)y

vwORLD

Dynamic C TCP/IP

User’s Manual

Volume 1
041008 » 019-0143-A

This manual (or an even more up-to-date revision) is available for free download
at the Z-World website: www.zworld.com.

Dynamic C TCP/IP User’s Manual
Volume 1

Part Number 019-0143-A « Printed in U.SA.
©2004 Z-World Inc. = All rightsreserved.

Z-World reserves the right to make changes and
improvements to its products without providing notice.

Trademarks
Dynamic C isaregistered trademark of Z-World Inc.
Windows® is aregistered trademark of Microsoft Corporation

Z-World, Inc.

2900 Spafford Street
Davis, California 95616-6800
USA

Telephone: 530.757.3737
Fax: 530.757.3792 or 530.753.5141
www.zworld.com

ii Dynamic C TCP/IP User’s Manual

http://www.zworld.com

Table of Contents

1 Introduction........cccccocvveeeeciiieecereenn, 1 Status Function for UDP Sockets42
e e I/0O Functions for UDP Sockets 42
2 TCP/IPInitializati qn s 3 3.7 UDP Socket Functions (pre 7.05)......... 43
2.1 TCP P_Stack Configuration............cc....... 3 1/O Functions for UDP Sockets 43
Multiple Interche Supportcceeeeenee 3 Opening and Closing a UDP Socket ..43
Interface Selection Macros 5 Writing to a UDP Sockeét 43
Single Interface _S_up_porF 7 Reading From a UDP Socket 44
TCP/IP Stack Initidization 7 Porting Programs from the older UDP
2.2 Interface Configurationcccceeeeenene 8 APl tothenew UDPAPI a4
Configuration OVerview o8 3.8 Skeleton Programcc..oeeeeveeneeennen. 45
Sources of Configuration Information .9 TCP/IP Stack INitialiZation 46
2.3 Dynamically Starting and Stopping Packet ProCESSINGovvvveevrnreeinnes 46
Interfaces ... 15 3.9 TCP/IP Daemon: th_tiCk() 46
Te§t| ng Interface Statusccccevvvenene 15 th_tiCk() for Robust AppIicaIions A7
Bringing an INterface Up 15 Global Timer Variables 47
3r|ng| ng an Interface DOWN 16 3.10 State-Based Program Design................ 47
2.4 Setting up PPP Interfaces e 17 Blocking vs. Non-BIocking 48
ﬁﬁg gzg ét?’e?zgmo”s Sefial v g 3.11 TCP and UDP Data Handlers............... 49
i T T UDP DataHandlerccccoeevvevvennnnee. 51
25 CorF‘{f'gurafF'O”S"aﬂo Refer e 12 TCP Data Handler ... 51
emoving Unnecessary Functions o
Including Additional Functions 18 312 Mulcggssk:lng AATCPP. o gg
BOOTP/DHCP Control Macros 19 ?:oo arnveMqutaskm """"""""""" 53
BOOTP/DHCP Global Variables20 per G e
Buffer and Resource Sizing 22 Optimizing TCP/IP Performance..... 57
Pre Version 7.30 Network Configuration 4.1 DBP and Sizing of TCP Buffers............. 58
_25]) 4.2 TCP Performance Tuning..........cccceeeeene 60
Version 7.30 Interface Configuration 26 The Nagle Algorithmcc.cooerenene. 60
Time-Outs and Retry Counters 28 Time-Out Settingso.ccooueeverereenn. 61
Program Debuggingcouuuenss 29 RESEIVED POIS ... 64
Miscellaneous Macroscccceeenee. 30 Type of Service (TOS) w.vvvvvrrreerrsreee 65
3 TCPand UDP Socket Interface....... 33 ARP Cache Considerations 65
3.1 What iS @ SOCKEL?ooonmrreermereiernneeenns 34 4.3 Writing a Fast UDP Request/Response
POrt NUMDELS ool 34 S VL= S 66
3.2 Allocating TCP and UDP Sockets.......... 35 4.4 Tipsand Tricks for TCP Applications.... 66
Allocating Socket Buffers................... 35 Bulk Loader Applications 67
Socket BUffer SIZeScuveeeeeevnenene. 36 Casua Server Applications 68
3.3 OPening TCP SOCKELS....crvvverrrrcrrre 36 Master Controller Applications68
PasSIVE OPEN ...veveeeeeeeeeeseeeeeseenenes 36 Web Server Applications 68
ACtiVE OPEN .. 37 Protocol Translator Applications 68
Waiting for Connection Establishment .. Network Addressing: ARP & DNS. 69
37 , 5.1 ARP FUNCHONS c.vvvcooooeeeeeeeeeeoeoee e 69
Specifying a L|§ten QUELE oo 38 5.2 Configuration Macros for ARP.............. 69
3.4 TCP Socket Functions...........cccceeerveenenn. 38 53 DNS Functions 1
Control Functions for TCP Sockets .38 . _ BOMS ovsnssnssmesssssssssssnssnsn
Status Functions for TCP Sockets39 5.4 Configuration Macros for DNS L ookups....
I/0 Functions for TCP Sockets 40 1
3.5 UDP Socket OVENVIEWc.ccovvvrvecene 41 IGMP and Multicasting 73
3.6 UDP Socket Functions (7.05 and later).. 42 6.1 MUltiCasting......cccoevvrerereeriereeeee e 73
Control Functions for UDP Sockets .42 Multicast AdAressesccoveeervecnnn. 73
TCP/IP User’s Manual iii

Host Group Membershipc......... 73

B.2IGMP ...t 73
6.3 Multicast Macros..........cccveeenerenerenienens 74
7 Function Reference.........cccceveuenee. 75
_abort_SOCKS.....ccevereeeereeeee s 77
arpcache _create.........ccoocveeeercecennennn. 78
arpcache flushccccevvvcevieccecenn, 79
arpcache hwa........ccccoevvvcceveccecnnnn, 80
arpcache iface........ccocevveecncnccnenn, 81
arpcache ipaddrcccccoveevvvrcennnnen, 82
arpcache load........ccccvvvvvccvneccenennn, 83
arpcache_search ..., 85
AP_resolVe.....ocveeeecececece e 86
arpresolve_check........coeeeveeieenennenne. 87
arpresolve_ipaddr.........ccocceeenereeneenn. 88
arpresolve_startccceeceeeeeereeeenennn, 89
AON 90
e 01 G o1 oo T 91
dhcp_acquire ..o 92
dhcp_get_timezone.........ccocveeeenenee. 93
dhcp_release......ooeeeecneeceeee, 94
getdomainname........ccceveeerererennnn 95
0ethOstid.....ocoveieeeeeeee e, 96
gethOStNaMEc.coceireieeeee e 97
JEtPEErNAME ... 98
QEtSOCKNAME. ... 99
htonl e 100
htonNsS oo 101
IfCoNfig oo 102
iIfdown o 111
ifpending ... 112
IfStatUS e 113
IfUp 114
inet_addr........cccceeevvreereeererecere 115
INEt_NtOA.......cceeee e 116
ip_iface . 117
IP_Print_ifS.eiieeereece 118
ip_timer_expired.......cccccoeerveneiniane 119
ip_timer_init......ccoooeneieereee 120
is valid_ iface....c.ccovvvrvreeirecinnen, 121
multicast_joingroupcccceeeeeeruene 122
multicast_leavegroupccceeeeuene 123
NONI e 124
NONS e 125
paddr . 126
pd_getaddress........cccoeeveercerecennenn, 127

pd_havelink.......cccooevvvvenenienene 128
pd_powerdown.........ccoeveeieeenerenne 129
PA_POWEIUP.....veveeeereererreeieeeseeaeens 130
CPING e 131
PSOCKEL ..o 132
=o)LV 133
resolve cancelccocevvveecverveenennnn. 134
resolve_name check.........cccevueunens 135
resolve_name_start..........ccceeevvenenne 136
11 T 137
router add ..o 138
router_del_allooeveveeeirerece 138
router_delete........ooovvvevenienecienes 139
[(o1011= S (] S 140
(o101 (= gl o] | PO 141
router_printall.........cccooenininenenn 142
(< 00 [11 o S 143
setdomai NName...........coeeerveenenennene 144
Sethostidccceveeeeeeciceee e 145
SethOStNaMe........cceeeeee e 146
SOCK_abortc.ooovveeeeeeeee e 147
SOCK_aliVe...ocee e 148
sock_aread........ccoooeeeciieceeiieeee, 149
SOCK_@WHIE ... 150
SOCK_aXr€ad........coveeeueeeneeeneeeane 151
SOCK_aXWIite ..o, 152
sock_bytesreadyccooeevreienienennnn 153
SOCK_ClOSE....ooveeeceeceee e, 154
sock_dataready..........ccoeereneeiieneenens 155
150101 (. S 156
(S 0l0 (G (o] S 157
sock_established........c..cccoveeriennneee. 158
sock_fastread........ccooeevveeirieicienennn. 159
sock_fastwrite......cccceevveveeveveecenen, 160
SOCK_flUSN .o 161
sock_flushnextcccceeeeveeencnennne 162
SOCK_QELC....vevereeieesieie e 163
SOCK_QELS...cviveieereesieie e 164
SOCK_iface.....covveeireireieiee 165
SOCK _iNit..covecieiiceeeceee e, 166
SOCK_MOdE ..o 167
SOCK_NOFIUSH ... 169
SOCK_PEITON ... 170
Sock_prereadcooceeeveieeneenieneenns 171
SOCK_PULC e 172
SOCK_PULS....veeeeeeeeie e 173
SOCK_rbleft.....ccvvviieiiieceeeeee 174

TCP/IP User’'s Manual

INEX ..o,
SOCK_r€ad.....ccevvveeriesiirirnieeeseeeeneee 177
sock_readable........cccovvveierineennnne, 178
(S0 ¢ Gl (= oL 179
sock_recv_from......cceeveceveeeennnne. 181
SOCK_FeCV_iNit...cccvcevvrerreie e 182
sock _resolvedccoeeeveciiecieennee, 183
010 QS < (01 184
SOCK_SEt ttl v 185
SOCKSEALE. ...t 186
Sock_thleft ..o, 187
SOCK _thSize......ccoveeveeeceeciciei, 188
sock thusedcccevevievecieiec, 189
SOCK_tICK .. 190
sock wait_closed........ccccceveviveienns 191
sock wait_established..................... 192
SOCK_Walting...ccvevvvrvrerrsern e 193
Sock_wait_inpUL........ccoeeenereneennne 194
sock_writable.........ccccoeeveeieciiene, 195
SOCK_WHE...ceueeeeeeerie e 196
sock xfastread..........cccccevveiecieennee 197
sock xfastwrite.........ccceevveciecieennee, 198
SOCK_Yi€ld...ocveveeeieie e 199
tep_clearreserve.......ooveveieveeienenne 200
tCP_CONFIg .o 201
tep_extlisten.....coovvceeeveve e 202
TCP_exXtOPeN.....ccevieeeree e 203
tep_keepalive.....ocoviiiiieiiin 204
tCp liSteN e 205
TCP_OPEN....eieeeeieee e 207
TCP_reserveportccoceveveevenennnene 209
L(e3 o I (v 210
udp_bypass arpcccceeeeererieneeenne. 211
udp_ClOSE...ceeeiiieee e 212
Udp_EXOPEN...c.cceeeeeeceereee e 213
UAP_OPEN ..o 215
UdP_PeEK ..o 217
(00| o £ ox 218
udp_recvirom......ccoeeeeveneniceieenen. 219
UAP_ SN 220
udp_sendto.......ccceeeveeeereeereeeee 221
udp_Waitopen.......ccceererereeneeniereenens 222
udp_waitsend........ccoceveverinennnienn. 223
udp_Xsendto......cceeeveeeeireerereene 224
virtual_eth.......ccccceevieeeiiiiece e, 225

TCP/IP User’s Manual

Vi

TCP/IP User’s Manual

1. Introduction

Thismanual isintended for embedded system designers and support professionals who are using a
Rabbit-based controller board. Most of the information contained here is meant for use with Ether-
net-enabled boards, but using only serial communication is also an option. Knowledge of net-
works and TCP/IP (Transmission Control Protocol/Internet Protocol) is assumed. For an
overview of these two topics a separate manual is provided, An Introduction to TCP/IP. A basic
understanding of HTML (HyperText Markup Language) is aso assumed. For information on this
subject, there are numerous sources on the Web and in any major book store.

The Dynamic C implementation of TCP/IP comprises several libraries. The main library is
DCRTCP.LIB. Asof Dynamic C 7.05, thislibrary is alight wrapper around DNS . LIB,
IP.LIB,NET.LIB, TCP.LIB and UDP.LIB. Theselibrariesimplement DNS (Domain Name
Server), IP, TCP, and UDP (User Datagram Protocol). This, along with the librariesARP . LIB,
ICMP.LIB, IGMP.LIB and PPP.LIB arethetransport and network layers of the TCP/IP pro-
tocol stack.

The Dynamic C libraries:

e BOOTP.LIB

FTP SERVER.LIB
FTP_CLIENT.LIB

HTTP.LIB

POP3.LIB

SMNP.LIB

SMTP.LIB

TFTP.LIB

VSERIAL.LIB

implement application-layer protocols. Except for BOOTR, which is described in volume 1 of the
manual, these protocols are described in volume 2.

All user-callable functions are listed and described in their appropriate chapter. Example programs
throughout the manual illustrate the use of all the different protocols. The sample code also pro-
videstemplates for creating servers and clients of various types.

To address embedded system design needs, additional functionality has been included in Dynamic
C’'simplementation of TCP/IP. There are step-by-step instructions on how to create HTML forms,
allowing remote access and manipulation of information. There is also a serial-based consol e that
can be used with TCP/IP to open up legacy systems for additional control and monitoring. The
console may also be used for configuration when a seria port is available. The consoleand HTML
forms are discussed in volume 2.

Multiple interfaces are supported starting with Dynamic C version 7.30.

Introduction 1

TCP/IP User’s Manual

2. TCP/IP Initialization

This chapter describes the configuration macros, data structures and functions used to configure
and initialize the Dynamic C TCP/IP stack. Starting with Dynamic C version 7.30, the stack sup-
ports multiple interfaces. Interface configuration is described in Section 2.2.

The Dynamic C TCP/IP stack supports | P version 4. Although multiple interfaces are supported
starting with 7.30, the TCP/IP stack does not support packet routing at the IP level.

2.1 TCP/IP Stack Configuration

You need to know certain thingsto configure the stack. You need to know which interfaces will be
used and how many. You also need to determine the necessary software functionality. For exam-
ple, will there be DNS lookups? Are TCP and UDP protocol s both necessary? Will DHCP be
used? The ability to remove unneeded features via conditional compilation has been enhanced
starting with Dynamic C 7.30. Thisis accomplished with the configuration macros described in
Section 2.5.1 and Section 2.5.2.

2.1.1 Multiple Interface Support
The supported interfaces are:

e FEthernet
e PPP (Point-to-Point Protocol) over a seria link
e PPP over Ethernet

The interfaces must be on distinct, non-overlapping subnets. In particular, each interface must be
assigned a unique | P address, known as the “home IP address’ for that interface.

The interfaces available to your application will depend on the hardware configuration of the tar-
get board. All Rabbit-based boards have at least 4 asynchronous serial ports, so PPP over serial is
always available. Many boards have an Ethernet port. If an Ethernet port is available, then it may
be used for normal Ethernet or PPP over Ethernet (PPPoE). No Z-World board has more than one
Ethernet port, however Dynamic C 7.30 contains support for a second Ethernet if and when such a
board becomes available.

Chapter 2: TCP/IP Initialization 3

Your application uses configuration macros to select the interface(s) to use for TCP/IP. Each hard-
ware interface will have an interface number assigned. The interface number is not used directly;
instead, your application should use the macros defined for this purpose. If you are writing gen-
eral-purpose routines, then you should include #1ifdef testsfor the interface macro if you need
to refer to it. Thisis because the macros are not necessarily defined for non-existent interfaces.

The macros are;

IF_ETHO, IF ETH1

These macros represent Ethernet ports that are not using PPP. IF ETHO refersto the
first (and currently only) Ethernet port.

IF PPPOEO, IF PPPOEl
These macrosrepresent Ethernet ports used for PPP over Ethernet. IF_ PPPOEO refers
to thefirst (and currently only) Ethernet port.

PPPoE and regular Ethernet can co-exist on the same Ethernet hardware. PPPoE effec-
tively sets up avirtual point-to-point link between two devices on the same Ethernet
LAN segment.

IF PPPO, IF PPP1l, IF PPP2, IF PPP3, IF PPP4, IF PPP5
These macros represent asynchronous serial portsused for PPP. IF PPPO alwaysre-
ferstoseria port A, IF_PPP1 refersto seria port B, etc. Most boards will avoid using
seria port A, sinceit is most often used for Dynamic C debugging and program down-
load.

IF PPPX
Thisisan adiasfor the “first” PPP interface. The first PPP interface is selected as the
first valid interface in the following order: IF_PPPOEO, IF _PPPOE1, IF PPPO,
IF PPP1, €tc. throughto IF _PPP5.

IF DEFAULT

Thisisan diasfor the“default” interface. You can explicitly define this macro prior to
including dcrtep . 1ib to select adefault interface. The Dynamic C TCP/IPlibraries
do not makeuseof IF_DEFAULT with theimportant exception of DHCP. DHCP only
works on the default interface.

If you do not explicitly define IF_DEFAULT, it ischosen asthefirst valid interfacein
thefollowing order: IF PPPX (seeabove), IF_ETHO, IF ETHI1.

If you explicitly define IF_DEFAULT, then you must defineit to a hard-coded integer
value, not one of the IF_* macros, sincethe IF_* macros are not defined until
dertep. libisincluded. Sincethe actual numbersassigned to each interface depend
onthevaluesof theUSE_* macros, you must be careful when doing this. Theonly time
you may want to explicitly define IF_DEFAULT iSwhen you are using both PPP and
non-PPPoE Ethernet, and you want to use DHCP on the Ethernet interface.

4 TCP/IP User’'s Manual

IF ANY
Thisisnot an interface as such. It is a special value used to denote “any” or “al” inter-
faces, where applicable. This macro should be used only where a function documents
that its use is acceptable. For example, thetcp extlisten () function accepts
IF ANY asaninterface parameter, which tellsit to listen for incoming connections on
any available interface.

2.1.2 Interface Selection Macros

As each physical interface has its own macro, each type of interface has a corresponding macro.
The macro vaue determines which physical interfaces of the same type will be supported by the
stack. Setting the macro to zero disables support for that type of interface, i.e., no physical inter-
faces of that type will be supported. If the macros are not defined in the application program, they
will be set to zero internally.

USE ETHERNET
Thismacro alows support of non-PPPOE Ethernet. It can be set to 0x01, 0x02 or 0x03.
Most boards only support 0x01, meaning the first non-PPPoE Ethernet device. Boards
with two Ethernet devices can set this macro to 0x02, referring to the second Ethernet
device, or 0x03 to allow use of both devices.

USE PPP SERIAL
This macro alows support of PPP over asynchronous seria. It can be set to

0x01 (serial port A)
0x02 (serial port B)
0x04 (serial port C)
0x08 (serial port D)
or any bitwise combination of these 4 values

Seria port Cisthe default, but you may use any of the others. Please note that if you
use serial port A (the programming port) Dynamic C will not be able to communicate
with the target. You may a so need to define other macrosto allow correct functioning
of the serial port hardware, e.g., hardware flow control.

USE_PPPOE
This macro allows support of PPP over Ethernet. It is set in the same way as
USE_ETHERNET. The bitmask indicates which Ethernet devices are to be used for
PPP over Ethernet.

Chapter 2: TCP/IP Initialization 5

2.1.2.1 Link Layer Drivers
TheUSE_* configuration macros described in Section 2.1.2 cause the appropriate link layer driv-
ersto beincluded. If none of the USE_ * macros are defined and the macro PKTDRYV is also not
defined, realtek.11ib will be used. Some board types cause a driver other than
realtek.lib tobeused, eq., if the board isa RCM 3200 or 3210, the packet driver library
asix.lib will replacerealtek.lib.

The following table tells which link layer drivers will be used when aUSE_* macro is defined to
avalue greater than zero.

Table 2.1 Libraries included when USE_* macro value > zero

Configuration Macro Realtek.lib” Ppp.lib Ppplink.lib Pppoe.lib
USE_ETHERNET yes no no no
USE_PPP_SERIAL no yes VES no
USE_PPPOE yes yes no yes

* or asubstitute packet driver library based on board type

Asthetable reveals, using PPP over Ethernet causes realtek.1lib, ppp.lib and

pppoe . 1ib to beincluded. Multiple drivers may also be included by defining multiple inter-
faces. For example, defining USE_ PPP_SERIAL and USE_PPPOE to values greater than zero
will also cause all librariesto be included.

If your application needs to perform conditional compilation that depends on the drivers actually
included, then the following macros are defined:

® USING ETHERNET
e USING PPP_SERIAL
e USING PPPOE

These macros are always defined, but will have a zero value if the driver was not included. Thus,
the conditional compilation should use the #1i £ operator, not #ifdef. For example,

#if USING PPP SERIAL
// Do something special for PPP over seria
#endif

The value assigned to the USING _* macro is the number of hardware interfaces of that type that
are available. On aRabbit 2000 board, USING PPP SERIAL will bedefinedto4 or 0. Ona
Rabbit 3000 board, the value will be 6 or 0.

An additional macro, USING _PPP, isalso defined if any of the PPP-typeinterfaces arein use.
Unlike the above macros, this macro is either defined or not defined, so the correct test is
#ifdetf.

6 TCP/IP User’'s Manual

2.1.3 Single Interface Support

Backwards compatibility exists for applications compiled with earlier versions of Dynamic C. If
none of the USE_ * macros are defined, then the old behavior (pre-Dynamic C 7.30) is used,
which isto include one, and only one, link layer driver.

2.1.3.1 Configuration Macros for Link Layer Driver - Single Interface
Do not define either of these macrosiif any of the USE_ * macros are defined.

PKTDRV
This macro specifies the packet driver to use. Include one of the following statements
in your application.

#define PKTDRV ‘“realtek.lib” // To use Ethernet
#define PKTDRV “ppp.lib” // Touse PPP (serid or Ethernet)

PPPOE

Thismacro is defined to use PPP over Ethernet when PKTDRV issettoppp . 1ib. For
other packet drivers, this define has no effect (but should not be defined in order to
avoid problems with future Dynamic C releases).

#define PPPOE

2.1.4 TCP/IP Stack Initialization

Thefunction sock _init () must be called near the start of your main () functionin order to
initialize the TCP/IP stack. The return value from sock_init () must indicate success before
calling any other TCP/IP functions, with the possible exception of 1 fconfig().

IMPORTANT: If you are using UC/OS-11, then you must ensure that 0SInit () is
called beforecalling sock _init ().

sock init () performsthe following actions, and does not return until complete (or an error
was encountered):
e Cadlssubsysteminitialization for ARP, TCP, UDP and DNS (if applicable).

e Teststo seewhether sock _init () wasrun previously. If so, then it returns OK. Other-
wise, the following steps are executed.

e |nitialize the packet driver; basically this resets the hardware and clears out the packet
receive buffer pool.

e Clearsthe router and other server tables.

e When using Ethernet, waits for approximately 1 second for the Ethernet hardware to ini-
tidize. Thisdelay is required since some 10/100M bit hubs take this long to negotiate.

e Interfaces areinitialized using the settings specified in the IFCONFIG * macros or pre-
defined configurations.

e |If USE DHCP is specified, DHCP configuration is completed. This may take a second or
30 since network traffic needs to flow between the controller board and a DHCP server.

Chapter 2: TCP/IP Initialization

If all of the above completed successfully, the return code is set to 0. Otherwise, the return code
will be non-zero, however you can till proceed if the return code is 2 since this indicates that
DHCP failed but fallbacks were used. Other return codes indicate that the network is not usable.

After sock init () returns OK, the non-PPPoE Ethernet interface should be ready for traffic if
it isintended to be up initialy. PPP interfaces may not be fully started even if requested to be up
initially. PPP interfaces can take a substantial amount of time to come up, especialy if modem
dia-out isin use. You can wait for a particular interface to come up by polling the interface status
using ifstatus () or, preferably, i fpending ().

2.2 Interface Configuration

Prior to Dynamic C version 7.30, only a single network interface was supported. Configuration of
the interface was performed by defining a set of macros, suchasMY IP ADDRESS, aswell ashy
calling various configuration functions such as sethostid () . With version 7.30's support of
multiple interfaces, the macro-style configuration becomes impractical, and the configuration
functions generally would require an additional parameter, the interface number. Version 7.30
implements adlightly different method of configuration, but maintains compatibility with the old
style of configuration for simple applications that require only a single interface.

It is recommended that new applications use the new style of configuration, even if multiple inter-
face support is not required. Thiswill ease the integration of future Dynamic C upgrades.

2.2.1 Configuration Overview

To run the TCP/IP stack, a host (i.e., the controller board) needs to know its unique home IP
address for each interface. Interfaces that connect to broadcast networks (i.e., Ethernet) must also
have a netmask assigned. The combination of | P address and netmask describes the so-called sub-
net which is addressable on that interface. The subnet basically describes the community of host
addresses that can talk directly to this host, without requiring data to pass through a packet router.
Point-to-point links only need an I P address, since there is only one other host by definition.

IP address and netmask are the most important configuration items; however, many other items
are needed for successful networking. For anything but strictly local communication, a router or
gateway host must be known. The router has the important task of forwarding messages between
the local host and the outside world (i.e., hosts that are not on the local subnet). Routers are associ-
ated with particular interfaces. Each interface will generally require a different router; however, in
the majority of cases only one interface will actually be used to talk to non-local hosts so only one
router will be required to service all requests for non-local host addresses.

Some of the configuration items are not specific to any particular interface. For example, DNS
(Domain Name System) servers are known by their IP address. DNS servers are used to trandate
human-readable domain names (e.g., www.zworld.com) into machine-readable | P addresses.

8 TCP/IP User’'s Manual

2.2.2 Sources of Configuration Information
The Dynamic C TCP/IP stack obtains configuration information from one or more of the follow-
ing sources:

e Use one of the predefined configurationsin tcp config.lib; static or dynamic (new
in version 7.30).

Macro definitions before #use “dcrtcp.lib”; static configuration.

Bootstrap network protocols such as BOOTP and DHCP; dynamic configuration.

Runtime function callssuch asifconfig () (version 7.30) and sethostid () (previ-
Ous vVersions).

“Directed ping” 1P address assignment (new in version 7.30).

Console-based configuration, e.g., zconsole.1lib.

As application designer, you have to decide which of these configuration techniquesis applicable
for your project. Entirely static configuration is typically used for initial application development
and testing. Most of the TCP/IP sample programs use static configuration for simplicity in getting
started. Applications which are intended for real-world use should allow at least one form of
dynamic configuration. The particular form of configuration which is supported will depend on
the complexity of the application, as well as the expected network or operational environment in
which the application will run.

2.2.2.1 Predefined Configurations
Since networking configuration can be fairly complicated, Dynamic C version 7.30 has the con-
cept of “canned” or predefined configurations. This has the advantage of reducing the number of
macro definitions at the top of each TCP/IP program, as well as eliminating the need for
copy/paste of alot of settings from one program to the next.

Using the predefined configurationsis very easy: simply #define asingle macro (called
TCPCONFIG) at the top of each program. The macro is defined to an integer, which selects one of
the predefined configurationsin tcp config.lib. For example:

#define TCPCONFIG 1
#use “dcrtcp.lib”

causes the first predefined configuration to be used.

Most of the sample TCP/IP programs will refer to one of the predefined configurations. It isfairly
likely (unfortunately) that none of the configurations will work with your network. For example,
the default IP address of “10.10.6.100" may not be allowed on your LAN. If thisis the case, you
can modify tcp config.lib tofixthissoitworksinyour environment. Having fixed it once,
al of the sample programs should work, since they all pull the same definitions out of

tcp config.lib.

The disadvantage of modifying tcp config. lib isthat any changesyou make may be over-
written if you install a new release of Dynamic C. If thisis a problem, then there isa solution: you
can create anew library called custom _config.lib. Inthislibrary, you can place your own
custom configurations which will not be overwritten by Dynamic C (since thisis not areleased
library).

Chapter 2: TCP/IP Initialization 9

To create custom _config.lib,youcanusetcp config.lib asatemplate. Modify the
definitions to suit your network environment. You must change the configuration numbers to be
greater than or equal to 100. Numbers less than 100 are expected to bein tcp config.lib;
numbers over 99 cause custom_config. lib to beincluded.

The other thing you must do before using your own custom configurations is to add the library
name (custom_config.lib)totheLIB.DIR filein the base Dynamic C installation direc-
tory. Thisisjust atext file, which you can edit with the Dynamic C text editor. Locate the line that
contains “tcp_config.lib.” Repeat thisline, and modify one of the line copies to point to your
custom_config.lib file. You will not have to restart Dynamic C for this change to take
effect.

A new release of Dynamic C will overwritethe LIB . DIR file, so you will need to perform this
edit for each release.

To use custom configurations that you define, the only thing necessary in each sample program is
to change the definition of the TCPCONF IG macro to indicate the appropriate configuration e.g.,

#define TCPCONFIG 100
#use “dcrtcp.lib”

2.2.2.2 Static Configuration
Thisis conceptually the easiest means of configuration; however it is primarily suitable for testing
purposes (or possibly as afallback in case other configuration techniques do not yield aresultin a
reasonabl e amount of time).

Prior to version 7.30, the (only) interface was configured by defining a fixed set of macros before
including dertcp . 1ib. The most common definitions were limited to:

MY IP ADDRESS,MY NETMASK,MY GATEWAY and MY NAMESERVER.

At runtime, the functions, tcp_config (), sethostid () and sethostname () override
the configuration macros.

Version 7.30 still allows use of these macros for backwards compatibility, however, it is recom-
mended that the new style of static configuration be used for new applications. The new configura-
tion style uses macros called IFCONFIG *, where‘*’ isreplaced by the interface name e.g.,
IFCONFIG ETHO for thefirst Ethernet port. IFCONFIG ALL contains configuration items
which are not specific to any particular interface.

The value of the IFCONFIG * macroisactually alist of itemsin the syntactic form of aC
parameter list. For example, if the old style configuration (for Ethernet) was

#define MY IP ADDRESS “10.10.6.100"
#define MY NETMASK “255.255.255.0"
#define MY GATEWAY “10.10.6.1"

then the new replacement would be

#define IFCONFIG ETHO \

IFS IPADDR, aton(%“10.10.6.100"), \
IFS NETMASK, aton(“255.255.255.0"), \
IFS ROUTER SET, aton(“10.10.6.17), \
IFS_UP

10 TCP/IP User’'s Manual

The replacement looks more complex, but this is because the macro value must be valid C syntax
for aparameter list. The IFS_UP parameter at the end of the above example is anew feature for
interfaces: they can be dynamically brought up and down. The default state for an interfaceis
“down,” which iswhy an explicit IFS_UP isrequired. The backslashes at the end of each line are
used to continue the macro definition over more than oneline.

The format of the static initialization macros will make more sense if you examine the documenta-
tionforthe ifconfig () function. You will seethat the macro definition is merely “plugged in”
to the parameter list for an ifconfig () call.

2.2.2.3 Dynamic Configuration via the Network
The Dynamic C TCP/IP stack supports DHCP (Dynamic Host Configuration Protocol) or BOOTP
(Bootstrap Protocal) for dynamic configuration. DHCP is a more modern replacement for
BOOTR, which was originally designed to support bootstrap of diskless workstations. Use of these
protocols can completely eliminate the need for static configuration.

Thelibrary BOOTP . L.IB alows atarget board to be aBOOTP or DHCP client. The protocol used
depends on what type of server isinstalled on the local network. BOOTP and DHCP servers are
usually centrally located on alocal network and operated by the network administrator. Note that
initialization may take longer when using DHCP as opposed to static configuration, but this
depends on your server.

Both protocols allow a number of configuration parameters to be sent to the client, including:
e client's|P address.

net mask.

list of gateways.

host and default domain names.

list of name servers.

BOOTP assigns permanent | P addresses. DHCP can “lease” an IP addressto ahosgt, i.e., assign the
IP addressfor alimited amount of time. There are two user-callable functions regarding | P address
leasesdhcp release () and dhcp acquire () (described in Chapter 7). In addition, there
are a number of macros and global variables available for modifying behavior and obtaining infor-
mation. Please see Section 2.5.3 and Section 2.5.4 for details.

Asof 7.30, DHCP or BOOTP can be used only on the default interfacei.e., the interface which is
specified by the value of the IF_ DEFAULT macro. If you are using more than one interface then
you should ensurethat IF DEFAULT is set correctly.

To successfully use DHCP configuration, ensure al of the following conditions are met. (Only the
first condition applies prior to 7.30.)

e #define USE DHCP beforeincludingdcrtep.lib.
e Ensure IF_DEFAULT isindicating the desired interface.
e Definean IFCONFIG * macrotoincludethe IFS DHCP parameter ID.

Chapter 2: TCP/IP Initialization 11

For example, if the Ethernet interface is to be used for DHCP, the following code is required for
DHCP:
#define USE_ DHCP
#define IF DEFAULT O // not necessary unless aso using PPP
#define IFCONFIG ETHO IFS DHCP, 1, IFS UP
#use “dcrtcp.lib”

You may also use the predefined configuration number 3, which is DHCP:

#define TCPCONFIG 3
#use “dcrtcp.lib”

This configuration sets all required macros for DHCP (or BOOTP) to work. Naturally, there must
be a DHCP server available on the interface. The DHCP server must be set up to contain all the
required configuration options, however setting up the DHCP server is outside the scope of this
document, since there are many different DHCP serversin use.

The sample program Samples\tcpip\dhcp. ¢ usesdynamic configurationin abasic TCP/IP
program that will initialize the TCP/IP interface, and allow the device to be 'pinged' from another
computer on the network. It demonstrates DHCP features, such as releasing and re-acquiring | P
addresses and downloading a configuration file.

2.2.2.4 Runtime Configuration using ifconfig()

ifconfig () isafunctionintroduced in version 7.30. Thisfunction does many things, and isthe
recommended replacement for some of the functions marked as “ deprecated” (including

tcp _config()).ifconfig () performsmost of the work for al the other configuration tech-
niques. For example, static configuration (viathe IFCONFIG * macros) basically calls
ifconfig () withthe specified parameters substituted in.

ifconfig () takesavariable number of parameters, likeprintf (), however the parameter
list isterminated with the special IFS_END symbol. For example, touse i fconfig () to set the
same parameters as described above for the static configuration:

ifconfig (IF_ETHO, IFS_IPADDR, aton(“10.10.6.100"),
IFS_NETMASK, aton(“255.255.255.0"),
IFS_ROUTER SET, aton(“10.10.6.1"),
IFS_UP,
IFS_END) ;

Note that thisis the same as substitution of the IFCONFIG * macro e.g.,

ifconfig(IF _ETHO, IFCONFIG ETHO, IFS END) ;

ifconfig () isalsoused to obtain current configuration items at runtime e.g.,
longword ipaddr;
ifconfig (IF_ETHO, IFG IPADDR, &ipaddr, IFS_END) ;

gets the current 1P address of the first Ethernet interface into the variable ipaddr.

Thefirst parameter of ifconfig () istheinterface number. For certain settings, this can also be
IF ANY, which means apply the settings to all applicable interfaces. The parameters following

12 TCP/IP User’'s Manual

thefirst are an arbitrary number of tuples consisting of a parameter identifier followed by the
value(s) for that parameter (if any). The list of parameters must be terminated by a special identi-
fier, IFS_END. See the documentation for ifconfig () for acompletelist of parameter identi-
fierswith their expected values.

2.2.2.5 Directed Ping
This style of configuration, also known as ICMP configuration, is limited to setting the IP address
of the interface. It only works on non-PPPoE Ethernet interfaces. To specify directed ping config-
uration, usethe IFS_ICMP CONFIG parameter IDinacaltoifconfig() orin the defini-
tion of the IFCONFIG * macro for the interface. For example

#define IFCONFIG ETHO IFS ICMP PING, 1
for a static configuration, or

ifconfig(IF ETHO, IFS ICMP CONFIG, 1, IFS END);

at runtime. Note that you can use both directed ping and DHCP on the same interface, but directed
ping is not limited to just the default interface. If both directed ping and DHCP are allowed on a
particular interface, the first one “wins.”

Directed ping works as follows. The interface is brought up, but has no assigned | P address so it
cannot be used for normal traffic. If the interface receives an ICMP echo request (i.e., ping) which
is directed to the interface’'s MAC address, then the destination IP address in the ICMP packet is
assigned to the interface as its home | P address. After that point, the interface is configured and is
available for normal traffic.

The weakness of directed ping is that only the IP addressis provided. The netmask must be pre-
configured or obtained by other means. Technically, directed ping violates some tenets of the
Internet standards, however, it can be useful in controlled environments.

In order for directed ping to work, the MAC address of the board must be known (see below). The
host which initiates the ICMP echo request must have its ARP table statically configured with the
target MAC address. On Unix and Windows hosts, the appropriate command sequenceis

arp -s <IP address> <MAC address>

followed by

ping <IP addresss>

The actua format of the M A C address depends on the operating system. Most hosts will recognize
aformat like “00-09-A0-20-00-99". The IP addressis in dotted decimal notation.

Oncetheinterfaceis configured by directed ping (or DHCP), then further directed ping or DHCP
configurations for that interface are not allowed. If desired, at runtime you can issue

ifconfig (IF_ETHO, IFS ICMP CONFIG RESET, IFS END) ;
to alow another directed ping configure.

Chapter 2: TCP/IP Initialization 13

2.2.2.6 Console Configuration via Zconsole.lib

The zconsole. 1ib library contains routines for allowing an external (serial or telnet) terminal
to issue configuration commands. Basically, the commandscall i fconfig () to performthe
actual requests or obtain information.

Using a*dumb terminal” connection over a serial port presents no special difficulties for network
configuration. Using telnet over the internet obviously requires aworking TCP stack to begin
with. Thisisstill useful in the case that one of the other configuration techniques can at least get to
aworking state. For example, directed ping can assign an IP address. You could then use the same
host to telnet into the new | P addressin order to set other items like the netmask and router.

2.2.2.7 Media Access Control (MAC) address

Rarely, 1SPs require that the user provide them with a MAC address for their device. Run the util-
ity program, Samples\tcpip\display mac.c, todisplay the MAC address of your con-
troller board.

The MAC addressis aso required for directed PING configure, as well as some other bootstrap
techniques. MA C addresses are often written as a sequence of six two-digit hexadecimal numbers,
separated by colons e.g., 00:90:20:33:00:A 3. This distinguishes them from IP addresses, which are
written with dotted decimal numbers.

MAC addresses are completely unrelated to | P addresses. | P addresses uniquely identify each host
on the global Internet. MAC addresses uniquely identify Ethernet hardware on a particular Ether-
net LAN segment. Although only technically required to be unique on aLAN segment, in practice
MAC addresses are globally unique and can thus be used to uniquely identify a particular Ethernet
adapter.

The usual reason for an ISP requiring a MAC addressisif the | SP uses DHCP to dynamically
assign | P addresses. Most | SPs use PPP (Point to Point Protocol) which does not care about MAC
addresses. DHCP can use the MAC address to determine that the same device is connecting, and
assign it the same I P address as before.

14 TCP/IP User’'s Manual

2.3 Dynamically Starting and Stopping Interfaces

Dynamic C version 7.30 allows interfaces to be individually brought up and down by calling the
ifup(),ifdown () orifconfig () functions. Theinitia desired state of the interfaceis
specified using the IFCONFIG * macros. By default, interfaces are not brought up when
sock_1init () iscalled at boot time. Only if the IFCONFIG * macro containsan IFS_UP
directive will the interface will be brought up at boot time.

Most applications should not need to dynamically change the interface status. The exception to
this may be PPP over seria interfaces, where amodem is used to dial out to an | SP on demand.

2.3.1 Testing Interface Status

There are two functions for testing the current status of an interface: i fstatus () and
ifpending (). Thefunction ifstatus () merely returns aboolean value indicating whether
the interface is up. If the return value is true (non-zero), then the interface is ready for normal
TCP/IP communications. Otherwise, the interface is not yet available; it may either be down, or in
the process of coming up.

ifpending () gives moreinformation: itsreturn value indicates not only the current state, but
also if the state is in the process of changing.

If your application needs to check the interface status, which is recommended for PPP over serial
or PPPOE, then it can either poll the status using the above functions, or it can register a callback
function which is automatically called whenever the interface changes status.

To register a callback function, you call ifconfig () withtheIFS IF CALLBACK asthe
parameter identifier, and the address of your callback function as the parameter value.

2.3.2 Bringing an Interface Up

Youcancall ifup(),or ifconfig () withthe IFS UP parameter identifier. The advantage
of using ifconfig () isthat you can specify an interface number of IF ANY, which brings all
interfaces up together.

When the i fup () cal returns, the interface may not have completed coming up. Thisis notably
the case for PPP interfaces, which require a number of protocol negotiation packets to be sent and
received. In addition, PPP over seria may require additional time to reset a modem, dial out to an
ISP, and possibly respond to the ISP's login procedure. All this could take considerable time, so
the i fup () function does not wait around for the process to complete, to allow the application to
proceed with other work.

Onreturn fromthe i fup () call, an application must test for completion using the functions
described in the previous section.

Chapter 2: TCP/IP Initialization 15

In order for the interface to come up completely, your application must call tcp tick () regu-
larly while waiting for it. If you can afford to block until the interface is up, then use code similar
to the following:

ifup (IF_PPP2) ;
// Wait for the interface to have any status other than “down coming up.”
while (ifpending(IF _PPP2) == 1) tcp tick();
if (ifstatus(IF_PPP2))
printf (*PPP2 is up now.\n”);
else
printf (*PPP2 failed to come up.\n”);

2.3.3 Bringing an Interface Down

Youcancall ifdown (),or ifconfig () withthe IFS DOWN parameter identifier. The
advantage of using i fconfig () isthat you can specify an interface number of IF_ANY, which
brings all interfaces down together.

Asfor ifup (), ifdown () doesnot necessarily complete immediately on return. PPP requires
link tear-down messages to be sent to the peer and acknowledged. Thus, similar considerations
apply to bringing an interface down as they do for bringing it up.

ifdown () will always succeed eventualy. Unlike i fup () , which can possibly fail to bring the
interface up, i fdown () will always eventually return successi.e., it isnot possible for an inter-
face to be left “hanging up.” If the PPP link tear-down does not get an acknowledgment from the
peer, then the process times out and the link is forced down.

16 TCP/IP User’'s Manual

2.4 Setting up PPP Interfaces

PPP interfaces are slightly more complicated to configure than non-PPPoE Ethernet. They aso
generally take more time to become established. The advantage of PPP isthat it can be made to
run over awide variety of physical layer hardware: on Rabbit-based boards this includes the asyn-
chronous serial ports, as well as Ethernet (using PPPoE). Use of PPP over asynchronous seria
allows boards with no Ethernet hardware to communicate using TCP/IP protocols.

Starting with Dynamic C version 7.30, the process of establishing a PPP link has been more tightly
integrated into the library (usingthe i fup () /ifdown () /ifconfig () functions). Prior to
7.30, your application had to be hard-coded to use either Ethernet, PPP or PPPoE.

The Dynamic C Module document titled “ PPP Driver” explains the details of establishing PPP
interfaces. The following sections provide an overview.

2.4.1 PPP over Asynchronous Serial

There are two basic scenarios for use of PPP over asynchronous serial (shortened hereto just
PPP). Thefirst isadirect, hard-wired, connection to another machine. The second is a connection
to an ISP (Internet Service Provider) viaamodem. Modem connections introduce another layer of
complexity in that the modem itself must be instructed to connect to the desired peer’s modem,
most often viathe PSTN (Public Switched Telephone Network). Most often, | SPs also have spe-
cia requirements for establishing PPP links which are often unrelated to PPP itself. For example,
many |1SPs require navigation of “login scripts’ which are basically intended for human users.

With hard-wired connections, e.g., RS232 cables with “null modems” or “crossed-over connec-
tions,” the process of establishing aPPP link isrelatively simple and reliable. Bringing such a PPP
link up involves opening the seria port, sending and receiving PPP link negotiation messages
(known as LCP; Link Control Protocol), sending and receiving authentication messages (PAP,
Password Authentication Protocol) then finally sending and receiving Internet Protocol Control
Messages (IPCP). If all negotiations are successful, the link is then ready for TCP/IP traffic.

If the link is established viaa modem, then an extralayer of activity must precede theinitial PPP
negotiation. This is outside the scope of PPP, since it isreally related to the establishment of a
physical layer. The TCP/IP library gives you the option of incorporating the modem connection
phase into the process of bringing the interface up and down. If preferred, the modem phase can be
performed entirely separately fromthe i fup () /ifdown () process. This may be necessary if
there are special requirements for connecting to the ISP,

2.4.2 PPP over Ethernet

PPPOE is often considered a “hack.” It seems superfluous to define a protocol that establishes a
logical “connection” between two peers on what is otherwise a broadcast (i.e., any-to-any)
medium. Nevertheless, the existence of PPPoE was largely dictated by the needs of |SPswho
wished to continue using their existing infrastructure, based on the earlier generation of dial-in
connections. The advent of high speed (ADSL etc.) modems, that had an Ethernet connection to
the user’s network, made PPPOE an attractive proposition. If your application requires connection
to an ISP viaan ADSL modem, then you will most likely need to support PPPoE.

PPPoE also requires a physical layer negotiation to precede the normal PPP negotiations. Thisis
known as the “access concentrator discovery” phase (“discovery” for short). PPPoE makes a dis-

Chapter 2: TCP/IP Initialization 17

tinction between PPPoE servers and PPPoE clients, however, PPP makes no distinction; you can
think of PPP as also standing for Peer to Peer Protocol. The PPPOE server is known as the access
concentrator. The Dynamic C TCP/IP libraries do not support acting as the access concentrator;
only the PPPOE client mode is supported. This isthe most common case, since the DSL modem is
always configured as an access concentrator.

2.5 Configuration Macro Reference
This section categorizes the configuration macros by their purpose.

2.5.1 Removing Unnecessary Functions

The following macros default to being undefined (i.e., the functionality isincluded by default).
You can define one or more of these macros to free up code and data memory space.

DISABLE DNS
This macro disables DNS lookup. This prevents a UDP socket for DNS from being al-
located, thus saving memory. Usersmay still call resolve () withan|Paddress, pro-
vided that the addressisin dotted decimal formi.e., does not require areal DNSIookup.

DISABLE UDP
This macro disables all UDP functionality, including DNS, SNMPB, TFTP and
DHCP/BOOTP. You can define this to save asmall amount of code if your application
only needs to be a TCP server, or a TCP client that does not need to do name lookups.

This macro is available starting with Dynamic C 7.30.

DISABLE TCP
Thismacro disablesall TCP functionality, including HTTP (web server), SMTP (mail)
and other TCP-based protocols. You can define this to save a substantial amount of
code if your application only needs UDP.

This macro is available starting with Dynamic C 7.30.

2.5.2 Including Additional Functions
The following macros default to being undefined i.e., the functionality is not included by default.

USE_DHCP
Thismacro is required when DHCP or BOOTP functionality is desired.

USE_SNMP
Define thisto be the version number of SNMP (Simple Network Management Proto-
col) to be supported. Currently, the only allowable valueis‘1'.

USE MULTICAST
This macro will enable multicast support. In particular, the extra checks necessary for
accepting multicast datagramswill be enabled and joining and leaving multicast groups
(and informing the Ethernet hardware about it) will be added.

18 TCP/IP User’'s Manual

USE_IGMP
If thismacro is defined, the USE_ MULTICAST macro is automatically defined. This
macro enabl es sending reports on joining multicast addresses and responding to IGMP
queries by multicast routers. Unlike USE_ MULTICAST, this macro must be defined to
be 1 or 2. Thisindicateswhich version of IGMP will be supported. Note, however, that
both version 1 and 2 IGMP clients will work with both version 1 and 2 IGMP routers.
Most users should just choose version 2.

2.5.3 BOOTP/DHCP Control Macros

Various macros control the use of DHCP. Apart from setting these macros before '#use dcrtcp.lib',
thereistypicaly very little additional work that needs to be done to use DHCP/BOOTP services.
Most of thework is done automatically when you call sock_init () toinitialize TCP/IP. There
are more control macros available than what arelisted here. Please look at the beginning of thefile
lib\tcpip\bootp.lib for moreinformation.

USE_DHCP
If thismacro isdefined, the target uses BOOTP and/or DHCP to configure the required
parameters. This macro must be defined to use DHCP services.

DHCP USE BOOTP
If defined, the target uses the first BOOTP response it gets. If not defined, the target
waits for the first DHCP offer and only if none comesin the time specified by
_bootptimeout doesit accept aBOOTP response (if any). Use of thismacro
speeds up the boot process, but at the expense of ignoring DHCP offersif thereisan
eager BOOTP server on the local subnet.

DHCP_CHECK
If defined, and USE_ DHCP is defined, then the target will check for the existence of
another host already using an offered | P address, using ARP. If the host exists, then the
offer will be declined. If this happened most DHCP servers would log amessage to the
administrator, sinceit may represent a misconfiguration. If not defined, then the target
will request the first offered address without checking.

DHCP CLASS ID “Rabbit2000-TCPIP:Z-World:Test:1.0.0”"
Thismacro definesa classidentifier by which the OEM can identify the type of config-
uration parameters expected. DHCP servers can use thisinformation to direct the target
to the appropriate configuration file. Z-World recommends the standard format: “ hard-
ware:vendor:product code:firmware version.”

DHCP USE TFTP
If thisand USE_ DHCP are defined, thelibrary will usethe BOOTP filename and server
to obtain an arbitrary configuration file that will be accessible in a buffer at physical
address bootpdata, with length, bootpsize. The global variables,
_bootpdone and _bootperror indicate the status of the boot file download.
DHCP_USE_TFTP should be defined to the maximum file size that may be downl oad-
ed.

Chapter 2: TCP/IP Initialization 19

DHCP CLIENT ID clientid char ptr

DHCP CLIENT ID LEN clientid length
Define aclient identifier string. Since the client ID can contain binary data, the length
of thisstring must be specified aswell. Thisstring MUST be unique amongst al clients
in an administrative domain, thusin practice the client ID must be individually set for
each client e.g., viafront-panel configuration. It is NOT recommended to program a
hard-coded string (as for class ID). Note that RFC2132 recommends that the first byte
of the string should be zero if the client 1D isnot actually the hardware type and address
of the client (see next).

DHCP CLIENT ID MAC
If defined, this overridesDHCP CLIENT ID, and automatically setstheclient ID
string to be the hardware type (1 for Ethernet) and MAC address, as suggested by
RFC2132.

2.5.4 BOOTP/DHCP Global Variables

The following list of global variables may be accessed by application code to obtain information
about DHCP or BOOTP. These variables are only accessibleif USE_DHCP is defined. The vari-
ables marked "deprecated” should be accessed using ifconfig (IF_DEFAULT, ...) as
noted, rather than directly accessed.

_bootpon (Deprecated)
Runtime control of whether to perform DHCP/BOOTP. Thisisinitially set to 'true.’ It
can be set to false beforecalling sock _init (thefunction that initializes the TCP/IP
stack), causing static configuration to be used. Static configuration uses the values de-
fined for the configuration macros, MY IP ADDRESS etc. [f BOOTP failsduring ini-
tialization, thiswill be reset to 0. If reset, then you can call dhcp _acquire () at
some later time.

NOTE: Starting with Dynamic C 7.30, it is recommended that you do not manipulate
thisflag. Use i fconfig () instead to set the DHCP status for the default interface,
usingthe IFS DHCP/IFG_DHCP parameter.

_survivebootp (Deprecated)
Set to one of the following values:
0: If BOOTP/DHCP fails, then a runtime error occurs. Thisis the default.

1: If BOOTP fails, then use thevaluesinMY IP ADDRESS etc. If those macros are
not defined, a runtime error occurs.

NOTE: Starting with Dynamic C 7.30, it is recommended that you do not manipulate
thisflag. Use ifconfig () withthe IFS DHCP FALLBACK parameter.

_dhcphost
IPaddress of |ast-used DHCP server (~OUL if none). If _survivebootp istrue, then
thisvariable should be checked to seeif DHCP/BOOT P was actually used to obtain the
lease. If _dhcphost is~OUL, thenthefallback parameters(MY IP ADDRESS etc.)
were used since no DHCP server responded.

20 TCP/IP User’'s Manual

_bootphost
IPaddress of thelast-used BOOTP/TFTP server (~OUL if none). Usually obtained from
the siaddr field of the DHCP OFFER/ACK message. Thisisthe default host used if
NULL isgiven for thehosthameinthecal totftp exec (). Thisisthe host that pro-
vides the boot file.

_dhcplife, dhcptl, dhcpt2
These variables contain various absolutetimevalues (referenced against SEC_ TIMER)
at which certain aspects of the DHCP protocol get activated. dhcplife iswhenthe
current leaseexpires. If _dhcplife is~0UL (i.e.,, OXFFFFFFFF) then theleaseis per-
manent and the other variables are not used. Otherwise, dhcpt1 iswhen the current
lease must be renewed by the current DHCP server. _dhcpt2 iswhen the lease must
be re-bound to apossibly different server, if the current server does not respond. In gen-
grdl, dhcptl < dhcpt2 < _dhcplife. Towork out the number of secondsre-
maining until the current |ease expires, use code similar to
if (_dhcplife == ~0UL)
printf ("Lease is permanent\r\n") ;
else if (dhcplife > SEC TIMER)
printf ("Remaining lease %1lu seconds\r\n",
_dhcplife - SEC TIMER) ;
else
printf ("Lease is expired\r\n") ;

_bootptimeout (Deprecated)
Number of secondsto wait for aBOOTP or DHCP offer. If there is no response within
this time (default 30 seconds), then BOOTP is assumed to have failed, and the action
specified by survivebootp will betaken. You can set this variable to a different
value before calling sock _init ().

NOTE: Starting with Dynamic C 7.30, it is recommended that you do not manipulate
thisflag. Use ifconfig () withthe IFS_DHCP_TIMEOUT parameter.

_bootpdone

I's set to a non-zero value when TFTP download of the boot fileis complete. This vari-
ableonly existsif DHCP_USE_TFTP isdefined. It isset to one of thefollowing values:

0: Download not complete, or boot file not yet known.
1: Boot file download completed (check bootperror for status).
2: No boot file was specified by the server.

_bootpsize
Indicates how many bytes of the boot file have been downloaded. Only exists if
DHCP USE_ TFTP isdefined.

Chapter 2: TCP/IP Initialization 21

_bootpdata
Physical starting address of boot data. The length of thisareawill be
DHCP_ USE_TFTP bytes, however, the actual amount of datain the buffer is given by
_bootpsize. Thisvariable only existsif DHCP_USE_TFTP isdefined and isonly
validif bootpdone isl. You can accessthe datausing xmem2root () and related
functions.

_bootperror
Indicates any error which occurred in a TFTP process. This variable only existsif
DHCP_ USE TFTP isdefined and isonly valid when bootpdone is1.

_bootperror isset to one of thefollowing values (which are al so documented with
thetftp tick () function):

0: Noerror.

-1: Error from boot file server, transfer terminated. This usually occurs
because the server is not configured properly, and has denied access to the
nominated file.

-2: Error, could not contact boot file server or lost contact.
-3: Timed out, transfer terminated.

-4: (not used)
-5: Transfer complete, but truncated because buffer too small to receive the
completefile.

_smtpsrv
IP address of mail server, or O if not obtained.

2.5.5 Buffer and Resource Sizing

MAX SOCKETS (deprecated)
This macro defines the number of socketsthat will be allocated, not including the sock-
et for DNS lookups. It defaultsto 4. If libraries such asHTTP . LIB or
FTP_SERVER.LIB are used, you must provide enough sockets in MAX SOCKETS
for them also. This macro has been replaced by MAX TCP SOCKET BUFFERS and
MAX UDP_ SOCKET BUFFERS.

MAX SOCKET LOCKS
For pC/OS-11 support. This macro defines the number of socket locksto allocate. It de-
faultstoMAX TCP_SOCKET BUFFERS +MAX UDP_SOCKET BUFFERS.

Thismacro is necessary because we can no longer cal culate the number of socket locks
needed based on the number of socket buffers, now that the user can manage their own
socket buffers,

MAX TCP_ SOCKET BUFFERS
Starting with Dynamic C version 7.05, this macro determines the maximum number of
TCP sockets with preallocated buffers. If MAX SOCKETS is defined, then
MAX TCP_SOCKET BUFFERS will be assigned the value of MAX SOCKETS for

22 TCP/IP User’'s Manual

backwards compatibility. If neither macroisdefined, MAX TCP_SOCKET BUFFERS
defaults to 4.

MAX UDP SOCKET BUFFERS

Starting with Dynamic C version 7.05, this macro determines the maximum number of
UDP sockets with preallocated buffers. It defaultsto O.

SOCK_BUF SIZE (deprecated)
This macro determines the size of the socket buffers. A TCP socket will have two buff-
ersof Size SOCK_BUF_SIZE/2for send and receive. A UDP socket will haveasingle
buffer of Sze SOCK_BUF_SIZE. Both types of sockets take the same total amount of
buffer space. This macro has been replaced by TCP_BUF SIZE and
UDP_BUF_SIZE.

TCP BUF SIZE
Starting with Dynamic C 7.05, TCP and UDP socket buffers are sized separately.
TCP_BUF_SIZE definesthe buffer sizes for TCP sockets. It defaults to 4096 bytes.
Backwards compatibility exists with earlier version of Dynamic C: if
SOCK_BUF_SIZE isdefined, TCP_BUF_SIZE isassigned the value of
SOCK_BUF_ SIZE.If SOCK BUF_ SIZEisnotdefined, buttcp MaxBufSizeis,
then TCP_BUF_SIZE will be assigned the value of tcp MaxBufSize*2.

tcp MaxBufSize (deprecated)

Thisuse of thismacro is deprecated in Dynamic C version 6.57 and higher; it has been
replaced by SOCK_BUF SIZE.

In Dynamic C versions 6.56 and earlier, tcp MaxBufSize determines the size of
theinput and output buffersfor TCPand UDP sockets. Thesizeof (tcp Socket)
will beabout 200 bytesmorethan double t cp MaxBufSize. Theoptimum valuefor
local Ethernet connectionsis greater than the Maximum Segment Size (MSS). The
MSS is 1460 bytes. You may want to lower tcp MaxBufSize, which defaults to
2048 bytes, to reduce RAM usage. It can be reduced to as little as 600 bytes.

tcp MaxBufsSize will work slightly differently in Dynamic C versions 6.57 and
higher. In these later versions the buffer for the UDP socket will be
tcp MaxBufSize*2, whichistwiceaslarge as before.

UDP BUF SIZE
Starting with Dynamic C 7.05, TCP and UDP socket buffers are sized separately.
UDP_BUF_SIZE definesthe buffer sizesfor UDP sockets. It defaults to 4096 bytes.
Backwards compatibility exists with earlier version of Dynamic C: if
SOCK_BUF_SIZE isdefined, UDP_BUF_SIZE isassigned the value of
SOCK_BUF_ SIZE.If SOCK BUF SIZEisnotdefined, buttcp MaxBufSizeis,
then UDP_BUF_SIZE will be assigned the value of tcp MaxBufSize*2.

Chapter 2: TCP/IP Initialization

23

ETH MTU
Define the Maximum Transmission Unit for Ethernet and PPPoE interfaces. The de-
fault is 600, but may be increased to a maximum of 1500 subject to root data memory
limitations. PPPOE always uses avalue that is 8 less than this figure. For maximum
throughput on an Ethernet link, use the largest value (1500).

Note that, in DC version 7.30, amacro will be defined which is set to the larger of

ETH MTU and PPP_MTU. Thismacroiscalled MAX MTU, and is used for sizing the
receive buffer for incoming packets from all interfaces.

PPP_MTU
Define the maximum transmission/receive unit for PPP over serial links. This defaults
tothesameas ETH_MTU if it isdefined, or 600. This macro is new for 7.30.

ETH MAXBUFS
Define the maximum number of incoming packetsthat may be buffered. Defaultsto 10.
The buffers are shared between al interfaces (in spite of the name). The total amount
of root data storage for incoming packets depends on the configured mix of interface
types, but is (MAX MTU+22)*ETH MAXBUFS for just Ethernet without PPPOE. This
will default to 6220 bytesif the defaults are sel ected.

ARP TABLE SIZE

Define to the number of ARP table entries. The default is set to the number of interfac-
es, plus5 entriesfor every Ethernet interface (excluding PPPoE). The maximum allow-
ablevalueis 200.

ARP ROUTER TABLE SIZE
Define the maximum number of routers. Defaults to the number of interfaces, plus an
extraentry for each Ethernet (excluding PPPOE) .

MAX STRING
Define the maximum number of characters for a hostname or for amail server when
using the function smtp setserver (). Defaultsto 50.

MAX NAMESERVERS
Define the maximum number of DNS servers. Defaults to 2.

MAX COOKIES
Define the maximum number of cookies that a server can send to or receive from acli-
ent. Defaultsto 1.

TCP_MAXPENDING

Define the maximum number of pending TCP connections allowed in the active list.
Defaultsto 20.

24 TCP/IP User’'s Manual

MAX RESERVEPORTS
Defines the maximum number of TCP port numbers that may be reserved. Defaults to
5if USE_ RESERVEDPORTS is defined (which is defined by default). For more infor-
mation about USE_ RESERVEDPORTS and setting up alisten queue, please see
Section 3.3.4.

DNS MAX RESOLVES
4 by default. Thisisthe maximum number of concurrent DNS queries. It specifiesthe
size of an interna table that is allocated in xmem.

DNS MAX NAME
64 by default. Specifiesthe maximum sizein bytes of ahost name that can be resolved.
This number includes any appended default domain and the NULL-terminator. Back-
wards compatibility exists for theMAX DOMAIN LENGTH macro. Itsvaluewill be
overridden with thevalue DNS_MAX NAME if it is defined.

For temporary storage, a variable of this size must be placed on the stack in DNS pro-

cessing. Normally, thisis not a problem. However, for uC/OS-11 with asmall stack and
alargevaluefor DNS_MAX NAME, this could be anissue.

DNS MAX DATAGRAM SIZE
512 by default. Specifies the maximum length in bytes of a DNS datagram that can be
sent or received. A root data buffer of this sizeis allocated for DNS support.

DNS SOCK BUF SIZE
1024 by default. Specifiesthe sizein bytes of an xmem buffer for the DNS socket. Note
that this means that the DNS socket does not use a buffer from the socket buffer pool.

2.5.6 Pre Version 7.30 Network Configuration

These macros should only be used for releases of Dynamic C prior to version 7.30. They are sup-
ported in 7.30 for backward compatibility, however new applications should use the new style of
configuration outlined in the next section. Use of the runtime functions mentioned in this section
is deprecated in favor of ifconfig().

MY DOMAIN
Thismacroistheinitial value for the domain portion of the controller’s address. At
runtime, it can be overwritten by tcp config() and setdomainname ().

MAX DOMAIN LENGTH
Specify the maximum domain name length, including any concatenated host name. De-
faultsto 128.

MY GATEWAY
This macro gives the default value for the controllers default gateway. At runtime, it
can be overwritten by tcp config().

Chapter 2: TCP/IP Initialization 25

MY IP ADDRESS
Thismacro isthe default | P address for the controller. At runtime, it can be overwritten
by tcp _config() and sethostid().

MY NAMESERVER
This macro isthe default value for the primary name server. At runtime, it can be over-
written by tcp config().

MY NETMASK
This macro is the default netmask for the controller. At runtime, it can be overwritten
by tecp config().

2.5.7 Version 7.30 Interface Configuration

TCPCONFIG
Define to the number of a predefined configurationintcp _config.lib (numbers
lessthan 100) or custom config.lib (numbersgreater or equal to 100). Defaults
to 0, which means no predefined configuration.

USE ETHERNET
Defineto O (or leave undefined) if Ethernet is not required. Defineto 1 if the first Eth-
ernet port isto be used. Defaults to 0. This macro does not include PPPOE interfaces.

USE_PPP SERIAL
Define to a bitwise-OR combination of

Ox01 - Seria port A (IF_PPPO)
0x02 - Seria port B (IF_PPP1)
0x04 - Seria port C (IF_PPP2)
Ox08 - Seria port D (IF_PPP3)

Defaultsto 0, i.e., no PPP over serial.

USE_PPPOE
Definein the sameway asUSE_ETHERNET, except that PPPOE is used on the speci-
fied Ethernet port. Defaultsto 0 i.e., no PPPoE interfaces.

26 TCP/IP User’'s Manual

IFCONFIG ALL

IFCONFIG DEFAULT

IFCONFIG ETHO

IFCONFIG PPPO..5

IFCONFIG PPPOEO
All the above IFCONFIG * macros are defined in asimilar manner.
IFCONFIG ALL isreserved for configuration items that are not specific to any par-
ticular interface number. IFCONFIG DEFAULT isapplied to the default interface
(IF_DEFAULT) if thereis no specific IFCONFIG_* for the default interface.

These macrosmust be defined asa C parameter list fragment. Thisisbecausethe macro
valueis subgtituted into acall to ifconfig () atinitiaization time

(sock_init ()). For example, the fragment of code that initializes the non-PPPoE
Ethernet interface looks somewhat like the following:

#ifdef IF_ETHO

#ifdef IFCONFIG_ETHO
ifconfig(IF ETHO, IFCONFIG ETHO, IFS END) ;

#else
#if IF _DEFAULT == IF ETHO
ifconfig(IF_DEFAULT, IFCONFIG_DEFAULT, IFS_END);
#endif
#endif
#endif

The entire fragment is processed only if IF_ETHO isdefined, i.e., you have specified
that the non-PPPoE Ethernet interface is to be used. Inside this, if the

IFCONFIG ETHO macro has been defined, thenit is substituted into an
ifconfig() callfor IF_ETHO. Otherwise, if IF_ETHO isthedefault (i.e., equal to
IF DEFAULT) then the IFCONFIG DEFAULT macro issubstituted into the
ifconfig() call.

Note that for backwards compatibility, IFCONFIG DEFAULT isaways defined to
something if it was not explicitly defined prior to inclusion of dcrtcp.1ib. Itisde
fined using the given values of the pre version 7.30 macros: MY IP ADDRESS,

MY GATEWAY etc.

TheIFCONFIG_* macroscan be definedto bean arbitrary number of ifconfig ()
parameters. For example,

#define IFCONFIG ETHO\

IFS IPADDR,aton("10.10.6.100"), \

IFS NETMASK, OXFFFFFFOOuL, \

IFS ROUTER_ADD,aton("10.10.6.1"), \

IFS ROUTER ADD STATIC,aton("10.10.6.111"), \

aton("10.10.6.0") ,0xFFFFFFOOQuUL, \

IFS DEBUG, 5, \
IFS ICMP CONFIG, 1, \
IFS UP

which sets up local IP address and netmask, two routers, turnsthe verbose level all the

Chapter 2: TCP/IP Initialization

27

way up, allows ping configure, and finally specifies that the interface be brought up at
boot time.

Thefinal IFS_UP isimportant: if it is omitted, then the interface will not be brought
up at boot time; you will need to call i fup () explicitly after sock_init ().

For afull list of the parametersthat you can specify inan IFCONFIG * macro, please
see the documentation for the i fconfig () functionin Table 7.1 on page 103.

2.5.8 Time-Outs and Retry Counters

RETRAN STRAT TIME

Thisisused for several purposes. It isthe minimum time granularity (in milliseconds)
of the retransmit process. No time-out is set less than this value. It defaultsto 10 ms.

TCP_OPENTIMEOUT

Defines the time-out value (in milliseconds) for active open processing. Defaults to
31000 ms.

TCP_CONNTIMEOUT

Definesthe time-out value (in milliseconds) during open or close negotiation. Defaults
to 13000 ms.

TCP_SYNQTIMEOUT

Defines the time-out value (in milliseconds) for pending connection. Defaults to
90000 ms.

TCP_TWTIMEOUT

Definetimeto linger in TIMEWAIT state (milliseconds). It should be from .5 to 4 min-
utes (2MSL) but it's not really practical for us. Two seconds will hopefully handle the
casewhere ACK must beretransmitted, but can't protect future connectionson the same
port from old packets. Defaults to 2000 ms.

KEEPALIVE NUMRETRYS
Number of times to retry the TCP keepalive. Defaultsto 4.

KEEPALIVE WAITTIME
Time (in seconds) to wait for the response to a TCP keepalive. Defaults to 60 seconds.

TCP_MAXRTO

Set an overal upper bound for the retransmit timeout. Thisisin units of milliseconds.
Defaults to 50,000 ms.

28 TCP/IP User’'s Manual

TCP_MINRTO
Set alower bound for the retransmit timeout. Thisisin units of milliseconds. Default
is250 ms (¥asecond). Beware of reducing this, since modern hoststry to ack only every
second segment. If our RTO istoo small, we will unnecessarily retransmit if we don't
get the ack for the first of the two segments (especially on afast LAN, wherethe RTT
measurement will want to make us set asmall time-out).

TCP_LAZYUPD
Set adelay timefor "lazy update’ (ms). Thisis used to slightly delay window updates
and empty acknowledgments to the peer, in the hope of being able to tag extra data
along with otherwise empty segments. Thisimproves performance by allowing better
interleaving of application processing with TCP activity, and sending fewer empty seg-
ments. Thisdelay interval isalso used when we need to retransmit owing to atemporary
shortage of Ethernet transmit buffers. Defaultsto 5 ms.

DNS RETRY TIMEOUT
2000 by default. Specifies the number of milliseconds to wait before retrying aDNS
request. If arequest to anameserver times out, then the next nameserver istried. If that
times out, then the next oneistried, in order, until it wraps around to the first nameserv-
er again (or runs out of retries).

DNS NUMBER RETRIES
2 by default. Specifies the number of times arequest will be retried after an error or a
timeout. Thefirst attempt does not constitute aretry. A retry only occurswhen arequest
hastimed out, or when anameserver returnsan unintelligible response. That is, if ahost
name islooked up and the nameserver reportsthat it does not exist and then the DNS
resolver tries the same host name with or without the default domain, that does not con-
stitute aretry.

DNS MIN KEEP COMPLETED

10000 by default. Specifies the number of milliseconds a completed request is guaran-
teed to be valid for resolve _name_check (). After thistime, the entry in thein-
ternal table corresponding to this request can be reused for a subsequent request.

2.5.9 Program Debugging

TCP_STATS
Enable TCP socket statistics collection. This causes some additional fields to be de-
fined in the TCP socket structure, which are updated with various counters. Thisis
mainly for internal debugging.

DCRTCP_DEBUG
If defined, allow Dynamic C debugginginal TCP/IPlibraries. Thisallowsyouto trace
into library functions in case you are finding difficulty in solving a TCP/IP problem.
Remember to remove this definition when compiling for a production environment.

Chapter 2: TCP/IP Initialization

DCRTCP_VERBOSE
If defined, enable debugging messages to be printed by the library to the Dynamic C
stdout window. This can be very informative when you are trying to see how the
TCP/IP libraries work. Unfortunately, the string messages take up alot of root code
space, so you may need to increase the DATAORG valuein the BIOS. Otherwise, you
can be more sel ective about which messages are printed by defining * VERBOSE mac-
rosfor individual libraries (DCRTCP_VERBOSE merely turns on al the individual li-
brary verbose definitions). See dcrtcp.lib source for alisting of the available debug and
verbose macros.

Note that the number of messages printed depends on the value of aglobal variable,
debug on. If thisvariableis 0, only afew messages are printed. If set to higher num-
bers (up to 5), then successively more detailed messages are printed. You can set this
variable directly at the start of your main () function, or preferably use

ifconfig (IF_ANY, IFS DEBUG, 5, IFS_END);

2.5.10 Miscellaneous Macros

TCP_ FASTSOCKETS

Defineto ‘1’ if sockets connected to “reserved” ports can be closed without the usual
2MSL delay. The default issetto ‘1’, defineto ‘O’ to override this.

NET ADD ENTROPY

Define this macro to allow network packet arrival times (from any interface) to be a
source of random number seeds. See RAND . LIB for further information.

NET COARSELOCK

Thismacrois only used when uC/OS-l1 is active. It affects the definition of 2 other
macros: LOCK_SOCK (s) and UNLOCK_SOCK (s) .

If NET COARSELOCK is not defined, the lock/unlock macros are individual socket
locks for use on socket transmit/receive buffers and the socket structure itself. If it is
defined, the lock/unlock macros are global locks.

TCP_NO CLOSE ON LAST READ
If defined, then support half-close; i.e., sock_close () only closesthetransmit side
of the socket, but allows indefinite receives until the peer closes. This preventsthe nor-
mal closetimeout from being set. Also, when reading, if the socket ishalf-closed by the
peer, then the socket will be automatically closed from thissideif this define is not set.

30 TCP/IP User’'s Manual

2.5.10.1 TOS and TTL
TOSand TTL arefieldsin the IP header. TOS, short for “ Type of Service,” uses 4 bits to specify
different types of service. For normal service al 4 bits are zero. Different applications will want
different types of service. For example, SNMP might set the maximize reliability bit, whereas FTP
would want maximize throughput.

IPTOS DEFAULT isnormal service.
IPTOS_CHEAP minimizes monetary cost.
IPTOS RELIABLE maximizesreliability.
IPTOS CAPACIOUS maximizes throughput
IPTOS_FAST minimizes delay.

IPTOS SECURE maximizes security.

Note that you may not OR these values together. You must pick one only!

TTL, short for “Timeto Live,” specifies how many routers a packet may visit beforeit isdis-
carded, or how many seconds it can remain in the network, whichever comes first.

TCP TTL
Default TTL of TCP segments. Thisvalue isfrom Internet STD0002. Defaultsto 64.

TCP_TOS
Default type of service for TCP. Defaultsto IPTOS DEFAULT.

UDP_TTL
Default TTL of UDP datagrams. Thisvalueis from Internet STD0002. Defaults to 64.

UDP_TOS
Default type of service for UDP. Defaultsto IPTOS DEFAULT.

ICMP_ TOS
Default type of service for ICMP. Defaultsto IPTOS DEFAULT.

Chapter 2: TCP/IP Initialization 31

32

TCP/IP User’s Manual

3. TCP and UDP Socket Interface

TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) are both transport layer
protocols. TCP is used when areliable, stream-oriented, transport is required for data flowing
between two hosts on a network. UDP is a record-oriented protocol which is used when lower
overhead is more important than reliability. The acronym UDP is sometimes expanded as “ unreli-
able datagram protocol” athough, in practice, UDP is quite reliable especially over alocal Ether-
net LAN segment.

The Dynamic C TCP/IP librariesimplement TCP and UDP over IP (Internet Protocol). IPis a net-
work layer protocol, that in turn uses lower levels known as “link layer” protocols, such as Ether-
net and PPP (Point-to-Point Protocol). The link-layer protocols depend on a physical layer, such
as 10BaseT for Ethernet, or asynchronous RS232 for PPP over serial.

In the other direction, various protocols use TCP. Thisincludes the familiar protocols HTTPR,
SMTP (mail) and FTP. Other protocols use UDP: DNS and SNMP to name a couple. TCP handles
alot of messy details which are necessary to ensure reliable data flow in spite of possible deficien-
ciesin the network, such aslost or re-ordered packets. For example, TCP will automatically
retransmit data that was not acknowledged by the peer within areasonable time. TCP also paces
datatransmission so that it does not overflow the peer’s receive buffers (which are always finite)
and does not overload intermediate nodes (routers) in the network. UDP leaves all of these details
to the application, however UDP has some benefits that TCP cannot provide: one benefit is that
UDP can “broadcast” to more than one peer, and another is that UDP preserves the concept of
“record boundaries’ which can be useful for some applications.

TCP is aconnection-oriented protocol. Two peers establish a TCP connection, which persists for
the exclusive use of the two parties until it is mutually closed (in the usual case). UDP is connec-
tionless. There is no special start-up or tear-down required for UDP communications. You can
send a UDP packet at any time to any destination. Of course, the destination may not be ready to
receive UDP packets, so the application has to handle this possibility. (In spite of being “ connec-
tionless,” we till sometimes refer to UDP “connections’ or “ sessions” with the understanding that
the connection is a figment of your application’s imagination.)

This chapter describes how to implement your own application level protocols on top of TCP or
UDP. The Dynamic C TCP/IP libraries can also be examined for further hints as to how to code
your application. For example, HTTP . LIB contains the source for an HTTP web server.

Chapter 3: TCP and UDP Socket Interface 33

3.1 What is a Socket?

Both TCP and UDP make extensive use of the term “socket.” A TCP socket represents the con-
nection state between the local host and the remote peer. When talking about TCP connections
which traverse the Internet, a socket is globally unique because it is described by 4 numbers: the
local and remote | P addresses (32 bits each), and the local and remote port numbers (16 bits each).

Connectionsthat do not traverse the Internet (e.g., between two hosts on an isolated LAN) are still
unique within the attached network.

UDP sockets do not have the global uniqueness property, since they are not connection-oriented.
For UDP, a socket really refersto just the local side.

For practical purposes, a socket isastructurein RAM that contains all the necessary state infor-
mation. TCP sockets are considerably larger than UDP sockets since there is more connection
state information to maintain. TCP sockets also require both areceive and atransmit buffer,
whereas UDP sockets require only areceive buffer.

With Dynamic C version 6.57, each socket must have an associated tcp_Socket structure of
145 bytesor audp Socket structure of 62 bytes. The I/O buffers are in extended memory. For
Dynamic C 7.30 these sizes are 136 bytes and 44 bytes, respectively.

For earlier versions of Dynamic C (than 6.57), each socket must haveatcp Socket datastruc-
ture that holds the socket state and 1/O buffers. These structures are, by default, around 4200 bytes
each. The mgjority of this space is used by the input and output buffers.

3.1.1 Port Numbers

Both TCP and UDP sockets make use of port numbers. Port numbers are a convenient method of
allowing several simultaneous connections to exist between the same two hosts. Port numbers are
also used to provide “well-known” starting points for common protocols. For example, TCP port
number 23 is used for standard telnet connections. In general, port numbers below 1024 are used
for standard services. Numbers between 1024 and 65535 are used for connections of a temporary
nature. Often, the originator of a connection will select one of the temporary port numbersfor its
end of the connection, with the well-known number for the other end (which is often some sort of
“server”).

TCP and UDP port numbers are not related and operate in an independent “space.” However, the
well-known port numbers for TCP and UDP services often match if the same sort of protocol can
be made to run over TCP or UDP.

When you open a socket using the TCP/IP libraries, you can specify a particular port number to
use, or you can alow the library to pick atemporary port number for an “ephemeral” connection.

34 TCP/IP User’'s Manual

3.2 Allocating TCP and UDP Sockets

In al versions of Dynamic C, TCP and UDP socket structures must be allocated in static data stor-
age. Thisis simply accomplished by declaring a static variable of type tcp_Socket or udp_Socket:

static tcp Socket my sock;
static udp_Socket my udp sock arrayl[20];

3.2.1 Allocating Socket Buffers

Starting with Dynamic C version 7.05, there are two macros that define the number of sockets
available. These macros do not determine how many sockets you can allocate, but they do limit
how many sockets you can successfully use. Each socket requires some resources which are not
automatically available just because you declare atcp_Socket structure. The additional resources
arereceivel/transmit buffers (which are allocated in extended memory), and also socket sema-
phoresif you are using pC-OS/11. The relevant macros are:

MAX TCP_ SOCKET BUFFERS

Determines the maximum number of TCP sockets with preallocated buffers. The de-
faultis4. A buffer istied to a socket with thefirst call to tcp _open () or

tcp listen().lfyouusetcp extopen() ortcp extlisten () thenthese
buffer resources are not used up, but only if you allocate your own buffers using
xalloc ().

MAX UDP SOCKET BUFFERS
Determines the maximum number of UDP sockets with preallocated buffers. The de-
fault is 0. A buffer istied to a socket with thefirst call to udp_open () . If you use
udp extopen () thenthese buffer resourcesare not used up, but only if you allocate
your own buffersusing xalloc ().

Note that DNS does not need a UDP socket buffer since it manages its own buffer. Prior to ver-
sion 7.30, DHCP and TFTP . L.IB each need one UDP socket buffer. Starting with version 7.30,
DHCP manages its own socket buffers.

Prior to Dynamic C version 7.05, MAX SOCKETS (deprecated) defined the number of sock-
etsthat could be allocated, not including the socket for DNS lookups. If you use libraries such as
HTTP.LIB Or FTP_SERVER.LIB, you must provide enough socketsin MAX SOCKETS for
them also.

In Dynamic C 7.05 (and later), if MAX SOCKETS isdefined in an application program,
MAX TCP_SOCKET BUFFERS will be assigned the value of MAX SOCKETS.

If you are using uC-OS/1I then there is a further macro which must be set to the correct value:
MAX SOCKET LOCKS. Thismust count every socket (TCP plus UDP), including those used
internally by the libraries. If you cannot calculate this exactly, then it is best to err on the side of
caution by overestimating. The actual socket semaphore structure isnot al that big (lessthan 70
bytes).

The default value for MAX SOCKET LOCKS isthesum of MAX TCP_SOCKET BUFFERS and
MAX UDP_ SOCKET BUFFERS (pluslif DNSis being used).

Chapter 3: TCP and UDP Socket Interface 35

3.2.2 Socket Buffer Sizes
Starting with Dynamic C version 7.05, TCP and UDP 1/O buffers are sized separately using:

TCP_BUF SIZE
Determines the TCP buffer size. Defaults to 4096 bytes.

UDP BUF SIZE
Determines the UDP buffer size. Defaults to 4096 bytes.

Compeatibility is maintained with earlier versions of Dynamic C. If SOCK_BUF_SIZE isdefined,
TCP_BUF_SIZE and UDP_BUF SIZE will be assigned the value of SOCK_BUF SIZE. If
SOCK_BUF_SIZE isnot defined, but tcp MaxBufSize is, then TCP_BUF_ SIZE and
UDP_BUF_SIZE will beassigned thevalue of tcp MaxBufSize * 2.

3.2.2.1 User-Supplied Buffers

Starting with Dynamic C version 7.05, a user can associate his own buffer with a TCP or UDP
socket. The memory for the buffer must be allocated by the user. This can be done with
xalloc (), which returns a pointer to the buffer. This buffer will be tied to a socket by a call to
an extended open function: tcp_extlisten (), tcp extopen () or udp extopen().
Each function requires along pointer to the buffer and its length be passed as parameters.

3.3 Opening TCP Sockets

There are two ways to open a TCP socket, passive and active. Passive open means that the socket
is made available for connections originated from another host. This type of open is commonly
used for Internet serversthat listen on awell-known port, like 80 for HTTP (Hypertext Transfer
Protocol) servers. Active open is used when the controller board is establishing a connection with
another host which is (hopefully) listening on the specified port. Thisistypically used when the
controller board isto be a“client” for some other server.

The distinction between passive and active open is lost as soon as the connection is fully estab-
lished. When the connection is established, both hosts operate on a peer-to-peer basis. The distinc-
tion between whois“client” and who is“server” is entirely up to the application. TCP itself does
not make a distinction.

3.3.1 Passive Open

To passively open asocket, call tcp listen()or tcp extlisten ();thenwait for some-
one to contact your device. You supply the listen function with apointer toatcp Socket data
structure, the local port number others will be contacting on your device, and possibly the IP
address and port number that will be acceptable for the peer. If you want to be able to accept con-
nections from any |P address or any port number, set one or both to zero.

To handle multiple simultaneous connections, each new connection will require its own

tcp Socket and aseparate call to one of the listen functions, but using the same local port
number (1port value). Thelisten function will immediately return, and you must poll for the
incoming connection. You can manually poll the socket using sock_established (). The
proper procedure for fielding incoming connections is described below.

36 TCP/IP User’'s Manual

3.3.2 Active Open

When your Web browser retrieves a page, it actively opens one or more connectionsto the
server’s passively opened sockets. To actively open a connection, call tcp _open () or

tcp extopen (), which use parameters that are similar to the ones used in the listen functions.
Supply exact parameters for remip and port, which are the P address and port number you
want to connect to; the 1port parameter can be zero, causing an unused local port between 1024
and 65535 to be selected.

If the open function returns zero, no connection was made. This could be due to routing difficul-
ties, such as an inahility to resolve the remote computer’s hardware address with ARP. Even if
non-zero is returned, the connection will not be immediately established. You will need to check
the socket status as described in the next section.

3.3.3 Waiting for Connection Establishment

When you open a TCP socket either passively or actively, you must wait for a complete TCP con-
nection to be established. Thisistechnically known as the “ 3-way handshake.” Asthe name
implies, at least 3 packets must be exchanged between the peers. Only after completion of this
process, which takes at least one round-trip time, does the connection become fully established
such that application data transfer can proceed.

Unfortunately, the 3-way handshake may not always succeed: the network may get disconnected,;
the peer may cancel the connection; or the peer might even crash. The handshake may also com-
plete, but the peer could immediately close or cancel the connection. These possibilities need to be
correctly handled in arobust application. The consequences of not doing this right include locked-
up sockets (i.e., inability to accept further connections) or protocol failures.

The following code outlines the correct way to accept connections, and to recover in case of
errors.

if (!tcp open(&my socket, ...))
printf (“Failed to open\n”) ;
else while (!sock_established (&my socket)) {
if (!tcp tick(&my socket)) {
printf (“Failed to establish\n”) ;
break;
}
}
if (sock established (&my socket)) {
printf (“Established OK!\n”) ;

// dowhatever needs to be done...

Noticethetcp tick (&my socket) call inside the whileloop. Thisis necessary in order to
test whether the handshake was aborted by the peer, or timed out. At the end of the loop,

sock established () testswhether the handshake did indeed complete. If so, then the socket
isready for data flow. Otherwise, the socket should be re-opened. The same basic procedure
appliesfor passively opened sockets (i.e., tcp _listen()).

Chapter 3: TCP and UDP Socket Interface 37

3.3.4 Specifying a Listen Queue

A tcp_ Socket structure can handle only asingle connection at any one time. However, a pas-
sively opened socket may be required to handle many incoming connection requests without
undue delay. To help smoothly process successive connection requests with a single listening
socket, you can specify that certain TCP port numbers have an associated “pending connection”
gueue. If thereis no queue, then incoming requests will be cancelled if the socket isin use. If there
is agueue, then the new connections will be queued until the current active connection is termi-
nated.

To accept new connection requests when the passively opened socket is currently connected, use
thefunction tcp _reserveport (). It takes one parameter, the port number where you want to
accept connections. When a connection to that port number is requested, the 3-way handshaking is
done evenif thereis not yet a socket available. When replying to the connection request, the win-
dow parameter in the TCP header is set to zero, meaning, “1 can take no bytes of data at thistime.”
The other side of the connection will wait until the value in the window parameter indicates that
data can be sent. Using the companion function, tcp clearreserve (port number),
causes TCP/IP to treat a connection request to the port in the conventional way. The macro
USE_RESERVEDPORTS is defined by default. It allows the use of these two functions.

Whenusing tcp reserveport, the 2MSL (Maximum Segment Lifetime) waiting period for
closing a socket is avoided.

3.4 TCP Socket Functions

There are many functions that can be applied to an open TCP socket. They fall into three main cat-
egories. Control, Status, and 1/0.

3.4.1 Control Functions for TCP Sockets
These functions change the status of the socket or its 1/O buffer.

e sock_abort e tcp_extlisten
e sock close e tcp_extopen
e sock flush e tcp_listen
e sock_flushnext e tcp_open

The open and listen functions have been explained in previous sections.

Cal sock_close () toend aconnection. Thiscal may not immediately close the connection
because it may take some time to send the request to end the connection and receive the acknowl-
edgements. If you want to be sure that the connection is completely closed before continuing, call
tcp_tick () with the socket structure’'s address. When tcp tick () returnszero, then the
socket is completely closed. Please note that if there is data left to be read on the socket, the socket
will not completely close.

Cal sock_abort () tocancel an open connection. This function will cause a TCP reset to be
sent to the other end, and all future packets received on this connection will be ignored.

For performance reasons, data may not be immediately sent from a socket to its destination. If
your application requires the data to be sent immediately, you can call sock flush (). This

38 TCP/IP User’'s Manual

function will try sending any pending dataimmediately. If you know ahead of time that data needs
to be sent immediately, call sock flushnext () on the socket. Thisfunction will cause the
next set of datawritten to the socket to be sent immediately, and is more efficient than

sock flush().

3.4.2 Status Functions for TCP Sockets
These functions return useful information about the status of either a socket or its I/O buffers.

e sock alive e sock rbsize
e sock bytesready e sock rbused
e sock dataready e sock thbleft

e sock established e sock thsize
e sock iface e sock tbused
e sock rbleft e fcp tick

tcp tick () isthedaemon that drivesthe TCP/IP stack, but it also returns status information.
When you supply tcp tick () withapointertoatcp Socket (astructurethat identifies a
particular socket), it will first process packets and then check the indicated socket for an estab-
lished connection. tcp tick () returns zero when the socket is completely closed. You can use
this return value after calling sock close () to determineif the socket is completely closed.

sock close (&my socket) ;
while (tcp tick (&amy socket)) {
// Yyou can do other things here while waiting for the socket to be completely closed

}

The status functions can be used to avoid blocking when using sock_write () and some of the
other 1/0O functions. Asillustrated in the following code, you can make sure that there is enough
room in the buffer before adding data with a blocking function.

if (sock tbleft (&my socket,size))
sock write (&my socket,buffer,size);
}

The following block of code ensures that thereis a string terminated with a new linein the buffer,
or that the buffer isfull before calling sock gets ():
sock mode (&my socket, TCP_MODE ASCII) ;

if (sock bytesready (&my socket) != -1) {
sock gets (buffer,MAX BUFFER) ;
}

Chapter 3: TCP and UDP Socket Interface 39

3.4.3 I/O Functions for TCP Sockets
These functions handle all 1/O for a TCP socket.

sock aread
sock _awrite
sock axread
sock_axwrite
sock fastread
sock fastwrite
sock _getc
sock _gets

sock_preread
sock_putc
sock_puts
sock read
sock_write
sock xfastread
sock xfastwrite

There are two modes of reading and writing to TCP sockets: ASCII and binary. By default, a
socket is opened in binary mode, but you can change the mode with acall to sock _mode ().

When a socket isin ASCII mode, it is assumed that the datais an ASCI| stream with record
boundaries on the newline characters for some of the functions. This behavior means
sock_bytesready () will return >0 only when a complete newline-terminated string isin the
buffer or the buffer isfull. The sock puts () function will automatically place a newline char-
acter at the end of astring, and the sock_gets () function will strip the newline character.

Do not use sock _gets () in binary mode.

40

TCP/IP User’'s Manual

3.5 UDP Socket Overview

The UDP protocol is useful when sending messages where either alost message does not cause a
system failure or is handled by the application. Since UDP is a simple protocol and you have con-
trol over the retransmissions, you can decide if you can trade low latency for high reliability.

Broadcast Packets

UDP can send broadcast packets (i.e., to send a packet to a number of computers on the same net-
work). Thisis accomplished by setting the remote IP address to -1, in either acall to

udp_open () oracal toudp sendto (). When used properly, broadcasts can reduce overall
network traffic because information does not have to be duplicated when there are multiple desti-
nations.

Checksums

Thereisan optional checksum field inside the UDP header. Thisfield verifies the header and the
data. This feature can be disabled on areliable network where the application has the ability to
detect transmission errors. Disabling the UDP checksum can increase the performance of UDP
packets moving through the TCP/IP stack. This feature can be modified by:

sock mode (s, UDP_MODE CHK) ; // enable checksums
sock _mode (s, UDP_MODE NOCHK); // disablechecksums

The first parameter is a pointer to the socket’s data structure, either tcp_Socket or
udp_ Socket.

In Dynamic C version 7.20, some convenient macros offer a safer, faster alternative to using
sock mode (). They areudp set chk(s) andudp set nochk(s).

Improved Interface

With Dynamic C version 7.05 there is aredesigned UDP API. The new interface isincompatible
with the previous one. Section 3.6 covers the new interface and Section 3.7 covers the previous
one. See Section 3.7.5 for information on porting an older program to the new UDP interface.

Chapter 3: TCP and UDP Socket Interface 41

3.6 UDP Socket Functions (7.05 and later)

Starting with Dynamic C 7.05, the UDP implementation is a true record service. It receives dis-
tinct datagrams and passes them as such to the user program. The socket 1/0 functions available
for TCP sockets will no longer work for UDP sockets.

3.6.1 Control Functions for UDP Sockets
These functions change the status of the socket or its 1/O buffer.

e udp close
e udp extopen
e udp open

3.6.2 Status Function for UDP Sockets
These functions return useful information about the status of either a socket or its I/0O buffers.

e sock_bytesready
e sock dataready
e sock_rbleft

e sock rbsize

e sock_rbused

e udp peek

For aUDP socket, sock bytesready () returnsthe number of bytesin the next datagram in
the socket buffer, or -1 if no datagrams are waiting. Note that areturn of 0 isvalid, since a data-
gram can have 0 bytes of data.

3.6.3 1/0 Functions for UDP Sockets
These functions handle datagram-at-a-time 1/0:

e udp recv

e udp recvfrom
e udp send

e udp sendto

The write function, udp _sendto (), alows the remote I P address and port number to be speci-
fied. Theread function, udp recvfrom (), identifiesthe |P address and port number of the host
that sent the datagram. There is no longer a UDP read function that blocks until datais ready.

42 TCP/IP User’s Manual

3.7 UDP Socket Functions (pre 7.05)

Thisinterfaceis basically the TCP socket interface with some additional functions for simulating
arecord service. Some of the TCP socket functions work differently for UDP because of its con-
nectionless state. The descriptions for the applicable functions detail these differences.

3.7.1 1/O Functions for UDP Sockets

Prior to Dynamic C 7.05, the functions that handle UDP socket /O are mostly the same functions
that handle TCP socket 1/0.

e sock fastread e sock read

e sock_fastwrite e sock_recv

e sock_getc e sock_recv_from
e sock_gets e sock_recv_init
e sock preread e sock_write

e sock putc e udp_close

e sock puts e udp_open

Notice that there are three additional 1/0 functions that are only available for use with UDP sock-
es: sock_recv (), sock recv_from() andsock recv_init (). Thestatusand control
functions that are available for TCP sockets also work for UDP sockets, with the exception of the
open functions, tcp listen() and tcp open ().

3.7.2 Opening and Closing a UDP Socket

udp open () takesaremote IP address and a remote port number. If they are set to a specific
value, dl incoming and outgoing packets are filtered on that value (i.e., you talk only to the one
remote address).

If the remote IP addressis set to -1, the UDP socket receives packets from any valid remote
address, and outgoing packets are broadcast. If the remote |P addressis set to 0, no outgoing pack-
ets may be sent until a packet has been received. Thisfirst packet completes the socket, filling in
the remote | P address and port number with the return address of the incoming packet. Multiple
sockets can be opened on the same local port, with the remote address set to 0, to accept multiple
incoming connections from separate remote hosts. When you are done communicating on a socket
that was started with a0 IP address, you can closeit with sock _close () and reopen to make it
ready for another source.

3.7.3 Writing to a UDP Socket

Prior to Dynamic C 7.05, the normal socket functions used for writing to a TCP socket will work
for a UDP socket, but since UDP isasignificantly different service, the result could be different.
Each atomic write—sock putc (), sock puts (), sock write (), or
sock_fastwrite ()—placesits datainto asingle UDP packet. Since UDP does not guarantee
delivery or ordering of packets, the data received may be different either in order or content than
the data sent. Packets may also be duplicated if they cross any gateways. A duplicate packet may
be received well after the original.

Chapter 3: TCP and UDP Socket Interface 43

3.7.4 Reading From a UDP Socket

There are two ways to read UDP packets prior to Dynamic C 7.05. The first method uses the same
read functions that are used for TCP: sock_getc (), sock gets (), sock_read(), and
sock fastread (). Thesefunctionswill read the data as it came into the socket, which is not
necessarily the data that was written to the socket.

The second mode of operation for reading usesthe sock recv_init (), sock recv (), and
sock_recv_from() functions. Thesock recv_init () functioninstallsalarge buffer
areathat gets divided into smaller buffers. Whenever a datagram arrives, it is stuffed into one of
these new buffers. The sock_recv () and sock recv_from() functions scan these buffers.
After calling sock_recv_init onthe socket, you should not use sock _getc (),

sock read(),or sock fastread().

The sock_recv () function scans the buffers for any datagrams received by that socket. If there
is adatagram, the length is returned and the user buffer isfilled, otherwise sock recv ()
returns zero.

The sock_recv _from() function workslike sock recv (), butit alowsyou to record the
I P address where the datagram originated. If you want to reply, you can open a new UDP socket
with the IP address modified by sock recv from().

3.7.5 Porting Programs from the older UDP API to the new UDP API

To update applications written with the ol der-style UDP API, use the mapping information in the
following table.

UDP API prior to Dynamic C 7.05 UDP API starting with Dynamic C 7.05

MAX UDP_SOCKET BUFFERS and

MAX_SOCKETS
- MAX_TCP_ SOCKET BUFFERS

SOCK_BUF_SIZE

UDP BUF SIZE and TCP BUF SIZE

udp_ open()

udp open /()

sock _write(), sock fastwrite()

udp_ send() or udp sendto()

sock read() (blocking function)

udp recv() or udp recvifrom()
(nonblocking functions)

sock fastread()

udp recv() or udp recvirom()

sock recv init ()

udp extopen ()
own buffer)

(to specify your

sock recv ()

udp recv ()

sock_recv_from()

udp recvfrom/()

sock close()

sock close() or udp close()

sock bytesready ()

sock bytesready ()

sock dataready ()

sock dataready ()

44

TCP/IP User’s Manual

3.8 Skeleton Program

The following program is agenera outline for a Dynamic C TCP/IP program. The first couple of

defines set up the default I P configuration information. The “memmap” line causes the program to
compile as much code as it can in the extended code window. The “use” line causes the compiler

to compile in the Dynamic C TCP/IP code using the configuration data provided above it.

Program Name: Samples\tcpip\icmp\pingme.c

/*
* Starting with Dynamic C 7.30, the network addresses are initialized by defining the
* following macro to identify the desired configuration inthefiletcp config.lib.
*/
#idefine TCPCONFIG 1 // static configuration of single Ethernet interface.
/*
* Prior to Dynamic C 7.30, you must change the following values to whatever
* your local |P address, netmask, and gateway are. Contact your network
* administrator for these numbers.
*/
// #define MY IP ADDRESS "10.10.6.101"
// #define MY NETMASK "255.255.255.0"
// #define MY GATEWAY "10.10.6.19"

#memmap xmem
#use dcrtcp.lib

main ()

{
sock init();
for (;;) {
tcp tick (NULL) ;
}

To run this program, start Dynamic C and open the Samples\TCPIP\ICMP\PINGME. C file.
If you are using a Dynamic C version prior to 7.30, edittheMY IP ADDRESS, MY NETMASK,
and MY GATEWAY macros to reflect the appropriate values for your device. Otherwise, edit your
tcpconfig.lib (or custom config.1lib) filewith appropriate network addresses for
your device and define TCPCONFIG to access the desired configuration information.

Run the program and try to run ping 10.10.6.101 from acommand line on a computer on
the same physical network, replacing 10.10.6.101 withyour valuefor MY IP ADDRESS.

Chapter 3: TCP and UDP Socket Interface 45

3.8.1 TCP/IP Stack Initialization

Themain () function first initializes the TCP/IP stack with acall to sock init (). Thiscall

initializes internal data structures and enables the Ethernet chip, which will take a couple of sec-
onds with the Real Tek chip. At this point, the TCP/IP stack is ready to handle incoming packets.

3.8.2 Packet Processing

Incoming packets are processed whenever tcp tick () iscalled. The user-callable functions
that call tcp tick() arel tcp open,udp open, sock read, sock write,
sock_close, and sock abort. Some of the higher-level protocols, e.g., HTTP . LIB will call
tcp tick () automaticaly.

Call tcp tick () periodically inyour program to ensure that the TCP/IP stack has had a chance
to process packets. A rule of thumbistocall tcp tick () around 10 times per second, although
slower or faster call rates should also work. The Ethernet interface chip has alarge buffer mem-
ory, and TCP/IP is adaptive to the data rates that both ends of the connection can handle; thus the
system will generally keep working over awide variety of tick rates.

3.9 TCP/IP Daemon: tcp_tick()

tcp tick () isafundamenta function for the TCP/IP library. It hastwo uses: it drivesthe
“background” processing necessary to maintain up-to-date information; and it may also be used to
test TCP socket state. The latter use is described in the next section.

Notethat tcp tick () doesmorethan just TCP processing: it isalso necessary for UDP and
other internal protocols such as ARP and ICMP. It also (as of Dynamic C 7.30) controls interface
status.

The computing time consumed by each call to tcp tick () varies. Rough numbersarelessthan
amillisecond if there is nothing to do, tens of milliseconds for typical packet processing, and hun-
dreds of milliseconds under exceptional circumstances. In general, the more active sockets that are
in use simultaneoudly, the longer it will takefor tcp tick () to complete, however thereis not
much increase for reasonable numbers of sockets.

It isrecommended that you call tcp_ tick () at the head of the main application processing
loop. If you have any other busy-wait loops in your application, you should arrange for

tcp_ tick () to becalled in each such loop. TCP/IP library functions that are documented as
“blocking” will alwaysinclude callsto tep_tick (), soyou do not have to worry about it.
Library functions which are documented as “non-blocking” (e.g., sock fastread())donotin
generdl call tcp tick (), soyour application will need to do it.

Some of the provided application protocols (such as HTTP and FTP) have their own “tick” func-
tions(e.g., http handler () and ftp tick ()). When you call such afunction, thereisno
needtocal tcp tick () sincethe other tick function will always do thisfor you.

46 TCP/IP User’s Manual

3.9.1 tcp_tick() for Robust Applications

It goes without saying that your application should be designed to be robust. You should be aware
that an open TCP socket may become disconnected at any time. The disconnection can arise
because of atime-out (caused by network problems), or because the peer application sent a RST
(reset) flag to abort the connection, the interface went down, or even because another part of your
application called sock_abort (). Your application should check for this condition, preferably
in the main socket processing loop, by calling tcp_ tick () with the socket address. Since
tcp tick () needsto be called regularly, this does not add much overhead if you have asingle
socket. For applications which manage multiple sockets, you can usethe sock _alive () func-
tion (new for Dynamic C 7.30). If tcp tick () or sock _alive () returnszero for a socket,
then the socket may be re-opened after your application recovers.

Regular checking of socket statusis also convenient in that it can simplify the rest of your applica-
tion. In effect, checking socket status in your main application loop concentrates socket error han-
dling at asingle point in the code. Thereisless need to perform error handling after other callsto
TCP/IP functions. For example, the sock fastread () function normally returns a non-nega-
tive value, but it can return -1 if thereis a problem with the socket. An application function which
calssock fastread () needsto check for this code, however it can choose to merely return
to the caler (the main loop) if this code is detected, rather than handling the error at the point
where it was first detected. This works because if sock fastread () returns-1,

tcp_tick () will return zero for that socket.

3.9.2 Global Timer Variables
The TCP/IP stack depends on the valuesfor MS_ TIMER, and SEC_TIMER. Problems may be
encountered if the application program changes these values during execution.

3.10 State-Based Program Design
An efficient design strategy is to create a state machine within a function and pass the socket’s
data structure as a function parameter. This method allows you to handle multiple sockets without

the services of a multitasking kernel. Thisis the way the HTTP . L.IB functions are organized.
Many of the common Internet protocols fit well into this state machine model.

The general states are:

Waiting to beinitialized.

Waiting for a connection.

Connected states that perform the real work.
Waiting for the socket to be closed.

An example of state-based programming is SAMPLES\TCPIP\STATE. C. Thisprogramisa
basic Web server that should work with most browsers. It allows a single connection at atime, but
can be extended to allow multiple connections.

Chapter 3: TCP and UDP Socket Interface a7

In general, when defining the set of states for a socket connection, you will need to define a state
for each point where the application needs to wait for some external event. At aminimum, this
will include states when waiting for

e session establishment

e new received data

e gpacein the transmit buffer for write data
e session termination

For non-trivial application protocols, the states in-between session establishment and session ter-
mination may need to be embellished into a set of sub-states which reflect the stage of processing
of input or output. Sometimes, input and output states may need to overlap. If they do not, then
you typically have a step-by-step protocol. Otherwise, you have an application that uses receive
and transmit independently. Step-by-step protocols are easier to implement, since there is no need
to be able to overlap two (or more) sets of state.

For read states, which are waiting for some data to come in from the peer, you will typically call
one of the non-blocking socket read functions to seeif thereis any data available. If you are
expecting afixed length of data (e.g., a C structure encoded in the TCP data stream), then it is
most convenient to use the sock _aread () function which was introduced in Dynamic C 7.30.
Otherwise, if you cannot tell how much datawill be required to go to the next state, then you will
haveto cal sock_preread () to check the current data, without prematurely extracting it from
the socket receive buffer.

For write states, you can just keep calling sock _fastwrite () until all thedatafor this stateis
written. If you have afixed amount of data, sock _awrite () ismore convenient since you do
not have to keep track of partialy written data.

3.10.1 Blocking vs. Non-Blocking
There is a choice between blocking and non-blocking functions when doing socket 1/O.

3.10.1.1 Non-Blocking Functions

The sock_fastread () and sock preread () functionsread all available datain the buff-
ers, and return immediately. Similarly, the sock fastwrite () function fills the buffers and
returns the number of charactersthat were written. When using these functions, you must ensure
that all of the data were written completely.

offset=0;

while (offset<len) {
bytes written = sock fastwrite(&s, buf+offset, len-offset);
if (bytes written < 0) {

// error handling
}

offset += bytes written;

}

48 TCP/IP User’s Manual

3.10.1.2 Blocking Functions

The other functions (sock_getc (), sock _gets (), sock putc (), sock puts(),
sock_read () and sock_write ()) do not return until they have completed or thereis an
error. If it isimportant to avoid blocking, you can check the conditions of an operation to ensure
that it will not block.

sock mode (socket, TCP_MODE ASCII) ;

//
if (sock bytesready (&my socket) != -1)({

sock gets (buffer, MAX BUFFER) ;
}

Inthiscase sock_gets () will not block becauseit will be called only when thereis acomplete
new line terminated record to read.

3.11 TCP and UDP Data Handlers

Starting with Dynamic C 7.30%, your application can specify data handler callback functions for
TCP and UDP sockets. The data handler callback may be specified as a parameter to the

tcp open(), tcp extopen(), tcp listen(),tcp extlisten(),udp open(),
udp_extopen () andudp_ waitopen () functions.

The UDP data handler callback is aways available. The TCP handler isonly available if you
#define TCP DATAHANDLER beforeincluding dertcp.1lib. Both typesof callback use the
same function prototype, however, the parameters are interpreted slightly differently.

The prototype for a suitable callback functioniis:

int my data handler (
int event,
void * socket,
11 Gather * g,
void * info

) ;

“event” indicates the type of callback. It is one of apredefined set of constants specified in the
table below.

“socket” is apointer to the socket structure (TCP or UDP). “g” contains a number of fields which
may be accessed to find additional information, including the data stream or packet. “info” points
to a structure which depends on the type of socket: udp datagram info if the socket is
UDP, or NULL for TCP sockets.

1. Datahandler pointers were provided to the tcp_open etc. functions prior to this release, however the inter-
face was not documented, and does not work in the way described herein.

Chapter 3: TCP and UDP Socket Interface 49

Thell_Gather structure is defined and documented in NET . LIB. It is printed here for reference:

typedef struct ({

byte iface;
byte spare;
word lenl;

void * datal;

word len2;

long data2;

word len3;

long data3;
} 11 Gather;

//

/7
//
//
//
//
//

Destination interface

Length of root data section

Root data (e.g., link, IP, transport headers)
Length of first xmem section

First xmem data extent (physical address)
Length of second xmem section

Second xmem data extent (physical address)

The udp datagram_ info isdefined in UDP.LIB. Itisdocumented with theudp peek ()

function.

For UDP sockets, the callback isinvoked for each packet received by the socket. For TCP sockets,
the callback isinvoked whenever new datais available that could otherwise be returned by

sock fastread().

The advantages of using the data handler callback are

e Lessapplication overhead calling sock dataready () or sock fastread().

e Data copy to root buffers can be avoided.

e Ability to transform data in the socket buffer (e.g., decryption).

e For UDP, may avoid the need to copy incoming data into the socket receive buffer.

e Minimizeslatency between tcp tick () receive processing, and application processing.

e Allows event-driven programming style.

The following table lists the parameters to the callback for each event type.
Table 3. Parameters for each type of callback

event S g info notes

UDP_DH INDATA udp_Socket | pktdata | UDI Normal received data

UDP DH ICMPMSG | udp Socket | pkt data uDI |CMP message recaived for this
- = socket

TCP_DH LISTEN tcp_Socket | NULL | NULL Passive open cal (eg,
DH tcp extlisten())

TCP DH OPEN tcp_Socket | NULL | NULL Active open call (eg.,
- = tcp extopen())

TCP DH ESTAB tcp_Socket | NULL | NULL 3-way handshake complete, ready
- = for data transfer

TCP_DH INDATA tcp_Socket | segdata | NULL Incoming stream data

TCP DH OUTBUF | top_Socket | NULL | NULL | 'NeWspaceintransmit buffer (data
- = acknowledged by peer)

50

TCP/IP User’s Manual

Table 3. Parameters for each type of callback

event s g info notes

No further incoming data (peer sent

TCP_DH INCLOSE | tcp_Socket | NULL | NULL FIN)

No further outgoing data (application

TCP_DH OUTCLOSE | tcp_Socket | NULL | NULL closed socket, sent FIN)

TCP_DH CLOSED tcp_Socket | NULL NULL Socket completely closed
TCP_DH ABORT tcp_Socket | NULL NULL Application called sock_abort
TCP_DH RESET tcp_Socket | NULL NULL Peer sent RST flag

|CMP message associated with this

TCP_DH ICMPMSG | tcp_Socket | pktdata | NULL socket

Reserved for future use. Callback

h ? ? ?
other should always return zero.

3.11.1 UDP Data Handler

For UDP sockets, the callback isinvoked as soon as a new datagram is demultiplexed to the
socket. For event type UDP_DH INDATAthe 11l Gather struct isset up with theinterface
number and pointers to the datain the receive buffers (not the UDP socket receive buffer, since
the data has not yet been copied there). The info structure is a pointer to
_udp_datagram_info (UDI), whichisset up withthe usua udp peek information such
asthe host 1P address and port number, and whether the datagram isin fact an ICMP error mes-
sage. If an ICMP message is received, the event type isset to UDP_DH ICMPMSG. The callback
should return 0 to continue with normal processing (i.e., add the datagram to the socket buffer), or
1 to indicate that the datagram has been processed and should not be added to the socket buffer

The data pointersinthe 11 _Gather structure are the physical address (and length) of one or two
datagram fragments in the main network receive buffers. (Currently, only one address will be
provided, since datagrams are reassembled before passing to the UDP handler). Thereisalso a
root datapointer inthe 11 Gather structure, that is set to point to the |P and UDP headers of the
datagram.

3.11.2 TCP Data Handler

The TCP data handler is only availableif you #define TCP_ DATAHANDLER. It isinvoked with a
large number of different event types. Most of the events are for significant changesin the TCP
socket state. You can use these events to perform customized handling of socket open and close.
Apart from TCP_DH INDATA and TCP_DH ICMPMSG thell Gather structureisnot passed
(gissetto NULL). Currently, the info parameter is always null for TCP sockets.

If your callback function does not understand a particular event type, or is not interested, it should
return zero. Thiswill allow for upward compatibility if new callback events are introduced.

For convenience in coding the callback, you can use the user_datafield in the tcp_Socket structure
to hold some application-specific datawhich is to be associated with a socket instance. Thereisno

Chapter 3: TCP and UDP Socket Interface 51

API for accessing thisfield; just use s->user data. Thisfield isonly availableif you have
defined TCP_ DATAHANDLER, and only for TCP sockets (not UDP).

There is no guarantee on the order in which eventswill arrive for a socket. The exceptions are that
TCP_DH LISTEN Or TCP_DH OPEN will alwaysbefirst, and TCP_DH CLOSED will always
be last. Thereis no guarantee that the callback will be invoked with TCP_ DH INCLOSE or
TCP_DH OUTCLOSE before TCP_DH CLOSED.

TCP_ DH OUTBUF indicates that some previously transmitted data has been acknowleged by the
peer. Generally, this means that there is more space available in the transmit buffer. The callback
can write datato the socket using sock fastwrite () and other non-blocking write functions.
The available transmit buffer space may be determined by sock tbleft () function. When
TCP_DH ESTAB isinvoked, the transmit buffer is normally completely empty, so the callback
can write a reasonable amount of data to start with.

The TCP_DH INDATA event callback isinvoked after the incoming data has been stored in the
socket buffer. It isonly invoked if there is new data available from the peer. The 11 Gather
structure is set up with one or two physical address pointers to the new data, and the logical
pointer points to the IP header of the most recent datagram which provided the new data. Usually
there will be only one physical address, however there may be two if the socket buffer happens to
wrap around at that point. The callback will need to be coded to handle this possibility if itis
accessing the data directly out of the xmem buffer.

The TCP_DH INDATA calback isallowed to modify the new datain-place, if desired. This may
be used to provide “transparent decryption” or similar services.

There are some restrictions which apply to callback code. Primarily, it is not allowed to invoke
tcp tick () directly or indirectly, since that will causerecursioninto tcp tick (). It will be
possibleto call sock fastwrite () orudp_sendto () eg., to generate some sort of
response. Since sock fastwrite () needsto buffer data, thereis a possibility that there may
be insufficient room in the transmit buffer for the generated response. Thus the callback will need
to be carefully coded to avoid getting into a buffer deadlock situation if it generates responses. It
will also need to co-ordinate with the rest of the application, since the application will otherwise
have to contend with the possibility of arbitrary data being inserted in the write stream by the call-
back.

NOTE: The application must call sock fastread () or other read functions to
actually remove data from the TCP socket receive buffer unless the data handler call-
back iscoded to call sock fastread () itself. If neither the data handler nor the
rest of the application actually read the received data, then the TCP connection will
become “blocked” in the read direction.

52 TCP/IP User’'s Manual

3.12 Multitasking and TCP/IP

Dynamic C’'s TCP/IP implementation is compatible with both pC/OS-11 and with the language
constructs that implement cooperative multitasking: costatements and cofunctions. Note that
TCP/IPis not compatible with the slice statement.

3.12.1 pC/OSs-I
The TCP/IP stack may be used with the uC/OS-I1 real-time kernel. Theline
#use ucos2.lib
must appear before the line
#use dcrtcp.lib
in the application program. Also be sureto call 0SInit () beforecalling sock init ().

Dynamic C version 7.05 and later requires the macro MAX SOCKET LOCKS for pC/OS-11 sup-
port. If itisnot defined, it will default to MAX TCP_SOCKET BUFFERS +

TOTAL UDP_SOCKET BUFFERS (whichiSMAX UDP SOCKET BUFFERS + 1if thereare
DNS lookups).

Buffersxalloc’d for socket 1/O should be accounted for in MAX SOCKET LOCKS.

3.12.2 Cooperative Multitasking
The following program demonstrates the use of multiple TCP sockets with costatements.

Chapter 3: TCP and UDP Socket Interface 53

Program Name: costate _tcp.c

// #define MY IP ADDRESS "10.10.6.11"
// #define MY NETMASK "255.255.255.0"
// #define MY GATEWAY "10.10.6.1"

#define TCPCONFIG 1

#define PORT1 8888
#define PORT2 8889

#define SOCK BUF SIZE 2048
#define MAX SOCKETS 2

#memmap xmem
#use "dcrtcp.lib"

tcp_Socket Socket 1;
tcp_Socket Socket 2;

#define MAX BUFSIZE 512
char bufl[MAX BUFSIZE], buf2[MAX BUFSIZE] ;

// Thefunction that actually does the TCP work
cofunc int basic tcpl2] (tcp Socket *s, int port, char *buf) {
auto int length, space avaliable;

tcp listen(s, port, 0, 0, NULL, O);
// wait for a connection

while((-1 == sock bytesready(s)) && (0 == sock established(s)))
// give other tasks time to do things while we are waiting
yield;

while (sock established(s)) ({
space_avaliable = sock tbleft (s) ;

// limit transfer sizeto Max BUFSIZE, |leaveroom for \O'
if (space avaliable > (MAX BUFSIZE-1))
space avaliable = (MAX BUFSIZE-1) ;

// get some data

length = sock fastread(s, buf, space avaliable) ;

if (length > 0) { // did wereceive any data?
buf [length] = '\o0o'; // printitto the Stdio window
printf ("%s",buf) ;
// send it back out to the user's telnet session

// sock fastwrite will work-we verified the space beforehand
sock fastwrite(s, buf, length);

}

yield; // give other taskstimeto run

}

sock close(s) ;
return 1;

54 TCP/IP User’'s Manual

Program Name: costate tcp.c (continued)

main() {
sock init () ;
while (1) {
costate {
// Go do the TCP/IP part, on the first socket
wfd basic tcp[0] (&Socket 1, PORT1, bufl);

}

costate {
// Go do the TCP/IP part, on the second socket

wfd basic tcp[l] (&Socket 2, PORT2, buf2) ;

}

costate {
// drivethe tcp stack
tcp tick (NULL) ;
}
costate {
// Can insert application code here!
waitfor (DelayMs (100)) ;

}

Chapter 3: TCP and UDP Socket Interface

55

56

TCP/IP User’s Manual

4. Optimizing TCP/IP Performance

Once you have a TCP/IP application coded and working, it is worthwhile to tune the application to
get the best possible performance. There is usualy atrade-off between performance and memory
usage. If more memory is available, you can specify larger data buffersto improve overall perfor-
mance. Conversely, if performance is already adequate, you can reduce buffer sizesto make room
for more application functionality.

Some performance improvements can be made without large increases in memory usage. To make
these improvements, you will need to understand how TCP, IP and the properties of the network
work and interact. Thisisacomplex subject, which iswell covered in various texts. This section
concentrates on the characteristics of the Dynamic C TCP/IP stack. Most of the discussion is cen-
tered around Dynamic C version 7.30, but many of the principles apply to earlier releases. The dis-
cussion also concentrates on TCP. UDP is also mentioned where appropriate, however UDP
performance is mainly determined by the application so there are not as many tuning controls
availablein the Dynamic C libraries for tuning UDP performance.

The type of application has alarge bearing on the performance tuning options which will be most
appropriate. Here are some basi ¢ types of application which have different performance require-
ments:

e “bulk loader”: an application which periodicaly uploads large amounts of data (such asa
log) to a server

e ‘“casual server”: onewhich just needsto process occasional commands which comein from
the network. Thisincludes “interactive” servers such astelnet.

e “master controller”: one which sends short data bursts to a number of “slave” controllers,
which must be sent and processed in atimely manner

e “web server”: aweb-enabled appliance

e “protocol tranglator”: accepts stream of data, perhaps serial, and convertsto a TCP data
stream, or vice-versa

All these application types have different requirements for the basic properties of acommunica
tions channel, namely bandwidth, throughput and latency.

The bandwidth of achannd isthe maximum sustained rate of end-to-end data transmission, in
bytes per second. A full-duplex channel has the same bandwidth in each direction, independent of
data traffic flowing in the opposite direction. In a half-duplex channel, the total bandwidth is
divided between both directions. Ethernet is usually half-duplex in that an Ethernet chip cannot
send and receive at the same time, however some types of Ethernet can run full-duplex.

The throughput of a channel is related to bandwidth, but is used to express the amount of useful
data that can be transmitted through the channel in afixed (specified) amount of time, using a
practical transport protocol (i.e., aprotocol which adds some overhead to each message). Through-
put generally improves as the bandwidth rises, and as the time interval increases. Throughput is
always less than bandwidth for finite time intervals or practical protocols, since there is usually
some overhead to establish the connection in the first place, as well as overhead during the trans-
mission itself.

Chapter 4: Optimizing TCP/IP Performance 57

Thelatency of achannel can have several definitions. For our purposes, it isthe minimum possible
time delay between sending of a message, its receipt by the other end, and the reception of areply;
in other words, the round-trip-time (RTT). On electrical and radio channels, the latency is related
to the physical length of the link and the speed of light. On channels which are more complex than
asimple electrical connection, there may aso be intermediate nodes which buffer the data being
transmitted: this can add delays which are much larger than the speed of light between the end
nodes.

Note that round-trip times are important for most communications protocols. not only do we want
to send data, but we also want to receive an acknowledgment that the other end received the data.

Some examples of real networks may be helpful here. Note that the values given for RTT are
approximations since they depend on the length of the connection, the sizes of packets sent, or
intermediate nodes. Throughput is specified for an infinite time interval, assuming TCP over |IP
with 600 bytes of data per packet, and no datain the acknowledgment The RTT figure assumesthe
same size packets.

Table 4. Channel characteristics for selected networks

Type Bandwidth (Byte/sec) RTT (msec) T(rg;tlé?sheil;t
| e i
(F:E‘F;I?GCI)(\;er 8N1 serial 5760 120 5000
gl;lioE over 1.5Mbit 187k 4 150k

The above table does not count any delay in the host which generates the response, nor any delay
passing through the Internet. These represent minimum possible RTTs.

4.1 DBP and Sizing of TCP Buffers

An important quantity derived from the above is known as Delay-Bandwidth Product (DBP). As
the name suggests, thisis the product of bandwidth and RTT, and has units of bytes. It represents
the maximum amount of data (and overhead) that can exist “in the network” at any point in time.
This number has implications for sizing of TCP socket buffers. The DBP for local 10Base-T Eth-
ernet is about 750 bytes. For local Ethernet connections, the DBP is about the same as the packet
size of the transmitted data. For wider area networks that have significant propagation delays, the
DBP can increase substantially. For example, satellite links can add severa 100's of milliseconds
to the RTT. If the bandwidth is high enough, the DBP can exceed the packet size by orders of
magnitude. This means that several packets may bein transit at the same time.

The DBP isimportant for TCP connections. Thisis because TCP is able to transmit alarge num-
ber of packetsinto the network without having to wait for an acknowledgement for each one. Sim-
ilarly, a TCP can receive alarge number of packets without necessarily acknowledging them all.
In fact, TCP only has to acknowledge the most recent packet; the sender can assume that all earlier
packets are implicitly acknowledged.

58 TCP/IP User’'s Manual

How does al this apply to sizing of TCP socket buffers? It basically meansthat thereislittle point
in making the buffers (both transmit and receive) larger than the expected maximum DBP of the
communications channel. For connections which are expected to traverse the Internet, you may
need quite large buffers. For local Ethernet only, the buffers need not be larger than, say, two
packets.

The maximum packet size is a compromise between performance and memory usage. The largest
packet supported by dertep . 11ib is 1500 bytes, which is dictated by the limits of Ethernet.
Dynamic C's default packet size is 600 bytes. Using large packet sizesimproves performance for
bulk data transfer, but has little effect for interactive traffic. Performance isimproved for large
packet sizes mainly because thereisless CPU overhead per byte. Thereis aroughly fixed amount
of CPU time required to process each packet. Thisisobviously better utilized if there are alarge
number of bytes per packet.

When using Ethernet, the Rabbit processor is limited in its overall TCP/IP throughput by CPU

power. 10Base-T Ethernet is capable of 1MB/sec for TCP sockets!, however the Rabbit 2000 run-
ning at 21MHz will only be able to transmit at about 270kB/sec when sending 1500 byte packets.
Receiverateis slightly slower at about 220kB/sec. This scales approximately linearly with respect
to CPU clock speed as well as application use of the CPU. In short, current Rabbit-based boards
cannot use the full bandwidth of alocal Ethernet link.

The situation changes for PPP over seridl. In this case, the serial port bandwidth is less than the
rate at which packets can be generated or received. Also, PPP istypically used to access peers over
the Internet, so there may be a much larger DBP than for a pure point-to-point link. For PPP serial
links, smaller packet sizes, e.g. 256 bytes, are satisfactory for bulk data transfers without impact-
ing interactive traffic, should that be required. Socket buffer sizes should be determined based on
the expected Internet RTTs, which may be 1 second or more. For a 57.6kbps serial link, the DBP
is 5000 bytes for 1 second RTT, thus the socket buffers should be about this size for receive and
transmit.

TCP is adaptive to changing network conditions. For example, the RTT can vary considerably at
different times of day, and communication channels can become congested. TCP is designed to
cope with these conditions without exacerbating any existing problems, however socket buffer and
packet sizes are usually constants for the application so they need to be selected with due consider-
ation to the most common conditions.

1. Assuming thereis no other traffic on the Ethernet, and that collisions are rare. Thisisrarely the case, so a
50-80% utilization of bandwidth is considered the maximum desirable Ethernet |oad.

Chapter 4: Optimizing TCP/IP Performance 59

4.2 TCP Performance Tuning

TCPisawell-designed protocol, and provides nearly optimum performance over awide range of
conditions. Obtaining the best possible performance requires the application to co-operate with
TCP by setting the correct optionsif the defaults are not optimal, making the most efficient use of
the socket API functions, and providing appropriate memory and CPU resources.

The available performance-related options are:
e whether to use the Nagle algorithm
e settings for time-out values
e whether to define a pending connection queue (“reserved port”)
e setting the I P Type Of Servicefield
e packet, buffer and MTU sizes
e ARP cache size (for Ethernet).

Sizing of buffers was discussed in the previous section. The following sections discuss the other
performance controls.

4.2.1 The Nagle Algorithm

The Nagle algorithm isan option for TCP sockets. It modifies the transmit processing for a socket,
but has no effect on receive processing. The TCP/IP library allows Nagle to be applied on a per-
socket basis.

Most applications should leave the Nagle algorithm enabled for each TCP socket, which isthe
default. This provides the best utilization of bandwidth, since it prevents many small packets from
being sent where one big packet would be preferable.

The main reason to override the default, and disable the Nagle algorithm, is for applications that
require the least possible delay between writing data to the socket, and its receipt by the peer
application. This comes at the expense of efficiency, so you should carefully consider whether the
application really requires the dight reduction in delay.

When Nagle is turned off, using themacro tcp set nonagle (&socket), transmit process-
ing is changed so that TCP tries to transmit a packet for each call of a socket write function such as
sock fastwrite().

If Nagleison (which isthe default state or can beset using tcp _set nagle (&socket)) a
new packet will only be sent if there is no outstanding unacknowledged data. Thus, on aslow net-
work where acknowledgements from the peer take a substantial amount of timeto arrive, fewer
packets will be sent because there is a greater chance that there is some unacknowledged data.

The difference may beillustrated by the following example: suppose that a TCP socket connection
is currently established and quiescent (i.e., thereis no outstanding datato be acknowledged; every-
thing is up-to-date). The network round-trip-time is 550ms. The application writes ten single char-
actersto the socket, at 100ms intervals each. With Nagle turned off, ten packets will be sent at
approximately 100ms intervals. Each packet will contain a 40-byte header (IP and TCP) with a
single byte of data. A total of 410 bytes will be sent. With Nagle on, the first character written at
time zero will cause a 41-byte packet to be sent. The acknowledgment of this first packet will not
arrive for another 550ms. In the meantime, the application writes an additional 5 characters at
100msintervals. Since there is outstanding unacknowledged data (the first character) these charac-

60 TCP/IP User’'s Manual

ters are not sent immediately. They are buffered, waiting for an acknowledgment from the peer.
When the first character’s acknowledgment comes in at 550ms, there is no outstanding unack’ ed
data; the additional 5 characters have not yet been sent so they do not count as unack’ ed data. Now
the TCP stack will send the 5 additional charactersin asingle packet at approximately t=550ms.
While that packet isin transit, 4 more characters are written by the application. Again, these char-
acters will be buffered since characters 2 through 6 have not been acknowledged. Only when the
next acknowledgment is received will these 4 characters be sent. The total number of packets sent
is3, with 1, 5 and 4 bytes of data. Thistranslates to 130 bytesin total.

Obvioudly, the total number of bytes transmitted, including overhead, is far lesswhen Nagleis
used (130 compared with 410 bytes). One can a so examine how this looks from the point of view
of the peer.

In the non-Nagle case, each character is received 275ms after it was transmitted (we assume that
the one-way trip ishalf of the RTT). The last character isreceived at t=1175ms (with the reference
t=0 taken as the first character transmission time). The acknowledgment of the last character,
which completes the transaction, is received at t=1400ms.

In the Nagle case, the last character is received at t=1375 and the final acknowledgment at t=1650.
In this example, the peer received all 10 characters 200ms later when Nagle was used.

It can be seen that at adight cost in increased delay, a great saving in total data transmission was
made. If the above example was extended to hundreds or thousands of characters, then the addi-
tional delay would remain constant at a few hundred ms, whereas the network bandwidth would
be better utilized by a factor approaching five!

In conclusion, leave Nagle on unless you absolutely must have the lowest delay between transmis-
sion and reception of data. If you turn Nagle off, ensure that your application is disciplined enough
to write the largest blocksiit can. For example, if you have to send an 8-byte value (as a unit), con-
struct the full 8 bytes asa single block then writethem all inasingle sock fastwrite () cal,
rather than calling sock fastwrite () with two 4-byte calls or, worse, 8 single byte calls.

A useful alternative to turning Nagle off isto control packetization using calls to
sock_flush(), sock noflush() and sock flushnext (). Thesefunctionsallow the
application fairly fine control over when TCP sends packets. Basically, sock noflush () is
used to set a“lock” on the socket that prevents TCP from sending packets containing new data.
After sock_noflush (), youcancal sock fastwrite () or other write functions. The
new data will not be sent until the socket is “unlocked” with acall to sock flush().
sock flushnext () unlocks the socket, but TCP does not send any data until the next write
function is called.

4.2.2 Time-Out Settings

There are many time-out settingsin TCP. These are necessary because the TCP socket needs to be
able to take meaningful actions when things take longer than expected. For good performance, itis
also sometimes necessary for the socket to delay dightly some action that it could otherwise per-
form immediately.

The time-out settings currently apply to all sockets; they cannot be applied selectively because
they are in the form of macro constants.

In general, you can improve overall TCP performance by reducing some of the time-out settings,
however thereis alaw of diminishing returns, and you can also start to reduce overall efficiency.

Chapter 4: Optimizing TCP/IP Performance 61

What may be good settings for alocal Ethernet connection may be very poor for an Internet con-
nection. Note that if you optimize time-out settings for a particular network environment, you will
need to document this so that your end-users do not inadvertently use your application in the
wrong sort of environment. For thisreason, it is best to use the default settings for general -purpose
applications, since the defaults work well in worst-case settings without affecting best-case perfor-
mance unduly.

TCPisinternally adaptive to network bandwidth and RTT, which are the main variables. Some of

the time-out settings only apply to an initial “guess’ of the network characteristics; TCP will con-

verge to the correct valuesin a short time. Specifying agood initial guesswill help TCP in theini-
tial stages of establishing a socket connection.

4.2.2.1 Time-Out Setting Constants

The following constants can be #defined before including dcrtcp . 11ib. They specify various
time intervals that have a bearing on connection performance.

RETRAN STRAT TIME

This defaultsto 10ms. It specifies the minimum time interval between testing for re-
transmissions of data for a particular TCP socket. This not only provides an upper
bound for packet transmission rate, but al so cuts down on CPU overhead. Sinceretrans-
missionsarebasically drivenfromtcp tick(),thelesstimeusedintcp tick ()
processing the more timeis|left for your application. Note that the actual minimum re-
transmit interval is defined by TCP_MINRTO; thissetting only affectsthe testing inter-
val.

Retransmissions are only required when there is an unexpected surge in network con-
gestion, which causes packets to be delayed well beyond the average or even dropped.

It is not recommended to reduce this setting, but you could increase it to about 100ms
tocutdownontcp tick () overhead without materially affecting most applications.

TCP_MINRTO

Defaults to 250ms. This specifies the actual minimum time between TCP retransmis-
sions. Reducing thiswill not affect performancein a properly functioning network, and
may in fact worsen efficiency. Only in anetwork that is dropping a high percentage of
packets will this setting have any real effect. On local Ethernet connections, genuine
packet dropswill be practically non-existent. The most likely cause of delaysisif ahost
CPU istied up and unable to perform network processing. On Internet connections, set-
ting aretransmit time shorter than 250ms isjust as likely to worsen the congestion
which is causing packets to be dropped in the first place.

The only case where this value might be profitably reduced is the case of a point-to-
point link wherethereisalot of packet loss (maybe because the RS232 wiring is routed
near an industrial welder). In this case, any packet loss may be assumed to be because
of noise or interference, not because of router congestion. In the Internet, most packet
loss is because of router congestion, in which case there is nothing to be gained by re-
ducing TCP_MINRTO.

Another reason for not reducing this setting is that modern TCP/IP implementations

62 TCP/IP User’'s Manual

only acknowledge every 2nd packet received (or after a short time-out - see
TCP_ LAZYUPD). Normally, thiswill happen within the 250ms time interval, so there
will be no unnecessary retransmission.

TCP_TWTIMEOUT

This defaults to 2000ms (2 seconds). Thisis one area where embedded system require-
ments conflict somewhat with recommendations in the standards documents. The
“time-wait” time-out isawaiting period that is necessary when asocket isclosed. This
waiting period is supposed to be twice the maximum lifetime of any packet in the net-
work. The maximum packet lifetime is 255 seconds, so the time-wait time-out should
be about 8 minutes. The purpose of the waiting time isto alow both ends of the con-
nection to be satisfied that their respective peer has agreed to the close and acknowl-
edged it.

Thiswait time only affects the closed socket i.e., the unique socket combination of IP
addresses and port numbers. It meansthat when asocket is closed, the same socket can-
not be re-opened until at least 8 minutes have passed.

Thisisusually no problem for systems that have large memoriesto hold the state of re-
cently closed sockets. For an embedded system, which hasalimited pool of socketsand
limited memory for storing connection states, thiswait time is inconvenient since the
socket structure cannot be re-used until the time-wait period has expired.

Thedefault time-wait period isthus set to 2 secondsin the Dynamic C TCP/IPlibraries.
Thiswill work perfectly well for local Ethernet connections, where the maximum pack-
et lifetimeis of the order of milliseconds. For Internet connections, this may be a bit
short, but will generally be satisfactory.

If in fact the time-wait period istoo short, the worst that will happen isthat one of the
peers will be unsure about whether the other end got the last segment of data, and con-
fusion may happen if old packets (from this connection) happen to arrive after the close.
Thislatter case isunlikely to happen, but if it doesthen it will eventually be resolved
when the socket connection process times out.

If you want your application to be more robust, you can increase this value. 8 minutes
isan extremely conservative value. M ost implementations shorten this to 2 minutes or
30 seconds, since packets are extremely unlikely to survive more than 15 seconds.

Note that this valueisonly used if you do not specify thetcp reserveport () op-
tionfor thelocal port of apassively opened connection. If you specify reserveport, then
the time-wait period is set to zero.

Chapter 4: Optimizing TCP/IP Performance

TCP_LAZYUPD

This defaultsto 5ms, and is used for several purposes. The first use isto reschedule
transmission attempts that could not be processed owing to local resource shortages.
For example, if aprevious packet is gtill being transmitted viaaslow PPP interface, the
current packet may need to be delayed. Similarly, the Ethernet hardware can be busy.
In these cases, the TCP stack needs to try again a short time later.

The second use isto allow time for further information to come in from the network
before transmitting otherwise empty packets. TCP has two main reasons for transmit-
ting packetswith no data content. Thefirst is acknowledgement of incoming datawhen
we have nothing to send, and the other isto update our receive window to the peer. The
receive window tells the peer how much datait can transmit which we can store in our
socket receive buffer. Thiswindow needsto be updated not only when we receive data,
but also when the application reads data out of the receive buffer.

Rather than send these empty packets as soon as possible, it is often profitable to wait
ashort time. Inthe case of window updates, this can allow the application to write some
data after the read which updated the window. The data can be sent with the window
update, which improves efficiency because one packet can do the work of two. For re-
ceive data acknowledgements, the same trick can be applied i.e., piggy-backing on
some additiona data.

These optimizations can be taken advantage of quite often with most applications, so it
isworth while specifying thelazy update time-out to be at |east afew ms. Lowering the
lazy updateinterval can slightly improvelatency and throughput on high-speed (i.e., lo-
cal Ethernet) connections.

4.2.3 Reserved Ports

Asmentioned inthe TCP_ TWTIMEOUT description, you can specify that certain TCP port num-
bers have the special property of being “reserved.” If aport is reserved, it has two effects:

e A number of pending connections can be queued while a socket connection is established.
The pending connections form a FIFO queue, with the longest-outstanding pending con-
nection becoming active after the current connection is closed.

e Thetime-wait time-out is truncated when the current connection is closed.

Together, these increase the performance of passively-opened sockets, which are designed to
implement server functions such as FTP and HTTP servers. Reserving a port has no effect on
actively opened sockets (i.e., “clients”), and does not affect its performance during the life of each
connection.

Thefunctionstcp reserveport () and tcp clearreserve () respectively enable and
disable a TCP port number from being treated in this manner.

64 TCP/IP User’'s Manual

4.2.4 Type of Service (TOS)

Type Of Serviceisan IP (Internet Protocol) header field that causes routers in the Internet to han-
dle packets according to the specified service level. TOS has not been widely deployed in the past,
but recently Internet routers have been able to take advantage of the TOS field.

TOS generally takes one (and only one) of a pre-specified number of values. The currently avail-
ablevalues are:

e IPTOS DEFAULT - the default, used when none of the following are obviously applica-
ble.

e IPTOS CHEAP - minimize monetary cost. Used for bulk transfers where speed or reliabil-
ity are not of concern, and you are paying by the packet.

e IPTOS RELIABLE - maximizereliability.

e IPTOS CAPACIOUS - maximize throughput.
e IPTOS FAST - minimize delay.

e IPTOS_ SECURE - maximize security.

I P does not guarantee that the TOS setting will improve the objective performance, however, it at
least guarantees that performance will not be any worse than if the default TOS was selected. In
other words, it doesn’t hurt to specify TOS, and it may even help!

TOS can be set on a packet-by-packet basis; however, the TCP stack only allows a TOS to be set
for asocket (TCP or UDP) which is used for all packets until changed. The function
sock_set tos () isused to set the TOSfield.

4.2.5 ARP Cache Considerations

ARP (Address Resolution Protocol) is only relevant for non-PPPOE Ethernet, not PPP interfaces.
Although it works in the background, mainly to translate | P addresses into Ethernet MAC
addresses, there are some considerations which apply to TCP (and UDP) performance.

There isalimited size cache of address mapping entries, known as the ARP Table. The cacheis
necessary in order to avoid network traffic each time a socket connection is established. It must be
sized appropriately to avoid “cache misses’ as much as possible.

If the controller board isto be used exclusively in “server mode,” i.e., TCP sockets opened pas-
sively, then the cache does not have to be very big. If, on the other hand, the controller is going to
actively establish sessions with a number of hosts, then the cache should be big enough to contain
an entry for each host such that entries do not get pushed out for at least afew minutes.

The ARP Table aso contains specia entries for routers that are on the local Ethernet. These
entries are important, since they represent entries for all hosts that are not on the local LAN seg-
ment subnet.

The default sizing rule for the ARP Table allocates an entry for each interface (including point-to-
point) plus 5 entries for each Ethernet interface in use. The single entry for each interface is basi-
cally reserved for routers, on the assumption that each interface will probably require a router to
allow connections to hosts which are farther afield. The additional 5 entries (for Ethernet) are for
non-router hosts that the controller board will need to talk to.

Chapter 4: Optimizing TCP/IP Performance 65

Thisimplies that 5 connections to hosts on the Ethernet subnet can be supported simultaneously,
without any of the entries being pushed out. If the tableis full, connection to a 6th host can be
made, with the least-recently-used host entry being pushed out to make room.

If your application connects with, say, ten hostsin random order, it islikely that the ARP Table
will need to beincreased in size. If in doubt, increase the table size, since each entry only takes up
about 32 bytes.

4.3 Writing a Fast UDP Request/Response Server

UDP isalightweight protocol wrapper that adds port number “multiplexing” and checksums to
basic | P packets. Being lightweight, it is capable of being very fast, with low CPU overhead. UDP
is often selected for custom application protocols that do not need the reliable, stream-oriented,
connections of TCP.

UDP is connectionless, however, application designers can think in terms of client-server or trans-
action-based programming. A popular design for UDP serversisto have the controller board listen
for incoming datagrams. Each incoming message is processed and an immediate reply is sent. It is
left up to the client to retransmit messages if it did not receive areply in the expected time frame.
The server, however, is extremely simple to implement, which allowsit to serve more clients than
a TCP-based server could manage.

Starting with Dynamic C 7.30, adata handler facility has been added to UDP (aswell as TCP)
sockets. The data handler is especially efficient for UDP, since it allows the datagram to be pro-
cessed without any copying to the socket buffer.

The UDP data handler is a callback function whose addressis supplied on the udp extopen ()
call. For simple request/response applications, the only application requirements are to define the
data handler, and call tcp tick () repeatedly inaloop after setting up the TCP/IP stack and
opening the UDP socket.

The sample program Samples\tcpip\udp\udp echo dh.c shows how to implement a
simple UDP echo server using the technique described in this section.

4.4 Tips and Tricks for TCP Applications

This section contai ns miscellaneous suggestions for getting the most out of your TCP-based appli-
cations.

Application design requirements that affect TCP performance include:
the responsiveness and throughput requirements of the application
how often tcp_tick () can becalled

whether socket is used in ASCII or binary mode
whether multitasking or “big loop” programming style.

The list of application types on page 57 is used as abasis for discussion. Your application may
neatly fit into one of these categories, or it may be a combination of severdl. In either case, you
should try to follow the programming guidelines unless you are fairly experienced with the
Dynamic C TCP/IP libraries.

66 TCP/IP User’'s Manual

4.4.1 Bulk Loader Applications

Thistype of application isidle (from the TCP/IP point of view) most of the time, but thisis punc-
tuated by periods of intensive data transfer. Applications which exhibit this characteristic include
dataloggers and file transfer agents e.g. FTP server or client. Sending email via SMTP also comes
under this category.

The main application requirement is good utilization of the available bandwidth i.e., highest
throughput. Thisis achieved by using the largest practical buffer sizes, processing datain the larg-
est possible chunks, and minimizing data copying. Since the Rabbit processor is CPU-bound when
dealing with high speed transfers (over Ethernet), every time the datais “handled” it reduces the
ultimate throughput.

The Nagle algorithm should be left ON. Time-outs should be set to generously high valuesto
avoid unnecessary retransmissions. The TOS should be set to IPTOS _CAPACIOUS.

Bulk TCP transfers are most efficient when the packet size is the largest possible. The largest
packet sizeislimited to the MTU size of the network connection. You can assume that 600 bytes
isareasonable MTU for Internet connections. You can use up to 1500 for all supported interface
types (except PPPOE, which islimited to 1492), however it is best to use 600 if Internet connec-
tions are expected. If the Internet MTU isin fact less than the expected value, then packets may
become fragmented, which lowers efficiency. You cannot do much about this except reduce the
MTU.

When the MTU is determined, the maximum TCP packet data length will usually bethe MTU
minus 40. The 40 bytes are for the IP and TCP header overhead. For a 600 byte MTU, the maxi-
mum TCP data segment size will be 560. Thus, TCP performance will be best if datais handled in
multiples of 560 bytes.

It is not quite this simple, however. When a TCP connection is opened, both sides can agree to use
different data segment sizes than the default. Generally, whichever side has the smallest MTU will
place a limit on the segment size. This is negotiated viathe TCP MSS (Maximum Segment Size)
option.

In your program, rather than hard-coding the optimum chunk size, you can define a symbol as fol-
lows:

#define TCP CHUNK SIZE (MAX MTU - 40)

where MAX MTU is asymbol defined by the library to be the actual MTU in effect. For multiple
interfaces, it is probably better to use the minimum value of any interface. You can find out the
current MTU for an interface using ifconfig (iface, IFG MTU, &mtu, IFS_END)
which will read the MTU for interface “iface” into the integer variable “mtu”.

Most of the time, the TCP socket MSS will be equal to the fixed value above. In cases where it is
smaller, there will not be a noticeable decrease in efficiency.

Once you have determined the appropriate chunk size, use sock _awrite () or

sock axwrite () (for extended memory data) with the specified chunk size, except possibly
for the last chunk. sock awrite () and friends are available starting with Dynamic C 7.30.
They have the advantage that the data is completely buffered, or not at al. sock fastwrite ()
may buffer less than the requested amount, which means that your application needs to keep track
of the current position in the data being sent. sock awrite () doesnot do things “by halves,”
so it iseasier to keep track in the application. Because it will not do small datamoves, itisalso
dightly more efficient in terms of CPU time.

Chapter 4: Optimizing TCP/IP Performance 67

4.4.2 Casual Server Applications

A casual server isaterm we use for applications that need to respond to occasional requests for
information, or commands, without large data transfers. Although the amount of datatransfer is
limited, the application still needsto be as responsive as possible. Example applications of this
type include machine, building and power controllers. Interactive servers are also included, such
as telnet.

The main goa here isto achieve low latency.

4.4.3 Master Controller Applications

Master controllers are responsible for coordinating access to a number of other devices (via
TCP/IP or other types of communication) or acting as an “access concentrator”. Data transfer may
be low to moderate. Latency should be minimized.

4.4.4 Web Server Applications

The TCP/IP libraries include web server software. HTTP . LIB takes advantage of the TCP library
to get good performance. Your application can still affect web server performance, sinceit may be
responsible for generating content via CGI callback functions. Web servers have much the same
characteristics as “bulk loaders,” however, they are such a common case that they deserve special
treatment.

4.4.5 Protocol Translator Applications

A protocol tranglator basically converts between a TCP data stream and some other type of data
stream, for example asynchronous seria data. The data may flow in either or both directions.

This type of application has the most stringent requirements on both throughput and latency. This
is because the incoming stream may not be amenable to any sort of flow control: it is necessary for
TCPto keep up with a possibly high datarate. Also, the more timely the transmission of data, the
more useful the protocol tranglator.

68 TCP/IP User’'s Manual

5. Network Addressing: ARP & DNS

ARP (Address Resolution Protocol) and DNS (Domain Name System) perform trandations
between various network address formats. ARP converts between | P addresses and (usually) Eth-
ernet hardware addresses. DNS converts between human-readable domain names such as
“ftp.mydomain.org” and IP addresses.

ARP and DNS are not closely related protocols, but they are lumped together in this chapter for
convenience. Inthe Dynamic C TCP/IP libraries, ARP . LIB handles ARP proper, as well asrouter
(gateway) functionality.

5.1 ARP Functions

ARP (Address Resolution Protocol) is used on non-PPPoE Ethernet interfaces. ARP is used to
determine the hardware address of network interface adapters. Most of the ARP functionality
operates in the background and is handled by the TCP/IP libraries. Most applications should not
need to deal with ARP, and indeed some of the ARP functions are quite complex to use correctly.

Nevertheless, there are some useful debugging functionsincluded in ARP . LIB.

Starting with Dynamic C 7.20, the internal ARP processing was converted to hon-blocking style.
This has no direct impact on applications, except that there will be lower maximum latency in
tep_tick() calls.

The ARP functions are al named starting with _arp, arpcache, arpresolve, or router.

router printall () isauseful function for debugging router table problems, for examplein
the case where connections to hosts which are not on local subnets appear to be failing.

5.2 Configuration Macros for ARP

ARP LONG EXPIRY
Number of seconds that anormal entry stays current. Defaults to 1200.

ARP SHORT EXPIRY
Number of seconds that a volatile entry stays current. Defaults to 300.

ARP PURGE TIME
Number of seconds until a flushed entry is actually deleted. Defaults to 7200.

Chapter 5: Network Addressing: ARP & DNS 69

ARP PERSISTENCE

Number of retries allowed for an active ARP resolve reguest to come to fruition. De-
fault sto 4. If no responseisreceived after this many requests, then the host is assumed
to be dead. Set to anumber between 0 and 7. This number relatesto the total time spent
waiting for aresponse as follows:

timeout = 2(ARP_PERSISTENCE+1) -1

For example, for 0 the time-out is 1 second. For 4 it is 31 seconds. For 7 it is 255 sec-
onds. If you set thisto 8 or higher, then ARPwill persist forever, retrying at 128 second
intervals.

ARP NO ANNOUNCE
Configuration items not defined by default. Do not announce our hardware address at
sock init ().

Thismacro isundefined by default. Do not uncomment it inNET . LIB. Instead, define
it in your mainline C program before including the networking libraries.

ARP CONFLICT CALLBACK
Defineafunctiontocall in caseof IPaddressconflict. Thisfunctiontakesaarp_Header
pointer as the first and only parameter. It should return one of
e (: do not take any action
e OXFFFFFFFF : abort all open sockets with NETERR IPADDR_CONFLICT

e other: new IP address to use. Open sockets are aborted with
NETERR IPADDR CHANGE.

Thismacro isundefined by default. Do not uncomment it in NET . LIB. Instead, define
it in your mainline C program before including the networking libraries.

ARP TABLE SIZE

Define to the number of ARP table entries. The default is set to the number of interfac-
es, plus5 entriesfor every non-PPPOE Ethernet interface. The maximum allowable val-
ueis 200.

ARP ROUTER TABLE SIZE

Define the maximum number of routers. Defaults to the number of interfaces, plus an
extra entry for each non-PPPOE Ethernet.

70 TCP/IP User’'s Manual

5.3 DNS Functions

Starting with Dynamic C 7.05, non-blocking DNS lookups are supported. Prior to DC 7.05, there
was only the blocking function, resolve (). Compatibility has been preserved for resolve (),
MAX DOMAIN LENGTH, and DISABLE DNS.

The application program has to do two things to resolve a host name:
1. Cdl resolve name start () to start the process.
2. Céll resolve name check () tocheck for aresponse.
Call resolve cancel () to cancel apending lookup.

5.4 Configuration Macros for DNS Lookups

DISABLE DNS

If this macro is defined, DNS lookups will not be done. The DNS subsystem will not
be compiled in, saving some code space and memory.

DNS MAX RESOLVES

4 by default. Thisisthe maximum number of concurrent DNS queries. It specifiesthe
size of an internal table that is allocated in xmem.

DNS_MAX NAME

64 by default. Specifiesthe maximum sizein bytes of ahost name that can be resolved.
This number includes any appended default domain and the NULL-terminator. Back-
wards compatibility exists for theMAX DOMAIN LENGTH macro. Itsvaluewill be
overridden with the value DNS_ MAX NAME if it is defined.

For temporary storage, a variable of this size must be placed on the stack in DNS pro-
cessing. Normally, thisis not a problem. However, for uC/OS-11 with asmall stack and
alargevaluefor DNS_MAX NAME, this could be an issue.

DNS_MAX DATAGRAM SIZE

512 by default. Specifies the maximum Iength in bytes of a DNS datagram that can be
sent or received. A root data buffer of this sizeis allocated for DNS support.

DNS RETRY TIMEOUT

2000 by default. Specifies the number of milliseconds to wait before retrying aDNS
request. If arequest to anameserver times out, then the next nameserver istried. If that
times out, then the next oneistried, in order, until it wraps around to the first nameserv-
er again (or runs out of retries).

Chapter 5: Network Addressing: ARP & DNS 71

DNS NUMBER RETRIES

2 by default. Specifies the number of times arequest will be retried after an error or a
time-out. The first attempt does not constitute aretry. A retry only occurs when are-
guest has timed out, or when a nameserver returns an unintelligible response. That is,
if ahost name islooked up and the nameserver reports that it does not exist and then
the DNSresolver triesthe same host name with or without the default domain, that does
not constitute aretry.

DNS MIN KEEP COMPLETED

10000 by default. Specifies the number of milliseconds a completed request is guaran-
teed to be valid for resolve name check (). After thistime, the entry in thein-
ternal table corresponding to this request can be reused for a subsequent request.

DNS_SOCK_BUF_SIZE

1024 by default. Specifiesthe sizein bytes of an xmem buffer for the DN'S socket. Note
that this means that the DNS socket does not use a buffer from the socket buffer pool.

72 TCP/IP User’'s Manual

6. IGMP and Multicasting

The Internet Group Management Protocol (IGMP) and multicasting are supported by the
Dynamic C TCP/IP stack starting with version 7.30.

6.1 Multicasting

Multicasting isaform of limited broadcast. UDP is used to send datagrams to all hosts that belong
towhat is called a“host group.” A host group isaset of zero or more hosts identified by the same
destination IP address. The following statements apply to host groups.

e Anyonecanjoin or leave a host group at will.

e There are no restrictions on a host’s location.

e There are no restrictions on the number of members that may belong to a host group.
e A host may belong to multiple host groups.

e Non-group members may send UDP datagrams to the host group.

Multicasting is useful when data needs to be sent to more than one other device. For instance, if
one device isresponsible for acquiring data that many other devices need, then multicasting isa
natural fit. Note that using multicasting as opposed to sending the same datato individua devices
uses less network bandwidth.

6.1.1 Multicast Addresses

A multicast addressisaclass D |IP address, i.e., the high-order four bits are “1110.” Addresses
range from 224.0.0.0 to 239.255.255.255. The address 224.0.0.0 is guaranteed not to be assigned
to any group, and 224.0.0.1 is assigned to the permanent group of al 1P hosts (including gate-
ways). Thisis used to address all multicast hosts on adirectly connected network.

6.1.2 Host Group Membership

Any datagram sent to amulticast addressis received by all hosts that have joined the multicast
group associated with that address. A host group is joined automatically when the remote |P
address passed to udp open () isavalid multicast address. A host group may also be joined by
acaltomulticast joingroup(). Leaving ahost group is done automatically when

udp close()iscalled. Likejoining, leaving agroup may be done explicitly by an application by
calling an API function, inthiscase: multicast leavegroup().

6.2 IGMP

Aslong as all multicast trafficislocal (i.e., on the same LAN) IGMP isnot needed. IGMP is used
for reporting host group memberships to any routers in the neighborhood. Thelibrary IGMP . LIB
conforms to RFC 2236 for IGMPv2 hosts.

Chapter 6: IGMP and Multicasting 73

6.3 Multicast Macros

As mentioned above, the use of IGMP isnot required for multicast support on aLAN. You may
select only multicast support by defining USE_ MULTICAST.

USE MULTICAST

This macro will enable multicast support. In particular, the extra checks necessary for
accepting multicast datagramswill be enabled and joining and leaving multicast groups
(and informing the Ethernet hardware about it) will be added.

USE_IGMP

If thismacro is defined, the USE_ MULTICAST macro is automatically defined. This

macro enabl es sending reports on joining multicast addresses and responding to IGMP
queries by multicast routers. Unlike USE_ MULTICAST, this macro must be defined to
be 1 or 2. Thisindicateswhich version of IGMP will be supported. Note, however, that
both version 1 and 2 IGMP clients will work with both version 1 and 2 IGMP routers.
Most users should just choose version 2.

IGMP V1 ROUTER PRESENT TIMEOUT

Defaultsto 400. When IGMPv2 is supported, atimer is set to this many seconds every
time the board sees an IGMPv1 message from an IGMP router. Aslong asthereistime
left on the timer, the board acts as an IGMPv1 host. If the timer expires, the board re-

turnsto acting as an IGM Pv2 host.

IGMP UNSOLICITED REPORT INTERVAL

Defaultsto 100 deciseconds (10 seconds). Thisvalueis specified in deciseconds. It de-
termines the maximum random interval between the initia join report for a multicast
group and the second join report.

74 TCP/IP User’'s Manual

7. Function Reference

This section contains descriptions for all user-callable functionsin DCRTCP . LIB. Starting with
Dynamic C 7.05, DCRTCP . LIB isalight wrapper around

DNS.LIB
IP.LIB
NET.LIB
TCP.LIB
UDP.LIB.

This update requires no changes to existing code.

Descriptions for select user-callable functionsin:

ARP.LIB
ICMP.LIB
BSDNAME.LIB
IGMP.LIB
XMEM.LIB

are also included here. Note that ARP. LIB, ICMP.LIB and BSDNAME . L.IB are automatically
#use’'d from DCRTCP.LIB.

Functions are listed al phabetically and by category grouped by the task performed.

Chapter 7: Function Reference 75

76

TCP/IP User’s Manual

_abort socks

int abort socks(byte reason, byte iface);

DESCRIPTION

Abort al open TCP and UDP sockets. This routine may be called if the network be-
comes unavailable, for example because a DHCP address lease expired or because an
I P address conflict was encountered.

Thisfunction is generally intended for internal library use, but may be invoked by ap-
plications in special circumstances.

PARAMETERS

reason

iface

RETURN VALUE
0

SEE ALSO

sock abort,

Reason code. A suitable NETERR _* constant as defined in
NETERRNO.LIB. Thiscodeisset astheerror codefor each sock-
et that was affected.

Specific interface on which active connections are to be aborted,
or pass IF ANY to abort connections on al active interfaces.

sock error

Chapter 7: Function Reference

7

arpcache create

ATHandle arpcache create(longword ipaddr);

DESCRIPTION

Create anew entry in the ARP cache table for the specified |P address. If a matching
entry for that address already exists, then that entry isreturned. Otherwise, anew entry
isinitialized and returned. If a new entry is created, then an old entry may need to be
purged. If thisisnot possible, then ATH NOENTRIES is returned.

PARAMETER

ipaddr IP address of entry.

RETURN VALUE
Positive value: Success.
ATH NOENTRIES: No spaceisavailablein thetable, and none of the entries could be
purged because they were all marked as permanent or router entries.
LIBRARY
ARP.LIB

78 TCP/IP User’'s Manual

arpcache flush

ATHandle arpcache flush(ATHandle ath);

DESCRIPTION

Mark an ARP cache table entry for flushing. This means that the given table entry will
bethefirst entry to bere-used for adifferent | P address, if necessary. Any entry (includ-
ing permanent and router entries) may be flushed except for the broadcast entry.

PARAMETER
ath ARP table handle obtained from e.g., arpcache search ().

RETURN VALUE
Positive value: Success.
ATH UNUSED: Thetable entry was unused.
ATH INVALID:the ath parameter wasnot avalid handle.

ATH OBSOLETE: The given handle was valid, but obsoleted by a more recent entry.
No change made.

LIBRARY
ARP.LIB

Chapter 7: Function Reference

79

arpcache hwa

ATHandle arpcache hwa(ATHandle ath, byte *hwa);

DESCRIPTION
Copy the Ethernet (hardware) address from the given ARP cache table entry into the
specified area.

PARAMETERS
ath ARP cache table entry.
hwa Address of where to store the hardware address (6 bytes).

RETURN VALUE
Positive value: Handle to the entry.
ATH UNUSED: Thetable entry was unused.
ATH INVALID: The ath parameter was not avalid handle.

ATH OBSOLETE: The given handle was valid, but obsoleted by a more recent entry.
No change made.

LIBRARY
ARP.LIB

80 TCP/IP User’'s Manual

arpcache iface

ATHandle arpcache iface(ATHandle ath, byte *iface);

DESCRIPTION
Copy theinterface number from the given ARP cache table entry into the specified area.
If the ath parameter refersto a broadcast or loopback entry, then *i face isset to

IF _DEFAULT (and ATH_ INVALID isreturned, since we can't really determine
which of the interfaces to broadcast from).

PARAMETERS
ath ARP cache table entry.
iface Address of where to store the interface number (1 byte).

RETURN VALUE
Positive value: Handle to the entry.
ATH UNUSED: Thetable entry was unused.

ATH INVALID: The ath parameter wasnot avalid handle, or was a broadcast, multi-
cast or loopback handle.

ATH OBSOLETE: The given handle was valid, but obsoleted by a more recent entry.

LIBRARY
ARP.LIB

Chapter 7: Function Reference

81

arpcache ipaddr

ATHandle arpcache ipaddr(ATHandle ath, longword *ipaddr);

DESCRIPTION

Copy the IP address from the given ARP cachetable entry into the specified area. If the
ath parameter refers to a broadcast entry, then the subnet broadcast IP is returned.

PARAMETERS
ath ARP cache table entry.
ipaddr Address of where to store the | P address (4 bytes).

RETURN VALUE
Positive value: Handle to the entry.
ATH UNUSED: Thetable entry was unused.

ATH INVALID: The ath parameter was not avalid handle, or was a point-point,
broadcast, multicast or loopback handle.

ATH OBSOLETE: The given handle was valid, but obsoleted by a more recent entry.

LIBRARY
ARP.LIB

82 TCP/IP User’'s Manual

arpcache load

ATHandle arpcache load(ATHandle ath, byte *hwa, byte iface,
word flags, byte router used);

DESCRIPTION

Load an entry in the ARP cache table. The entry must have been created using
arpcache create (), or bean existing valid entry located via
arpcache search ().

Thisfunction is primarily intended for internal use by the ARP library, although ad-
vanced applications could also use it. Most applications should not need to call this

function directly.

PARAMETERS
ath

hwa

iface

flags

router used

Handle for the entry.

Hardware (Ethernet) address, or NULL. Pass NULL if the current
hardware address is not to be changed.

Interfaceto use (IF_DEFAULT to use default, or not change cur-
rent setting).

Flags for entry: one or more of the following values, OR'd togeth-
e
e ATE PERMANENT: permanent entry

e ATE RESOLVING: initiate network resolve for thisentry
(hwa isignored if thisflag is set)

e ATE RESOLVED: thisentry now resolved

e ATE ROUTER_ENT: thisisarouter entry

e ATE FLUSH: mark thisentry for flush

e ATE VOLATILE: set short timeout for thisentry

e ATE ROUTER_HOP: thisentry uses the specified router
asthefirst hop. hwa ignored.

e ATE REDIRECTED: thisentry redirected by ICMP.

Only oneof ATE ROUTER_ENT or ATE ROUTER_HOP
should be set. For either of these, the next parameter indicates the
router table entry to use.

Only oneof ATE RESOLVINGOr ATE RESOLVED should be
et

Router table entry. Only used if one of ATE_ ROUTER_ENT Or
ATE ROUTER_HOP isset in the flags parameter.

Chapter 7: Function Reference

83

arpcache load (continued)

RETURN VALUE
Positive value: Success.

ATH NOROUTER: The specified router entry number isinvalid. This can be because
therouter used parameter isbad, or because the router entry has a mismatching

ATH.
ATH INVALID: Invalid table handle passed (or unused entry).

ATH OBSOLETE: The given handle was valid, but obsoleted by a more recent entry.
No change made.

LIBRARY
ARP.LIB

84 TCP/IP User’'s Manual

arpcache search

ATHandle arpcache search(longword ipaddr, int virt);

DESCRIPTION

Return handle that refers to the ARP cache table entry for the given |P address. This
does not do any resolving. It only consults the existing cache entries. The returned han-
dleis guaranteed to be valid at least until the next call to tcp tick (). Usualy the
handle will be valid for considerably longer, however it is possible for the handle to be-
come obsolete if the cache entry isre-used for adifferent address. The caller should be
able to deal with this possibility. The entry returned for the broadcast address is guar-
anteed to be permanent.

PARAMETERS
ipaddr IP addressto locate in the cache. Thismay be -1L to locate the
broadcast entry or our own IP address to return the "loopback™ en-
try.
virt 0: Do not return the broadcast or loopback entries.

1: Allow the broadcast or loopback entries.

RETURN VALUE
Positive value: Handle to the entry.
ATH NOTFOUND: No entry exists for the given |P address.

LIBRARY
ARP.LIB

Chapter 7: Function Reference

85

_arp _resolve

int _arp resolve(longword ina, eth address *ethap,
int nowait);

DESCRIPTION

Getsthe Ethernet address for the given |P address. This function is deprecated starting
in Dynamic C 7.20.

PARAMETERS
ina The IP address to resolve to an Ethernet address.
ethap The buffer to hold the Ethernet address.
nowait If O, return within 750 ms; elseif 10 wait up to 5 seconds trying to

resolve the address.

RETURN VALUE
1: Success.
0: Failure.

LIBRARY
ARP.LIB

86 TCP/IP User’'s Manual

arpresolve check

ATHandle arpresolve check(ATHandle ath, longword ipaddr);

DESCRIPTION

Check up on status of resolve processinitiated by arpresolve start (). This
function should be called regularly to ensure that an ARP table handleis pointing to the
correct entry, and that the entry is still current.

Thiscaler must call tecp tick () if spinning on this function.

PARAMETERS
ath ARP Table Handle obtained from arpresolve start ().
ipaddr IP address specified to arpresolve start (). If thisiszero,

no check is performed. Otherwise, the ARP table entry is checked
to seethat it is the correct entry for the specified | P address.

RETURN VALUE

Positive value: Completed successfully. The return value will be the same as the ath pa-
rameter.

ATH AGAIN: Not yet completed, try again later.

ATH FAILED: Completed in error. Address cannot be resolved because of a network
configuration problem.

ATH_ TIMEDOUT: Resolve timed out. No response from addressee within the config-
ured time limit.

ATH INVALID: Theath parameter was not avalid handlg).

ATH OBSOLETE: The given handle was valid, but obsoleted by a more recent entry.
Restart using arpresolve start ().

ATH MISMATCH: The ipaddr parameter was not zero, and the | P address does not
match the table entry.

LIBRARY
ARP.LIB

Chapter 7: Function Reference

arpresolve ipaddr

longword arpresolve ipaddr(ATHandle ath);

DESCRIPTION
Given an ARP table handle, return the | P address of the corresponding table entry.

PARAMETER

ath ARP Table Handle obtained from e.g., router for ().

RETURN VALUE
0: An error occurred, such as an invalid or obsolete handle.

OxFFFFFFFF: Thehandlerefersto either the broadcast address, or to a point-to-point
entry whose |P address is not defined.

Else: An IP address. This may be 127.0.0.1 for the loopback entry.

LIBRARY
ARP.LIB

88 TCP/IP User’'s Manual

arpresolve start

ATHandle arpresolve start(longword ipaddr) ;

DESCRIPTION

Start resolve processfor the given | P address. Thismay return immediately if the | P ad-
dressisinthe ARP cachetableand still valid. Otherwise, if the |P addressison thelocal
subnet then an ARP resolve request is issued through the appropriate interface. If the
address is not on the local subnet, then arouter table entry is used and no network ac-
tivity is necessary (unless the router itself is not resolved, in which case its resolution

commences).

PARAMETER

ipaddr IP address of host whose hardware address is to be resolved.

RETURN VALUE

Positive value: Success. The valueis actually the ATH of the ARP cache table entry
which is (or will be) used. This value should be passed to subsequent calls to
arpresolve check().

ATH NOENTRIES: No spaceisavailablein thetable, and none of the entries could be
purged, because they were all marked as permanent or router entries.

ATH NOROUTER: No router ("gateway") is configured for the specified address,
which is not on the local subnet.

LIBRARY
ARP.LIB

Chapter 7: Function Reference

aton

longword aton(char *text);

DESCRIPTION
Converts[a.b.c.d] or ab.c.d to a 32 bit long value.

PARAMETER

text Pointer to string that holds the |P address to convert.

RETURN VALUE

0: Error, string has invalid format.
>0: Success, long value of | P address.

LIBRARY
IP.LIB

90 TCP/IP User’s Manual

_chk ping

longword chk ping(longword host ip, longword *sequence number) ;

DESCRIPTION

Checks for any outstanding ping repliesfrom host. chk ping should be caled fre-
quently with ahost IP address. If an appropriate packet is found from that host |P ad-
dress, the sequence number is returned through * sequence number. Thetime
difference between our request and their response is returned in milliseconds.

PARAMETERS
host ip IP address to receive ping reply from.

sequence number Sequence number of reply.

RETURN VALUE
Time in milliseconds from the ping request to the host’s ping reply.
If chk pingreturns 0xff£££ffffL, there were no ping receipts on this current
call.
LIBRARY
ICMP.LIB

SEE ALSO
_ping, _send_ping

Chapter 7: Function Reference 91

dhcp acquire

int dhcp acquire(void);

DESCRIPTION
This function acquires a DHCP lease that has not yet been obtained, or has expired, or
wasrelinquished using dhcp_release (). Normaly, DHCP |eases are renewed au-
tomatically, however if the DHCP server is down for an extended period then it might
not be possible to renew the lease in time, in which case the |ease expires and TCP/IP
should not be used. When theleaseexpires, tcp _tick () will return0, and the global
variable for the |P address will be reset to 0. At some later time, this function can be
called to try to obtain an |P address.

This function blocks until the lease is renewed, or the process times out.

RETURN VALUE

0: OK, lease was not expired, or an | P address | ease was acquired with the same |IP
address as previously obtained.

-1: Anerror occurred, no IP addressis available. TCP/IP functionality is thus not
available. Usual causes of an error are timeouts because a DHCP or BOOTP server
is not avail able within the timeout specified by the global variable
_bootptimeout (default 30 seconds).

1: Lease was re-acquired, however the | P address differs from the one previously ob-
tained. All existing sockets must be re-opened. Normally, DHCP serversare careful
to reassign the same | P address previously used by the client, however thisis some-
times not possible.

LIBRARY
BOOTP.LIB

92 TCP/IP User’'s Manual

dhcp get timezone

int dhcp get timezone(long *seconds);

DESCRIPTION

This function returns the time zone offset provided by the DHCP server, if any, or uses
the fallback time zone defined by the TIMEZONE macro. Note that TIMEZONE is ex-
pressed in hours, whereas the return result isin seconds.

PARAMETERS

seconds Pointer to result longword. If the return value is 0 (OK), then this
will be set to the number of seconds offset from Coordinated Uni-
versal Time (UTC). The value will be negative for west; positive
for east of Greenwich. If the return valueis-1, then the result will
be set using the hard-coded value from the macro TIMEZONE
(converted to seconds by multiplying by 3600), or zero if thismac-
ro is not defined.

RETURN VALUE
0: Time zone obtained from DHCP.
-1: Time zone not valid, or not yet obtained, or not using DHCP.

LIBRARY
BOOTP.LIB

Chapter 7: Function Reference

93

dhcp release

int dhcp release(void);

DESCRIPTION

Thisfunction relinquishes alease obtained from a DHCP server. Thisallowsthe server
to re-use the I P address that was allocated to this target. After calling this function, the
global variable for the IP addressis set to O, and it is not possible to call any other
TCP/IP function which requiresavalid IP address. Normally, dhcp_release ()
would be used on networks where only a small number of 1P addresses are available,
but there are alarge number of hosts which need sporadic network access.

Thisfunction is non-blocking since it only sends one packet to the DHCP server and
EXPECLS NO response.

RETURN VALUE
0: OK, lease was relinquished.
1: Not released, because an addressis currently being acquired, or because a boot file
(from the BOOTP or DHCP server) is being downloaded, or because some other

network resourceisin use e.g., open TCP socket. Call dhcp release () agan
after the resource is freed.

-1: Not released, because DHCP was not used to obtain alease, or no |ease was ac-
quired.

LIBRARY
BOOTP.LIB

94 TCP/IP User’'s Manual

getdomainname

char *getdomainname(char *name, int length);

DESCRIPTION

Getsthe current domain name. For example, if the controller’sinternet addressis
“test.mynetwork.com” then “mynetwork” is the domain portion of the name.

The domain name can be changed by the setdomainname () function.

PARAMETERS
name Buffer to place the name.
length Maximum length of the name, or zero to get a pointer to the inter-

nal domain name string. Do not modify this string!

RETURN VALUE

If length 2>1: Pointertoname. If length isnotlong enough to hold the domain
name, aNULL string iswritten to name .

If 1length =0: Pointer to internal string containing the domain name. Do not modify
this string!

LIBRARY
BSDNAME.LIB

SEE ALSO

setdomainname, gethostname, sethostname, getpeername,
getsockname

EXAMPLE

main() {
sock init () ;

printf ("Using %s for a domain\n", getdomainname (NULL, 0)) ;

Chapter 7: Function Reference

gethostid

longword gethostid(void);
DESCRIPTION
Return the | P address of the controller in host format.

RETURN VALUE
IP address in host format, or zero if not assigned or not valid.

LIBRARY
IP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO
sethostid
EXAMPLE
main () {

char buffer[512];
sock_init () ;

printf ("My IP address is %s\n", inet ntoa(buffer,
gethostid())) ;

96 TCP/IP User’'s Manual

gethostname

char *gethostname(char *name, int length);

DESCRIPTION

Getsthe host portion of our name. For exampleif the controller’sinternet addressis
“test.mynetwork.com” the host portion of the name would be “test.”

The host name can be changed by the sethostname () function.

PARAMETERS
name Buffer to place the name.
length Maximum length of the name, or zero for theinternal host name

buffer. Do not modify this buffer.

RETURN VALUE
length >1: Return name.
length = 0: Return internal host name buffer (do not modify!).

LIBRARY
BSDNAME.LIB

Chapter 7: Function Reference

97

getpeername

int getpeername(sock type *s, void *dest,

DESCRIPTION

int *len);

Getsthe peer's | P address and port information for the specified socket.

PARAMETERS
=]

dest

len

RETURN VALUE
0: Success.
-1: Failure.

LIBRARY
BSDNAME.LIB

SEE ALSO

getsockname

Pointer to the socket.

Pointer to sockaddr to hold the socket information for the re-
mote end of the socket. The data structureis:

typedef struct sockaddr {

word s type; // reserved

word s _port; // port#, or0if not connected
longword s _ip; // |Paddr, or Oif not connected
byte s spares[6]; // notused for tcp/ip connections

Vi
Pointer to the length of sockaddr. A NULL pointer can be used
torepresent the sizeof (struct sockaddr).

98

TCP/IP User’'s Manual

getsockname

int getsockname(sock type *s, void *dest, int *len);

DESCRIPTION
Getsthe controller’s | P address and port information for a particular socket.

PARAMETERS
s Pointer to the socket.
dest Pointer to sockaddr to hold the socket information for the local
end of the socket. The data structureis:
typedef struct sockaddr {
word s type; // reserved
word s_port; // port#, or0if not connected
longword s _ip; // |Paddr, or Oif not connected
byte s spares[6]; // notused for tcp/ip connections
}i
len Pointer to the length of sockaddr. A NULL pointer can be used

torepresent the sizeof (struct sockaddr).
BSDNAME . LIB will assume 14 bytesif aNULL pointer is passed.

RETURN VALUE
0: Success.
-1: Failure.

LIBRARY
BSDNAME.LIB

SEE ALSO

getpeername

Chapter 7: Function Reference 99

htonl

longword htonl(longword value);

DESCRIPTION

This function converts a host-ordered double word to a network-ordered double word.
Thisfunction is necessary if you are implementing standard internet protocols because
the Rabbit does not use the standard for network-byte ordering. The network orders
bytes with the most significant byte first and the least significant byte last. On the Rab-
bit, the bytes are in the opposite order.

PARAMETERS

value Host-ordered double word.

RETURN VALUE
Host word in network format, e.g., htonl (0x44332211) returns 0x11223344.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO
htons, ntohl, ntohs

100 TCP/IP User’'s Manual

htons

word htons(word value);

DESCRIPTION

Converts host-ordered word to a network-ordered word. This function is necessary if
you are implementing standard internet protocol s because the Rabbit does not use the
standard for network-byte ordering. The network orders byteswith the most significant
bytefirst and the least significant byte last. On the Rabbit, the bytes are in the opposite
order within each 16-bit section.

PARAMETERS
value Host-ordered word.

RETURN VALUE

Host-ordered word in network-ordered format, e.g., htons (0x1122) returns
0x2211.

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO
htonl, ntohl, ntohs

Chapter 7: Function Reference

101

ifconfig

int ifconfig(int iface,...);

DESCRIPTION

Thisfunctionreplacestcp_config () for setting network parametersat runtime. In
addition, it allowsretrieval of parametersand supports multipleinterfaces. An arbitrary
number of parameters may be set or retrieved in one call.

Example:

ifconfig(IF_ETHO,
IFS DOWN,
IFS IPADDR, aton("10.10.6.100"),
IFS NETMASK, OxFFFFFFOOuL,
IFS ROUTER SET, aton("10.10.6.1"),
IFS NAMESERVER SET, aton("192.68.1.123"),
IFS NAMESERVER ADD, aton("192.68.1.124"),
IFS UP,
IFS END) ;
Thiscal to ifconfig () bringsthefirst Ethernet interface down if it is not already
inactive, then it configures the home I P address, netmask, router (gateway), and two
nameservers. Finally, theinterfaceismade active (IFS_UP). IFS_END isrequired to
terminate the parameter list.

PARAMETERS

iface Interface number. Use one of the definitions:
e IF ETHO

IF_ETH1

IF PPPOEO

IF_PPPOEl

IF_PPPX (X = 0]1|2]3]|4]|5)

IF_ANY

If the interface does not exist, then you will get acompile time er-
ror. IF ANY may be used only for the parameters which are not
specific to any particular interface. It can also be used, where ap-
plicable, to mean "all interfaces' if the operation would make
sense when applied to al interfaces.

... Parameters 2 through n are polymorphic (likeprintf () param-
eters). Parameters are provided in groups (usually pairs) with the
first parm in the group being one of a documented set of identifi-
ers, and subsequent parmsin the group being the value specific to
that identifier. Thelist of parm groups MUST be terminated using
theidentifier IFS_END. The parameter identifiers are:

102

TCP/IP User’'s Manual

Table 7.1 Parameter Identifiers for ifconfig()

Macro Name Macro Description Dlslt:c-:)cl)psgzggr

IFS_END Marks the end of the parameter list. none
IFS_IPADDR?'P Set |P address. longword
IFG_IPADDR Get IP address. longword *
IFS_NETMASK Set netmask. longword
IFG_NETMASK Get netmask. longword *
IFS MTU Set maximum transmission unit (MTU). word
IFG_MTU Get MTU. word *
IFS UP Bring up interface. none
IFS_DOWN Bring down interface none
IFS HWA® Set the hardware address. byte[6]
IFG_HWA Get the hardware address. byte[6]
IFS NAMESERVER SET Delete all nameservers, then set this one. longword
IFS_NAMESERVER ADD® Add nameserver. longword
IFS_NAMESERVER DEL® Delete nameserver. longword

Use "arp -s' ping to configure | P address, or

not.

If DHCP and ping configure are both set, then

the completion of DHCP will automatically

turn off ping configure. If DHCP fails, then

ping configure will be allowed after the set
IFS ICMP_CONFIG time-out for DHCP. Ping config cannot bool

override DHCP until DHCP has timed out.

Thisisthe case whenever aDHCP leaseis

obtained, whether or not at sock init ()

time.

This parameter may be set for IF_ANYi.e,

all interfaces.
IFG ICMP CONFIG Get whether or not ping configureis allowed. | bool *
IFS_ICMP_ CONFIG RESET Afte_r ping configured okay, allow new ping none

- - - configure.

IFG_ICMP_ CONFIG OK Get whether ping configured successfully. bool *
IFS ROUTER SETC® Delete all routers, then set this one. longword

Chapter 7: Function Reference

103

Table 7.1 Parameter Identifiers for ifconfig()

Macro Name Macro Description DaLe ez e
Macro Parms
longword,
IFS ROUTER SET STATICS < | Setrestricted router. longword,
longword
IFS_DEBUGS Set debug level. int
IFG_DEBUG® Get debug level. int *
Set network interfaces according to saved
C, *
IFS RESTORE®’® configuration. NetConfSave
IFG SAVES Get current network configuration. NetConfSave *
IFS_ROUTER ADDS Add router. longword
longword,
IFS_ROUTER ADD STATICS 9 |Add restricted router. longword,
longword
c Delete router If macro parameter = O, delete lonaword
IFS_ROUTER_DEL al routers. gw
Get default router. The interface parameter
may be either a specific interface number (to
IFG_ROUTER DEFAULT get the default router for that interface), or longword *
IF ANY which will retrieve an overall
default router.
IFS_DHCP! Use DHCP to configure thisinterface, or not. | bool9
I Fg_DHcpf Get whether DHCP to be used. bool *
£ Set DHCP host/domain flag; that is, set bool
1FS_DHCP_DOMAIN whether to use domain and/or hostname info.
IFG DHCP DOMAINT Get DHCP host/domain flag setting. bool *
IFG DHCP OK® Get whether DHCP actually configured okay. | bool *
IFS_DHCP TIMEOUTT Set DHCP time-out seconds. int
IFG _DHCP TIMEOUT® Get DHCP time-out seconds. int *
£ Set whether DHCP alows fallback to static bool
IFS_DHCP_ FALLBACK configuration.
£ Get whether DHCP allows fallback to static |/~
IFG_DHCP_FALLBACK configuration.
£ Get whether DHCP actually had to use bool *
IFG_DHCP_ FELLBACK fallbacks.

104 TCP/IP User’s Manual

Table 7.1 Parameter Identifiers for ifconfig()

Macro Name Macro Description DRI IR o
Macro Parms
IFS DHCP FB I pADDRf +h Set the DHCP fallback | P address. Iongword
IFG DHCP_FB_IPADDRT/P Get the DHCP fallback |P address. longword
IFS DHCP QUERY®'? Set whether DHCP uses INFORM. bool
I FG_DHCP_QUERYf Get whether DHCP uses INFORM bool *
1 *
IFS_DHCP_OPTIONSf’ 3 Set DHCP custom options. :2:’(*0)2‘? '
IFG DHCP OPTIONST Get DHCP custom options. int*, char**
IFG_DHCP INFO Get !D_HCP information, or NULL if not DHCPInfo**
qualified.
IFS_PPP_ACCEPTIP Accept peer'sidea of our local |P address. bool
IFG_PPP_ACCEPTIP Get peer’sideaof our local 1P address. bool *
IFS_PPP_REMOTEIP Try to set peer's |P address. longword
IFG_PPP_REMOTEIP Get peer’s |P address. longword *
IFS_PPP_SETREMOTEIP Try to set peer's |P address. longword
IFS_PPP_ACCEPTDNS Accept aDNS server | P address from peer. bool
Find out if we are accepting aDNS server |P
IFG_PPP_ACCEPTDNS bool *
- = address from peer.
Set DNS server | P addresses (primary, longword,
IFS_PPP_REMOTEDNS
- = secondary) for peer . longword
Get DNS server | P addresses (primary, longword *,
IFG_PPP_REMOTEDNS
- = secondary) for peer. longword *
Set DNS server | P address for peer (primary, | longword,
IFS_PPP_SETREMOTEDNS
- = secondary). longword
Called when a peer attempts to authenticate.
The authentication callback isinvoked with
the following parameters:
int auth cb(char *user,
int userlen, char *passwd, int (*
IFS PPP AUTHCALLBACK int passwdlen) int (*)()
The parameters indicate userid, password and
their lengths (not NULL terminated). The
callback should return 1 if OK, O if not
authorized.
IFS _PPP_INIT Sets up PPP with default parameters. none

Chapter 7: Function Reference

105

Table 7.1 Parameter Identifiers for ifconfig()

Macro Name Macro Description DRI IRTREE) o
Macro Parms
IFS PPP_REMOTEAUTH Sets username and password to giveto peer. | char *, char *
. char **,
IFG_PPP_REMOTEAUTH Gets username and password to give to peer. char **
IFS PPP_LOCALAUTH _Requw_ed username and password for char *, char *
- = incoming peer.
Get username and password required for char **,
IFG_PPP_LOCALAUTH . .
- = incoming peer. char **
IFS PPP RTSPIN® Define the RTS pin. int, char *, int
1 * **
IFG_PPP RTSPIN Get the definition for the RTS pin. :2: . char **,
IFs_ppp_CTspINk Definethe CTSpin. int, int
IFG_PPP_CTSPIN Get the definition for the CTS pin. int*,int*
IFS_PPP_FLOWCONTROL Turn hardware flow control on/off (1/0). bool
Determineif hardware flow control ison (1) .
IFG_PPP_ FLOWCONTROL bool
- = or off (0).
IFS_PPP_SPEED Set serial PPP speed in bits/sec. longword
IFG_PPP_SPEED Get serial PPP speed in bits/sec. longword *
A series of stringsto send and then expect,
each separated by a carriage return(\r"). .
TFS_PPP_SENDEXPECT Setting send/expect automatically turns on char
IF PPP _USEMODEM.
Get the series of strings to send and then e
IFG_PPP_SENDEXPECT N char
- = expect, each separated by \r.
Specify whether or not to use modem dialout
IFS PPP USEMODEM . bool
- = string.
Determine whether modem dialout string may .
IFG_PPP_USEMODEM bool
- = be used.
Specify whether or not to add the escape
IFS PPP MODEMESCAPE sequence <delay>+++<delay> before sending | bool
send/expect or hangup strings.
Determinewhether or not the escape sequence
IFG_PPP MODEMESCAPE <delay>+++<delay> is added before sending | bool *

send/expect or hangup strings.

106

TCP/IP User’s Manual

Table 7.1 Parameter Identifiers for ifconfig()

Macro Name

Macro Description

Data Type(s) for
Macro Parms

Use parallel port D instead of parallel port C

IFS_PPP_USEPORTD for serial ports A and B. bool
IFG_PPP_USEPORTD Determineif parallel port D is being used. bool *
Get the PPP peer address. Returns 0 if no .
IFG_PPP_PEERADDR . longword
connection.
Set optional string to send to modem to shut it N
IFS_PPP_HANGUP char
- - down.
Get optional string to send to modem to shut it .
IFG_PPP_HANGUP char
- = down.
Set interface up/down callback, or NULL.
The interface up/down callback function is
called with two parameters:
ifcallback(int iface, int up)
IFS_IF CALLBACK where “iface” istheinterface number, and | void (*)()

“up” isnon-zero if the interface has just come
up, or zero if it hasjust come down. You must
#defineUSE_IF CALLBACK before #use
"dertep.lib" to use this functionality.

a. Setting the value of these parameters may require the interface(s) to be brought down
temporarily. If thisis necessary it will be brought up again before return, however any
sockets that were open on that interface will have been aborted.

b. Theaction of IFS_IPADDR depends on the current interface state. If the i/f has the
IFS_DHCP flag set, then this parameter sets only the fallback |P address without chang-
ing the current i/f status. Otherwise, thei/f isreconfigured with the new address immedi-
ately, which may require it to be brought down then up. IFS_IPADDR always setsthe
DHCP fallback address, but you can also usethe IFS_DHCP_FB_IPADDR parameter
to set the fallback address without ever changing the i/f status.

¢. These parameters do not care about the value of iface because they are not specific to

an interface,

Chapter 7: Function Reference

107

d. "Static router" means arouter that handles routing to a specified subnet destination.
When arouter is selected for a given |P address, the most specific static router will be
used. For example, given the following setup:

Router Subnet M ask
10.106.1 O 0

10.10.6.2 10.99.0.0 255.255.0.0
10.10.6.3 10.99.57.0 255.255.255.0

then, given a destination | P address (which is not on the local subnet 10.10.6.0), the
router will be selected according to the following algorithm:

if addressis 10.99.57.%, use 10.10.6.3
eseif addressis 10.99.* .*, use 10.10.6.2
elseuse 10.10.6.1

Notethat IFS ROUTER_SET ishasically thesameasIFS ROUTER SET STATIC,
except that the subnet and mask parameters are automatically set to zero. Most simple
networks with asingle router to non-local subnetswill useasingle IFS ROUTER_SET.

e. The saved configuration does not remember whether the interfaceis currently active.
When restored, all interfaces are set to the inactive state. Thisfacility isintended to allow
saving network configuration to non-volatile storage, such as the User block. When
restoring a configuration, all interfaces are brought down prior to restoral.

f. The DHCP parameters are only availableif USE_DHCP is defined, and will only work if
the interface parameter iSIF_DEFAULT, since DHCP can only be used on the default
interface. The IFS DHCP parameter will cause acquisition or release of the default
interface.

g. The bool parameter really means an integer, whose valueis O for false, or non-zero for
true.

h. The DHCP fallback address parameters are used in preferenceto IFS IPADDR (the
“current” address). Thisindicatesthe static |P addressto use in case DHCP could not be
used to configure the interface. See aso the following note.

i. This parameter specifiesthat DHCP INFORM message is used for Ethernet interfaces,
and is applicableif the IP address is configured other than by DHCP. The parameter is
aways TRUE for PPP interfaces.

108 TCP/IP User’'s Manual

j. DHCP custom options processing: First parameter (int) islength of optionslist. 2nd
parameter (char *) pointsto optionslist. Thisisabyte array containing values from
theDHCP VN _* definitionsin BOOTP . LIB (thesearetaken fromthelistin RFC2132).
Also, option “0”is used to indicate the boot file name. If the boot file name is provided,
then the TFTP server | P address can be obtained from the di - >bootp host field of
the structure provided to the callback (see the function prototype below). This options
list must be in static storage, since only the pointer is saved.

The 3rd parameter may be NULL, or is a pointer to a callback function to process the
custom options.The callback function has the following prototype:

int my callback(int iface, DHCPInfo * di, int opt, int len,
char * data)

where
iface: interface number.

di: DHCP information struct. Read only, except you can modify the data field if
desired. See the definition of this struct in NET . LIB for details.

opt: DHCP option number (DHCP_VN_*); or O for the boot file name.
len: length of option datain bytes
data: pointer to datafor thisoption. Read only.

The callback is only invoked for options that were requested and that were not handled
internally (such asDHCP VN SUBNET). The return value from the callback should be
zero, for future compatibility. The callback should not make any long computations,
blocking calls, or cal any other tcp/ip functions, since it would delay the main applica-
tion. If uC/OSisin use, it should also be re-entrant and definitely not call any tcp/ip func-
tions.

Note that the following options are always retrieved and MUST NOT be provided in the
options list:

All DHCP protocol options (50-61)

DHCP_VN_SUBNET

DHCP_VN_TIMEOFF

DHCP_VN_ROUTER*

DHCP_VN_DNS*

DHCP_VN_SMTPSRV*

DHCP_VN_NTPSRV*

DHCP_VN_COOKIE*
(* - only forbidden if DHCP NUM ROUTERS etc. are defined to be non-zero).

Chapter 7: Function Reference 109

K. The parameters for the RTS/CTS pin assignments are:
RTS: int port_address, char *shadow_reg, int port_pin
CTS: int port_address, int port_pin

whereport address istheparale port internal I/0 address e.g., PEDR for port E.
shadow reg isthe appropriate shadow register for the parallel port data register e.g.,
& PEDRShadow for port E. port pin isanumber from 0-7 indicating the pin number
of the port.

RETURN VALUE

0: Success.
>0: identifer of first parameter group that encountered an error.
-1: iface parameter isinvalid.

Anexception (runtimeerror) israised if the parameter list containsaninvalid parameter
number.

LIBRARY
NET.LIB

SEE ALSO

sock init, tcp config, ip print ifs, ifstatus, ifpending

110 TCP/IP User’'s Manual

ifdown

int ifdown(int iface);

DESCRIPTION
This function attempts to deactivate the specified interface.

PARAMETER

iface Interface number. Use one of the definitions

IF _ETHO

IF ETH1

IF_PPPOEO

IF PPPOE1

IF_PPPX (X = 0]1]|2]3]4]|5)

If the interface does not exist, then you will get acompile time er-
ror.

RETURN VALUE
IFCTL_OK:if OK.
IFCTL_FAIL:If error.
IFCTL_PEND: if OK but not complete.

LIBRARY
NET.LIB

SEE ALSO

ifconfig, ifup, ifstatus, ifpending

Chapter 7: Function Reference

111

ifpending

int ifpending(int iface);

DESCRIPTION
Returns indication of whether the specified interface is up, down, pending up or pend-

ing down. Thisrevealsmoreinformationthan i fstatus (), whichonly indicatesthe
current state (up or down).

NOTE: ANDing the return value with 0x01 indicates a pending condition; ANDing
with 0x02 is equivalent to the return from i fstatus () .

PARAMETERS

iface Interface number. Use one of the definitions;

e IF ETHO
IF _ETH1

IF PPPOEO

IF PPPOE1

IF PPPX (X = 0|1|2]3]|4]5)

If the interface does not exist, you will get acompile time error.

RETURN VALUE
0: If interface is currently down and not pending up.
1: If interface is currently down and pending up.
2: If interface is currently up and not pending down.
3: If interfaceis currently up and pending down.

LIBRARY
NET.LIB

SEE ALSO

ifconfig, ifdown, ifup, ifstatus

112 TCP/IP User’'s Manual

ifstatus

int ifstatus(int iface);

DESCRIPTION
This macro returns the status of the specified interface.

PARAMETER

iface Interface number. Use one of the definitions

IF _ETHO

IF ETH1

IF_PPPOEO

IF PPPOE1

IF_PPPX (X = 0]1]|2]3]4]|5)

If the interface does not exist, then you will get acompile time er-
ror.

RETURN VALUE
0: if interfaceis currently down.
Non-zero if interface is currently up (active).

LIBRARY
NET.LIB

SEE ALSO

ifconfig, ifup, ifdown, ifpending

Chapter 7: Function Reference

113

ifup

int ifup(int iface);

DESCRIPTION
This function attempts to activate the specified interface.

PARAMETER

iface Interface number. Use one of the definitions

IF_ETHO
IF ETH1

IF_PPPOEO

IF PPPOE1

IF_PPPX (X = 0]1]|2]3]4]|5)

If the interface does not exist, then you will get acompiletime er-
ror.

RETURN VALUE
IFCTL_OK:if OK.
IFCTL_FAIL:If error.
IFCTL_PEND: if OK but not complete.

LIBRARY
NET.LIB

SEE ALSO

ifconfig, ifdown, ifstatus

114 TCP/IP User’s Manual

inet addr

longword inet addr(char *dotted ip string);

DESCRIPTION

Converts an | P address from dotted decimal |P format to its binary representation. No
check is made as to the validity of the address.

PARAMETERS
dotted ip string Dotted decimal IP string, e.g., "10.10.6.100".
RETURN VALUE

0: Failure.
Binary representation of dotted ip string: Success.

LIBRARY
IP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

inet ntoa

Chapter 7: Function Reference 115

inet ntoa

char *inet ntoa(char *s, longword ip);

DESCRIPTION

Converts abinary |P address to its dotted decimal format, e.g.,
inet ntoa (s, 0x0a0a0664) returnsapointer to"10.10.6.100".

PARAMETERS
s L ocation to place the dotted decimal string. A sufficient buffer size
would be 16 bytes.
ip The IP address to convert.

RETURN VALUE
Pointer to the dotted decimal string pointed to by s.

LIBRARY
IP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

inet addr

116 TCP/IP User’s Manual

ip iface

byte ip iface(longword ipaddr, int local only);

DESCRIPTION

Given an | P address, this function return the interface number for that address. If
ipaddr isan address on one of the local subnets, then the interface to that subnet is
returned.

If the addressis not local, then the local only parameter determines the result:
If local onlyis1, then IF_ANY will bereturned for anon-local address.

Otherwise, the router for () function isinvoked to find the correct router -- the
interface for the router is returned.

PARAMETERS
ipaddr IP address of an external host.

local only 0: allow non-local addresses (returns interface for router).
1:return IF ANY for non-local addresses.

RETURN VALUE
Interface number (0..IF MAX-1), of possibly IF ANY (OXFF).

LIBRARY
IP.LIB

SEE ALSO

router for

Chapter 7: Function Reference

117

ip print ifs

void ip print ifs(void);

DESCRIPTION

Print all interface table entries. Thisisfor debugging only, since the results are printed
to the Dynamic C Stdio window.

There are 8 fields for each interface entry:

The interface number

IP addr Thelocal ("home") IP address of thisinterface. May be 0.0.0.0 if
interface is not currently active.

Mask Local subnet mask.

Up Indicates status; one of

Yes: interface currently active

No: currently inactive

NYU: Not Yet Upi.e., coming up

NYD: Not Yet Down i.e., coming down

Type: Interface type; one of

eth: normal Ethernet
ppp: PPP over serid port
pppoe: PPP over Ethernet

MTU: M aximum transmission unit.

Flags: A list of the following characters:
*: thisis the default interface (IF_ DEFAULT)
D: Use DHCP

DD: Currently configured viaDHCP

s: dlow IP addr configuration via directed ping (ICMP echo).
SS: IP address currently set via directed ping

1: IGMP version 1 router present on thisinterface

Peer/router |P addressof peer node (for PPP or PPPOE), or address of default
router onthisinterface (for Ethernet type). May beblank or 0.0.0.0
if no peer or router is available.

LIBRARY
IP.LIB

118 TCP/IP User’'s Manual

ip timer expired

word ip timer expired(void *s);

DESCRIPTION
Check the timer inside the socket structurethat wassetby ip timer init ().

PARAMETER
s Pointer to a socket.
RETURN VALUE

0: If not expired.
1: If expired.

LIBRARY
NET.LIB

SEE ALSO

ip timer init

Chapter 7: Function Reference 119

ip timer init

void ip timer init(void *s, word seconds);

DESCRIPTION
Set atimer inside the socket structure.

PARAMETER
s Pointer to a socket.
seconds Number of seconds for the time-out; if seconds iszero never

time-out.

RETURN VALUE
None.

LIBRARY
NET.LIB

SEE ALSO

ip_ timer expired

120 TCP/IP User’s Manual

is valid iface

int is_valid_iface(int iface);

DESCRIPTION

Thisfunction returns a boolean indicator of whether the given interface number isvalid
for the configuration.

PARAMETER

iface Interface number. Use one of the definitions

IF _ETHO

IF _ETH1

IF PPPOEO

IF PPPOE1

IF PPPX (X = 0|1|2]3]|4]5)

RETURN VALUE
10: Interfaceisvalid.
0: Interface does not exist.

LIBRARY
NET.LIB

SEE ALSO

ifconfig, ifup, ifdown, ifstatus

Chapter 7: Function Reference 121

multicast joingroup

int multicast joingroup(int iface, longword ipaddr);

DESCRIPTION

Thisfunction joinsthe specified multicast group (class D | P address--from 224.0.0.0 to
239.255.255.255) on the specified interface. For an Ethernet interface, it configuresthe
hardware to accept multicast packets for the specified address.

Note that this function is called automatically when udp _open () isused to open a

multicast address.
PARAMETER
iface Interface on which to join the group. Use one of the definitions
e IF ETHO
e IF ETH1L
e IF DEFAULT
ipaddr Multicast group to join.

RETURN VALUE
0: Success.

1: Failure (e.g., ipaddr isnot amulticast address; or not enough available ARP en-
tries to hold the group).

LIBRARY

IGMP.LIB

122 TCP/IP User’'s Manual

multicast leavegroup

int multicast leavegroup(int iface, longword ipaddr);

DESCRIPTION

This function leaves the specified multicast group (class D |P address--from 224.0.0.0
to 239.255.255.255) on the specified interface. For an Ethernet interface, it configures
the hardware to no longer accept multicast packets for the specified address. Thisfunc-
tion will leave the group no matter how many multicast joingroup () cals
were made on that group. However, note that this function will not actually leave a
group for which there are UDP sockets. However, when those UDP sockets close, the
group will be left.

Note that this function is called automatically when a multicast UDP socket is closed.

PARAMETER
iface Interface on which to leave the group. Use one of the definitions
e IF ETHO
e IF ETH1L
e IF DEFAULT
ipaddr Multicast group to leave.

RETURN VALUE
0: Success.
1: Failure (e.g., ipaddr isnot amulticast address).

LIBRARY
IGMP.LIB

Chapter 7: Function Reference

123

ntohl

longword ntohl (longword value) ;

DESCRIPTION

Converts network-ordered long word to host-ordered long word. This function is nec-
essary if you are implementing standard internet protocol s because the Rabbit does not
use the standard for network byte ordering. The network orders byteswith the most sig-
nificant byte first and the least significant byte last. On the Rabbit, the bytes arein the
opposite order.

PARAMETERS

value Network-ordered long word.

RETURN VALUE
Network-ordered long word in host-ordered format,
eg., ntohl (0x44332211) returns0x11223344
LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO
htons, ntohs, htonl

124 TCP/IP User’'s Manual

ntohs

word ntohs(word value);

DESCRIPTION

Converts network-ordered word to host-ordered word. Thisfunctionisnecessary if you
are implementing standard internet protocols because the Rabbit does not use the stan-
dard for network byte ordering. The network orders byteswith the most significant byte
first and the least significant byte last. On the Rabbit, the bytes arein the opposite order.

PARAMETERS

value Network-ordered word.

RETURN VALUE
Network-ordered word in host-ordered format,
e.g., ntohs (0x2211) returns 0x1122
LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO
htonl, ntohl, htons

Chapter 7: Function Reference

125

paddr

unsigned long paddr(void *pointer);

DESCRIPTION

Convertsalogical pointer into its physical address. Use caution when converting ad-
dressin the EO00-FFFF range. This function will return the address based on the XPC
on entry.

PARAMETERS

pointer Pointer to convert.

RETURN VALUE
Physical address of pointer.

LIBRARY
XMEM.LIB

126 TCP/IP User’s Manual

pd getaddress

void pd getaddress(int nic, void *buffer);

DESCRIPTION
This function copies the Ethernet address (aka the MAC address) into the buffer.

PARAMETERS
nic Starting with Dynamic C 7.30, this parameter identifies an Ether-
net interface. Use avalue of 0 if only one NIC is present
buffer Place to copy addressto. Must be at least 6 byes.

RETURN VALUE
None.

LIBRARY
PKTDRV.LIB

EXAMPLE

main() {
char buf [6] ;
sock init () ;
pd getaddress (0, buf) ;

printf ("Your Link Address is:%02x%02x:%02x%02x:%02x%02x
\n", buf[0], bufl[l], buf[2], buf[3], bufl[4], bufl[5]);

Chapter 7: Function Reference

127

pd havelink

int pd havelink(int nic);

DESCRIPTION
Determines if the physical-layer link is established for the specified NIC.

PARAMETERS
nic The NIC to check. Useavalue of O if only one NIC is present.
RETURN VALUE

0: Thereisno link.
10: Thelink is established.

LIBRARY
REALTEK.LIB | ASIX.LIB | SMSC.LIB

128 TCP/IP User’s Manual

pd powerdown

int pd powerdown(int nic);

DESCRIPTION

Power down the NIC, by turning off as many services as possible. Whenthe NIC isin
powerdown mode, it is very important to not call any TCP/IP, ethernet, etc. functions,
asthey will obvioudly fail, and the resultswill be undefined. pd_powerup () should
be the very next network function called, to re-enable the NIC.

PARAMETERS

nic The NIC to powerdown. Use avalue of Oif only oneNIC is
present.

RETURN VALUE
0: Success.
10: Error.

LIBRARY
REALTEK.LIB | ASIX.LIB | SMSC.LIB

SEE ALSO
pd_powerup

Chapter 7: Function Reference

129

pd powerup

int pd powerup(int nic);

DESCRIPTION

Power up the NIC, undoing the sleepy-mode changes made by pd_powerdown. Af-
ter this function has returned success, Ethernet and TCP/IP function may be called

again.
NOTE: Thisfunction will block for 10 ms, to let the chip start up.
PARAMETERS
nic The NIC to power up. Use avaueof 0if only one NIC is present.
RETURN VALUE

0: Success.
10: Error.

LIBRARY
REALTEK.LIB | ASIX.LIB | SMSC.LIB

SEE ALSO

pd_powerdown

130 TCP/IP User’s Manual

_ping

int ping(longword host ip, longword sequence number) ;

DESCRIPTION

Generates an ICMP request for host. NOTE: thisisamacro that calls _send ping.

PARAMETERS
host ip IP address to send ping.

sequence number User-defined sequence number.

RETURN VALUE
0: Success.
1: Failure, unable to resolve hardware address.
- 1: Failure, unable to transmit ICMP request.

LIBRARY
ICMP.LIB

SEE ALSO
_chk ping, _send ping

Chapter 7: Function Reference

131

psocket

void psocket(void *s);

DESCRIPTION

Given an open UDP or TCP socket, the | P address of the remote host is printed out to
the Stdio window in dotted | P format followed by acolon and the decimal port number
on that machine. This routine can be useful for debugging your programs.

PARAMETERS

s Pointer to a socket.

RETURN VALUE
None.

LIBRARY
BSDNAME.LIB

132 TCP/IP User’s Manual

resolve

longword resolve(char *host string);

DESCRIPTION

Convertsatext string, which contains either the dotted | P address or host name, into the
longword containing the | P address. In the case of dotted IR, no validity check is made
for the address. NOTE: this function blocks. Names are currently limited to 64 charac-
ters. If it is necessary to lookup larger names include the following line in the applica-
tion program:

#define DNS MAX NAME <len in chars>

If DISABLE DNS has been defined, resolve () will not do DNS lookup.

If you are trying to resolve a host name, you must set up at least one name server. You
can set the default name server by defining theMY NAMESERVER macro at the top of
your program. Whenyou call resolve (), itwill contact the name server and request
the IP address. If thereisan error, resolve () will return OL.

To ssimply convert dotted IP to longword, see inet addr ().

For a sample program, see the Example Using tcp_open() listed under tcp open ().

PARAMETERS
host string Pointer to text string to convert.
RETURN VALUE

0: Failure.
10: ThelP address *host string resolvesto.

LIBRARY
DNS.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

_arp resolve, inet addr, inet ntoa

Chapter 7: Function Reference 133

resolve cancel

int resolve cancel(int handle);

DESCRIPTION

Cance stheresolve request represented by the given handle. If thehandleisO, then this
function cancels al outstanding resolve requests.

PARAMETERS

handle Handle that represents a DN'S lookup process, or 0 to cancel all
outstanding resolve requests.

RETURN VALUE
RESOLVE_SUCCESS: Theresolve reguest has been cancelled and is no longer valid.
RESOLVE_ HANDLENOTVALID: Thereisno request for the given handle.
RESOLVE NONAMESERVER: No nameserver has been defined.

LIBRARY
DNS.LIB

SEE ALSO
resolve_name_start, resolve_name_check, resolve

134 TCP/IP User’'s Manual

resolve name check

int resolve name check(int handle, longword *resolved ip);

DESCRIPTION

Checksif the DNS lookup represented by the given handle has completed. On success,
it fillsin the resolved | P address in the space pointed to by resolved ip.

PARAMETERS
handle Handle that represents a DN'S lookup process.

resolved ip A pointertoauser-supplied Llongword wheretheresolved | P ad-
dress will be placed.

RETURN VALUE

RESOLVE_SUCCESS: Theaddresswas resolved. The given handle will no longer be
valid after thisvalue is returned.

RESOLVE_AGAIN: The resolve process has not completed, call thisfunction again.

RESOLVE_FAILED: The DNS server responded that the given host name does not ex-
ist. The given handle will no longer be valid if RESOLVE _FAILED isreturned.

RESOLVE_TIMEDOUT: The reguest has been cancelled because aresponse from the
DNS server was not received before the last time-out expired. The given handlewill no
longer be valid after thisvalueis returned.

RESOLVE_ HANDLENOTVALID: Thereisno DNS lookup occurring for the given
handle.

RESOLVE NONAMESERVER: No nameserver has been defined.

LIBRARY
DNS.LIB

SEE ALSO
resolve_name_start, resolve _cancel, resolve

Chapter 7: Function Reference 135

resolve name start

int resolve name start(char *hostname);

DESCRIPTION

Starts the process of resolving a host name into an |P address. The given host nameis
limited to DNS_MAX NAME characters, which is 64 by default (63 characters + the
NULL terminator). If adefault domain isto be added, then the two strings together are
limited to DNS_MAX NAME.

If hostname doesnot contain a'.' then the default domain (MY DOMAIN), if provid-
ed, isappended to hostname. If hostname with the appended default domain does
not exist, hostname istried by itself. If that aso fails, the lookup fails.

If hostname doescontain a'.' then hostname islooked up by itself. If it does not
exist, the default domain is appended, and that combination is tried. If that also fails,
the lookup fails.

If hostname endswitha'., then the default domain is not appended. The host name
isconsidered “fully qualified.” Thelookup isattempted without theending . and if that
fails no other combinations are attempted.

This function returns a handle that must be used in the subsequent
resolve name check () andresolve cancel () functions.

PARAMETERS

hostname Host name to convert to an |P address

RETURN VALUE
>0: Handlefor callsto resolve name check () andresolve cancel ().

RESOLVE_ NOENTRIES: Could not start the resolve process because there were no
resolve entries free.

RESOLVE LONGHOSTNAME: The given hostname was too large.
RESOLVE NONAMESERVER: No nameserver has been defined.

LIBRARY
DNS.LIB

SEE ALSO

resolve name_check, resolve cancel, resolve

136 TCP/IP User’'s Manual

rip

char *rip(char *string):;

DESCRIPTION

Strips newline (\n) and/or carriage return (\r) from astring. Only thefirst \n and \r char-
acters are replaced with \Os. The resulting string beyond the first \O character is unde-
fined.

PARAMETERS

string Pointer to a string.

RETURN VALUE
Pointer to the modified string.

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

EXAMPLE
setmode (s, TCP_MODE ASCII) ;

sock puts(s, rip(questionable string)) ;

NOTE: In ASCIl mode sock_puts () adds\n; rip isused to make certain the string
does not already have a newline character. Remember, rip modifies the source string,
not a copy!

Chapter 7: Function Reference 137

router add

ATHandle router add(longword ipaddr, byte iface,
longword subnet, longword mask, word flags);

DESCRIPTION

Add arouter to the router table. The same router can be added multiple times, with dif-
ferent subnet and mask. Normally, only one entry isneeded in order to access non-local
subnets: this entry should be specified with a zero mask. The hardware address of the
router is not immediately resolved, however this can be done explicitly by calling
arpresolve start () withthe same P address. Otherwise, the router will bere-
solved only when it first becomes necessary.

PARAMETERS
ipaddr I|P address of therouter. Thisaddress should be on thelocal subnet,
since non-local routers are not supported.
iface Interface to use to access thisrouter, or IF_ DEFAULT.
subnet Subnet accessible through this entry.
mask Subnet mask for this entry.
flags Flags word: set to zero (non-zero reserved for internal use).

RETURN VALUE

Positive value: completed successfully. The return value is the ARP cache table entry
for this router.

ATH NOENTRIES: insufficient space in either the router or ARP cache tables.

LIBRARY
ARP.LIB

router del all

void router del all(void);

DESCRIPTION
Delete all router table entries. This will make any host that is not on the local subnet
inaccessible. Thisfunction is usually called in preparation for adding a new router en-
try.

LIBRARY
ARP.LIB

138 TCP/IP User’'s Manual

router delete

ATHandle router delete(longword ipaddr);

DESCRIPTION

Deletearouter from the router table. All instances of therouter's | P address are del eted,
and the ARP cache table entry is flushed.

PARAMETER

ipaddr I P address of therouter. Thisaddress should be on thelocal subnet,
since non-local routers are not supported.

RETURN VALUE
Positive value: completed successfully.
ATH NOTFOUND: specified entry did not exist.

LIBRARY
ARP.LIB

Chapter 7: Function Reference 139

router for

ATHandle router for(longword ipaddr, byte *router used,
byte *r iface);

DESCRIPTION

Return the ARP cache tabl e entry corresponding to the router that handlesthe given IP
address. If thereis apre configured router for the given address, it is selected. Other-
wise, routers discovered via DHCP or ICMP router discovery are searched, with the
highest preference being selected. Failing this, if thereisa point-to-point interface, this
is selected as the default.

An alternative mode of calling thisfunctionisinvoked if ipaddr iszero. Inthiscase,
the default router for the specified interface (*r _iface)isreturned. If r_ifaceis
NULL, then the default interfaceisassumed:IF DEFAULT, the only interface support-
ed at present. IF_DEFAULT may refer to the primary Ethernet NIC or a PPP connec-
tion that uses a seria port or the primary Ethernet NIC.

PARAMETERS

ipaddr IP address of the host which is not on the local subnet.

router used |f notNULL, thebyteat thislocation isset totheindex of therouter
in the router table.

r iface If not NULL, the byte at thislocation is set to the interface number
that can access the router.

RETURN VALUE
Positive value: completed successfully.

ATH NOROUTER: no suitablerouter found. Either no router isconfigured, or thegiven
IP addressis on the local subnet.

LIBRARY
ARP.LIB

140 TCP/IP User’'s Manual

router print

int router print(byte r);

DESCRIPTION

Print arouter table entry, indexed by 'r.' Thisisfor debugging only, sincetheresultsare
printed to the Dynamic C stdio window. 'r' may be obtained from the

router for () function, by passing &r asthe router used parameter to that
function.

If the specified router entry isnot in use, nothing is printed and the return value is non-
zero. Otherwise, the information is printed and zero returned.

Seerouter printall () for adescription of the output fields printed.

PARAMETER
r Router table index. A number from O through
(ARP_ROUTER_ TABLE SIZE-1).

RETURN VALUE
0: Success, information printed to stdio window.
10: Entry isnot in use.

LIBRARY
ARP.LIB

SEE ALSO

router printall

Chapter 7: Function Reference 141

router printall

int router printall(void);

DESCRIPTION

Print all router table entries. Thisisfor debugging only, since the results are printed to
the Dynamic C stdio window. If no routers exist in the table, nothing is printed and the
return value is non-zero.

There are 6 fields for each router entry:

Router Table Entry Field Description of Field

The entry number.

A ligt of the following characters:
P =this entry pre configured
T = transient entry
Flags D = added by DHCP/BOOTP
R = added by ICMP redirect
? = router not reachable
H = router's hardware address resolved

Either the router's |P address or an indication that the entry isa

Address point-to-point link.
i/f Interface number.
For pre configured entries, indicates the network(s) which are
served by this entry (the Mask indicates which bits of the IP
Net/preference

address are used to match with the network address). For non-
pre configured entries, thisisthe "preference value" assigned.

For pre configured entries, the bitmask to apply to | P addresses
Mask/exp (sec) when matching against the above network. Otherwise, is the
expiry time from the present, in seconds, of atransient entry.

RETURN VALUE
0: Success, information printed to stdio window.
1 0: No routersin the table.

LIBRARY
ARP.LIB

142 TCP/IP User’'s Manual

_send ping

int send ping(longword host, longword countnum, byte ttl,
byte tos, longword *theid);

DESCRIPTION
Generates an ICM P request for host.

PARAMETERS

host IP address to send ping.

countnum User-defined count number.

ttl Timetolivefor the packets (hop count). 255 isastandard value for
thisfield. Seesock _set ttl () for details.

tos Type of service on the packets. See sock _set tos () for de-
tails.

theid The identifier that was sent out.

RETURN VALUE
0: Success.
1: Failure: unable to resolve hardware address.
-1: Failure: unable to transmit ICMP request.

LIBRARY
ICMP.LIB

SEE ALSO
_chk ping, ping, sock set ttl, sock set tos

Chapter 7: Function Reference

143

setdomainname

char *setdomainname(char *name);

DESCRIPTION

The domain namereturned by get domainname () and usedfor resolve () isset
to the valuein the string pointed to by name. Changing the contents of the string after
asetdomainname () will changethevalue of the system domain string. Itisnot rec-
ommended. Instead dedicate a static location for holding the domain name.

setdomainname (NULL) isan acceptableway to remove any domain name and
subsequent resolve callswill not attempt to append a domain name.

PARAMETERS

name Pointer to string.

RETURN VALUE
Pointer to string that was passed in.

LIBRARY
BSDNAME.LIB

SEE ALSO

getdomainname, sethostname, gethostname, getpeername,
getsockname

144 TCP/IP User’'s Manual

sethostid

longword sethostid(longword ip);

DESCRIPTION

This function changes the system’s current | P address. Changing this address will dis-
rupt existing TCP or UDP sessions. You should close all sockets before calling this
function.

Normally thereisno need to call thisfunction. ThemacroMY IP ADDRESS defines
aninitial IPaddressfor thishost, or you can defineUSE_DHCP to obtain adynamically
assigned address. In either case, it is hot recommended to use this function to change
the address.

PARAMETERS

ip New IP address.

RETURN VALUE
New | P address.

LIBRARY

IP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO
gethostid

Chapter 7: Function Reference

145

sethostname

char *sethostname(char *name);

DESCRIPTION
Sets the host portion of our name.

PARAMETERS
name Pointer to the new host name.
RETURN VALUE

Pointer to internal hostname buffer on success.
NULL on error (if hostname istoo long).

LIBRARY
BSDNAME.LIB

146 TCP/IP User’s Manual

sock abort

void sock abort(void *s);

DESCRIPTION
Close a connection immediately. Under TCP thisis done by sending a RST (reset).

Under UDP thereis no difference between sock _close () and sock_abort ().
PARAMETERS

s Pointer to a socket.

RETURN VALUE
None.

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock close, tcp open

Chapter 7: Function Reference 147

sock alive

int sock alive(tcp Socket *s);

DESCRIPTION

Thisfunction performsthesametestastcp tick (s) i.e, it checksthe status of the
socket and returns O if the socket isfully closed.

The processing overhead of tcp tick () isavoided for cases where several sockets
need to be checked in succession.

When this function returns zero for a socket, the socket is then ready for anew call to
tcp open() ortcp listen () andfriends.

PARAMETER

s TCP socket pointer.

RETURN VALUE
0: Connection reset or fully closed. Socket ready for re-use in another connection.
1 0: Connection is opening, established, listening, or in the process of closing.

LIBRARY
NET.LIB

SEE ALSO

tcp open, tcp listen, sock close, sock abort, tcp tick

148 TCP/IP User’'s Manual

sock aread

int sock aread(tcp Socket *s, byte *dp, int len);

DESCRIPTION
Read exactly 1en bytes from the socket or, if that amount of datais not yet available,
do not read anything. Unlikesock_fastread (), thisfunctionwill never returnless
than the requested amount of data. This can be useful when the application knows that
it will be receiving afixed amount of data, but does not wish to handle the arrival of
only part of the data, asit would haveto do if sock fastread () was used.

len must be less than or equal to the socket receive buffer size, otherwise
sock_fastread () must be used.

Thisfunctionis only valid for TCP sockets. It is available starting with DC 7.30.

PARAMETERS
s Pointer to a TCP socket.
dp Buffer to place bytes that are read.
len Number of bytes to copy to the buffer.

RETURN VALUE

-1: len isgreater than the total socket receive buffer size, hence this request could never
be satisfied in one call.

-2: The socket is closed or closing, but insufficient dataisin the buffer to satisfy the re-
quest.

-3: len < 0 or the socket parameter wasinvalid.

0: Insufficient dataisin the buffer to satisfy the request, or 1en was zero. Try again later

since the socket is still able to receive data from the peer.

len: The 1en parameter isreturned if there was sufficient data in the socket buffer to sat-

isfy the request.
LIBRARY
TCP.LIB
SEE ALSO

sock fastread, sock xfastread, sock fastwrite,
sock xfastwrite, sock axread, sock awrite, sock axwrite

Chapter 7: Function Reference 149

sock awrite

int sock awrite(tcp Socket *s, byte *dp, int len);

DESCRIPTION

Write exactly 1en bytesto the socket or, if that amount of data can not be written, do
not writeanything. Unlike sock_fastwrite (), thisfunction will never return less
than the requested amount of data. This can be useful when the application needs to
write afixed amount of data, but does not wish to handle the transmission of only part
of the data, asit would haveto do if sock_fastwrite () wasused.

len must be less than or equal to the socket transmit buffer size, otherwise
sock_fastwrite () must be used.

Thisfunctionis only valid for TCP sockets. It is available starting with DC 7.30.

Parameters
s Pointer to a TCP socket.
dp Buffer containing datato write.
len Number of bytes to write to the socket buffer.

RETURN VALUE

-1: len isgreater than the total socket receive buffer size, hence this request could
never be satisfied in one call.

-2: The socket has been closed for further transmissions, e.g., because
sock close () hasalready been called.

-3: 1len <0 or the socket parameter wasinvalid.

0: Insufficient free spacein the transmit buffer to satisfy the request, or 1 en was zero.
Try again later since the peer will eventually acknowledge the receipt of previous
data, freeing up transmit buffer space.

len: The 1len parameter isreturned if there was sufficient datain the socket transmit
buffer to satisfy the request.

LIBRARY
TCP.LIB

SEE ALSO

sock fastread, sock xfastread, sock fastwrite,
sock xfastwrite, sock axread, sock aread, sock axwrite

150 TCP/IP User’'s Manual

sock axread

int sock axread(tcp Socket *s, long dp, int len);

DESCRIPTION
Reads exactly 1en bytesfrom the socket or, if that amount of datais not yet available,

do not read anything.
Thisfunctionisavailable starting with DC 7.30. Itisidentical to sock _aread () ex-
cept that the destination buffer isin xmem.

PARAMETERS
s Pointer to a TCP socket.
dp Buffer to place bytes that are read.
len Number of bytes to copy to the buffer.

RETURN VALUE
-1: len isgreater than the total socket receive buffer size, hence this request could never

be satisfied in one call.
-2: Thesocket is closed or closing, but insufficient datais in the buffer to satisfy the re-

quest.
-3: len < 0 or the socket parameter was invalid.
0: Insufficient dataisin the buffer to satisfy the request, or 1en was zero. Try again later
since the socket is still able to receive data from the peer.
len: The 1en parameter isreturned if there was sufficient data in the socket buffer to sat-

isfy the request.
LIBRARY
TCP.LIB
SEE ALSO

sock fastread, sock xfastread, sock fastwrite,
sock xfastwrite, sock aread, sock awrite, sock axwrite

Chapter 7: Function Reference 151

sock axwrite

int sock axwrite(tcp Socket *s, long dp, int len);

DESCRIPTION
Write exactly 1en bytesto the socket or, if that amount of data can not be written, do
not write anything. This function is available starting with DC 7.30. It isidentical to
sock_awrite () except that the source buffer isin xmem.

Parameters
s Pointer to a TCP socket.
dp Buffer containing datato write.
len Number of bytes to write to the socket buffer.

RETURN VALUE

-1: len isgreater than the total socket receive buffer size, hence this request could
never be satisfied in one call.

- 2: The socket has been closed for further transmissions, e.g., because
sock_close () hasalready been called.

-3: len <0 or the socket parameter was invalid.

0: Insufficient free spacein the transmit buffer to satisfy therequest, or 1 en waszero.
Try again later since the peer will eventually acknowledge the receipt of previous
data, freeing up transmit buffer space.

len: The len parameter isreturned if there was sufficient datain the socket transmit

buffer to satisfy the request.
LIBRARY
TCP.LIB
SEE ALSO

sock fastread, sock xfastread, sock fastwrite,
sock xfastwrite, sock axread, sock aread, sock awrite

152 TCP/IP User’'s Manual

sock bytesready

int sock bytesready(void *s);

DESCRIPTION
For TCP sockets:

If the socket isin binary mode, sock bytesready () returnsthe number of bytes
waiting to be read. If there are no bytes waiting, it returns -1.

In ASCII mode, sock_bytesready () returns-1if thereare no byteswaiting to be
read or the line that is waiting isincomplete (no line terminating character has been
read). The number of byteswaiting to be read will be returned given one of the follow-
ing conditions:

e thebuffer isfull

e the socket has been closed (no line terminating character can be sent)

e acomplete lineiswaiting
In ASCII mode, ablank line will be read as a complete line with length 0, which will
be the valuereturned. sock bytesready () handles ASCII mode sockets better

than sock_dataready (), sinceit can distinguish between an empty line on the
socket and an empty buffer.

For UDP sockets:

Returns the number of bytesin the next datagram to be read. If it is adatagram with no
data (an empty datagram), then it will return O. If there are no datagrams waiting, then
it returns -1.

PARAMETERS

s Pointer to a socket.

RETURN VALUE
-1: No bytes waiting to be read.

0: If in ASCII mode and ablank line is waiting to be read;
for DC 7.05 and later, a UDP datagram with 0 bytes of datais waiting to be read.

>0: The number of bytes waiting to be read.

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock established, sockstate

Chapter 7: Function Reference 153

sock close

void sock close(void *s);

DESCRIPTION
Close an open socket. The socket cannot be reused until it is completely closed.

In the case of UDP, the socket is closed immediately. TCP, being a connection-oriented
protocol, must negotiate the close with the remote computer. You can tell a TCP socket
isclosed by tcp tick (s)==NULL or by running sock wait closed(s).

In emergency cases, it is possible to abort the TCP connection rather than close it. Al-
though not recommended for normal transactions, this serviceis available and is used
by al TCP/IP systems.

PARAMETERS

s Pointer to a socket.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock _abort, sock tick, sock wait closed, tcp open, udp_open

154 TCP/IP User’'s Manual

sock dataready

int sock _dataready(void *s);

DESCRIPTION

Returns the number of bytes waiting to be read. If the socket isin ASCIl mode, this
function returns zero if anewline character has not been read or the buffer is not full.
For UDP sockets, the function returns the number of bytesin the next datagram.

Thisfunction cannot tell the difference between no bytesto read and either ablank line

or aUDP datagram with no data. For thisreason, use sock_bytesready () instead.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

0: No bytesto read;
or newline not yet read if the socket isin ASCIl mode;
or (for DC 7.05 and later) if aUDP datagram has O bytes of datawaiting to be read.

>0: Number of bytes ready to read.

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO
sock bytesready

Chapter 7: Function Reference

155

sockerr

char *sockerr(void *s);

DESCRIPTION

Getsthelast ASCII error message recorded for the specified socket. Use of thisfunction
will introduce a lot of string constants in root memory. For production programs, itis
better to use error numbers (without translation to strings).

PARAMETERS
s Pointer to a socket.

RETURN VALUE
Pointer to the string that represents the last error message for the socket.
NULL pointer if there have been no errors.

If thesymbol SOCKERR _NO RETURN_NULL isdefined, thenif no error occurred the
string "OK" will be returned instead of a NULL pointer.

The error messages are read-only; do not modify them!

LIBRARY
NETERRNO.LIB

SEE ALSO

sock_error, sock perror

EXAMPLE
char *p;

if (p = sockerr(s))
printf ("Socket closed with error '%s'\n\r", p);

156 TCP/IP User’'s Manual

sock error

int sock error(void *s, int clear);

DESCRIPTION

Return the most recent error number for the specified socket, which may be a TCP or
UDP socket. Up to two error codes may be queued to a socket.

PARAMETERS
s socket
clear 0: do not clear the returned error condition.

1: clear the returned error from the socket. You can call this func-
tion again to get the next older error code (if any).
RETURN VALUE
0: Noerror.
10: One of theNETERR_* constants defined in NETERRNO . LIB.

LIBRARY
NETERRNO.LIB

SEE ALSO

sockerr, sock perror

Chapter 7: Function Reference 157

sock established

int sock _established(void *s);

DESCRIPTION

TCP connections require a handshaked open to ensure that both sides recognize a con-
nection. Whether the connection was initiated with tcp_open () or

tcp listen(), sock established () will continueto return O until the con-
nection isestablished, at which timeit will return 1. It isnot enough to spin on this after
alisten becauseit is possible for the socket to be opened, written to and closed between
two checks. sock bytesready () canbecalled with sock established ()
to handle this case.

UDP is a connectionless protocol, hence sock_established () awaysreturns1
for UDP sockets.

PARAMETERS
s Pointer to a socket.
RETURN VALUE

0: Not established.
1: Established.

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_bytesready, sockstate

158 TCP/IP User’'s Manual

sock fastread

int sock fastread(tcp Socket *s, byte *dp, int len);

DESCRIPTION

Reads up to 1en bytesfrom dp on socket s. If possible this function fills the buffer,
otherwise only the number of bytesimmediately available, if any, are returned.

Starting with Dynamic C 7.05, this function is only valid for TCP sockets. For UDP
sockets, useudp_recv () orudp recvirom () .Priorto7.05, thisfunction cannot
be used on UDP sockets after sock _recv_init () iscalled.

PARAMETERS
s Pointer to a socket.
dp Buffer to put bytes that are read.
len Maximum number of bytes to write to the buffer.

RETURN VALUE
>0: Success, number of bytes read.
-1: Error.

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock read, sock fastwrite, sock write, sockerr, udp recv,
udp_ recvfrom, sock xfastwrite, sock aread, sock axread

EXAMPLE

Notethat sock _fastread () andsock_read () donot necessarily return acom-
plete or single line—they return blocks of bytes. In comparison, sock getc () re-
turns asingle byte at atime and thus yields poor performance.

do {
/* this function does not block */
len = sock fastread(s, buffer, sizeof (buffer)-1);
if (len>0) {

buffer[len] = 0;
printf ("%s", buffer);

}

} while(tcp tick(s));

Chapter 7: Function Reference 159

sock fastwrite

int sock fastwrite(tcp Socket *s, byte *dp, int len);

DESCRIPTION

Writesup to 1en bytesfrom dp to socket s. Thisfunction writes as many bytes as pos-
sible to the socket and returns that number of bytes. Starting with Dynamic C 7.05, this
function isonly valid for TCP sockets. For UDP sockets, useudp send () or
udp_sendto ().

When using a UDP socket prior to DC 7.05, sock_fastwrite () will send one
record if

len <= ETH MTU - 20 - 8

ETH_MTU isthe Ethernet Maximum Transmission Unit; 20 isthe IP header size and 8
isthe UDP header size. By default, thisis 572 bytes. If 1 en isgreater than this number,
then the function does not send the data and returns -1. Otherwise, the UDP datagram
would need to be fragmented.

For TCP, the new datais queued for sending and sock _fastwrite () returnsthe
number of bytes that will be sent. The data may be transmitted immediately if enough
dataisin the buffer, or sufficient time has expired, or the user has explicitly used
sock_flushnext () toindicate this data should be flushed immediately. In either
case, no guarantee of acceptance at the other end is possible.

PARAMETERS
s Pointer to a socket.
dp Buffer to be written.
len Maximum number of bytes to write to the socket.

RETURN VALUE
>0: Success, number of bytes written.
-1: Error.

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock write, sock fastread, sock read, sockerr, sock flush,
sock flushnext, udp send, udp_sendto, sock xfastwrite

160 TCP/IP User’'s Manual

sock flush

void sock flush(tcp_Socket *s);

DESCRIPTION

sock_flush () will flushtheunwritten portion of the TCP buffer to the network. No
guarantee is given that the data was actually delivered. In the case of a UDP socket, no
action is taken.

sock_flushnext () isrecommended over sock flush().
PARAMETERS

s Pointer to a socket.

RETURN VALUE
None.

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock flushnext, sock fastwrite, sock write, sockerr

Chapter 7: Function Reference

161

sock flushnext

void sock_flushnext(tcp_Socket *s);

DESCRIPTION

Writing to TCP sockets does not guarantee that the data are actually transmitted or that
the remote computer will pass that data to the other client in atimely fashion. Using a
flush function will guarantee that DCRTCP . LIB places the data onto the network. No
guarantee is made that the remote client will receive that data.

sock_flushnext () isthemost efficient of the flush functions. It causes the next
function that sends data to the socket to flush, meaning the datawill be transmitted im-
mediately.

Several functionsimply aflush and do not require an additional flush:
sock puts (), and sometimes sock putc () (when passed a\n).

PARAMETERS

s Pointer to a socket.

RETURN VALUE
None.

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock write, sock fastread, sock read, sockerr, sock flush,
sock_ flushnext

162 TCP/IP User’'s Manual

sock getc

int sock getc(tcp_Socket *s);

DESCRIPTION

Getsthe next character from the socket. NOTE: Thisfunction blocks. Starting with Dy-
namic C 7.05, this function isonly valid with TCP sockets. Prior to 7.05, thisfunction
could not be used on UDP sockets after sock recv _init () wascalled.

PARAMETERS
s Pointer to a socket.

RETURN VALUE
Character read or -1 if error.

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock putc, sock gets, sock puts, sock read, sock write

EXAMPLE

do {
if (sock bytesready(s
putchar (sock getc(
} while (tcp_tick(s));

) > 0)
s));

Chapter 7: Function Reference

163

sock gets

int sock gets(tcp Socket *s, char *text, int len);

DESCRIPTION

Reads a string from a socket and replacesthe CR or LF with a"\0'. If the string islonger
than 1en, thestring isnull terminated and the remaining charactersin the string aredis-
carded.

Tousesock gets (), youmust first set ASCII mode using the function
sock_mode () orthemacro tcp _set _ascii().

Starting with Dynamic C 7.05, thisfunctionisonly valid for TCP sockets. Prior to 7.05,
this function could not be used on UDP sockets after sock _recv_init () was

called.

PARAMETERS
s Pointer to a socket
text Buffer to put the string.
len Max length of buffer.

RETURN VALUE

0: Either the buffer is empty or the buffer has room and the connection
can get more data, but no '\r' or \n' was read.

>0: The length of the string.
-1: Function was called with a UDP socket (valid for Dynamic C 7.05 and later).

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock puts, sock putc, sock getc, sock read, sock write

EXAMPLE

sock mode(s, TCP_MODE ASCII) ;
do {
if (sock bytesready(s) > 0) {
sock gets(s, buffer, sizeof (buffer)-1);
puts (buffer);

}

} while (tcp tick(s);

164 TCP/IP User’'s Manual

sock iface

byte sock iface(void *s);

DESCRIPTION
Retrieve the interface number of an open socket. May return IF_ANY for unbound
sockets.

PARAMETER
s Pointer to open TCP or UDP socket.

RETURN VALUE
Interface number (0..IF MAX-1).
IF ANY: If the socket is unbound.

LIBRARY
NET.LIB

SEE ALSO

tcp_extopen, udp extopen, tcp extlisten

Chapter 7: Function Reference 165

sock init

int sock init(wvoid);

DESCRIPTION

Thisfunction initializes the packet driver and DCRTCP using the compiler defaultsfor
configuration. This function should be called before using other DCRTCP functions.

The return valueindicatesif sock init () wassuccessful. If it returns O, then ev-
erything was successful. If it returns 1, then the packet driver initialization failed.

Note that the network interface will not necessarily be available immediately after
sock init () iscalled, evenif you are simply using an Ethernet interface with a
static configuration. Thisisespecially trueif you are using DHCP. If you need to make
anetwork connection directly after calling sock _init (), thenyou will probably
want to use code like the following:

sock init () ;
while (ifpending(IF DEFAULT) == IF_COMING UP) {
tcp tick (NULL) ;

}

Thewhi 1e loop will not finish until theinterface has either completely come up or has
failed (see the documentation for 1 fpending () for more information).

If youuseucos2.1ib, besuretocal 0SInit () beforecalling sock init ().

RETURN VALUE

0: OK.
1: Ethernet packet driver initialization failed.
Other: reserved.

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

166 TCP/IP User’'s Manual

sock mode

word sock mode(void *s, word mode);

DESCRIPTION

Change some of the socket options. Depending on whether s isa TCP or UDP socket,
you may pass OR’d combinations of the following flags in the mode parameter. For a
TCP socket, only the TCP_ MODE_ * flags are relevant. For a UDP socket, only the

UDP_MODE_ * flags arerelevant. Do not use thewrong flags for the given socket type.

It is more convenient, faster, and safer to use the macro equivalent, if itisonly desired
to change onemode at atime. If you use thisfunction, then you must specify the setting
of al relevant flags (TCP or UDP). The macros do not do socket locking so, strictly
speaking, WC/OS users should call this function.

TCP MODES:

TCP_MODE ASCII | TCP_MODE BINARY (default)
TCP and UDP sockets are usually in binary mode which means an arbitrary
stream of bytesisalowed (TCP istreated as a byte stream and UDP is treated
asrecordsfilled with bytes.) The defaultisTCP_MODE BINARY. By chang-
ing the mode to TCP_MODE_ASCII, someof the DCRTCP.LIB functions
will see a stream of records terminated with a newline character.

In ASCII mode, sock_bytesready () will return -1 until anewline-termi-
nated string isin the buffer or the buffer isfull. sock_puts () will append a
newline to any output. sock_gets () (which should only be used in ASCI|
mode) removes the newline and null terminates the string.

Equivalent Macros. tcp _set binary(s) andtcp _set _ascii(s)

TCP_MODE NAGLE (default) | TCP_MODE NONAGLE
The Nagle agorithm may substantially reduce network traffic with little nega-
tive effect on auser (In some situations, the Nagle algorithm even improves ap-
plication performance.) The default isTCP_MODE NAGLE. This mode only
affects TCP connections.

Equivalent Macros: tcp _set nagle(s) and tcp_set nonagle(s)

Chapter 7: Function Reference 167

sock mode (continued)

UDP MODES:

UDP_MODE_CHK | UDP_MODE_ NOCHK
Checksums are required for TCP, but not for UDP. The default is
UDP_MODE_CHK. If youareprovidingachecksum at ahigher level, thelow-
level checksum may be redundant. The checksum for UDP can be disabled by
selecting the UDP_ MODE NOCHK flag. Note that you do not control whether
the remote computer will send checksumes. If that computer does checksum its
outbound data, DCRTCP . .IB will check the received packet's checksum.

Equivalent Macros: udp set chk (s) andudp set nochk(s)

UDP_MODE NOICMP (default) | UDP_MODE_ICMP
Marks this socket for receipt of ICMP error messages. The messages are
queued like normal received datagrams, and read usingudp recvfrom(),
which returns -3 when |CM P messages are returned instead of normal data-
grams. Only ICMP messages which are relevant to the current binding of the
socket are queued.

Equivalent Macros; udp _set noicmp (s) andudp_set _icmp (s)

UDP_MODE NODICMP (default) | UDP_MODE DICMP
Marks this socket as the default receiver of ICMP messages which cannot be
assigned to a particular UDP socket. Thiswould be used for UDP sockets that
are used with many different sendt o addresses, sincethe |CM P message may
refer to amessage sent some time ago (with different destination address than
the most recent). Only one UDP socket should be set with this mode.

Equivalent Macros; udp _set nodicmp (s) andudp set dicmp (s)

PARAMETERS
s Pointer to a socket.
mode New mode for specified socket.

RETURN VALUE
Resulting mode flags.

SEE ALSO

inet addr

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

168 TCP/IP User’'s Manual

sock noflush

void sock_noflush(tcp_Socket *s);

DESCRIPTION

This function prevents the next write to the socket from transmitting a data segment. It
needs to be issued before each write function in which it is desired not to transmit. It
can be used to make more efficient use of network bandwidth when the Naglea gorithm
isturned off for the socket. If Nagle is on, then there is not much benefit to using this
function.

PARAMETERS

s Pointer to a socket.

RETURN VALUE
None.

SEE ALSO

sock flush, sock flushnext, sock fastwrite, sock write

LIBRARY
TCP.LIB

Chapter 7: Function Reference 169

sock perror

void sock perror(void *s, const char *prefix);

DESCRIPTION
Prints out the most recent error messages for a socket, and clear the errors. This calls

sockerr () andprintf (), soit should only be called for debugging a new appli-
cation. The output isin the format:

[TCP|UDP] socket (ipaddr:port -> ipaddr:port) msgl;
msg2
where msgl and, possibly, msg2 are the most recent error messages. Theinitial

stringis"TCP" or "UDP" for open sockets, or may be"Closed" if the socket iscurrently
closed (either TCP or UDP). Up to two error codes may be queued to a socket.

If there are no errors, nothing is printed.

PARAMETERS
s Pointer to TCP or UDP socket.
prefix Pointer to text to add to generated messages, or NULL.
LIBRARY

NETERRNO.LIB

SEE ALSO

sock_error, sockerr

170 TCP/IP User’'s Manual

sock preread

int sock preread(tcp Socket *s, byte *dp, int len);

DESCRIPTION

Thisfunction reads up to 1en bytes from the socket into the buffer dp. The bytes are
not removed from the socket's buffer. This function isonly valid with TCP sockets.

PARAMETERS
s Pointer to a socket structure.
dp Buffer to preread into.
len Maximum number of bytesto preread.

RETURN VALUE
0: No datawaiting.
-1: Error.
>0: Number of preread bytes.

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock fastread, sock fastwrite, sock read, sock write

Chapter 7: Function Reference

171

sock putc

byte sock putc(tcp Socket *s, byte c);

DESCRIPTION

A single character is placed on the output buffer. In the case of ‘\n’, the buffer isflushed
as described under sock_flushnext. No other ASCII character expansion is per-
formed.

Notethat sock_putc usessock_write, and thusmay block if the output buffer is
full. See sock_write for more details.

Starting with Dynamic C 7.05, this function is only valid with TCP sockets.

PARAMETERS
s Pointer to a socket.
c Character to send.

RETURN VALUE
The character c.

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock read, sock write, sock fastread, sock fastwrite,
sock mode

172 TCP/IP User’'s Manual

sock puts

int sock puts(tcp Socket *s, byte *dp):

DESCRIPTION
A string is placed on the output buffer and flushed as described under

sock_flushnext (). If thesocketisin ASCIlI mode, CR and LF are appended to
the string. No other ASCII character expansion is performed. In binary mode, the string

issent asis.

Notethat sock_puts () usesSsock write (), and thus may block if the output

buffer isfull. See sock write () for more details.

Starting with Dynamic C 7.05, this function isonly valid with TCP sockets.

PARAMETERS
s Pointer to a socket.
dp Buffer to read the string from.

RETURN VALUE
>0: Length of stringin dp.

-1: Function was called with a UDP socket (valid for Dynamic C 7.05 and later).

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock gets, sock putc, sock getc, sock read, sock write

Chapter 7: Function Reference

173

sock rbleft

int sock rbleft(void *s);

DESCRIPTION
Determines the number of bytes available in the receive buffer.

PARAMETERS

s Pointer to a socket.

RETURN VALUE
Number of bytes available in the receive buffer.

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock rbsize, sock rbused, sock tbsize, sock tbused,
sock tbleft

174 TCP/IP User’s Manual

sock rbsize

int sock rbsize(void *s);

DESCRIPTION
Determines the size of the receive buffer for the specified socket.

PARAMETERS

s Pointer to a socket.

RETURN VALUE
The size of the receive buffer.

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock rbleft, sock rbused, sock tbsize, sock tbused,
sock tbleft

Chapter 7: Function Reference 175

sock rbused

int sock rbused(void *s);

DESCRIPTION
Returns the number of bytesin use in the receive buffer for the specified socket.

PARAMETERS

s Pointer to a socket.

RETURN VALUE
Number of bytesin use.

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO
sock rbleft, sock tbsize, sock tbused, sock tbleft

176 TCP/IP User’s Manual

sock read

int sock read(tcp Socket *s, byte *dp, int len);

DESCRIPTION

Reads up to 1en bytesfrom dp on socket s. This function will busy wait until either
len bytesareread or thereisan error condition. If sock_yield () hasbeen called,
the user-defined function that is passed to it will be called in atight loop while

sock read () isbusy waiting.

Starting with Dynamic C 7.05, this function is only valid for TCP sockets. For UDP
sockets, useudp recv () orudp recvirom () .Priorto7.05, thisfunction cannot
be used on UDP sockets after sock_recv_init () iscalled.

PARAMETERS
s Pointer to a socket.
dp Buffer to store bytes that are read.
len Maximum number of bytes to write to the buffer.

RETURN VALUE
>0: Success, number of bytesread..
-1: Error.

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock fastread, sock fastwrite, sock write, sockerr, udp_ recv,
udp_ recvfrom

EXAMPLE

Notethat sock fastread () andsock_read () donot necessarily return acom-
plete or single line—they return blocks of bytes. In comparison, sock _getc () re-
turns asingle byte at atime and thus yields poor performance.

do {
len = sock bytesready(s);
if (len > 0) {
if (len > sizeof(buffer) - 1) // Iftoo many bytes, read some
len = sizeof(buffer) - 1; // now,readtherest nexttime.

sock read(s, buffer, len);

buffer[len] = 0;
printf("%s", buffer);

}

} while (tep_ tick(s));

Chapter 7: Function Reference 177

sock readable

int sock readable(void * s);

DESCRIPTION

This function determines whether a socket may have dataread from it using, for exam-
ple, sock fastread() orudp recvfrom().

The parameter may be either a TCP socket or a UDP socket.

Thereturn value is more than asimple boolean: it a so indicates the amount of datathe
socket is guaranteed to deliver withasock fastread () call that immediately fol-
lows (provided that the buffer length is at least that long).

Note: a TCP socket may be readabl e after it is closed, since there may be pending data
in the buffer that has not been read by the application, and it is also possiblefor the peer
to keep sending data

PARAMETERS

s TCP or UDP socket pointer.

RETURN VALUE

If parameter isa TCP socket (tcp_Socket *):

0: socket is not readable. 1t was aborted by the application or the peer has
closed the socket and all pending data has been read by the application. This
can be used as a definitive EOF indication for areceive stream.

non-zero: the socket isreadable. The amount of datathat the socket would de-
liver isthis value minus 1; which may turn out to be zero if the socket’s buffer
istemporarily empty, or the socket is not yet connected to a peer.

If parameter isaUDP socket (udp Socket *):
0: socket is not open.

non-zero: socket isopen. Thisvalue minus 1 equals the size of the next data-
graminthereceive buffer, that would bereturnedby udp recvfrom() etc.
Note that ICMP error messages are also considered if the socket is set up to re-
ceive ICMP messages.

LIBRARY

NET.LIB

SEE ALSO

tcp open, tcp listen, sock close, sock abort, tcp tick,
sock established, sock alive, sock waiting, sock writable,
udp_open, udp_recvfrom

178

TCP/IP User’'s Manual

sock recv

int sock recv(sock type *s, char *buffer, int len);

DESCRIPTION

After aUDP socket isinitialized with udp_open () and sock _recv_init (),
sock_recv () scansthe buffersfor any datagram received by that socket.

Thisfunction is not available starting with Dynamic C 7.05 (see Section 3.5).

PARAMETERS
s Pointer to a UDP socket.
buffer Buffer to put datagram.
maxlength Length of buffer.

RETURN VALUE
>0: Length of datagram.
0: No datagram found.
-1: Receive buffer not initialized with sock_recv_init ().

LIBRARY
DCRTCP.LIB

SEE ALSO

sock recv_ from, sock recv_init

Chapter 7: Function Reference

179

EXAMPLE USING SOCK_RECV()

// Old way of setting network addresses are commented out
//#define MY IP ADDRESS "10.10.6.100"
//#define MY NETMASK "255.255.255.0"

// New way of setting network addresses.
#define TCPCONFIG 1

#memmap xmem

#use "dcrtcp.lib"
#define SAMPLE 401

udp Socket data;
char bigbuf[8192];

main () {
word templen;
char spare[1500 1];
sock init();
if (!'udp open(&data, SAMPLE, Oxffffffff, SAMPLE, NULL)

{

puts ("Could not open broadcast socket") ;

exit(3);

}

/* setlarge buffer mode */

if (sock recv init(&data, bigbuf, sizeof(bigbuf))) {
puts ("Could not enable large buffers") ;
exit(3);

}

sock mode (&data, UDP MODE NOCHK) ; // turn off checksums

while (1) {
tcp tick(NULL) ;

if (templen = sock recv(&data, spare, sizeof (spare)))

{
/* something received */
printf ("Got %u byte packet\n", templen);

180

TCP/IP User’'s Manual

sock recv from

int sock recv from(sock type *s, long *hisip, word *hisport,
char *buffer, int len);

DESCRIPTION

After aUDP socket isinitialized with udp_open () and sock _recv_init (),
sock recv_ from () scansthebuffersfor any datagram received by that socket and
identifies the remote host’s address.

Thisfunction is not available starting with Dynamic C 7.05 (see Section 3.5).

PARAMETERS
s Pointer to UDP socket.
hisip IP of remote host, according to UDP header.
hisport Port of remote host.
buffer Buffer to put datagram in.
len Length of buffer.

RETURN VALUE
>0: Length of datagram received.
0: No datagram.
-1: Receive buffer was not initialized with sock_recv_init ().

LIBRARY
DCRTCP.LIB

SEE ALSO

sock recv, sock recv_init

Chapter 7: Function Reference 181

sock recv _init

int sock recv_init(sock type *s, void *space, word len);

DESCRIPTION
Thisfunction is not available starting with Dynamic C 7.05 (see Section 3.5).

The basic socket reading functions(sock _read (), sock_ fastread(),etc.) are
not adequate for all your UDP needs. The most basic limitation istheir inability to treat
UDP as arecord service.

A record service must receive distinct datagrams and pass them to the user program as
such. You must know the length of the received datagram and the sender (if you opened
in broadcast mode). You may al so receivethe datagramsvery quickly, so you must have
amechanism to buffer them.

Once a socket is opened withudp_open (), youcanusesock recv_init () to
initialize that socket for sock _recv () and sock recv_from (). Note that
sock_recv () and related functions are incompatible with sock _read (),

sock fastread(),sock gets () andsock getc ().Onceyou have used
sock_recv_init (), you canno longer usethe older-style calls.

sock_recv_init () installsalarge buffer areawhich gets ssgmented into smaller
buffers. Whenever a UDP datagram arrives, DCRTCP . LIB stuffsthat datagram into
one of these new buffers. The new functions scan those buffers. You must select the size
of the buffer you submit to sock_recv_init (); makeit aslarge as possible, say
4K, 8K or 16K.

For a sample program, see Example using sock_recv() listed under sock_recv ().

PARAMETERS
s Pointer to a UDP socket.
space Buffer of temporary storage space to store newly received packets.
len Size of the buffer.

RETURN VALUE
0

LIBRARY
DCRTCP.LIB

SEE ALSO

sock recv_from, sock recv

182 TCP/IP User’'s Manual

sock resolved

int sock resolved(void *s);

DESCRIPTION

Check whether the socket has a valid destination hardware address. Thisistypicaly
used for UDP sockets, but may also be used for TCP sockets. If this function returns
zero (FALSE), then any datagrams you send using udp_send () or

udp_sendto () may not be transmitted because the destination hardware addressis
not known.

If the current destination |P address of the socket is zero (i.e., the socket is passively
opened), this function returns zero, since datagrams cannot be transmitted from a pas-
sively opened socket.

Ifudp bypass arp () isineffect, thereturn valuefrom thisfunctionisunaffected,
however datagramswill still be sent to the specified hardware address (since the normal
resolve processis bypassed).

Note that a hardware address may become invalid after being valid, since the underly-
ing ARP table may need to purge the entry. Thiswould be rare, but if any UDP appli-
cation needsto ensure that all packets are actually transmitted, which isaquestionable
goal since UDP isunreliable, then this function should be consulted before each send.
If this function returns O, then the UDP socket should be re-opened.

The hardware addressmay also beinvalidatedif udp sendto () iscaledwithadif-
ferent destination | P address, that has not been determined based on an incoming data-
gram.

Thisfunction is not required for TCP sockets, since the TCP library handles these de-
tails internally.

PARAMETER

s Pointer to open TCP or UDP socket

RETURN VALUE:
0: Destination hardware address not valid.
1 0: Destination hardware address resolved OK.

LIBRARY
NET.LIB

SEE ALSO

udp_extopen, arpresolve start, arpresolve check,
udp waitopen, udp_ sendto, udp bypass_ arp

Chapter 7: Function Reference 183

sock set tos

void sock set tos(void *s, byte tos);

DESCRIPTION

Set the IP “Type Of Service” field in outgoing packets for this socket. The given TOS
will bein effect until the socket is closed. When a socket is opened (or re-opened), the
TOS will be set to the default (TCP_TOS or UDP_TOS as appropriate). If not overrid-
den, the defaults are zero (IPTOS_DEFAULT) in both cases.

PARAMETERS
s Pointer to open TCP or UDP socket.
tos Type Of Service. This should be one of the following values:
e IPTOS DEFAULT - Default service
e IPTOS_ CHEAP - Minimize monetary cost
e IPTOS RELIABLE - Maximizereliability
e IPTOS CAPACIOUS - Maximize throughput
e IPTOS FAST - Minimize delay
e IPTOS SECURE - Maximize security.
Other value may be used (since TOS isjust a number between 0
and 255), but this should only be done for experimental purposes.
LIBRARY
NET.LIB
SEE ALSO

sock set ttl

184 TCP/IP User’'s Manual

sock set ttl

void sock set ttl(void *s, byte ttl);

DESCRIPTION

SetthelP“TimeToLive’ field in outgoing packets for this socket. The given TTL will
bein effect until the socket is closed. When asocket is opened (or re-opened), the TTL
will be set to the default (TCP_TTL or UDP_TTL as appropriate). If not overridden,
the defaults are 64 in both cases.

PARAMETERS
s Pointer to open TCP or UDP socket.
ttl TimeTo Live. Thisisavaue between 1 and 255. A vaue of zero
is aso accepted, but will have undesirable consequences.
LIBRARY
NET.LIB
SEE ALSO

sock set tos

Chapter 7: Function Reference

185

sockstate

char *sockstate(wvoid *s);

DESCRIPTION
Returns a string that gives the current state for a socket.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

An ASCII message which represents the current state of the socket. These strings
should not be modified.

“Listen" indicates apassively opened socket that is waiting for a connection.
"SynSent" and "SynRcvd" are connection phase intermediate states.
"Established" statesthat the connection is complete.

"EstClosing" "FinWaitl" "FinWait2" "CloseWait" "Closing"
"LastAck""TimeWait" and"CloseMSL" areconnectionterminationintermediate
states.

"Closed" indicates that the connection is completely closed.
"UDP Socket" isalwaysreturned for UDP sockets because they are stateless.

"Not an active socket" isadefault value used when the socket is not recog-
nized as UDP or TCP.

"BAD" more than one bit set.

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock established, sock dataready

EXAMPLE

char *p;

#ifdef DEBUG
if (p = sockstate(s))

printf ("Socket state is '$s'\n\r", p);
#endif DEBUG

186 TCP/IP User’'s Manual

sock tbleft

int sock_tbleft(void *s);

DESCRIPTION

Gets the number of bytes|eft in the transmit buffer. If you do not wish to block, you
may first query how much spaceis available for writing by calling thisfunction before
generating datathat must be transmitted. This removesthe need for your application to
aso buffer data.

PARAMETERS

s Pointer to a socket.

RETURN VALUE
Number of bytes left in the transmit buffer.

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock rbsize, sock rbused, sock rbleft, sock tbsize,
sock tbused

if (sock tbleft(s) > 10) {
/* we can send up to 10 bytes without blocking or overflowing * /

Chapter 7: Function Reference

187

sock tbsize

int sock tbsize(void *s);

DESCRIPTION
Determines the size of the transmit buffer for the specified socket.

PARAMETERS

s Pointer to a socket.

RETURN VALUE
The size of the transmit buffer.

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock rbsize, sock rbused, sock rbleft, sock tbleft,
sock tbused

188 TCP/IP User’s Manual

sock tbused

int sock tbused(void *s);

DESCRIPTION

Gets the number of bytesin use in the transmit buffer for the specified socket.

PARAMETERS

s Pointer to a socket.

RETURN VALUE
Number of bytesin use.

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock rbsize, sock rbused, sock rbleft, sock tbsize,
sock tbleft

Chapter 7: Function Reference

189

sock tick

void sock tick(void *s, int *optiomal status ptr);

DESCRIPTION

Thismacro callstcp tick () toquickly check incoming and outgoing data and to
manage all the open sockets. If our particular socket, s, is either closed or made inop-
erative due to an error condition, sock tick () setsthevalue of

*optional status_ ptr (if the pointer isnot NULL) to 1, then jumpsto alocal,
user-supplied label, sock err. If the socket connection is fine and the pointer is not
NULL *optional status_ ptrissettoO.

PARAMETERS
s Pointer to a socket.

optional status ptr Pointer to status word.

RETURN VALUE
None.

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

190 TCP/IP User’'s Manual

sock wait closed

void sock wait closed(void *s, int seconds, int (*£fptr) (),
int *status);

DESCRIPTION

Thismacro waits until aTCP connection isfully closed. Returnsimmediately for UDP
sockets. On an error, the macro jumpsto alocal, user-supplied sock err labdl. If
fptr returns non-zero the macro returns with the status word set to the value of
fptr'sreturnvalue.

This macro has been deprecated in Dynamic C version 7.20.

PARAMETERS

s Pointer to a socket.

seconds Number of secondsto wait before timing out. A value of zero in-
dicates the macro should never time-out. A good valueto useis
sock delay, asystem variable set on configuration. Typically
sock_delay isabout 20 seconds, but can be set to something
dseinmain().

fptr Function to call repeatedly while waiting. Thisis a user-supplied
function.

status Pointer to a status word.

RETURN VALUE
None.

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

Chapter 7: Function Reference 191

sock wait established

void sock wait established(void *s, int seconds,
int (*fptr) (), int *status);

DESCRIPTION
This macro waits until a connection is established for the specified TCP socket, or
abortsif atime-out occurs. It returns immediately for UDP sockets. On an error, the
macro jumps to the local, user-supplied sock _err label. If £ptr returns non-zero,
the macro returns.

This macro has been deprecated in Dynamic C version 7.20.

PARAMETERS

s Pointer to a socket.

seconds Number of secondsto wait before timing out. A value of zero in-
dicates the macro should never time-out. A good valueto useis
sock delay, asystem variable set on configuration. Typically
sock_delay isabout 20 seconds, but can be set to something
dseinmain().

fptr Function to call repeatedly while waiting. Thisis a user-supplied
function.

status Pointer to a status word.

RETURN VALUE
None.

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

192 TCP/IP User’'s Manual

sock waiting

int sock _waiting(tcp_Socket * s);

DESCRIPTION

This function determines whether a TCP socket is waiting for a connection establish-
ment. It returns TRUE (non-zero) if and only if the socket is open, but not YET estab-
lished.

The purpose of this function isto simplify the application logic in programs which in-
terleave TCP/IP functions with other processing i.e., "non-blocking" style.

NOTE: itisan error to pass a UDP socket to this function. UDP sockets are connec-
tionless, so there is no concept of “waiting for a connection.”

PARAMETER

s TCP socket pointer. This should be a TCP socket which was
openedusingtcp listen(),tcp extlisten(),
tcp open() Or tcp extopen().

RETURN VALUE

0: socket isnot waiting. In this case, then next tests that the application should perform
arel

a sock established () :if thisreturns TRUE, aconnection is currently
established. The application can now communicate using sock _read (),
sock_write () etc, thenfinaly cal sock close().

b. sock_alive ():if thisreturns FALSE, then the socket was aborted by
the peer. The application may re-open or re-listen the socket.

c. Otherwise, the socket was established, but is now closing because the peer
closed its side of the connection. The application MAY be able to read and/or
write to the socket (depending on protocol) however the amount of readable
datawill be limited. The application should call sock close () or

sock abort ().

In cases (a) and (c), a socket should not be re-opened until tcp tick () on
that socket returns O.

Note that '0' is returned for invalid sockets (e.g., UDP sockets or sockets that
are closed).

non-zero: the socket iswaiting for a connection. The application should keep calling
tcp_tick () until thisfunction returnsO.

LIBRARY
net.lib

SEE ALSO

tcp open, tcp listen, sock close, sock abort, tcp tick,
sock established, sock alive

Chapter 7: Function Reference 193

sock wait input

void sock wait input(void *s, int seconds, int (*fptr) (),
int *status);

DESCRIPTION

Waitsuntil input existsfor functionssuchassock _read () andsock_gets().As
described under sock_mode (), if in ASCIlI mode, sock_wait input only re-
turnswhen a compl ete string exists or the buffer isfull. It returnsimmediately for UDP
sockets.

On an error, the macro jumps to alocal, user-supplied sock err label. If £ptr re-
turns non-zero, the macro returns.

This macro has been deprecated in Dynamic C version 7.20.

PARAMETERS

s Pointer to a socket.

seconds Number of secondsto wait before timing out. A value of zero in-
dicates the macro should never time-out. A good valueto useis
sock_delay, asystem variable set on configuration. Typically
sock delay isabout 20 seconds, but can be set to something
dseinmain().

fptr Function to call repeatedly while waiting.

status A pointer to the status word. If this parameter isNULL, no status

number will be available, but the macro will otherwise function
normally. Typically the pointer will point to aloca signed integer
that isused only for status. status may be tested to determine
how the socket was ended. A value of 1 meansaproper closewhile
a-1valueindicates areset or abort.

RETURN VALUE
None.

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

194 TCP/IP User’'s Manual

sock writable

int sock writable(void * s);

DESCRIPTION

This function determines whether a socket may have datawritten to it using (e.g.)
sock fastwrite() orudp_ sendto().

The parameter may be either a TCP socket or a UDP socket.

Thereturn value is more than asimple boolean: it a so indicates the amount of datathe
socket isguaranteed to accept withasock fastwrite () call thatimmediately fol-
lows.

NOTE: aTCP socket may be writable before it is established. In this case, any written
dataistransferred as soon as the connection is established.

PARAMETER

s TCP or UDP socket pointer.

RETURN VALUE
If parameter isa TCP socket (tcp_Socket *):

0: socket is not writable. It was closed by theapplication or it may have been
aborted by the peer.

non-zero: the socket iswritable. The amount of data that the socket would ac-
cept isthis value minus 1; which may turn out to be zero if the socket's buffer
istemporarily full. On afreshly-established socket, and at any other timewhen
all data has been acknowledged by the peer, the return value (minus one) indi-
cates the maximum socket transmit buffer size.

If parameter isa UDP socket (udp_Socket *):
0: socket is not open.

non-zero: socket isopen. Thisvalue minus 1 equals the maximum size data-
gram payload that would be sent without fragmentation at the IP level.

Note: the maximum payload depends on the interface that is selected. Since
thisis not known a-priori, the interface with the largest MTU is arbitrarily se-

lected.
LIBRARY
net.lib
SEE ALSO

tcp _open, tcp listen, sock close, sock abort, tcp tick,
sock established, sock alive, sock waiting, sock readable,
udp_ open, udp_ sendto

Chapter 7: Function Reference 195

sock write

int sock write(tcp Socket *s, byte *dp, int len);

DESCRIPTION

Writes up to 1en bytes from dp to socket s. Thisfunction busy waits until either the
buffer is completely written or a socket error occurs. If sock _yield () hasbeen
called, the user-defined function that is passed to it will be called in atight loop while
sock_write () isbusywaiting.

For UDP, sock_write () will send one (or more) records. For TCP, the new data
may be transmitted if enough dataisin the buffer or sufficient time has expired or the
user hasexplicitly used sock _flushnext () toindicatethisdatashould beflushed
immediately. In either case, there is no guarantee of acceptance at the other end.

Starting with Dynamic C 7.05, this function is only valid for TCP sockets. For UDP
sockets, useudp send () orudp_sendto ().

PARAMETERS
s Pointer to a socket.
dp Pointer to a buffer.
len Maximum number of bytes to write to the buffer.

RETURN VALUE
Number of bytes written or -1 on an error.

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock read, sock fastwrite, sock fastread, sockerr, sock flush,
sock flushnext, udp send, udp_sendto

196 TCP/IP User’'s Manual

sock xfastread

int sock xfastread(tcp Socket *s, long dp, long len);

DESCRIPTION

Reads up to 1en bytesfrom dp on socket s. If possible this function fills the buffer,
otherwise only the number of bytesimmediately available if any are returned. This
function isonly valid for TCP sockets. For UDP sockets, useudp recv () or
udp_recvfrom().

Thisfunctionisidentical to sock_fastread (), except that it readsinto an extend-
ed memory buffer.

PARAMETERS
s Pointer to socket.
dp Buffer to place bytes that are read, as an xmem address obtained
from, for example, xalloc ().
len Maximum number of bytes to write to the buffer.

RETURN VALUE
Number of bytesread or -1 if there was an error.

LIBRARY
TCP.LIB

SEE ALSO

sock read, sock fastwrite, sock write, sockerr, udp recv,
udp_recvfrom, sock fastread

Chapter 7: Function Reference 197

sock xfastwrite

int sock xfastwrite(tcp Socket *s, long dp, long len);

DESCRIPTION

Writes up to 1 en bytesfrom dp to socket s. Thisfunction writes as many bytes possi-
ble to the socket and returns that number of bytes. Thisfunctionisonly valid for TCP
sockets. For UDP sockets, useudp_send () orudp_sendto ().

Thisfunctionisidentical to sock fastwrite (), except that an extended memory
data source is used.

PARAMETERS
s Pointer to socket.
dp Buffer containing datato be written, as an xmem address obtained
from, for example, xalloc ().
len Maximum number of bytesto write to the socket.

RETURN VALUE
Number of bytes written or -1 if there was an error.

LIBRARY
TCP.LIB

SEE ALSO

sock write, sock fastread, sock read, sockerr, sock flush,
sock flushnext, udp send, udp sendto, sock fastwrite

198 TCP/IP User’'s Manual

sock yield

int sock yield(tcp_Socket *s, void (*fn) ());

DESCRIPTION

Thisfunction, if called prior to one of the blocking functions, will cause £n, the user-
defined function that is passed in asthe second parameter, to be called repeatedly while
the blocking function isin a busywait state.

PARAMETERS
s Pointer to a TCP socket.
fn User-defined function.

RETURN VALUE
0

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

Chapter 7: Function Reference

199

tcp clearreserve

void tcp clearreserve(word port);

DESCRIPTION

This function causes DCRTCP to handle a socket connection to the specified port nor-
mally. This undoes the action taken by tcp reserveport ().

PARAMETERS

port Port to use.

RETURN VALUE
None.

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

tcp open, tcp listen, tcp reserveport

200 TCP/IP User’s Manual

tcp config

void tcp config(char *name, char *value);

DESCRIPTION
Sets TCP/IP stack parameters at runtime. It should not be called with open sockets.

Note that there are specific (and safer) functions for modifying some of the common
parameters.

Thisfunction is deprecated. It is highly recommended that you do NOT useit, sinceit
uses strings, hence taking up lots of root data storage.

PARAMETERS

name Setting to be changed. The possible parameters are:

MY IP ADDRESS: host|Paddress(usesethostid () instead)
MY NETMASK

MY GATEWAY: host's default gateway

MY NAMESERVER: host's default nameserver

MY HOSTNAME

MY DOMAINNAME: host's domain name (use
setdomainname () Inst

value The valueto assign to name.

RETURN VALUE
None.

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO
tcp open, sock close, sock abort, sethostid, setdomainname,
sethostname

Chapter 7: Function Reference 201

tcp extlisten

int tcp extlisten(tcp Socket *s, int iface, word lport,
longword remip, word port, dataHandler t datahandler,

word reserved,

DESCRIPTION

long buffer, int buflen);

This function tells DCRTCP that an incoming session for a particular port will be ac-

cepted. Thebuffer and buflen parameters allow a user to supply a socket buffer,
instead of using a socket buffer from the pool. tcp extlisten () isan extended

versionof tcp listen().

PARAMETERS

S

iface

lport
remip
port

datahandler

reserved

buffer

buflen

RETURN VALUE
0: Failure.
1: Success.

LIBRARY
TCP.LIB

Pointer to the socket’s data structure.

Local interface on which to open the socket. Use IF_ANY if the
socket is to accept connections from any interface. Otherwise,
connections will be accepted only from the specified interface.

Prior to Dynamic C 7.30 this parameter was not implemented and
should be IF_DEFAULT.

Port to listen on.
I P address to accept connections from or O for all.
Port to accept connections from or O for all.

Function to call when datais received, NULL for placing datain
the socket’s receive buffer. Prior to Dynamic C 7.30, some details
for implementation of this service had not been findized. Insert a
value of NULL if you are using a version of Dynamic C prior to
7.30.

Set to 0 for now. This parameter is for compatibility and possible
future use.

Address of user-supplied socket buffer in xmem. Thisisthereturn
valueof xalloc (). If buf fer isO, the socket buffer for this
socket is pulled from the buffer pool defined by the macro

MAX TCP SOCKET BUFFERS.

Length of user-supplied socket buffer.

202

TCP/IP User’'s Manual

tcp extopen

int tcp extopen(tcp Socket *s, int iface, word lport,
longword remip, word port, dataHandler t datahandler,

long buffer,

DESCRIPTION

int buflen);

Actively creates a session with another machine. The buf fer and buf len parame-
tersallow auser to supply asocket buffer, instead of using asocket buffer from the pool.
tcp_extopen () isan extended version of tcp open ()

S

iface

lport
remip
port

datahandler

buffer

buflen

RETURN VALUE

Pointer to socket’s data structure.

Local interface on which to open the socket. Use IF ANY if inter-
face isto be selected automatically based on the destination | P ad-
dress.

Our port, zero for the next one available in the range 1025-65536.
IP address to connect to.
Port to connect to.

Function to call when datais received, NULL for placing datain
the socket’s receive buffer. Prior to Dynamic C 7.30, some details
for implementation of this service had not been finaized. Insert a
value of NULL if you are using a version of Dynamic C prior to
7.30.

Address of user-supplied socket buffer in xmem. Thisisthereturn
valueof xalloc (). If buf fer isO, the socket buffer for this
socket is pulled from the buffer pool defined by the macro

MAX TCP_SOCKET BUFFERS.

Length of user-supplied socket buffer.

0:Error, unable to resolve the remote computer's hardware address.

10: Success.

LIBRARY
TCP.LIB

SEE ALSO
tcp_ open

Chapter 7: Function Reference

203

tcp keepalive

int tcp keepalive(tcp Socket *s, long timeout);

DESCRIPTION

Enable or disable TCP keepalives on a specified socket. The socket must already be
open. Keepalives will then be sent after t imeout seconds of inactivity. It is highly
recommended to keep t imeout aslong as possible, to reduce theload on the network.
Ideally, it should be no shorter than 2 hours. After the timeout is sent, and
KEEPALIVE WAITTIME seconds pass, another keepalive will be sent, in case the
first was lost. Thiswill beretried KEEPALIVE NUMRETRYS times. Both of these
macros can be defined at the top of your program, overriding the defaults of 60 seconds,
and 4 retries.

Using keepalives is not a recommended procedure. Ideally, the application using the
socket should send its own keepalives. tcp _keepalive () isprovided becausetel-
net and afew other network protocols do not have a method of sending keepalives at
the application level.

PARAMETERS
s Pointer to a socket.
timeout Period of inactivity, in seconds, before sending akeepalive or 0 to

turn off keepalives.

RETURN VALUE
0: Success.
1: Failure.

LIBRARY
TCP.LIB

SEE ALSO
sock fastread, sock fastwrite, sock write, sockerr

204 TCP/IP User’'s Manual

tcp listen

int tcp listen(tcp Socket *s, word lport, longword remip,
word port, dataHandler t datahandler, word reserved);

DESCRIPTION

ThisfunctiontellsDCRTCP . L.IB that anincoming session for aparticular port will be
accepted. After acall totcp listen (), thefunction sock established ()
(or themacro sock wait established) must be called to poll the connection
until asession is fully established.

It is possible for a connection to be opened, written to and closed between two callsto
thefunction sock established (). To handle thiscase, call
sock_bytesready () todetermineif there is data to be read from the buffer.

Multiplecallstotcp listen () tothesameloca port (lport) are acceptable and
constitute the mechanism for supporting multiple incoming connectionsto the same lo-
cal port. Each time another host attempts to open a session on that particular port, an-
other one of the listens will be consumed until such time as all listens have become
established sessions and subsegquent remote host attempts will receive areset.

PARAMETERS
s Pointer to a socket.
lport Port to listen on (the local port number).
remip IP address of the remote host to accept connections from or O for
all.
port Port to accept connections from or O for all.

datahandler Function to call when dataisreceived; NULL for placing datain
the socket's receive buffer. Prior to Dynamic C 7.30, some details
for implementation of this service had not been finaized. Insert a
value of NULL if you are using a version of Dynamic C prior to
7.30.

reserved Set to 0 for now. This parameter isfor compatibility and possible
future use.

RETURN VALUE
0: Failure.
1: Success.

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

tcp _extlisten

Chapter 7: Function Reference 205

EXAMPLE USING TCP_LISTEN()

// Old way of setting network addresses is commented out.
//#define MY IP ADDRESS "10.10.6.100"
//#define MY NETMASK "255.255.255.0"

// New method of setting network addresses
#define TCPCONFIG 1

#memmap xmem
#use "dcrtcp.lib"

#define TELNET PORT 23

static tcp Socket *s;
char *userid;

telnets (int port)
tcp Socket telnetsock;
char buffer[512];
int status;
s = &telnetsock;

tcp listen(s, port, 0L, 0, NULL, O);

while (!sock established(s) && sock bytesready(s)==-1)
tcp tick (NULL) ;
}
puts ("Receiving incoming connection") ;
sock mode(s, TCP_MODE ASCII) ;
sock puts(s, "Welcome to a sample telnet server.");
sock puts(s, "Each line you type will be printed on"\
" this screen once you hit return.");
/* other guy closes connection except if wetimeout ... */
do {
if (sock bytesready(s) >= 0) {
sock gets (s, buffer, sizeof (buffer)-1);
puts (buffer) ;

}

} while (tcp tick(s));
}
main () {
sock init () ;
telnets (TELNET PORT) ;
exit(0);

206 TCP/IP User’'s Manual

tcp open

int tcp open(tcp Socket *s, word lport, longword remip,
word port, dataHandler t datahandler);

DESCRIPTION

Thisfunction actively creates a session with another machine. After acall to

tcp open (), thefunction sock established () (orthe macro
sock_wait_ established) must be called to poll the connection until a session
isfully established.

It is possible for a connection to be opened, written to and closed between two callsto
the function sock_established (). To handle this case, call
sock_bytesready () todetermineif there is data to be read from the buffer.

PARAMETERS

s Pointer to a socket structure.

lport Our local port. Use zero for the next available port in the range
1025-65536. A few applications will require you to use a particu-
lar local port number, but most network applications|let you use al-
most any port with a certain set of restrictions. For example,
FINGER or TELNET clients can use any local port value, so pass
the value of zero for 1port and let DCRTCP. L.IB pick onefor
youl.

remip IP address to connect to.

port Port to connect to.

datahandler Function to call when dataisreceived; NULL for placing datain
the socket’s receive buffer. Prior to Dynamic C 7.30, some details
for implementation of this service had not been findized. Insert a
value of NULL if you are using a version of Dynamic C prior to
7.30.

RETURN VALUE
0: Unable to resolve the remote computer's hardware address.
1 0 otherwise.

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO
tcp listen

Chapter 7: Function Reference 207

EXAMPLE USING TCP_OPEN()

// Old way of setting network addresses is commented out.
//#define MY IP ADDRESS "10.10.6.100"
//#define MY NETMASK "255.255.255.0"

// New of setting network addresses
#define TCPCONFIG 1

#memmap xmem
#use "dcrtcp.lib"

#define ADDRESS "10.10.6.19"
#define PORT "200"

main () {
word status;
word port;
longword host;
tcp Socket tsock;

sock init () ;

if (! (host = resolve (ADDRESS))) {
puts ("Could not resolve host") ;
exit(3);

}

port = atoi(PORT) ;

printf ("Attempting to open '%s' on port

port) ;
if (!tcp open(&tsock, 0, host, port ,
puts ("Unable to open TCP session") ;
exit(3);

}

$u\n\r", ADDRESS,

NULL)) {

printf ("Waiting a maximum of %u seconds for connection"\
" to be established\n\r", sock delay);

while (!sock established(&tsock) &&
sock bytesready (&tsock)== -1) {
tcp tick (NULL) ;

}

puts ("Socket is established") ;
sock close(&tsock);

exit(0);

208

TCP/IP User’'s Manual

tcp reserveport

void tcp reserveport(word port);

DESCRIPTION

This function allows a connection to be established even if there is not yet a socket
available. Thisisdone by setting aparameter in the TCP header during the connection
setup phase that indicates O bytes of data can be received at the present time. The re-
guesting end of the connection will wait until the TCP header parameter indicates that
data will be accepted.

The 2M SL waiting period for closing a socket is avoided by using this function.

Thepenalty of dlower connectiontimeson acontroller that is processing alargenumber
of connectionsis offset by allowing the program to have less sockets and consequently
less RAM usage.

PARAMETERS

port Port to use.

RETURN VALUE
None.

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

tcp open, tcp listen, tcp clearreserve

Chapter 7: Function Reference 209

tcp tick

int tcp_tick(void *s);

DESCRIPTION

Thisfunction is asingle kernel routine designed to quickly process packets and return
assoonaspossible. tcp tick () performsprocessing on al sockets upon each invo-
cation: checking for new packets, processing those packets, and performing retransmis-
sionsonlost data. On most other computer systems and other kernels, performing these
required operations in the background is often done by atask switch. DCRTCP.LIB
does not use atasker for its basic operation, athough it can adopt one for the user-level
services.

Although you may ignorethereturned valueof tcp _tick (), itistheeasiest method
to determine the status of the given socket.

PARAMETERS
s Pointer to asocket. If aNULL pointer is passed in the returned val -
ue should be ignored.

RETURN VALUE
0: Connection reset or closed by other host or NULL was passed in.
1 0: Connection isfine.

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

tcp_open, sock close, sock_ abort

210 TCP/IP User’'s Manual

udp bypass arp

void udp bypass arp(udp Socket *s, eth address *eth);

DESCRIPTION

Override the normal Address Resolution Protocol for this UDP socket. Thisis some-
times necessary for special purposes such as if the Ethernet addressisto remain fixed,
or if the Ethernet address is not obtainable using ARP. The great mgjority of applica
tions should not use this function.

If ARP bypassisin effect for a UDP socket, then udp sendto () will never return
the -2 return code.

The destination interface is aso forced to be IF_DEFAULT. If the supplied hardware
addressis accessible from anon-default interface only, then you will need to manually
setthes->iface fidd

PARAMETERS
s UDP socket
eth Pointer to override address. If NULL, then resume normal opera-
tion i.e., use ARP to resolve Ethernet addresses. Note that the
specified Ethernet address must bein static storage, since only the
pointer is stored.
LIBRARY
UDP.LIB
SEE ALSO

udp_ sendto, udp waitsend, sock resolved

Chapter 7: Function Reference 211

udp close

void udp close(udp Socket *ds);

DESCRIPTION

This function closes a UDP connection. Starting with Dynamic C 7.30, this function
performs the actions necessary to leave a host group when closing a multicast socket.
It isIGMPv2 compliant.

PARAMETERS

ds Pointer to socket’s data structure.

LIBRARY
UDP.LIB

212 TCP/IP User’s Manual

udp extopen

int udp extopen(udp Socket *s, int iface, word lport,
longword remip, word port, dataHandler t datahandler,
long buffer, int buflen);

DESCRIPTION

Thisfunctionisan extended version of udp open () . It opensasocket on agiven net-
work interface (i face) on agiven local port (1port). If the remote IP addressis
specified (remip), then only UDP datagrams from that host will be accepted.

The remote end of the connection is specified by remip and port. Thefollowing ta-
ble explains the possible combinations and what they mean.

REMIP Effect of REMIP value

The connection completes when the first datagram is received,
supplying both the remote | P address and the remote port
number. Only datagrams received from that | P/port address will
be accepted.

All remote hosts can send datagrams to the socket. All outgoing
-1 datagrams will be sent to the broadcast address unless
udp sendto () specifies otherwise.

If theremote IP addressisavalid | P address and the remote port
is 0, the connection will complete when the first datagram is
received, supplying the remote port number.

If the remote I P address and the remote port are both specified
when the function is called, the connection is complete at that
point.

>0

Thebuffer and buf len parameters alow auser to supply a socket buffer, instead
of using a socket buffer from the pool.

If remip isnon-zero, then the process of resolving the correct destination hardware
addressis started. Datagrams cannot be sent until sock _resolved () returns
TRUE. If you attempt to send datagrams before this, then the datagrams may not get
sent. The exception to thisisif remip is-1 (broadcast) in which case datagrams may
be sent immediately after calling this function.

This function also works with multicast addresses. If remip isamulticast address,
then packets sent with this function will go to the multicast address, and packets re-
ceived will also be from that multicast address. Also, if enabled, IGMP will be used to
join the multicast groups. The group will be left when the socket is closed. Note that if
portis0 and remip isamulticast address, the port will not be filled in on the first re-
ceived datagram (that is, the socket is non-binding to the port).

Chapter 7: Function Reference 213

udp extopen (continued)

PARAMETERS

s Pointer to socket.

iface Local interface on which to open the socket. Use IF_ANY if the
socket isto accept datagrams from any interface. Otherwise, data-
grams will be accepted only from the specified interface.
This parameter is supported as of Dynamic C 7.30. With earlier
version of DC, this parameter should be IF_DEFAULT.

lport Local port.

remip Acceptable remote IP, or O for all.

port Acceptable remote port, or O for all.

datahandler Function to call when datais received, NULL for placing datain
the socket’s receive buffer.

buffer Address of user-supplied socket buffer inxmem. If bufferisO,
the socket buffer for this socket is pulled from the buffer pool de-
fined by the macro MAX UDP_SOCKET BUFFERS.

buflen Length of user-supplied socket buffer.

RETURN VALUE:
1 0: Success.
0: Failure; error opening socket, e.g., a buffer could not be allocated.

LIBRARY
UDP.LIB

SEE ALSO

udp_open, sock resolved

214 TCP/IP User’'s Manual

udp open

int udp open(udp Socket *s, word lport, longword remip,
word port, dataHandler t datahandler);

DESCRIPTION

This function opens a UDP socket on the given local port (1port). If the remote IP
addressis specified (remip), then only UDP datagrams from that host will be accept-
ed. The remote end of the connection is specified by remip and port. Thefollowing
table explains the possible combinations and what they mean.

REMIP Effect of REMIP value

The connection completes when the first datagram is received,
supplying both the remote | P address and the remote port
number. Only datagrams received from that | P/port address will
be accepted.

All remote hosts can send datagrams to the socket. All outgoing
-1 datagrams will be sent to the broadcast address on the specified
port. The port parameter isignored.

If theremote IP addressisavalid | P address and the remote port
is 0, the connection will complete when the first datagramis
received, supplying the remote port number.

If the remote I P address and the remote port are both specified

when the function is called, the connection is complete at that
point.

>0

If the remote host is set to aparticular address, either host may initiate traffic. Multiple
callstoudp open () with remip set to zero isauseful way of accepting multiple
incoming sessions.

Although multiple callsto udp _open () may normally be made with the same
lport number, only oneudp_ open () should be made on aparticular 1port if the
remip issetto-1. Essentially, the broadcast and nonbroadcast protocols cannot co-
exist.

Be sure that you have allocated enough UDP socket buffers with

MAX UDP_SOCKET BUFFERS. Note that this macro defaultsto 0, so any usage of
udp open () requiresadefinition of MAX UDP_ SOCKET BUFFERS inyour pro-
gram.

Chapter 7: Function Reference 215

udp open (continued)

This function also works with multicast addresses. If remip isamulticast address,
then packets sent with this function will go to the multicast address, and packets re-
ceived will also be from that multicast address. Also, if enabled, IGMP will be used to
join the multicast groups. The group will be left when the socket is closed. Note that if
port is0and remip isamulticast address, the port will not befilled in on the first
received datagram (that is, the socket is non-binding to the port).

PARAMETERS

s
lport

remip

port

datahandler

RETURN VALUE
0: Failure (e.g., abuffer could not be allocated).

10: Success.

LIBRARY
UDP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

udp_extopen

Pointer to a UDP socket.
Local port

Acceptable remote IP, 0 to connect on first datagram, or -1 for
broadcast.

Acceptable remote port, or 0 to connect on first datagram.

Function to call when datais received. NULL for placing datain
the socket's receive buffer.

216

TCP/IP User’'s Manual

udp peek

int udp peek(udp Socket *s, udp datagram info *udi);

DESCRIPTION

Look into the UDP socket receive buffer to see if there is a datagram ready to be read
usingudp_ recvfrom (). Thisfunction doesnot remove the datagram from the buff-
er, but it allows the application to determine the full details about the next datagram,
including whether the datagram was broadcast.

Thereturned dataisput in *udi.udi must point to avalid data structure, or be NULL.
The data structure is:

typedef struct ({

longword remip; // Remote host |P address
word remport; // Remotehost port number
int len; // Length of datagram
byte flags; // Bit mask (defined below)
byte iface; // Interface number

} _udp datagram info;

The £1ags field may have one of the following values:

UDI_ICMP_ERROR
UDI_TOS_MASK

UDI_BROADCAST_LL
UDI_BROADCAST_IP

Thisisan ICMP error entry.

Type-of-service bit mask.

Received on broadcast link layer address.
Received on broadcast network (IP) address.

PARAMETERS
s UDP socket to check
udi Where to store the returned information.

RETURN VALUE
1: A normal datagram isin the receive buffer.
0: No datagram waiting.
-3: ICMP error message in receive buffer - will only be returned if udi isnot NULL.

LIBRARY
UDP.LIB

SEE ALSO

udp_recvirom

Chapter 7: Function Reference 217

udp recv

int udp recv(udp Socket *s, char *buffer, int len);

DESCRIPTION

Receives asingle UDP datagram on a UDP socket. If the buffer is not large enough for
the datagram, the datagram is truncated, and the remainder discarded.

PARAMETERS
s Pointer to socket’s data structure.
buffer Buffer where the UDP datagram will be stored.
len Maximum length of the buffer.

RETURN VALUE
>0: Number of bytes received.
-1: No datagram waiting.
<-1: Error.

LIBRARY
UDP.LIB

SEE ALSO

udp_recvfrom, udp send, udp_ sendto, udp open

218 TCP/IP User’'s Manual

udp recvifrom

int udp recvfrom(udp Socket *s, char *buffer, int len,
longword *remip, word *remport);

DESCRIPTION

Receiveasingle UDP datagram on a UDP socket. remip and remport should be pointers
to the locations where the remote | P address and remote port from which the datagram
originated are placed. If the buffer is not large enough for the datagram, then the data-
gram will be truncated, with the remainder being discarded.

If and only if the UDP_MODE_ICMP or UDP_MODE_DICMP modes are set for this

socket, then areturn code of -3 indicates that an ICMP error message is being returned
inthe buffer instead of anormal datagram. Inthiscase, buf fer will contain fixed data
intheform of astructureof type _udp icmp message. Thedefinition of thisstruc-

tureis:
typedef struct ({
word myport; // Originating port on this host
byte icmp type; // Oneof the ICMPTYPE_* values
byte icmp code; // The corresponding ICMP code

} _udp icmp message;
Please see sock_mode for more information about the modes UDP_MODE _ICMP
and UDP_MODE_DICMP.

PARAMETERS
s Pointer to socket’s data structure.
buffer Buffer where the UDP datagram will be stored.
len Maximum length of the buffer.
remip IP address of the remote host of the received datagram.
remport Port number of the remote host of the received datagram.

RETURN VALUE
>0: Number of bytes received.
-1: No datagram waiting.
-2: Error - not a UDP socket.
- 3: Thereturned buffer contains an ICMP error which was queued previoudly.

LIBRARY
UDP.LIB

SEE ALSO
udp_recv, udp_ send, udp sendto, udp_open, udp peek

Chapter 7: Function Reference 219

udp send

int udp send(udp Socket *s, char *buffer, int len);

DESCRIPTION

Sends asingle UDP datagram on a UDP socket. It will not work for a socket for which
the remip parameter toudp open () wasO0, unless a datagram has first been re-
ceived on the socket. If the remip parameter toudp open () was-1, the datagram
will be send to the broadcast address.

PARAMETERS
s Pointer to socket’s data structure.
buffer Buffer that contains the UDP datagram
len Length of the UDP datagram.

RETURN VALUE
>0: Number of bytes sent.
-1: Failure.
- 2: Failed because hardware address not resolved.

LIBRARY
UDP.LIB

SEE ALSO

udp_sendto, udp recv, udp recvfrom, udp open

220 TCP/IP User’'s Manual

udp sendto

int udp sendto(udp_ Socket *s, char *buffer, int len,
longword remip, word remport) ;

DESCRIPTION

Sends a single UDP datagram on a UDP socket. It will send the datagram to the IP ad-
dress and port specified by remip and remport. Note that this function can be used
on a socket that has been "connected" to a different remote host and port.

PARAMETERS
s Pointer to socket’s data structure.
buffer Buffer that contains the UDP datagram.
len Length of the UDP datagram.
remip IP address of the remote host.
remport Port number of the remote host.

RETURN VALUE
>0: Success, number of bytes sent.
-1: Failure.
- 2: Failed because hardware address not resolved.

LIBRARY
UDP.LIB

SEE ALSO

udp_send, udp xsendto, udp recv, udp recvfrom, udp_ open

Chapter 7: Function Reference

221

udp waitopen

int udp waitopen(udp Socket *s, int iface, word lport,
longword remip, word port, dataHandler t datahandler,
long buffer, int buflen, longword millisecs);

DESCRIPTION

Thisfunctionisidentical toudp extopen (), except that it waits aspecified amount
of time for the hardware address of the destination to be resolved.

While waiting, thisfunctioncallstcp_tick().

PARAMETERS

s Pointer to socket.

iface Local interface on which to open the socket.
This parameter is supported as of Dynamic C 7.30. With earlier
version of DC, this parameter should be IF_DEFAULT.

lport Local port.

remip Acceptable remoteip, or O for all.

port Acceptable remote port, or O for all.

datahandler Function to call when dataisreceived, NULL for placing datain
the sockets receive buffer.

buffer Address of user-supplied socket buffer in xmem, 0 to use a buffer

from the socket buffer pool.

buflen Length of user-supplied socket buffer.
millisecs Maximum milliseconds to wait for the hardware address to be re-
solved.

RETURN VALUE
>0: Successfully opened socket.
0: Timed out without resolving address.
- 1: Error opening socket (e.g., buffer could not be allocated).

LIBRARY
UDP.LIB

SEE ALSO

udp_extopen, sock resolved

222 TCP/IP User’'s Manual

udp waitsend

int udp waitsend(udp_ Socket *s, char *buffer, int len,
longword remip, word remport, word millisecs);

DESCRIPTION

Thisisidentical toudp sendto (), except that it will block for up to the specified
amount of time waiting for the hardware address to be resolved. Normally, you should
not have to specify more than 100ms for the time out. If it takes longer than this, the
destination is probably unavailable.

PARAMETERS
s UDP socket on which to send the datagram.
buffer Buffer that contains the UDP datagram.
len Length of the UDP datagram.
remip IP address of the remote host.
remport Port number of the remote host.
millisecs Number of milliseconds to wait for hardware address resol ution.

Reasonable values are between 50 and 750 milliseconds.

RETURN VALUE
>0: Number of bytes sent.
-1: Failure (invalid UDP socket etc.).
- 2: Failure (timed out, no datagram sent).

LIBRARY
UDP.LIB

SEE ALSO

udp_sendto, udp_recvfrom, udp bypass_arp

Chapter 7: Function Reference 223

udp xsendto

int udp xsendto(udp Socket *s, long buffer, int len,
longword remip, word remport);

DESCRIPTION

Send a single UDP datagram on a UDP socket. It will send the datagram to the IP ad-
dress specified by remip, and the port specified by remport. Note that thisfunction can
be used even on a socket that has been "connected" to a remote host and port.

Thisfunctionisidentical toudp sendto () except that the dataaddressis specified
asaphysica address.

PARAMETERS
s UDP socket on which to send the datagram.
buffer Buffer that contains the UDP datagram.
len Length of the UDP datagram.
remip IP address of the remote host.
remport Port number of the remote host.

RETURN VALUE
>0: Number of bytes sent.
-1: Failure.
- 2: Failure (hardware address not resolved).

LIBRARY
UDP.LIB

SEE ALSO

udp_send, udp recv, udp recvirom, udp open, udp_ sendto

224 TCP/IP User’'s Manual

virtual eth

int virtual eth(word real iface, longword ipaddr, longword
netmask, void * resv);

DESCRIPTION

Createanew virtua ethernetinterface. You must#defineVIRTUAL ETH toapositive
number (1-6) for this function to work. The macro VIRTUAL _ETH gives the maxi-
mum number of virtual interfaces.

Virtual ethernet interfaces have some restrictions:
e You cannot use DHCP.
e Broadcast/multicast packets are not received.
e Someifconfig () settings(such asMTU size) are not settable.
[}

Once avirtual interface is created, it cannot be destroyed. In practice, this
means that all virtual interfaces should be created at boot time (after
sock init()).

The virtual interface will be created in the same up/down state as the real interface.
Changes to the up/down state of the real interface will affect all virtual interfacestied
to that interface.

The callback function for a virtua interface is set to NULL.
PARAMETERS

real iface Thered interface to use. Thismust be IF_ETHO, or may be
IF ETH1 for boards with two ethernet chips.

ipaddr The IP address to assign this interface. This must not be the same
asthe | P address of any other interface.

netmask Netmask to use. If zero, then the netmask of the real interface will
be used.
resv Pointer reserved for future use. Passas NULL.

RETURN VALUE

-1: Failed because VIRTUAL ETH was not defined, or the number of virtual interfac-
es exceeds the value specified by VIRTUAL ETH, or thereal iface parameter
was not valid.

Otherwise: returnsthe interface number to use for this virtual interface. This should be
passed to any other function that requires the interface number to be specified.

LIBRARY
NET.LIB

SEE ALSO

ifconfig

Chapter 7: Function Reference 225

226 TCP/IP User’s Manual

Notice to Users

Z-WORLD PRODUCTS ARE NOT AUTHORIZED FOR USE AS
CRITICAL COMPONENTS IN LIFE-SUPPORT DEVICES OR SYS
TEMS UNLESS A SPECIFIC WRITTEN AGREEMENT REGARD-
ING SUCH INTENDED USE IS ENTERED INTO BETWEEN THE
CUSTOMER AND Z-WORLD PRIOR TO USE. Life-support devices
or systems are devices or systems intended for surgical implantation into
the body or to sustain life, and whose failure to perform, when properly
used in accordance with instructions for use provided in the labeling and
user’s manual, can be reasonably expected to result in significant injury.

No complex software or hardware system is perfect. Bugs are always
present in a system of any size. In order to prevent danger to life or prop-
erty, it is the responsibility of the system designer to incorporate redun-
dant protective mechanisms appropriate to the risk involved.

The Dynamic C TCP/IP software is designed for use only with Rabbit
Semiconductor chips.

Index

Numerics DHCP_CLASS ID ..o 19
DHCP_CLIENT _ID oooeeeeeeeeeeeeeeeeeeeeesenseeeo, 20
2MSL e 209 DHCP_CLIENT _ID_LEN oooveeeeeeeeeeeeeeee 20
3-way handshakeccoeeveiviecvrre e 37 DHCP_CLIENT _ID_MAC ..oooeevveereeeseecreeeereens 20
A DHCP_USE_BOOTP ..o, 19
DI[&/ =TI SIS S 1 = =B 19
ARP_CONFLICT_CALLBACKccccovverneee. 70 DISABLE_DNSocooviieieeeee e 18,71
ARP _LONG_EXPIRY ..ooovveericieecieseeeesienae 69 DISABLE_TCP ...ocievieeee e 18
ARP_NO _ANNOUNCEcoooeeeriicreeresesenas 70 DNS e 71
ARP_PERSISTENCEccccooeeieeecieeeeeeeevene 70 DNS_MAX_DATAGRAM_SIZE 25,71
ARP_PURGE_TIME ...coooecccorrrreerersneensssnee 69 DNS_ MAX_NAME ..o 25,71
ARP _ROUTER TABLE_SIZE 24, 70 DNS MAX_RESOLVEScccocevveverennne 25,71
ARP_SHORT _EXPIRY ..ooooiveieecteeeevene 69 DNS_MIN_KEEP_COMPLETED 29,72
ARP TABLE_SIZE .o 24,70 DNS_NUMBER_RETRIEScccooovuerrmnn 29,72
B B DNS RETRY_TIMEOUT ...ocovververirrienne, 29, 71
B DNS_SOCK_BUF_SIZE vvocveevveereeerrr. 25, 72
BANGWIGHN .o 57,73 VS 3
BOOTP/DHCP INK TAYEN oo
_bootpdatacccoeeveiereer 22 E
_bootpdoneccoveee e 21
B0 1 = 1 1) 22 ephemeral CONNECION ..., 34
_DOOLPNOSE ... 21 ©ITOr MESSAGESoovuiiiisissisnis s 170
" DOOLPON ..ot 20 ETH_MAXBUFS ..o 24
_bOOPSIZE ..o 21 ETH MTU o 24
_DOOLPLIMEOUL ... 21 Ethernet
_ANCPNOSE .o 20 POIES ettt 3
B 12100 o 1 =3 21 Ethernet Transmission Unit ..., 160
o {07 o) B 21 E
[0 070 2 21
CSMEPSIV o 22 Function Reference
_SUNVIVEDOOP ... 20 Addressing
broadcast packets ... 33, 41, 43, 213, 215, 217, 220 _@P_TESOIVE oo 86
PUFFEr SIZES ... 36 APCACNE CIEALE ..o, 78
C arpcache flush ... 79
arpcache hwa ... 80
callbacks arpcache_ipaddrcccocvieiinininene 82
[0 [T 68 arpcache_l0ad ..., 83
INEErfACE SLAUS ©.vovreeeeeeereeeeeeeee e, 15, 107 arpcache_SEarch ..., 85
[P address CONFIICE ovuvrveeeeeereeseereeeseeeeeseseenees 70 arpresolVe_CheCK ..., 87
PPP aUthentiCationcco..coeeeereerreennennn. 105 arpresolve_ipaddr ... 88
TCPand UDP datahandlersonvveoenneeeon.. 49 arpresolve_startccceceeveeienene e 89
ChECKSUMS ..o 168 dnCP_aCcqUITe ..o, 92
COMMUNICALON ChanNEleeeeeeeeeeeeeeeeee e 57 dhcp_get_timezone ..., 93
dhep release ..o 94
D getdomaiNNameccccceeeeenenieneneesenee e 95
daemons 0EthOStid ..o 96
. gEthOStNAME ... 97
ECP_LICK e 210 etpeername 98
data handler CallBAcKSoocooccerrevcceeesssrcee 49 9 etp e T %
DCRTCP_DEBUG .oooeeeeeeeeesseereressesseeeeeee 29 g S"k‘;t”ame """"""""""""""""""""""""" et
DCRTCP_VERBOSEocovvvreeesssereessessseeeee 30 f’;’;ve """""""""""""""""""""""""""""" 123
DHCP_CHECK ...ttt 19 T T mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm—m——
TCP/IP User’'s Manual 229

resolve CanCelccovevvevereveieereseeeeenens 134

resolve_name _checkcccocvcveevneecnnnnne 135
resolve_name _startcccceeeevevereereenennnns 136
router_addcccovevevereree e 138
router_del_allcooovvvvevereeeece e 138
router deleteoovvvvvevvreereeee e 139
(010 = g (o] SN 140
(010 =g o 1] | A 141
router_printallccoooeevvnienie e 142
SEtdomaiNNaMecccoevreerieereese e, 144
SEthOStId ..o 145
SEthoStNamecovveveveeeeecee e 146
udp_bypass arp .cc.ccoevveevenenienenese e 211
Configuration
IFCONFIQ woveieeeee e 102
tCP_CONFIQ o 201
Data Conversion
BLON et 90
REONT <. 100
AEONS ..o 101
inet_addrcccoeevieiceee e 115
[191= Al | (0 7= SRS 116
NEONT <. 124
NEONS ..o 125
PEAAC ... 126
L] o TSRS 137
Ethernet
pd_getaddresscoceverenieiierieee e 127
pd_havelink ..o 128
PAd_POWErdOWN ... 129
POA_POWEIUD .ot seeneas 130
Initialization
SOCK_iCK e 190
Interface
IFAOWN .o 111
IfPENdingccoovveei 112
IFSEALUS e 113
TFUD e 114
IP_faCe e 117
IP_PrNE_IfS e 118
is valid ifacecccoceeevieieiicie e 121
SOCK _ifaCe ..cveveeeiececeee e, 165
virtual eth ..o, 225
Multicast
Multicast_joiNGroupccoceeeereereererieenennens 122
multicast_1eavegroupcceeveeereeceenennens 123
Ping
ChK_PING ..o, 91
T PING e e 131
_SENA_PING .o 143
Socket Configuration
SOCK MOdEc.vvveeiicce e, 167
SOCK _SEt tOS ..cccevieveceee e 184
SOCK_ St ttl e, 185

tCp_Clearreserve ...ooviveveveecececese e 200
TCP_reServeportccvevveeveere e 209
Socket Connection
- 00 Q=0 G- TP 7
SOCK_aB0It ..o 147
S0 0 v [0 = 154
sock_establishedccooecveivennenieee 158
SOCK_WaItiNG vecvvvereveesiee e 193
tep_keepalive ..oovveeee 204
Socket 1/0 Buffer
SOCK_rBIEft ..o, 174
SOCK_IBSIZE wovveevceecceee e 175
SOCK_rbusedcccccveeevvereeee e 176
SOCK_thleft ..oovveececee e 187
SOCK _thSIZeoovveeeecec, 188
sock _thusedcccovveviice e, 189
Socket Status
ip_timer_expiredcccooceiennininenens 119
IP_timer_init ..o 120
SOCK_@liVE e, 148
sock_bytesreadycocceiiiiininineee, 153
sock_datareadycocccereieeienienieneeene 155
SOCK_EITON .ot 157
SOCK_PEITOF ..t 170
sock _readableccccoeveiieiiciec e, 178
Sock_resolvedccccveeeececieeeceeee e, 183
sock_writableccoooeeeieccce e, 195
SOCKENT .ttt 156
SOCKSLALE ... e 186
TCP_HICK e 210
TCP Socket 1/0
SOCK_areadccovvveevieeieceee e, 149
SOCK_@WIItE ..o, 150
SOCK_axreadcccccevvveveciecieceece e, 151
SOCK_@XWIILE ...ocvecieieceeec e, 152
sock fastreadccccoeveviececiecceee, 159
SOCK_fastWritecoveveeeveceiecceeceeee e, 160
SOCK_fIUSN .., 161
sock flushnextccooeveevecivcecciceeceen, 162
SOCK_QBLC .vveueeieeeesie e 163
SOCK_QELS ..ot 164
SOCK_Prereadooeeeeveeeeneneeceeeneseeeee 171
SOCK_PULC .t 172
SOCK_PULS .t 173
SOCK readccveeeveieeieceeeee e, 177
LS00] € (= T 196
sock xfastreadcccoocevvevecieeiineeceen, 197
SOCK XfastWritecccceevevieceeeececc e, 198
SOCK_YIEld .eeeeeeiie e 199
tep_extlisten ... 202
TCP_EeXIOPEN ..ot 203
tCP_lIStEN .o 205
TCP_OPEN .o 207
TCP/IP Stack

TCP/IP User’s Manual

1S 00 G 1 S 166

1007 o (] 210
UDP Socket I/O
(070 o vt [0S = T 212
(00| =4 0] < o S 213
(070 o 0] /= o [215
UAP_PEEK ..o 217
(070 o 1 = oxY A 218
(00| I (= V4 1 (o 1 o 219
(070 o IS = oo [220
(00| I = 010 ({0 JU 221
(00| JAVLVE= 10 o= o K 222
udp_waitsendccocvveverererereee e 223
(00| DS = 110 0 U 224
UDP Socket I/0O (pre-DC 7.05)
sock fastreadccccoevivieci i, 159
SOCK_fastWritecceevveeveeieee e, 160
SOCK readcooevveeieeeeeeeee e, 177
SOCK _FECV vt 179
sock_recv_fromccecvevecie e, 181
SOCK_recV_initccvveeeciieeece e, 182
SOCK WHLE e, 196
UAP_ClOSE o 212
UAP_OPEN et 215
H
NOSE GroUP ..o 73
I
ICMP_TOS ..ot e 31
L s 4
IFCONFIG_* oo 27
IGMP e 73
interfaces
(o010 {0 [V 1> (o] o KSR 8-14
enable/disable supportcovvvvvreneereeene 5
SINGIE i 7
sum of physicalc.coevvevvennrireree e, 6
SUPPOItEd tYPES ..ovvevveecieciee e 3
| P addresses
broadcast packetscccceevveirnivinnennne 41, 43
defaultcooevei 9, 26
directed Ping ...ccoevveveve e 13
dynamic configurationccccceeeeevrennrieninnn 11
last-used DHCP SEIVEr ..o 20
last-usedBOOTP/TFTP Serverccccocevveeenene 21
[EBSE .o 11,21
MAI] SEIVEN ... 22
origin of received datagramccccceevvvvrnnne. 44
runtime configurationccceeeeevevveeeeneneenn, 12
ISS 11 010 R (0 1L o S 36
SOUFCES OF ettt 9
Zconsole configurationccceeeveeevenieniennens 14
ISPsand MAC addreSsesccoveeereeeneneenene 14

K
KEEPALIVE_NUMRETRYScoovirinirenias 28
KEEPALIVE_WAITTIME ..o 28
L
[BEENCY viveieeereerre e 58, 68
liNk layer driVersccccoeeevvenesese e 6
M
MAC 8ddresscccvvevrreeeirreeeesereeenens 14, 65
macros
ARP oo 69
BOOTP/IDHCP ..o 19
buffer/resource Sizingcccceeeveeenenenenienn 22
DNS s 71
including additional functionality 18
interface configurationc.ccccoeeveveieieenenn. 4
interface configuration (7.30 and later) 26
interface SEleCtioncccccvevveineincieneeee 5
liNK layer driver ... 7
MISCElANEOUSo.vevireiiieiieesee e 30
network configuration (pre 7.30)cccceeee. 25
program debuggingc.ccceeeeereenenienenenenien 29
removing unwanted functionality 18
timers and COUNLErScoeveierreereeerieenienens 28
TOSANA TTL .ot 31
MAX_COOKIEScooorrrieiirininiee s 24
MAX_DOMAIN_LENGTHccceoeirreciinenee 25
MAX_NAMESERVERS.cccoeonnrreeninenae 24
MAX_RESERVEPORTScccoeoeiinnriecieneneias 25
MAX_SOCKET_LOCKScccecovrrririrennns 22,53
MAX_SOCKETSoooirireieererieieeneserieeie e 22
MAX_STRING ...coceiiirerriceeneeee e 24
MAX_TCP_SOCKET_BUFFERS............ 22,203
MAX_UDP_SOCKET_BUFFERScce..... 23
MEMMEBP c.eeeeiteeieriee e ee e eeesre e seeeseeseeas 45
MSS (maximum segment Size)c.cocevereerenne 23
MTU e 160
MUIICBSLING ..o 73,213
MUIITASKING ..o 53
MY _DOMAIN .ottt 23,25
MY _GATEWAY ..ottt 25
MY _IP_ADDRESScceceoininiririreninesieeieneneias 26
MY_NAMESERVERccccocoiiiininrincenenenas 26
MY _NETMASK ..ot 26
N
Nagle algorithm ..o 60, 167
NET_ADD_ENTROPYcoooirrinrrieeieneneae 30
NET_COARSELOCKcccoovirireirinirieeesinenas 30
NEtWOrk addreSSingccoceeeeeerernenenienesesene e 69

TCP/IP User’'s Manual

231

@)

OPLIMIZALTIONS ...t 57

P

packet
acknowledgementcccceeevivvenenieneieens 58, 60
01005 oo 46
SIZE ot 59
TOS e 65

PassWord protectionccecevevvevevreereereeseeenns 105

performance OptimiZingcccceveveeveereeeeenennnns 57

PKTDRYV .ottt 7

POIt NUMDESS ...ocvvieiece e 34

PPP_MTU oo 24

R

RETRAN_STRAT_TIME ...cccccovveiveriienns 28, 62

(00| PR 69, 70, 73

SR 58

S

SOCK_BUF _SIZEcceovveeeiree e 23

socket
abortall ... 77
DUFFErS .o 35
data StrUCLUIEcvvveeeeceee e 34
default modeccveveeicee e, 40
definition ..o 34
empty line vs empty buffer ... 153
Lo o (RS 53, 167

stack
CONfIQUIatioNccooereriiieine e 38
INITAlTIZALON ...ocvececeece e, 7

T

TCP SOCKEL ..o 33
ACHIVE OPEN et 37
control fUNCLIONScocevveereie e 38
O FUNCHIONS ..o 40

BIOCKING v 49
NON-BIOCKING ...veveveeeeieeeee e 48

[ISLEN QUEUE ... 38

0SS AY/=X 0] 0 = o [T 36
TCP/IP

INITATZALTON .. 46

SKElEtON Programccccceeeeevereereereereereeresnenns 45
TCP_BUF_SIZE ..ot 23
TCP_CONNTIMEOUToooviiiiniiinieeeienenienens 28
TCP_FASTSOCKETS ..ot 30
TCP_LAZYUPD ..ot 29, 64
tCcp_ MaxXBUFSIZEocvveeeeeceeeeseee e 23
TCP_MAXPENDINGcoooiiriiniienieesenenieens 24
TCP_MAXRTO .ottt 28
TCP_MINRTO ..ot 29, 62
TCP_NO_CLOSE_ON_LAST_READ 30
TCP_OPENTIMEQUT ...c.ooiiriinieenieenienenienens 28
TCP_STATS .ot 29
TCP_SYNQTIMEOUTocovvieeieieieieeeeeseneennns 28
TCP_TOS ..ottt 31
TCP_TTL ettt 31
TCP_TWTIMEOQOUT ..ot 28, 63
TCPCONFIG ..ooovoiveee e 9,26
throUgNPUL ... 57, 68
HCK FAES .o 46
U
UDP

broadcast packetscccocoeveieininienne 41

PErformMancecoceeeeeneeereeee e 41
UDP socket

ChecksUM ... 41

fUNCLIONS ..o 41

0pPEN ANA ClOSE ..o 43

FEA ..o e 44

WIITE 1ot 43
UDP_BUF _SIZE ...cooeieiieeveeseese s 23
UDP_TOS ...ttt 31
UDP_TTL ot 31
USE DHCP ..ottt 18,19
USE ETHERNET ...cccovviiveevee e 5,26
USE _PPOEccootcteeeveeesiee s 5
USE _PPP_SERIAL .cccovvieiveireeerieie st 5,26
USE _PPPOEccooeoiieieireeve s 26
USE_RESERVEDPORTScccccovvmirinirirnrenns 38
USE _SNMP ..ot 18

232

TCP/IP User’s Manual

Dynamic C TCP/IP Functions

Listed Alphabetically

Symbols

_abort_SockSccceeeieiiiee e 77
ChK_PING ..oevviieiiiee e 91
CPING e 131
1S aTo [o 1o To [143
IO (== o] 1Y/ TR 86
arpcache _Createccceevcveeeeeiiveneennns 78
arpcache flushccccociiiiiiiiiienne 79
arpcache hwaccccceeevcieeecciciieeens 80
arpcache ifaceccocveevcieeeeciiieeens 81
arpcache_ipaddrccoceeviieiiniieenne 82
arpcache loadcccceevcieeeeciiiieeen, 83
arpcache_Searchccccvcveeeeiiiiieeens 85
arpresolve_checkc.ccceevcieeeiieenne 87
arpresolve _ipaddrccccceeeeiiiieeens 88
arpresolve_startccceeecceeeeeiiineeeenns 89
BON i 90
dNCp_aCqUIreccccvveeeeiiieee e e 92
dhcp_get_timezonecceeeevivveeens 93
dhcp _releasecccceeeevcieeeeciciieeeens 94
getdomainNamecccoecveeeeiiiineennnns 95
gethostidcceevvviieee e 96
gethostnamecccceeevcveeeeciciieeeens 97
QELPEEINAME ... 98
getsSOCkNameccceeveevcvieeeeciiieeeeas 99
RtoNl ...oveiiieee e 100
ALONS ... 101
IfCONfig vovveeeee e 102
IFAOWN oo 111
ifpendingoooeeeevviee i 112
IFSEAIUS wovviieveee e 113
0 o 114
inet_addrcoooveeeiiee e 115
(107 11 (0= LRI 116
IP_IfaCe .oovvieee e 117
IP_Print_ifS .oooooeeiiieeiieieeeeecieee 118
ip_timer_expiredccceeeeeniinnnne 119

ip_timer_initccceeeveieeeeceee e 120
is valid ifacecccceevceeeeeicieeee e, 121
multicast_joingroupc.ccccveeeeennee. 122
multicast_leavegroupccceeenee. 123
4100 o TR 124
NEONS eveeiiieecee e 125
0= [0 | 126
pd_getaddressccccceeeeeiiiiieeens 127
pd_havelinkccccceviiiiiiiiiiiiee 128
pd_powerdowncccceeeeeiiiineeenns 129
PA_POWEIUP .eveeeeeeeeeecieeeeeerieeeeeans 130
PSOCKELeeeeiiieeiiee e 132
FESOIVE oot 133
resolve_CanCelcccccveeevrcevennennnne 134
resolve_name _checkccceenneee. 135
resolve_name startccccveeeennee. 136
] o TR 137
router_addccceeeiiieee e 138
router_del_allcccoeveeeeeiiieeee 138
router_deletecccovvveeeiiriiieeneeee 139
(o101 g (0] S 140
FOUtEr_Printcceveeevcveeeeerireee e e 141
router_printallc.cccccevvieeiinennn 142
setdomainnamecccovcveeevveeennnen. 144
S 210105 (o SR 145
SEthOStNAME ..o 146
SOCK_abortvveeeecieee e, 147
SOCK_@lIVE e 148
SOCK_ar€adcceeevcvieeee e 149
SOCK_@WIIte evvveeeiiieee e 150
SOCK_axreadcccceeeeeeiiiiiiieeeenn. 151
SOCK_@XWIILE .vvvveeevveeeecieeee e e 152
sock_bytesreadycocceeiiiiiinnenn. 153
SOCK_ClOSE ..oeiieieeeee e 154
sock_datareadycccceeevveeeeiinnnnn. 155
SOCK_EITOF eoeiieeeeee e 157
sock_establishedcccccveevveeenen. 158

Dynamic C TCP/IP User’s Manual

sock fastreadcccccevveeeiiiinnnen,
sock fastwritecccceeeeeei,
sock flush ...,

SOCK Nt ..o,
sock modecceeeeeiii,
sock _noflushcccevvveeeeeeeccce
SOCK_PEITON e
SOCK_prereadceeeeeeeeniiceeeeeennnn.
(S0 0! [0| (o
SOCK_PULS e
sock rbleft ...
SOCK_IbSIZe ..oooovceeeeeee e

sock recv_fromccceeeee,
SOCK_recV_init ..oocceevveeeeeeee e
sock resolvedccceeeeeieeiienne,
SOCK_Set t0S ..ocviviviiiiii,
sock set ttl .o
sock thleft ..o
sock thsizecccceii,
sock_thusedccccvvveeeeeei e,
SOCK_tick woviviiieiiii
sock wait_closedoeeeeeen.
sock wait_established
SOCK_Wait_iNPUE ...ceveeeeeniiiieeeenn.
sock waitingcocceeevevevi,
sock_writablecccvveeeeeeei i,
SOCK WHte ooovevieiei,
sock xfastreadccceeeeeeennnnnnn.
sock Xfastwritecccceeeeeeeviiennnee,
sock yield ..o
SOCKEST evveeeeeiriee e e e
SOCKSLALE .eveeeveeee e

tcp_clearreserveovevveeeiiicnnnee.
tep_config wevveeevviiiieeeee e
tep_extlistenoocccvvieeeeieie e
tCP_EeXtOPEN ...evveee e
tcp_keepaliveccccvveeeeeeiiii
tep_listen ..ooooevevieiiieeeee e

tCP_OPEN oveeeee e 207
tCP_reserveportcocevceeeeiieeenne 209
tCP_tICK e 210
udp_bypass arpcccceceeevieeeiiinens 211
UdP_ClOSE ..vveviiee e 212
udp_eXtOPeNcccvveeeeeeiieee e 213
UAP_OPEN .eeiiiiiee e 215
UdP_PEEK vveeiiee e 217
(00| o 1= o1V A 218
udp_recviromccceeeeeeiiieeniieenne 219
udp_Sendoooceeeiiiee e 220
(00| O TS =010 | (o I 221
udp_WaitOpEN ..vvevvveeecieeeciee e 222
udp_waitsendcccoeeeeeniieeniiennne 223
udp_XSendtoccceeeeerciieeee i 224
virtual_ethcccooovviee e, 225

Dynamic C TCP/IP User’s Manual

Dynamic C TCP/IP Functions

Listed by Category

Addressing
AP _reSOIVE .o 86
arpcache_Createcccocevvceeeniieenns 78
arpcache flushccccocveiiiiiinienne 79
arpcache_hwaccccevieeiiiininiieenne 80
arpcache ifaceccoceveevcieeeecciieeens 81
arpcache_ipaddrc.ccccoveeeviiiineens 82
arpcache loadcccceevcieeeeciiiieeen, 83
arpcache_searchcccocevvieeeiieenne 85
arpresolve_checkc.ccceevceeiiieenne 87
arpresolve_ipaddrccceeceeeiiieenne 88
arpresolve_startccceeecieeeeiiiieeeens 89
dNCp_aCqUIreccccveeeeeeiieeee e 92
dhcp_get_timezonecccceeeevvveeenns 93
dhep_releaseccooocveeviieeeiiieieiieenne 94
getdomainNameccoecveeeeviivnennnnns 95
(072101055 i o ISR 96
gethostnamecccceeeevcieeeeccciieeeens 97
QELPEEINAME ..oeeeeereeeeeeiieeeeeeiaeee s 98
getsockNamecccceeeevciveeeeciiiieeeenns 99
PSOCKELeveeiiie e 132
(=0 AV TR 133
resolve _Cancelcccocvveeeiviiinennnnns 134
resolve_name _checkc.ccccueeenne 135
resolve_name startccccoecveeennns 136
router_addccoceeeeviiieee e 138
router_del_allcocceeeviiiiiiiiees 138
router_deletecoceeeevcvieiiiiiieeennns 139
(o101 g (0] SRR 140
(o181 gl o (] 0| SRR 141
router_printallcccocoieeiiiiineens 142
setdomainnameccccevceeeerneeenne 144
Sethostid ...oocveveviieeee e 145
sethostnamecccceevvvviveeeeiinnenn, 146

udp_bypass arpcccceeeeeeeeeniiineennns 211
Configuration

IfCONfIg v 102

(o o] @0 1 [o [201

Data Conversion

AON i 90
(0100] o] ISR 100
BLONS ..o 101
iNet_ addrcoccveeeeiiiee e 115
0= A) 0= 116
4100 o TR 124
0100] 1S SRR 125
PAAAr ..o 126
] o TR 137
Ethernet
pd_getaddresscccccceeeeeiiiieeens 127
pd_havelinkccccceviiiiiiiiiiee 128
pd_POWErdowncceeveerveenivennns 129
PA_POWEIUD .evveeenveeeeieee e e 130
Initialization
S 010 G | o 166
SOCK_LICK voveieeeeeiieee e 190
Interface
IFAOWN i 111
ifpendingoocceveeeeiiee e 112
LS L0 RS 113
HFUD e 114
IP_IfaCe .o 117
IP_Print_ifS .oocoeriiiieeeeee e 118
is valid_ifacecccoeeviveiiiiiieenn, 121
SOCK_iface ..ocveeeeecieee e, 165

Dynamic C TCP/IP User’s Manual

virtua_ethcooceeeviieeeeeee e, 225

Multicast
multicast_joingroupcccceeeviveenns 122
multicast_leavegroupccceeeens 123
Ping
ChK_PiNg .eveeeeiiieeeeeeee e 91
_PING i 131
SENd_PING -veviireeriieriee e 143

Socket Configuration

SOCK_MOdEovveeeviieee e 167
S0 l0 G = (0 T 184
SOCK_Set ttl evvveeiiieee e, 185
tcp_clearreservecocovceeeiieeenne. 200
tCP_reserveportcoceevceeeeiveeene 209

Socket Connection

_abort_SockScceeeiiiiiee e 77
SOCK_abortcccvveeeeeeeeeeeee, 147
SOCK_ClOSE .. 154
sock_establishedcccccveevveeennen. 158
SOCK_Waiting ...ceeevvvveeeeeiineeeeiinenn. 193
tcp_keepaiveoccceeeiciiieeec, 204

Socket 1/0O Buffer

sock_rbleft ..., 174
sock_rbsize ... 175
SOck_rbusedoccceeeeiiiieeeeiee, 176
sock_thleftcvveviieeeiceee e, 187
Sock_thsize ...cccvevvcieeiiceeee, 188
sock_thusedccceeeiiiiiieece, 189

Socket Status

ip_timer_expiredccceeeeeniiennne 119
ip_timer_initcccoceeeviieeeeiieeee 120
SOCK_aliVe .ooeeee e, 148
sock_bytesreadyccccceieeeinnnenn. 153
sock_datareadycccceviiiciiieeennn. 155
SOCK_EITOF ieeeiieeeeee e 157

S 010 Q0= 1 () SR 170
sock_readablecccoecieeeeinnnenn. 178
SOCK_resolvedccceeveviieeeeiiiiinenn. 183
sock_writableoccveeriiiiiiieei, 195
SOCKENT wevvveieiieie e 156
SOCKSLALE ...vvveeeereee v 186
L0: o (xS 210

SOCK_ar€adeevvevvieeeiiiieee e, 149
SOCK_@WIIte wevvveeeeciieee e 150
SOCK_axreadcccceeeveiineeeeiinnnnn. 151
SOCK_@XWIILE .vveveevveeeeceieeee e 152
sock_fastreadccccceeeciieeeiinnnnn. 159
SOCK_fastwritecccevevvvveeeriiinnenn. 160
SOCK_flUSh .., 161
sock_flushnextccccoevcvveeeiiiinnenn. 162
SOCK_QELC oereeeeeciieee e 163
SOCK_QELS ovreeeeeciieee e 164
sock_Noflush ...cccccvveeeecciieee e, 169
SOCK_preread ...oooovvveeeevivieeensiieenn. 171
SOCK_PULC v 172
SOCK_PULS ..o 173
Sock _readcccceeeviieee e, 177
SOCK_WIIE ..evvveeeeiieee e cieeee e 196
sock_xfastreadcccoecveeeeiinnnnn. 197
SOCK_Xfastwriteccccvevvvveeeiiiinnenn. 198
SOCK_Vield e, 199
tep_extlisten ...oooveveiiiieee 202
tCP_EXtOPEN ...vveeee e 203
tep listen .ooovveeeeceee e, 205
tCP_OPEN oo 207

UDP Socket I/10

UdP_ClOSE .eveviiee e 212
udp_extopencocceeeeieeenieeeniieens 213
(00|01 0] 0= o [N 215
(00| oI o= = 217
(00| o = o1V A 218

Dynamic C TCP/IP User’s Manual

udp_Sendeeeeeeiiieee e 220
00| JES= 010 1o [221
udp_WaitopeN ...vevvveeecieee e 222
udp_waitsendccceeeeeeriieeniinnnne 223
udp_XSeNdtocccveeeeeviiiiee e 224

UDP Socket I/O (pre-DC 7.05)

SOCK_TECV woviieeeeeeieeee s eiteee e 179
sock_recv_fromcccceeeevieeeeiinnenn. 181
SOCK_FeCV_iNit ..ocovveveeeiiiieeeeeieenn, 182

Dynamic C TCP/IP User’s Manual

Dynamic C TCP/IP User’s Manual

	Table of Contents
	1. Introduction
	2. TCP/IP Initialization
	2.1� TCP/IP Stack Configuration
	2.1.1� Multiple Interface Support
	2.1.2� Interface Selection Macros
	2.1.2.1 Link Layer Drivers

	2.1.3� Single Interface Support
	2.1.3.1 Configuration Macros for Link Layer Driver - Single Interface

	2.1.4� TCP/IP Stack Initialization

	2.2� Interface Configuration
	2.2.1� Configuration Overview
	2.2.2� Sources of Configuration Information
	2.2.2.1 Predefined Configurations
	2.2.2.2 Static Configuration
	2.2.2.3 Dynamic Configuration via the Network
	2.2.2.4 Runtime Configuration using ifconfig()
	2.2.2.5 Directed Ping
	2.2.2.6 Console Configuration via Zconsole.lib
	2.2.2.7 Media Access Control (MAC) address

	2.3� Dynamically Starting and Stopping Interfaces
	2.3.1� Testing Interface Status
	2.3.2� Bringing an Interface Up
	2.3.3� Bringing an Interface Down

	2.4� Setting up PPP Interfaces
	2.4.1� PPP over Asynchronous Serial
	2.4.2� PPP over Ethernet

	2.5� Configuration Macro Reference
	2.5.1� Removing Unnecessary Functions
	2.5.2� Including Additional Functions
	2.5.3� BOOTP/DHCP Control Macros
	2.5.4� BOOTP/DHCP Global Variables
	2.5.5� Buffer and Resource Sizing
	2.5.6� Pre Version 7.30 Network Configuration
	2.5.7� Version 7.30 Interface Configuration
	2.5.8� Time-Outs and Retry Counters
	2.5.9� Program Debugging
	2.5.10� Miscellaneous Macros
	2.5.10.1 TOS and TTL

	3. TCP and UDP Socket Interface
	3.1� What is a Socket?
	3.1.1� Port Numbers

	3.2� Allocating TCP and UDP Sockets
	3.2.1� Allocating Socket Buffers
	3.2.2� Socket Buffer Sizes
	3.2.2.1 User-Supplied Buffers

	3.3� Opening TCP Sockets
	3.3.1� Passive Open
	3.3.2� Active Open
	3.3.3� Waiting for Connection Establishment
	3.3.4� Specifying a Listen Queue

	3.4� TCP Socket Functions
	3.4.1� Control Functions for TCP Sockets
	3.4.2� Status Functions for TCP Sockets
	3.4.3� I/O Functions for TCP Sockets

	3.5� UDP Socket Overview
	3.6� UDP Socket Functions (7.05 and later)
	3.6.1� Control Functions for UDP Sockets
	3.6.2� Status Function for UDP Sockets
	3.6.3� I/O Functions for UDP Sockets

	3.7� UDP Socket Functions (pre 7.05)
	3.7.1� I/O Functions for UDP Sockets
	3.7.2� Opening and Closing a UDP Socket
	3.7.3� Writing to a UDP Socket
	3.7.4� Reading From a UDP Socket
	3.7.5� Porting Programs from the older UDP API to the new UDP API

	3.8� Skeleton Program
	3.8.1� TCP/IP Stack Initialization
	3.8.2� Packet Processing

	3.9� TCP/IP Daemon: tcp_tick()
	3.9.1� tcp_tick() for Robust Applications
	3.9.2� Global Timer Variables

	3.10� State-Based Program Design
	3.10.1� Blocking vs. Non-Blocking
	3.10.1.1 Non-Blocking Functions
	3.10.1.2 Blocking Functions

	3.11� TCP and UDP Data Handlers
	3.11.1� UDP Data Handler
	3.11.2� TCP Data Handler

	3.12� Multitasking and TCP/IP
	3.12.1� µC/OS-II
	3.12.2� Cooperative Multitasking

	4. Optimizing TCP/IP Performance
	4.1� DBP and Sizing of TCP Buffers
	4.2� TCP Performance Tuning
	4.2.1� The Nagle Algorithm
	4.2.2� Time-Out Settings
	4.2.2.1 Time-Out Setting Constants

	4.2.3� Reserved Ports
	4.2.4� Type of Service (TOS)
	4.2.5� ARP Cache Considerations

	4.3� Writing a Fast UDP Request/Response Server
	4.4� Tips and Tricks for TCP Applications
	4.4.1� Bulk Loader Applications
	4.4.2� Casual Server Applications
	4.4.3� Master Controller Applications
	4.4.4� Web Server Applications
	4.4.5� Protocol Translator Applications

	5. Network Addressing: ARP & DNS
	5.1� ARP Functions
	5.2� Configuration Macros for ARP
	5.3� DNS Functions
	5.4� Configuration Macros for DNS Lookups

	6. IGMP and Multicasting
	6.1� Multicasting
	6.1.1� Multicast Addresses
	6.1.2� Host Group Membership

	6.2� IGMP
	6.3� Multicast Macros

	7. Function Reference
	_abort_socks
	arpcache_create
	arpcache_flush
	arpcache_hwa
	arpcache_iface
	arpcache_ipaddr
	arpcache_load
	arpcache_search
	_arp_resolve
	arpresolve_check
	arpresolve_ipaddr
	arpresolve_start
	aton
	_chk_ping
	dhcp_acquire
	dhcp_get_timezone
	dhcp_release
	getdomainname
	gethostid
	gethostname
	getpeername
	getsockname
	htonl
	htons
	ifconfig
	ifdown
	ifpending
	ifstatus
	ifup
	inet_addr
	inet_ntoa
	ip_iface
	ip_print_ifs
	ip_timer_expired
	ip_timer_init
	is_valid_iface
	multicast_joingroup
	multicast_leavegroup
	ntohl
	ntohs
	paddr
	pd_getaddress
	pd_havelink
	pd_powerdown
	pd_powerup
	_ping
	psocket
	resolve
	resolve_cancel
	resolve_name_check
	resolve_name_start
	rip
	router_add
	router_del_all
	router_delete
	router_for
	router_print
	router_printall
	_send_ping
	setdomainname
	sethostid
	sethostname
	sock_abort
	sock_alive
	sock_aread
	sock_awrite
	sock_axread
	sock_axwrite
	sock_bytesready
	sock_close
	sock_dataready
	sockerr
	sock_error
	sock_established
	sock_fastread
	sock_fastwrite
	sock_flush
	sock_flushnext
	sock_getc
	sock_gets
	sock_iface
	sock_init
	sock_mode
	sock_noflush
	sock_perror
	sock_preread
	sock_putc
	sock_puts
	sock_rbleft
	sock_rbsize
	sock_rbused
	sock_read
	sock_readable
	sock_recv
	sock_recv_from
	sock_recv_init
	sock_resolved
	sock_set_tos
	sock_set_ttl
	sockstate
	sock_tbleft
	sock_tbsize
	sock_tbused
	sock_tick
	sock_wait_closed
	sock_wait_established
	sock_waiting
	sock_wait_input
	sock_writable
	sock_write
	sock_xfastread
	sock_xfastwrite
	sock_yield
	tcp_clearreserve
	tcp_config
	tcp_extlisten
	tcp_extopen
	tcp_keepalive
	tcp_listen
	tcp_open
	tcp_reserveport
	tcp_tick
	udp_bypass_arp
	udp_close
	udp_extopen
	udp_open
	udp_peek
	udp_recv
	udp_recvfrom
	udp_send
	udp_sendto
	udp_waitopen
	udp_waitsend
	udp_xsendto
	virtual_eth

	Notice to Users
	Index

