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Abstract

Heterogeneous data sets arise naturally in most applications due to the use of a variety of sensors,
and measuring platforms. Such data sets can be heterogeneous in terms of the error characteris-
tics, and sensor models. Treating such data is most naturally accomplished using a Bayesian or
model based geostatistical approach, however such methods generally scale rather badly with the
size of data set, and require computationally expensive Monte Carlo based inference. Recently
within the machine learning and spatial statistics communities many papers have explored the
potential of reduced rank representations of the covariance matrix, often referred to as projected
or fixed rank approaches. In such methods the covariance function of the posterior process is rep-
resented by a reduced rank approximation which is chosen such that there is minimal information
loss. In this paper a sequential Bayesian framework for inference in such projected processes is
presented. The observations are considered one at a time which avoids the need for high dimen-
sional integrals typically required in a Bayesian approach. A C++ library, gptk, which is part
of the INTAMAP web service, is introduced which implements projected, sequential estimation
and adds several novel features. In particular the library includes the ability to use a generic ob-
servation operator, or sensor model, to permit data fusion. It is also possible to cope with a range
of observation error characteristics, including non-Gaussian observation errors. Inference for the
covariance parameters is explored, including the impact of the projected process approximation
on likelihood profiles. We illustrate the projected sequential method in application to synthetic
and real data sets. Limitations and extensions are discussed.

Keywords: low-rank approximations, sensor fusion, heterogeneous data

1. Introduction

Large, heterogeneous datasets are becoming more common (Cressie and Johannesson, 2008)
due to our accelerating ability to collect data; whether it be from satellite-based sensors, aerial
photography, large monitoring networks or large repositories of data accessible from Web sources
or increasingly frequently a mixture of some or all of the above.

An issue faced when dealing with large global datasets is that of heterogeneities in the data
collection process. In the context of a large monitoring network, the network infrastructure
is often based on many existing smaller networks with potentially distinct data measurement
mechanisms. Heterogeneity is also evident when exploiting dense aerial photography data as
ancillary data to improve analysis of sparsely sampled data (Bourennane et al., 2006). Managing
this heterogeneity requires specific modelling of the observation process, taking account that one
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is interested in the underlying latent (not directly observed) process, as is commonly done in the
data assimilation setting (Kalnay, 2003). We assume that the underlying latent spatial process,
f = f (x), where x represents spatial location, is partially observed at points xi by sensors:

yi = h[ f (xi)]+ εi , (1)

where h[·] represents the sensor model (also called the observation operator or forward model)
that maps the latent state into the observables and ε represents the observation noise, in obser-
vation space. The observation noise represents the noise that arises from inaccuracies in the
measurement equipment and also the representativity of the observation with respect to the un-
derlying latent process at a point. The observation yi = y(xi) can be directly of the underlying
latent spatial process (with noise), i.e. yi = f (xi)+ εi where h is the identity mapping, but typi-
cally the sensor model might describe the observation process or more simply be a mechanism
for representing sensor bias using a linear sensor model such as yi = [ f (xi)+b]+ εi. The map-
ping f can be non-linear as is often the case with remote sensing, where f expresses the complex
relationship between radiance or beam reflectivity and the latent process. Examples include, in
hydrological applications, the power law between radar reflectivity and rainfall intensity (Col-
lier, 1989; Marshall and Palmer, 1948), and the various relationships linking satellite radiance
to temperature or vegetation types (Jensen, 2000). It is possible that each sensor has a unique
sensor model, however it is more common for groups of sensors to have similar sensor models
(for instance when the observations come from 2 different overlapping sensor networks, as is the
case with precipitation fields estimated from both weather radar and rain gauge data). Note that it
will often be the case that each sensor has its own estimate of uncertainty, for example where the
observation results arise from processing raw data as seen in Boersma et al. (2004). The notation
used in this paper is summarised in Table 1.

Symbol Meaning

x location in 2D space
fi = f (xi) latent process at location xi

yi = y(xi) observation at location xi

f = f 1:n = f (x1:n) latent process at locations x1, . . . ,xn

h(·) sensor model or observation operator
ε observation error following a given distribution
n the total number of observations in the data set
m the total number of locations included in the active set, AS

Table 1: Notation used within the paper.

We assume in this work that the latent process is, or can be well approximated by, a Gaussian
process over x (see Cressie, 1993; Rasmussen and Williams, 2006). A Gaussian process model
is attractive because of its tractability and flexibility. We denote the Gaussian process prior by
p0( f |x,θ) where θ is a vector of hyper-parameters in the mean and covariance functions. In gen-
eral we will assume a zero mean function, µ(x) = 0, although mean functions could be included,
either directly or more conveniently by using non-stationary covariance functions (Rasmussen
and Williams, 2006, section 2.7). The covariance function, c(x,x′;θ), is typically parametrised
by θ in terms of length scale (range), process variance (sill variance) and nugget variance. A
range of different valid covariance functions are available, each of which imparts certain proper-
ties to realisations of the prior Gaussian process. The posterior process is then given by:

ppost( f |y1:n,x,θ,h) =
p(y1:n| f ,x,h)p0( f |x,θ)∫
p(y1:n| f ,x,h)p0( f |x,θ)d f

(2)

where p(y1:n| f ,x,h) is the likelihood of the model, that is the probability of the n observations
in the data set, y1:n, given the model and the sensor model. The integral in the denominator is a
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constant, often called the evidence or marginal likelihood, p(y1:n|x,θ), which can be optimised
to estimate the hyper-parameters, θ. The likelihood model is linked closely to the sensor model
eq. (1). Assuming that the errors on the observations are independent, we can write p(y1:n| f ,x)=
∏i pi(yi| f ,xi,hi) since the observations only depend on the latent process at their single location,
and the errors are in the observation space. Note that if any of the errors, εi, are not Gaussian
then the corresponding likelihood will yield a non-Gaussian process posterior. Also if the sensor
model – hi – is non-linear, even with Gaussian observation errors the corresponding posterior
distribution will be non-Gaussian.

A key step in using Gaussian process methods is the estimation of θ given a set of observa-
tions, y1:n. This is typically achieved by maximising the marginal likelihood, p(y1:n|x,θ). Note
that ideally we should seek to integrate out the hyper-parameters, however this is computation-
ally challenging, particularly for the range parameters which require numerical integration. In
this work we adopt a maximum (marginal) likelihood framework for parameter inference.

Large sizes of the datasets also present a major obstacle when likelihood-based spatial inter-
polation methods are applied. In terms of memory and processor computational requirements
scale quadratically and cubically respectively. Typically, computation with no more than a few
thousand observations can be achieved using standard likelihood based spatial interpolation mod-
els (Cressie, 1993) in reasonable time. The main computational bottleneck lies in the need to
invert a covariance matrix of the order of the number of observations. For prediction with fixed
hyper-parameters this is a one-off cost and can be approximated in many ways, for example
using local prediction neighbourhoods which introduce discontinuities in the predicted surface.
For hyper-parameter estimation matrices must be inverted many times during the optimisation
process (Rasmussen and Williams, 2006, chapter 5). The most common solution to the hyper-
parameter estimation problem adopted in geostatistics is to use a moment based estimator, the
empirical variogram, and fit the parametric model to this (Journel and Huijbregts, 1978; Cressie,
1993), however these methods will not work when we assume that the field of interest, f , is not
directly observed, but rather there exists a sensor model such that yi = h[ f (xi)] + εi. The use
of such a latent process framework corresponds very closely to the model-based geostatistics
outlined in Diggle and Ribeiro (2007).

Instead of employing a batch framework where all the observations are processed at once,
in this work we consider a sequential algorithm to solve the previously mentioned challenges.
There are other advantages that can be obtained by using sequential algorithms. Processing of
the data can begin before the entire dataset has been collected. An example might be a satel-
lite scanning data across the globe over a time period of a few hours. As the data is collected,
the model is updated sequentially. This can also be of use in real-time mapping applications
where data might arrive from a variety of communication systems all with different latencies.
The sequential approach we employ is described in detail in Section 3. The main idea is that
we sequentially approximate the posterior process, eq. (2), by the best approximating Gaussian
process as we update the model one observation at a time. In order to control the computational
complexity we have adopted a parametrisation for the approximate posterior process which ad-
mits a representation in terms of a reduced number of active points. Thus the name projected,
sequential Gaussian process (psgp) for the algorithm.

We have chosen to implement psgp using C++ to ensure that program execution is efficient
and can be optimised where required. The algorithm forms the core of our Gaussian Process
Toolkit (gptk) library and is available for download from Google Code (Ingram et al., 2010).
Installation instructions and a simple tutorial example are provided in Appendix C.

In addition, a web processing service interface to psgp can be accessed from the INTAMAP
project web site1 or installed from the CRAN R repository (Ingram and Barillec, 2009).

1http://www.intamap.org
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We start in Section 2 by discussing large datasets and how these can be treated using a
number of different approximations. In Section 3 we introduce the model parameterisation,
present the sequential algorithm updates the parameterisation given observations and outline
hyper-parameter estimation. An overview and discussion of design principles used in our im-
plementation is presented in Section 4. Section 5 shows how the software can be applied to
synthetic and real-world data. Section 6 contains a discussion of the algorithm performance and
gives conclusions. The paper builds upon Cornford et al. (2005) and Csató and Opper (2002) by
allowing more flexible approaches to sensor models and dealing in more detail with algorithmic
and implementation details and practical deployment of the new C++ gptk library.

2. Interpolation for large data sets

Techniques for treating large-scale spatial datasets can generally be organised into categories
depending whether they utilise sparsely populated covariance matrices (Furrer et al., 2006),
spectral methods (Fuentes, 2002) or low-rank covariance matrix approximations (Snelson and
Ghahramani, 2006; Lawrence et al., 2003; Cressie and Johannesson, 2008; Banerjee et al., 2008).
Traditional geostatistics utilises a moving-window approach where a prediction at a given lo-
cation is calculated from a predefined number of observations rather than utilising the entire
dataset (Haas, 1990). In this case, instead of solving one large equation, many smaller systems
of equations are solved instead. Each of the described techniques has associated advantages and
disadvantages; here we consider low-rank covariance matrix approximations.

A common technique for treating large-datasets is simply to sub-sample the dataset and use
only a smaller number of observations during analysis. This is probably the most naïve low-
rank covariance matrix approximation. All but the smaller subset of observations are discarded.
Choosing the subset of observations that are to be retained can be complex. In Lawrence et al.
(2003) the algorithm runs for a number of cycles sequentially inserting and removing observa-
tions determined by the magnitude of the reduction of uncertainty in the model. In this way
a good subset of observations is chosen to represent the posterior process, although observa-
tions not within this subset will have no impact on the posterior, other than through the selection
process.

Csató and Opper (2002) present a similar approach, which is related to geostatistical theory
in Cornford et al. (2005). Instead of discarding some observations, it is suggested that the effect
of the discarded observations can be projected onto the low-rank covariance matrix in a sequen-
tial manner identifying the most informative observations in the process. It is shown how this
can be done in such a way so as to minimise loss of information. Related to this is the technique
of Snelson and Ghahramani (2006) where, instead of a sequential projection scheme, the entire
dataset is projected on to a set of active points in a batch framework, a procedure that is com-
plex. (Banerjee et al., 2008) present a similar low-rank approximation, but apply full Bayesian
inference rather than just Bayesian prediction. The active points are selected a priori, hence
small-scale features in the dataset can not be always be captured by the model parameterisation
if the insufficient active points are selected. Cressie and Johannesson (2008) present an alter-
native where the Frobenius norm between the full and an approximate covariance matrices is
minimised using a closed expression.

The approach of Csató and Opper (2002), on which the psgp implementation is based, has
a number of advantages. First, since it is a sequential algorithm (Opper, 1996), the complexity
of the model, or the rank of the low-rank matrix can be determined during runtime. In scenarios
where the complexity of the dataset is unknown a priori this is advantageous. Secondly, in a
practical setting, it is not uncommon that observations arrive for processing sequential in time.
Thirdly, by processing the data in a sequential fashion, non-Gaussian likelihoods, pi(yi| f ,xi,hi),
can be used (Cornford et al., 2005). The projection step mentioned earlier is employed to project
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from a potentially non-Gaussian posterior distribution to the nearest Gaussian posterior distribu-
tion, again minimising the induced error in doing so. There are two ways in which the update
coefficients, necessary for the projection, can be calculated: analytic methods requiring the first
and second derivatives of the likelihood function with respect to the model parameters and by
population Monte Carlo sampling (Cappé et al., 2004).

The inclusion of this population Monte Carlo sampling algorithm is a novel feature of this
implementation. The likelihood function for each observation can be described without having to
calculate complex derivatives. Furthermore, our sampling based method enables sensor models,
h[·] to be included, permitting data fusion. At present a basic XML parser is implemented2 which
means that the gptk library can process sensor models described in MathML, as might be typical
in a SensorML description in an Observations and Measurements document part of the Sensor
Web Enablement suite of standards proposed by the Cox (2007); Open Geospatial Consortium
(2007).

Non-stationarity is a very common feature of geospatial data. The parametrisation of Cressie
and Johannesson (2008) includes a non-stationary covariance function (defined in terms of basis
function). The psgp implementation also supports non-stationary kernels, although the only such
kernel currently implemented is the Neural Network kernel (Williams, 1998).

3. The projected sequential Gaussian process model

The psgp algorithm relies essentially on two key features:

• a recursive parametrisation of the posterior update, which allows the posterior process to
be updated sequentially, by considering one observation at time,

• the exploitation of potential redundancy in the data by projecting the observations onto an
active subset of fixed size,

which combined together lead to the low-rank, recursive parametrisation in Equations (3-5).
The parametrisation of the Gaussian process approximation to the posterior distribution from

eq. (2) is achieved by expressing the mean function µ(x) and covariance kernel c(x,x′) as func-
tions of a low-rank vector~α and a low-rank matrix ~C as:

µpost(x) = µ0(x) + ∑
i∈AS

αic0(x,xi), (3)

cpost(x,x′) = c0(x,x′)+ ∑
i, j∈AS

c0(x,xi)C(i, j)c0(x j,x′) (4)

where µ0(x) = 0 and c0(x,x′) are the prior mean and covariance functions respectively. The
low-rank approximation allows efficient computation due to the selection of an active set AS =

{x1, . . . ,xm} of m locations where typically m� n. That is, ~α is a vector of length m and ~C
is an m×m matrix. Since psgp computation scales cubically with the size of the active set, m
should be chosen as small as possible, however there is clearly a trade-off, which is discussed
later. Computation of the parameters of the posterior parametrisation (the vector~α and the matrix
~C) is a challenging task for a number of reasons. The parametrisation is an approximation that
is based on the active set. Optimal active set locations depend on covariance function model
parameters hence as these are re-estimated the active set must be reselected. The algorithm runs
for a number of cycles and the processes of active set selection and covariance model parameter
estimation are interleaved obtaining improved estimates during each cycle.

2The XML parser did not make it to the latest version of the library, as it needs further documenting and introductory
examples. We are hoping to release it as part of the next version.
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Algorithm 1 psgp algorithm outline for fixed θ.

1: Initialise model parameters (~α,~C) , (~a,~Λ,~P) to empty values.
2: for epIter = 1 to Data Recycling Iterations do
3: t← 1
4: Randomise the order of location/observation pairs.
5: while t < numObservations do
6: Get next location and observation (xt ,yt).
7: if epIter > 1 then // Observation already processed

8: Remove contribution of current observation (~̃α, ~̃C)

9: end if
10: if Likelihood update is analytic then // Compute update coefficients

11: Compute (q+,r+)
12: from first and second derivatives of the marginal likelihood
13: else
14: Use population Monte Carlo sampling for computing (q+,r+)
15: end if
16: Calculate γ, // γ > 0 is a heuristic measure; the difference between

17: // the current GP and that from the previous iteration

18: if γ > ε then // Using full update of the parameters

19: Add location xt to the Active Set
20: Increase the size of (~̃α, ~̃C)
21: Using (q+,r+), update (~̃α, ~̃C) and EP parameters (~a,~Λ,~P);
22: else // Model parameters updated by a projection step

23: Project observation effect (q+,r+) onto the current Active Set
24: Update (~̃α, ~̃C) and the EP parameter matrices (~a,~Λ,~P)
25: end if
26: if Size of active set > Maximum Desired Size then
27: Calculate the informativeness for each Active Set element
28: Find the least informative element, delete it from the active set
29: Update (~̃α, ~̃C) and EP parameters (~a,~Λ,~P)
30: end if
31: t← t +1
32: (~α,~C)← (~̃α, ~̃C)

33: end while
34: end for
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Using the parametrisation from (3) and (4), the update rules are written as:

~αt+1 =~αt +q+~st+1

~Ct+1 = ~Ct + r+~st+1~sT
t+1

with ~st+1 = ~Ct~ct+1 +~et+1 (5)

where ~ct+1 = [c0(xt+1,x1), . . . ,c0(xt+1,xt)]
T is the prior covariance between the location being

considered at iteration t+1 and all current points in the active set. ~et+1 = [0,0, . . . ,1]T is the t+1-
th unit vector that extends the size of ~αt+1 and ~Ct+1 by one. The update coefficients q+ and r+
come from the parametrisation of the posterior mean function and covariance function updates
given a new observation yi at location xi. They are defined as the first and second derivatives,
with respect to the posterior mean at xi, of the log-evidence. That is:

q+ =
∂

∂µ(xi)
ln
∫

p( fi) p(yi| fi)d fi (6)

r+ =
∂2

∂µ(xi)2 ln
∫

p( fi) p(yi| fi)d fi. (7)

where fi = f (xi) is the posterior process at x+. p( fi) denotes the posterior process (prior to the
update) with mean µ(xi). The derivations leading to this particular parametrisation is reproduced,
for the interested reader, in Appendix A. The full detail can be found in (Csató and Opper, 2002;
Csató, 2002).

The consequence of the update rule is that: (1) all locations need to be processed since all of
them contribute to the resulting mean and covariance functions, and (2) the contribution of each
observation is retained in the posterior parametrisation.

The benefits of the parametrisation and the sequential nature of the updates are two-fold.
First, the update coefficients (q+ and r+) can be computed for a variety of user-defined likelihood
models, pi(yi| f ,xi,hi), as shown in Section 3.1 and secondly, the update coefficients can be
computed in a manner which does not require that the model complexity to be increased, as
shown in Section 3.2.

3.1. Computing the update coefficients

The update coefficients, q+ and r+, can be computed in two main ways. Essentially these
update coefficients can be seen as computing the first two moments of the updated Gaussian
approximation at xt+1, and thus require the evaluation of integrals. In Csató and Opper (2002)
analytic formulations for q+ and r+ are given for Gaussian, Laplace and one sided exponential
noise models. Within the gptk package at present only the Gaussian noise model is implemented
analytically. In this paper we extend the updates to include a sampling based strategy, since the
presence of a non-linear sensor model, h, will almost certainly make analytic updates impossible.

The update step is iterated several times, within an inner loop to process all observations, and
within an outer loop to recycle over data orderings, as shown in Algorithm 1. It is thus important
that the computation of q+ and r+ is as efficient as possible. The sequential nature of the approx-
imation means that the required integrals are low dimensional, and for scalar observations, one
dimensional. When analytic computation of q+ and r+ is not possible, one can resort to alterna-
tive sampling methods. Several methods might be envisaged, ranging from quadrature to Markov
chain Monte Carlo methods. The selection of Population Monte Carlo (PMC) sampling (Cappé
et al., 2004) was based on its simplicity and efficiency. PMC is a sequential importance sampling
technique, where samples from one iteration are used to improve the importance sampling, or
proposal, distribution at the subsequent steps in the algorithm. The technique is known to be
efficient and we have found it to be stable too.

The basic implementation is summarised in Algorithm 2. The aim is to evaluate the expec-
tation of the likelihood p(yi| fi) with respect to the current (in the sequential update) posterior
p( fi|xi). The importance sampling method consists in generating a sample from a more tractable
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Algorithm 2 Population Monte Carlo algorithm used in psgp (for a single observation)
1: Inputs:
2: - a location xi with predictive distribution from the psgp: p( fi|xi) = N(µi,σ

2
i )

3: - an observation yi with likelihood pi(yi| fi,xi,hi)

4: Initialise the proposal distribution p̂( f ) = N(µ∗,σ2
∗) with µ∗ = µi and inflated variance σ2

∗ =

sσ2
i

5: for pmcIter = 1 to PMC Iterations do
6: for j = 1 to Number of PMC samples do
7: Sample f j from p̂( f )
8: Set w j = pi(yi| f j,xi,hi)× p( f j|xi) / p̂( f j) // Compute the importance weights

9: end for
10: Normalise each importance weight w j = w j/∑k wk

11: µ∗ = ∑ j w j f j

12: σ2
∗ = ∑ j w j f 2

j −µ2
∗

13: p̂( f )← N(µ∗,σ2
∗) // Update the proposal distribution

14: end for
15: q+ = (µ∗−µi)/σ2

i // Update q and r using the final values of µ∗ and σ∗2

16: r+ = (σ2
∗−σ2

i )/(σ
2
i )

2

distribution (lines 4 and 7), called the proposal distribution, and weight each sample according to
the true distribution. The weight also incorporates the function we are computing the expectation
of, in this case the likelihood. The proposal distribution is then updated using the Monte-Carlo
empirical estimates of the mean and variance µ∗ and σ2

∗, and the algorithm is repeated. Few
iterations are typically needed for convergence of the algorithm.

The main benefit of this approach is that one only needs to evaluate the sensor model forward
to compute the likelihood of the observation p(yi| f ,xi,hi) and thus we can supply h as a MathML
object to be evaluated at run-time without having to recompile the code for new sensor models.
In practice only two iterations of PMC, each using 100 samples, are required to get excellent
approximation of the first and second moments, and the initial variance inflation factor, s is
empirically chosen to be 4.

3.2. Sparse extension to the sequential updates

Using purely the sequential update rules from eq. (5), the parameter space explodes: for
a dataset of size n there are O(n2) parameters to be estimated. Sparsity within parametrised
stochastic processes is achieved using the sequential updates as above and then projecting the
resulting approximation to remove the least informative location from the active set, AS ; this
elimination is performed with a minimum loss in the information-theoretic sense (Cover and
Thomas, 1991).

In order to have minimum information loss, one needs to replace the unit vector ~et+1 from
eq. (5) with its projection ~πt+1 to the subspace determined by the elements in the active set:
~πt+1 = K−1

AS
~kt+1 – see Csató and Opper (2002) for details. An important extension of the

result above is that it is possible to remove an element from the active set. We proceed as
follows: consider an element from the active set denoted as x∗. Assume that the current ob-
servation was the last added via the sequential updates from eq. (5). Reconstruct the vector
~k∗ = [c0(x∗,x1), . . . ,c0(x∗,xt)]

T and obtain the virtual update coefficients q∗ and r∗ using either
analytic or sampling based methods. Once these coefficients are known, the sparse update is
given by substituting~π∗ = K−1

AS
~k∗, where AS is the reduced active set in eq. (5).
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3.3. Expectation-propagation

The sequential algorithm, as presented above, allows a single iteration over the data-set.
There are however situations when one would like to re-use the data and further refine the result-
ing approximation algorithm. In particular for non-Gaussian errors and non-linear sensor models
the sequence in which the observations were included could be important, and thus it would be
useful to process the observations in a random order several times to minimise the dependence
on the initial data ordering.

The expectation-propagation – or EP – framework of Minka (2001) allows re-use of the data.
The methodology employed within the EP framework is similar to the one presented in the sparse
updates subsection: for each observation – assuming one has the likelihood and observation
models – we store the update coefficients (q+,r+) for each location xi, which we denote (qi,ri).
Since (qi,ri) are updates to the first and second moments of the approximated posterior, we can
represent the approximation as a local Gaussian and have a second parametrisation in the form
of exp

[
−λi(π

T
i f AS −ai)

2/2
]

where f AS is the vector of jointly Gaussian random variables over
the active set. To sum up, we have a second local representation to the posterior process with
parameter vectors ~a and ~Λ of size n×1 the ’projection‘matrix ~P = [π1, . . . ,πn], which is of size
m×n with m the size of the active set as before.

Thus with a slight increase in memory requirement we can re-use the data set to obtain a better
approximation to the posterior. In several practical application this improvement is essential,
specially when mean and covariance function hyper-parameters, θ, need to be optimised for the
data set: it can also provide improved stability in the algorithm Minka (2001).

3.4. The complete psgp algorithm

A complete inference experiment using the psgp library typically consists of the following
steps (line numbers refer to the example in Algorithm 3):

1. Initialisation

• Implement (if needed) the observation operator (or supply the MathML expression)

• Create a covariance function object with some initial parameters (line 3)

• Create a likelihood object for the observations (line 4). This can either be a single
likelihood model for all observations, or a vector of likelihood models with an asso-
ciated vector of indexes indicating which model to use for each observation. If an
observation operator is used, it is passed to the relevant likelihood models.

• Initialise the psgp object by passing in the locations (x), observations (y) and covari-
ance function (line 6). Optionally, the maximum number of active points and number
of cycles through the observations can also be specified.

• Compute the posterior model for the current (initial) parameters (line 8, detail in
Algorithm 1). Alternately, if several likelihood models are needed (e.g. our observa-
tions come from different sensors), one can use the overloaded form psgp.computePosterior(modelIndex,

modelVector), where modelVector is a vector of likelihood models and modelIndex
is a vector containing, for each observation, the index of the corresponding likelihood
model.

2. Parameter estimation

• In order to estimate the parameters, a model trainer object must be chosen and instan-
tiated (line 9). Custom options can be set, such as the maximum number of iterations
or whether to use a finite difference approximation to the gradient of the objective
function instead of its analytical counterpart.

9



Algorithm 3 Full psgp algorithm in pseudocode form.
Require: double range, sill, mu, sigma2; // Initial parameters, initialised previously

Require: double (*h)(double); // Pointer to observation operator function, declared elsewhere

1: ExponentialCF cf(range, sill); // Create a covariance function object with initial hyper-parameters

2: GaussianSampLikelihood lh(mu, sigma2, &h) // Initialise the likelihood model, passing in

parameters

3: // and, optionally, the observation operator

4: psgp psgp(X, y, cf, 400); // Initialise a psgp object given the locations, observations,

5: // covariance function and a limit of 400 active points

6: psgp.computePosterior(lh); // Compute the posterior under the likelihood model

7: SCGModelTrainer opt(psgp); // Initialise optimisation object and link to psgp object

8: for hypIter = 1 to Hyper-Parameter Estimation Iterations do // Optimise the hyper-parameters

9: opt.train(5); // Perform 5 optimisation steps

10: psgp.computePosterior(lh); // Recompute posterior for updated hyper-parameters

11: end for

12: psgp.makePrediction(meanPred, varPred, Xpred); // Predict at a set of new locations Xpred

• The parameter estimation consists of an inner loop (line 11), in which optimal pa-
rameters are sought which minimise the objective function. Because the objective
function, optimal hyper-parameter values and active set are all interdependent, it is
important to take small optimisation steps and re-estimate the active set as we go
– this can be thought of as an Expectation-Maximisation algorithm. Typically, the
parameter optimisation (line 11) and update of the active set (line 12) alternate in
an outer loop (lines 10-13), only a few iterations of which are usually needed for
convergence.

3. Prediction

• Once the hyper-parameters, θ, and algorithm parameters, (~α,~C), have been esti-
mated, the psgp object is able to make predictions at a set of new locations (line
14). The predictive mean and variance at these locations is returned. An optional
covariance function can also be used for prediction. This is useful if the covariance
function includes a nugget term but noise-free predictions are wanted: we can pass
in and use the covariance function without the nugget term.

Algorithm 3 provides a code sample illustrating the above procedure.

4. Design of C++ library

The algorithm discussed in this paper is one of a number of Gaussian process algorithms that
we intend to develop, hence we emphasise the importance of having a flexible and extensible
framework. We have chosen C++ as the implementation language as this allows us to produce
both fast and portable code. We utilise the Matlab like IT++ (Ottosson et al., 2009) library which
itself uses the highly optimised vector/matrix operations available from BLAS (Lawson et al.,
1979; Blackford et al., 2002) and LAPACK (Anderson et al., 1999).
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4.1. Covariance functions

The base functionality of any Gaussian process algorithm is the need to calculate covariance
matrices given different covariance functions. We provide a base CovarianceFunction abstract
class which all covariance functions must implement. The abstract class defines a number of typ-
ical operations such as computing the covariance between two vectors of locations. Additionally,
where available, the functions for calculating gradients of the covariance functions with respect
to their parameters are implemented.

We have implemented a basic number of covariance functions such as the common ExponentialCF,
GaussianCF, Matern3CF, Matern5CF (these are Matern covariance functions with roughness pa-
rameters 3/2 and 5/2 respectively). A NeuralNetCF is also available, which implements a Neural
Network kernel (Rasmussen and Williams, 2006). Bias and nugget terms are implemented as
ConstantCF and WhiteNoiseCF respectively. Further combinations of these covariance func-
tions can be designed using the SumCF class. All the above provide an analytic implementation
of the gradient with respect to the hyper-parameters, θ.

4.2. Likelihood models

A LikelihoodType interface is implemented by and subclassed as either a Analytic Likelihood
or a SamplingLikelihood. These classes are further extended to define specific likelihood
types. Likelihood models implementing the AnalyticLikelihood must provide the first and
second derivative information used in the update via q+ and r+. However, for non-Gaussian like-
lihood models or indirect observations through a non-linear h, exact expressions of these deriva-
tives are often not available. Classes implementing the SamplingLikelihood interface provide
an alternative whereby the population Monte-Carlo algorithm discussed in Section 3.1 is used to
infer this derivative information. These allow the use of an observation operator (optional) and
non-Gaussian noise models (such as the ExponentialSampLikelihood). When observations
have different noise characteristics, a combination of likelihood models can be used.

4.3. Optimisation of hyper-parameters

Optimal parameters for the covariance function (hyper-parameters) can be estimated from
the data through minimisation of a suitable error function. To that effect, the Gaussian pro-
cess algorithms (including psgp) must implement an Optimisable interface, which provides
an objective function and its gradient. Typically, one chooses the objective function to be
the evidence or marginal likelihood of the data (Rasmussen and Williams, 2006). Because com-
puting the full evidence is expensive, alternate options are implemented by psgp: the first is an
approximation to the full evidence, whereby only the active observations are taken into account,
and the second is an upper-bound to the evidence which takes into account the projection of all
observations onto the active set.

In order to minimise the objective function, several gradient-based local optimisers are in-
cluded in the package. The optimisers are linked to an Optimisable object and minimise its
objective function. General options for optimisation can be specified such as number of it-
erations, parameter tolerance and objective function tolerance. One also has the option to use
a finite difference approximation to the gradient rather than the analytical one. This is usually
slower but can be useful for testing purposes.

More generally, the Gaussian process algorithms also implement a ForwardModel interface
which ensures the communication of parameters remains consistent, through appropriate acces-
sors and modifiers methods.

4.4. Miscellaneous tasks

Aside of the core psgp classes, the gptk library also provides basic support for other sec-
ondary tasks. These include import/export of the data from/to CSV (comma separated values)
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Figure 1: Quality of the psgp approximation for different active set sizes.

files, a widely supported matrix file format, through the csvstream class. Basic 1D plotting can
also be achieved (in Linux) using the GraphPlotter utility, based on GNUPlot (Williams et al.,
2009).

The software uses a number of default settings which are described in the user manual and
documentation. However, the default parameters may not always be appropriate for all applica-
tions. Functions for setting and getting particular parameter values are included.

5. Examples and use

To illustrate the psgp algorithm we consider several examples ranging from simple, illustra-
tive cases to the more complex scenario of spatial interpolation of radiation data.

5.1. Illustration of the algorithm

To illustrate the impact of projecting the observations onto the set of active points, we look
at the quality of the psgp approximation for increasing sizes of the active set. Results are shown
on Figure 1. The latent function is sampled from a known Gaussian process (thin solid line).
64 observations are taken at uniformly spaced locations. These are projected onto an active set
comprising of 8, 16, 32 and the 64 observations (from left to right, and top to bottom). The
mean (thick solid line) of the psgp model posterior and 2 standard deviations (grey shading)
are shown along with the active points (black dots) and observations (grey crosses). The full
Gaussian process using the 64 observations is shown on the bottom right plot for comparison.

When using 64 active observations, the psgp algorithm performs, as one would expect, as the
full Gaussian process, yielding the same predictive mean and variance. When taking the number
of active points to 32 (half the data), the psgp still provides a robust approximation to the true
posterior process, although the variance is slightly larger due to the fact that the approximation
induces a small increase in uncertainty. With 16 active points (a quarter of the data), the mean
process is still captured accurately, however the uncertainty grows faster between active points,
which relates to the covariance estimation which needs to ascribe longer ranges to cover the
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Figure 2: Evolution of the psgp approximation as observations are processed

domain. Retaining only 8 active points leaves only a rough, although still statistically valid,
approximation to the underlying process. This simple experiment clearly shows the trade-off
between the size of the active set and the accuracy of the approximation, although we stress that
poor approximations also have appropriately inflated uncertainty.

The sequential nature of the psgp algorithm is illustrated on Figure 2. For a fixed number
of active points, the posterior approximation is plotted (from left to right) after 16, 32 and the
64 observations (grey crosses) have been projected onto the active set (black dots). Observations
are, in this example, presented sequentially from left to right rather than randomly, for illustra-
tion purposes. The effect is mainly seen on the mean process, showing that the observations
not retained in the active set are still taken into account in the posterior process. This is most
noticeable in the right hand part of the last two plots (32 to 64 observations), where the quality
of the fit is greatly improved by projecting the effect of the observations in that region onto the 8
active points.

5.2. Heterogeneous, non-Gaussian observation noise

When the errors associated with observations are non-Gaussian and/or have varying mag-
nitudes, we can include this knowledge in our model. Figure 3 shows a somewhat contrived
illustration of why utilising additional knowledge about a dataset is crucial to obtaining good
results during prediction. Additive noise of three types is applied to observations of a simple
underlying function. 210 uniformly spaced observations are corrupted with:

• moderate Gaussian white noise in the range [0,70],

• Exponential (positive) noise in the range [71,140],

• low Gaussian white noise in the range [141, 210].

Furthermore, in the region [141, 210], the function is observed through a non-linear observation
operator h[ f (x)] = 2

27 x3−2. The importance of using a correct combination of likelihood models
is illustrated by comparing a standard Gaussian process (left plot) using a single Gaussian likeli-
hood model with variance set to the empirical noise variance, and the psgp (right plot) using the
correct likelihood models.

In the centre, the GP overestimates the true function due to the positive nature of the obser-
vation noise, while in the rightmost region, it underestimates the mean since it is treating the
observations as direct measurements of the underlying function. Using the correct likelihood
models and an active set of 50 observations, the psgp is able to capture the true function more
accurately, as would be expected.

5.3. Parameter estimation

Figures 4 and 5 show the marginal likelihood profiles for the upper bound of the evidence
(used to infer optimal hyper-parameters) for Example 5.1 and Example 5.2 respectively. These
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Figure 3: Example with heterogeneous observation noise.

Figure 4: Marginal likelihood profiles (upper bound approximation) for Example 5.1.

Figure 5: Marginal likelihood profiles (upper bound approximation) for Example 5.2.
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profiles show the objective function as a single hyper-parameter is varied while keeping the
others fixed to their most likely values. The profiles are shown, from left to right, for the length
scale (or range), the sill variance and the nugget variance. The objective function is evaluated
for active sets of size 8 (diamonds), 16 (crosses), 32 (circles) and 64 (dots). For comparison, the
full evidence, as given by a full Gaussian process (using the 64 observations) is plotted as a thick
black line.

For Example 5.1 (Figure 4), we observe in the region where the optimal hyper-parameters lie
(corresponding to the minimum of the objective function) that the upper bound approximation
to the true evidence (solid black line) provides a reasonable, but faster, substitute, as long as
enough active points are retained. However, for low numbers of active points (8 or 16), the
evidence with respect to the range and nugget terms is poorly approximated. In such cases, it is
likely that the “optimal” range and nugget values will either be too large or too small depending
on initialisation, resulting in unrealistic correlations and/or uncertainty in the posterior process.
This highlights the importance of a retaining a large enough enough active set, the size of which
will typically depend on the roughness of the underlying process, with respect to the typical
sampling density.

In the case of complex observation noise (Example 5.2, Figure 5), we can see that the profiles
of the Gaussian process (GP) evidence and the psgp upper bound are very dissimilar, due to the
different likelihood models used. The evidence for the GP reflects the inappropriate likelihood
model by showing little confidence in the data (high optimal nugget value - not shown on the
right hand plot due to a scaling issue) and difficulty in choosing an optimal set of parameters (flat
profiles for the length scale and variance). Profiles for the psgp show much steeper minima for
the range and variance, while keeping the nugget term very small (high confidence in the data).
Again, this confirms that using a complex likelihood model is critical for extracting maximum
information from indirect observations or observations with non-Gaussian noise.

5.4. Application to spatial interpolation

5.4.1. Experiment setup

The third example shows an application of the psgp method to the interpolation of spatial
observations. The dataset is taken from the INTAMAP case studies3. The data consists of spatial
measurements of gamma dose rate from the EURDEP monitoring network (Stöhlker et al., 2009),
spread across Europe. We restrict the domain to Germany only, where the coverage is the densest
and most uniform. Out of a total of 2016 observations, 403 are kept aside for validation and a
psgp is fitted to the remaining ones in order to infer rates in regions where no data is available.

The psgp configuration used for that example includes the following settings:

• the covariance function chosen is a mixture of exponential, white noise and bias covariance
functions,

• the size of the active set is limited to 400 active points,

• hyper-parameters are estimated with a direct approximation to the evidence (based on the
active set only).

To benchmark psgp, we run the same experiment using the popular gstat package (Pebesma
and Wesseling, 1998) to perform simple kriging with a moving-window. Rudimentary analysis
of the empirical variogram suggests that a spherical covariance is an appropriate model for the
data. The spherical variogram model was fitted using ordinary least-squares to obtain the model
parameters. These estimated parameters were then used to perform the kriging.

3http://www.intamap.org/sampleRadiation.php
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5.4.2. Model validation

To validate the model, we look at several diagnostics. Figure 6 shows a scatter plot of the
predicted values at the 403 unobserved locations against the actual values, for psgp (left) and
gstat (right). The parameters for both methods are shown in Table 2, while Table 3 shows the
Mahalanobis distance and Root Mean Square error for the predicted data, in both cases. The
theoretical expected value for the Mahalanobis distance is 403 (the number of predictions).

Range Sill Nugget

PSGP (exponential kernel) 25.08 7511.18 97.22
GSTAT (spherical variogram) 5.63 457.98 102. 12

Table 2: Estimated parameters of PSGP and GSTAT

There is a very good agreement between both methods’ mean predictions, as indicated by the
almost identical Root Mean Square Error and the very similar scatter plots (the distribution of
points is again almost identical). The main difference lies in the estimation of uncertainty associ-
ated with the prediction. psgp is over-confident in its prediction, as indicated by the large range
parameter and confirmed by the inflated Mahalanobis distance. gstat shows a very good esti-
mation of the uncertainty in terms of Mahalanobis distance. psgp is able to do as well as gstat
in terms of mean prediction, in spite of using an active set smaller by a factor of 4. However, this
comes at the expense of quantifying the uncertainty. The overconfidence of psgp could be due
to the approximation error not being accounted for properly. Further investigation is required to
investigate the phenomenon more in detail and determine whether this is a characteristic of this
particular dataset or a limitation of the method itself.

Root Mean Square Error Mahalanobis distance

PSGP (exponential kernel) 11.69 1,164
GSTATS (spherical variogram) 11.63 419

Table 3: Diagnostics on the validation set

Regarding computation times, it takes a few minutes on a recent computer to estimate the
psgp paramaters, and 10-20 secondes to determine the optimal active set. This is slower than
gstat, which only requires a few seconds for parameter estimation. This is because the param-
eter estimation involves minimisation of the evidence of the data, which is a somewhat costly
operation. gstat uses a variogram fitting approach to determine the parameters, which is much
faster. It is worth pointing out that the parameter estimation only needs to be done once, and
further observations can then be processed by psgp without the need for additional training. It
would also be possible to use a variogram-based approach to determine the parameters of psgp
(or at least provide a good first guess for the parameters, thus reducing the number of optimisa-
tion steps required), improving the overall computation time.

5.4.3. Grid prediction

To assess the ability of psgp to capture the spatial characteristics of the data, we perform a
prediction on a uniform grid covering the data. The grid spans from latitude 47.4 to 55.02 and
longitude 6.04 to 15.03, at a square grid resolution of 0.0381 degrees (200 by 236 grid cells).
The mean and standard deviation of the psgp prediction are shown on Figure 7 (centre and right
plots, respectively) along with a scatter plot of the observations (left plot). For comparison,
similar information is shown on Figure 8 for gstat.

The results show a strong agreement between the mean prediction fields, which both capture
the main characteristics of the data. The predictive variance is lower for psgp than for gstat,
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Figure 6: Scatter plot of observed values against predicted values.

which is most probably a consequence of the overconfidence observed on the validation data.
The striking similarity of the predicted mean fields is a positive indication that it is possible to
retain the spatial characteristics of the observed spatial field, to a great degree of accuracy, for
only a portion of the data size. The variance shows a rapid increase in uncertainty as we move
outside the observed area, which is expected given the local variability of the data.

6. Discussion and conclusions

The examples employed to demonstrate the software described are naïve in the sense that a
minimal analysis has been reported due to space constraints. Two simple examples have shown
and motivated why such an algorithm is important, particularly when implemented in a fast,
efficient manner. The configuration of the algorithm was not discussed in detail as there is in-
sufficient space, however the software provides significant scope for configuration. Fine tuning
specific parameters can induce a further computational efficiency increase. For example, speci-
fying the active set a priori instead of the default swapping-based iterative refinement is a useful
option for reducing computation time. If the threshold for acceptance into the active set, γ, is set
too low, then this can cause an increase in computation time due to frequent swapping in and out
of active points.

It is clear from the profile marginal likelihood plots that for a given data set there will be a
minimal number of active points required to make the estimate of the hyper-parameters robust.
This is of some concern and suggest that good initialisation of the algorithm will be rather im-
portant, since a poor initialisation with ranges that are too long, might never recover if too few
active points are permitted in the active set. Further research is required on how to select the
active set, and its size most efficiently. Another feature we commonly observe is that where there
is an insufficient active set allocate the model prefers to increase the nugget variance to inflate
the predictive variance. We believe that an informative prior which strongly prefers lower nugget
variances could help address this pathology.

Applying the psgp code to real data reveals the difficulty of choosing optimal values for
the algorithm settings. For example the choice of a maximum active set size of 400 locations
is driven by a desire to balance accuracy with computational speed. In different applications
having a larger active set might make sense. The main benefit of the psgp approach is that one
can treat large complex data sets in near real time. An interesting question which requires more
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Figure 7: Interpolation using an exponential covariance function.

Figure 8: Interpolation using gstat
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work is how we could exploit multi-core or multi-processor environments to further improve
computational speed.

Future work will consider multiple outputs (co-kriging), the use of external predictors (uni-
versal kriging and regression kriging) in a batch projected Bayesian setting, and focus further on
validation of the models.
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Appendix A. Parametrisation of the posterior updates

This section provides some further insight into the parametrisation of the posterior Gaussian
process described in Section 3 (Equations 3-5). The aim of this section is to identify the param-
eters q and r necessary to update the mean function and covariance function of the process given
one or more observations. We consider the general case where several observations are consid-
ered at once, in which case the update requires a set of qi and Ri j parameters (q is a vector and
R a matrix). In the case of a single observation udpate, these parameters become the scalars q+
and r+ introduced in Section 3. These derivations and that of the following section are adapted
from Appendices A and B in Csató and Opper (2002). Full detail can be found in Lehel Csató’s
PhD thesis (Csató, 2002).

Appendix A.1. Parametrisation of the mean function update

We consider a prior Gaussian process p0 with mean function µ0(x) and covariance function
c0(x,x′). Assume we observe y = {y1, ...,yn} at locations X = {x1, ...,xn}. The corresponding
process response is denoted fy = ( f0, ..., fn), where fi = f (xi). We denote f the process reponse
over the entire domain. The posterior process given the observation is then expressed, following
Bayes’ rule:

ppost(f) =
1
Z

p0(f) p(y|fy) (A.1)

where Z =
∫

p0(f) p(y|fy) df is a normalising constant. Note that the likelihood term only de-
pends on the process at the observed locations, i.e. p(y|f) = p(y|fy).

The aim othe parametrisation is to express the posterior mean and variance in a recursive
manner. This can be achieved using the Gaussian expectation identity from Appendix B, as
detailed below.

We start by computing the mean function of the posterior process:

µpost(x) =
∫

fx ppost(f) df (A.2)

=
1
Z

∫
fx p0(f) p(y|fy) df (A.3)

=
1
Z

∫
fx p0( fx, fy) p(y|fy) d f dfy (A.4)

where fx = f (x) is the process reponse at location x and the process only depends on the observed
locations and x (the dependencies on other locations have been integrated out).

Applying the result from Appendix B, Equation (B.6):∫
xi p(x)g(x)dx = µi

∫
p(x)g(x)dx+

n

∑
j=1

Σi, j

∫
p(x)

∂g(x)
∂x j

dx (A.5)

to xi = fx, x = ( fx, fy) and g(x) = p(y|fy) leads to:

µpost(x) =
1
Z

[
µ0(x)

∫
p0( fx, fy) p(y|fy) d f dfy +

n

∑
i=1

c0(x,xi)
∫

p0( fx, fy)
∂p(y|fy)

∂ fi
d f dfy

]
.

(A.6)
Note that the sum in the second term only includes n terms as ∂p(y|fy)/∂ fx = 0. Furthermore, fx

disappears from the integrals as it only appears in the prior. The normalisation factor cancels out
the first integral, and leads to the parametrisation:

µpost(x) = µ0(x)+
n

∑
i=1

c0(x,xi)qi. (A.7)

with

qi =

∫
p0(fy)

∂

∂ fi
p(y|fy) d f dfy∫

p0(fy) p(y|fy) d f dfy
. (A.8)
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It is possible, through a change of variable in the numerator integral, to rewrite qi as (see Csató
and Opper (2002) for full derivation):

qi =
∂

∂µ0(xi)
ln
∫

p0(fy) p(y|fy)dfy. (A.9)

Appendix A.2. Parametrisation of the covariance function update

The expression of Ri j follows a similar derivation. Start by noting that:

cpost(x,x′) = µpost(xx′)−µpost(x)µpost(x′) (A.10)

and apply the result from Appendix B twice to get:

cpost(x,x′) = c0(x,x′)+
n

∑
i=1

n

∑
j=1

c0(x,xi)(Di j−qiq j)c0(x j,x′) (A.11)

with

Di j =
1
Z

∫
p0(fy)

∂2

∂ f j∂ fi
p(y|fy)dfy. (A.12)

Ri j is then defined as Di j − qiq j. Like qi, ri j can be rewritten as the partial derivative of the
logarithm of the expectation, after a change of variable and rearranging, leading to:

Ri j =
∂2

∂µ0(xi)∂µ0(x j)
ln
∫

p0(fy) p(y|fy)dfy. (A.13)

Appendix A.3. Recursive update

If we consider a single observation (x+,y+), we can update the mean function and covariance
function of the posterior process as follows:

µ+post(x) = µpost(x)+q+cpost(x,x+) (A.14)

c+post(x,x
′) = cpost(x)+ r+cpost(x,x+)cpost(x+,x′) (A.15)

where

q+ =
∂

∂µpost(x+)
ln
∫

ppost( f+) p(y+| f+)d f+ (A.16)

r+ =
∂2

∂µpost(x+)2 ln
∫

ppost( f+) p(y+| f+)d f+. (A.17)

These equation can be applied recursively from the prior, yielding to the following parametrisa-
tion (after n observations have been used to update the posterior):

µpost(x) = µ0(x)+
n

∑
i=1

αi c0(x,xi) (A.18)

cpost(x,x′) = c0(x,x′))+
n

∑
i, j=1

c0(x,xi)C(i, j)c0(x j,x′) (A.19)

with α and C depending on q+ and r+ as defined in Equation (5).

Appendix B. Gaussian expectation identity

Consider an n-dimensional Gaussian distribution p(x) with mean µ and covariance matrix Σ.
The expectation of x with respect to p(x)g(x), where g is an arbitrary likelihood function, can be
written: ∫

x p(x)g(x)dx = µ
∫

p(x)g(x)dx+Σ

∫
p(x)∇g(x)dx. (B.1)
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The proof stems from the partial integration rule (Gradshteyn and Ryzhik, 1994):∫
p(x)∇g(x)dx =−

∫
∇p(x)g(x)dx (B.2)

in which fast decay of the Gaussian function is used to dimiss one of the terms. Substituting in
(B.2) the gradient of the Gaussian distribution:

∇p(x)
dx

=−Σ
−1(x−µ) p(x) (B.3)

leads to: ∫
p(x)∇g(x)dx =−Σ

−1
∫
(x−µ) p(x)g(x)dx (B.4)

and, finally, after multiplication on both sides by Σ and rearranging:∫
x p(x)g(x)dx = µ

∫
p(x)g(x)dx+Σ

∫
p(x)∇g(x)dx. (B.5)

Last, note that for a given component xi, this result becomes:∫
xi p(x)g(x)dx = µi

∫
p(x)g(x)dx+

n

∑
j=1

Σi, j

∫
p(x)

∂g(x)
∂x j

dx. (B.6)

where the sum in the second term corresponds to the i-th element of the vector:

Σ

∫
p(x)∇g(x)dx.
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Appendix C. Installation of the gptk library

Appendix C.1. Installation of IT++

gptk requires the IT++ library to be installed. On linux systems, IT++ binaries can usually
be found in standard repositories. For instance, on Ubuntu 8.10, run the following command to
install IT++:

$ sudo apt-get install libitpp6gf libitpp -dev libitpp6 -dbg

Alternately, IT++ can be installed directly from source. This can be done through the following
steps:

1. Download itpp-4.0.6.tar.gz and itpp-external-3.2.0.tar.gz from http://sourceforge.

net/projects/itpp/files.

2. Extract, configure, build and install itpp-external:

$ tar -xzvf itpp -external -3.2.0.tar.gz

$ cd itpp -external -3.2.0

$ ./configure

$ make

$ sudo make install

$ cd ..

3. Extract, configure, build and install itpp:

$ tar -xzvf itpp -4.0.6.tar.gz

$ cd itpp -4.0.6

$ ./configure --enable -debug --enable -exceptions

$ make

$ make check

$ sudo make install

$ cd ..

Note: compilation of the library can take a long time on some less recent computers (about
15 minutes on a centrino duo laptop).

Appendix C.2. Installation of gptk

1. Download the gptk archive from http://code.google.com/p/gptk/downloads/list

2. Extract the archive:

$ tar -xzvf libgptk -0.2.tar.gz

3. Run the configure script

$ cd libgptk -0.2.tar.gz

$ ./configure

If you have installed IT++ in a non standard folder (e.g. /opt/itpp), you will need to
indicate the path to the itpp-config script (excluding the script itself):

$ ./configure --with -itpp -config=/opt/itpp/bin/

We recommend you install gptk to a local directory, e.g. /opt/gptk:

$ ./configure --prefix=/opt/gptk

4. Build and install the library:

make && sudo make install

This will build the library, the tests and the demonstration examples.

5. Take a look at the demonstration examples source code in the examples/ folder and read
the next section to get started with gptk.
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Appendix D. Introduction to gptk

This simple tutorial shows how to train psgp on a univariate example. The data is generated
from a sine function and corrupted with white noise. psgp is trained on the observed data and
the posterior mean and variance are plotted.

Appendix D.1. Example source code

2 /*
3 * Simple noisy sine example

4 *
5 * Author: Remi Barillec <r.barillec@aston.ac.uk>

6 */

7 #include <iostream >

8 #include <itpp/itbase.h>

9

10 #include "itppext/itppext.h"

11 #include "plotting/GraphPlotter.h"

12 #include "covariance_functions/SumCF.h"

13 #include "covariance_functions/GaussianCF.h"

14 #include "covariance_functions/WhiteNoiseCF.h"

15 #include "gaussian_processes/PSGP.h"

16 #include "likelihood_models/GaussianLikelihood.h"

17 #include "optimisation/SCGModelTrainer.h"

We start by including the headers of all required files. These are essentially the IT++ library
base header and the gptk classes needed in the example.

19 using namespace std;

20 using namespace itpp;

21 using namespace itppext;

We also import all declarations in the standard library, the IT++ library and our set of extension
routines to IT++, itppext.

23 #define NUM_X 200 // X resolution

24 #define NUM_OBS 20 // Number of observations

25 #define NUM_ACTIVE 5 // Number of active points

26 #define NOISE_VAR 0.1 // Observation noise variance

We define a few constants: the resolution at which we sample the data, the total number of
observations, the number of active points and the observation noise variance.

28 int main(int argc , char* argv[]) {

29

30 // Generate data from a sine

31 vec X = linspace(0, 2*pi, NUM_X);

32 vec Y = sin(X); // True function

33

34 // Randomly select a subset of the data as observations,

35 // and add white noise

36 ivec Iobs = randperm(NUM_X).left(NUM_OBS);

37 vec Xobs = X(Iobs);

38 vec Yobs = Y(Iobs) + sqrt(NOISE_VAR)*randn(NUM_OBS);

The first part of the example consists in generating some data from a sine function. We
first take some points between 0 and π (line 31) and compute the corresponding y(x) = sin(x)
(line 32). We then take a random subset of the points and corrupt them with noise. On line 36,
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randperm returns a vector of random permutations of all numbers between 1 and its argument,
which we then truncate to keep only the first NUM_OBS values. We then extract the xi (line 37) and
yi (line 38) corresponding to the selected indices, and corrupt the yi with Gaussian white noise
of fixed variance (line 38).

40 // Covariance function: Gaussian + Nugget

41 double range = 0.5; // Initial range

42 double sill = 1; // Initial sill

43 double nugget = NOISE_VAR; // Nugget variance

44

45 GaussianCF gaussianCovFunc(range , sill);

46 WhiteNoiseCF nuggetCovFunc(nugget);

47 SumCF covFunc;

48 covFunc.add(gaussianCovFunc);

49 covFunc.add(nuggetCovFunc);

We then initialise the covariance function for psgp. Here, we decide to use a Gaussian kernel
with white noise. The range and sill (or length scale and variance) of the Gaussian kernel and the
variance of the white nosie are set to sensible values (lines 41-43). We then create a GaussianCF
and a WhiteNoiseCF objects and add them together inside a SumCF object (lines 45-49).

51 // Initialise psgp - we need to convert the input vector

52 // to a matrix

53 mat XobsMat = mat(Xobs);

54 PSGP psgp(XobsMat , Yobs , covFunc , NUM_ACTIVE);

We then create a PSGP object, specifying the training inputs (XobsMat) and outputs (Yobs), the
covariance function structure (covFunc, previously defined) and the number of active points.
Note that the PSGP constructor expects a matrix of inputs rather than a vector, so line 53 converts
the vector of inputs into a matrix.

56 // Use a Gaussian likelihood model with fixed variance

57 GaussianLikelihood gaussLik(nugget);

58

59 // Compute the posterior (first guess), which projects the whole

60 // observed data onto a subset of optimal active points.

61 psgp.computePosterior(gaussLik);

The next step is to select the set of active points, based on the initial parameters. This requires
a likelihood to be specified for each observation, or as is the case here, to use a common likeli-
hood for all observations. A GaussianLikelihood object is created with variance equal to the
observation noise (assumed known). The computePosterior method of the PSGP object is the
core routine, which selects the optimal active points based on the specified likelihood.

63 // Estimate parameters using Scaled Conjugate Gradients

64 SCGModelTrainer scg(psgp);

65 scg.Train(10);

66

67 // Recompute the posterior and active points for the new parameters

68 psgp.resetPosterior();

69 psgp.computePosterior(gaussLik);

Having selected a set of initial active points, we go on to estimate the parameters of the covariance
function. This is done using an SCGModelTrainer, which applies a scaled-conjugate gradient
minimisation to the error function (by default, the error function is the log-evidence of the data).
The psgp object is a type of Optimisable object, meaning it provides an objective function and
its gradient, which are used by the SCGModelTrainer.
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Once the parameters have been optimised (line 65), the active set is recomputed from scratch,
by first resetting the posterior and recomputing it.

71 // Make predictions - we use the Gaussian covariance function only

72 // to make non-noisy prediction (no nugget)

73 vec psgpmean = zeros(NUM_X);

74 vec psgpvar = zeros(NUM_X);

75 psgp.makePredictions(psgpmean , psgpvar , mat(X), gaussianCovFunc);

Prediction is then made using the makePrediction method of PSGP. The first 2 arguments are
vectors for storing the predicted mean and variance, respectively. The next argument is the
matrix of locations at which the prediction is made (here, the entire domain). The last argument
(optional) can be used to specify a different covariance function for prediction. This is mainly
useful, as here, to make non-noisy prediction: one just needs to pass in the covariance function
structure deprived of the nugget term.

77 // Plot results using GraphPlotter (a gnuplot interface)

78 GraphPlotter gplot = GraphPlotter();

79

80 // Plot psgp mean and variance

81 gplot.plotPoints(X, psgpmean , "psgp mean", LINE , BLUE);

82 gplot.plotPoints(X, psgpmean + 2.0*sqrt(psgpvar), "error bar", LINE , CYAN);

83 gplot.plotPoints(X, psgpmean - 2.0*sqrt(psgpvar), "error bar", LINE , CYAN);

84

85 // Plot true function and observations

86 gplot.plotPoints(X, Y, "true function", LINE , RED);

87 gplot.plotPoints(Xobs , Yobs , "observations", CROSS , BLACK);

88

89 // Plot active points

90 vec activeX = (psgp.getActiveSetLocations ()).get_col(0);

91 vec activeY = Yobs(psgp.getActiveSetIndices ());

92 gplot.plotPoints(activeX , activeY , "active points", CIRCLE , BLUE);

93

94 return 0;

95 }

The last step consists in plotting the data using the GraphPlotter. The GraphPlotter uses
Gnuplot as a back end to generate and display the plots. Plotting is done by calling the plotPoints
method, passing in vectors of x and y coordinates. The next 3 arguments are the title of the plot,
the type (LINE for a solid line, CROSS for discrete ’+’ markers) and the colour.
Appendix D.2. Building the example

The source code above is provided in the example file demo_sine.cpp. We show here how
it is compiled and linked against the libraries (gptk and IT++). We assume the itpp-config

script is found in the system path. Otherwise, the full path to the script must be given (that is,
replace any instance of itpp-config with /opt/itpp/bin/itpp-config or whichever path
itpp is installed in).

97 g++ -c ‘itpp -config --cflags ‘ -I/opt/gptk/include demo_sine.cpp

98 g++ ‘itpp -config --libs ‘ -L/opt/gptk/lib -lgptk demo_sine.o -o demo_sine

The example can then be run using

99 ./demo_sine

If the libraries (IT++ and gptk) are not in standard location (e.g. /usr/lib), the com-
mand above will fail, complaining about missing libraries. To fix this error, one needs to
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add the libraries’ path to the runtime library path (where the system looks for installed li-
braries). For example, if both IT++ and gptk are installed in /opt, this is done by changing
the LD_LIBRARY_PATH environment variable:

100 export LD_LIBRARY_PATH=/opt/itpp/lib:/opt/gptk/lib:$LD_LIBRARY_PATH

101 ./demo_sine

Further, more advanced examples can be found in the examples/ folder that ships with the
library.
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