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Preface

We wrote FST, the Fortran Simulation Translator, about 20 years ago as a tool
for our teacher in Theoretical Production Ecology, the late professor C.T de Wit.
It translates the statements of a simulation language into Fortran. The translator
quickly gained popularity among Wageningen crop growth modellers.

The translator is most often used in combination with a modelling environment
called FSTwin that provides the user with an editor, calls version 2 of the translator,
calls the Compaq Visual Fortran compiler, calls the linker, executes model.exe and
finally allows the user to see results through a charting tool or by inspecting tables.
This environment now exists about 13 years and has not been changed since.

The update described in this report addresses two problems. The first problem is
that the Compaq compiler is not sold anymore, which has been solved by adapting
the FSTwin environment to the Intel Visual Fortran compiler. The second problem
is that the FST language itself looks a bit archaic with its 6 character acronyms
and its maximum line length of 72 characters. This has been solved by a number
of adaptions and improvements in the FST translator.

We were also able to finally fulfill an old request: the addition of state and time
events. An event interrupts the simulation and takes place when a specified condi-
tion is reached. Events allow the user to reset integrals, to change a process setting,
to harvest a crop, to change a direction, etc. Events allow more elegant modelling
in many situations and we expect that FST users will use them al lot.

The generated Fortran is in free source form Fortran-95. Fortran users may like
the new translator for its capability to generate code for event handling, which is
not an entirely trivial thing. The source code of the modernized simulation drivers
is freely available.

We have done our best to add the new features “in style”. This means that a
model which passes the translator without error messages is a correct model, at
least technically. The translator will remain to be freely available and we intend
to maintain it as good as we can and as long as there is a need to do so. We thank
Jan Goudriaan, Peter Leffelaar, Gon van Laar and Herman van Keulen for their
enthusiasm and support.

Haren / Wageningen, October 2008
Kees Rappoldt, Daniel van Kraalingen
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Chapter 1

Introduction

The FST translator translates a completely specified simulation model into a
Fortran-90 program with datafiles. The datafiles contain the values for the model
parameters and the Fortran program contains a file input section for reading the
model parameters from file. There is also a so called rerun file, which specifies
parameter values for which the model run has to be repeated.

This report does not contain a full description of FST, you can find that in the
existing documentation of Rappoldt & van Kraalingen (1996). Here we describe
extensions and new features introduced with version 3 of the FST simulation lan-
guage. In Chapter 2 we describe the new and more generous syntax rules, and
a number of smaller additions, the most important of these probably being the
concept of a calendar connection.

In Chapter 3 we introduce the use of state and time events. A time event is a change
in the system which takes place at a specified moment in time. Something is added
to the system, for instance, a process is activated or the value of a parameter
suddenly changes. Another useful application of time events is a simple one: a new
day begins and we want to reset an integral which contains a daily total.

A state event allows the same kind of sudden changes but it does not happen at
a preset moment in time, but whenever a certain condition is met. Harvest takes
place, for instance, when a crop reaches a certain stage. Or the velocity of an
object reverses when its coordinate reaches a certain value (the object hits a wall
and bounces back).

In Chapter 4 an example program with state events is extensively discussed. The
form and style of the generated Fortran-90 can be inspected in the Appendices. In
Chapter 5 technical information can be found with respect to supported platforms
and Fortran compilers.
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Chapter 2

FST version 3

2.1 Syntax

The following changes have been made to the syntax checking procedures of the
translator:

The length of variable names has been increased to 31 characters, in accor-
dance with the Fortran standard (Metcalf et al., 2004; Chapman, 2008).

Warnings on the use of lowercase characters have been removed from the
translator. Character case is not significant, however. This means that the
same variable may occur in the program in various combinations of lowercase
and uppercase characters.

A program line may be up to 132 characters long, including the continuation
code “...”, which has been left unchanged.

Statements with a asterisk “*” at the first position or statements beginning
with an exclamation mark “!” in any position are treated as comment state-
ments. Note that inline comments following an FST statement are still not
possible.

The use of lowercase characters is a matter of taste and style. Lowercase characters
allow names as “VelocityX” or “MolarVolume” which are usually considered to be
more readable than names like MOLARVOLUME. It may be a good idea to keep
the FST keywords themselves in uppercase, which leads to statements like

! example of the use of lowercase variable names
CONSTANT MolarVolume = 22.4
PARAMETER Height = 2.0 ; Width = 3.0
INCON InitialVelocityX = 3.4 ; InitialVelocityY = 5.6

Assignments in the generated Fortran will contain the variable names as they ap-
pear in the FST calculation statements. The first occurrence of a variable in FST is
used in the generation of declarations, datafiles and variable listings. An exception
is the use of FUNCTION names in AFGEN function calls. For technical reasons,
these names appear in uppercase in the generated Fortran.

11



12 Chapter 2. FST version 3

2.2 Calendar connection in GENERAL mode

2.2.1 A problem of the GENERAL mode of FST 2

The FSE mode of the translator is most often used for crop simulation. The FSE
mode requires the day as unit of time and all rates of change to be expressed as
amounts per day. The FSE mode also requires the specification of WEATHER
data.

The TRANSLATION GENERAL mode of FST does not imply a certain unit of
time. Equations may be dimensionless or in convenient time units, depending on
the problem.

The addition of WEATHER is possible, also in GENERAL mode, by just specifying
in a WEATHER statement a country, a station and a year. By doing just that,
however, the start time STTIME suddenly becomes a Day-Of-Year value (between
1.000 and 366.000 for a non-leap year), and the unit of simulated time must be a
day.

Hence, in TRANSLATION GENERAL mode, the possibility of choosing a con-
venient unit of simulated time and convenient values of STTIME and FINTIM
disappears as soon as a WEATHER statement is used.

2.2.2 The solution

In FST 3, a better method exists for coupling a calendar to the simulation in
GENERAL mode. Three additional TRANSLATION GENERAL variables are
introduced:

StartYear. The year at which the simulation starts.

StartDOY. The Day-Of-Year (between 1.0000 and 366.0000 for a non-leap
year) at which the simulation starts.

OneDay. The length of a day in model time units. For example, “One-
Day=86400.0” means the model is in seconds, “OneDay=1440.0” means the
model in in minutes, “OneDay=24.0” means hours and “OneDay=0.1” means
decades as the unit of time of the model equations.

The combination of StartYear and StartDOY defines the start time as a calendar
time. The FST translator identifies the value of STTIME with this calendar time
and from that moment on, the simulated Time (starting at STTIME and ending
at FINTIM), is connected to the calendar using the value of OneDay. Hence,
by defining these three TRANSLATION GENERAL variables, the simulated time
becomes connected to the calendar time.

The advantage of this method over the old method of FSE 2 is that the user is free
to choose convenient values of STTIME and FINTIM, needed for other aspects of
the model. The choice is independent of the simulated calendar interval and there
is no implied unit of time.

Another advantage is that a calendar connection does not require a WEATHER
statement anymore. Using subroutines, other types of input data become possible.
A WEATHER statement is still valid, however.

. . . DRAFT . . .



2.2. Calendar connection in GENERAL mode 13

2.2.3 Calendar connection in combination with WEATHER

Like in FST 2, weather data are made available through a WEATHER state-
ment. There is just one problem: The start year StartYear is also defined by the
WEATHER variable IYEAR. Therefore, a program defining a calendar connection
with StartYear, StartDOY and OneDay, must not contain IYEAR anymore.

Without the three new variables, however, the old method still works. A WEATHER
statement implies “StartYear=IYEAR”, “StartDOY=STTIME” and “OneDay=1.0”
and the generated datafile TIMER.DAT contains just that.

2.2.4 The available calendar variables

A calendar connection in GENERAL mode, either explicitly (by means of the new
TRANSLATION GENERAL variables), or implicitly (by WEATHER use) makes
available the following variables as “driver-supplied variables”:

iDOY The current Day-Of-Year as an integer variable, in the range [1, . . . , 365]
for a non-leap year and [1, . . . , 366] for a leap year.

DOY The current Day-Of-Year as a real number (with a fractional part).

Year The current year number as a real variable.

ClockTime The clocktime as a real value between 0.0 and 23.99999.

SimDays Simulated time sofar, a real value in days (with a fractional part).

iHourOfDay The hour number of the day, as an integer value in the range
[1, . . . , 24].

FractSec Fractional seconds reading of a digital clock as a real number in
[0.00, . . . , 1.00).

ClockSec The integer seconds reading of a digital clock, in [0, . . . , 59].

ClockMin The integer minutes reading of a digital clock, in [0, . . . , 59].

ClockHour The integer hours reading of a digital clock, in [0, . . . , 23].

ClockDay The calendar day as an integer, in [0, . . . , 31].

ClockMonth The calendar month as an integer value, in [1, . . . , 12].

ClockYear The integer year reading of a digital clock, in value equal to the
variable Year.

Although the variables DOY, Year, ClockTime, SimDays and FractSec are sin-
gle precision real values, the internal timing calculations of the simulation driver
take place in double precision arithmetic. The driver-supplied clock variables are
therefore accurate, also in case of a simulated time interval of thousands of days.

From these variables only iDOY, DOY and Year are available in FSE mode1. In
FSE mode the calendar is connected by means of the required WEATHER state-
ment.

1The WEATHER variable iYear is the start year of the simulation and cannot be referenced in
an FST model. The current year of the simulation is available as the REAL variable Year, which
may be converted to an integer by NINT(Year). In general mode the integer variable ClockYear
can be used.

. . . DRAFT . . .



14 Chapter 2. FST version 3

Note that the integer calendar variables can directly be used to select an array
element by means of the ELEMNT function, like in

! example of the use of an integer calendar variable
DECLARATIONS
ARRAY Values
...
MODEL
PARAMETER MonthValues(1:6) = 2.0 ; MonthValues(6:N) = 3.0
INITIAL
ARRAY_SIZE N=12
X = ELEMNT (Values, ClockMonth)
...
END

The ELEMNT function is an intrinsic FST array function described in Rappoldt
& van Kraalingen (1996, section 4.3.4.2).

2.2.5 Referring to StartYear, StartDOY and OneDay

The new control variables StartYear, StartDOY and OneDay can be referenced
in calculations. The first two are integer variables and OneDay is a real vari-
able. The use of these variables requires an explicit definition in a TRANSLA-
TION GENERAL statement, however. An implicit calendar connection with just
a WEATHER statement, does not allow references to StartYear, StartDOY and
OneDay.

This limitation should not be a problem in practice since a calendar connection
with WEATHER is most likely to occur in older FST models, in which the new
variables are not used anyway. For newly written programs, an explicit connection
is the preferred method.

2.3 New intrinsic functions

2.3.1 The intrinsic function SimulationTime

The intrinsic function SimulationTime converts a Date/Time specification into a
value of the simulation time between STTIME and FINTIM. This clearly requires a
calendar connection, either explicitly by setting StartYear, StartDOY and OneDay
in TRANSLATION GENERAL mode, or implicitly by means of the WEATHER
statement in FSE mode2.

The arguments of SimulationTime are six integer values, variables or expressions,
Year, Month, Day, Hour, Minute, Second, in this order. For example, if the time
interval between Jan-15 and June-1 of the start year is needed in a simulation as
variable DeltaT, this variable can be calculated in the INITIAL section as

! example of SimulationTime function call
deltaT = SimulationTime(iYear,6,1,0,0,0) - SimulationTime(iYear,1,15,0,0,0)

2In TRANSLATION FSE mode the start year is given as IYEAR in the required WEATHER
statement, the value of STTIME is the start value of the calendar DOY (Day Of Year) and the
unit of time is always one day.

. . . DRAFT . . .



2.4. String arguments of subroutines and functions 15

The value of DeltaT will be in days in TRANSLATION FSE mode, but DeltaT
will be in other time units in TRANSLATION GENERAL mode, depending on
the value of OneDay in the calendar connection. And of course, in leap years the
period will be one day longer since February, 29 lies within the specified period.

A more interesting application of the function SimulationTime is the calculation of
the time of a time event (see Section 3). The statement below calculates the first
event time as 10-May-2008 13:14:17 plus an additional X time units.

! a calculated time in a FirstTime statement
EVENT
FirstTime SimulationTime(2008,5,15,13,14,17) + X
...

ENDEVENT

By means of a trick an event date may be made a parameter of the model. For just
a date (and a fixed time 00:00:00, say) we need three numbers. A parameter array
Date is declared with array size 3. The three elements are converted into integer
numbers in the SimulationTime call. Here is the code:

! a date as a model parameter
ARRAY Date(1:ND)
...
ARRAY_SIZE ND=3
PARAMETER Date(1:2)=2008.0, 5.0 ; Date(3:ND)=15.0
...
EVENT
FirstTime SimulationTime(NINT(Date(1)),NINT(Date(2)),NINT(Date(3)), 0,0,0)
...

This construction allows reruns on calendar dates at which an event takes place!

2.3.2 The intrinsic functions SUM and DOT PRODUCT

The Fortran-95 intrinsic functions SUM and DOT PRODUCT (Metcalf et al., 2004;
Chapman, 2008) have been added to the list of supported Fortran intrinsics. SUM
accepts a single array argument and DOT PRODUCT requires two arguments
declared as arrays with identical upper and lower bounds.

Explicit array bounds in calls to SUM and DOT PRODUCT are not supported by
FST, however. If you want that, you have to use the FST intrinsic functions AR-
SUMM and ARIMPR respectively. SUM and DOT PRODUCT have been added
for increased speed when the entire arrays need to be summed or multiplied.

2.3.3 Other new intrinsic functions

Other additions to the list of supported Fortran intrinsic functions are CEILING,
FLOOR, AMAX0, AMAX1, AMIN0, AMIN1 and FLOAT. The definition of these
functions can be found in descriptions of the Fortran language.

2.4 String arguments of subroutines and functions

Fortran subroutines could always be called from FST for doing standardized cal-
culations or for calculations which are impossible, inefficient or clumsy in the FST

. . . DRAFT . . .



16 Chapter 2. FST version 3

language itself. The arguments of a Fortran subroutine or function (see next sec-
tion) should be declared using a declaration statement in the DECLARATIONS
section of the program.

The declaration allows the translator to determine which of the actual arguments
in the call(s) are defined in the subroutine and which ones are merely used. This
is important for determining the order of the calculations3.

In FST 3, the string constant STRING is introduced as an input argument type,
in addition to integer, real scalar, and real array input. Only string constants
are allowed, e.g. ’For calculating A’. String expressions or string variables are
not allowed in FST. String arguments allow subprograms to generate meaningful
messages if something goes wrong. An example is given in the next section 2.5.

2.5 User defined functions

User-defined functions are treated in the same way as subroutines. Function calls
can be written directly in calculation statements, which may lead to more elegant
programs than the use of subroutines in combination with intermediate variables.
Limitations, however, are that functions must return a single precision, scalar, real
variable and that all function arguments must be input arguments.

An example is the declaration of a function MichaelisMenten in the following way:

! example of the use of lowercase variable names
DECLARATIONS
DEFINE_FUNCTION MichaelisMenten (STRING, INPUT, INPUT, INPUT)
...
MODEL
Xloss = MichaelisMenten (’Reaction 1’, Vmax1, K1, X) + ...

MichaelisMenten (’Reaction 2’, Vmax2, K2, X)
...
END

The DEFINE FUNCTION statement declares four input arguments, a string con-
stant and three real values, variables or function calls. In the calls to Michaelis-
Menten you see that the real arguments are the Vmax, the “half rate concentra-
tion” K and the substrate concentration X. Note that the same Michaelis-Menten
expression (in the actual Fortran function) is used for two different reactions.

The string constant in the calls can be used by the function itself for meaningful
messages in case there is something wrong. In case of negative concentrations X,
for instance, the function might force the program to stop, but without further
information the user does not even know which function call and which concentra-
tion caused the problem. This is solved by including the string in an error message
written from the function.

2.6 Appended Fortran subprograms

Fortran subroutines and functions can be appended to the FST model. In principle,
the translator copies them to the generated Fortran file and leaves it to the compiler
to check the Fortran code. However, the appended Fortran must be either in free

3In the generated Fortran (not in FST), a variable must be defined before it can be used.

. . . DRAFT . . .



2.6. Appended Fortran subprograms 17

source form or in fixed source form (Metcalf et al., 2004; Chapman, 2008). A
mixture of the two is not allowed and would not make sense since Fortran compilers
do not like a mixed form file either.

This implies that the translator has to decide in which of the two forms the Fortran
code was written. The translator may fail to do this properly, unless the FST user
knows the rules of the game. So what are the rules?

• The Fortran source form is determined using the first non-empty line after
the STOP statement.

• If this line begins with an exclamation mark ’!’ (at any position), the source
form is set to free. The line is considered as a Fortran-95 style comment
statement.

• If the line begins with a asterisk ’*’, a ’c’ or a ’C’ at the first position, the
source form is set to fixed. The line is considered as a Fortran-77 style
comment statement.

• Otherwise, if the first character is at position 7 or later, the source form is
assumed to be fixed. If the position of the first character is in [1,6], the source
form is assumed to be free.

For the FST part of the model, the use of an asterisk or exclamation mark in
comment lines does not matter. After the STOP statement, however, you should
be aware of the difference.

Sometimes these simple rules may lead to a surprise, for instance, if your first
Fortran-95 subroutine happens to start at position 7, the source form is classified
as fixed. Problems are easily solved by adding a comment in the proper source
form, on top of the Fortran code.

Once the source form is determined, all statements, continuation lines and com-
ment statements should conform to either the fixed or the free source form. If the
subprograms are in fixed source form, for instance, exclamation marks as com-
ment characters are not allowed. If your subprograms are in free source form, the
Fortran-77 method of statement continuation or the asterisk “*” at the beginning
of a comment line is not allowed.

Note that in the Fortran 95/2003 standard, the fixed source is an obsolescent feature
of the language, a candidate for deletion in future versions of the standard.

2.6.1 Number of subroutine and function arguments

The translator checks the number of arguments in SUBROUTINE and FUNC-
TION statements against the FST declaration of the subprogram. It does so by
finding the first words of non-comment statements. If the first word happens to be
SUBROUTINE or FUNCTION, the arguments are counted.

Note that this will not always work for functions, since functions may begin in
Fortran like “REAL FUNCTION MichaelisMenten”. In this case, the function
statement will not be found and the number of arguments will not be verified.
Verification is also impossible if the called Fortran programs are separately com-
piled and then linked with the model, or if they are part of a precompiled object
library. Hence, the user must always be aware of possible problems with the argu-
ment list of linked subprograms. Such problems usually lead to a runtime crash.

. . . DRAFT . . .



18 Chapter 2. FST version 3

What is always verified, however, is the consistency between the DEFINE CALL
or DEFINE FUNCTION declaration in FST and the actual calls.

We further remark that FST does not support the use of keyword arguments or op-
tional arguments in subprogram calls4. This implies that Fortran-95 subprograms
requiring such a call cannot be used directly from FST. In such a situation the user
will have to write a trivial interface routine that translates the simple Fortran-77
style call from FST into the desired Fortran-95 call. The interface routine then con-
tains a USE statement for a Fortran-95 module or an explicit interface description
for the Fortran-95 subprogram.

2.6.2 What does the translator do with Fortran?

Fortran in free source form, is copied to the generated source file completely un-
changed. This implies that modern Fortran-95 modules can be appended to FST
code without any problem5.

Fortran in fixed source form, is converted to free source form by changing the
continuation and the comment lines. All other characteristics of the old Fortran-77
routines are left untouched as, for instance, the statement begin, and numbers as
statement labels. So what you basically get, is free source form Fortran beginning
at position 7.

The conversion is necessary since the model itself is generated by the translator in
free source form and compilers tend to complain about source form mixtures in the
same file.

The user is advised to replace the original Fortran by the converted Fortran copied
from Model.f906. Alternatively, Michael Metcalf’s program7 can be used for a more
complete conversion.

2.6.3 The Fixed/Free form

There is a source form which can be combined with both free and fixed source
form Fortran source files. This is the Fixed/Free source form (Metcalf et al., 2004;
Chapman, 2008) with continued lines coded with an ampersand (&) at position 73
and any character at position 6 of the continuation line. If your Fortran is in this
form, the addition of an exclamation mark comment line on top of the Fortran
section will cause the translator to switch to free form. It will otherwise complain
about a line length above 72.

The Fixed/Free source form may lead to error messages on continued SUBROU-
TINE or FUNCTION statements for which the translator attempts to determine
the number of arguments. In such a case, the fixed/free form continuation should

4In Fortran 95 a subroutine SUB with a dummy argument A can be called using ’call
SUB(A=myvar)’, where ’myvar’ is the actual argument in the calling program. Keyword ar-
guments in calls are especially useful in case of optional arguments, which do not have to be there.
All this, however, requires the subroutine interface to be known at compile time in the calling pro-
gram, either through a USE statement or through an explicit interface declaration. Subprogram
calls from FST are Fortran-77 style calls without keyword arguments.

5But they cannot be called directly from FST, see section 2.6.1.
6A Fortran section beginning with a subroutine statement at position 7 may then be incor-

rectly classified as fixed form. This can be repaired by adding a comment line beginning with an
exclamation mark on top of the Fortran code.

7Available from many websites, e.g. ftp.numerical.rl.ac.uk/pub/MandR/convert.f90 or
http://www.nag.co.uk/nagware/Examples/convert.f90.
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2.7. Some other changes 19

be removed from these statements. For other statements the Fixed/Free source
form should not be a problem.

2.7 Some other changes

A warning used to be given on the use of a scalar variable as an array argument
in a function or subroutine call. The warning told the user that the array length
appearing in the subroutine is 1. This situation has been changed into an error
condition since (1) In Fortran-95 there is a distinction between degenerate arrays8
and scalars, (2) Usually it was an error (a forgotten array declaration) and (3)
Arrays with length 1 can be declared if necessary.

The OUTPUT statement for generating matrix printer plots is no longer main-
tained. We do not test it anymore, it may not function properly and we intend
to completely remove it from the FST language. If there are users who cannot do
without, please let us know.

A few subprograms linked with the generated Fortran, have been moved from
the utility library TTUTIL to the drivers library. The moved subprograms are
TIMER2, INTGRL, INSW, FCNSW, LIMIT, LINT2 and CHKTSK. The files have
been converted to Fortran-90 free format and CHKTSK has been adapted to the
new event handling ITASK=5 section of FSE models.

Finally, numerous small improvements in the text of error messages and warnings
have been made.

8A degenerate array is an array with length 1.
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Chapter 3

Time and state events

Events interrupt the normal simulation cycle of rate calculations and status up-
dates. The simulation is interrupted in order to change something in parameter
values or even the system status. After the event, the simulation continues, until
possibly another event takes place.

This chapter describes how events can be initiated and what sort of things can be
done during an event. There are two types of event. A time event simply takes
place at a prescribed moment in simulated time. When the event time is reached
the instructions belonging to the event are executed, a new event time may be set,
and the simulation continues.

State events are more complicated. A state event takes place when a certain con-
dition is reached, for instance if the state variable A reaches the value 5.0, a state
event must happen. In FST, this takes the form of a zero condition equal to A−5.0.
If this expression becomes (almost) zero, the event takes place. Then, after the
“event function” has moved away from zero and becomes zero once more, the event
takes place again.

Below a detailed description is given for both event types. At first, however, a new
type of variable needs to be introduced, the setting variable.

3.1 Setting variables

A setting variable is defined by means of a SET statement in the following way

! example of the use of a setting variable
DECLARATIONS
...
INITIAL
SET CumulativeAmount = 0.0
SET NitrogenContent = 20.0 * MAX(Ncon, 2.0)
...

The setting variables CumulativeAmount and NitrogenContent are defined by
means of a SET statement. The second example shows that the SET statement
is a calculation. It is not a value assignment like PARAMETER, INCON or
CONSTANT statements, but expressions can be used as if the setting variable
was an ordinary calculated variable. Also array expressions can be used if the set-
ting variable is declared as an array before. In fact, any initially calculated variable
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22 Chapter 3. Time and state events

can be made into a setting variable by just putting the keyword SETTING (or just
SET) in front of the calculation1.

The following rules apply to setting variables (the keyword SETTING may be used
instead of SET).

• The SET or SETTING statement may occur only in the INITIAL section
of the FST program. The defining expression may refer to PARAMETERs,
CONSTANTs, driver supplied variables, or other initially calculated vari-
ables.

• A model setting variable can be defined and used as any other initially calcu-
lated variable. This implies that the calculations in the SETTING statement
are sorted (put into a computable order) together with the other initial cal-
culations.

There are, however, three differences between a setting variable and an ordinary,
initially calculated variable.

1. If a setting variable is listed in a PRINT statement, it is sent to dynamic out-
put, together with the dynamic variables that change during the simulation.

2. A setting variable may change value during an event.

3. A setting variable may act as a rate of change in an INTGRL statement.

In a model without events, setting variables are just initially calculated variables,
behaving like dynamic variables with respect to output, but with no other special
function.

3.2 Events by example

An event section contains everything which has to be specified about an event,
when it takes place and what should happen. The simplest event section is

! example of and event section
DYNAMIC
...
EVENT

FIRSTTIME StTime + 2.0
ENDEVENT

This initiates a time event at 2.0 time units after start time. During the event,
however, nothing happens, it just interrupts the simulation and no new event time
is specified. A periodic time event can be initiated by

! example of and event section
DYNAMIC
PARAMETER Period = 4.0
...
EVENT

FIRSTTIME StTime + 2.0
NEXTTIME Time + Period

ENDEVENT

1With the exception of variables calculated in a subroutine call. If such a variable, say A, needs
to become a setting variable, a help variable (say Help) is first calculated in the subroutine and
then assigned to the setting variable by SET A = HELP.
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This initiates a series of time events, beginning at 2.0 time units after start time
and returning every Period time units thereafter. Still, however, the event does
not change anything in the system status.

In the next example this is different. Each time event changes the setting variable
named SetPoint and resets a state variable StateA to zero.

! example of event section
INCON Aini = 1.2345
INITIAL
SET SetPoint = 10.0
...
DYNAMIC
RateA = ...
StateA = INTGRL(Aini, RateA)
...
EVENT

FIRSTTIME StTime + 2.0
PARAMETER Period = 4.0
NEXTTIME Time + Period
NEWVALUE StateA = 0.0
NEWVALUE SetPoint = -SetPoint

ENDEVENT

The first NEWVALUE statement redefines the state variable StateA at zero.
SetPoint is redefined as the opposite of the old SetPoint. Hence, the variable
SetPoint is initially +10.0 and then, beginning at 2.0 time units after starttime,
changes all the time from +10.0 to −10.0 and back, every Period time units.

State events lack a FIRSTTIME and NEXTTIME statement and instead contain
a ZEROCONDITION statement in which an expression is specified that triggers
a state event when it becomes (almost) zero. So suppose we want to change the
SetPoint variable from the previous example each time the integral StateA reaches
the value TOP. This is done with

! example of and event section
INCON Aini = 1.2345
INITIAL
SET SetPoint = 10.0
...
DYNAMIC
RateA = ...
StateA = INTGRL(Aini, RateA)
...
EVENT

ZEROCONDITION StateA - Top
PARAMETER Top = 200.0
NEWVALUE StateA = 0.0
NEWVALUE SetPoint = -SetPoint

ENDEVENT

Like in the previous example, the state StateA is the integral of RateA over time,
beginning at Aini. But now, if StateA ever reaches 200.0, the event takes place.
The setpoint changes into its opposite value and StateA is reset.

Note that events not necessarily take place. In the last example, if StateA never
reaches the value Top, the event will never happen.
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24 Chapter 3. Time and state events

3.3 Event sections: the rules

Most rules are about the references that can be made in event sections to other
variables of the model. A FIRSTTIME statement, for instance, should not refer
to dynamic variables, since the first time event time must be calculated during the
initial phase of the simulation.

The rules of the game:

1. An event section begins with an EVENT statement and it ends with an
ENDEVENT statement.

2. An FST program may contain several event sections (actually about 50).

3. An event section is contained in the DYNAMIC section of the model. Its
position within the DYNAMIC section is not significant. It does not have
any consequences for the way in which the dynamic calculations are sorted
and written to the generated Fortran code. Hence, an event section may be
put close to the dynamic calculations to which it is naturally related, or event
sections may be grouped at the beginning or end of the DYNAMIC section.
This is a matter of style and taste.

4. However, when during simulation two or more events occur simultaneously,
the order of execution depends on the order of the event sections in the FST
model. Details on this can be found in section 3.5.

5. A time event section must contain one and only one FIRSTTIME statement.

6. A FIRSTTIME statement contains a constant or expression specifying the
first event time as function of initially known variables (PARAMETERs,
CONSTANTs), driver supplied variables and initially calculated variables
including setting variables.

7. A time event section may further contain a single NEXTTIME statement.

8. A NEXTTIME statement specifies the next time event time as a constant or
expression. The expression may refer to initially known variables, initially cal-
culated variables, dynamically calculated variables, driver supplied variables
and to variables calculated in the same event section where the NEXTTIME
statement is in.

9. A state event section must contain one and only one ZEROCONDITION
statement.

10. A ZEROCONDITION statement contains a scalar expression which may refer
to initially known variables, driver supplied variables and all initially and
dynamically calculated variables, including state and setting variables.

11. An event section may contain one or more calculation statements, defining
variables which are not defined elsewhere in the model. The expressions,
subroutine calls and function calls used may refer to initially known variables,
driver-supplied variables and initially or dynamically calculated variables,
and to other calculated variables defined in other calculation statements in
the same event section. Just like initial, dynamic and terminal calculations,
the calculations in each event section are sorted by the FST translator.

12. An event section may contain one or more NEWVALUE statements.
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13. Each NEWVALUE statement redefines a state variable or a setting variable,
which may be either a scalar or array variable.

14. A NEWVALUE definition of a scalar (non-array) state or setting may refer
to itself (the old value of the state or setting).

15. The NEWVALUE definition of a array state or setting cannot refer to itself.
Such a calculation requires a help variable, an array with the same length,
which is calculated in the event section as a copy of the (old value of) state
ot setting array to be changed.

16. A NEWVALUE definition must not refer to any other state or setting variable
which is redefined in the same event section.

17. NEWVALUE statement may refer to all other initially known or dynamically
calculated variables, to initially calculated variables, driver supplied variables,
or to calculated variables defined in calculation statements in the same event
section.

18. Just like the INITIAL, DYNAMIC or TERMINAL section of an FST pro-
gram an EVENT section may contain statements like PARAMETER, CON-
STANT, TIMER. The function of such statements does not depend on their
position anywhere between INITIAL and STOP. These statements do not
interfere with the functionality of the event section.

Rule number 16 probably requires some clarification. The reason for this rule is
that, by allowing such references, the order in which the NEWVALUE instructions
are executed would make a difference. The use of “old values” can always be
realized by calculating a help variable as a copy of a state variable or setting, and
then using the calculated help variable in a NEWVALUE expression.

The order in which the operations specified are carried out is as follows:

1. The sorted calculation statements are executed.

2. The NEWVALUE assignments are executed. Their order is arbitrary (see
the rules above).

3. In case of a time event, the NEXTTIME is calculated. This implies that
state and setting variables possibly occurring in the NEXTTIME expression
refer to new values for those states and settings which were just redefined.

4. Finally output variables defined in the event section (by means of calculation
statements) are sent to output, accompanied by the time at which the event
took place.

This order does not depend on the order of the statements in the event section.

Last but not least we should mention that many different state and time event
sections may occur in an FST model. This clearly may lead to complicated model
behavior.

3.4 Reaching a state event

Sofar, the way in which the ZEROCONDITION expression is treated has remained
a bit vague. The reason is that this depends on the type of simulation carried out.
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26 Chapter 3. Time and state events

3.4.1 General mode

In TRANSLATION GENERAL mode the expression specified in the
ZEROCONDITION statement is called the event function.

This function is monitored during the simulation and as soon as it crosses zero
(from either side) the time at which the zero crossing occurs is found in an iterative
procedure by means of a number of bisection steps.

There clearly is some tolerance involved here. This is the value of SEVTOL (State
Event Tolerance), which may be specified in a TRANSLATION GENERAL state-
ment, but which has a default of value of 1.0E−5. As soon as the event function is
within SEVTOL from zero, the event is triggered2.

If the TRANSLATION GENERAL control variable TRACE is set to 4, the itera-
tive search is reported to the logfile. Such a report looks like

+ 1.04167E-02 --> 658.62 ( 0.10417E-01)
+ 1.04167E-02 --> 658.63 ( 0.10417E-01)
+ 1.04167E-02 --> 658.64 ( 0.10417E-01)

Step Time Event Event function
---- ---- ----- --------------
0 658.6512044 2 0.45776E-04
1 658.6459961 2 -0.16153E-03
2 658.6486003 2 -0.57936E-04
3 658.6499023 2 -0.60797E-05

+ 9.11458E-03 --> 658.65 ( 0.10417E-01)
Output flag set ===== 658.65 (preparing for event)
Output flag set ===== 658.65
State event 2 at === 658.65 ( 4 iterations, remaining error -0.60797E-05)

+ 1.04167E-02 --> 658.66 ( 0.10417E-01)
+ 1.04167E-02 --> 658.67 ( 0.10417E-01)

The first lines here show a few regular integration steps. Then the second event
function seems to cross zero (in the generated Fortran code, the events get num-
bers). In four iteration steps the zero is reached with a sufficient accuracy. Then
an event-preparing rate call with output takes place, sending variables to output at
their pre-event values. The actual event call to the model is a rate call with output
enabled and with the proper event flags set. The model takes care of the event
handling and then does a regular rate calculation with output. After completion,
the event is reported once more and the normal simulation cycle is resumed.

A state event cannot occur without zero crossing of the event function. This implies
that the function must first be at least SEVTOL away from zero and then it may
cross zero (again).

3.4.2 FSE mode

The FSE mode of the translator leads to simulations with a fixed time step, often
set to one day for crop growth models. In fact there is no continuous time in FSE
mode but there are just discrete time steps. In this situation an adapted time step
in order to reach precisely an event time would be inconsistent with the approach.

Therefore, in FSE mode, events take place as soon as the event time is reached or
passed, or as soon as a zero condition is reached or passed. There is no iterative

2SEVTOL may be referenced in expressions.
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search for a precise state event time nor a calculated time step in order to precisely
reach the preset time of a time event.

This approach is a bit crude. It is the only approach, however, which seems con-
sistent with the fixed steps of the process simulation. Crop harvest, for instance,
takes place at a certain day and not at twenty minutes and 10 seconds past four in
the afternoon. The same holds for fertilization, weeding or other events that may
occur in a simulation of crop growth with a one day time step.

3.4.3 Scaling the value of the event function

The value of SEVTOL is an absolute tolerance. For an event function with values
in the order of, say, one million it does not make sense to require an accuracy of
10−5. Then the tolerance SEVTOL may be set to a larger value. Increasing the
SEVTOL value, however, will also affect other state events. So, a larger value of
SEVTOL is an option only in models containing a single, or a few similar state
events.

A better method is to scale the event function, i.e. divide it by a constant in such a
way that its values lie at a reasonable distance from zero, for instance in [−1,+1].
An example is an event that takes place when some coordinate X reaches the value
of (parameter) A. The event function would then be (X − A). If this function
becomes very large it is better to write (X −A)/A for the event function or to use
the size of the system as a scaling constant, as in (X −A)/SystemSize.

3.4.4 Missed state events

In principle state events can be missed if, during a single time step, an event
function crosses zero multiple times. Therefore the time step should be prevented
to become too large, especially if the variable time step Runge-Kutta method is
used. This can be done using the TRANSLATION GENERAL variable DELMAX.

3.5 Simultaneous events

This section is relevant only for models with several event sections from which two
or more may occur simultaneously. Even in GENERAL mode the time at which
a certain state event takes place (found iteratively) may sometimes coincide with
a time event or another state event. Here we explain how the generated Fortran
program deals with such a situation.

There are two ways of dealing with two simultaneous events. The first method
(“Update Once”) is to execute the code for both events (event calculations, change
state or setting) and then recalculate once all dynamic variables in order to have
new and updated rates of change. The second method is “handle event 1”, “recal-
culate dynamic variables”, “handle event 2” and “recalculate dynamic variables”.
This method is referred to as “Insert Updates”.

If an update after event 1 does not have any consequences for the calculations or
the NEWVALUE statement(s) in event 2, the two methods lead to the same result.
The FST translator, however, does not verify such an event independence and it is
possible to write an FST model for which the results depend on the way in which
simultaneous events are handled. This is different for the two translation modes.
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In FSE mode the “Update Once” method is used for all events (state or time).
Hence, there is no dynamic update in between the execution of simultaneous events.
The order of events is the order of their respective event sections in the FST model.

In GENERAL mode the simulation driver first handles all pending state events
in a single call to the generated Fortran model. The state events are handled in
the order of their respective event sections in the FST model. After execution
of all pending state events, the dynamic variables are updated once. Hence, for
simultaneous state events the “Update Once” method is used3, just like in FSE
mode.

Pending time events in GENERAL mode, however, are handled after all pending
state events. For time events the GENERAL simulation driver uses the “Insert
Updates” method. Each time event is followed by an update of the dynamic vari-
ables4 and simultaneous time events are handled in the order of the (time) event
sections in the FST model.

3Given the SEVTOL tolerance, the event functions of the pending state events all cross zero
for the current system status. A dynamic update after handling just one of the events (an inserted
update) could have implications for the other event functions, for which it was just decided they
cross zero. Hence, when several event functions cross zero simultaneously, the driver must assume
these events are indeed simultaneous and the events take place without update of the dynamic
status in between.

4This can be seen as inserting a zero length time step between simultaneous time events.
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Chapter 4

Example

Three example FST programs are included in the installation of FST 3:

• Particle1.FST implements a model of a “particle“ bouncing in a 2D box.
The model uses the TRANSLATION GENERAL mode of the translator and
the times at which the particle hits the walls are iteratively found.

• Particle2.FST is the same as Particle1.fst, but a calendar connection is
added, just for illustrative purposes. This allows the setting of a time event
at a prescribed date and time of the calendar.

• Particle3.FST is again the same model, but now translated in FSE mode.

The model is physically described as follows:

• A particle moves around in a two-dimensional box. There is no energy loss
through friction, there is no energy stored in spin (rotation of the particle)
and collisions with the walls are fully elastic.

• The box itself does not move.

• The motion of the particle is described by the laws of classical mechanics, i.e.
Newtons law.

• There is a constant gravity field with a fixed direction.

The independence of the motion in the two directions means that there is a constant
time interval between any two collisions in the x direction and another constant
interval between the collisions in the y direction. The example model simulates
the motion and “measures” the time between two collisions in the x direction (the
other direction is left as an exercise).

4.1 FST model Particle1.fst

The model Particle1.fst is given in the following listing. Besides simulating the
movement, the program also “measures” the time between two hits in the X direc-
tion.

0001 DECLARATIONS
0002 DEFINE_FUNCTION TimeBetweenHits (INPUT, INPUT, INPUT, INPUT)
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30 Chapter 4. Example

0003 MODEL
0004 TRANSLATION_GENERAL DRIVER=’RKDRIV’ ; EPS = 1.0E-6 ; SEVTOL = 1.0E-5 ; TRACE = 4

0005 TIMER STTIME = 0.0 ; FINTIM = 200.0 ; DELT = 0.01 ; PRDEL = 0.5 ; IPFORM = 4
0006 PRINT X, Y, VX, VY, TheoryPeriodX, TheoryPeriodY, Ratio, MeasuredPeriodX

0007 INITIAL
! position, velocity and acceleration

0008 INCON IX = -4.0 ; IY = -0.5
0009 INCON IVX = 2.0 ; IVY = 1.0
0010 PARAM AX = +0.1 ; AY = -0.1

! box size
0011 PARAM HalfSizeX = 5.0 ; HalfSizeY = 2.5

! initialize measurement
0012 Set Counter = 0.0
0013 Set ClockRunning = 0.0
0014 Set ClockedTotal = 0.0

0015 DYNAMIC
! place

0016 RX = VX
0017 RY = VY
0018 X = INTGRL (IX, RX)
0019 Y = INTGRL (IY, RY)

! velocity
0020 VXR = AX
0021 VYR = AY
0022 VX = INTGRL (IVX, VXR)
0023 VY = INTGRL (IVY, VYR)

! stop watch
0024 MeasuredTime = INTGRL(zero, ClockRunning)
0025 INCON zero = 0.0

! left and right boundary
0026 EVENT
0027 ZeroCondition abs(X) - HalfSizeX
0028 NewValue VX = -VX

! switch on the stopwatch
0029 NewValue ClockRunning = 1.0

! read the stopwatch ; count the hits
0030 NewValue ClockedTotal = MeasuredTime
0031 NewValue Counter = Counter + 1.0
0032 ENDEVENT

! bottom and top
0033 EVENT
0034 ZeroCondition abs(Y) - HalfSizeY
0035 NewValue VY = -VY
0036 ENDEVENT

0037 TERMINAL
0038 MeasuredPeriodX = ClockedTotal / NOTNUL(Counter-1.0)

! theoretical time between hits
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0039 TheoryPeriodX = TimeBetweenHits(IX,IVX,AX,HalfSizeX)
0040 TheoryPeriodY = TimeBetweenHits(IY,IVY,AY,HalfSizeY)
0041 Ratio = TheoryPeriodY / TheoryPeriodX
0042 END
0043 STOP

0044 REAL FUNCTION TimeBetweenHits (X, V, A, D)
0045 IMPLICIT NONE
0046 REAL, INTENT(IN) :: X, V, A, D
0047 TimeBetweenHits = (SQRT(V**2+2.0*A*(D-X)) - SQRT(V**2-2.0*A*(D+X))) / A
0048 Return
0049 END FUNCTION TimeBetweenHits

4.1.1 A nice surprise!

Execution of this model and plotting the orbit (Y as function of X) reveals unex-
pected behavior. By chance? Figure it out and have some fun!

4.2 Explanation of the model

4.2.1 INITIAL

At first the initial positions and velocities are set, the box size in two directions1
and the constant accelerations in the gravity field. Finally, the measurement of the
time interval for the x direction is set up.

The “measurement” method is most easily understood by thinking about a stop-
watch. The stopwatch is switched on when the first hit takes place and remains
on after that. Then, during hits the stopwatch is read and the number of hits is
counted. In the terminal section, the stopwatch time and the number of collisions
are used to calculate a average measured period MeasuredPeriodX.

The stop watch is switched on by means of the setting variable ClockRunning,
which is SET in initial at 0.0 and redefined in the first event (and all events there-
after) as 1.0.

4.2.2 DYNAMIC

Particle position and velocity are calculated by integrating velocity and acceleration
in both dimensions. Then the value of the switch ClockRunning is used as a rate
of change. This rate of change will be 0.0 before the first event and will be 1.0
after. This implies that MeasuredTime will be equal to the time passed since the
first event (in the x direction) took place.

The EVENT sections are easy. When the walls are hit, the velocity in the appro-
priate direction is reversed. For the “x direction walls”, the stopwatch is switched
on, the present value of the stopwatch is stored as ClockedTotal and the counter is
updated.

1PARAMETER and INCON statement need not to be in the INITIAL section.
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4.2.3 TERMINAL

The average time interval between two collisions can now be calculated from the
last stopwatch reading ClockedTotal and the number of collisions. Note that the
number of intervals is one less than the number of collisions.

The time interval between collisions can also be calculated theoretically. For elastic
and frictionless bouncing between two walls at positions −D and +D from the
origin, for an initial position X, an initial velocity V and a constant acceleration
of gravity a, the time ∆T between two collisions can be derived with classical
mechanics as

∆T =

√
V 2 + 2a(D −X) −

√
V 2 − 2a(D + X)

a

This expression has been used to create the Fortran function TimeBetweenHits
which is declared on top of the model and is used to calculate the time intervals
for both directions.

4.3 Inspecting the logfile

During development of a model containing events inspection of the logfile2 is im-
portant. The model in section 4.1 contains TRACE=1 (statement 4) and produces
a brief initialization report in which the events are mentioned:

Initialization of RKDRIV and user MODEL completed:
---------------------------------------

Number of states: 5
Integration starts at: 0.00000
Output interval PRDEL: 0.50000

Finish time FINTIM: 200.0
State event accuracy: 0.10000E-04

Relative accuracy: 0.10000E-05
Initial time step: 0.10000E-01

Maximum step: 200.0
Requested state event: 1
Requested state event: 2

---------------------------------------

The most complete information on the progress of the simulation is obtained by
setting TRACE=4. Every time step is reported and detailed information is given
on the state event iteration. With this setting of TRACE the first part of the logfile
produced by the model in section 4.1 becomes

RKDRIV: DYNAMIC loop
==========

time step time
---------------------------------

Output flag set ===== 0.00000
+ 1.00000E-02 --> 1.00000E-02 try next 1.58193E-02
+ 1.58193E-02 --> 2.58193E-02 try next 2.17876E-02
+ 2.17876E-02 --> 4.76069E-02 try next 8.71506E-02

2During model execution a logfile MODEL.LOG is created. In GENERAL mode the content of
this file depends on the value of the TRANSLATION GENERAL variable TRACE, as documented
in Rappoldt & van Kraalingen (1996, section 7.5.5).
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+ 8.71506E-02 --> 0.13476 try next 0.34860
+ 0.34860 --> 0.48336 try next 1.3944
+ 1.66401E-02 --> 0.50000 try next 1.3944

Output flag set ===== 0.50000
+ 0.50000 --> 1.0000 try next 1.3944

Output flag set ===== 1.0000
+ 0.50000 --> 1.5000 try next 1.3944

Output flag set ===== 1.5000
+ 0.50000 --> 2.0000 try next 1.3944

Output flag set ===== 2.0000
+ 0.50000 --> 2.5000 try next 1.3944

Output flag set ===== 2.5000
+ 0.50000 --> 3.0000 try next 1.3944

Output flag set ===== 3.0000
+ 0.50000 --> 3.5000 try next 1.3944

Output flag set ===== 3.5000

Step Time Event Event function
---- ---- ----- --------------
0 4.0000 2 0.20000
1 3.7500 2 4.68752E-02
2 3.6250 2 -3.20308E-02
3 3.6875 2 7.61771E-03
4 3.6563 2 -1.21577E-02
5 3.6719 2 -2.25782E-03
6 3.6797 2 2.68292E-03
7 3.6758 2 2.13385E-04
8 3.6738 2 -1.02210E-03
9 3.6748 2 -4.04358E-04
10 3.6753 2 -9.56059E-05
11 3.6755 2 5.88894E-05
12 3.6754 2 -1.83582E-05
13 3.6755 2 2.02656E-05
14 3.6754 2 9.53674E-07

+ 0.17545 --> 3.6754 try next 1.3944
Output flag set ===== 3.6754 preparing for event
Output flag set ===== 3.6754

This a detailed reporting may slow down the execution of the model, but in case of
problems or unexpected results it is often useful to inspect for instance the order
in which various events take place.

4.4 Connecting the calendar: Particle2.fst

The process simulated by the model in section 4.1 clearly does not depend on
calendar times. As an illustration, however, we will connect the calendar by adding
the statement

! calendar connection
TRANSLATION_GENERAL StartYear=1985 ; StartDOY=100.5 ; OneDay=24.0

which sets the start time3 of the model as 10-Apr-1985 12:00:00 and sets the the unit
of time at one hour. More details about calendar use can be found in section 2.2.
After adding the above calendar connection to our example model, the first part
of the logfile changes into (cf. section 4.3)

3Note that StartDOY is based on day numbers and starts at 1.0000 for January,1 at 00:00:00.
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RKDRIV: DYNAMIC loop
==========

time step time
---------------------------------

Output flag set ===== 0.00000 (10-Apr-1985 12:00:00)
+ 1.00000E-02 --> 1.00000E-02 (10-Apr-1985 12:00:36) try next 1.58193E-02
+ 1.58193E-02 --> 2.58193E-02 (10-Apr-1985 12:01:33) try next 2.17876E-02
+ 2.17876E-02 --> 4.76069E-02 (10-Apr-1985 12:02:51) try next 8.71506E-02
+ 8.71506E-02 --> 0.13476 (10-Apr-1985 12:08:05) try next 0.34860
+ 0.34860 --> 0.48336 (10-Apr-1985 12:29:00) try next 1.3944
+ 1.66401E-02 --> 0.50000 (10-Apr-1985 12:30:00) try next 1.3944

Output flag set ===== 0.50000 (10-Apr-1985 12:30:00)
+ 0.50000 --> 1.0000 (10-Apr-1985 13:00:00) try next 1.3944

Output flag set ===== 1.0000 (10-Apr-1985 13:00:00)
+ 0.50000 --> 1.5000 (10-Apr-1985 13:30:00) try next 1.3944

Output flag set ===== 1.5000 (10-Apr-1985 13:30:00)
+ 0.50000 --> 2.0000 (10-Apr-1985 14:00:00) try next 1.3944

Output flag set ===== 2.0000 (10-Apr-1985 14:00:00)
+ 0.50000 --> 2.5000 (10-Apr-1985 14:30:00) try next 1.3944

Output flag set ===== 2.5000 (10-Apr-1985 14:30:00)
+ 0.50000 --> 3.0000 (10-Apr-1985 15:00:00) try next 1.3944

Output flag set ===== 3.0000 (10-Apr-1985 15:00:00)
+ 0.50000 --> 3.5000 (10-Apr-1985 15:30:00) try next 1.3944

Output flag set ===== 3.5000 (10-Apr-1985 15:30:00)

Step Time Event Event function
---- ---- ----- --------------
0 4.0000 (10-Apr-1985 16:00:00) 2 0.20000
1 3.7500 (10-Apr-1985 15:45:00) 2 4.68752E-02
2 3.6250 (10-Apr-1985 15:37:30) 2 -3.20308E-02
3 3.6875 (10-Apr-1985 15:41:15) 2 7.61771E-03
4 3.6563 (10-Apr-1985 15:39:23) 2 -1.21577E-02
5 3.6719 (10-Apr-1985 15:40:19) 2 -2.25782E-03
6 3.6797 (10-Apr-1985 15:40:47) 2 2.68292E-03
7 3.6758 (10-Apr-1985 15:40:33) 2 2.13385E-04
8 3.6738 (10-Apr-1985 15:40:26) 2 -1.02210E-03
9 3.6748 (10-Apr-1985 15:40:29) 2 -4.04358E-04
10 3.6753 (10-Apr-1985 15:40:31) 2 -9.56059E-05
11 3.6755 (10-Apr-1985 15:40:32) 2 5.88894E-05
12 3.6754 (10-Apr-1985 15:40:31) 2 -1.83582E-05
13 3.6755 (10-Apr-1985 15:40:32) 2 2.02656E-05
14 3.6754 (10-Apr-1985 15:40:32) 2 9.53674E-07

+ 0.17545 --> 3.6754 (10-Apr-1985 15:40:32) try next 1.3944
Output flag set ===== 3.6754 (10-Apr-1985 15:40:32) preparing for event
Output flag set ===== 3.6754 (10-Apr-1985 15:40:32)

The simulation times are precisely the same as in section 4.3, but each value of
time now corresponds to a real clock time which is mentioned in the logfile.

4.5 In FSE mode: Particle3.fst

The TRANSLATION GENERAL statements are deleted or “commented out” and
replaced by the following

! FSE mode translation with weather
TRANSLATION_FSE
WEATHER CNTR = ’NLD’ ; ISTN = 1 ; IYEAR = 1985
TIMER STTIME = 1.0 ; FINTIM = 201.0 ; DELT = 0.01 ; PRDEL = 0.5 ; IPFORM = 4
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Note that a WEATHER statement is required in FSE mode, even if no weather
variables are used. The unit of time is fixed in FSE mode (a day) and cannot
be changed into an hour. The FST model does not really imply a unit of time,
however. The choice of one hour in Particle2.fst was an arbitrary one as well.
Therefore we let the program run here 200 days, starting at day 1.0 in 1985.

In FSE mode there is no logfile with a precise event description. In the output file
RES.DAT, however, we can find back the events. Just before and just after each
event additional output calls are made to the model which result in two successive
lines in RES.DAT with the same time value but with different values for variables
changed at the event. For the first event of the simulation we find:

TIME X Y VX VY THEORYPERIODX ...
1.00000 -4.0000 -0.50000 2.0000 1.0000 - ....
1.50000 -2.9878 -1.22499E-02 2.0500 0.95000 - ....
2.00000 -1.9505 0.45050 2.1000 0.90000 - ....
2.50000 -0.88826 0.88825 2.1500 0.85000 - ....
3.00000 0.19899 1.3010 2.2000 0.80000 - ....
3.50000 1.3112 1.6888 2.2500 0.75000 - ....
4.00000 2.4485 2.0515 2.3000 0.70000 - ....
4.50000 3.6107 2.3893 2.3500 0.65000 - ....
4.68000 4.0352 2.5047 2.3680 0.63200 - ....
4.68000 4.0352 2.5047 2.3680 -0.63200 - ....
5.00000 4.7979 2.2975 2.4000 -0.66400 - ....
5.09000 5.0143 2.2374 2.4090 -0.67300 - ....
5.09000 5.0143 2.2374 -2.4090 -0.67300 - ....
5.50000 4.0348 1.9533 -2.3680 -0.71400 - ....
6.00000 2.8631 1.5840 -2.3180 -0.76400 - ....
6.50000 1.7163 1.1898 -2.2680 -0.81400 - ....

The particle hits a wall for the first time at 3.68 units of time after the start (Time
value 4.68, velocity VY reverses). In TRANSLATION GENERAL mode the first
hit was simulated at 3.6754 units of time after the start.

This illustrates the difference between the two simulation modes. In the GENERAL
mode the time of the hit is approximated numerically. In FSE mode it is just the
first time encountered at which the event function changes sign (the particle is
”through the wall“). Hence, in FSE mode the event times will be more accurate
for smaller values of DELT. In GENERAL mode this is not the case.

For this particular model we may expect that the time between two successive hits
will be slightly too large in FSE mode since the particle always passes the wall
before the model notices the event and reverses the velocity. This is indeed the
case. The FSE model calculates an average time between hits of 4.5941 time units.
In GENERAL mode the output variable MeasuredPeriodX is 4.5896, in precise
accordance with the theoretical value TheoryPeriodX which is 4.5896 as well4

4.6 Comments on this program

The event sections in this example do not contain calculation statements. As
explained in section 3.3, event sections may contain calculations in precisely the
same way as the initial or terminal section of the program, including subroutine
and function calls. The calculations may refer to each other (and to initial and
dynamic variables) and are brought in computable order by the translator.

4For very large simulation times the time measured in FSE mode decreases, probably due to
integration errors and a slow energy gain of the particle.
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The function TimeBetweenHits is not very robust since the arguments of both
square root calls may become negative. This happens if the particle has not enough
kinetic energy to reach the wall from which it is drawn away by gravity. A better
program would test for this condition before calculating the square roots. If just
one wall is hit other expressions can be derived.

The function call could further be extended with a string argument, for instance
’X’ or ’Y’, as explained in section 2.4. Messages from the function could then be
accompanied by this identification string.

4.7 The generated Fortran code

Appendix A contains the GENERAL mode Fortran-90 code generated by the trans-
lator for the Particle1.fst. Appendix B contains the FSE mode Fortran for Parti-
cle3.fst.

The general style of the generated Fortran was left unchanged. In FSE mode the
SUBROUTINE MODEL statement is the same as in FST 2, which implies that
older models, possibly edited “by hand”, can be linked with the new drivers library.

The idea of the GENERAL mode Fortran is that the simulation driver knows all,
time, states and event function values, and the model is called only for calculating
rates of change. In FSE mode the situation is more or less reversed. The model(s)
store all information locally, and the FSE driver just organizes a meaningful exe-
cution of the various sections for initial, dynamic, etc.

The addition of events did not change this approach. This implies that the code
for handling events in the model is more complex in FSE mode than in GENERAL
mode. Interested users may inspect the Fortran code in Appendix B.

4.8 Adding events to existing FSE models

The FSE simulation driver is not used only in combination with generated Fortran
code. There are also “handwritten” FSE models. Such models can be linked to the
same FSE driver used for generated Fortran under FST 3. The model structure
described in van Kraalingen (1995) was left unchanged, including the argument list
of the model subroutine.

Sudden changes in a simulated system have sometimes been implemented as com-
plex “constructs”, just because events could not be handled. Hence, there may be
a need for adding “by hand” code required for state or time events.

The best strategy is probably to inspect at first Fortran code generated by the FST
translator. If your model requires state events only, the Fortran code in Appendix B
can be used as a reference. Additions are required in the declarations, at the end of
the “ITASK=1” section, at the end of the “ITASK=2” section and at the beginning
of the “ITASK=3” section. Finally, a new “ITASK=5” section has to be written
in which the events actually take place.

It may be a good idea to write a sort of dummy FST model containing just the
desired events together with the settings and states involved. The Fortran gen-
erated by the FST translator then contains sections which can be copied to the
handwritten FSE model.
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Chapter 5

Installation

The FST translator translates an FST model into a Fortran-90 program with
datafiles. If the generated Fortran program is compiled by a Fortran compiler
and linked with a few object libraries belonging to FST, the resulting application
or “exe file” executes the model runs specified in the FST model.

This obviously requires an installed Fortran compiler with FST object libraries
precompiled for the installed compiler. Since also the translator itself is a Fortran
program, FST is highly portable between platforms. It can be readily adapted to
any new hardware platform or operating system for which a Fortran compiler is
available1.

The translator and the FST object libraries are currently available for the Intel
Fortran compiler and the Compaq Visual Fortran compiler on a PC under Windows.
On a Macintosh the translator runs as a PowerPC application under OS X, the
FST object libraries are available for Absoft Pro Fortran 9.2 (for PowerPC). A port
to intel macs will be available in 2009.

5.1 FSTwin on a PC

On a windows machine, the FSTwin environment provides an integrated modelling
environment from which the FST model is edited, the translator is called, the
compiler and linker are called and output can be inspected or plotted. The FSTwin
environment requires the Compaq Visual Fortran compiler or the Intel Fortran
compiler. If both compilers are installed the user can switch between them.

=== Here some more details of the installation have to be added ===

5.2 The FST object libraries

A Fortran program generated by the FST translator has to be compiled and linked
with the object libraries Drivers, Weather and TTutil.

1The use of Fortran in parallel computing, the huge amount of existing Fortran code and the
recent updates of the Fortran standard (Fortran-90, Fortran-95 and Fortran-2003) guarantee that
the language will be available for decades to come.
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5.2.1 Drivers

The Drivers library contains the GENERAL and FSE “simulation drivers” which
drive the simulation through time. It is the driver that contains all the logic for call-
ing the initial, dynamic and terminal section of the model, for event execution and
periodic output. The Drivers library further contains the Fortran implementation
of the FST intrinsic functions.

For the FST 3 update, the GENERAL driver has been largely rewritten in order
to implement events and to merge the code of the FST 2 drivers EUDRIV and
RKDRIV. These two drivers implemented the two TRANSLATION GENERAL
integration methods, but were in fact largely identical.

The FSE driver is still similar to the one documented by (van Kraalingen, 1995).
Some logic for event execution has been added, but the argument list of the model
subroutines was not touched (cf. section 4.8). This implies that existing FSE
models (either generated or “handwritten”) can be combined with the updated
drivers library.

5.2.2 Weather

The Weather library (Weather 2005 version 1.2) contains the interface between
weather datafiles and the weather variables used in an FST model. The original
library (van Kraalingen et al., 1991) has been updated several times. The Fortran
code has been improved and the datafile format has been adapted to year numbers
above 1999. Simple user calls to the library, however, did not change.

5.2.3 TTutil

The TTutil2 library (van Kraalingen & Rappoldt, 2000) contains a bunch of utilities
for file i/o and string handling.

A minor difficulty is that the subroutine FatalERR which is used in the FSTwin
environment differs from the FatalERR subroutine in TTutil. The FSTwin en-
vironment generates its own FatalERR by means of a translator option and the
subroutine is absent from the TTutil library that comes with FSTwin. In a future
maintenance update of TTutil this inconsistency will be resolved.

2The letters “TT” come from “Theoretische Teeltkunde”, the Dutch name of the department
of Theoretical Production Ecology founded by the late prof. C.T. de Wit.

. . . DRAFT . . .



References

Chapman, S. J., 2008. Fortran 95/2003 for scientists and engineers. MaxGraw-Hill,
New York.

Metcalf, M., Reid, J., Cohen, M., 2004. Fortran 95/2003 explained. Oxford Uni-
versity Press, Oxford.

Rappoldt, C., van Kraalingen, D. W. G., 1996. The Fortran Simulation Translator
FST version 2.0. Technical report, DLO Research Inistitute for Agrobiology and
Soil fertility; The C.T.de Wit graduate school for Production Ecology, Wagenin-
gen, the Netherlands. Quantitative Approaches in Systems Analysis No. 5.

van Kraalingen, D. W. G., 1995. The FSE system for crop simulation, version
2.1. Technical report, DLO Research Inistitute for Agrobiology and Soil fertil-
ity; The C.T.de Wit graduate school for Production Ecology, Wageningen, the
Netherlands.

van Kraalingen, D. W. G., Rappoldt, C., 2000. Reference manual of the for-
tran utility library ttutil v. 4. Technical report, Plant Research International
(Report 5), Wageningen, the Netherlands. Updated PDF file available from
kees.rappoldt@ecocurves.nl.

van Kraalingen, D. W. G., Stol, W., Uithol, P. W. J., Verbeek, M. G. M., 1991.
User manual of CABO/TPE Weather System. Technical report, Centre for Agro-
biological Research, Department of Theoretical Production Ecology of the Agri-
cultural University, Wageningen, the Netherlands.

39





Appendices

41



Appendix A

General mode Fortran

The Fortran code generated by the translator from the example model Particle1.fst
in section 4 is listed in this Appendix. The EUDRIV and RKDRIV drivers are
contained in Module GeneralDrivers. This module also contains the driver supplied
variables as PUBLIC copies of private variables and the subroutines called by the
model to manage the events.

!----------------------------------------------------------------------!
! General info about this file !
! !
! Contents : Generated Fortran program !
! Creator : FST translator version 3.00 !
! Creation date : 13-Oct-2008, 10:55:19 !
! Source file : PARTICLE1.FST !
!----------------------------------------------------------------------!

!----------------------------------------------------------------------!
! STANDARD MAIN PROGRAM !
!----------------------------------------------------------------------!
PROGRAM MAIN

! Calls subroutine RERUNS, from where EUDRIV or RKDRIV are
! called for all reruns. These drivers run the sumulation.
!
! Libraries used: DRIVERS and TTUTIL

! module use
USE GeneralDrivers, ONLY: GeneralDriversVERSION

IMPLICIT NONE

! administration
CHARACTER(LEN=*), PARAMETER :: PrName = ’MAIN’
CHARACTER(LEN=*), PARAMETER :: PrVersion = ’for FST 3.00’
CHARACTER(LEN=*), PARAMETER :: PrAuthor = ’Kees Rappoldt 1995 2008’

! local
INTEGER :: OutdatUnit, LogUnit, ITMP, Getun2
LOGICAL :: TOSCR, TOLOG

INTERFACE
! interface to MODEL subroutine

SUBROUTINE Model (ITASK,OUTPUT,TIME,STATE,RATE,SCALE,NDECL,NEQ)
INTEGER :: ITASK, NDECL, NEQ
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REAL :: TIME,STATE(NDECL),RATE(NDECL),SCALE(NDECL)
LOGICAL :: OUTPUT
END SUBROUTINE Model

END INTERFACE

! open logfile
call OpenLogF (.false., ’model’, PrName, PrVersion, PrAuthor, .true.)
call GeneralDriversVERSION
call MESSINQ (TOSCR, TOLOG, LogUnit) ; TOSCR = .true.
call MESSINI (TOSCR, TOLOG, LogUnit)

! open results file
OutdatUnit = Getun2 (30,39,2)
call FOPENS (OutdatUnit,’RES.DAT’,’NEW’,’DEL’)

! all model runs
call RERUNS (OutdatUnit,’TIMER.DAT’,’MODEL.DAT’,MODEL)

! close results file .and. temporary output (res.bin)
close (OutdatUnit) ; close (OutdatUnit+1)

! close all RD* temporary files using the free unit number OutdatUnit
call RDDTMP (OutdatUnit)

! close logfile
close (LogUnit)

! check for used units (can be switched on for debugging purposes)
! call USEDUN(10,99)
END PROGRAM MAIN

!----------------------------------------------------------------------!
! TRANSLATED SIMULATION MODEL !
!----------------------------------------------------------------------!
SUBROUTINE Model (ITASK,OUTPUT,TIME,STATE,RATE,SCALE,NDECL,NEQ)

! Model subroutine for use with driver EUDRIV or RKDRIV
! This subroutine should be linked with all SUBROUTINES used
! (as far as they are not included in the FST source file), with
! the library containing the simulation DRIVERS and with TTUTIL.
!
! ================ TITLE of the FST model ================
! none
!
! The STANDARD (!!) parameter list of this model subroutine:
!
! ITASK - task of model routine I
! OUTPUT = .TRUE. output request I
! TIME - time I
! STATE - state array of model I/O
! RATE - rates of change belonging to STATE I/O
! SCALE - size scale of state variables I/O
! NDECL - declared size of arrays I
! NEQ - Number of state variables, for ITASK=1 O
! otherwise I

USE CHART
USE GeneralDrivers

IMPLICIT NONE
! formal
INTEGER :: ITASK, NDECL, NEQ
REAL :: TIME, STATE(NDECL), RATE(NDECL), SCALE(NDECL)
LOGICAL :: OUTPUT
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! Number of state variables NSV
INTEGER, PARAMETER :: NSV = 5

! Array size variables
! none

! State variables, initial values and rates
REAL X, IX, RX
REAL Y, IY, RY
REAL VX, IVX, VXR
REAL VY, IVY, VYR
REAL MeasuredTime, zero, ClockRunning

! Model parameters
REAL AX, AY, HalfSizeX, HalfSizeY

! Setting variables (Redefinable in events)
REAL ClockedTotal, Counter

! Calculated variables
REAL MeasuredPeriodX, Ratio, TheoryPeriodX, TheoryPeriodY

! Interpolation functions used in AFGEN en CSPLIN functions
! none

! Declarations and values of constants
! none

! other
INTEGER IUMOD
INTEGER Getun2
REAL NOTNUL, TimeBetweenHits
SAVE

if (ITASK == 1) then

! Initial section
! ===============

! Check size of NDEC against number of states NSV
if (NDEC.LT.NSV) then

! driver capacity too low ; stop program
WRITE (*,’(A,I4,/,A,I4)’) ’ The number of state variables is’,NSV, &
’ and the capacity of the driver is’,NDEC
call FatalERR (’MODEL’,’Driver capacity too low’)

end if

! Open input file
IUMOD = Getun2 (10,29,2)
call RDINIT (IUMOD,IULOG, ModelFile)

! Read initial states
call RDSREA (’IVX’, IVX)
call RDSREA (’IVY’, IVY)
call RDSREA (’IX’, IX)
call RDSREA (’IY’, IY)
call RDSREA (’zero’, zero)

! Read model parameters
call RDSREA (’AX’, AX)
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call RDSREA (’AY’, AY)
call RDSREA (’HalfSizeX’, HalfSizeX)
call RDSREA (’HalfSizeY’, HalfSizeY)

! Read LINT/CSPLIN interpolation functions
! none

! Read SCALE array and close datafile
call RDFREA (’SCALExxx’,SCALE,NDEC,NSV)
close (IUMOD)

! Set number of state variables
NEQ = NSV

! initial calculations

! initialize measurement
Counter = 0.0
ClockRunning = 0.0
ClockedTotal = 0.0

! initially known variables to output
! none

! send title(s) to OUTCOM
! none

! Initialize state variables
X = IX
Y = IY
VX = IVX
VY = IVY
MeasuredTime = zero

!
! request events

call SetStateEventRequest (1)
call SetStateEventRequest (2)

! assign local variable names to state array
STATE(1) = X
STATE(2) = Y
STATE(3) = VX
STATE(4) = VY
STATE(5) = MeasuredTime

else if (ITASK == 2) then

! rates of change section
! =======================
! Assign state array to local variable names

X = STATE(1)
Y = STATE(2)
VX = STATE(3)
VY = STATE(4)
MeasuredTime = STATE(5)

! event handling
if (HandleEvent) then

if (StateEvent(1)) then
! event calculations, based on last rate call
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! event NewValue assignments
VX = -VX

! switch on the stopwatch
ClockRunning = 1.0

! read the stopwatch ; count the hits
ClockedTotal = MeasuredTime
Counter = Counter + 1.0

end if
if (StateEvent(2)) then

! event calculations, based on last rate call
! event NewValue assignments

VY = -VY
end if

end if

! dynamic calculations
! place

RX = VX
RY = VY

! velocity
VXR = AX
VYR = AY

! finish conditions
if (KEEP.EQ.1) then

continue
end if

! output
if (OUTPUT) then

call ChartNewGroup
call ChartOutputRealScalar (’TIME’,TIME)
call OUTDAT (2, 0, ’TIME ’, TIME )
call OUTDAT (2, 0, ’X’, X)
call ChartOutputRealScalar(’X’, X)
call OUTDAT (2, 0, ’Y’, Y)
call ChartOutputRealScalar(’Y’, Y)
call OUTDAT (2, 0, ’VX’, VX)
call ChartOutputRealScalar(’VX’, VX)
call OUTDAT (2, 0, ’VY’, VY)
call ChartOutputRealScalar(’VY’, VY)

end if

! assign calculated rates to rate array
RATE(1) = RX
RATE(2) = RY
RATE(3) = VXR
RATE(4) = VYR
RATE(5) = ClockRunning

! assign local state variable names to state array
if (HandleEvent) then

STATE(1) = X
STATE(2) = Y
STATE(3) = VX
STATE(4) = VY
STATE(5) = MeasuredTime

end if
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else if (ITASK == 3) then

! calculate state event functions
! ===============================

call StateEventFunction (1, abs(X) - HalfSizeX)
call StateEventFunction (2, abs(Y) - HalfSizeY)

else if (ITASK == 4) then

! terminal section
! ================
! assign terminal states and rates to local variable names

X = STATE(1)
Y = STATE(2)
VX = STATE(3)
VY = STATE(4)
MeasuredTime = STATE(5)
RX = RATE(1)
RY = RATE(2)
VXR = RATE(3)
VYR = RATE(4)
ClockRunning = RATE(5)

! terminal calculations
MeasuredPeriodX = ClockedTotal / NOTNUL(Counter-1.0)

! theoretical time between hits
TheoryPeriodX = TimeBetweenHits(IX,IVX,AX,HalfSizeX)
TheoryPeriodY = TimeBetweenHits(IY,IVY,AY,HalfSizeY)
Ratio = TheoryPeriodY / TheoryPeriodX

! terminal output
call ChartTerminalGroup
call ChartOutputRealScalar (’TIME’,TIME)
call OUTDAT (2, 0, ’TIME ’, TIME )
call OUTDAT (2, 0, ’TheoryPeriodX’, TheoryPeriodX)
call ChartOutputRealScalar(’TheoryPeriodX’, TheoryPeriodX)
call OUTDAT (2, 0, ’TheoryPeriodY’, TheoryPeriodY)
call ChartOutputRealScalar(’TheoryPeriodY’, TheoryPeriodY)
call OUTDAT (2, 0, ’Ratio’, Ratio)
call ChartOutputRealScalar(’Ratio’, Ratio)
call OUTDAT (2, 0, ’MeasuredPeriodX’, MeasuredPeriodX)
call ChartOutputRealScalar(’MeasuredPeriodX’, MeasuredPeriodX)

! printplot output
! none
end if

Return
END SUBROUTINE Model

REAL FUNCTION TimeBetweenHits (X, V, A, D)
IMPLICIT NONE
REAL, INTENT(IN) :: X, V, A, D
TimeBetweenHits = (SQRT(V**2+2.0*A*(D-X)) - SQRT(V**2-2.0*A*(D+X))) / A
Return

END FUNCTION TimeBetweenHits
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FSE mode Fortran

The Fortran code generated by the translator from the example model Particle3.fst
discussed in section 4 is listed in this Appendix. The general idea of the generated
Fortran has not changed. The model still contains the model status as local vari-
ables, which are updated during integration calls from the FSE driver. And still
there is the possibility of coupling several FSE models by adding additional model
calls in the MODELS routine.

Even the list of formal parameters of the model subroutine has not been extended.
Communication on event handling between the FSE driver and the model(s) is
organized via a Fortran-90 Module EventFlagsFSE containing 4 logical variables.
The MODELS routine contains instructions for dealing with these event flags when
more models are added by hand.

!----------------------------------------------------------------------!
! General info about this file !
! !
! Contents : Generated FSE module !
! Creator : FST translator version 3.00 !
! Creation date : 13-Oct-2008, 11:09:18 !
! Source file : PARTICLE3.FST !
!----------------------------------------------------------------------!

PROGRAM MAIN
IMPLICIT NONE
CALL FSE
END PROGRAM MAIN

!----------------------------------------------------------------------!
! SUBROUTINE MODELS !
! Authors: Daniel van Kraalingen !
! Date : 5-Jul-1993 !
! : May-2008: (KR) adapted to events as generated by FST 3 !
! Purpose: This subroutine is the interface routine between the FSE- !
! driver and the simulation models. This routine is called !
! by the FSE-driver at each new task at each time step. It !
! can be used by the user to specify calls to the different !
! models that have to be simulated !
! !
! FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time) !
! name type meaning units class !
! ---- ---- ------- ----- ----- !
! ITASK I4 Task that subroutine should perform - I !
! IUNITD I4 Unit that can be used for input files - I !
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! IUNITO I4 Unit used for output file - I !
! IUNITL I4 Unit used for log file - I !
! FILEIT C* Name of timer input file - I !
! FILEI1 C* Name of input file no. 1 - I !
! FILEI2 C* Name of input file no. 2 - I !
! FILEI3 C* Name of input file no. 3 - I !
! FILEI4 C* Name of input file no. 4 - I !
! FILEI5 C* Name of input file no. 5 - I !
! OUTPUT L4 Flag to indicate if output should be done - I !
! TERMNL L4 Flag to indicate if simulation is to stop - I/O !
! DOY R4 Day number within year of simulation (REAL) d I !
! IDOY I4 Day number within year of simulation (INTEGER) d I !
! YEAR R4 Year of simulation (REAL) y I !
! IYEAR I4 Year of simulation (INTEGER) y I !
! TIME R4 Time of simulation d I !
! STTIME R4 Start time of simulation d I !
! FINTIM R4 Finish time of simulation d I !
! DELT R4 Time step of integration d I !
! LAT R4 Latitude of site dec.degr. I !
! LONG R4 Longitude of site dec.degr. I !
! ELEV R4 Elevation of site m I !
! WSTAT C6 Status code from weather system - I !
! WTRTER L4 Flag whether weather can be used by model - O !
! RDD R4 Daily shortwave radiation J/m2/d I !
! TMMN R4 Daily minimum temperature degrees C I !
! TMMX R4 Daily maximum temperature degrees C I !
! VP R4 Early morning vapour pressure kPa I !
! WN R4 Average wind speed m/s I !
! RAIN R4 Daily amount of rainfall mm/d I !
! !
! Fatal error checks: none !
! Warnings : none !
! Subprograms called: models as specified by the user !
! File usage : none !
!----------------------------------------------------------------------!

SUBROUTINE MODELS (ITASK , IUNITD, IUNITO, IUNITL, &
FILEIT, FILEI1, FILEI2, FILEI3, FILEI4, FILEI5, &
OUTPUT, TERMNL, &
DOY , IDOY , YEAR , IYEAR, &
TIME , STTIME, FINTIM, DELT , &
LAT , LONG , ELEV , WSTAT, WTRTER, &
RDD , TMMN , TMMX , VP , WN, RAIN)

USE EventFlagsFSE

IMPLICIT NONE
! Formal parameters
INTEGER :: ITASK, IUNITD, IUNITO, IUNITL, IDOY, IYEAR
CHARACTER(LEN=*) :: FILEIT, FILEI1, FILEI2, FILEI3, FILEI4, FILEI5
LOGICAL :: OUTPUT, TERMNL, WTRTER
CHARACTER(LEN=6) :: WSTAT*6
REAL :: DOY,YEAR,TIME,STTIME,FINTIM,DELT
REAL :: LAT,LONG,ELEV,RDD,TMMN,TMMX,VP,WN,RAIN

! Local variables
! none
SAVE

! Only one model used here
! When more models are added the event flags should be handled
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! before and after each model call in the same way as below.

! copy prepare flag for this model
EventReq = .false.

CALL MODEL (ITASK , IUNITD, IUNITO, IUNITL, &
FILEIT, FILEI1, &
OUTPUT, TERMNL, &
DOY , IDOY , YEAR , IYEAR, &
TIME , STTIME, FINTIM, DELT , &
LAT , LONG , ELEV , WSTAT, WTRTER, &
RDD , TMMN , TMMX , VP , WN, RAIN)

! communicate request flag to driver
AnyModelReq = AnyModelReq .or. EventReq

RETURN
END SUBROUTINE MODELS

!----------------------------------------------------------------------!
! SUBROUTINE MODEL !
! Authors: FST translator !
! Date : !
! Purpose: This subroutine is the translated FST file !
! !
! FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time) !
! name type meaning units class !
! ---- ---- ------- ----- ----- !
! ITASK I4 Task that subroutine should perform - I !
! IUNITD I4 Unit of input file with model data - I !
! IUNITO I4 Unit of output file - I !
! IUNITL I4 Unit number for log file messages - I !
! FILEIT C* Name of timer input file - I !
! FILEIN C* Name of file with input model data - I !
! OUTPUT L4 Flag to indicate if output should be done - I !
! TERMNL L4 Flag to indicate if simulation is to stop - I/O !
! DOY R4 Day number within year of simulation (REAL) d I !
! IDOY I4 Day number within year of simulation (INTEGER) d I !
! YEAR R4 Year of simulation (REAL) y I !
! IYEAR I4 Year of simulation (INTEGER) y I !
! STTIME R4 Start time of simulation (=day number) d I !
! FINTIM R4 Finish time of simulation (=day number) d I !
! DELT R4 Time step of integration d I !
! LAT R4 Latitude of site dec.degr. I !
! LONG R4 Longitude of site dec.degr. I !
! ELEV R4 Elevation of site m I !
! WSTAT C6 Status code from weather system - I !
! WTRTER L4 Flag whether weather can be used by model - O !
! RDD R4 Daily shortwave radiation J/m2/d I !
! TMMN R4 Daily minimum temperature degrees C I !
! TMMX R4 Daily maximum temperature degrees C I !
! VP R4 Early morning vapour pressure kPa I !
! WN R4 Daily average windspeed m/s I !
! RAIN R4 Daily amount of rainfall mm/d I !
! !
! Fatal error checks: if one of the characters of WSTAT = ’4’, !
! indicates missing weather !
! Warnings : none !
! Subprograms called: models as specified by the user !
! File usage : IUNITD,IUNITD+1,IUNITO,IUNITO+1,IUNITL !
!----------------------------------------------------------------------!
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SUBROUTINE MODEL (ITASK , IUNITD, IUNITO, IUNITL, &
FILEIT, FILEIN, &
OUTPUT, TERMNL, &
DOY , IDOY , YEAR , IYEAR, &
TIME , STTIME, FINTIM, DELT , &
LAT , LONG , ELEV , WSTAT, WTRTER, &
RDD , TMMN , TMMX , VP , WN, RAIN)

USE CHART
USE EventFlagsFSE, ONLY: EventReq

! Title of the program
! <fill in your title here>

IMPLICIT NONE

! Formal parameters
INTEGER :: ITASK , IUNITD, IUNITO, IUNITL, IDOY, IYEAR
LOGICAL :: OUTPUT, TERMNL, WTRTER
CHARACTER(LEN=*) :: FILEIT, FILEIN, WSTAT
REAL :: DOY, YEAR, TIME, STTIME, FINTIM, DELT
REAL :: LAT, LONG, ELEV, RDD, TMMN, TMMX, VP, WN, RAIN

! Standard local variables
INTEGER :: IWVAR

! Array size variables
! none

! State variables, initial values and rates
REAL X, IX, RX
REAL Y, IY, RY
REAL VX, IVX, VXR
REAL VY, IVY, VYR
REAL MeasuredTime, zero, ClockRunning

! Model parameters
REAL AX, AY, HalfSizeX, HalfSizeY

! Setting variables
REAL ClockedTotal, Counter

! Other calculated variables
REAL MeasuredPeriodX, Ratio, TheoryPeriodX, TheoryPeriodY

! Interpolation functions used in AFGEN en CSPLIN functions
! none

! Declarations and values of constants
! none

! state event control
INTEGER :: ivnt
INTEGER, PARAMETER :: SEVcnt = 2
REAL, DIMENSION(SEVcnt), SAVE :: SEVfun, SEVfunSIGN
LOGICAL, DIMENSION(SEVcnt), SAVE :: StateEvent, AtEventState

! Used functions
REAL INTGRL, NOTNUL, TimeBetweenHits

! Code for the use of RDD, TMMN, TMMX, VP, WN, RAIN (in that order)
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! a letter ’U’ indicates that the variable is Used in calculations
CHARACTER(LEN=6), PARAMETER :: WUSED = ’------’
SAVE

! Check weather data availability
if (ITASK==1 .or. ITASK==2 .or. ITASK==4) then

do IWVAR=1,6
! is there an error in the IWVAR-th weather variable ?

if (WUSED(IWVAR:IWVAR)==’U’ .and. WSTAT(IWVAR:IWVAR)==’4’) then
WTRTER = .TRUE.
TERMNL = .TRUE.
RETURN

end if
end do

end if

if (ITASK == 1) then

! Initial section
! ===============

! Open input file
CALL RDINIT (IUNITD, IUNITL, FILEIN)

! Read initial states
call RDSREA (’IVX’, IVX)
call RDSREA (’IVY’, IVY)
call RDSREA (’IX’, IX)
call RDSREA (’IY’, IY)
call RDSREA (’zero’, zero)

! Read model parameters
call RDSREA (’AX’, AX)
call RDSREA (’AY’, AY)
call RDSREA (’HalfSizeX’, HalfSizeX)
call RDSREA (’HalfSizeY’, HalfSizeY)

! Read LINT functions
! none

close (IUNITD)

! Initial calculations

! initialize measurement
Counter = 0.0
ClockRunning = 0.0
ClockedTotal = 0.0

! Initially known variables to output
! none

! Send titles to OUTCOM
! none

! Initialize state variables
X = IX
Y = IY
VX = IVX
VY = IVY
MeasuredTime = zero
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! release all state events
AtEventState = .false.

else if (ITASK == 2) then

! Rates of change section
! =======================
! place

RX = VX
RY = VY

! velocity
VXR = AX
VYR = AY

! Finish conditions
! none

! Output
if (OUTPUT) then

call OUTDAT (2, 0, ’X’, X)
call ChartOutputRealScalar(’X’, X)
call OUTDAT (2, 0, ’Y’, Y)
call ChartOutputRealScalar(’Y’, Y)
call OUTDAT (2, 0, ’VX’, VX)
call ChartOutputRealScalar(’VX’, VX)
call OUTDAT (2, 0, ’VY’, VY)
call ChartOutputRealScalar(’VY’, VY)

end if

! event functions
SEVfun(1) = abs(X) - HalfSizeX
SEVfun(2) = abs(Y) - HalfSizeY

! do not repeat same event at same time
StateEvent = (SEVfunSIGN > 0.0 .and. SEVfun <= 0.0 .or. &

SEVfunSIGN < 0.0 .and. SEVfun >= 0.0) .and. .not.AtEventState

EventReq = any(StateEvent)

else if (ITASK == 3) then

! Integration section
! ===================
! Before integration, save event function signs for the current state
! However, disable events which are in event state now

do ivnt=1,SEVcnt
if (AtEventState(ivnt)) then

! current state is event state ; disable this event
! event function must first move away from zero

SEVfunSIGN(ivnt) = 0.0
else

if (SEVfun(ivnt) < 0.0) then
! event function negative

SEVfunSIGN(ivnt) = -1.0
else if (SEVfun(ivnt) > 0.0) then

! event function positive
SEVfunSIGN(ivnt) = +1.0

else
! event function zero ; no event can take place
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SEVfunSIGN(ivnt) = 0.0
end if

end if
end do

! now, by integration, move away from all event states !!!
AtEventState = .false.

X = INTGRL (X, RX, DELT)
Y = INTGRL (Y, RY, DELT)
VX = INTGRL (VX, VXR, DELT)
VY = INTGRL (VY, VYR, DELT)

! stop watch
MeasuredTime = INTGRL (MeasuredTime, ClockRunning, DELT)

else if (ITASK == 4) then

! Terminal section
! ================

! Terminal calculations
MeasuredPeriodX = ClockedTotal / NOTNUL(Counter-1.0)

! theoretical time between hits
TheoryPeriodX = TimeBetweenHits(IX,IVX,AX,HalfSizeX)
TheoryPeriodY = TimeBetweenHits(IY,IVY,AY,HalfSizeY)
Ratio = TheoryPeriodY / TheoryPeriodX

! Terminal output
call OUTDAT (2, 0, ’TheoryPeriodX’, TheoryPeriodX)
call ChartOutputRealScalar(’TheoryPeriodX’, TheoryPeriodX)
call OUTDAT (2, 0, ’TheoryPeriodY’, TheoryPeriodY)
call ChartOutputRealScalar(’TheoryPeriodY’, TheoryPeriodY)
call OUTDAT (2, 0, ’Ratio’, Ratio)
call ChartOutputRealScalar(’Ratio’, Ratio)
call OUTDAT (2, 0, ’MeasuredPeriodX’, MeasuredPeriodX)
call ChartOutputRealScalar(’MeasuredPeriodX’, MeasuredPeriodX)

! Printplot output
! none

else if (ITASK == 5) then

! Handle Events
! =============

if (StateEvent(1)) then
! event calculations, based on last rate call
! output of event-calculated variables ; added to previous group

! event NewValue assignments
VX = -VX

! switch on the stopwatch
ClockRunning = 1.0

! read the stopwatch ; count the hits
ClockedTotal = MeasuredTime
Counter = Counter + 1.0
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! this prevents event repetition
AtEventState(1) = .true.

end if
if (StateEvent(2)) then

! event calculations, based on last rate call
! output of event-calculated variables ; added to previous group

! event NewValue assignments
VY = -VY

! this prevents event repetition
AtEventState(2) = .true.

end if
end if

Return
END SUBROUTINE MODEL

REAL FUNCTION TimeBetweenHits (X, V, A, D)
IMPLICIT NONE
REAL, INTENT(IN) :: X, V, A, D
TimeBetweenHits = (SQRT(V**2+2.0*A*(D-X)) - SQRT(V**2-2.0*A*(D+X))) / A
Return

END FUNCTION TimeBetweenHits

. . . DRAFT . . .


	Preface
	Introduction
	FST version 3
	Syntax
	Calendar connection in GENERAL mode
	A problem of the GENERAL mode of FST 2
	The solution
	Calendar connection in combination with WEATHER
	The available calendar variables
	Referring to StartYear, StartDOY and OneDay

	New intrinsic functions
	The intrinsic function SimulationTime
	The intrinsic functions SUM and DOT_PRODUCT
	Other new intrinsic functions

	String arguments of subroutines and functions
	User defined functions
	Appended Fortran subprograms
	Number of subroutine and function arguments
	What does the translator do with Fortran?
	The Fixed/Free form

	Some other changes

	Time and state events
	Setting variables
	Events by example
	Event sections: the rules
	Reaching a state event
	General mode
	FSE mode
	Scaling the value of the event function
	Missed state events

	Simultaneous events

	Example
	FST model Particle1.fst
	A nice surprise!

	Explanation of the model
	INITIAL
	DYNAMIC
	TERMINAL

	Inspecting the logfile
	Connecting the calendar: Particle2.fst
	In FSE mode: Particle3.fst
	Comments on this program
	The generated Fortran code
	Adding events to existing FSE models

	Installation
	FSTwin on a PC
	The FST object libraries
	Drivers
	Weather
	TTutil


	Bibliography
	Appendix General mode Fortran
	Appendix FSE mode Fortran

