main 
program class module, we could do this:
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public MyMainClass {

public static void main(String[] args){

AirPosition.latitude = 135.;

AirPosition.longitude = 23.;

AirPosition.altitude = 40000;

AirPosition.drop(1000);

AirPosition.climb(5000);

long height = AirPosition.altitude;

System.out.println(AirPosition.altitude);

AirPosition.initialize(50.38, 23.5, 29000);

System.out.println(
AirPosition.latitude + " " +
AirPosition.longitude + " " +
AirPosition.altitude);

}
}

Notice that from MyMainClass, you have to specify the 
name of the Airposition class and a dot ‘.’ before each 
use of a static variable or static function in another 
class.   The reason for this is that the class 
MyMainClass may also have a static variable called 
altitude, and you need to differentiate between the one 
within MyMainClass and the one within AirPosition!  
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Notice from MyMainClass how we can set the 
AirPosition static attributes, how we can call functions 
within the AirPosition class that operate on the 
AirPosition static attributes, and how we can get the 
values of the AirPosition attributes for use in other 
computations within MyMainClass, or output them 
from MyMainClass.  This is the essense of cohesion 
and encapsulation, where AirPosition provides a nice 
set of attributes and functions for some programming 
problem.

An important aspect of static variables, is that because 
they are outside of all functions, they can be used by all 
the functions in the AirPosition class.  One AirPosition 
function can leave a value in an AirPosition static 
variable that can later be picked up and used by another 
AirPosition function, or even later by the same function 
invoked again.   In addition, if we have not labelled the 
AirPosition static variables ’private’ (to be discussed 
later), even functions in other classes like MyMainClass 
can access AirPosition’s static variables.  Note:  It is 
not considered wise to have all variables publicly 
usable to other classes and we will discuss this later in 
the course.

Also notice how you define and call a function with 
multiple parameters.   Just separate the parameters with 
commas.   The formal arguments that you pass in the 
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function call can be literals, variables, or expressions.   
There must be exactly the correct number of parameters 
and each must be of the correct type (or at least be 
assignment compatible with the formal parameters in 
the function definition).   At the start of the function 
call, the first argument is copied to the first formal 
parameter, the second argument is copied to the second 
formal parameter, etc. 

Also, you might notice how in the AirPosition 
initialize( ) function definition that we can copy the 
incoming parameters to the static attributes.  Obviously, 
your formal parameters have to have different names 
than the static attributes or else the compiler will not 
understand which you are referring two at any 
particular point in the initialize( ) function.
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7.3  A Conceptual Problem

Now we have a problem.   What if we need two 
AirPositions in our main program?  And what if we 
wanted to assign one air position to another.

If we were programming in C++ or Pascal, we would 
just create an AirPosStruct structure type within the 
AirPosition source code module, and allow the main 
program to create multiple instances of it.

In addition, we could modify the AirPosition class 
functions to have member functions parameter lists 
like:

static void drop(int dropHt,
AirPosStruct & position){

position.altitude =
 position.altitude - dropHt;

}

Now MyMainClass could create hundreds of 
AirPosition structures, and have the AirPosition class 
functions operate on it in any way necessary.  e.g.

AirPosStruct pos1, pos2;
pos1.altitude = 5000;
AirPosition.drop(1000, pos1);
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I have been a little sneaky here.   The ’&’ character in 
the formal parameter list has special meaning.   It tells 
C++ not to pass a copy of a structure, but just to pass a 
reference to (i.e. the address of) the actual argument to 
the function when it is called.   This prevents the need 
to wastefully make a copy of the structure at the start of 
the call, modify it in the drop function, and make a 
copy of the result to be returned to the calling program.  
Passing by reference allow the compiler to set things up 
so the called function can reach back into the caller’s 
memory and manipulate the parameter remotely. Java 
has a similar mechanism, however it is not optional like 
the ’&’ is in C++.   In fact, the only way to pass an 
record object to a function in Java is ’by reference’.

C++ doesn’t need structures because it has a better 
mechanism, called object classes.   However, because 
the older C language had structures, they were retained 
in C++ because for the most part you can compile C 
programs with a C++ compiler.   So structures were 
retained in C++ for backwards compatibility.   

However, Java is a completely new language.  Though 
it looks a little bit like C++, the Java language designers 
had a clean slate when they designed Java.   So they 
didn’t bother with structures since a class can do 
anything that a structure can, and more.  
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7.4  Classes

A class is a concept from so-called ’object-oriented’ 
programming languages.   The word ’class’ has the 
same meaning as a ’type’.   It is a classification of 
variables that are all the same.   Like the classification 
all ’int’ variables.   Or the classification all ’Student’ 
variables.  Or all ’AirPosition’ variables.

So these English terms are equivalent in computing 
science:

class = = type

instance = = variable

A class has 4 major parts:
1) static attributes shared by every function in the class.

2) static functions shared by every function in the class.

3) instance attributes, which provide a template by which 
we can make any structure-like instances.

4) instance functions, which provide the programmer with 
the illusion that each structure instance has particular 
functions that are available with it.  

Instance functions makes the instances seem alive, because 
they can respond to function calls.  

So, this is like a flock of sheep.   There is the 
shepherd’s memory (like a memory of how many sheep 
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are in the flock), and the shepherd’s ability to react to 
requests.   There is also zero, one, or many sheep in the 
flock.   Each has a memory (e.g. the instance attributes), 
and each sheep can respond to stimuli (e.g. you shear 
all the wool off the sheep and he will say "Baaaah").

I admit this is not a great analogy, but I have not found 
a better one that is better, more visual, and easy to 
understand.  In many textbooks, there are mistakes 
made about object-oriented classes.   They don’t make 
clear that:
• one of the nice thing about static methods is that they are 

always there, even if the flock has no sheep in it currently 
(i.e. even if you have not created any variables of type 
sheep).   This is why they are called static!

• Most textbooks also WRONGLY state that the static 
member functions cannot call instance member functions.   
This is completely wrong.   If a shepherd can find a sheep, 
then he can get it to respond to some function invoking 
stimuli (e.g. kick it and it will say "baaaah").  All that the 
shepherd needs to know is the name of a sheep variable.

Though this is a crazy analogy, it is particularly vivid in 
alleviating some gross misconceptions about classes.

So now let’s look at a class:
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public class AirPos{
//---------------------------
//shepherd attribute(s).
static int population = 0;

//---------------------------
//shepherd function(s).
static AirPos newAirPos(){
population = population + 1;
return new AirPos();

}

//--------------------------
//sheep/instance attributes.
double latitude;
double longitude;
long altitude;

//--------------------------
//sheep/instance functions.
void drop(int dropHt){
altitude = altitude - dropHt;

}

void climb(int climbIncr){
altitude = altitude + climbIncr;

}

void initialize(double lat,
double myLong,long alt){

latitude = lat;
longitude = myLong;
altitude = alt;

}
}
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Notice the 4 standard parts in this class definition.

The static attribute ’population’ is an example of a 
class’s shepherd-like memory.   It is there all the time, 
I’ve initialized it at the beginning of the program to 
zero, and every time another program module calls the 
function newAirPos( ), the population variable is 
automatically incremented.   Well, not automatically --- 
the programmer wrote that static function to do that.  

The second executable statement within the function 
newAirPos( ) illustrates how you get Java to use the 
template for new sheep memory to create a new sheep 
instance.   A reference to the newly created sheep is 
returned to the calling program.  

An AirPos variable (i.e. instance) is basically a 
structure composed of three attributes:
double latitude;
double longitude;
long altitude;

Notice these to NOT have the static keyword on them.   
This means they are instance attributes and these three 
statements provide the template for manufacturing new 
variables of class (i.e. type classification) ’AirPos’!  
This is like a template for making extra sheep where 
each sheep has latitude, longitude, and altitude 
variables in its memory.   It tells the compiler how 
many bytes of RAM are needed for each new AirPos 
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variable, and what types and names the attribute fields 
will have.

Finally, see that there are three instance functions.   
They are instance functions because they do not have 
the keyword static on them.  This means they are only 
directly usable from an existing AirPos instance (i.e. a 
particular sheep).

Ok, let’s see how a class is used in a program.
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public class MyProgClass {

public static void main(String[] args){

AirPos pos1, pos2;

pos1 = AirPos.newAirPos( );

pos1.latitude = 135.;

pos1.longitude = 23.;

pos1.altitude = 40000;

pos1.drop(1000);

pos1.climb(5000);

long height = pos1.altitude;

System.out.println(pos1.altitude);

pos2 = AirPos.newAirPos( );

pos2.initialize(50.38, 23.5, 29000);

System.out.println(
pos2.latitude + " " +
pos2.longitude + " " +
pos2.altitude);

System.out.println(AirPos.population);
}

}

Obviously we need to discuss this.
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Notice:
• We can create one, two, or thousands of AirPos instances 

(i.e. sheep).
• However, they are not really created yet.   Defining an 

instance of type AirPos only reserves room in RAM for a 
pointer (called a ’reference’ in Java) to an actual sheep.  
Unlike other programming languages, in Java, every object 
instance variable does NOT actually contain the instance 
data itself.

• To actually get an instance created, we need to use the 
’new’ operator as shown inside the newAirPos() static 
function I wrote.  I will show you how to simplify this 
later.  This operator returns a reference to (i.e. the address 
of some memory for) a new instance.  This is in turn 
returned to my main function and assigned to the waiting 
reference variable called pos1 (which is exactly the kind of 
variable needed to hold a pointer to an AirPos instance).

• I can set any non-private attributes of the instance.  
However, note that I use pos1.latitude rather than (as I did 
previously) AirPos.latitude.   I have to do this because 
there are actually two AirPos references in my main 
program file, pos1 and pos2.   I have to specify which one 
I am wanting to set the latitude of!

• I can also get and use the value of any non-private attribute 
of any instance by using the particular instance name, a 
dot, and the attribute name.
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• I can have an object manipulate itself and do ANYTHING 
else its instance function is programmed to do, by invoking 
an instance function.   Instead of prefixing the function 
name with a class name and dot, I now have to specify an 
instance name.   This is because the function invocation 
needs to contain not only the name of the function and 
its parameters, but also which particular instance needs 
to be told to drop altitude.   
This is sort of like the function signature we had back in 
the Section 8.3 that looked like:

AirPosition.drop(1000, pos1);
Compare that with:

pos1.drop(1000);
All the information is available in the latter more compact 
form, at least if you assume that pos1 knows the class of 
object that it is pointing too (and Java assures that it does).  
So although it looks like each instance has its own drop( ) 
function, we do not wastefully duplicate it dozens of times 
for perhaps dozens of AirPos instances.   Instead, Java, and 
all object oriented languages, just make it look like it does.  
Behind the scenes, Java just has one drop( ) function usable 
by all the AirPos instances, and passes one extra but hidden 
parameter containing the instance reference to the function.  
This allows humans to write programs that allow us to feel 
like we are telling reactive object instances to do some 
particular function.  This is the basis of ’object-
orientation’:  that a program is the sum of a bunch of 
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reactive software entities that send messages (i.e. function 
calls) back and forth to each other to get the job (i.e. user 
command) done.

• Finally, at the bottom of the main function, you can see that 
I can get a printout of the current population of AirPos 
objects by accessing the population static variable in the 
normal way.

I don’t want to give the impression that the static parts 
of a class are necessarily supervisory like a shepherd is 
of a flock of sheep.   Sometimes the static member 
functions are not even present if all you need are 
instances and instance functions.   However, the static 
part of a class often has supervisory kinds of roles.  It 
may keep track of population, it may keep track of 
where each sheep is, it may keep track of what file the 
sheep are perhaps being written too, etc.

So now you know why the main function of every 
program is static.  It is static, so that it is present when 
the program starts up and there aren’t any sheep yet to 
call upon.   Also it is static because we only need one 
main function, not one for each sheep we create.

So you can think of a class as 1+N reactive software 
entities:  the shepherd memory and functions, and the 
memory and functions of N sheep you have created.   
Each sheep has the exact same attribute field types and 
functional behaviour.  However, a sheep’s attribute 



Copyright 2002 by R. Tront 7-25

values may be different than its neighbor’s.  That’s 
what makes each sheep different (other than the name 
of its reference). And those attribute value differences 
may cause it to behave slightly differently when one of 
its functions is called, because the instance functions 
uses that particular sheep’s attribute values when 
executing (e.g. if (myAge > 2) then die!).  This is why 
we sort of think of object instances as having 
intelligence:  They have the ability to make decisions 
about how they respond to function calls.  They also 
have self-awareness, because they know their own 
attribute values and also can react differently to a 
function call depending on its own particular attribute 
values.

Read the above paragraph again as it is VERY 
IMPORTANT!
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7.5  Appendix - Object Orientation

This rest of this lecture is an appendix containing 
multiple subsections of an introduction to object 
orientation, to object-oriented analysis (OOA), and one 
very nice technique for object-oriented design (OOD).

Read this Section as far as you can.  If you are a 
beginner and become too confused, you should stop 
reading.   If you are an advanced student, you will find 
this appendix an amazingly enlightening introduction to 
software engineering object-oriented analysis and 
design! 

7.5.1  Software Engineering Phases

Most projects have several phases.  Software projects normally 
have:
• An analysis phase to gather and record the requirements, 
• A design phase to plan the architecture and implementation 

strategies to be used, and 
• An implementation phase where code is written.  
• A quality assurance aspect.  Final quality of the product is 

assured by actions taken throughout the project.  e.g. 
- requirements, design, and code reviews, 
- unit and system testing, and 
- appropriate configuration management.  

Approximately 15% of projects fail or are cancelled, usually 
because of failure to do some these aspects of the project properly.  
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7.5.2  What Is Object-Orientation?

Often there are specialists who work on each aspect of a large 
project.  Object orientation means something different to each of 
them:
• To business system analysts it means determining and focusing 

on the business entities (e.g. sales item, customer, invoice, etc.) 
about which information must be processed or recorded.  This 
pre-dates object-oriented languages.

• To a software designer, it is the architectural view that a system 
satisfies each external command by the set of actions resulting 
from the trace of calls or messages sent among various reactive 
software objects to implement that request.

• To a programmer, it usually means programming language 
syntax that allows the programmer to easily: 

- view data as having reactive abilities, and 
- re-use code via inheritance hierarchies, and
- have both type flexibility and ease of maintenance via 

polymorphism.
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7.6  Object Modeling

7.6.1  Introduction to Modeling in General

A model is a representation of a actual thing.  To a child, a model 
is something created which is a ‘smaller’ but adequate likeness of 
the real thing.  To a car dealer, a model is a bunch of cars which 
are near identical (cf. object ‘class’).  In systems analysis, a model 
captures the essential nature of something by indicating the 
essential details that need to be stored about things of that ‘class’, 
or by illustrating the flow of stuff required through a system, or by 
specifying the sequential ordering (e.g. making paper in a pulp 
mill, getting a university degree) within a process, etc.   

Definition:   A model is an alternate representation with an 
‘adequate likeness’ of the real thing.

Some of the alternate representations we in systems design may 
use for the actual things are:
• a diagram or picture
• a form or computer record
• a process description, data flow diagram, or finite state machine

The purpose of creating a model is to represent only the essential 
characteristics of the thing so that: 
• we may understand and clearly document the nature of the thing,
• we may store the essence of the thing for later retrieval,
• we may communicate the nature of the thing to someone else,
• they can think and/or reason about the correctness of the model 

without: 
- being distracted by the complexities of the complete real thing (i.e. 

abstraction)
- having to travel to where the real thing is located
- having to see the function of a real thing while it is operating very 

fast
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• we needn’t waste space storing useless information about the 
thing,

• we may write a program to implement a system which allows 
humans to better administrate the processes in which the thing 
participates.

7.6.2  Entities vs. Objects

The data that a system needs to store is mainly computer records of 
the instances of various record types in the application domain 
(e.g. orders, customers).  Traditionally in information systems 
analysis, these things were called entities.  Each entity class has a 
record/structure type with a different layout of attribute fields.  
Order instances have order ID number, part ID designator, and 
quantity of order fields.  Customer records have name, address, 
and phone number record fields.

More recently, is has instead become popular to call domain 
entities objects.  The term ‘objects’ has an additional implied 
meaning that the model of the object we are documenting contains 
data plus reactive abilities (i.e. plus ‘functions’,  or ‘operations’, 
‘behavior’, ‘ability to control things’, ‘intelligence’, 
‘liveliness’(e.g. can be sent messages or ‘activated’)).  

In fact, this idea is carried even further by OO languages.  Rather 
than procedures having data parameters, instead object data is 
regarded as having operations/procedures that can be 
triggered by a message.  In fact, individual instance records (not 
just ADT modules) are regarded as having procedures.

e.g.  Instead of (in C):
struct CustomerType custRecord;
printRec(custRecord, theFastPrinter);

You do this (in C++):
CustomerType custInstance;
custInstance.print(theFastPrinter);

Notice this is not like C, nor like Modula-2 where you would have 
done ModuleName.print().  The symbolic name to the left of the 
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dot is a variable name (i.e. instance), not a module or class/type 
name.  The procedure now appears to be a field of the instance, as 
if the instance ‘has/owns’ its procedures!

7.6.3  Object Data Analysis

In object data analysis, we try to determine an organized way of 
diagramming and storing information about the various relevant 
object types involved in the application domain.  To a new analyst, 
sometimes it is not immediately apparent what kinds of data might 
need to be modeled.  Examples of the object classes needed to be 
modeled within an application might be:
• a physical object (e.g. person, aircraft, robot, printer).
• an incident or transaction that needs to be recorded either for 

immediate use, for transmission to someone else, or for a 
historical log (e.g. order, purchase, sale, boarding an airplane, 
graduation, marriage, phone call).  Note a purchase is from the 
purchaser’s application’s point of view, while a sale is from the 
seller’s.  Interactions between two other objects sometimes fall in 
this category.

• a role (e.g. student, client, customer, manager, spouse). 
• an intangible concept (e.g. bank account, time delay, date, sound 

recording),
• a place (e.g. parking space, warehouse #3, the 13th floor heat 

control), 
• a relationship (e.g. customer’s sales representative, a flight’s 

captain),
• a structure - e.g. the list of an airplane’s component part numbers 

(body, wings, engines, tail), possibly even a hierarchy.
• an organization or organizational unit (e.g. university, 

department, corporation, submarine crew, sports team). 
• a displayable field (e.g. string, icon, image) or printed report, or 

an I/O signal
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• Specifications or procedures- e.g. organic compound or recipe.

7.6.4  Object Attributes and Attribute Values

We use the terms ‘object class’ to mean group of instances of 
things which have the same set of attribute names (e.g. car’s each 
have a licence number, color, and weight), but which have 
different values for each of those characteristics (this is what 
makes the instances of the same class different from each other).

It is common for a class of entity instances to be modeled as a table 
of fixed length records:

STUDENT TABLE

This concept is in keeping with the view that a student file is a list 
of fixed length records.

Each column represents an attribute of the type ‘student’ (i.e. a 
field of a student record).  The legal set of values that an attribute 
may take on is called the domain of the attribute.  Examples are 
date = (1..31), and day= (Sunday..Saturday).

Each row represents a particular instance of a student.  Often the 
rows are sorted in order by a particular column or columns.  That 
column(s) is called the primary key.

student-id student-name student-address student-phone high-school

93010-1234 Smith, Bill 123 Second St. 420-1234 Mt. Douglas

92010-4321 Jones, Jane 234 Third St. 123-4567 Burnaby

91111-1056 Able, Jim 345 Fourth Rd. 822-9876 John Oliver
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7.7  Object Relationship Diagrams

7.7.1  Object Icons

Let’s examine an example of an Object Relationship Diagram 
(ORD) carefully.  The one below shows two objects.

     

In is not clear whether they are object instances (since there titles 
are singular) or entity classes (since only their attribute names and 
not attribute values are shown).  Normally in ORDs it is not really 
important that you differentiate between whether the boxes are 
classes or instances.  You will probably find it best to think of 
them as generic instances (not having had attribute values 
assigned yet).  i.e. they are an object storage/record layout plan.

Note that instead of having the attributes listed horizontally, as in 
the column titles of a table, we have the attributes listed vertically.  
This is widely done, though there is no reason for this except it 
makes the entity icons have a smaller maximum dimension.  Also, 
note that the attribute(s) on which the records are sorted are called 
the primary key of the entity, and are labelled with a ‘*’.

STUDENT HIGH-SCHOOL

* student-id

-  student-name

-  student-address

-  student-phone

-  high-school

* high-school

-  school-address

-  school-phone

Graduated
    From

Graduated
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7.7.2  Relationships

Object-Relationship Diagrams (ORDs) contain both entity classes 
and the relationships between them.  An example of a relationship 
is that between a student and a high school.  

Fundamentally, relationships are illustrations of links between 
entities.  These links are simply (but importantly) the referential 
routes that could be traversed by the application code to find other 
related data.  Note that the high school attribute in the student class 
is a foreign key which provides the information needed to traverse 
R1.  A foreign key is a value- or pointer-based reference to 
particular related instance (e.g. particular high school).  Value-
based foreign keys refer to the primary key of the other related (i.e. 
foreign) object.

ORDs provide a map showing all possible ‘routes’ over which the 
application can navigate around the data.  For instance, given a 
student object, how does the application code find out the phone 
number of the high school she went to?  Answer:  Look in the High 
School attribute of that student to find out which high school, then 
find that high school record in the high school database, then look 
at the school-phone attribute in that record.

STUDENT HIGH-SCHOOL

* student-id

-  student-name

-  student-address

-  student-phone

-  high-school(R1)

* high-school

-  school-address

-  school-phone

Graduated
    From

Graduated

R1
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7.8  System Behavior
Recent methodologies suggests that you start analysis by 
determining an application’s data model first.  Even for non-
database projects, this identifies early the application domain 
objects which will most likely form core software elements of 
the eventual implementation.  In particular, the names of the 
important objects, their attributes, and their relationships are 
researched.   Once this is done, we are in a better position to plan 
the implementation of the behavior of the system.  

Previously, programs were regarded as a main module and 
subprograms which implementing an application’s functionality.  
The newer, more object-oriented view is that a system’s behavior 
is simply made up of the sum of the behaviors of the object 
classes and instances in the system .  The objects collaborate 
together during execution to get each user command done.  

You can see why we had to identify the core object classes first, as 
it is they what we now propose to embody with a behavioral 
nature.  But before we start writing code for the system’s objects, 
we have to decide what behavior each will contribute to the whole.  
The next question then, is what behavior does each object class and 
instance need to export to the system, in order to that it satisfy it’s 
behavioral responsibilities to the application?  In the next few sub-
sections of the lectures, I plan to introduce a very beautiful 
mechanism to synthesize the required behavior for each object 
class and instance.

7.8.1  Event-based Partitioning

Modern applications are event-driven in nature.  Think of your 
personal computer; it idles for billions of instructions waiting for 
an event like a mouse click or a clock tick.  

With this view, we will design the system by looking at how each 
external command or scenario-starting event is handled by the 
system.  By looking at each external command/event one at a time, 



Copyright 2002 by R. Tront 7-35

we can reduce the scope of what we have to think about at any 
point in the design process to handleable proportions.  When 
writing a requirements specification for a system, it is not 
uncommon to first list or diagram all the sources of external 
commands/events that the application must interact with (e.g. 
keyboard, mouse, clock, network, printer, etc.).  Then in more 
detail, you should name/list each kind of event/command that the 
application program is to handle from each source. 

7.8.2  External Design (User Manual)

Before beginning architectural design, it is not uncommon to write 
a draft user manual to firm up the behavior expected of the system 
for each user command.  This sounds weird to some people who 
feel the manual is written after the coding is done.  But those who  
finish Cmpt 275 realize that:
• you can’t write the code until everyone on the team knows what 

the program is supposed to ‘look like and behave like’!  
• Often this look and behavior must be approved by someone else, 

so rather than spending months first writing a program that is not 
what the customer wants, you instead spend a week writing a 
draft version of the user manual for customer pre-approval.

7.8.3  Use Case Scenarios

An individual command may have several steps that should be 
documented in the draft manual.   An example sequence might be 
clicking a menu command, entering several pieces of data in a 
dialog box, then clicking OK, the application checking and saving 
the entered data (often different pieces in different objects), then 
finally telling the user that the command is done and waiting for 
the user to click OK again.  This is called a use case scenario. 

Later during architectural design, we must plan what part of 
each step of a use case scenario will be handled by which 
different object.
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We could thus define:
• ‘scenario appearance design’ to be deciding how a use case 

would appear to a user (i.e. write the user manual), and 
• ‘scenario call trace design’ (or ‘scenario implementation design’) 

to be deciding the internal software architecture for a use case. 
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7.9  Object-Oriented Architectural Design
Though there are many aspects to architectural design, we will 
concentrate here on the design of internal call traces for the 
scenarios.  [Rumbaugh96] states “designing the message flows is 
the main activity of the design phase of development”.

7.9.1  Object Communication Diagrams (OCD)

It has been common for many years to sketch a diagram indicating 
which procedures, or more recently which modules, call/
communicate/interact with which others.  This provides an 
interaction context which provides further understanding and 
documentation of the purpose, responsibilities, and dependencies 
of a module (often one module depends on services provided by 
another via exported procedures).  

Very recently, we have started to diagram object (rather than 
module) interactions, and thus named such diagrams Object 
Communication Diagrams (OCDs) or Object Interaction Diagrams.  
Typically, each object class in your ORD which is reactive should 
be put in your OCD (note: some structures which are simply data 
records are not reactive and needn’t show in the OCD).  Also, you 
may consider modules which are not objects (e.g. the main 
program or other utility modules) to be reactive objects.  The 
primary consideration here is that we identify islands of reactive 
ability/behavior/intelligence/data/control.  These islands (i.e. 
components), working together, implement the behavior of system.

Note that such a diagram is not to show ‘relationships’, but instead 
interactions.  Two objects which have no data relationship could 
potentially send messages (i.e. call) each other.  So an OCD is a 
somewhat orthogonal view of the objects in a system, and provides 
a kind of 2nd dimension to their definition. 
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start_accepting

init_A()

init_B() init_C()

Main Event Generator
(e.g. User Interface)

Senior Object A

Object B Object C

UC1()

add()

enqueue()

UC2()

enqueue()

full?()
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Though this looks like a call structure chart, in fact the rectangles 
are to be regarded as components (i.e. modules or object classes) 
which export several differently named functions!

The main concept here is to regard and diagram the system as a 
collection of interacting reactive objects.  The arrows show 
messages (e.g. procedure calls) from one object to another. 
Receiving objects should be programmed to react appropriately to 
each message which they receive.

7.9.2  Scenario Call Trace Design

In order to determine each reactive component’s responsibilities 
and the operations it must export, we will examine how each 
module participates in each use case scenario.  In order to reduce 
the complexity of this design step, we do this one scenario at a 
time.

In the movie industry, planning for a film segment to be shot is 
often done on a ‘story board’.  The sketches on this board provide 
anticipated camera shots (angles, scenery, costumes) at various 
moments through the progression of the scene.  In essence, the user 
manual provides sketches of what the application will look like and 
do, at various points through each scenario.   It is a story board.  
Scenario call trace design will also be done using a kind of story 
board.  A visual plan and textural explanation of which procedure 
calls will be made (and why) between which objects at each point 
during the execution of the scenario.

Note:  We could also call this scenario message trace design, 
because in the Smalltalk OO language, function calls are termed 
‘sending a message’ to another object.  Yet other names could be 
scenario implementation design, scenario event trace design, or 
scenario internal interaction design.
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External events will be the primary driver in our design process.  
More specifically, a scenario-starting external event is a special 
kind of external event which initiates a sequence of interactions 
between the user and the application which carries  out a use case 
scenario as described by the use manual.  In menu-driven 
applications, menu selection events start most use case scenarios.  
The activation of a menu command results in the application 
receiving a message from MS-Windows.  The user interface 
component of the application which handles these messages 
subsequently makes procedure calls to other application objects 
appropriate for the command, and these objects may in turn call 
other objects or modules.  

If the menu command starts a long dialog with the user to enter a 
number of pieces of data (e.g. customer name, address, phone 
number) one after the other, the calls may solicit other external  
events associated with that scenario.  These latter events are 
termed ‘solicited’ as the application subsequently solicits specific 
further input from the user as is needed to complete the command.  
The application responds to each solicited event in the appropriate 
way for that step of the scenario (e.g. read the data, do something 
with it, prompt for the next entry).
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7.10  Synthesizing Object Requirements
This subsection looks at a beautiful, step-by-step process by which 
the requirements for individual reactive components can be 
obtained from the overall system requirements (as embodied in the 
use cases).

7.10.1  Step 1 - Generate As Scenario-Starting Event List

From the user manual, generate a list of all scenario-starting 
external events that are required to be handled by the application.  
There could be dozens or hundreds in a big system.

7.10.2  Step 2 - Blank Master OCD

An Object Communication Diagram is a diagram which shows the 
objects from the ORD in a diagram without the relationships, and 
shows additional reactive components such as main, UI, and 
control modules.  Generally, the objects are not placed in the same 
position on the diagram page as they were in the ORD (where they 
were arranged to make the relationships most tidy).  Instead, place 
the objects in a hierarchical manner radiating away from the 
principle external event source (typically the user interface).

Copyright 2002 by R. Tront 7-42

Main Event Generator
(e.g. User Interface)

Senior Object A

Object B Object C
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7.10.3  Step 3 - Make an Internal Call Trace for Each Scenario

Make many copies of the blank OCD diagram, one for each 
scenario-starting external event.  For each scenario-starting event, 
design a trace for the anticipated calls needed to implement the 
proper response to that external event. (Some of the design issues 
which impact the choice between different trace options are 
discussed later).  Document the trace on a single, blank OCD page.  
(By confining ourselves to designing one scenario’s 
implementation at a time, we need not be distracted by arrows 
involved in other scenarios).

• The first scenario you should consider is the ‘program start’ 
event.  This scenario should be designed to have the main 
module send a tree of internal initialization events (i.e. calls) to 
the key objects telling them to initialize (open their files, set 
stack to empty, etc.).  The principle of low coupling dictates that 
the main module should not know the name of all the objects/
modules in the system, but only those directly below it.  Those 
mid-level objects in turn send initialization messages to their 
subordinate objects.  Any of these calls might create a number of 
default RAM objects as necessary for the initial functioning of 
the program.  Once the system is initialized, the main tells the 
external event source components (e.g. the user interface) that 
they can start accepting external user events. 
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Main Event Generator
(e.g. User Interface)

Senior Object A

Object B Object C

4:start_accepting()

1: init_A()

2: init_B() 3: init_C()

Start-up Implementation Call Trace



Copyright 2002 by R. Tront 7-45

Label each message/call with a number indicating it’s sequence 
in the execution of that scenario, and with the name of the 
procedure being called.

• On another diagram, for the first external scenario-starting event 
on your list, draw the trace of calls/messages that will be sent 
from the external interface object receiving the starting event to 
the principle reactive objects required to implement the response 
to that event.  This will, in turn, sometimes cause an intermediate 
control/handler object to send one or more internal messages on 
to one or more other objects.  Give each internal message a 
sequence number and a name which indicates what procedure is 
being called (or what the purpose of the message is).
Each time you do this, you must think of all the internal object 
interactions that could take place in handling a particular 
external event.  For instance, to register a student in a course 
offering, you must first check whether the course offering exists 
before adding a record to the association object called student-
registration.
For each diagram, it is usually necessary to document in either a 
paragraph, list of steps, or pseudo-code, a textural description of 
how the scenario is planned to be implemented.  e.g. “check 
course exists and has space, then add student to course offering, 
and update available remaining course space”.  This provides 
reviewers and subsequent implementation programmers with a 
more understandable idea of how the scenario is to unfold.
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• On a yet another diagram (see next page), do the same for the 
second user scenario-starting event on your list.  

Main Event Generator
(e.g. User Interface)

Senior Object A

Object B Object C

User Command #1 Implementation Call Trace

2:UC1()

3:add()

4:enqueue()

1:full?()
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Main Event Generator
(e.g. User Interface)

Senior Object A

Object B Object C

User Command #2 Implementation Call Trace

2:UC2()

3:enqueue()

1:full?()
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• On a last diagram, show which module(s) can initiate program 
shutdown, and the trace/tree of calls to the reactive components 
which need to be informed of the upcoming shutdown.  Such 
components, upon being notified, shut files, flush buffers, reset 
the video display mode (e.g. from MS-Windows graphic mode 
back to DOS text mode, etc.), and delete themselves as 
appropriate, before the main program ends.  (I have not drawn 
this trace to keep the resulting OCM simple).
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7.10.4  Step 4 - Take the Union of All Traces

The result is the complete Object Communication Diagram:

start_accepting

init_A()

init_B() init_C()

Main Event Generator
(e.g. User Interface)

Senior Object A

Object B Object C

UC1()

add()

enqueue()

UC2()

enqueue()

full?()

Copyright 2002 by R. Tront 7-50

Notice in particular how two different scenarios both had calls to 
the full() procedure of class Object_C.  The (first) union operation 
has merged these two into one arrow in the overall OCD.  All 
sequence numbers should be removed from the labelled arrows 
since with so many different scenarios shown, they no longer make 
sense.

The result is a fantastic diagram!  

• The (first) union synthesizes an OCD from which the 
requirements spec for an object class can be determined.  
Obviously, the class must export a function for each different 
type of arrow entering it.  e.g. 

- The UI must export start_accepting().
- Object A must export init(), UC1(), and UC2().
- Object B must export init_B() and add().
- Object C must provide/export empty(), enqueue(), init_C(), and 

enqueue().

• Notice that the above list seems to imply Object_C should export 
enqueue() twice.  By taking a second union, you can merge the 
two different enqueue() calls to Object_C (which are not merged 
by the first union because they are from different callers), into 
one item in the list of procedures that Object_C must export.  
Basically you must regard the list of exported procedures as a 
true ‘set’ where duplicates are not allowed.

• In addition, you get a requirements spec for each object’s 
responsibilities to call/notify other modules/objects.  An object 
will do some internal processing when called, and then likely 
some interaction with other objects.  The diagram shows all the 
other objects that a particular object is planned to get info or 
processing from, or must notify in order to fulfill its 
responsibilities.  e.g. Senior Object_A has the responsibility to 
notify those below it that they should initialize themselves.
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7.11  Alternative Control Architectures
The above strategy is very powerful as it constructively 
synthesizes the requirements for individual modules and object 
classes from an application’s external requirements.  This makes it 
an extremely appropriate technique to bridge the so called ‘design 
gap’ that exists between the end of analysis and the beginning of 
writing code for individual modules.  

Please note that there are many alternatives in constructing the 
trace of a scenario.  This is where the real design decisions are 
made.   (The diagramming with a CASE tool and the double union 
are basically just documenting the design decisions and 
constructively gathering object specifications from the traces).  
Trace alternatives will be discussed in the next section of the 
course.

As with all design, there are usually several alternate ways to 
design a sequence of internal call events that will carry out a 
particular scenario.  For example, when the UI receives an ‘exit 
program’ command from the user, should it send messages to all 
the objects telling them to shut down?  Or should it call a 
procedure in the main module which should then tell the objects to 
shut down?  ‘Design’ is choosing between workable 
implementation alternatives to pick the one that is most 
elegant, most easy to maintain, uses the least memory, and/or is 
best performing.

Let us consider a simple reservation system.  Generally a 
reservation instance is for a particular flight, sailing, or video rental 
instance, etc.  A reservation typically is related to a particular, say, 
sailing via a foreign key.  When dealing with user-entered data, we 
must use every effort to maintain referential integrity of the 
database.  Thus before creating a reservation instance for a person 
on a sailing, we must check that that particular sailing actually 
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exists.  This scenario implementation can be designed in one of 
three alternative ways.  These three ways will be shown in the next 
3 sub-sub-sections.

7.11.1  Centralized Scenario Design

In this design, a particular reactive component which both is 
informed when the scenario is to be initiated, and which 
understands the scenario to be carried out, orchestrates the 
execution of the scenario.  

Although often not the ideal design, this component may the event 
generator itself (e.g. user or network interface module), in which 
case application scenario code (possibly unfortunately) gets added 
to the event generator module.

.

Alternatively, as shown below, an extra control module or object 
can instead be added whose only job is to orchestrate scenarios.  It 
is not unusual for this module to export more than one function, 
one in fact for each scenario to be orchestrated in an application (or 
for a particular subset of scenarios in the application).  The event 

Sailing Reservation

1: checkExists() 2: makeReserv()

Event Generator (UI)
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generator is programmed to simply call the correct scenario 
orchestration function given the event that has just happened.   

Central

Sailing Reservation

2: checkExists() 3: makeReserv()

Scenario Description:
1) Prompt user for all info;
2) If Sailing exists
3) THEN make reservation
4) ELSE re-prompt user.

Event Generator (UI)

1:UC5()
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In both the above centralized schemes, the controller sends a 
message first to the sailing object to check that the sailing exists, 
then waits for the return from that call, then makes a call to the 
reservation object (supervisor/shepherd) to actually create the new 
reservation, the waits for that call to return.  The centralized 
control scheme has the advantage of cohesively encapsulating in 
one function of one module (be it the Event Generator or a special 
component) the control and sequencing of internal calls needed to 
carry out the processing needed in the scenario.  Its advantage is 
that if the control or sequencing of the scenario might later during 
maintenance need change, only one function in one module needs 
to be updated.  Also notice that the sailing and reservation objects 
do not communicate with each other, and thus don’t have to know 
about each other (this is occasionally a good design feature).  On 
the other hand, the central object unfortunately gets coupled to all 
the parameter types of all the lower calls.

Notice the explanatory text or pseudo-code that can be included 
under a scenario trace diagram to more fully document the logic of 
the scenario.  This pseudo-code might, for instance, indicate 
whether the sailing information needed from the user is read by the 
sailing module or by the central control module.  

This pseudo-code may or may not eventually be put into any 
particular module.  It may end up in the central module, or 
alternatively be spread out over several modules if either of the 
following designs is adopted.  It is therefore not to be thought of as 
programming, but instead as documentation of the scenario logic 
from an architect’s point of view, so that programmers could later 
implement the design properly as per the architect’s specifications.
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7.11.2  Roundabout Route Scenario Design

The name of this section is a Tront’ism and is not widely used 
terminology.  The idea is that control is passed from the initiator 
(i.e. event generator) to the first module which must supply 
preliminary checking or data, and then that module forwards the 
request to the final object.  The control thus travels a rather 
roundabout path to the terminal object.  When the makeReserv() 
procedure is done, it returns control to the Sailing, which in turn 
returns from the makeResIfSailingExits() to the initiator.    

This design strategy is particularly good if using asynchronous 
one-way messages, rather than procedures calls, as it requires no 
data to be returned to callers.

Sailing Reservation

1:makeResIfSailingExists()

2: makeReserv()

Scenario Description:
1) Ask Sailing if it exists, and if so
2) THEN have it make reservation
3) ELSE have it return an exception to 

the initiator which will then 
re-prompt the user.

Initiator
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7.11.3  Principle Object-based Scenario Design

This design alternative has the initiator first informing the principle 
application object involved, in our case the reservation object.  
After that, the principle object (which may understand its creation 
needs best) does whatever is necessary to accomplish the request.  
In the example below, the reservation checks the sailing exists, 
waits for the reply, then if ok makes a new instance of its type, and 
then finally returns control to the initiator object.  

Note that these diagrams do not show the procedure returns, but 
this design requires an OK to be returned to the reservation via a 
parameter/return value.  Either that, or if using one way messages, 
a return message would have to be added to the trace.

Initiator

Sailing Reservation
2: checkExists()

1: makeReserv()

Scenario Description:
1) Ask reservation to make an instance
2) It checks if Sailing exist.  

If so reservation makes an instance,
3) ELSE return exception to initiator.


