
Introduction

Background
In April 2010 the AASHTO Special Committee on Bridges and Structure (SCOBS) Technical Committee T-18 - Bridge Man-
agement, Evaluation, and Rehabilitation (T-18) approved an updated element condition data specification based on the report
AASHTO Guide Manual forBridge Element Inspection (BEM) submitted to the committee by its primary authors,
Michael B. Johnson PE (Caltrans) and Paul Jensen PE (previously at Montana DOT).  This manual changed the nature of the
bridge element condition assessments significantly, in particular, providing for multi-path deterioration rather than the sin-
gle-path deterioration approach of the previous AASHTO CoRe specification (‘old-style elements’), as well as standardization
of element condition states to 4 for all elements, and organization of elements into National Bridge Elements (NBE), intended
to provide a nationwide reporting standard, and Bridge Management Elements (BME), intended to augment the NBEs with
additional element types to support bridge management condition data needs.  The manual for the new AASHTO element
specification (‘new-style elements’) was first published by AASHTO in January of 2011.

The AASHTO member States have a rich body of element data collected over several inspection cycles, in some cases over more
than 15 years.  These data were collected in conformance to the older CoRe specification and incorporate a considerable level of
agency modifications to the standard condition state language as well as extensions with new elements not found in that spec-
ification, such as movable bridge elements.

These data are the foundation for bridge needs assessment and bridge management; preservation of this history is vital.   To
that end, a process and supporting software to migrate the elements from the previous specification to the new specification is
of critical importance.  T-18 has sponsored a software design and development project intended to fulfill that need for its
member agencies.  This migration utility (the ‘Migrator’) has several salient characteristics that are elaborated later in this
manual.  First, the Migrator is entirely conformant with the approved specification, including the technical appendix D that
provides the guidelines and rules for element transformation between old-style and new-style. Second, the Migrator is entirely
database independent and operates solely on standardized Xml files enforced by schemas, along with configuration and log-
ging text files.  Third, the rules are extensible to permit the several agencies that have custom elements or have modified old-
style elements to incorporate their changes in the transformations.  Fourth, the application provides both a batch processing
console operating mode as well as an interactive rule editing and testing user interface, to support agency rule review and
modifications.  The Migrator application has published Xml schemas and is written with an open application programming
interface (API) which permits agencies to incorporate the migration software tools into their own data processing envi-
ronments as needed.

What is the Migrator? .
The Migrator application offers an interactive environment for setting up and testing element conversion rules, downloading
element data and element specifications, converting existing data and reviewing results, and setting the program operating
parameters.  The migrated output file can be imported to the AASHTO Pontis 5.1.3 application using the built-in import fea-
ture of that application.

A full set of old-style and new-style element specifications, tested transformation rules for NBEs and BMEs and benchmark
test data files are provided with the application.  These are intended as a starting point and will very likely require some addi-
tional agency customization to perform the full migration of CoRe elements to the new specification, particularly if agencies
have modified the CoRe element definitions or added any agency custom elements to their inventory.



This user guide provides basic installation instructions, a basic functionality overview, and examples of GUI operation. Por-
tions of this manual are drawn from the original software design document which provides additional detail on processing
logic, rule specification syntax, and Xml schemas for each of: 1) old-style and new-style type specifications; 2) conversion
rules; and 3) element condition data exchange formats.   Dedicated sections document the migration rules logic and syntax. 
It is almost certain that States will have to extend the standard rules to migrate agency defined elements or to migrate CoRe
elements that have been modified, so a user must become familiar with the rules at a reasonable level of detail.



Installation Guide

Supported Operating Systems
The programs have the same environment requirements as other AASHTOWare Pontis 5.x programs.  The migration utilities
operate only on Intel platforms under Windows XP SP3 or Windows7.  The Migrator programs are 32-bit applications.  While
no network or database connection is required by the applications for migration, because the transformation processing oper-
ates solely against Xml and text files, a BRIDGEWare™ database connection would be required to download Pontis CoRe ele-
ment data to Xml files for processing.

Basic operating system requirements are

l The workstation should have adequate RAM and disk space to run these operating systems efficiently;

l Adequate disk space to store the exported and migrated element xml data files.  The programs take up a triv-
ial amount of disk space;

l Windows XP SP3 is supported and most of the internal testing has been performed on this platform;

l Windows 7 - 32 or 64 bit versions. Primary development was performed on a 64-bit platform with 32-bit pro-
gram build targets;

l Windows Vista should work but has not been tested; and

l Windows Server versions should work but have not been tested.

Additional Operating Environment Requirements
A workstation also must have the following installed to run the GUI or the command line migration applications:

l .NET Framework 4, available for download from Microsoft if needed.

l .NET Framework 2.0, available for download from Microsoft if needed, is also required for the log4net utility
used to log operations.

l OLEDB data adapter software for the agency’s Pontis database.  This is typically installed by the Pontis 5.1
installer or may be installed explicitly from the database vendor’s client support disks.  The OLEDB adapt-
er/driver should be compatible with .NET 4.0.

l A user working directory must be designated where the user has full rights. This can be located anywhere, but
typically would be on the C: or D: hard drive.  The command line program always assumes it is operating
‘locally’ with full directory privileges.  The Windows GUI runs from a standard Windows application instal-
lation location e.g. C:\Program Files (x86)\AASHTOWare\Bridgeware Element Migrator but starts up in the
user’s working directory that was specified during installation.

Database Requirements
The Migrator programs have no specific database requirements for normal operations as all processing is performed on Xml
and text files.  However, for downloading Pontis CoRe element data from a production system, a standard Pontis/Bridgeware
4.4 or 4.5, 5.0, 5.1 or 5.1.2 database and a client workstation supporting an OLEDB connection is required.  The database ven-



dor may be Oracle, SQL Server, SQL Server Express, or even Sybase SQL Anywhere.  The application has been tested with
Oracle 10/11 and SQL Server Express, but specific database versions were not tested. 

The internal SQL used for the download capability is very generic and should work with any recent release.  This SQL is shown
in the following figure:

Figure 1 -Element Data Download Sql

Migrator database user privileges

As noted above, the Migrator programs do not require any database at all to migrate element data. They process and produce
xml files. However, most agencies with Bridgeware or Pontis databases will want to use the built-in extractor to download
their element condition data, customized element specifications, and other information.  The user ID used by the Migrator pro-
grams to connect to the database should be a standard Pontis user with standard privileges in the database in order to read
from the tables required for downloading element data and element specifications.  The SQL shown in the figure above requires
access to several standard Pontis tables, and a standard Pontis user id typically has all the privileges required.

If Windows Trusted Authentication (Windows domain authentication) is used with SQL Server, then privileges to connect to
the Pontis database must be granted by the operating system.  In both authentication cases, the Migrator utility only requires
the ability to connect to the database and select from the Pontis tables, as the programs perform no database updates, inserts
or deletes. 

Guidelines for setting up authentication are beyond the scope of this discussion but details and examples are available in the
Pontis user manual or the SQL Server/SQL Express/Oracle built-in help.

Connecting to a database

In order to use the extract capability of the Migrator to download element conditions and specifications from a Pontis data-
base, a ‘connect string’ will be required. Typically, this is the same connect string as the one used by Pontis 5.1 to connect to
the database. It is the responsibility of the end user to set up a working OLEDB connect string for their database.

A copy of the 5.1 sample database (from Summer 2011) was used for development of the Migrator.  That database is a SQL
Express database.  A standard connect string for SQL Express (assuming it is located in a standard SQL Express data sub-
directory in this case) is:



-B ‘Provider=SQLOLEDB;Data Source=REDBANDTROUT\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=Pontis51-
Sample;Initial File Name="C:\Program Files\Microsoft SQL Server\MSSQL10.SQLEXPRESS\MSSQL\DATA\Pontis51-Sam-
ple.mdf"’

...where the OLEDB Provider is SQLOLEDB from Microsoft, the source in on the workstation REDBANDTROUT using
SQLEXPRESS, the database initial catalog (active database) is Pontis51-Sample, and the file name is as shown on the
local file system.

Another SQL Express example is:

-B ‘Provider=SQLOLEDB;Server=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=Pontis51-Sample"’

...where the OLEDB Provider is SQLOLEDB from Microsoft, the source in on the default workstation using SQLEXPRESS,
and the database initial catalog (active database) is Pontis51-Sample.

An Oracle example is:

-B ‘Provider=MSDAORA;Data Source=XE;User ID=VDOT’

...where the OLEDB Provider is MSDAORA provided by Oracle as part of its client software, the data source name XE is the
Oracle SID of the database, which is typically defined in the workstation’s TNSNAMES.ORA file, and the user id VDOT is a Pontis
user from the great Commonwealth of Virginia.

There are a wide variety of connect string possibilities that are beyond the scope of this documentation. Using valid Pontis 5.x
database connect strings is recommended.  The Pontis 5.x application provides a configuration page for creating and testing
database connection strings that should be helpful.  Once a valid connection string has been created in Pontis 5.x, it can be
copied and pasted into the Migrator application settings form.

Use of quotes in connect strings

Note that in the SQL Express example above, the fully qualified file name portion is enclosed in double quotes, so the entire
connect string must be enclosed in single quotes.  In other situations where the connect string does not have embedded
spaces, it can be enclosed in either single or double quotes.

Installation Summary
An installation program Setup.exe is provided for the GUI installation.  Running this program will install all portions of the
GUI, except it does not install the .NET Frameworks or any database vendor OLEDB adapters, which are assumed to be in
place and configured beforehand. The setup program is available at https://bridgeware.onjira.com/browse/PEMBETA-61. Run
the setup program directly or through the usual Control Panel/Add Programs (Programs and Features for Windows 7).  

The prompts are self-explanatory and consistent with any Windows program.  The setup program will prompt for a working
directory for the application.  If the program has never been installed before, this will default to C:\Users\<userid>\AppD-
ata\Roaming\AASHTOWare\Bridgeware Element Migrator on Windows 7, and C:\Documents and Settings\<userid>\Appl-
ication Data\AASHTOWare\Bridgeware Element Migrator for a WinXP workstation.  A reasonable alternate working
directory might be C:\AASHTOWare\Visual Element Migrator.  Any local directory may be used but it must be a normal writ-
able directory in which users have full privileges to read and write files. During the installation, a working directory structure
consisting of the named target and several standard subdirectories such as Input, Output, Logs, and Temp will be created
automatically.

The default install location for the program itself is C:\Program Files(x86)\AASHTOWare\Visual Element Migrator 1.1.  An
alternative program location can be specified during installation. Network install locations have not been tested or certified

https://bridgeware.onjira.com/browse/PEMBETA-61
https://bridgeware.onjira.com/browse/PEMBETA-61


but may operate properly. No testing has been performed in a Citrix environment.    UNC install paths and file name settings
are not supported.

In addition to installing the application, a set of runnable sample and default files will be placed in the default directory
structure.  The various Migrator files are documented in later sections of this manual.

Confirm Installation

To verify that the GUI is installed properly, perform the following sequence:

1. Click Start, then locate the program Visual Element Migrator, or click the desktop icon.

2. Double-click or open the program

3. A splash screen similar to the following will be displayed as the program starts up.  It will remain visible
while all the data files are loaded and the user interface is launched.  The startup process may be slightly
slower on first use of the application during a session or after a new installation, as a shadow compiled copy
of the software is made by the .NET Framework.

Figure 2 - Startup Splash Screen

After the program loads you will see a main program window similar to the example shown below.  Clicking any row on the
list of rule definitions will show the rule syntax.

Figure 3 – GUI Application Opening Screen



Click on the Settings tab to verify the file locations under the working directory that was specified during installation.  A por-
tion of this screen is shown in the next exhibit.

Figure 4 - Snippet of Settings Screen Showing File Locations

The file locations should reflect the working directory specified during the installation process.  This confirms successful instal-
lation of the program.  In this case the install location in the user’s home directory tree is the default for Windows 7 but any
user-writable directory is supported.

Upgrades

The Migrator does not provide a built-in software updating capability. Any upgrades will be installed on top of the old version
by default. If the installer detects that files from the program exist in the target working directory, it will offer to back these up



before uninstalling and reinstalling the application.  This is a convenience and does not and cannot guarantee data security.
Users are strongly encouraged to back up their working directory contents separately to external media beforehand.

Removing the program

An uninstall program can be found in the program’s installation directory or the Control Panel Add/Remove Programs can be
used to remove the program.  Any files created or modified by the user in the working directory structure may not be suc-
cessfully removed by the uninstall program and will have to be removed individually after the process completes.



Installed Migrator Files
This appendix contains a list of files and folders included with the standard install of the migrator application.

Migrator Installed File Organization
The typical directory organization and files installed is shown below. The example is representative since these directories may
be different in an agency installed environment.  The user working directory is set during installation, and the program file
installation can also be changed if necessary to accommodate agency standards.  This application has not been tested with net-
work program installation or under Citrix.

Organization of a Typical User’s Working Directory

C:\AASHTOWare\Visual Element Migrator\

migrator-log4net-debug.config
migrator-log4net.config
VisualElementMigrator.exe.config
\Databases\
\Sample\

Pontis-Sample-2005_Data.mdf
Pontis-Sample-2005_Log.ldf
Pontis51-Sample.mdf
Pontis51-Sample_Log.ldf
\Default-Files\
\Help\

Migrator 1.1 Help.mchelp
MigratorToolTips.xaml
\Source\

MigratorToolTips.docx
MigratorToolTips.xaml

\Input\
Default-Element-Specifications.xml
Default-Operating-Environment.xml
Default-Rules-Input.txt
ElementConversion - 7.xsd
ElementData - 7.xsd
Sample-Pontis-CoreElementData.xml

\Output\
Default-Compiled-Rules.xml
Parser-Errors.err
Sample-Migrated-AASHTOElementData.xml
Transform-Errors.err
Transform-Processing.log
VisualElementMigrator.exe

\Help\
\Input\

Default-Element-Specifications.xml
Default-Operating-Environment.xml
Default-Rules-Input.txt



ElementConversion - 7.xsd
ElementData - 7.xsd
Sample-Pontis-CoreElementData.xml

\Logs\
Migrator-debug.log
Migrator.log
README-CONTENTS.txt
Session-Messages.pdf

\Output\
Default-Compiled-Rules.xml
Parser-Errors.err
Sample-Migrated-AASHTOElementData.xml
Transform-Errors.err
Transform-Processing.log

\References\
\Docs\

Conversion Rules Grammar 11.docx
Element Migration Programs User Guide(1.1.0.19).docx
Element Migration Programs User Guide(1.1.0.19).pdf

\Third-Party\
CreativeCommons-license.pdf
Silk-Icons-Readme.txt
VistaICO-Aero-Icons-readme.txt
MadCap-Flare-License.rtf
MadCap-Flare-REDISTRB.TXT

\XmlDocs\
AASHTO Element Migration Common.xml
AASHTOElementMigrationTools.xml
GalaSoft.MvvmLight.Extras.WPF4.xml
GalaSoft.MvvmLight.WPF4.xml
ICSharpCode.AvalonEdit.xml
log4net.xml
Microsoft.Expression.Interactions.xml
Microsoft.Practices.ServiceLocation.xml
Microsoft.Practices.Unity.Configuration.xml
Microsoft.Practices.Unity.Interception.Configuration.xml
Microsoft.Practices.Unity.Interception.xml
Microsoft.Practices.Unity.xml
ResourceLibrary.xml
System.Windows.Interactivity.xml
Telerik.Windows.Controls.Data.xml
Telerik.Windows.Controls.Docking.xml
Telerik.Windows.Controls.Gauge.xml
Telerik.Windows.Controls.GridView.xml
Telerik.Windows.Controls.ImageEditor.xml
Telerik.Windows.Controls.Input.xml
Telerik.Windows.Controls.Navigation.xml
Telerik.Windows.Controls.RibbonBar.xml
Telerik.Windows.Controls.RibbonView.xml
Windows.Controls.RichTextBoxUI.xml
Telerik.Windows.Controls.xml



Telerik.Windows.Data.xml
Telerik.Windows.Documents.FormatProviders.Pdf.xml
Telerik.Windows.Documents.FormatProviders.Rtf.xml
Telerik.Windows.Documents.Proofing.Dictionaries.En-US.xml
Telerik.Windows.Documents.xml
Telerik.Windows.Zip.xml
XmlDocs\VisualElementMigrator.XML

\Temp\

Organization of the Program Directory

C:\Program Files (x86)\AASHTOWare\Visual Element Migrator\

AASHTO Element Migration Common.pdb
AASHTOElementMigrationTools.dll
AASHTOElementMigrationTools.pdb
B4.AppLibrary.dll
GalaSoft.MvvmLight.Extras.WPF4.dll
GalaSoft.MvvmLight.Extras.WPF4.pdb
GalaSoft.MvvmLight.WPF4.dll
GalaSoft.MvvmLight.WPF4.pdb
ICSharpCode.AvalonEdit.dll
ICSharpCode.AvalonEdit.pdb
Ionic.Zip.dll
log4net.dll
MadCap.HelpViewerEmbeddedClient.dll
Microsoft.Expression.Interactions.dll
Microsoft.Practices.ServiceLocation.dll
Microsoft.Practices.ServiceLocation.pdb
Microsoft.Practices.Unity.Configuration.dll
Microsoft.Practices.Unity.dll
Microsoft.Practices.Unity.Interception.Configuration.dll
Microsoft.Practices.Unity.Interception.dll
ResourceLibrary.dll
ResourceLibrary.pdb
System.Windows.Interactivity.dll
Telerik.Windows.Controls.Data.dll
Telerik.Windows.Controls.Data.pdb
Telerik.Windows.Controls.dll
Telerik.Windows.Controls.Docking.dll
Telerik.Windows.Controls.Docking.pdb
Telerik.Windows.Controls.Gauge.dll
Telerik.Windows.Controls.Gauge.pdb
Telerik.Windows.Controls.GridView.dll
Telerik.Windows.Controls.GridView.pdb
Telerik.Windows.Controls.ImageEditor.dll
Telerik.Windows.Controls.ImageEditor.pdb
Telerik.Windows.Controls.Input.dll
Telerik.Windows.Controls.Input.pdb
Telerik.Windows.Controls.Navigation.dll
Telerik.Windows.Controls.Navigation.pdb



Telerik.Windows.Controls.pdb
Telerik.Windows.Controls.RibbonBar.dll
Telerik.Windows.Controls.RibbonBar.pdb
Telerik.Windows.Controls.RibbonView.dll
Telerik.Windows.Controls.RibbonView.pdb
Telerik.Windows.Controls.RichTextBoxUI.dll
Telerik.Windows.Controls.RichTextBoxUI.pdb
Telerik.Windows.Data.dll
Telerik.Windows.Data.pdb
Telerik.Windows.Documents.dll
Telerik.Windows.Documents.FormatProviders.Pdf.dll
Telerik.Windows.Documents.FormatProviders.Pdf.pdb
Telerik.Windows.Documents.FormatProviders.Rtf.dll
Telerik.Windows.Documents.FormatProviders.Rtf.pdb
Telerik.Windows.Documents.pdb
Telerik.Windows.Documents.Proofing.Dictionaries.En-US.dll
Telerik.Windows.Documents.Proofing.Dictionaries.En-US.pdb
Telerik.Windows.Zip.dll
Telerik.Windows.Zip.pdb
unins000.dat
unins000.exe
VisualElementMigrator.exe
VisualElementMigrator.exe.config
VisualElementMigrator.instr.pdb
VisualElementMigrator.pdb
VisualElementMigrator.XML
WPFToolkit.dll
\Help\

Migrator 1.1 Help.mchelp
MigratorToolTips.xaml

\logs\
Migrator-debug



Using The Visual Element Migrator

User Interface Overview
The desktop is organized into 4 tabs that correspond to each of the major application modules which are described below.  To
support these, a common set of tools are provided on the desktop for activity monitoring, showing popup tooltips, launching
the help system, and exiting the application.  The user interface does not use any conventional menus.

The key characteristics are:

l The user interface is the mouse, which performs the select, edit and button functions. As in the command
interface, diagnostic and progress messages are printed to the screen or saved to log files.

l The GUI uses separate modules for: 1) writing, editing and compiling rule sets for use in data transformation,
2) importing and manipulating a set of CoRe data for transformation and 3) running a transformation from
CoRe to AASHTO data sets.
These modules are contained in a single set of tab panes accessible by launching the AASHTO Element Migra-
tor program in windows. Each module corresponds to a key aspect of the migration process and is designed to
be used in sequence with the other modules.

l All of the GUI Migrator program’s behavior is managed through the Settings module, which is used to con-
figure all the operating parameters and the files the Migrator uses in performing transformations on the data-
set.

Desktop tools

There are four tools that are available throughout the application.  These are shown in the following figure showing the
desktop.   The control panel at the bottom of the screen includes:

l The View button displays a log of actions performed in the session.  This displays a popup window which per-
mits the user to print, save the messages to a PDF file or to clear the system message history.

l The Help button, with a question mark icon, displays the full help for the application, based on portions of
this guide.

l The Show Tooltips checkbox will set the application to show detailed tooltips for user interface elements.

l The Exit button will shut down the Migrator.  The application can also be closed with the normal Window
close button in the upper right corner.



Figure 5 – Migrator Desktop Overview

In addition to these icon button controls, pressing F1 will launch the popup tooltip help system providing detailed help for
every control on the user interface.

Filtering Data

All grid displays in the user interface display a small filter icon that launches the built in filtering wizard for the grid as shown
in the following picture.  Clicking on this icon reveals a filter dialog which permits a wide variety of filtering options.  

Figure 6 - Filter Tool Icon

The following exhibit shows the filter dialog itself. In this case, the filtering column is the bridge identifier, and the unique
values for the field in the grid are all listed as checkboxes.  A logical formula can also be entered here. Combinations of col-
umns can be used for filtering.



Figure 7 - Filter Options Dialog

Sorting Data

The grids can be sorted by clicking on the headers, and multiple columns can be combined for sorting by clicking on the col-
umn headers while holding down the Shift key.  Click the columns repeatedly to toggle the sort order and to clear the sort.

Modules

Module 1 – Edit Migrator Rules

The Edit Migrator Rules module is used to collect and edit the rules for migrating CoRe elements to National Bridge Elements
(NBEs), Bridge Management Elements (BMEs) and Agency-Defined Elements (ADEs), as well as generating Defect Flags
(SF).  The rule definitions can also automatically associate elements and protective systems as well as tag elements with rol-
lup NBE targets, used to consolidate families of related sub-elements e.g. girders and beam ends for national reporting pur-
poses.

The rule screen is split between a text editor used to modify the rules and a set of columns displaying data on the rules them-
selves. The rules are listed by Rule ID.  The text editor allows you to modify any of the set of default rules to fit your needs.



Figure 8 - Rules Editing Screen

The Rules module lets you quickly switch between multiple compiled rule sets using the Load button, which can incorporate
any rules file in xml format as the rules dictating the transformation of CoRe elements. The New and Copy buttons are rel-
atively self-explanatory; Copy requires the selection of a rule, or a range of rules, and the rules will appear with a default name
in the column list.

The Remove button takes a rule out of a list. If you don’t save at this point, however, the rule will not be eliminated from the
dataset. The Save button by default will only save those entries selected in the list. Save validates the rule or rules when it
runs, and will not complete if the rule set contains errors.

The last two buttons, Validate and Compile, are used to prepare an edited rule set for output as a rules .xml file to be used in
the migration process.  Validate checks the correctness of the rules according to the syntax laid out in chapter 5 and registers
any errors in the file Parser.err (located in the Output subdirectory).  Compile generates an .xml file which serves as an input in
a later part of the procedure. The compilation process does not generate any output if the rule set doesn’t parse and validate
correctly.

Editing Rules

Rules can be edited by typing in the right hand column.  Certain keywords and directives will automatically be highlighted for
readability, but the syntax is not checked dynamically.  After a rule body is created, it should be validated using the Validate
button and any errors should be corrected.  Rules are not saved until the Save button is pressed, however, you can move
between rules and copy and paste between them.

Rules can be added with a stub layout by using the New button.  These rules have the right layout but do nothing.  Typically
it is preferable to copy a working rule to a new rule.  In that case a new entry will be generated and it will automatically be
named and numbered with defaults that should be changed. 



Examples of rule bodies generated both ways are shown below.  The first example show s a copy of rule 4315 which is identical
to the original and would typically be changed to a new ID and a new very similar target element, perhaps an agency-specific
type of disk bearing.

Figure 9 - A Copied Rule

The next exhibit shows a starter rule body ‘stub’ that provides a framework for writing a new rule but will not compile or do
anything until revised.

Figure 10 - New Rule Stub

Rule ID Convention

The convention for identifying rules used in the default set is as follows:

l 1st digit – major element category.  These are 1 – superstructure; 2- substructure; 3 – joints; 4- bearings; 5 –
approach slabs; and 6 – decks and slabs.  Smart flag rules start with a 7, and agency element rules start with
an 8. 

l Next few digits – the element key, with leading zero for sorting convenience. 6012 would be a bare concreted
deck, for example.



l Final characters- an indication of whether Smart Flags are involved in the rule or not, or a tag for a rule var-
iant as appropriate.  For example, ‘NSF’ means does not use smart flags in the rule, while ‘SF358SF359’ means
both smart flags 358 and 359 are considered in the rule, for an element on a bridge where these smart flags are
found.

l Using this convention, then, a rule ID 6012SF358SF359 would pertain to deck, type 12, for a bridge with both
358 and 359 smart flags.

Documenting Rules

The example rules shown provide comments throughout.  Liberal use of comments is strongly recommended since there are
many engineering assumptions intrinsic to these rule bodies which should be communicated to other interested parties in an
agency.  Comments may be extensive over multiple lines using the /* */ format or follow the one comment per line // format as
appropriate.  Comment formats are described in the later section on rule syntax.

Module 2 - CoRe Elements Data

This module shows the specific CoRe data to be transformed and includes tools for downloading and migration of the data. 
No element data editing is provided as that is the responsibility of the source program (typically Pontis™).  The screen con-
tains columns for Summary, Total Quantity, State Quantities, Bridge Key, Inspection Date, and other standard element data
items. Using the filter function on this screen allows you to sort and sift through the CoRe elements according to any of these
criteria. By default, it sorts according to Bridge Key.

This module deals with CoRe elements, and the program defaults to displaying ten elements per page. If you need to deal
with the whole dataset, click View to open the entry log for the program, note the number of elements comprising this set and
instruct the program to display a higher number per page than exists in the whole of the set. This applies to Module 3-
Migrated NBE/BME/ADE Data, as well.

The functions on this page are always dependent on the selection and editing of rules in the previous module.  The rules mod-
ule tells the Migrator exactly what transformations to perform on the CoRe element data. Therefore, make sure to proceed with
your migration from leftmost to rightmost module.

The Download button connects to a SQL server to download element data files for import into the Migrator. This button also
downloads and generates an operating environment Xml file based on the current Pontis element definitions for use with the
Migrator.

Save and Load perform similar functions as in the Edit Rules module- Save creates a .xml file composed of all elements
selected when the button is clicked and Load imports such an .xml file into the Migrator. The files are validated as they are
imported and no data will be loaded if the files do not pass validation according to the ElementData – 7.xsd schema.

The Migrate List function only affects the highlighted rows, or if no rows are selected, the entire list of data in the grid. Assum-
ing that everything in the Settings module is set correctly (see below), the Migrate List button transforms the selected CoRe
elements data set into NBE’s, BME’s and ABE’s according to the rules set in place in the Edit Migrator Rules module. The file
format for the migration output is .xml.

Module 3- AASHTO Elements

This module displays the results of migration from CoRe to AASHTO NBE’s, BME’s, ADE’s and DF’s. The column structure is
identical to that found in Module 2 – CoRe Elements: Summary, Total Quantity, State Quantities, Bridge Key, Inspection
Date, Inspection Key, Element Key, Environment and Structure Unit. These columns are augmented with the optional NBE
rollup element keys, and, for protective system BME elements, the associated primary structural element.

Migrate a File draws on an existing CoRe elements .xml file to generate a set of NBE elements displayed on the screen.



Save Results and Load Results in this module are mechanically identical to those in the second module, with the exception
that the targets are slightly different; The third module is a collection screen designed to give the user the ability to access and
manipulate a migrated data set. Therefore, where the second module stored its files as .xml files of migrated data, the third
module lets the user get a specific set of data from a larger set. This is technically possible in the second module as well, but
the third module uses the same function on the same CoRe dataset to display the new NBE/BME/ADE data. Whereas you see
the input files and generate a more specific set on the second module screen, the third module allows for display and manip-
ulation of the output files.

Module 4- Settings

The Settings module manages all the options for modifying the Migrator operating parameters.   The top two lines are used to
set the connection strings and the where clause (filter) for downloading some or all CoRe Element data from a Pontis database
into the Migrator utility. The various checkboxes and input fields on the row below allow for defining a common characteristic
for the selected elements. Below that, the file list sets each of the files used by the Migrator GUI as it imports, validates and
transforms elements.  Some of the file names are fixed and the user cannot change them. All the settings on this page must be
saved before the application will use them for processing.  Press the Save Settings button near the bottom of the page to apply
the choices.  File name selections, however, are automatically applied by the file selection dialog.

Figure 11 - Settings Module Main Screen

Download settings

The first set of functions on the Settings page consists of  the Test Connect button, and the  Connection String, Cutoff Date
and WHERE clause operating options.

Configuring the database connection

In order to connect to a Pontis database and download data, a valid, working connection string must be provided for the
application.  If only a subset of the core element data is required, a WHERE clause can be entered that will restrict the rows
that are downloaded.



Connect String – This field shows the OLEDB string used to connect to an exterior database.  These were discussed earlier in
Chapter 2. The database connection string is used by the application to connect to a Pontis database using the OLEDB
protocol.  This connection string should be configured and tested outside of the application, then pasted here.  The Migrator
application does not itself provide functionality to build connection strings.

Test Connect - Once a connect string has been entered, use the Test Connect button to check the connection before down-
loading files.   This test also will automatically append the contents of the WHERE clause to the download SQL to evaluate its
syntax.

Setting the download criteria

The WHERE clause setting filters the downloaded element data.  An individual bridge can be specified, for example, or bridges
with a particular element type.   When the Migrator connects to a database to extract data, it automatically chooses to grab
all the existing element condition data unless a WHERE clause is provided that selects a more restricted set of information. 
The WHERE clause does not need to start with WHERE but must show the full table name for any column that is used in the
WHERE clause e.g. BRIDGE.BRIDGE_ID=’XYZ’, not BRIDGE_ID = ‘XYZ’. As noted above, the Test Connect button will auto-
matically append the WHERE clause to the SQL and check its syntax.

Cutoff Date specifies the span of years for which the Migrator will collect data. It assumes that the user always wants data up
to the present time, so Cutoff Date only specifies a beginning point for retrieval. Using this option permits the user to select
data on or after a particular date. This field provides a calendar picker for data entry or the date may be entered directly. 

It is important to note that the Cutoff Date and the WHERE clause can be applied separately or in combination.  When used
in combination, this can lead to unexpected results if the Cutoff Date makes the WHERE clause criteria irrelevant and vice
versa.   For example if all element condition data is requested for all inspections after a particular date, but the WHERE clause
selects specific bridges that do not happen to have any inspections after that date, then no data will be selected and down-
loaded.

Data recoding settings

The five settings below each force a set of migrated output elements to have the same shared characteristic, which is set using
the text input box to the right of each key. These buttons correspond to the flags discussed in the command line operation
instructions.  None of these special recoding settings are required during normal migration operations.

Checking these boxes and entering a value will force all entries to use that attribute upon migration.  For example, all the gen-
erated elements can be assigned to one structure unit and can all be associated with a  single inspection key for easy reference,
if desired.  If none of these options are set, then the original characteristics will be preserved during migration.

BRKEY sets a common database key ID for the bridge the migrated element(s) rest(s) on, equivalent to the command line flag –
B.

UNIT sets a common value for the superstructure unit to which the element(s) will be assigned, equivalent to command line
flag –S.

INSPKEY sets a common inspection ID for the migrated element(s), equivalent to command line flag –I.  This may be useful to
be able to easily identify the initial migrated element records in the target database.  This should only be used if the set of rec-
ords to be migrated includes just the latest inspection for each bridge or unwanted ambiguity may result.

ENVKEY sets the physical/operational environment for the migrated elements, equivalent to command line flag –E.

INSPDATE sets a common date of inspection for the migrated element(s), equivalent to command line flag -D.  This field will
show a calendar picker for data entry.  This field should likely be used in combination with the INSPKEY setting in most cases.



Additional Options

These settings are related to the source and target data in the migration and logging.  These are displayed in the following
screen fragment:

Figure 12 - Additional Transformation Options

Data may be submitted for migration in either Metric or English and can be emitted from the Migrator in either Metric or Eng-
lish Units of Measure (UOM).   The source and target data may be either percentages or quantities.  A dropdown is shown that
permits selecting one of these options.

The M|MP|E|EP controls (input and output) determine the units of measure used by the input and output datasets; the met-
ric (M) and English (E) quantity measurements can also be processed as percentages for a condition state (MP, EP). For exam-
ple, with M selected as an input, the Migrator will assume that it is receiving true measurements, while selecting MP will
make the Migrator look for a percentage in a condition state of a total metric quantity. The same applies for English meas-
urements.

All the source data condition state percentages are checked to make sure they add up to 100%.  An error will be logged if these
data do not add up, but the program will attempt to fix the data on the fly by adding or removing from State 1.  Nevertheless,
it is not recommended that the data have significant normalization problems when used for migration.

The output UOM can be set as well, performing metric English conversion on the fly during transformation using the standard
element conversion factors found in the conversion schema Xsd file.  Further, the output can be in either quantities or per-
centages.

Combine adds elements of the same type together when they occur on multiple structure units for a bridge.  This collapses
detail but may be appropriate in some cases.  This is a true/false toggle button which will be a contrasting color if enabled.

Scaler (-XO/-XI) defaults to maintaining the same scaler for input and output quantities. If the button is pressed, the Migra-
tory will ignore scalers and treat the element as raw data. This is a true/false toggle button which will be a contrasting color if
enabled.

Verbose/Terse (-V) refers to the level of detail in the transform processing log. It defaults to verbose descriptions. This is a
true/false toggle button which will be a contrasting color if enabled.

Miscellaneous Settings

The Themes button allows the user to change the appearance of the program. It defaults to the typical Microsoft™ Office Blue
similar to the default for Microsoft Word™ and after a confirmation dialog, automatically restarts the application to apply the
new theme.  This button is disabled if there are any pending changes.  Clicking the button pops up a list of available themes
with buttons showing the theme effect.  The choice of theme is persisted between sessions.



Figure 13 - Theme Selections

Using the grid view
A primary advantage the GUI has over the command line interface is the ability to display and manipulate all of the data in a
dataset at once. The GUI uses a columnar structure with the ability to select and filter each column according to specific crite-
ria.

The generic structure of the columns looks like this:

Figure 14 - Standard Data Grid



This image is taken from the main screen of the CoRe Elements module. The columns are completely resizable, but default to
a standard size upon opening.

Selecting data from the list

The user selects, manipulates, compiles and migrates data based on the selections in this pane, so it’s critical to understand
how it works. You can only select entries by clicking on them directly, so that the entire row becomes highlighted, or by shift-
clicking to select an entire range. Use control-click to select and deselect individual entries. If nothing is selected, then the pro-
gram assumes all the rows should be processed. If you make selections but do not select an entry so that it’s highlighted, then
when you click a command button, it will not be included in the set of data to be processed.  In the example above, if you were
to save this entry as a completely new set of CoRe Elements, only the first 3 lines would be saved to a new set. 

If you’d like to select every element in a given set, set the Page Size , which is the number of entries displayed per screen in
the grid, to an arbitrarily large number (greater than the number of elements present in your data). Click the checkbox on the
left-hand side of the column headings to select every entry on the screen. If you unselect all data rows, the entire set of data is
saved by default.

There is typically no need to save multiple copies of the source data as it can be downloaded again at any time from the
source Pontis database, but it may be helpful to create small test subsets to use for testing rules against specific element types.

Sorting the data

You can also click the column headings to make the whole set (selected and unselected) sort according to that column. After 3
clicks, it sorts by the left-most column (summary in the example above).  Holding down the shift key permits a cumulative
sort on multiple columns.  The sort direction is indicated by a small twistie in the column heading.

Applying filters to the data

The Migrator utility includes a filter function used to quickly assemble specific sets of data. The menu is accessed by clicking
on the small filter icon in the header of each column (see below). This brings up a menu with an itemized list of all the entries
in the current list with checkboxes allowing you to include or exclude them in the dataset you want to migrate. Selecting mul-
tiple items in the drop down list, or filtering out unwanted entries reduces the active entries that will be processed by the
Migrator. If you want to turn them into a usable extract dataset, use the Save button as detailed above after filtering out
unwanted elements.

Figure 15 - Filter Tool Icon in Column Header

In addition to individual selection by value, the Migrator filtering tool also provides a number of standard logical filter
options. 

The logical filters are as follows:



l Is equal to
l Is not equal to
l Starts with
l Ends with
l Contains
l Does not contain
l Is contained in
l Is not contained in

In addition to these logical operators, the filters can be set with both entry fields as well as an ‘and/or’ clause.  In a com-
plicated situation, you can have multiple criteria including both directly selected data values and logical filters at work on a
single set of data.

If, in the Edit Migrator Rules module, you want to see all rules pertaining to deck and slab elements, which by Pontis con-
vention have an ID starting with the number 6, enter the following into the summary column:



Figure 16 – Filter Rules by First Digit of Rule ID

The grid then displays all the entries beginning with a ‘6’, which is the decks and slabs category.

If you want to filter out everything with a name that doesn’t contain concrete or timber, enter the following into the second col-
umn:



Figure 17 - Filter Rules to Exclude Materials

It is possible to filter each column according to specific, separate parameters.

Filters are not reapplied upon reopening the program.

Clearing filters

The filters will not reset unless you either close the program or click “Clear Filter” from the filter popup menu.

Getting help
Press F1 at any time to reveal popup help for the various screens and controls, as well as descriptions of each of the files
used.  Press the question mark on the bottom of the screen to show the full online help (generated from this manual).



Conversion Rule Guide

Background
The 2011 first edition of the AASHTO Guide Manual for Bridge Element Inspection (the ‘BEM’) included a technical Appendix
D with transformation rules for CoRe elements expressed in graphical and outline terms.  The Migrator was designed provide
a means to embed this rule logic in its element data migration processing in a configurable manner.   To that end a com-
prehensive rule language has been defined which is used to express the conversion logic.  A full set of tested rules for every
AASHTO CoRe element is provided with the software.

The rules have a source scope, meaning that they may apply to one element, several elements, a type of elements, or an ele-
ment category, taken in reverse hierarchical order from a rule for an individual element down to a rule for a category (list). 
This flexibility of scope permits fewer rules to transform more elements.

The rules also incorporate the effects of Smart Flags when applicable and encountered in the incoming condition data.  Some
elements are affected by Smart Flags, such as decks which may be influenced by the soffit and deck cracking flags, and others
are not.  For the ‘no-Smart-Flag-influence’ situation, the transformations are relatively straightforward mappings of old and
new condition states.  For the situation where smart flags apply, their existence on a bridge must be considered during con-
version and embedded in the logic.  In the new specification Smart Flags are now termed Defect Flags.

Special functions are used to associate elements with other elements and Smart Flags either on the same structure anywhere,
or on the same user-defined unit of the structure (e.g., structural frame).

It is also possible to associate protective system bridge management elements with  any inventory element on the fly, and to
create a rollup linkage for any element to collapse the condition distribution for BME’s and ADE’s to National Bridge Ele-
ments for Federal reporting purposes or cross-comparisons between States.

The rules for element conversion in the Migrator follow the approach of Appendix D of the original BEM document.  The rules
were developed from the examples in that appendix originally and have been significantly refined and improved during the
course of the development of the Migrator.  The Migrator includes a full set of rules for every standard Pontis CoRe element
with variations considering the influence of Smart Flags or the existence of other elements on the structure

Rule Syntax
Typical conversion rule logic for each is shown in the following 3 figures.

Syntax for a Simple Element Migration Transform Formula

The next figure  shows the simple case of state to state assignment for element 104 without consideration of smart flags.  This
just requires deciding which source states map to which target states and in what percentages or sums over source
percentage.  The example source code is what the end user would enter as a formula, which is then parsed, validated, and
stored in tokenized form in an Xml file for use in migration processing.



Figure 18 - – Migration Rule Source Example – Prestressed Concrete Box Girder (104)

TRANSFORM("1104", "PS Concrete Box Girder (104)");
SCOPE (ELEM_LIST, 104);
EXCEPTION(101,"Runtime exception when trying to apply rule  1104, PS Conc Box Girder (104)");
// ==========================================================================================
// Update History:
// Version 1.1 - March 30, 2012
// ==========================================================================================
// Commentary
// ==========================================================================================
//RAE - 7/21/11 - checked
// TST 9/27/2011 - Checked and Works
//
// BEM Reference D.2.2.1a
//
CASE
WHEN (1) THEN

ASSIGN_QUANT(THIS) = QUANTITY(THIS);
ASSIGN_PCT(THIS, 1) = PCT(THIS, 1);
ASSIGN_PCT(THIS, 2) = PCT(THIS, 2);
ASSIGN_PCT(THIS, 3) = PCT(THIS, 3);
ASSIGN_PCT(THIS, 4) = PCT(THIS, 4);

END;
// if commonly spalled in State 1, this alternate transformation model can be used to downgrade State 1
// direct assignment of target state 1=0 shown for clarity – not required
//CASE
//WHEN (1) THEN
//ASSIGN_PCT(THIS, 1) =0;
//ASSIGN_PCT(THIS, 2) =SUMPCT(THIS, 1,2);
//ASSIGN_PCT(THIS, 3) = PCT(THIS, 3);
//ASSIGN_PCT(THIS, 4) = PCT(THIS, 4);
// END;

Syntax for a Formula Using Smart Flags

The following figure outlines a more complicate case of an NBE deck type 12 with no asphaltic wearing surface and smart flags
358 (deck cracking)



Figure 19 - Migration Rule Source Example – Deck 12 with Smart Flag 358

TRANSFORM("6012+SF358", "Decks/Slabs 12 - SF 358 only - No Wearing Surface and/or Protection System(s)");
SCOPE (ELEM_LIST, 12);
EXCEPTION(101,"Runtime exception when trying to apply rule 6012+SF358");
// ==========================================================================================
// Update History:
// Version 1.1 - March 30, 2012
// Version 1.2 - June 27. 2012
// ==========================================================================================
// Commentary
// ==========================================================================================
// All 3 of these CoRe deck elements become a type 12 in the new specification (consolidated)
// Decks/Slab elements 12 all go to AASHTO 12
//
// None of these elements have wearing surfaces
//
// Handles case when 358 exists but not 359
// Core 358 was 4 CS
// AASHTO 358 is 4 CS
//
// Add Deck Protection System where applicable
//
//
//
// 12/08/2011 - Ready for Review
//
//
//
CASE WHEN (EXISTS(358) AND NOT EXISTS(359))

THEN
// ARMarshall
// Applies to all the elements in the SCOPE, so just use 1 for true here
// CASE WHEN (THIS=12)

CASE WHEN (1)
THEN

//
ASSIGN_QUANT(12) = QUANTITY(THIS);
ASSIGN_PCT(12, 3) = PCT(358, 4);
ASSIGN_PCT(12, 2) = SUMPCT(358, 1, 3);

//
BEGIN_LINK(358)
ASSIGN_QUANT(LINK) =  QUANTITY(THIS) ;

ASSIGN_PCT(LINK, 3) = PCT(358, 4);
ASSIGN_PCT(LINK, 2) = SUMPCT(358, 1, 3);
//
END_LINK;
//

END
END;

Syntax for a Complicated Multi-Element Transform Formula

The following figure shows the most complicated case of a multipath migration rule for a CoRe element deck type (13) with an
asphaltic wearing surface and the deck Smart Flags (358,359).  In this transform formula, the wearing surface is logically split
from the source element and becomes a BME element 510 while the deck itself becomes NBE element (13).  This example just
shows the processing for one condition state of the element.



Figure 20 – Appendix D, Example 3 - Multipath Example (partial)

TRANSFORM( "6012+SF358SF359","Decks/Slabs 12 with both SF 358 and 359 - No Wearing Surface and/or Pro-
tection System(s)");
SCOPE (ELEM_LIST, 12);
EXCEPTION(101,"Runtime exception when trying to apply rule 6012+SF358SF359");
…
…
// ==========================================================================================
// Commentary
// ==========================================================================================
// All 3 of these CoRe deck elements become a type 12 in the new specification (consolidated)
// Decks/Slab elements 12 all go to AASHTO 12
//
// Both Smart Flags are found along with the deck element
// Smart Flag - CS 358 in CS 1
//
CASE

WHEN (EXISTS(359) AND EXISTS(358)) THEN
CASE

WHEN (PCT(358, 1 ) = 100) THEN
CASE

//
WHEN (PCT(359, 1) = 100) THEN

ASSIGN_QUANT(12) = QUANTITY(THIS);
// 358 controls so all of deck goes to CS 2
// 358 will go to CS 2
// 359 place holder Quantity of 1 to CS 2

ASSIGN_PCT(12, 2) = 100;
BEGIN_LINK(358)
ASSIGN_QUANT(LINK) = QUANTITY(THIS);

ASSIGN_PCT(LINK, 2) = 100;
END_LINK;
// Quantity 1 (1 sq meter in this case)
BEGIN_LINK(359)
ASSIGN_QUANT(LINK) = 1;

ASSIGN_PCT(LINK, 2) = 100;
END_LINK;

WHEN (PCT(359, 2) = 100) THEN
ASSIGN_QUANT(12) = QUANTITY(THIS);

// 358 controls so all of deck goes to CS 2
// 358 will go to CS 2
// 359 place holder Quantity of 1 to CS 2

ASSIGN_PCT(12, 2) = 100;
BEGIN_LINK(358)

ASSIGN_QUANT(LINK) = QUANTITY(THIS);
ASSIGN_PCT(LINK, 2) = 100;

END_LINK;
// Quantity 1 (1 sq meter in this case)
//
BEGIN_LINK(359)

ASSIGN_QUANT(LINK) = 1;
ASSIGN_PCT(LINK, 2) = 100;

END_LINK;
…
…

From these examples of increasing complexity, the ability to handle different conversion logic with the formula language is
demonstrated.  In the most elementary example, assignments are made 1:1 between states in the old specification and the
new.  In the most complicated example, a decision tree is followed which recognizes the existence of smart flags to adjust the
assignments, and even to generate a new element dynamically when a particular smart flag is in place.  A new element will



also be generated when the current CoRe element specification incorporates a protective system which is separated out in the
new specification.

Protective System Syntax

As noted above, the protective system element for any structural element can be generated ‘on the fly’ as part of the rule
processing.  To accomplish this, a special clause is supported in each rule called a BEGIN_LINK/END_LINK clause. A rule
including this clause is shown below.

Figure 21 - Automatic Generation of Associated Protective System

TRANSFORM("1101", "Unpainted Steel Box Girder (101)");
SCOPE (ELEM_LIST, 101);
EXCEPTION(101,"Runtime exception when trying to apply rule 1101, Unpnt Stl Box Girder ");
// TST - 10/19/2011 -
//
// No Smart Flags
//
// BEM Reference D.2.1.3a
//
// CoRe Element 101 becomes AASHTO element 102 after conversion
//
// Adds 515 - Prot Coating - Assumes Weathering Steel Protection
//
// 515 Quantity is a default  value – must be field verified//
// Inspectors will need to convert to AREA
//
//
CASE
WHEN (1) THEN

ASSIGN_QUANT(102) = QUANTITY(THIS);
ASSIGN_PCT(102, 1) = PCT(THIS, 1);
ASSIGN_PCT(102, 2) = PCT (THIS, 2);
ASSIGN_PCT(102, 3) = PCT (THIS, 3);
ASSIGN_PCT(102, 4) = PCT (THIS, 4);

           // assign default value for protective system 515
BEGIN_LINK(515)

ASSIGN_QUANT(LINK) =  @DefaultQuantityConstant  ;
ASSIGN_PCT(LINK, 1) = 100;

               // ASSIGN_PCT(LINK, 2) = PCT (THIS, 2);
               //ASSIGN_PCT(LINK, 3) = PCT (THIS, 3);
               //ASSIGN_PCT(LINK, 4) = PCT (THIS, 4);

END_LINK;
END;

In this example, the source unpainted steel box girder element (CoRe element 101) will be transformed to a type 102 AASHTO
unpainted steel box girder with an associated 515 protective system, which is in this case is the weathering steel system.  This
will only occur if the source element rule includes this BEGIN_LINK clause and is of the appropriate type as indicated.  With
this mechanism, the protective rating elements are automatically available in the latest format for use with Pontis 5.1.2 and
can be rated by the inspector during the next visit.  As shown in this example, the amount of weathering steel is set to a
default quantity in condition state 1, so the distribution of condition of the weathering system must be confirmed by sub-
sequent field observation and measurement.



Rollup Rules

The new AASHTO specification distinguishes between National Bridge Elements (NBEs), Bridge Management Elements
(BMEs) and Agency-Defined Elements (ADEs) and also supports Defect Flags (DF) as the successor to Smart Flags.   The
BEM provides for the possibility that any NBE may be the result of consolidating the condition assessments of all the BMEs
and ADEs that are related to it - for example, the beam ends are a BME which related to the girder as a whole- and that ‘roll-
up’ logic may be required during data processing to report NBE quantities and condition state distributions.  To support this,
the NBE element ID must be related to the BME/ADE element.  The Migrator rule language provides a ‘ROLLUP’ rule that can
be used with any ‘child’ element to determine its NBE ‘parent’.  The target NBE and the source BME/ADE element or elements
appear in the ROLLUP statement.   The format rollup rule syntax is as follows:

Figure 22 - Rollup Rule Syntax

ROLLUP-RULE-BODY:
[ EXCEPTION ( <error number> [, <double-quoted error message>] ) ; ]
{ ROLLUP-DIRECTIVE  [ ROLLUP-DIRECTIVE]… }

ROLLUP-DIRECTIVE:
ROLLUP(<NBE element number> , ELEM-LIST-SCOPE);

No rollup rules are provided with the default set of rules.

Understanding Rule Processing Behavior
Rule processing is sequential and operates essentially on one element condition data row at a time, while considering if there
are associated elements on the same bridge.  The key processing behaviors to recognize are that there are multiple dependent
rule chains for elements, no consideration of element condition history, and that structural element associations e.g. pre-
sumed interactions must be specified in the incoming data to affect the migration logic.

Rule Chaining

Any 1 rule may not be able to address all the logical possibilities for converting a particular element.  In fact, for easier com-
prehension and maintenance, it is preferable to split the rules for an element by complexity. The Migrator will determine the
rule set for a particular element in advance and then traverse the set of rules until an appropriate rule is found .  This means
that an element with associated smart flags may be processed by a ‘later’ rule than one that does not have smart flags.  This
should be considered when defining new rules both to simplify the logic of any one rule and to ensure that all possible paths
or combinations are covered by a rule.

Combining Duplicate Elements

If the same element appears more than once on a bridge in the input data, the program can be configured to combine the ele-
ment in the output data into one new element record, with the quantity and state distributions reflecting the total.  This is the
default behavior.  Using the –M flag in transform mode, the Migrator can be configured to preserve the multiple element
instances in the output data.  It should be noted that the Pontis database does not permit the same element to appear more
than once on the same structure unit of a bridge so this combinatorial behavior corrects referential integrity issues auto-
matically in the default mode.

Deprecating Elements

A number of elements that exist in the CoRe specification are now deprecated.  The rule processing accounts for this because it
is driven not just by the input elements allowed but the targets as well, as defined in the element specification configuration



file.  If an element exists in CoRe but is non-existent in the new AASHTO elements, no rule can have that element as a target
for output or an error will be generated.

Transferring Custom Element Specifications

The new AASHTO element numbers were selected without consideration of individual State element numbering systems used
with Pontis.  It is therefore possible and even likely that a standard AASHTO element ID conflicts with a State ID for an
agency defined element.  This situation can be easily overcome by small changes to the element definitions table ELEMDEFS
in Pontis 4/5.x, which will automatically generate new renumbered element specifications for agency elements as part of the
Migrator’s download process. The source element data does not have to be changed at all – only the Notes column of the ele-
ment definition (editable in the Pontis 4x configuration module).

In order to indicate that a particular agency element should be redefined in the Migrator element specifications (renumbered),
the element definition Notes column must be edited similar to the following examples:

Table 1 - Automating AASHTO Element Generation for Agency Elements

Element Definition Coding For Automated AASHTO Element Generation
Elemkey Short Name Notes

12 Bare Concrete Deck This element defines those concrete bridge decks with no surface
protection of any type{AASHTO: 601,DF;602,DF;603 } {AASHTO:
604;605;606 ; 600} and constructed…

13 Unp Conc Deck/AC Ovl This element defines those concrete bridge decks with no surface
protection of any type. {AASHTO: 602; 603; 600 } The deck…

140 Unpainted Stl Arch This element defines all members of only those steel arches that are
not painted or are{AASHTO: 605} constructed…

216 Timber Abutment This element defines only those abutments constructed{AASHTO:
605}of timber...

356 Steel Fatigue Smart
Flag

This flag exists only on those bridges with steel elements which are
already showing fatigue damage. {AASHTO: 7356,DF}

357 Pack Rust Smart Flag This flag defines only those connections (including shapes in contact
in built-up members) of steel {AASHTO: 7357,DF}

358 Deck Cracking Smart
Flag

This condition state language addresses deck cracking. Once a deck
begins to show other distress… {AASHTO: 7358,DF}

359 Soffit Smart Flag This condition state language addresses deck distresses through vis-
ual inspections of the deck soffit… {AASHTO: 7359,DF}

360 Settlement Smart Flag This condition state language addresses substructure settlement dis-
tresses which are evident during…{AASHTO: 7360,DF}

361 Scour Smart Flag This condition state language addresses scour distresses which are
evident during visual inspections…{AASHTO: 7361,DF}

362 Traf Impact SmFlag This condition state language addresses distress of any elements
(mainly superstructure) due to… {AASHTO: 7362,DF}

363 Section Loss Smart Flag This condition state language addresses section loss in areas of steel
members which warrant… {AASHTO: 7363,DF}

364 Bridge Rail Smart Flag This condition state language addresses damage to bridge railing
and approach railing... {AASHTO: 7364,DF}

510 Custom R/C Diaphragm This element defines only those reinforced concrete diaphragm units



constructed of reinforced conc and integral with P/S girders. Meas-
ured in lineal feet between girders… {AASHTO: 8510,ADE}

515 Custom R/C Wing Wall This element defines only those wing walls constructed of reinforced
concrete...{AASHTO: 8515, ADE}

In these examples, the directives within curly braces notify the Generate Specifications download tool that a custom element
definition needs to be generated on the fly.   For example, for agency custom element 515, Custom R/C Wingwall, the down-
load process will create an AASHTO element definition 8515 of type ADE.  This categorizes the element as an agency element
(category 8) and preserves the original agency number 515.  In this way, if an agency’s element number conflicts with the new
specification, there is no need to fix all the source data to overcome the conflict.  A rule simply transfers all the 515 source
data to the 8515 target data and performs the renumbering automatically.

It is also possible to direct the download process to create a target element for a set of elements, which presumes that element
consolidation is planned, where several related and semantically consistent elements will all end up as the single target
element.  In the above examples, some of the download directives share targets.  Deck 12 for example will generate a 605 ele-
ment definition, as will 140 and 216.  The presumption is that 12, 140 and 216 will all transfer data to this target 605 through
a rule, collapsing 3 current elements to 1.  Agencies that have generated a large number of highly interrelated elements with
the same units of measure and condition state semantics can take advantage of this mechanism to consolidate and simplify
their inventory during transformation.

The following fragment of xml from the file Default- Operating-Environment.xml shows the outcome of these directives:

Figure 23- Fragment of Generated AASHTO Element Specifications

With judicious use of these download directives, it is not necessary to figure out the intricacies of the various xml files used
during transform processing, other than possibly entering a reasonable element name and description with a text editor, since
default values are  supplied during download that are less than informative.  It may also be necessary to adjust the material
type and the metric/English conversion paircode.

Historical Scope

The element data that is processed by the converter is blind to history by default.  This means that if an element used to be
associated with a smart flag in the past, but the smart flag has now been removed, the influence of that smart flag on con-
version is also removed.  The same logic obtains for an associated element that in the conversion process would normally
influence condition state assignments.  In order to recognize that a smart flag was in effect for a bridge previously, the latest
inspection data provided as input to the Migrator must include that smart flag or associated element. Similarly, the Migrator
ignores the possibility that an element’s condition may improve or deteriorate further as an outcome of a subsequent inspec-
tion. The Migrator also does not consider that the source element itself may have been removed on a subsequent inspection in
the historical chronology.



Structural Scope

Elements are only influenced by smart flags or associated elements that are co-located with them.  If a set of bridge elements
for several structure units are encountered, only those where the related elements/flags are on the same unit, regardless of
whether it is a physical frame or just an operative association, will follow a conversion path where the associations matter. 
The Combine option discussed earlier will add these elements together on a single (synthetic) structure unit on the fly if this
is required.

Standard Migration Rules
There are approximately 136 standard migration rules provided with the application.  These rules cover all known, standard
CoRe elements and Smart Flags and reflect the consensus decisions of bridge engineers from several States including CA, NY,
SD, and OR as well as IT professionals involved with the development.  These rules are installed with the software and can be
found in the distribution media in the files Default-Rules-Input.txt and Default-Compiled-Rules.xml in the Input and
Output subdirectories respectively.

While these rules have been thoroughly tested against several State element inspection inventories, these rules may need to be
modified by user agencies to reflect customized CoRe element definitions and augmented with rules for custom agency
elements.  As a best practice, it is strongly recommended that the standard rules files be copied before any agency cus-
tomization.

In the table below, rule ID, element scope, and smart flag association are indicated for each rule. Rules with Smart Flags
involved are distinguished by NSF – No Smart Flag / SF 358 – Smart Flag 358 only / SF 359 – Smart Flag 359 only and
SF358&SF359 – both Smart Flags associated with the CoRe element.

All these rules can be reviewed through the Migrator user interface or by opening the file Default-Rules-Input.txt with a text
editor. The support website also provides the full rule text online for each given rule, which can be searched based on the rule
IDs below. 

Rule Overview
Table 2 - List of Migrator Rules and Source CoRe Elements

Rule ID
Core

Element
No SF
(NSF)

SF 358 SF 359 SF 358 & 359

Category 1- Superstructure
1101NSF 101 x

1102NSF 102 x

1104 104

1105 105

1106NSF 106 x

1107 107

1109 109

1110 110

1111 111

1112NSF 112 x

1113NSF 113 x

1115 115

1116 116



1117 117

1120NSF 120 x

1121NSF 121 x

1130NSF 130 x

1131NSF 131 x

1135 135

1140NSF 140 x

1141NSF 141 x

1143 143

1144 144

1145 145

1146 146

1147 147

1151NSF 151 x

1152NSF 152 x

1154 154

1155 155

1156 156

1160NSF 160 x

1161NSF 161 x

1330 330

1331 331

1332 332

1333 333

1334 334

Category 2- Substructure
2201NSF 201 x

2202NSF 202 x

2204 204

2205 205

2206 206

2210 210

2211 211

2215 215

2216 216

2217 217

2220 220

2225NSF 225 x

2226 226



2227 227

2228 228

2230NSF 230 x

2231NSF 231 x

2233 233

2234 234

2235 235

2240NSF 240 x

2241 241

2242 242

2243 243

Category 3- Joints
3300 300

3301 301

3302 302

3303 303

3304 304

Category 4- Bearings
4310 310

4311 311

4312 312

4313 313

4314 314

4315 315

Category 5- Other Elements
5320 320

5321 321

Category 6- Decks/Slabs
6012+NSF 12 x

6012+SF358 12 x

6012+SF358SF359 12 x

6012+SF359 12 x

6013+NSF 13 x

6013+SF359 13 x

6014+NSF 14 x

6014+SF359 14 x



6018+NSF 18 x

6018+SF358 18 x

6018+SF358SF359 18 x

6018+SF359 18 x

6022+NSF 22 x

6022+SF358 22 x

6022+SF358SF359 22 x

6022+SF359 22 x

6026+NSF 26 x

6026+SF358 26 x

6026+SF358SF359 26 x

6026+SF359 26 x

6027+NSF 27 x

6027+SF358 27 x

6027+SF358SF359 27 x

6027+SF359 27 x

602829 28, 29

6030 30

603154 31, 54

6032 32

6038+NSF 38 x

6038+SF358 38 x

6038+SF358SF359 38 x

6038+SF359 38 x

6039+NSF 39 x

6039+SF359 39 x

6040+NSF 40 x

6040+SF359 40 x

6044+NSF 44 x

6044+SF358 44 x

6044+SF358SF359 44 x

6044+SF359 44 x

6048+NSF 48 x

6048+SF358 48 x

6048+SF358SF359 48 x

6048+SF359 48 x

6052+NSF 52 x

6052+SF358 52 x

6052+SF358SF359 52 x

6052+SF359 52 x



6053+NSF 53 x

6053+SF358 53 x

6053+SF358SF359 53 x

6053+SF359 53 x

Category 7- Defect/Smart Flags
7356 356

7357 357

7360 360

7361 361

7362 362

7363 363



Rule Grammar and Syntax
The conversion rules discussed in the prior chapter are expressed in a formal language with syntax and grammar that is anal-
ogous to, but different from, Excel macros or Visual Basic/C#.  The Migrator language is entered in text format through the
user interface or directly in a text file with a text editor such as NotePad™.  The raw text rules file is compiled by the rule com-
pilation tool, and the resulting compiled rules xml file is used by the model layer into executable transformation routines that
perform the element data processing. 

The basic sequence for rule generation is:

l Create a rule for an individual element in text format, either with a text editor or through the user interface

l Validate it, and correct any errors

l Compile it

l Use the rule in the Transform process to migrate just that element and review results. Adjust rule as necessary.

l Assemble individual rules after testing into a comprehensive rule set

l Transform all elements using the combined rule set

The Migrator language
Any computer language has conventions and standards that have to be followed for mutual comprehension.  The Migrator lan-
guage consists of the following main elements:

l

l Commands (directives)

l Control Structures

l Logical Control Conditions

l Functions

l Constants

l Arithmetic Operators

l Logical Operators

l Condition State Set Operators

l Assignments

l Comments

l Statement Terminator



These grammar elements are used in the formal rule syntax to perform the data conversion required as described in
the previous section.  This section documents these language elements first at an abstract summary level then with
tangible examples of well-formed rules utilizing each element identified above.  Rules may either be single statements
or sets of statements making up a rule.

The general layout of a rule statement is as follows (see Figure 18 - – Migration Rule Source Example – Prestressed Concrete
Box Girder (104) for a simple example):

Figure 24 - Generalized Transform Rule Layout

TRANSFORM( “rule ID”);
SCOPE (ELEM-LIST, nn ,nn ,nn ,nn);
EXCEPTION (nnn, “message”);
/* extended comments
running over
more than one line
can appear anywhere*/

// A comment of this type can appear on a line by itself.

CASE
Logical evaluations// in-line comments
{Match?}
{ASSIGN_QUANT…};// in-line comments

BEGIN_LINK(element_target)
{ASSIGN_QUANT…};// in-line comments

END_LINK;
END;

Any of the following Migrator language elements may appear in a transform rule within this general organization.  The CASE
… END logical construct, with nesting is the backbone of each formula.  At least 1 CASE … END pair is required for each rule.

In the case of Rollup rules, only the ROLLUP directive appears in the rule body.

Figure 25 - Example Rollup Rule

TRANSFORM( “rule ID”, “rule description”);

EXCEPTION (nnn, “message”);

ROLLUP(<NBE element number>, ELEM-LIST-SCOPE);



Rule Syntax Reference
This section is adapted directly from the file Conversion Rules Grammar 11 that can be found on the distribution media in
the References\Docs subdirectory or under the working directory specified when the Migrator is installed.  All the detailed dis-
cussion in this chapter is based on this syntax summary.

How to read this reference

The syntax description that follows uses the following conventions for the formatting of syntax elements:

Figure 26 - How-to Read the Migrator Rules Grammar - Syntax and Notation

UPPERCASE ITALIC grammar elements/constructs
UPPERCASE BOLD keywords
( ) , ;parentheses, commas and semicolons are part of the language
{ }curly braces are used to scope sequences or choices
[ ]square brackets embed optional constructs
< >angle brackets are used to embed self-explanatory descriptions of meta-elements
|vertical bars separate choices between grammar constructs
…ellipsis indicates that the previous construction may repeat one or more times
// or /* */inline (//) or multiline (/* text */) comments

Syntax Constructs

RULE: 

TRANSFORM (“<unique rule ID, up to 32 characters>”,“<rule description, up to 255 characters>”) ;
{

MIGRATION-RULE-BODY
|
ROLLUP-RULE-BODY

}

MIGRATION-RULE-BODY:

SCOPE  ( {ELEMENT-SCOPE|ELEM-TYPE-SCOPE|ELEM-CAT-SCOPE|ELEM-LIST-SCOPE} ) ;
[ EXCEPTION ( <error number> [, <double-quoted error message>] ) ; ]
CASE-STATEMENT [ ; ]

ROLLUP-RULE-BODY:

[ EXCEPTION ( <error number> [, <double-quoted error message>] ) ; ]
{ ROLLUP-DIRECTIVE  [ ROLLUP-DIRECTIVE]… }

ROLLUP-DIRECTIVE:

ROLLUP(<NBE element number> , ELEM-LIST-SCOPE);

ELEMENT-SCOPE:

ELEMENT, <element number>



ELEM-TYPE-SCOPE:

ELEM_TYPE , <element type code>

ELEM-CAT-SCOPE:

ELEM_CAT , <element category code>

ELEM-LIST-SCOPE:

ELEM_LIST , <element number>  [ , <element number>]… 

CASE-STATEMENT:

CASE
WHEN-THEN-PAIR …
[ ELSE { ASSIGNMENT-GROUP | CASE-STATEMENT } ]
END

WHEN-THEN-PAIR:

WHEN ( EXPRESSION ) THEN { ASSIGNMENT-GROUP | CASE-STATEMENT }

LINK-ASSIGNMENT:

{
ASSIGN_QUANT  (LINK) = EXPRESSION ;
|
ASSIGN_PCT ( LINK, <state-number> ) = EXPRESSION ;

}

LINK-ASSIGNMENT-BLOCK:

{

BEGIN_LINK ( <element number> [,<element number>]… )
{LINK-ASSIGNMENT [ LINK_ASSIGNMENT ] … }
END_LINK;
}

/* Optionally any regular assignment statement may be followed by one or more link assignment blocks */

ASSIGNMENT:

{

ASSIGN_QUANT  (ELEMENT-TARGET ) = EXPRESSION ;
[LINK-ASSIGNMENT-BLOCK [ LINK-ASSIGNMENT-BLOCK ] …]
|
ASSIGN_PCT ( ELEMENT-TARGET , <state-number> ) = EXPRESSION ;
[LINK-ASSIGNMENT-BLOCK [ LINK-ASSIGNMENT-BLOCK ]…]

}

ASSIGNMENT-GROUP:

{ ASSIGNMENT [ ASSIGNMENT ]… }

/* Notice that one can do assignments to more than one element, e.g. a NBE and as smart flag within the same group.  Link
assignment blocks must be preceded by at least one regular assignment directive within the assignment group. Elements gen-



erated within the link assignment blocks are getting “linked-to” attributes that contain numbers of the preceding target ele-
ments.*/

ELEMENT-TARGET:

{ <element number> | THIS }

/* Keyword THIS is used as a reference to the number of the element being currently processed */

EXPRESSION:

{ 
NUMERIC CONSTANT
| VARIABLE
| FUNCTION 

| SPECIAL FUNCTION
| UNARY EXPRESSION
| BINARY EXPRESSION
| IF-THEN-ELSE EXPRESSION

}
/* Expressions may contain parentheses with unlimited nesting levels although finding errors is more difficult with overly com-
plicated nesting */

CONSTANT:

<any real number>

VARIABLE:

<identifier starting with a ‘@’ , e.g. @var, associated with a numeric value in the ENVIRONMENT-VARIABLES section of the formulas
XML document.  Besides the @ character, identifiers may include upper and lower-case letters and numbers from 0 to 9. The total
length of identifier may not exceed 32 characters. >

FUNCTION:

{
ISNULL (EXPRESSION)

|
ROUND (EXPRESSION)
|
TRUNC (EXRESSION)
|
ABS ( EXPRESSION)
|
RANDOM ( EXPRESSION)
|
NUMERIC (EXPRESSION)
|
EXP ( EXPRESSION)
|
LOG ( EXPRESSION)
|
SQRT (EXPRESSION)
}

SPECIAL FUNCTION:

{
MAXSTATE(ELEMENT-TARGET)

|



EXISTS ( <element number> )
|
EXISTS_S ( <element number> )
|
EXISTS_U( <element number> )
|

QUANTITY (ELEMENT-TARGET )
|

PCT (  ELEMENT-TARGET , <state number> )
|

PCTSUM (ELEMENT-TARGET , <from state number> , <to state number>  )
|

SCALE_FACTOR( ELEMENT-TARGET )
}

UNARY EXPRESSION:

UNARY-SIGN EXPRESSION

BINARY EXPRESSION:

EXPRESSION BINARY-SIGN EXPRESSION

IF-THEN-ELSE EXPRESSION:

IF EXPRESSION THEN EXPRESSION ELSE EXPRESSION

UNARY-SIGN:

{  - | NOT }

BINARY-SIGN:

{  - | + | / |*| % |AND |OR| = |<> |<= |< |>= |> }

Syntax Details

Directives

There are 4 major defined commands or directives that start each rule: 

TRANSFORM Directive

This mandatory directive names and identifies the particular rule. Rule names should be developed carefully to clearly iden-
tify what transformations they perform and to what elements.

This directive can be generalized as:

TRANSFORM (“Unique Rule ID, up to 32 characters”,“<unique rule name, up to 255 characters”);

SCOPE Directive

This mandatory directive determines what source CoRe element set is to be processed by a rule.  The scope can be a single
element, multiple elements, a type of element, a category of elements, or lists of any of these.

The directive is generalized as:

SCOPE ( {ELEMENT-SCOPE|ELEM-TYPE-SCOPE|ELEM-CAT-SCOPE|ELEM-LIST-SCOPE} );



Only one such SCOPE statement may appear in a rule, and different options cannot be combined within a single rule.  The
individual SCOPE directive options are:

ELEMENT-SCOPE:

ELEMENT (< single element number> )

ELEM-TYPE-SCOPE:

ELEM-TYPE ( <element type codes> )

ELEM-CAT-SCOPE:

ELEM-CAT ( <element category codes> )

ELEM-LIST-SCOPE:

ELEM-LIST  ( <element number>  [ , <element number>]…  )

The types and category scope options use the standard element types and categories defined for the Pontis bridge man-
agement system, and reflected in Tables 2.1 and 2.2 of the BEM. This means, for example that all joints, which are all the
same type and are simple in nature anyway, may be dealt with by just one rule. 

All values for these options must be delimited with commas.

EXCEPTION Directive

This directive is entirely optional.  The EXCEPTION directive is used to indicate that a rule had an unexpected outcome. 
It halts processing and is recorded in the log as an error with the number and the optional message.  The error numbers and
messages are agency-defined.

EXCEPTION (integer error number, “<double quoted optional message>”);

ROLLUP Directive

Rollup statements are used to indicate that a particular element’s quantity and state distribution should be rolled up (added
together) to generate an NBE element for (national) reporting purposes. For example, arbitrary element 5678(a sub-portion of
the deck specific to a particular State definition) might rollup to element 12 (NBE deck).  The elements are assumed to be con-
sistently measured and logically associated, but the Migrator software does not enforce any reasonableness checks.

Use of this directive is entirely optional.

ROLLUP(element_target, element scope);

Control Structures

There are two main logical control structure provided within the Migrator language – CASE statements and BEGIN_LINK(ele-
ment_target) / END_LINK clauses.  The CASE statement control structure provides for branching alternative calculations
within each rule, based upon conditions that evaluate to TRUE or FALSE.  There is no inherent limit to the number of alter-
natives in a CASE statement.  The first case statement alternative that is evaluated as TRUE is the only one that will be



executed and all subsequent alternatives are skipped. The Migrator language also mandates an ELSE clause which is applied if
all the other ‘CASEs’ fail, or an exception may be raised.

The other control structure is the BEGIN_LINK / END_LINK clause.  This is used to generate associated protective systems for
elements as part of the rule.  Within the BEGIN_LINK(element_target) /END_LINK clause the standard assignment state-
ments and CASE clauses may appear.  The special keyword LINK can also appear in this clause and refers to the element target
of the BEGIN_LINK(element_target)/END_LINK

CASE Statement Syntax

Generalized, the Migrator’s CASE control statement is:

CASE
WHEN { CONDITION}

THEN {ASSIGNMENT-GROUP|CASE-STATEMENT}
…
[ELSE {ASSIGNMENT-GROUP|CASE-STATEMENT}]
END

These structures may be nested. For example:

CASE
WHEN { CONDITION}

THEN {ASSIGNMENT-GROUP|CASE-STATEMENT}
…

CASE
WHEN { CONDITION}

THEN {ASSIGNMENT-GROUP|CASE-STATEMENT}
…
[ELSE {ASSIGNMENT-GROUP|CASE-STATEMENT}]
END>

[ELSE {ASSIGNMENT-GROUP|CASE-STATEMENT}]
END

This CASE control structure permits each element to have a variety of processing expressions applied to its condition dis-
tribution, such as the influence of smart flags by individual condition state, if a smart flag is in effect for the element (e.g. the
smart flag was set during the inspection).  Subordinate conditions can be handled by nested CASE statements when necessary.

Every rule must contain at least 1 valid CASE/WHEN/END statement.

BEGIN_LINK/END_LINK Statement Syntax

The syntax for BEGIN_LINK/END_LINK statements is as follows:

BEGIN_LINK(ELEMENT-TARGET)
{ASSIGNMENT-GROUP|CASE-STATEMENT}
END_LINK;

The key word LINK can appear in an assignment group as a proxy for the current element target that is being processed by the
rule.  This clause is not required.



Basic Functions

A series of standard arithmetic functions are provided for data manipulations that may need to be performed as part of a con-
version rule.  These functions correspond to the equivalents in Excel, SQL, or a typical programming language.  Most rules
will not require use of these functions  other than perhaps ROUND and TRUNC, but they are provided for special situations
that may arise.

The basic functions include the following:

ISNULL ( EXPRESSION )

…evaluates to TRUE if the expression is NULL, FALSE otherwise

NUMERIC ( EXPRESSION )

…converts a double-quoted string or string variable to a number

ROUND ( EXPRESSION )

…rounds a result to an integer e.g., 1.8 becomes 2.

TRUNC ( EXPRESSION )

…truncates a number to the next lowest integer value e.g., 1.2 becomes 1.

ABS ( EXPRESSION )

… returns the absolute value of the expression e.g. -2 and 2 both return 2

RANDOM ( EXPRESSION )

… uses expression as the seed for a random number generator.  The expression must be numeric.

EXP ( EXPRESSION )

… raises ℮ to the expression’s value.  This is not a power function e.g. y^x

LOG ( EXPRESSION )

… returns log of a number

SQRT ( EXPRESSION )

… returns the square root of an expression

Special Functions

A series of predefined special functions particular to element states or the element inventory on a bridge are incorporated in
the Migrator software.  These are statements that result in an outcome value that can either be used in assignment or to set a
condition to modify logic flow.

The following special functions are defined:

QUANTITY (ELEMENT-TARGET | THIS)

…returns the total quantity of the current element read from the data and/or transformed to alternate unit of
measure

MAXSTATE (ELEMENT-TARGET | THIS)

…returns the maximum state value of the target scope

PCT (ELEMENT-TARGET | THIS, <state number>)



…determines percentage in a state in the target scope

SUMPCT (ELEMENT-TARGET | THIS, STATE-SET)

…sums the percentages in an element target across a set of states e.g. 3-4

EXISTS (<element |smart flag number>)

..proxy for EXISTS_S

EXISTS_S(<element | smart flag number>)

…returns true/false if the element or smart flag exists on the bridge (e.g., associated with the current element in
context)

EXISTS_U(<element | smart flag number>)

…returns true/false if the element or smart flag exists on the particular structure unit of a bridge (e.g., asso-
ciated with the current element in context)

SCALER( ELEMENT-TARGET | THIS)

…returns the value of the scale factor field  for an element, following the Pontis convention. The scale factor set
for an element data row typically is used as a multiplier on the element measure to reflect bridge-specific con-
ditions, such as extra deep girders.

These built-in functions embed logic that any transform rule can simply incorporate, for example, to sum up percentages
across element condition states. Note that the constants 1 and 0 correspond to true and false respectively, so a statement like
WHEN (1) will always be executed.

User Defined Functions

User defined external functions are not supported by the Migrator in Release 1.1.

Keywords

THIS

The keyword THIS always represents the current element being processed.  It is a constant in all contexts, and as such, a value
cannot be assigned to it like a variable.  This means that a statement like THIS=358 is illegal.  The THIS keyword is very use-
ful to automatically process a list scope without consideration of the specific element identifier(s) in the list.

LINK

The keyword LINK refers to the current element target of a BEGIN_LINK(element target) clause.  It follows the same rules as
the THIS keyword but may only appear within a BEGIN_LINK(element target)/END_LINK clause and only refers to the target
element for the clause.

Constants

These are unchanging numbers or strings used within formulas for various purposes.   They are not modifiable by any rule
logic. For example, the metric conversion factor for feet to meters, or default deck quantity scaling factor would be expressed
as constant decimals.

Variables

Variables are constant values associated with identifiers starting with a ‘@’ , e.g. @varName.  .  The name of any variable is
arbitrary but should be mnemonic for understandability.  The variable name must be at least 2 characters long (including the



@), but not longer than 16 total characters, and may contain only upper and lower-case letters and numbers after the @ sym-
bol without punctuation, spaces, dashes, or underscores. 

Example variable names might be:

Good:   @MyVarName123 <13 total characters, all upper/lower case letters and numbers>

Bad:@my$VarName <may not contain special characters such as this $>

Ugly:@My-Way$TooLong_VariableNameWithSpaces <violates length, spaces, and special characters rule>

Each variable is associated with a numeric value and defined in the ENVIRONMENT-VARIABLES section of the operating envi-
ronment xml file.  String variables are not supported.  These variables are dynamically populated at runtime from the XML
declarations for use in formulas as shorthand references.

In the ENVIRONMENT-VARIABLES section, these variables are declared as follows:

…-
<ENVIRONMENT-VARIABLES>

<Variable Name="@zero" Value="0" />
<Variable Name="@one" Value="1" />

</ ENVIRONMENT-VARIABLES>
…

Used in a formula, @zero would supply a constant value of 0.   Similarly, a variable @Feet Meters could store the official con-
version value for Feet to Meters, to override the default if necessary. This feature ensures that constants are valued and used
identically in all rules by defining them correctly in one place and referring to them by name.

Variables may only be used on the right side of an equals sign. A statement like:
ASSIGN_QUANT(@elm) = …. is not allowed, but an assignment statement like:
ASSIGN_QUANT(12) = @coefficient * QUANTITY(THIS); is allowed.

Arithmetic Operators

These are the typical operators or symbols used for addition, subtraction, multiplication and division of numbers.  The formal
symbols are the set of { + (adds x to y) , - (subtracts x from y), * (multiply  x by y ) , / (divide x by y) }
respectively. 

No exponential or other higher-order operators are defined.

Logical Operators

These operators are used to construct logical statements such as AND, OR, NOT EQUAL, and others.    These are augmented
by the unary operators meaning ‘NOT x’ which transform an expression x to its opposite. 

The formal symbols are the usual set of binary operators {AND , OR , = (x logical equal to y) , <> ( x not equal to
y), <= (x less than or equal to y), < (x less than y), >= (x greater than or equal to y) , > (x greater than
y)}..

Note that the logical equality operator is a single equals sign (=).  These are extended with two equivalent unary logic oper-
ators in the set of { !| NOT  }



Assignment Groups

Assignment statements are used to transfer the results of a transformation rule to a total quantity or percent of an element, or
to a target state or states for an element, a type of element, or a category of element, or groups of each as appropriate.  Again
note that use of a target scope means fewer rules are required to perform the same transformations.

The examples shown earlier demonstrate a variety of legal assignment statements.

ASSIGN_PCT

This statement applies the percentage determined by the contextual rule logic to the transform’s target element scope.  A tar-
get state number is also provided.  Assignments to more than one element, e.g. a NBE and as smart flag within the same
group are supported by using multiple ASSIGN_PCT statements.

Generalized:

ASSIGN_PCT(ELEMENT-TARGET, <state-number>) = {EXPRESSION}

e.g. ASSIGN_PCT(12, 3) = PCTSUM(12, 3,5) or

ASSIGN_PCT (12,1) = PCT(12,1)

ASSIGN_QUANT

This command, as with ASSIGN_PCT, assigns the entire quantity of the element to the target scope, not considering condition
state distribution. Assignments to more than one element, e.g. a NBE and as smart flag within the same group are supported
by using multiple ASSIGN_QUANT statements.

Generalized:

ASSIGN_QUANT( ELEMENT-TARGET) = {EXPRESSION}

e.g. ASSIGN_QUANT (12) = QUANTITY (THIS

Element Targets

As shown in the previous section, each assignment statement must have an element target.  This may be either a particular
target AASHTO element by number or the keyword THIS indicating the current element being processed.

ELEMENT_TARGET:

{ <element number> |THIS }/* the keyword THIS may be used to address the element being processed */

Comments

A descriptive header and comments within the rule body are strongly encouraged.  Any text may appear in a comment. Com-
ments are not validated or spellchecked by the Migrator.

There are two types of comments supported in the rule syntax.  First, typical C, C++, C# comments in the format /* some
helpful comment goes here */ can be used to enter appropriate narrative about a formula, running over several lines if



necessary.  The starting and closing symbols must both be present. The other comment format is the C# // convention which
can be used to comment an individual line.

Generalized, the two comment alternatives are as follows:

Extended Comments

Extended comments permit annotation of rule logic for documentation purposes, and are of arbitrary length.  Any text or rule
logic within the bounding symbols /* … */ is ignored by the rule processor.

/*
A long descriptive comment may be entered running over several lines if necessary.
A long descriptive comment may be entered running over several lines if necessary.
A long descriptive comment may be entered running over several lines if necessary

*/

In-line Comments

A typical in-line comment would either follow the rule statement or be entered on its own line.  Each comment starts with two
forward slashes (// <comment>).  Typically these comments are shorter and focused on documenting a particular line of the
rule.  They should be on their own line and may not appear on the same line after a valid language statement. Any text or rule
grammar following the double slashes is ignored by the rule processor.  An unlimited number of these line-by-line comments
may appear in a rule.

// A brief comment on its own line

Statement Terminator

All assignment statements must be terminated with a semicolon as shown in the several examples above. The WHEN clauses
within a statement must have a corresponding END, but may not require a semicolon unless it is the terminating END for a
rule. A missing semicolon will raise an exception during rule parsing (validation).



XML Schemas

Element Data
The Element Data schema is used to control Xml file contents for both CoRe and AASHTO elements.  Every element data file
will consist of two main sections –a DECLARATION, used to characterize the incoming or outgoing data, and a DATA section,
consisting of the element condition data itself. Within each section, there are a number of Xml types supporting the exchange
of element condition data.

In particular, for each element row, the element data’s attributes are specified in xml as shown below.
for the ElementDataRowType:

Figure 27 - ElementDataRowType xml type definition

…
…
<xs:sequence>
<xs:elementname="Condition-States"type="ConditionStateSetType" />
<!-- optional, so minOccurs="0" -->
<xs:elementname="Cargo"type="CargoType"minOccurs="0" />
</xs:sequence>

<xs:attributename="brkey"type="StructureNumberType"default="0123456789ABCDE"/>
<xs:attributename="inspkey"type="InspKeyType"default="AAAA" />
<xs:attributename="inspdate"type="xs:date"default="1901-01-01"/>
<xs:attributename="strunitkey"type="xs:integer"default="101" />
<xs:attributename="elemkey"type="ElementNumberType" />
<xs:attributename="envkey"type="EnvKeyType"default="1" />
<xs:attributename="quantity"type="xs:double" />
<xs:attributename="scale-factor"type="xs:double"default="1" />
…
…

Only the elemkey (element identifier) and quantity ( total quantity of the element) attributes must be provided. All others
are optional.  The output AASHTO element ElementDataRowType will also define the associated element and target rollup ele-
ment fields, as well as the source CoRe element(s).

In this Xml sequence, there are two Xml elements used:  Condition-States, and Cargo.  The Condition-States Xml element
provides the state distribution of the bridge element. The optionalCargo element contains any associated data for an element
condition row that the agency may wish to transfer ‘as-is’ from the input data to the transform output data, such as inspec-
tion notes or document reference keys, or even another whole Xml document, in an agency-specified Xml format that must be
well-formed Xml and valid.  This field is not processed by the Migrator other than to copy it intact to the output.

Element Conversion
This schema enforces bridge element definitions, in a fashion analogous to the Pontis ELEMDEFS table and its associated sub-
ordinate tables MATDEFS, ELTYPDFS, and ELCATDFS, as well as all the other Xml types required by the rule parser and



validator.  All elements are defined in this schema, with type, material, category, and other attributes. The official AASHTO
element numbering is used.

The element format characteristics for every input and output element condition row are specified with this Xml schema.  Any
incoming CoRe elements that do not have a legal (defined) element identifier, for example, will fail validation and be rejected
until either corrected or registered with this specifications file.

This file also supports the rule parser and contains a large number of types related to the internal rule validation and proc-
essing.

Additional Information
A full discussion of these schemas is beyond the scope of this user guide.  Example files and the 2 schemas with embedded
annotations are installed automatically under the program’s working directory  in the Input subdirectory and are provided in
the accompanying materials for further review.



Glossary of Terms
The following terms and acronyms are used in this document.

Table 3 – Glossary of Terms

Glossary of Terms
TERM MEANING

© Bridgeware The various AASHTO bridge related software prod-
ucts including Pontis, Virtis, and Opis, with various
release levels by product.

© Pontis The AASHTO Pontis Bridge Management System
AASHTO The American Association of State Highway and

Transportation Officials
AASHTO elements Elements defined according to the new specification

from the BEM.  There are 4 types – national (NBE),
bridge management (BME), and agency-defined ele-
ments (ADE), and the newly defined Defect Flags
(DF)

ADE Agency Defined Elements – elements defined by an
individual agency either anew or as derivatives of a
NBE or BME

Associations The links between protective systems and primary
structural elements.  Protective system condition
data rows will contain the key of the element that
they protect.

BEM AASHTO Guide Manual for Bridge Element Inspec-
tion – “the Bridge Element Manual”, first published
January 2011

BME Bridge Management (AASHTO) Elements, may vary
in specification by state

Case A logical branching structure that permits a decision
tree to be expressed in the rule grammar.

Chaining The linked transforms rules applied to any source
element.  Conversion logic for every element must be
supplied by one of the chained transforms or an
error is raised.

Command line arguments/switches Any switch flags that follow the name of the pro-
gram when run from a command prompt e.g.
Migrator -? uses the question mark ? to tell the
program to show help for the command line
Migrator.  The Visual Element Migrator does not use
command line switches.

Condition states The distribution of condition for an element by per-
cent and quantity, ranging from like-new to poor. 



All AASHTO elements have 4, CoRe elements vary
from 3 to 5.  The states are assigned during field
inspections.  Deterioration paths, the projected tran-
sitions between condition states, are defined by
bridge management models.

CoRe elements Commonly Recognized elements – the old-style
specification for AASHTO elements

Defect Flags The successor to Smart Flags in the new AASHTO
specification.  The role of ‘Defect Flag’ is different,
however, from that of Smart Flags

Link A Migrator rule clause that will automatically gen-
erate a protective system element for any source
structural element e.g. the paint for a painted steel
girder.

Migrate, convert, transform, translate Proxies for element state conversions from CoRe con-
dition states to AASHTO Element states, following
the configurable transform rules

Migrator The AASHTO Element Migration programs
MVVM A Windows Presentation Foundation (WPF) and

Silverlight  design pattern that mandates loose cou-
pling between layers and separation of concerns
between layers as part of its design philosophy

NBE National Bridge Elements, common to many states
and identically specified nationally for Federal
reporting purposes

Primary Structural Element Bridge components such as girders, joints, abut-
ments, decks etc.  These may or may not be asso-
ciated with protective systems such as paint,
membranes, etc.

Protective Systems Any system applied to a primary structural ele-
ment to protect it from deterioration and damage
with the intent of extending its service life and func-
tion.

Rollup A rule that indicates the NBE with which an ele-
ment is associated when consolidating quantities
and condition state distributions.  Any element that
can be rolled up will contain the element key of its
rollup target or parent within its data.

Target The target element for a transform
Transform A migration rule
Xml The eXtensible Markup Language, used by the appli-

cation to store all parsed rules, environment info,
and input and output element data.


	Introduction
	Background
	What is the Migrator? .

	Installation Guide
	Supported Operating Systems
	Additional Operating Environment Requirements
	Database Requirements
	Migrator database user privileges
	Connecting to a database
	Use of quotes in connect strings


	Installation Summary
	Confirm Installation
	Upgrades
	Removing the program


	Installed Migrator Files
	Migrator Installed File Organization
	Organization of a Typical User’s Working Directory
	Organization of the Program Directory


	Using The Visual Element Migrator
	User Interface Overview
	Desktop tools
	Filtering Data
	Sorting Data

	Modules
	Module 1 – Edit Migrator Rules
	Editing Rules
	Rule ID Convention
	Documenting Rules

	Module 2 - CoRe Elements Data
	Module 3- AASHTO Elements
	Module 4- Settings
	Download settings
	Configuring the database connection
	Setting the download criteria
	Data recoding settings
	Additional Options
	Miscellaneous Settings



	Using the grid view
	Selecting data from the list
	Sorting the data
	Applying filters to the data
	Clearing filters

	Getting help

	Conversion Rule Guide
	Background
	Rule Syntax
	Syntax for a Simple Element Migration Transform Formula
	Syntax for a Formula Using Smart Flags
	Syntax for a Complicated Multi-Element Transform Formula
	Protective System Syntax
	Rollup Rules

	Understanding Rule Processing Behavior
	Rule Chaining
	Combining Duplicate Elements
	Deprecating Elements
	Transferring Custom Element Specifications
	Historical Scope
	Structural Scope

	Standard Migration Rules

	Rule Grammar and Syntax
	The Migrator language
	Rule Syntax Reference
	How to read this reference
	Syntax Constructs
	RULE:
	MIGRATION-RULE-BODY:
	ROLLUP-RULE-BODY:
	ROLLUP-DIRECTIVE:
	ELEMENT-SCOPE:
	ELEM-TYPE-SCOPE:
	ELEM-CAT-SCOPE:
	ELEM-LIST-SCOPE:
	CASE-STATEMENT:
	WHEN-THEN-PAIR:
	LINK-ASSIGNMENT:
	LINK-ASSIGNMENT-BLOCK:
	ASSIGNMENT:
	ASSIGNMENT-GROUP:
	ELEMENT-TARGET:
	EXPRESSION:
	CONSTANT:
	VARIABLE:
	FUNCTION:
	SPECIAL FUNCTION:
	UNARY EXPRESSION:
	BINARY EXPRESSION:
	IF-THEN-ELSE EXPRESSION:
	UNARY-SIGN:
	BINARY-SIGN:


	Syntax Details
	Directives
	TRANSFORM Directive
	SCOPE Directive
	EXCEPTION Directive
	ROLLUP Directive

	Control Structures
	CASE Statement Syntax
	BEGIN_LINK/END_LINK Statement Syntax

	Basic Functions
	Special Functions
	User Defined Functions
	Keywords
	THIS
	LINK

	Constants
	Variables
	Arithmetic Operators
	Logical Operators
	Assignment Groups
	ASSIGN_PCT
	ASSIGN_QUANT

	Element Targets
	Comments
	Extended Comments
	In-line Comments

	Statement Terminator


	XML Schemas
	Element Data
	Element Conversion
	Additional Information

	Glossary of Terms
	Bookmarks
	_Ref284344382


