

Version 2.0

User Manual

Table of Contents

Getting Started ... 3

Installing File Query .. 3
Uninstalling File Query... 3

Overview.. 4
What is File Query, and Why Should I Use it? 4

Who Should Use it? ... 4
The Interface .. 5

File Paths and Formats .. 5
File Format.. 5

File Paths .. 6
Field List ... 6

Query Controls ... 6
Query Entry ... 6

File Preview and Query Results ... 7

Status Bar ... 8
The Language ... 10

What is a Query? .. 10
The Basics ... 10

Templates.. 11
Functions... 11

Field Functions... 12
Line Functions ... 12

Query Functions... 13
Other Code .. 14

Operators.. 14
Miscellaneous .. 14

Tips and Tricks .. 15
Save a Common File Format: .. 15

Find Invalid Characters:.. 15

Creating a Test Query... 16

File Query Version 2.0 User Manual

Copyright © 2009 AgileData Software LLC Page 3 of 17

Getting Started
For file query to be installed and run successfully, you must be using

one of the following supported operating systems:

Windows 2000 SP 4; Windows XP; Windows Vista

Installing File Query

To install File Query:
1. Download the installer package from

www.agiledatasoftware.com/downloads.html

2. Unzip the two files contained within the installer package.
3. Run the file called Setup.exe.

4. Follow the instructions on screen to finish the installation.

Note: File Query requires the Microsoft .NET 3.5 Framework, and if it
is not located on your system, you will be prompted to install it first.

Uninstalling File Query

To uninstall File Query, you can simply go to the Add/Remove
Programs dialog within control panel.

File Query Version 2.0 User Manual

Copyright © 2009 AgileData Software LLC Page 4 of 17

Overview

What is File Query, and Why Should I Use it?

Flat files are a ubiquitous way to transfer information from one data
system to another, but are difficult for people to work with directly.

They are usually loaded by a program into some form of database as
soon as possible so that they can be accessed, but if a program

doesn't already exist, or there is a problem with the file's format or
data, then every thing falls apart. File Query is meant to give the

same flexibility of access and modification to flat files as exists for

databases. This is especially useful for analyzing new files that you
receive for the first time, figuring out what is wrong with ones that

break a current job and possibly modifying the file to fix any errors
within. While there are many tools that make it easier to write a

program to handle them, or to run a few pre-defined programs against
them, File Query is the only one that truly allows ad-hoc access to

them with even greater flexibility than SQL. (SQL is the common
querying languages used by almost all databases.)

Who Should Use it?

File Query is meant to be as simple as possible, and useable by almost
any one with a simple understanding of how flat files work. While its

capabilities are similar to SQL, it’s built in templates and help system
make it so that even those who have not dealt with SQL before can be

off and running in no time. Be sure to read through the quick start
guide if you want to jump right in. This manual is more in-depth, and

certain parts, such as the functions listings, are meant to be used
mainly as reference, except for those who love learning about all of

the possible features of their new toy.

File Query Version 2.0 User Manual

Copyright © 2009 AgileData Software LLC Page 5 of 17

The Interface
Here is an example screen shot of File Query’s interface. Different
sections are numbered for easy reference from the following sections.

File Paths and Formats

Sections 1, 3 and 4 are used to both determine and display

information about the input file’s format and location, as well as the
location of the output file, if one is to be created.

File Format

Section 1 determines how the input file is interpreted. File Query will

do it’s best to set the format appropriately for each file, but the

settings can be modified if needed. The first two buttons from the left
switch the file type from delimited to fixed, and if it’s delimited, what

delimiter is used. The ‘Set Fields’ button does exactly what it says; it

File Query Version 2.0 User Manual

Copyright © 2009 AgileData Software LLC Page 6 of 17

allows you to set the fields that are used, and has slightly different

options depending on if the file is fixed or delimited. The last four
buttons, from left to right, determine in the file has a header, if it is

quoted (any delimiter within quotes is treated as normal text), if the
fields should have their white space trimmed, and if the text should be

uppercased on input.

File Paths

Section 3 shows the both the path of the input file, as well as where
the output file would be written to. You can change them by typing

directly into the text boxes and hitting enter, or by clicking on the
folder icons to the left, which would open a file dialog.

Field List

Section 4 lists all of the fields defined for the current file. When File
Query opens a delimited file, it will automatically populate this list. If

there is a header, it will use it for the field names. Otherwise, it will
use default names. If you are opening a fixed file, then you will need

to manually set the fields yourself by hitting the ‘Set Fields’ button
above the field list. You can also use this button to override the field

names for a delimited file as well if you want to.

Below the field list are some options for changing the sort order of the
list from the order they appear in the file (default) or alphabetically.

There are also three buttons for copying the field list to the clipboard.

You can either copy it with each field name on a separate line, or have
them separated by a comma. They last button allows you to specify

more options for how you want to copy the list, such as using a
different delimiter, uppercasing the text or replacing spaces with a

different character.

Query Controls

Section 2 is the main control area for running queries. It allows you to

start and cancel queries as well as view their progress. (The simplest
way to run a query though, is to use the F5 keyboard shortcut

though.) If you have multiple queries, then you must highlight the
one you want to run before hitting the run button. The two status

labels to the right of the controls tell you what line the query is
currently on and how fast it is processing them (in lines per hour).

Query Entry

Section 5 is where the real action takes place. Here you will enter

queries, pull up the in-line help and determine how a query is written

File Query Version 2.0 User Manual

Copyright © 2009 AgileData Software LLC Page 7 of 17

out. The two text boxes in the bottom left are the in-line help, and

they contain information and examples for almost any thing that you
can do with File Query. The left one lists all of the help categories,

and the right one has the actual help items for the current categories.
When looking through them, notice that as you mouse over each item,

a help box comes up telling you what the item does, and any
additional information there is about it. The most useful category for

when you are just beginning is the ‘Templates’ category, as this
contains fully written queries that allow you to do many of the most

common tasks without having to write the code yourself. You simply
modify the properties at the top of the template, and can usually

ignore the rest of the code. Once you start to get the hang of it
though, you can begin modifying the templates to gain even more

control, and that’s where the other categories come in, as they show
you what else is possible.

The two buttons to the right determine how the query is written out.
If the ‘Write to File’ button is selected before a query is run, then the

query will be written out to the output path shown at the top of the
screen. If it is not selected, then the query will be displayed in the

results screen, and not written out. If you already ran the query, but
didn’t check the ‘Write to File’ button, then you can use the ‘Save

Results to File’ menu option from the File menu. Last, there is the
‘Append’ button which only takes affect when ‘Write to File’ is checked.

When ‘Append’ is not checked, if a file already exists in the output
location, a dialog will ask you if you want to overwrite the file or cancel

the query. When ‘Append’ is checked, the query will just be written to
the end of the file if one already exists, or create a new one if it does

not.

File Preview and Query Results

Section 6 is pretty much the beginning and end of most queries.

When you first open a file, the first 100 lines are displayed in the
preview window, allowing you a quick glance of what is in the file.

One of the nicest features of the preview window is that it allows you
to open up a file of any size, since only the very beginning is read.

You can be opening a 20GB file from across a network, and it will still
open up immediately. Once it’s open, you will notice two buttons up in

the top right of the preview area. The button on the left with the

vertical lines is called the ‘Normalization’ button. This is used for
delimited files, and will simply spread out each field to the width of the

largest field value, so that each field is displayed as an easy to read
column. If you have to look at delimited fields often, this can be a life

saver. Go open up a file now and try it. I’ll wait. Back already? OK,

File Query Version 2.0 User Manual

Copyright © 2009 AgileData Software LLC Page 8 of 17

the other button on the right is the refresh button. This will simply re-

read the file into the preview window. This is handy if either the file is
changed, or you have normalized it, and want to go back to seeing

what the file actually looks like.

The second window is the results screen. This will automatically get
selected after a query is run, and is (surprisingly) where the results

are displayed. The results will either contain the actual output of the
query, or if the ‘Write to File’ button was selected, then it will simply

list the location of where the output was written to. Also, the results
screen can only display a maximum of 10MB of text, so if the query

returns more than that, it will be written out to a file as well. The only
other thing to notice about this screen is the two buttons up in the top

right. The refresh button is disabled, since it is not reading directly
from a file. This also causes a warning message to pop up when you

try to normalize the results. It reminds you that if you want to go

back to an un-normalized view of the results, you will have to re-run
the query. For a large query, this may not be some thing that you

want to do.

Status Bar

Section 7 is the status bar, and is simply a place where information
about the current status of the file, cursor location, and query results

are displayed. Starting from the left, you can see the line count for

the file. It is important to note, however, that on a delimited file, this
is only an estimate and will have a tilde (~) in front of it to signify

that. If it is a fixed file, it will be an exact count. The next item is the
number of records returned from a query (not including any header)

and is only set when a query finishes. The remaining items simply
show where your cursor is located, the ASCII value of the current

character (in both decimal and hex), and the number of characters
selected.

Opening Files

While it may not seem like it deserves it’s own section, there are many

different ways to open files in File Query. The three most obvious
from the interface are to use the File->Open menu item, click on the

folder icon next to the input path at the top of the screen, or type it
directly into the file path and hit Enter on the keyboard. If three

different options weren’t enough though, there are two more as well,
and they usually more convenient than the others. The first is using

the Ctrl+O keyboard shortcut, and the last (and most convenient) is to
use the ‘Send To’ menu from Windows Explorer or your desktop.

File Query Version 2.0 User Manual

Copyright © 2009 AgileData Software LLC Page 9 of 17

Simply right-click on any file, click ‘Send To’ and then click on File
Query. This way, if you already see the file some where, you don’t

have to open File Query and then locate it again. Even better, this is
the only way that allows you to open multiple files at once, which you

can then query as a single file!

File Query Version 2.0 User Manual

Copyright © 2009 AgileData Software LLC Page 10 of 17

The Language

What is a Query?

Most of the work done in File Query is done through (surprisingly)

queries. These are short blocks of text that tell the program what to
do with the file and data. It’s very similar to an SQL query, but

structured a little differently. In fact, queries are written in C#, which
is a standard programming language from Microsoft. Don’t let that

scare you though. It is only a very small portion of it that you are

using, and there are lots of features that make your queries much
simpler than a normal program.

The Basics

Queries are very simple once you know the basics. Let’s start by

looking at the most basic query that simply selects every thing from
the file, un-changed. This is already entered in the query entry area

when the program opens. Almost all queries will be created by

modifying this.

var query = (
 from line in inputFile
 select line
);

Going from the top, the first line is simply saying that our query will be
equal to whatever we put between the open and closed parenthesis.

In almost all cases, you never need to change this. The next to lines
can be read as “For each line in the input file, select the entire line.”

The last line ends the query.

Now let’s try some thing more useful.

var query = (
 from line in inputFile
 where line[0] == "VALUE"
 select line
);

This query is the exact same as the first, except it only selects lines
where the first field is equal to the text VALUE. This demonstrates the

two main ways of selecting data from the file. line by itself will select

the entire line. line with a number after it (enclosed in square

brackets) represents an individual field in the line. The indexes start

File Query Version 2.0 User Manual

Copyright © 2009 AgileData Software LLC Page 11 of 17

at 0, so the 4th field in a line has an index of 3. If you look in the field

list to the left of the query entry area, all of the fields will be listed
with their indexes, so you don’t have to worry about figuring them out.

If using a number seems odd for accessing a field, you can use the

fields name instead, such as line["CONTACT_ID"]. It does the exact

same thing, but indexes are usually preferred, since they are much
quicker to type.

Templates

One of the nice features of File Query is that it is filled with plenty of
templates for some of the most common tasks that people use.

Templates contain a fully written query, and simply give you options
that you can set. While you usually don’t have to change the query

itself in a template, you are able to if you want, and they can often be
a good starting point for other queries. Here is a query for finding all

duplicate values within a certain field.

var fieldIndex = 0;

//Implementation-------------------------------
var query = (
 from line in inputFile
 select line[fieldIndex]
).Freq().Where(f => f.Count > 1);

As with most templates, you will see one or more settings at the top,
and the actual code will be below the word Implementation. Any text

that starts with // is considered a comment, and will be colored green.
These have no affect on the query, but help to make it more readable.

In this template, all you have to do is change the 0 to whatever field
index you want to check (or leave it alone if you are checking the first

field) and hit the run button.

Functions

The three types of functions listed below are what really set File Query

apart from any other tool for analyzing text files. By allowing you to
use any combination of them wherever and however you want, you

are no longer in limited in what you can do. Want to select only lines
where the first is not empty and the second field starts with “PRE_”?

No problem. You want those same lines, but with out the 7th column?
Go nuts!

You can get a list of all available functions for any type by selecting

the appropriate category from the help boxes below the query entry

File Query Version 2.0 User Manual

Copyright © 2009 AgileData Software LLC Page 12 of 17

area. Remember to read the help information that pops up as you

move your mouse over each one. It will explain what each one does
and how to use it.

Field Functions

When you select a field, such as line[0], you are selecting the text

exactly as it exists in the file. Field functions allow you to then change
its value, or gather information about it. To use one, simply place it

after the field, separated by a period. The easiest way to do this is to
place the cursor after the field and then hit the paste button next to

the help boxes (or Ctrl+Shift+V). This will type in the period, the
function, and default values for any parameters that are required.

Below are some common examples of field function uses.

where line[0].Length < 5
where line[0].EndsWith("_ID")
where line[0].ToUpper() == "MISSING"
where line[0].Contains() == "NAME"
select line[0].PadLeft(10)

Line Functions

When you select a line, such as line, you are selecting the entire line

as a single value, even if it’s delimited with multiple values within.

Using line functions however, you can modify it based on its individual
fields, or gather information about it, such as its line number and

length. The most common uses of line functions are to remove or
modify individual fields, and to change the format, such as from fixed

to delimited, or from comma delimited to pipe delimited. Here are

some examples of line functions in use.

select line.AllFieldsExc(6, 12, 39)
select line.SetField(5, "01/01/1800")
select line.ReplaceFieldValue(2, "OLD_VALUE", "NEW_VALUE")
select line.AllFields

All of the examples above should be pretty self explanatory, except for

the last one. As stated above, selecting just line will select the whole

line as a single value. If you have a fixed file being read in and you
want to write it out as a delimited file, just changing the output format

to comma delimited and selecting line will not work as it will select the

whole fixed line as a single value that does not need any delimiters.

By selecting line.AllFields, you are now selecting the fields

individually, and File Query will then put a delimiter between them on
output.

File Query Version 2.0 User Manual

Copyright © 2009 AgileData Software LLC Page 13 of 17

Query Functions

In all of the full queries you have seen, you may have noticed that
they all end with a closed parenthesis and a semi colon. It was simply

mentioned that this ends the query, but really the closed parenthesis
ends the query and the semi colon ends the entire statement. What’s

the difference? Between the end of the query and the statement you
can place functions that will operate against the entire results of the

query. If you select all of the values from a field, you can then use a
query function to get just the unique values. You can even chain

multiple functions to then sort those unique values. Want to know
what the maximum length of a field is? Select the field’s length, and

then use the Max() function against the query to get the maximum

length (Although, since this is so common, File Query comes with a
template for doing just that.) Here are some examples of using query

functions.

Get the maximum field length:
var query = (
 from line in inputFile
 select line[4].Length
).Max();

Get a sorted list of all unique field values:
var query = (
 from line in inputFile
 select line[2]
).Unique().Sort();

Get a random 10% sample of the file:
var query = (
 from line in inputFile
 select line
).Sample(10);

If you happened to have a look at the help categories in File Query,
you may have noticed that there are two categories of query functions,

with the second one being labeled as ‘Memory Intensive’. Both
categories work the same as far as syntax goes, but the difference lies

in the fact that the memory intensive ones may need to store a lot of

information in memory to run their processing. The Sort() function

needs to store all of the data it’s sorting in memory before sorting, so

it is almost always memory intensive on a large file. The Unique()

function just needs to store a list of each unique, so for an ID field on

a large file it will probably take a lot of memory, on a gender field,
where there are usually only three distinct values, it won’t take much

memory no matter how large the file is.

File Query Version 2.0 User Manual

Copyright © 2009 AgileData Software LLC Page 14 of 17

Other Code

Besides the templates and the functions, there is still some other code
that can be used in your queries, and the following sections round up

the rest of it.

Comparison Operators

Operators deal with equality (are two things equal or not equal) and

logic operations (and, or, not, ternary). While logic operations may
sound confusing to some, it’s really pretty simple. They are used

within a where clause and allow you to combine multiple test, such as

saying that a certain field must start with the letter ‘A’ and be less

than 5 characters. (where line[1].StartsWith("A") && line1.Length < 5)

The not operator can also be used to change the value of a true or

false statement. This is most useful when dealing with a function that
returns true or false, such as the IsEmpty() function. If you want all

lines where the first field was not empty, you could use the following
query:

var query = (
 from line in inputFile
 where line[0].IsEmpty()
 select line
);

The only operator that can be a little difficult to understand at first is

the ternary operator. This takes a statement that can be true or false,

such as line[0] == "INDIVIDUAL", and returns one of two values

depending on the outcome. The following example would check if a

field is empty, and if it is then return "NULL". Otherwise, if it had a

value, it would just return the field itself.

(line[0].IsEmpty) ? "NULL" : line[0]

Miscellaneous

For the code that really doesn't fit into any of the sections listed
above, we have the Miscellaneous section. This code will most often

deal with reading various information about the file (but not from the
file), as well as setting information about the query results, such as

the header or footer. These will normally only be needed for advanced

queries, or ones that need an extra level of automation.

File Query Version 2.0 User Manual

Copyright © 2009 AgileData Software LLC Page 15 of 17

Tips and Tricks

Here are a few quick tips and tricks to use while working with File

Query.

Save a Common File Format:

If you find yourself opening up fixed length files with the same format
multiple times, you can easily save that format so that you don't have

to enter it each time you look at a file. When you have the Set Fields
dialog open, you will see a section in the bottom left labeled 'Saved

Layouts'. After filling out the layout, Just hit the save button, and
enter in a name for the layout when a dialog pops up (it defaults to the

file's name). The next time you open up a file with the same layout,

go back to the Set Fields Dialog and you will see the layout listed in
the combo box. When the correct layout is selected, hit the load

button (has a picture of a folder) and it will open and load the layout.

Find Invalid Characters:

A huge problem for many data feeds is receiving invalid characters

within a data field. Perhaps you have a field that is supposed to
contain only numeric characters, but is screwing up a process because

some of the values have other characters. While the Contains()

function makes it easy to find fields that have a certain character or
value within them, it doesn't allow you to look for types of characters.

This is where the Like() function comes in with it's support for regular

expressions. While the subject of regular expressions is too large to

get into here (There is a quick reference in the in-line help for the

Like() function and countless resources online.), here is a quick

example of how to find all lines where the first field contains a non-
numeric character.

var query = (
 from line in inputFile
 wwhere line[0].Like(@"[^0-9]")
 select line
);

Here is another variation of the where statement that allows extra
characters in the field, in case of negative, decimal or currency values.

where line[0].Like(@"[^0-9.+\-$]")

File Query Version 2.0 User Manual

Copyright © 2009 AgileData Software LLC Page 16 of 17

Creating a Test Query

When working on a large file, it can be frustrating to run a long query,
only to find out that the result wasn’t what you wanted, and you need

to re-write and re-run it. Using the .Take() function, you can

drastically speed up testing and collection of partial data. By using

.Take() on the input file, you can tell the query to only run against the

first few records, meaning that if your file has 10,000,000 records, you

can run against 1,000 until you know the query works, and only then
run against the full file. Here is an example.

var query = (
 from line in inputFile.Take(1000)
 select line.SetField(9, "18000101")
);

The other option is to use the .Take() function against the results of

the query. This tells it to run the query until a certain number of

records are returned. Say you have that same 10,000,000 record file,
and you know that there is a small number of records with an empty

CONTACT_ID field (the first field). If you just want to look at a few
examples of the bad lines, and don’t need to see all of them, you can

use the following query, and it will return as soon as 10 of the
offending records have been found, and won’t try and go through the

entire file (unless there are less than 10 throughout the entire file).

var query = (
 from line in inputFile
 where line[0].IsEmpty()
 select line
).Take(10);

View a Fixed File as Delimited

Fixed files are not the easiest files to read manually, especially when

the number of fields gets large. To make things easier to visually
analyze a fixed file, you can view it as a delimited file with a header.

You can then use the normalize button in the results screen to put
every thing into nice and even columns. Doing this requires nothing

more than replacing select line with select line.AllFields in the

default query. This will cause File Query to select each field

individually, and since the default output format is a pipe delimited

file, that is how they will be outputted. To have the header get written
out as well, simply go to the ‘Set Output Format’ dialog box (Ctrl+T)

and select the ‘Write Header’ option, but leave the ‘Custom’ option un-
checked, telling File Query to use the field names for the header.

File Query Version 2.0 User Manual

Copyright © 2009 AgileData Software LLC Page 17 of 17

Remember the .Take() function if you only want to view the beginning

of a larger file.

Entering Fixed Formats

When entering in the format for a fixed width file, you are supposed to

enter in the start position and length of each field. If you happen to
have just the start and end positions, without lengths, that is fine as

well. File Query will check the Length column, and if every value
appears to be an end position, it will ask you if you want it to

automatically convert them for you. While you can always get the
lengths yourself when you have the start and end positions, it’s still a

handy time saver to let File Query to the work for you.

Also remember that you can paste an entire format in at once using

Ctrl+V if you happen to have it already in a spreadsheet or Word
document. You can select all three columns of data at once, so there

is no need to do one at a time. And to save even more time with file
format that you use often, you can hit the little disk button at the

bottom of the Set Fields dialog to save that format for later re-use.

