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Chapter 1

Introduction.

1.1 Copper in a nutshell.

This manual contains instructions on how to use Copper, aldasad LALR(1) parser
generator with expanded parsing capability compared td&va-based CUR{t p: //
WwWA\2. cs. t um edu/ proj ect s/ cup/ ) or the C-based Bisorh{ t p: / / www. gnu.
or g/ sof t war e/ bi son/) .

Like CUP and Bison, Copper takes the specification of a formahgrar and generates
from it a program (specifically, a Java class) that can pdmséanguage of that grammar.
However, unlike CUP and Bison, Copper gives you everything s to do so. Parsers
from most generators require an external scanner built bhantool, a scanner generator
—Jlex(ttp://ww. cs. princeton. edu/ ~appel / nodern/javal/ JLex/)is
usually used with CUP and Flekt(t p: / / f | ex. sour cef or ge. net /) with Bison —
in order to work. Copper generates both the scanner and teergesm a single specifica-
tion and puts them in a single Java class; this integrati@bles Copper to parse a larger
class of grammars than CUP or Bison.

This manual assumes a working knowledge of LR parsing; kedgé of CUP and JLex
may also be helpful.

1.2 Example specification.

Copper is designed to support several “skins,” or differentnfats for input, to suit a wide
range of grammar writers. There are two such skins: theveasikin, meant for use with
machine-generated grammar specifications, and a skin kimgi¢he input styles of JLex
and CUP as closely as possible, meant for use by flesh-and-gl@onmar writers. This
manual concerns itself exclusively with the latter skin.

Input to Copper consists, loosely, of preamble materialskgpge and import declara-
tions, etc), lexical syntax (terminal symbols and regexes used tallihé scanner) and
context-free syntax (nonterminal symbols and productiosed to build the parser). Op-
tionally semantic actions may be supplied with productiand terminals.

For an example of a grammar specification written for the CUR ek Copper, see
Algorithms 1 (no semantic actions) and 2 (with semanticomsj. The parser compiled



Algorithm 1 Recognizer for simple arithmetic grammar.

package mat h;

[+ This is a RECOGNI ZER for a sinple arithnetic

* | anguage; it will give errors when invalid

* strings are entered, but takes no action on valid
* strings. */

9

%parser ArithmeticParser

[+ Lexical syntax =/

% ex{
[+ Wi t espace */
ignore termnal W .= /] ]*/;
[+ Ganmar termnals =/
term nal PLUS o= N+
term nal UNARY_M NUS = -/
term nal Bl NARY_M NUS =01
term nal TI MES N ALY A
term nal DI VI DE = AN T
term nal LPAREN = IN(/;
term nal RPAREN =1\
term nal NUMBER = /0] ([1-9]1[0-9]*)/;

% ex}

[+ Context-free syntax =*/

%ef{

/* Nontermnals */

non term nal expr;

[+ Start synmbol =*/

start with expr;

/* Precedences =/

precedence | eft PLUS, BI NARY_M NUS;
precedence | eft TIMES, D VIDE;
precedence | eft UNARY_M NUS;
expr ::=

expr PLUS expr

expr BI NARY_M NUS expr
expr TI MES expr

expr DI VI DE expr

UNARY_M NUS expr

% ayout ()

| LPAREN expr RPAREN
| NUVBER

%t}




Algorithm 2 Parser for simple arithmetic grammar.

package mat h;
[+ This is a PARSER for a sinple arithnetic
* | anguage; when run on a valid string, it

* Wll return the value of the expression
* represented by that string. =/
9

%parser ArithmeticParser
[+ Lexical syntax =/

% ex{
[+ Wi t espace */
ignore termnal W ::= /] ]*/;
[+ Grammar terminals */
term nal PLUS o= I\ +
term nal UNARY_M NUS ==/
term nal Bl NARY_M NUS o=
term nal TI MES = [\ %/
term nal DI VIDE = AN
term nal LPAREN = IN(/;
term nal RPAREN =1\
term nal Integer NUVMBER ::= /0| ([1-9][0-9]*)/
{:

RESULT = | nteger. parselnt (Il exene);

2}

% ex}

/* Context-free syntax =*/

%ef {

/+ Nonterm nals =/

non terninal |nteger expr;

[+ Start symbol =*/

start with expr;

/* Precedences =/

precedence | eft PLUS, BI NARY_M NUS;
precedence | eft TIMES, DI VI DE;
precedence | eft UNARY_M NUS;

expr ::=
expr: | PLUS expr:r {: RESULT =1 + r;
| expr:l BINARY_M NUS expr:r {: RESULT =1 - r;
| expr:l TIMES expr:r {: RESULT =1 =* r;
| expr:| DIVIDE expr:r {: RESULT =1 [ r;
| UNARY_M NUS expr:e {: RESULT = -1 * ¢,

% ayout ()

| LPAREN expr:e RPAREN {: RESULT = e; :}
| NUMBER: n {: RESULT = n; :}

%ef } 5

e e e




for this grammar will recognize arithmetic operations ovgegers, by the four arithmetic
operations as well as unary negation. Note that there aterésaof this specification that
would not be found in grammar specifications written for iiadal tools, such as two
terminals sharing the same regex; these will be discusskenitirer detail below.

The structure of the rest of the manual is as follows. Chaptais@usses the novel
features of Copper and how to utilize them. Chapter 3 containsxaaustive list of the
various components of a Copper specification. Chapter 4 eeniafiormation about run-
ning Copper, such as command-line syntax and how to integprets. Chapter 5 contains
information about utilizing the generated parser. Apperdcontains the grammar of the
CUP skin’s concrete syntax, while Appendix B contains a mtabaate example of Cop-
per's use in the form of a grammar for the “Mini-Java” langedgom Andrew Appel’s
Modern Compiler Implementation in Java



Chapter 2

Copper’s parsing algorithms.

2.1 Context-aware scanning.

The most crucial difference between Copper and the stand®t&® (1) parser generator is
the addition ofcontext-aware scanning

The typical scanner will scan through the input file and safeait into a stream of
tokens with no feedback from the parser. A scanner in Coppecobtrast, contains a
distinct sub-scanner for every state of the parser; scaameeparser work in lock-step, and
for each token a different scanner will run, scanning onhtli@se terminals that are valid
syntax at that locatioh.

This enables such constructs as the two “minus” terminalsararithmetic grammar of
Algorithm 1; UNARY_M NUS occursbeforean expression, whilBl NARY_M NUS occurs
betweerexpressions. However, it also requires more careful prapaf lexical syntax, as
described in Sections 2.2 and 2.3.

2.2 Specification of whitespace and other layout.

2.2.1 Layout in traditional tools.

With a scanner generator such as Lex or JLex, the specificatiosists of a list of regexes,
optionally with semantic actions attached:

regexl { return tok(sym TERML, yytext());
regex2 { return tok(sym TERM2, yytext());
| ayout _regex { /* No semantic action. x/
regex3d {

}
}
}

When the scanner runs on an input, it will check its list of regain downward order until
it finds one that matches the head of the input. It will thenugegg the matching part of the
input (the “lexeme,” which in Lex and JLex is stored in theighteyyt ext ) and run the

1if no such terminal is matched, the scanner will then scamltiderminals to procure information for an
error message.



semantic action associated with that regex; it will themsagain at the point in the input
immediately following that scan’s lexeme.

If the semantic action returns an object, that object (tbkeéh”) is added to the stream
of tokens being returned to the parser. If no object is retdrrthe regex is judged to
represent what we cakyout— parts of the input that are not supposed to be invisible to
the parser and have no meaning thereto. The most common édiegut are whitespace
and comments.

2.2.2 How Copper handles layouit.

Copper has a more sophisticated method for specifying andlingrayout. While build-
ing a parser, Copper keeps track of which terminals have besigmhted to appear as
layout in which contexts, and builds a sub-scanner for eacheap state that scans only for
the layout that is valid at that location.

Then, each time the parser calls out to the scanner for a rkemta will scan first
using the layout sub-scanner, matching many tokens of tageuies of spaces, comment
blocks,etc) may be present. Then when no more layout is present, it ealhising the
sub-scanner for non-layout tokehs.

2.2.3 How to specify layout in Copper.
2.2.3.1 Universal layout.

The simplest sort of layout in Copper ismiversallayout, which should suit the needs
of most grammar writers. To designate a terminal as univémgaut, simply place the
modifieri gnor e in front of its declaration, as is done on the termi&lin Algorithm 1.
This has a similar effect to giving a terminal no semanti¢osicin Lex or JLex, with the
important exception that it does np¢r seprevent the parser from using that terminal in a
non-layout capacity.

Any number of grammar-wide layout tokens may appear at tghang and end of the
input. It may also appear between any two input tokens, éxgbpre explicitly specified
otherwise (see section 2.2.3.2).

N.B.: In a traditional scanner, layout is always optional, anddfae is specified as
a nonempty regexe(g, optional whitespace might be specified[as] +, one or more
spaces). In Copper, layout is able to be made mandatory, asdiitional layout should
be specified as a possibly-empty regexg( optional whitespace might be specified as
[ ]*,zeroor more spaces).

2Implemented in a naive manner, this arrangement wouldaseréne number of scans performed when
there was little to no whitespace in a file. In practice, Cagpeable to scan for layout and non-layout
concurrently.



2.2.3.2 Layout per production.

Copper allows each production to override the grammar-wageut and specify which
terminals may appear as layout between the strings dengeds$ymbols on its right-hand
side.

An emptylayout set may be explicitly specified, as is done on the prhoni
expr ::= UNARY_M NUS expr in Algorithm 1. In this example, spaces are not per-
mitted between the “negative” sign and the expression iateegyalthough they are permit-
ted inside the latter).

If instead layout sets contain one or more terminals, théabe similarly to universal
layout in their designated contexts. For example, if thelpobionexpr :: = expr PLUS expr
in Algorithm 1 had a layout terminal with regéx ] + (one or more underscores), the string
3 - 1+ 2 would be valid input, while the strin§ - 1+ 2 would not, because
the space betweenand?2 is not valid layout in that context. (However, the emptyrsiri
betweenl and+ is valid, because the upcomingcould as well be any other arithmetic
operator, and thus all the layout fraeweryproduction representing an arithmetic operator
is valid there.)

The algorithm calculating what layout is valid where is guatcomplex one, but rules-
of-thumb when specifying layout are as follows:

¢ In any context where a terminal from the right-hand side ofriatn production can
be shifted (except the leftmost one), expect the layoutatf phoduction.

¢ In any context where a nonterminal from the right-hand side certain production
can be reduced (except the rightmost one), expect the laydiiat production.

e Layout specified on productions with zero or one symbols erright-hand side is
meaningless.

For details of how to implement layout per production in Cappee Section 3.5.3.

2.3 Lexical precedence paradigm.

It is possible for the languages of regexes to overlap, iigambiguities in which several
regexes match a given lexeme. The most common of these keyeord-identifieambi-
guity, where a language keyword such ag also matches the regex given for identifiers.

In the operation of a scanner from a traditional scanner rgéo as described above,
no ambiguities are possible because the regex list is gonagh one at a time, and the
first one that matches is always used. Only if two terminaiselthe exact same regex is
any further kind of disambiguation possible.

Lexical precedencen terminals is here defined as a relation that determinesnever
several terminals have a regex matching a certain lexemighwérminal should match.
The above approach mandates a linear order on terminalsteawinal must take a place
on a line, and the terminal closest to the front of the linesgisymatches.



Copper, on the other hand, allows a more generalized lexreakpence relation. In-
stead of putting terminals in a line, lexical precedenc@ecgied in Copper by individual
statements of one of the following forms:

1. “Terminalz has precedence over termingl or

2. “If an ambiguity occurs among terminatsy, andz, return one of them.”

Context-aware scanning, with its many sub-scanners sogfoninestricted sets of regexes,
eliminates most ambiguities and makes this scheme préactica

2.3.1 Dominate/submit-lists.

The primary sort of lexical precedence declarations usé€tbipper arelominate-listsand
submit-lists specified on terminals. They implement the first sort ofestegnts listed
above.

As the names might suggest, a termima dominate-list is a list of terminals taking
precedence over, while x’s submit-list is a list of terminals over whichtakes precedence.

Formally, x is ony’s submit-list iff y is on x’s dominate-list; however, in the actual
grammar specifications, one of these will do for both. Foaillebf how to specify these
lists in Copper, see Section 3.4.2.

N.B.: The precedence relation created by dominate- and sulststidiintransitive i.e.,
if terminal z is on terminaly’s submit-list, and: on y’s, it does not follow that is onz’s
submit-list. = must be placed on that list explicitly in such a case.

N.B.: The precedence relation created by dominate- and sulststidcontext-insensitive
i.e., if terminaly is on terminalk’s dominate-list, then even in a sub-scanner that is scgnnin
for = but noty, nothing matching, will match z.

2.3.2 Disambiguation functions/groups.

The other kind of lexical precedence declarations in Coppedigambiguation functions
anddisambiguation groups

A disambiguation function is a function (a Java method, en¢hse of Copper’s imple-
mentation) specified for a set of terminals, to disambigtregeparticular set. It is meant as
a second choice if dominate- and submit-lists do not fit tek.tBisambiguation functions
implement the second sort of statements described above.

A disambiguation function works as follows: if the input teetscanner at a given point
matches the regex of more than one termieal.(the groupr, y, andz), and this ambiguity
is not able to be resolved through dominate- and submg;lise scanner will check to see
if there has been a disambiguation function for;, andz specified. If so, it will execute
the function, which takes in the matched lexeme and retwastly one ofz, y, andz.

One use for disambiguation functions is the “typenametifierf ambiguity occurring
when parsing C: typenames and identifiers share a regex; i@ mas been defined as

10



a type using d ypedef , it is scanned as a typename, and otherwise it is scanned as an
identifier.

This ambiguity may be resolved with a disambiguation fumctspecified for type-
names and identifiers, which returns “typename” if the legésron a list of typenames and
“identifier” otherwise.

A disambiguation groups a special case of the disambiguation function: insteaal of
function returning a terminal, it simply specifies the temalito return.

N.B.: Disambiguation functions and groups amntext-sensitive.e., if there is a disam-
biguation group on terminals andy specifying that terminat should be returned, in a
context where only terminal is valid, y will be matched.

2.4 Transparent prefixes.

The concept of &ransparent prefixxan best be described by example:

Suppose that in some grammar there was a termitidl'onst matching integers (regex
[ 0- 9] +) and aterminaF'loatConst matching floating-point numbers (regef- 9] +(\ . [ 0- 9] +) ?).
Clearly any number without a decimal point matches both, setts also a disambiguation
group on the sef/ntConst, FloatConst}, specifying thatntConst should be returned.
Now, in the absence of a decimal poifttConst will be matched.

Now suppose that there must be some way for the user of thergarsdicate that a
number without a decimal point is a floating-point numbeilisisidone using a transparent
prefix: a terminalFloat Prefiz with regexf | oat : is defined, and assigned to be the
transparent prefix of'loatConst. Now, the integer 214 would be entered2is4, while
the floating-point 214 would be enteredfdsoat : 214. Thef | oat : prefix is scanned
and thrown away like layout (the parser never sees it, hametanspareny, but unlike
layout, when it is scanned it produces a narrower contextl@aws F'loatConst to be the
only valid terminal.

N.B.: Never use transparent prefixes to disambiguate betweeretwinals that are on
each other’s dominate- and submit-lists; this does not wloekto context-insensitivity.

11



Chapter 3

Format of grammar specifications.

3.1 Comments and whitespace.

Java-style commentg [ followed by a comment and a newline, and comments enclosed
in/* and+*/) are also recognized as layout in the CUP skin.

3.2 Preamble.

The preambleis a block of Java code that will begin the parser source filee@utput.
It should contain any needed package or import declargtiamsvell as any non-public
classes to be included in the file.

The preamble is terminated by the stri#@palone on a line, as shown in Algorithm 1.

3.3 Parser name.
The name of the parser class is provided by a line of the form
%par ser [cl assnane]

occurring on the line directly after t#®6ending the preamble.

3.4 Lexical syntax blocks.
Lexical syntax blocks are enclosed in the markers
% ex{
and
% ex}
They may include any number of declarations of terminakamiibiguation functions, and

disambiguation groups.

12



3.4.1 Terminal class declarations.

For convenience, terminals may be formed together into-@isjoint) sets known ater-
minal classesTerminal classes are declared with a line of this form:

class tclassl[,tclass2,...];

Note that such a line only declares the classes, as oppospédtdying which terminals a
class contains. That is done in terminal declarations.

3.4.2 Terminal declarations.

The simplest terminal declaration is of this form:
termnal [termmane] ::= /[regex]/;

This declares a terminal with a specified regex that is a membeo terminal classes,
does not specify any precedence relations with other taisalthough another terminal
may include it on its dominate- or submit-list), and does Im@ie a transparent prefix or
semantic action.

A terminal declaration specifying all optional attribuief this form:

ignore termnal [terntype] [termmane] ::.= /[regex]/

in ([termnal classes]), < ([submt-list]), >
([dom nate-list])

{: ... =} Yrefix [prefixnane];

This declares a terminal that is a member of all terminalsgan the list following n,
with submit- and dominate-lists containing at least thenteals provided on the lists fol-
lowing < and> respectively, a semantic action returning a designatesl typd a transpar-
ent prefix.

Submit- and dominate-lists may contain the names of terntliagses as well as the
names of terminals. Placing a terminal class on the list ®stehnd for placing all the
members of that class on the list.

3.4.2.1 Semantic actions on terminals.

Semantic actions on terminals work differently in Coppenttreother scanner generators.
While in JLex semantic actions are specified on regexes andhrah object identifying
the matched terminal, as described above, in Copper the seraation is only run after it
is certain what terminal has been matched.

Therefore, the semantic actions of terminals take on anticlrformat to those of
productions in CUP. A variablBRESULT, of the type specified byer nt ype (default is
hj ect) is available inside the semantic action block; what istemnittoRESULT will be
returned and is available to access in production semactimne.

In JLex’s semantic actions, the matching lexeme is refetwday the name/yt ext .

In Copper, the nameexene is used instead.

13



Algorithm 3 Terminal declaration example.
% ex{

cl ass keywords;

termnal INT ::=/int/
in (keywords), < (), > ();
termnal FLOAT ::= /float/

in (keywords), < (), > ();
/+ Return a String: the token’s | exenme =/
terminal String IDENTIFIER ::= /[a-z]+/

in (), < (keywords), > ()

RESULT = | exene;
H
% ex}

Example. Consider a language with two keyword\T andFLQOAT, and identifiers de-
fined as strings of one or more lowercase letters. This laygisdefined by the lexical
syntax block in Algorithm 3.

3.4.3 Disambiguation functions/groups.

A disambiguation function takes this form:
di sanmbi guate [groupnane]: (terml,tern[,ternB,...])
{:

[ body of Java nmethod returning one of terml, tern®,
]
H
A disambiguation group takes on this form:
di sanmbi guate [groupnane]: (terml,tern[,ternB,...])
.= [one of terml, tern2, ...];
Example. Consider once again the example from above. As specifiedwhérdominate-
and submit-lists|, NT andFLOAT arereservedkeywords,.e., they cannot be used as iden-
tifiers even in contexts wheteNT andFLCQOAT are invalid syntax.
Suppose that instead the stringst andf | oat should only be interpreted as key-

words in contexts where they are valid, and as identifiersygigere else. Disambiguation
groups may be used to implement this, as shown in Algorithm 4.

14



Algorithm 4 Disambiguation group example.

% ex{
terminal INT ::=/int/;
term nal FLOAT ::= /float/;
termnal String IDENTIFIER ::= /[a-z]+/
{:
RESULT = | exene;
L}
di sanmbi guate | D FLOAT: ( FLOAT, | DENTI FI ER) ::= FLOAT,
di sanbi guate | D I NT: (I NT, | DENTI FI ER) ::= | NT;
% ex}

3.5 Context-free syntax blocks.
Context-free syntax blocks are enclosed in the markers
%ef {
and
%f}

They may include one declaration of a start symbol, and amgban of declarations of
nonterminals, operator precedence relations, and priothgctWith very few exceptions,
these take the same form as in CUP.

3.5.1 Nonterminal/start-symbol declarations.

Nonterminal declarations take the familiar form:
non termnal [nttype] ntnanmel[,ntname2,...];

This declares one or more grammar nonterminals. If a tyypé ype) is provided, the
variableRESULT declared in the semantic action of any production with onde$e non-
terminals on its left-hand side will be of type: t ype. If a type is not provided, the default
is Qbj ect .

The declaration of a grammar’s start symbol takes the sglia@atory form

start with [ntnane];

15



3.5.2 Operator precedence/associativity declarations.

Operator precedence and associativity declarations tekamiliar form:
precedence (left/right/nonassoc) terml[,tern2,...];

Terminals listed on the same line have identmarator precedencgevhile terminals listed
on successive lines have successively higher precedeigcén Algorithm 1, TI MEShas a
higher precedence thd.US, while PLUS andBI NARY_M NUS have equal precedence.
All terminals on a line have theperator associativitgpecified on that line.

These precedences and associativities are used to resdlveeduce conflicts, using
the following logic:

e Operators for the shift and reduce actions are defined:

— The shift action’s operator is the terminal that would bdtsti

— The reduce action’s operator is the operator of the produdtiat would be
reduced. This is by default the last terminal on the rightehside of the pro-
duction €.g. +In NT ::= NT * NT + NT), but this can be overridden —
see théfpr ec attribute in the next section.)

o If the two operators have different precedence, resolvectimélict in favor of the
action whose operator has the highest precedence.

¢ If the two operators have the same precedence and the saoogasisgy:

— If the associativity i ef t , resolve in favor of the reduce action.

— If the associativity ig i ght , resolve in favor of the shift action.

— If the associativity isionassoc, remove both actions — the operator is meant
to have its associativity defined through parentheses,moesither manner.

e Otherwise, report the conflict as unresolvable.

3.5.3 Production declarations.

Production declarations take the form:
[ntnanme] ::=

[syml[:label 1] ...]
{:

/* Semantic action for [ntnanme] ::=
RHS1 =/

)
[Y%rec [termane]] [% ayout ([terndl,..])]

16



[ | RHS2 ...

This form is identical in most respects to that used in CUP. déaration starts with a
nonterminal, giving the left-hand side of the productiam&ilow, followed by: : =. Then
come one or more sequences of zero or more terminals and'momaéds (right-hand sides),
separated by vertical bars. Each right-hand side may agdtiohave a semantic action and
two attributes:

e Custom operator. As in CUP, adding the attribute
%prec [termane]
to a production will change the production’s operator frdra tlefault of the last
terminal on the right, td er mane.

e Custom layout. The only bit of production syntax differing from CUP’s, thikoavs
specification of custom layout on productions. Adding thalatte
% ayout (ternmil,...,termm)
to a production will change the layout on that productiomfrthe universal layout

settotheseterntl, ..., term.
3.5.3.1 Semantic actions.

Semantic actions on productions are identical to those in @o¥Pright-hand-side symbols
that have been labeled may be accessed inside the semadiaircieging the label name, as
demonstrated in Algorithm 2.

3.6 User code blocks.

3.6.1 Auxiliary.

Auxiliary code is inserted in the body of the parser classis iheant to hold fields and
methods accessed by semantic actions and/or outsideglassé as additional construc-
tors.

An auxiliary code block takes this form:

Yaux{
[ code bl ock]

Yaux}
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3.6.2 Initialization.

Initialization code is inserted in the body of a method rurewlthe parser is started. It is
meant to hold initializations of parser attributes.
An initialization code block takes this form:

% nit{
[ code bl ock]

% ni t}

3.7 Parser attributes.

A parser attributeis a variable meant for usxclusivelyin semantic actions. Unlike fields
specified in auxiliary code, parser attributes can be aedessither from auxiliary code
nor from outside classes.

A parser attribute is declared as follows:

Yattr [attrtype] [attrnane];

Both type and name are mandatory.
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Chapter 4

Running Copper.

4.1 Requirements.
To compile a Copper parser, you need:

e Java Runtime Environment v.1.5 or greater.
e 256MB of memory (512—-768 recommended if compiling largengraars).
e Copper Conpi | er. j ar on the classpath.

4.2 Command-line.

Copper’s full command-line syntax is
java -jar [location]/CopperConpiler.jar [-q] [-Vv] [-runv]
[ - package packagenane] [-parser classnane] [-logfile file]

[-skin (cup|native)] [-engine (stripped| noded)] [specfile]
> [parserfile]

4.2.1 Quick-start.

The simplest usage of Copper is
java -jar [l ocation]/CopperConpiler.jar [specfile] > [parserfile]

This command takes a grammar specificatioapecf i | e, written in the CUP skin, and
compiles it to a parser class of the package and class nan#iepeén the specification
itself; the source code of this parser class is then outpytatoser fi | e. The other
settings are at defaults.
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4.2.2 Switches.
4221 -qand-v.

By default, when running, Copper outputs a series of progreisators to standard error,
detailing what phase of parser compilation it is in.

e The- q switch turns these off.

e The- v switch causes much debugging information — grammar desumg lexical
precedence graphs, state-by-state descriptions of LR Ofékse tablestc.— to be
output to standard error. This switch is meant mainly forlmg€opper developers.

4.2.2.2 -runv.

Compiles the parser to output debugging information whenkaeant for use in debugging
parsers.

4.2.2.3 - package.

Specifies what package the output parser should be placed in.

N.B.: Do not specify packages both on the command line and in thafgdion; this
will cause an error when compiling the parser source.

4.2.2.4 -parser.

Specifies what the name of the parser class should be. Os®ithé name specified by a
%par ser directive.

4225 -logfile.

Specifies a file to which standard error should be redirected.

4226 -skin.

Chooses the skin to use when readsqecf i | e. The default i up.

4.2.2.7 -engine.

Chooses the parsing enginee( implementation of the parsing algorithm) for which the
parser should be built. Options are:

e stri pped: The default. Parsers built on teé¢ r i pped engine run approximately
three times slower than their CUP analogues.

e noded: Still an experimental engine: parsers run at speeds apipiregathat of CUP,
but in compiling and running consume much more memory thasdtbuilt on the
st ri pped engine.
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Command-line

Task parameter Type equivalent Notes
conpi | eVer bose Bool ean -V
engi ne String - engi ne
Fully qualified name sets
- package,

ful | C assNane String package and class,

- par ser .
unqualified name class only.

I nput Reader None Input source of any kind.

Name for source specified

i nput Label String None byi nput (e.g.a filename).
i nputFile String [ specfil e] Input file by name.
out put PrintStream None Output sink of any kind.

. Name for sink specified
out put Label String None by out put (e.g.afri)lename).
outputFile String [ specfile] Output file by name.
runVer bose Bool ean -runv

skin String -skin

Table 4.1: ANT-task parameters.

N.B.: There are differences between the ways the two engines#mdiut, with the
following effect: Thenbded engine will run the semantic action on an optional (regex
matching the empty string) layout terminal only when theolatyis nonempty, while the
st ri pped engine will run it in all cases.

For example, in the parser generated from the specificatidigiorithm 1, on the input
1+2 (no spaces) thet ri pped engine would run five semantic actioris \\5, +, W5, 2)
but thenoded engine would run only three ( +, 2). On the other hand, on the inpLit +
2 (with spaces) both engines would run five.

In this way thenbded engine adheres most closely to the JLex convention.

4.3 Copper ANT-task.

In addition to the command-line interface, Copper provideA&lT-task, extending the
classor g. apache. t ool s. ant. Task. See Table 4.1 for a list of the task-bean’s pa-
rameters and what switches they correspond to.

4.4 Grammar troubleshooting.

In this section, five problems encountered when compiliragrgnars in Copper are dis-
cussed.
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4.4.1 Heap overflow.

The JVM is usually assigned a maximum heap size of 256MB. Bhaslequate for Copper
when compiling smaller grammars, but on a large one it iseqadte. Therefore, if com-
pilation terminates with a©ut Of Menor yEr r or, add a switch to the JVM allocating
512MB or 768MB:

java - Xnmx512m -j ar

The- Xnx switch is “nonstandard and subject to change without ndtice

4.4.2 “Conflicting definition ...”

On occasion Copper will give an error of this form:
Error at [file]:line.col:

Conflicting definition involving [granmar construct]:
mul tiple specifications of attributes [...]

When compiling specifications in the CUP skin, this means tatsame name has been
given to two constructs. The invalid duplicate construgtithe given location.

4.4.3 “Contradiction involving terminals ...”

On occasion Copper will give an error of this form:

Error at static precedence di sanbi guator, scanner state

Contradiction involving term nals

[...,
.] on graph

This means that (1) there is a cyclic precedence relatiomgntite listed terminalsi.g.
there is no way to say that one of the terminals hasrthgimunprecedence) and (2) they
can all occur in the same context.

The precedence graph output with the contradiction givespifiecedence relations
among the terminal set. A 1 in row and columny of the graph means that terminal
is on terminal,’s submit-list (takes precedence ovgr For instance, the following graph

Vertices:
[[0: x2,
1. X3,
2 Xx]1];

Adj acency matri x:
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means thakx 2 is onx’s submit-list,x3 onx2’s, andx onx3’s.

4.4.4 Parse table conflict.

As in a traditional parser generator, a parse table conficuis when two actions are
placed in the same cell of the LR parse table; such a conflisuslly resolved by speci-
fying precedence and associativity on terminals.

Unlike a traditional parser generator, however, Copper da¢snake any attempt to
resolve such conflicts automatically. Using the CUP skinycedreduce conflicts are au-
tomatically resolved by the order in which conflicting pratlans appear in the file, as
is done in CUP. Any shift-reduce conflicts are reported as datmgm errors; undefined
behavior occurs if a parser compiled from a conflicting tablein.

4.4.5 Lexical ambiguity.

Copper is able to guarantee that there is no lexical ambignitis scanners, if certain
compile-time checks pass. When any such checks fail, it isrteg as a compilation error,
of this form:

Danger at parser states

[...]:

Lexi cal anbiguity (between/anong) tokens:

...,
]

This means that the the set of terminals given are not on gaeln®dominate- or submit-
lists, and there is no disambiguation function or groupgassil to the set. There are three
ways to resolve the ambiguity:

e Modify the dominate- and submit-lists of the set of term#al
e Add a disambiguation function or group to disambiguate teppropriately;

e Alter the context-free syntax so this set of terminals doapyear in the same con-
text.
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Chapter 5

Running a Copper parser.

5.1

Requirements.

To run a Copper parser, you need:

e Java Runtime Environment v.1.5 or greater.

5.2

Copper Runt i ne. j ar or Copper Conpi | er. j ar on the classpath.

Constructors.

No parameters need to be passed to a Copper parser on caastrlics possible to specify
additional constructors in the auxiliary code; howevee, tbnstructor with no parameters
cannot be specified in that manner.

5.3

par se() methods.

Each parse engine provides several methods used to runrder:pa

par se( Reader i nput)
par se( Reader input, String inputLabel)

par se( Reader i nput,
String inputlLabel,

edu. umm. cs. nel t. copper.runtinme. auxiliary. Error Reporter
reporter)

parse(String text)
parse(String text, String inputlLabel)

parse(String text, String inputlLabel, ErrorReporter reporter)
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Each function returns a@bj ect thatis theRESULT of the last production reduced in the
parse {.e. the root of the parse tree), and throw exceptipasa. i 0. | OExcepti on
andj ava. util . zi p. Dat aFor mat Excepti on.

The arguments to the methods are as follows.

e t ext is a string containing text to parse.
e i nput is aReader containing text to parse.

e i nput Label (defaultsto «st di n>") is a label fori nput ort ext, as in Table
4.1.

e reporter is the logger that will be used to log any messages or erratsdite
output during the parse. This argument is only necessarywhading the text of
errors to some output sink other than standard error, arlgpmibably be altered in
the near future; thus, for the moment it remains undocundente
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Appendix A

CUP skin grammat.

e Grammar of the CUP skin.
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Appendix B

“Mini-Java”’ example specification.

e Appel's “Mini-Java” grammar, specified in CUP skin.
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