
1

Language reference table of contents

Language reference introduction�  9

! (exclamation point)	 Pause Program Execution �  10

 (Single Space Character)	 Single Space Delimiter and String Terminator�  12

Direct Binary Mode Control	 Binary Trajectory Data Format�  13

@PE	 Real-Time Actual Position Error�  16

@V	 Present Trajectory Velocity�  17

a . . z	 32-Bit Variables�  19

aa . . zzz	 32-Bit Variables�  21

ab[index]	 8-bit Array Variables�  23

al[index]	 32-Bit Array Variables�  26

aw[index] 	 16-bit Array Variables�  29

A=expression	 Set Acceleration�  32

ADDR	 Set Motor Address�  34

AIN{address}{input}	 Analog Input from I/O Device�  35

AMPS=expression	 Set Drive PWM Limit�  36

AOUT{address},{value}	 Analog Output to I/O Device�  37

Ba	 Peak-Over-Current Status Bit�  38

Bb	 Parity Error Status Bit�  39

Bc	 Communications Overflow Status Bit�  40

Be	 Excessive Position Error Status Bit�  43

Bf	 Communications Framing Error Status Bit�  44

Bh	 Overheat/RMS Over-Current Status Bit�  45

Bi	 Index-Position Captured Status Bit�  47

Bk	 User Program Checksum Error Status Bit�  49

Bl	 Historical Left-Limit Status Bit�  50

Bm	 Real-Time Left-Limit Status Bit�  52

Bo	 Motor-Off Status Bit�  53

Bp	 Real-Time Right-Limit Status Bit�  54

Br	 Historical Right-Limit Status Bit�  55

Bs	 Syntax-Error Status Bit�  57

Bt	 Trajectory-In-Progress Status Bit�  58

Bu	 Array Index Error Status Bit�  60

Bw	 Encoder-Wrap-Around Status Bit�  61

Bx	 Real-Time Index Input Status Bit�  63

BASE	 Cam Mode Master Cycle Length�  64

BRKC	 Brake Control Re-Direct to Port C�  66

2

Language reference table of contents (continued)

BRKENG	 Brake Engage�  67

BRKG	 Brake Control Re-Direct to Port G�  68

BRKI	 Brake Control Re-Direct to Port I�  69

BRKRLS	 Brake Release�  70

BRKSRV	 Brake Engage When Not Servoing�  71

BRKTRJ	 Brake Engage With No Active Trajectory�  72

BREAK	 Program Flow Loop Exit Control�  74

C{statement_label_number}	 Program Subroutine Label�  76

CCHN(type,channel)	 Close Communications Channel�  78

CHN	 Combined Communications Error Flag�  79

CHN0	 Communications Error Flag (RS-232)�  81

CHN1	 Communications Error Flag (RS-485)�  83

CLK	 Hardware Clock Variable�  85

CMD	 Accept Command Input RS-232�  87

CMD1	 Accept Command Input RS-485�  89

CTR	 Second Encoder/Step and Direction Counter�  91

D=expression	 Set R elative Distance�  93

DAT	 Accept Data Input Only (RS-232)�  95

DAT1	 Accept Data Input Only (RS-485)�  97

DEFAULT	 Switch-Case Structure Element�  99

DIN{port}{channel}	 Input Byte From I/O Device�  101

DOUT{port}{channel}{expression}	 Output Byte to I/O Device�  102

E=expression	 Set Allowable Position Error�  103

ECHO	 Echo Incoming RS-232 Data�  104

ECHO_OFF	 Turn RS-232 Echo Off�  105

ECHO1	 Echo Incoming RS-485 Data�  106

ECHO_OFF1	 Turn RS-485 Echo Off�  107

ELSE	 IF-Structure command flow element�  108

ELSEIF	 IF-structure command flow element�  110

ENC0	 Set/Restore Internal Encoder for Servo�  112

ENC1	 Select External Encoder for Servo�  113

END	 End Program Code Execution�  114

ENDIF	 End IF Statement�  115

ENDS	 End SWITCH Statement�  116

EPTR=expression	 Set Data EEPROM Pointer�  117

3

Language reference table of contents (continued)

ES400	 Set EPROM Read/Write Speed�  118

ES1000	 Set EPROM Read/Write Speed�  120

F	 Load PID Filter�  122

F=expression	 Motor Function Control�  123

G	 Start Motion (GO)�  126

GETCHR	 Get Character from main RS-232�  129

GETCHR1	 Get Character From RS-485�  130

GOSUB{number}	 Subroutine Call�  131

GOTO{number}	 Branch Program Flow to a Label�  133

I (capital i)	 Encoder Index Pulse Location�  134

IF expression	 Conditional Program Code Execution�  136

KA=expression	 PID Acceleration Feed Forward�  139

KD=expression	 PID Derivative Compensation�  140

KG=expression	 PID Gravity Compensation �  141

KI=expression	 PID Integral Compensation�  142

KL=expression	 PID Integral Limit�  143

KP=expression	 PID Proportional Compensation�  144

KS=expression	 PID Derivative Term Sample Rate�  145

KV=expression	 PID Velocity Feed Forward�  146

LEN	 Main RS-232 data buffer fill level�  147

LEN1	 RS-485 data buffer fill level�  148

LIMD	 Enable Directional Travel Limits�  149

LIMH	 Travel Limits Active High�  150

LIML	 Travel Limits Active Low�  151

LIMN	 Enable Non-Directional Travel Limits�  152

LOAD	 Download Compiled User Program to Motor�  153

LOCKP	 Prevent User Program Upload�  155

LOOP	 Return to WHILE Program Flow Control�  156

MC	 Enable Mode-CAM (Electronic Camming)�  158

MC2	 Mode CAM 2X Multiplier�  160

MC4	 Mode CAM 4X Multiplier�  161

MC8	 Mode CAM 8X Multiplier�  162

MD50	 Enable Direct Analog-Input Drive-Mode�  163

MF0	 Enable Quadrature-Input Counter Mode�  164

MF1	 Enable Mode-Follow, Raw Resolution�  166

MF2	 Enable Mode-Follow Half-Quadrature�  167

4

Language reference table of contents (continued)

MF4	 Enable Mode-Follow Full Quadrature�  168

MFDIV	 Set Mode-Follow Divisor�  169

MFMUL	 Set Mode-Follow Multiplier�  170

MFR	 Calculate/Enable Mode-Follow-Ratio�  171

MP	 Enable Position-Mode�  173

MS	 Enable Mode-Step�  175

MS0	 Enable Step/Direction Counter Mode�  177

MT	 Enable Torque-Mode�  180

MTB	 Enable Mode Torque Brake�  182

MV	 Enable Velocity-Mode�  183

O=expression	 Set Main Position Counter�  185

OCHN	 Open /Set-up Communications Channel�  187

OFF	 Turn Off Drive Stage�  188

P=expression	 Set Commanded Absolute Position�  189

PID#	 P.I.D. Tuning Filter Control�  191

PRINT()	 Print to Primary Communications Port�  193

PRINT1()	 Print to Secondary Communications Port�  195

PRINTA() . . . PRINTH()	 Print to External LCD Display�  197

Q	 Report Host-Mode Status �  199

Ra . . . Rz	 Report 32-Bit Variable Data Value�  200

Raa . . . Rzz	 Report 32-Bit Variable Data Value�  202

Raaa . . . Rzzz	 Report 32-Bit Variable Data Value�  204

Rab[index]	 Report 8-Bit Array Data Value�  206

Ral[index]	 Report 32-Bit Array Data Value�  208

Ral[index](continued)	 Report 32-Bit Array Data Value�  209

Raw[index]	 Report 16-Bit Array Data Value�  210

RA	 Report Commanded Acceleration�  212

RAIN{port}{input}	 Report Expanded Analog Input Value�  213

RAMPS	 Report Allowable PWM Limit�  214

RBa	 Report PEAK-Over-current Status Bit�  215

RBb	 Report Communications Parity Error Status Bit�  216

RBc	 Report Communications Overflow Status Bit�  217

RBd	 Report Math Overflow Status Bit�  218

RBe	 Report Position Error Status Bit�  219

RBf	 Report Communications Framing Error Status Bit�  220

5

Language reference table of contents (continued)

RBh	 Report Over-Heat/RMS Over-Current Status Bit�  221

RBi	 Report Index-Captured Status Bit�  222

RBk	 Report EEPROM Checksum Status Bit�  223

RBl	 Report Real-Time Left-Over-Travel-Limit State�  224

RBm	 Report Historical Left-Over-Travel-Limit Status Bit �  225

RBo	 Report Motor-Off Status Bit�  226

RBp	 Report Historical Right-Over-Travel-Limit Logic State �  227

RBr	 Report Real-Time Right-Over-Travel-Limit State�  228

RBs	 Report Syntax-Error Status Bit�  229

RBt	 Report Busy-Trajectory Status Bit�  230

RBu	 Report Array Index Error Status Bit�  231

RBw	 Report Encoder Wrap Status Bit �  232

RBx	 Report Real-Time Index Pulse Logic State�  233

RCHN	 Report Serial Communications Status Flags�  235

RCHN0	 Report Primary Serial Port Status�  236

RCHN1	 Report Secondary Serial Port Status�  238

RCS	 Report Primary Serial Port Checksum�  240

RCS1	 Report Secondary Serial Port Checksum�  241

RCTR	 Report Secondary Encoder Counter�  242

RD	 Report Commanded Relative Distance Value �  243

RDIN{port}{channel}	 Report Expanded Input Logic Status�  244

RE	 Report Maximum Allowable Position Error�  245

RETURN	 Return-From-Subroutine Program Flow Control�  246

RI	 Report Last-Captured Index Pulse Location�  247

RKA	 Report Acceleration-Feed-Forward Gain Tuning Value�  248

RKD	 Report Derivative-Gain Tuning Value�  249

RKG	 Report Gravitational Compensation Gain Tuning Value�  250

RKI	 Report Integral-Gain Tuning Value�  251

RKP	 Report Proportional-Gain Tuning Value�  252

RKS	 Report Inertial Time Constant Tuning Value�  253

RKV	 Report Velocity-Feed-Forward Tuning Value�  254

RP	 Report Real Time Position�  255

RPE	 Report Real-Time Position Error�  256

RS	 Report 8-Bit System Status Byte�  258

RS2	 Restore Port G normal control�  260

6

 Language reference table of contents (continued)

RS4	 Set Port G to RS-485 R/W Control Pin�  261

RSP	 Report CPU speed and Firmware Revision�  262

RT	 Report Commanded Torque Value�  263

RUN	 Start/Re-Start Program Execution�  264

RUN?	 Halt Program Execution until RUN Received�  266

RV	 Report Current Trajectory Velocity�  267

RW	 Report System 16-Bit Status Word�  268

S (as command)	 Stop Motion Quickly�  269

S (as status byte)	 8-Bit System Status Byte�  270

SADDR#	 Set Motor Address�  272

SILENT	 Silence Primary Port Outgoing Communications�  274

SILENT1	 Silence Secondary Port Outgoing Communications�  275

SIZE=expression	 Set Number of CAM Table Data Points�  276

SLEEP	 Ignore Incoming Commands on Primary Port�  278

SLEEP1	 Ignore Incoming Commands on Secondary Port�  279

STACK	 Clear Stack Pointer Register�  280

SWITCH expression	 Selectable Program Flow Control�  282

T=expression	 Set Open Loop Commanded Torque Value�  284

TALK	 Enable Outgoing Messages on Primary Port �  286

TEMP	 Read Motor Temperature�  288

TH	 Set Maximum Allowable Temperature�  289

THD	 Set Overheat Delay Timer�  290

TWAIT	 Pause Program Execution During Active Trajectory�  291

UA=expression	 Set I/O Port A Out t Logi c State�  292

UAA 	 Read I/O Port A as Analog Input�  293

UAI (as command)	 Set I/O Port A to Input�  294

UAI (as input value)	 Read I/O Port A Logic State�  295

UAO (as command)	 Set I/O Port A to Output�  296

UBexpression	 Set I/O Port B Output Logic State�  297

UBA	 Read I/O Port B as Analog Input�  298

UBI (as command)	 Set I/O Port B to Input�  299

UBI (as input value)	 Read I/O Port B Logic State�  300

UBO (as command)	 Set I/O Port B to Output�  301

UCexpression	 Set I/O Port C Output Logic State�  302

UCA	 Read I/O Port C as Analog Input�  303

UCI (as command)	 I/O COMMAND�  304

7

Language reference table of contents (continued)

UCI (as input value)	 Read I/O Port C to Input�  305

UCO (as command)	 Set I/O Port C to Output�  306

UCP	 Set I/O Port C as Positive Over Travel Limit�  307

UDexpression	 Set I/O Port D Output Logic State�  308

UDA	 Read I/O Port D as Analog Input�  309

UDI (as command)	 Set I/O Port D to Input�  310

UDI (as input value)	 Read I/O Port D to Input�  311

UDM	 Set I/O Port D as Negative Over Travel Limit�  312

UDO (as command)	 Set I/O Port D to Output�  313

UEexpression	 Set I/O Port E Output Logic State�  314

UEA	 Read I/O Port E as Analog Input�  315

UEI (as command)	 Set I/O Port E to Input�  316

UEI (as input value)	 Set I/O Port E to Input�  317

UEO (as command)	 Set I/O Port E to Input�  318

UFexpression	 Set I/O Port F Output Logic State�  319

UFA	 Read I/O Port F as Analog Input�  320

UFI (as command)	 Set I/O Port F to Input�  321

UFI (as input value)	 Read I/O Port F Logic State�  322

UFO (as command)	 Set I/O Port F to Output�  323

UG	 Enable/Re-Enable Port G Sync Functionality�  324

UGexpression	 Set I/O Port G Output Logic State�  325

UGA (as input value)	 Read I/O Port G As Analog Input�  326

UGI (as input value)	 Read I/O Port G Logic Level State�  327

UGI (as command)	 Set I/O Port G to Input�  328

UGO (as command)	 Set I/O Port G to Output�  329

UP	 Complied User Program and Header Upload�  330

UPLOAD	 Standard User Program Upload �  331

V	 Commanded Velocity�  332

VLD(variable, number)	 Data EEPROM READ/WRITE COMMAND�  333

VST(variable, number)	 DATA-EEPROM READ/WRITE COMMAND�  335

WAIT=expression	 Pause Program Flow for pre-determined time�  337

WAKE	 Enable Open Communications on Primary Port�  338

WAKE1	 Enable Open Communications on Secondary Port�  339

WHILE expression	 Conditional Program Loop Flow Control�  340

X	 Decelerate Shaft to a Relative Position�  342

Z	 Total CPU Reset�  343

8

Za	 Reset Peak Over Current Flag�  344

Zb	 Reset Comms Parity Error Flag�  345

Zc	 Reset Comms Buffer Overflow Flag�  346

Zd	 Reset Math Overflow Error Flag�  347

Ze	 Reset Position Error Flag�  348

Zf	 Reset Comms Framing Error Flag�  349

Zl	 Reset Historical Left Limit Flag Flag�  350

Zr	 Reset Historical Right Travel Limit Flag�  351

Zu	 Reset Array Index Error state Flag�  353

Zw	 Reset Encoder Wrap Status Flag�  354

ZS	 Global Reset System State Flags�  355

Array Variable Memory Map	 Page 1 of 2�  357

Array Variable Memory Map	 Page 2 of 2�  358

Language reference table of contents (continued)

9

Language reference introduction

Contact Us:

Animatics Corporation
3200 Patrick Henry Dr.
Santa Clara, CA 95054
USA
Tel: 1 (408) 748-8721
Fax: 1 (408) 748-8725
www.animatics.com

The Smartmotor™ "Language Reference" lists each Smartmotor command
in alphabetical order. Every command is described in exacting detail and
shown in the context of a real-world example where it applies.

The commands are supplemented with a "Related Commands" section in the
outside column that is designed to guide you to other pertinent commands
and assure that you become aware of every resource the Smartmotor has to
offer to address your specific need.

The examples are printed in a bold in a MORE STRUCTURED FONT to be
quickly and unmistakably identified and interpreted. Comments are included
and separated with a single quotation mark as they would be in your own
programs.

You will almost certainly find the SmartMotor programmability the most pow-
erful of any motion controller you have ever used. Any problem you may be
facing will have many solutions to choose from. The key to successful appli-
cation programming is knowing enough to choose the most elegant solution
available.

Please let us know if you find any errors or omissions in this book so that
we may improve it for future readers. Such notifications should be sent
by e-mail with the words "Language Reference" in the subject line sent to:
info@animatics.com. Thank you in advance for your contribution.

©2001, 2002 Animatics Corporation. All rights reserved

Animatics The SmartMotor Language Reference.

This book is furnished under license and may be used or copied only in
accordance with the terms of such license. The content of this book is furnished
for informational use only, is subject to change without notice and should not be
construed as a commitment by Animatics Corporation. Animatics Corporation
assumes no responsibility or liability for any errors or inaccuracies that may
appear in this book.

Except as permitted by such license, no part of this publication may be
reproduced, stored in a retrieval system or transmitted, in any form or by any
means, electronic, mechanical, recording, or otherwise, without the prior written
permission of Animatics Corporation.

Animatics, the Animatics logo, SmartMotor and the SmartMotor logo are all
trademarks of Animatics Corporation. Windows, Windows 95/98, Windows 2000
Windows NT and Windows XP are all trademarks of Microsoft Corporation.

10

! (exclamation point)

	 Pause Program Execution

APPLICATION:	 Program flow control	

DESCRIPTION:	 Pauses Program Execution

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 Use ENTER key from host terminal

REPORT COMMAND:	 None

READ/WRITE:	 N/A		

LANGUAGE ACCESS:	 Use only within a user program

UNITS:	 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 N/A

DEFAULT VALUE:	 N/A

FIRMWARE VERSIONS:	 All

DETAILED DESCRIPTION:

The command ! suspends the user program until a properly terminated character or
string is received through the SmartMotor™ serial port. As long as the SmartMotor is in
command mode, the character or string received will be interpreted as a command.

The ! command is useful when debugging new programs and stopping output streams
from the motor at runtime. The ! command doesn’t affect the trajectory generator or a
move in progress.

See sample code on next page:

Related
Commands:

GETCHR

GETCHR1

11

EXAMPLE: (user debug output page with pause)

 a=10000000	 'program parameter
	 O=a		 'set axis origin
	 MP		 'set buffered motion mode to Mode Position
	 A=100	 'set buffered acceleration
	 V=4000	 'set buffered maximum velocity
	 P=-a	 'set buffered target position
	 b=50	 'loop counter
	 c=0		 'data set counter
	 GOSUB10	'call debug routine
	 G
	 WHILE b	'while b>0	
		 GOSUB10 		 'emit data set
		 IF Bt==0 	 'exit if trajectory done
			 BREAK
		 ENDIF
		 b=b-1		 'decrement loop index
	 LOOP		
	 GOSUB10	'emit final data set	
	 END		 'program terminate

C10
	 c=c+1		 'increment data set counter
	 'NOTE PRINT(#13) sends a carriage return		
	 PRINT(#13,#13,"DATA SET ")
	 Rc	
	 PRINT(#13,"Value of a ",a)
	 PRINT(#13,"Value of b ",b)
	 PRINT(#13,"Position ")
	 RP
	 PRINT("Velocity ")
	 RV
	 PRINT("Acceleration ")
	 RA
	 PRINT("Position Error ")
	 RPE

	 !			 ‘wait for ENTER from SMI terminal
RETURN

Related
Commands:

GETCHR

GETCHR1

! (exclamation point) (continued)
	 Pause Program Execution

12

APPLICATION:	 Program flow control

DESCRIPTION:	 Single spaces placed between a series of user 		
	 variables or commands

EXECUTION:	 Immediate	

FIRMWARE VERSIONS:	 All

DETAILED DESCRIPTION:

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT COMMAND:	 N/A

READ/WRITE:	 N/A		

LANGUAGE ACCESS:	 Serial communications channel data

A single space character may be placed between a series of user commands in a
single ASCII string as delimiter. If sent from a PLC or PC, the same space character
can be used as an string terminating character.

When assigning values to sequential variables, use between assigned value and ter-
minate sequence with an immediately following period.					
 The space character can also be used in PRINT command strings in like manner.

EXAMPLE as Delimiter for variable initialization:
	 n 7 2 8 56. 	 '(Note spaces and period)

	 equivalent:
	 n=7 o=2 p=8 q=56

	
	 t=6
	 aw[t] 63 44 98. 	 '(Note spaces and period)

	 equivalent:
	 aw[6]=63 aw[7]=44 aw[8]=98

EXAMPLE as Delimiter and Null Terminator in PRINT command:
	 PRINT("a=1 b=2 ")
	 'note space after b=2 as null terminator

 	 equivalent:
	 PRINT("a=1 b=2",#13)
	 'note carriage return as null terminator

Note: When sending commands via serial port from a PC or PLC or other controller, a space
character can be used as both a delimiter and a string terminator. It can be used equally and
interchangeably with a carriage return as a string terminator.

 (Single Space Character)
	 Single Space Delimiter and String Terminator

Related
Commands:

Carriage Return

13

APPLICATION:	 Direct Mode Position, Velocity, and Acceleration Data

DESCRIPTION:	 Binary Packet Data

EXECUTION:	 Immediate	

CONDITIONAL TO:	 Appropriate terminal

LIMITATIONS:	 N/A

REPORT COMMAND:	 N/A

READ/WRITE:	 N/A		

LANGUAGE ACCESS:	 Serial communications channel data

UNITS:	 Function byte + 32 bit binary packet

RANGE OF VALUES:	 0x80000000 to 0x7FFFFFFF

TYPICAL VALUES:	 0x80000000 to 0x7FFFFFFF

DEFAULT VALUE:	 N/A

FIRMWARE VERSIONS:	 Version 3.2, firmware version G3 and higher

DETAILED DESCRIPTION:

Direct Mode commands always have the following five byte format: a single command
byte, followed by four data bytes. There are three command bytes presently available
in hex format:

	 0xFE 		 Commanded Position Header Bit

	 0xFD		 Commanded Velocity Header Bit

	 0xFC		 Commanded Acceleration Header Bit

Note: Binary strings set Buffered Values!
	 To have them take effect, they must also be followed by a G command
	 and a Null Terminator (Carriage Return or Space Character)

EXAMPLE:

	 Set Buffered target position to 100		 (P=100)

		 0xFE 0x00 0x00 0x00 0x64

	 Set Buffered target position to -2		 (P=-2)

		 0xFE 0xFF 0xFF 0xFF 0xFE	

Direct Binary Mode Control
	 Binary Trajectory Data Format

Related
Commands:

P

V

A

14

	 Set Buffered target velocity to 10000		 (V=10000)

		 0xFD 0x00 0x00 0x27 0x10 	

	 Set Buffered target velocity to -10000	 (V=-10000)

		 0xFE 0xFF 0xFF 0xD8 0xF0	

	 Set Buffered target acceleration to 1024	 (A=1024)

		 0xFD 0x00 0x00 0x04 0x00	

	 Note: A<0 is not valid.

Since a direct mode command is always in a fixed format, it doesn’t require an end of
line character. However, to have the buffered values take effect, the G character may
be directly appended to the end of any direct mode command.

EXAMPLE:

	 Set Buffered target position to 100 and "Go"		 (P=100 G)

		 0xFE 0x00 0x00 0x00 0x64 0x47 0x20

	 Set Buffered target acceleration to 100 and "Go"	 (A=100 G)

		 0xFC 0x00 0x00 0x00 0x64 0x47 0x20

Keep in mind, Proper Mode commands must be set up prior to binary command
strings in order to get predictable results. If Velocity Mode Is required, then first send
MV followed by the associated binary commands.
This would then allow for fast changes in speed once in velocity mode.

Direct Binary Mode Control (continued)
	 Binary Trajectory Data Format

Related
Commands:

P

V

A

15

@P
	 Real-Time Actual Position

APPLICATION: Monitor trajectory

DESCRIPTION: Fetch Real-Time Encoder Position

EXECUTION: Next PID sample

CONDITIONAL TO: N/A

LIMITATIONS: Expression value

REPORT COMMAND: RP

READ/WRITE: Read only

LANGUAGE ACCESS: Expressions and conditional testing	

UNITS: Encoder counts

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: N/A	

DEFAULT VALUE: 0 at power reset

FIRMWARE VERSIONS: ALL	

DETAILED DESCRIPTION:	

@P is used to access the value of the primary encoder. This number may be called
the current position or actual position. If the motor shaft moves the value of @P will
be changed by the net number of encoder counts occurring during this shaft motion.
The primary encoder is tracked at all times and is independent of the mode of opera-
tion of the SmartMotor™, or any error condition.			

PRINT(@P) and RP would transmit an identical value if It were possible to execute
both commands at the same time.

@P cannot be used to store a new value to a given shaft position; to change the point
of origin for the encoder use the syntax O=expression. To set a desired target posi-
tion use P=expression.

Example:
 A=100	 'set buffered acceleration	
	 V=40000		 'set buffered velocity
	 MV			 'set to Mode Velocity
	 G			 'GO, start motion trajectory
	 WHILE @P<=5000 	 'wait until real time position
 LOOP 	 'exceeds 5000 counts	
 PRINT("Position is above 5000",#13)

Note: @P follows the primary encoder used to close the loop. If you issue ENC1, it
will follow an external encoder. Please see ENC0 and ENC1 for more details.

Related
Commands:

P

RP

@PE

@V

ENC0

ENC1

16

@PE
	 Real-Time Actual Position Error

Related
Commands:

E

@P

APPLICATION:	 Monitor trajectory

DESCRIPTION:	 Fetch Real-Time Position Error

EXECUTION:	 Next PID sample

CONDITIONAL TO:	 None

LIMITATIONS:	 Expression value

REPORT COMMAND:	 RPE	

READ/WRITE:	 Read only		

LANGUAGE ACCESS:	 Expressions and conditional testing	

UNITS:	 Encoder counts	

RANGE OF VALUES:	 Magnitude limited to user set value of E

TYPICAL VALUES:	 0 to 32000	

DEFAULT VALUE:	 1000

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

Position Error is the difference in encoder counts between the desired trajectory posi-
tion and the measured position. If the absolute value of @PE exceeds the user value
E, the drive stage will turn off immediately setting both the Bo (Motor Off) and Be
(Position Error) status bits will be set to 1, within that PID servo sample. When the
servo is off, @PE reverts to zero since there is no longer a desired position.

PRINT(@PE) and RPE would transmit an identical value if it were possible to execute
both commands at the exactly the same time.

Note: 	 As acceleration, A, is increased, a larger value of E will be required. 		
 	 E is unsigned but @PE may be positive or negative.

Example:
	 E=1000	 'set maximum position error permitted
	 A=100		 'set buffered acceleration
	 V=3200000	 'set buffered maximum velocity
	 P=12345678	 'set buffered target position
	 G		 'move to target
	 WHILE Bt	 'while trajectory in progress
		 IF @PE>800
			 PRINT(#13,"WARNING)
 		 PRINT(#13,"Postion error close to limit")
 		 ENDIF
 	 LOOP 		

17

@V
	 Present Trajectory Velocity

APPLICATION:	 Monitor trajectory

DESCRIPTION:	 Commanded PID Trajectory Velocity

EXECUTION:	 Next PID sample

CONDITIONAL TO:	 Calculated Trajectory

LIMITATIONS:	 Expression value

REPORT COMMAND: 	 RV, PRINT(@V)

READ/WRITE:	 Hardware read only

LANGUAGE ACCESS:	 Expressions and conditional testing

UNITS:	 Scaled encoder counts per PID sample
		 (65536 scaled counts = 1 count)

RANGE OF VALUES:	 -2147483648 to 2147483647

TYPICAL VALUES:	 -3000000 to 3000000

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

The function @V returns the present target trajectory velocity. Instead of
returning the actual velocity, it tells you what the velocity is supposed to be.
For the most part, this is the same as the actual velocity, for the simple reason
that, if you are not at the right velocity, you are likely in position error. Similarly,
if you observe the position error is not changing (see @PE), the present
reported velocity is the exact velocity.

Equations for Real world Units:

Velocity (Encoder Counts/Sec) = @V x k
Velocity (RPS) = @V x k / Encoder Resolution
Velocity (RPM) = @V x k / Encoder Resolution x 60

Where: Encoder Resolution = Encoder Counts per Revolution

and k=0.0620876 for all standard SmartMotors™ <=v4.95

When in Position or Velocity Mode, MP or MV, the actual velocity is enforced
by the PID feedback control to match the desired velocity computed by the
trajectory generator.

If the position error (see @PE) is exactly constant, the actual velocity will
exactly match the desired velocity over time, that is, macroscopically with
respect to time.

(Continued on following page)

Related
Commands:

V

MV

RV

@P

@PE

PIDn

18

While Accelerating, the position error may increase as a result of the physical veloc-
ity being less than the trajectory velocity. During the constant velocity slew phase, if
position error were constant, physical velocity would equal the trajectory velocity on
average.

Looking at time microscopically, within one PID sample, the limit of encoder measure-
ment is one encoder count, a velocity granularity of 65536 scaled counts, per sample.
This is in contrast to the macroscopic velocity, which has a granularity of one scaled
count. In position or velocity mode, the macroscopic trajectory velocity with a granu-
larity of 1 scaled count per sample is returned by @V.

In modes that do not generate a trajectory velocity, for example, torque mode, the
velocity must be gleaned from changes in the encoder each Sample, so the micro-
scopic value with a granularity of 65536 scaled counts per sample is returned by
@V.

RV, PRINT(@V), and the sequence a=@V Ra would transmit identical values, if it
were possible to execute all three command sequences simultaneously.

To display the user-specified buffered maximum velocity value V (V=expression),
as opposed to the present velocity, the sequences a=V Ra or equivalently PRINT(V)
would be used.

Example:

	 A=20			 'set buffered acceleration
	 V=66500		 'set buffered velocity
	 MV			 'Set to Velocity Mode
	 G			 'Begin Moving
	 WHILE @V<V		 'wait for acceleration phase	 to complete
	 LOOP
	 PRINT("Target Velocity has ben reached",#13)

Related
Commands:

V

MV

RV

@P

@PE

PIDn

@V (continued)
	 Present Trajectory Velocity

19

APPLICATION: General purpose data control

DESCRIPTION: User signed 32 bit variables

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: Versions prior to 4.00 only have variables a . . . j

REPORT COMMAND: Ra . . Rz

READ/WRITE: Read Write

LANGUAGE ACCESS: Assignment, expressions and conditional testing

UNITS: Signed 32 bit Integer

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: -2147483648 to 2147483647	

DEFAULT VALUE: 0

FIRMWARE VERSIONS: 4.00 and higher

 Versions prior to 4.00 have 10 variables, a . . j

DETAILED DESCRIPTION:

The SmartMotor™ has three groups of pre-defined user variables. The first group
consists of the variables a through z. They are general purpose Read/Write 32 bit
signed integer variables that can be reported and used on either side of an equal sign
in an equation.

The variables a thru z are stored in Dynamic RAM, meaning
Their values are lost when power is lost!

The value of any variable a through z variable is reported with the R, PRINT() or
PRINT1() functions.

EXAMPLE:
Rg			 'Report the value of g to the primary serial port
PRINT("g=",g,#13) 	 'Print to the primary serial port.
PRINT1("g=",g,#13) 	 'Print to the secondary serial port.

All 32 bit signed integer variables are limited to integer values between -2147483648
to 2147483647. Math operations that result in decimal values are truncated, or round-
ed down. If you assign or perform an operation that would normally result in a value
outside of this range, the variable will "wrap," or take on the corresponding modulo.
As an example, because of this, 2147483647+1=-2147483648. The result "wrapped
around" to the negative extreme.

a . . z
	 32-Bit Variables

Related
Commands:

aa . . zzz

ab[index]

al[index]

aw[index]

See Appendix C
To describe the
relationship between
user assigned
variables, aa thru
zzz, and variable
arrays, ab[], al[]
and aw[]

20

The following are other restrictions:

If •	 a+b exceeds 32 signed bits the operation c=a+b
will produce a wrong result. No error flag is set.

If •	 a-b exceeds 32 signed bits the operation c=a-b
will produce a wrong result. No error flag is set.

If •	 a*b exceeds 32 signed bits the operation c=a*b
will produce a wrong result. The system flag Bd will bet set.

If one of these variables is used with a variable of another type, it will be appropri-
ately converted. In technical jargon, the variable will be type cast. For example, in the
equation where the variable on the left of the equal sign is a 16 bit one like aw[4],
all variables will be converted to 16 bit values and then operated on. Assigning the
variable aw[27] = y directly stores the 16 least significant bits of y into aw[27]. The
higher bits of the variable y are lost. Similarly, if the right hand variable is an 8 bit one
like ab[167], all variables will be converted to 8 bit values before being operated on.
Conversely, if the left hand value is a 32 bit variable and the right hand side contains
16 bit variables, the 16 bit variables will be temporarily "upgraded" to 32 bits. In the
equation c=ab[4]-aw[7], both ab[4] and aw[7] are converted into 32 bit numbers
before the subtraction occurs.

In the SmartMotor™ language, all user variables are written as lower case letters,
while functions and commands have at least one upper case character. The term a
is a general purpose variable, while A is the Acceleration function. Any user vari-
able can be assigned a value with an equation, as discussed above, but can also be
sequentially loaded by specifying the starting variable and the series of values to be
loaded.

EXAMPLE:
Suppose the following code:					
	 c=123		 'assign the value of 123 to "c"
	 d=345		 'assign the value of 345 to "d"
	 e=-599	 'assign the value of -599 to "e"
	 f=346		 'assign the value of 346 to "f"
	 g=678678	 'assign the value of 678678 to "g"

The Sequential loading method equivalent is as follows:
	 c 123 345 -599 346 678678.	 'sequentially load data into
						 'variable c thru g
Note: The last number MUST BE followed by a "." period.

All user variables are initialized to the value of 0 at power up or upon execution of
the system reset command Z. Other than by direct assignment, this is the only way
that the SmartMotor sets all of the user variables to 0. Issuing a RUN command does
not perform this automatic initialization. For this reason, it is usually preferred to test
a program, whether it is auto-execution or not, by power cycling the SmartMotor or
issuing a system reset command Z.

a . . z (continued
	 32-Bit Variables

Related
Commands:

aa . . zzz

al[index]

aw[index]

ab[index]

See Appendix C
To describe the
relationship between
user assigned
variables, aa thru
zzz, and variable
arrays, ab[], al[]
and aw[]

21

aa . . zzz
	 32-Bit Variables

Related
Commands:

a . . z

ab[index]

al[index]

aw[index]

APPLICATION: General purpose data control

DESCRIPTION: User signed 32 variables

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: This data space is shared with ab[], aw[], al[] 		
 arrays, and coordinated motion (see mode MD)

REPORT COMMAND: Raa . . . Rzzz

READ/WRITE: Read Write		

LANGUAGE ACCESS: Assignment, expressions and conditional testing

UNITS: Signed 32 bit Integer

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: -2147483648 to 2147483647	 	

DEFAULT VALUE: 0

FIRMWARE VERSIONS: 4.00 and higher	

DETAILED DESCRIPTION:

The SmartMotor™ has three groups of pre-defined user variables. The second and
third group consists of the variables aa through zz and aaa through zzz. They are
general purpose Read/Write 32 bit signed integer variables that can be reported and
used on either side of an equal sign in an equation.

All variables aa thru zzz are stored in Dynamic RAM, meaning
Their values are lost when power is lost!

The value of any variable aa through zzz variable is reported with the R, PRINT() or
PRINT1() functions.

EXAMPLE:
Rgg			 'Report the value of gg to the primary serial port
PRINT("gg=",gg,#13) 	 'Print to the primary serial port.
PRINT1("gg=",gg,#13) 	 'Print to the secondary serial port.

Unlike the variables set a through z, the variables aa through zz and aaa through zzz
are overlaid with the variable arrays ab[], aw[] and al[].

As signed 32 bit variables, they are subject to the usual restrictions of signed digital
words and values. The first bit is always a sign bit. They are limited to integer values
between -2147483648 to 2147483647. Math operations that result in decimal values
are truncated, or rounded down. If you assign or perform an operation that would nor-
mally result in a value outside of this range, the variable will "wrap", or take on the cor-
responding modulo. As an example, because of this, 2147483647+1=-2147483648.
The result "wrapped around" to the negative extreme.

See Appendix C
To describe the
relationship between
user assigned
variables, aa thru
zzz, and variable
arrays, ab[], al[]
and aw[]

22

aa . . zzz (contined)
	 32-Bit Variables

Related
Commands:

a . . z

ab[index]

aw[index]

al[index]

Bit Overflow Status (Bd System Status bit):

If •	 aa+bb exceeds 32 signed bits the operation cc=aa+bb
will produce a wrong result. No error flag is set.

If •	 aa-bb exceeds 32 signed bits the operation cc=aa-bb
will produce a wrong result. No error flag is set.

If •	 aa*bb exceeds 32 signed bits the operation cc=aa*bb
will produce a wrong result. The system flag, Bd, will be set.

If one of these variables is used with a variable of another type, it will be appropriately
converted. In technical jargon, the variable will be type cast. For example, if a 16
bit variable like aw[4] is used, all variables will be converted to 16 bit values and
then operated on. Assigning the variable aw[27]=yy directly stories the 16 least
significant bits of yy to aw[27]. The higher bits of the variable yy are lost. Similarly,
if the left hand variable is an 8 bit one like ab[167], all variables will be converted
to 8 bit values before being operated on. Conversely, if the left hand value is a 32
bit variable and the right hand side contains 16 bit variables, the 16 bit variables
will be temporarily "upgraded" to 32 bits. In the equation cc=ab[4]-aw[7], both
ab[4] and aw[7] are converted into 32 bit numbers before the subtraction occurs.

EXAMPLE:
Suppose the following code:					
	 cc=123	 'assign the value of 123 to "cc"
	 dd=345	 'assign the value of 345 to "dd"
	 ee=-599	 'assign the value of -599 to "ee"
	 ff=346	 'assign the value of 346 to "ff"
	 gg=678678	 'assign the value of 678678 to "gg"

The Sequential loading methode equivlent is as follows:
	 cc 123 345 -599 346 678678.	 'sequentially load data into
						 'variable cc thru gg
Note: The last number MUST BE followed by a "." period.

All user variables are initialized to the value of 0 at power up or upon execution of the
system reset command, Z. Other than by direct assignment, this is the only way the
SmartMotor™ sets all of the user variables to 0. Issuing a RUN command doesn’t
perform this automatic initialization. For this reason, it is usually preferred to test a
program, whether it is auto-execution or not, by power cycling the SmartMotor or issu-
ing a system reset command, Z.

23

ab[index]
	 8-bit Array Variables

Related
Commands:

a . . z

aa . . zz

aaa . . zzz

aw[index]

al[index]

VST

VLD

APPLICATION:	 General purpose data control

DESCRIPTION:	 User signed 8 bit variables

EXECUTION:	 Immediate

CONDITIONAL TO:	 Index values 0 to 203

LIMITATIONS:	 Index limited to number or sum or difference of any 	
	 a . . z

	 This data space is shared with variables aa . . zz, 	
	 aaa . . zzz, arrays aw[] and al[], and coordinated
	 motion (MD).

REPORT COMMAND:	 Rab[index]

READ/WRITE:	 Read write		

LANGUAGE ACCESS:	 Assignment, expressions and conditional testing

UNITS:	 Signed 8 bit number

RANGE OF VALUES:	 -128 to 127		

TYPICAL VALUES:	 -128 to 127	

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 4.00 and higher	

DETAILED DESCRIPTION:

The SmartMotor™ has 8, 16 and 32 bit array variable access. The 8 bit array takes
the form of the variables ab[index]. These are general purpose 8 bit signed integer
variables that can be reported, used on either side of an equation, and used with
variables other than 8 bit. Like all user variables, they are always lower case, can be
sequentially loaded, and are automatically initialized to zero at power up or reset. All
arrays share memory space with the variables aa through zz and aaa through zzz.

The syntax of the 8 bit array is ab[index], which stands for array byte, and accepts
an index value between 0 and 203. This index can be specified explicitly or though
another variable. For example, ab[4] refers to the fifth element in the 8 bit array, while
ab[n] refers to the n'th element of the array, where the value of "n" must be between
0 and 203.

The value of any array variable is reported with the R, PRINT() or PRINT1() func-
tions.

EXAMPLE:
Rab[47]	 'Report the value of ab[47] to the primary serial port
PRINT("ab[47]=",ab[47],#13) 	'Print to the primary serial port.
PRINT1("ab[47]=",ab[47],#13) 	'Print to the secondary serial port.

See Appendix C
To describe the
relationship between
user assigned
variables, aa thru
zzz, and variable
arrays, ab[], al[]
and aw[]

24

ab[index] (continued)
	 8-Bit Array Variables

Related
Commands:

a . . z

aa . . zz

aaa . . zzz

aw[index]

al[index]

VST

VLD

The ab[] array is classified as read write, meaning that they can be assigned a value,
or can be assigned to some other variable or function. Another way of saying this, is
these variables can be left or right hand values.

EXAMPLE:

ab[24]=ab[43]+ab[7]

The above is a valid equation, combining the contents of ab[43] and ab[7] and send-
ing the total into ab[24].

As signed 8 bit variables, they are subject to the usual restrictions of signed digital
words and values. The first bit is always a sign bit. They are limited to integer values
between -128 and 127. Math operations that result in decimal values are truncated,
or rounded down. If you assign or perform an operation that would normally result in
a value outside of this range, the variable will "wrap," or take on the corresponding
modulo. As an example, because of this, 127+1=-128. The result "wrapped around"
to the negative extreme.

Bit Overflow Status (Bd System Status bit):

If •	 ab[1]+a exceeds 32 signed bits the operation c=ab[1]+a
will produce a wrong result. No error flag is set.

If •	 a-ab[1] exceeds 32 signed bits the operation c=a-ab[1]
will produce a wrong result. No error flag is set.

If •	 a*ab[1] exceeds 32 signed bits the operation c=a*ab[1]
will produce a wrong result. The system flag, Bd, will be set.

If one of these variables is used with a variable of another type, it will be appropriately
converted (the variable will be type cast).

EXAMPLE:

In the equation where the variable on the left of the equal sign is an 8 bit one like ab[4],
all variables will be converted to 8 bit values and then operated on. Assigning the vari-
able ab[27]=al[m] directly stores the 8 least significant bits of al[m] into aw[27]. The
higher bits of the variable al[m] are lost. Conversely, if the left hand value is a 32 bit
variable and the right hand side contains both 8 bit and 16 bit variables, the 8 bit and
16 bit variables will be temporarily "upgraded" to 32 bits. In the equation al[3]=ab[4]-
aw[7], both ab[4] and aw[7] are converted into 32 bit numbers before the subtraction
occurs.

In the SmartMotor™ language, all user variables are written as lower case variables,
while functions and commands have at least one upper case character. The term ab[i]
is a general purpose variable, while A is the acceleration function. Any user variable
can be assigned a value with an equation, but can also be sequentially loaded by
specifying the starting variable and the series of values to be loaded.

(Continued on following page)

25

(Continued from preceding page)

EXAMPLE:

	 ab[6] 123 34 67 34 127.

Loads sets ab[6] equal to 123, aw[7] to 34 and so forth, ending with 127 loaded into
ab[10]. The command syntax requires a space between the leading variable and
each subsequent value. The function is terminated by a period.

All user variables are initialized to the value of 0 at power up or upon execution of the
system reset command Z. Other than by direct assignment, this is the only way that
the SmartMotor™ sets all of the user variables to 0. Issuing a RUN command does
not perform this automatic initialization. For this reason, it is usually preferred to test
a program, whether it is auto-execution or not, by power cycling the SmartMotor or
issuing a system reset command Z.

The aa through zz and aaa through zzz variables share the same physical memory as
part of the ab[], aw[] and al[] arrays. That is, if you set aaa=123456, you will find
al[0] has the same value, regardless of what you set it to before. Similarly, the values
of ab[0] through ab[3] and aw[0] and aw[1] will have values that correspond to the
individual 8 bit bytes and 16 bit words that are part of aa.

ab[index] (continued)
	 8-Bit Array Variables

Related
Commands:

a . . z

aa . . zz

aaa . . zzz

aw[index]

al[index]

VST

VLD

See Appendix C
To describe the
relationship between
user assigned
variables, aa thru
zzz, and variable
arrays, ab[], al[]
and aw[]

26

APPLICATION: General purpose data

DESCRIPTION: User signed 32 bit variables

EXECUTION: Immediate

CONDITIONAL TO: The value of index must be between 0 and 50

LIMITATIONS: This data space is shared with variables aa . . zz, 	
aaa . . zzz, arrays ab[] and aw[], and coordinated 	
motion (see MD)

REPORT COMMAND: Ral[index]

READ/WRITE: Read write	

LANGUAGE ACCESS: Assignment, expressions and conditional testing

UNITS: Signed 32 bit number

RANGE OF VALUES: -2147483648 to 2147483647	

TYPICAL VALUES: -2147483648 to 2147483647	

DEFAULT VALUE: 0

FIRMWARE VERSIONS: 4.00 and higher	

DETAILED DESCRIPTION:

The SmartMotor™ has 8, 16 and 32 bit arrays. The 32 bit array takes the form
of the variables al[index]. These are general purpose 32 bit signed variables
that can be reported, used on either side of an equation, and used with vari-
ables other than 32 bit. Like all user variables, they are always lower case,
can be sequentially loaded and are automatically initialized at power up or
reset. All arrays share memory space with the variables aa through zz and
aaa through zzz.

The syntax of the 32 bit array is al[index] (al stands for array long) and
accepts an index value between 0 and 49. This index can be specified explic-
itly or though another variable.

EXAMPLE:

al[4] refers to the fifth element (count begins with zero) in the 32 bit array.

The value of any array element al[] is reported with the R, PRINT() or
PRINT1() functions. For example to send the value of variable al[47] out the
primary serial port, u se the command Ral[47] or PRINT(al[47],#13). To send
the value of the variable al[37] out serial port 1, use PRINT1(al[37],#13).

The al[] array is classified as read write, meaning that they can be assigned a

al[index]
	 32-Bit Array Variables

Related
Commands:

a . . z

aa . . zz

aaa . . zzz

ab[index]

aw[index]

VST

See Appendix C
To describe
the relationship
between user
assigned variables,
aa thru zzz, and
variable arrays,
ab[], al[] and
aw[]

27

al[index] (continued)
	 32-Bit Array Variables

Related
Commands:

a . . z

aa . . zz

aaa . . zzz

ab[index]

aw[index]

VST

value, or can be assigned to some other variable or function. Another way of saying
this, though more cryptically technocratic, is that these variables can be left or right
hand values.

EXAMPLE:

al[24]=al[43]+al[7]

is a valid equation, combining al[43] and al[7] and sending the total into al[24].

As signed 32 bit variables, they are subject to the usual restrictions of signed digital
words and values. The first bit is always a sign bit. They are limited to integer val-
ues between -2147483648 to 2147483647. Math operations that result in decimal
values are truncated, or rounded down. If you assign or perform an operation that
would normally result in a value outside of this range, the variable will "wrap," or take
on the corresponding modulo. As an example, because of this, 2147483647+1=-
2147483648. The result "wrapped around" to the negative extreme.

Bit Overflow Status (Bd System Status bit):

If •	 al[1]+a exceeds 32 signed bits the operation c=al[1]+a
will produce a wrong result. No error flag is set.

If •	 a-al[1] exceeds 32 signed bits the operation c=a-al[1]
will produce a wrong result. No error flag is set.

If •	 a*al[1] exceeds 32 signed bits the operation c=a*al[1]
will produce a wrong result. The system flag, Bd, will be set.

If one of these variables is used with a variable of another type, it will be appropriately
converted (the variable will be type cast).

EXAMPLE:

In the equation where the variable on the left of the equal sign is a 16 bit one like
aw[4], all variables will be converted to 16 bit values and then operated on. Assign-
ing the variable aw[27]=al[m] directly stores the 16 least significant bits of al[m] into
aw[27]. The higher bits of the variable al[m] are lost. Similarly, if the left variable is
an 8 bit one like ab[167], all variables will be converted to 8 bit values before being
operated on. Conversely, if the left value is a 32 bit variable and the right side contains
both 8 and 16 bit variables, both 8 and 16 bit variables will be temporarily "upgraded"
to 32 bits. In the equation al[3]=ab[4]-aw[7], both ab[4] and aw[7] are converted into
32 bit numbers before the subtraction occurs.

In the SmartMotor™ language, all user variables are written as lower case variables,
while functions and commands have at least one upper case character. The term
al[i] is a general purpose variable, while A is the Acceleration function. Any user
variable can be assigned a value with an equation, as discussed above, but can also
be sequentially loaded by specifying the starting variable and the series of values to
be loaded. (Continued on following page)

28

(Continued from preceding page)

EXAMPLE:

	 al[6] 123 345 567 346 678678.

The above loads sets al[6] equal to 123, al[7] to 345 and so forth, ending with 678678
loaded into al[10]. The command syntax requires a space between the leading vari-
able and each subsequent value. The function is terminated by a period.

All user variables are initialized to the value of 0 at power up or upon execution of the
system reset command Z. Other than by direct assignment, this is the only way that
the SmartMotor™ sets all of the user variables to 0. Issuing a RUN command does
not perform this automatic initialization. For this reason, it is usually preferred to test
a program, whether it is auto-execution or not, by power cycling the SmartMotor or
issuing a system reset command, Z.

The aa through zz and aaa through zzz variables share the same physical memory
as part of the ab[], aw[] and al[] arrays. That is, if you set aaa=123456, you will find
that al[0] has the same value, regardless of what you set it to before. Similarly, the
values of ab[0] through ab[3] and aw[0] and aw[1] will have values that correspond
to the individual 8 bit bytes and 16 bit words that are part of aa.

al[index] (continued)
	 32-Bit Array Variables

Related
Commands:

a . . z

aa . . zz

aaa . . zzz

ab[index]

aw[index]

VST

VLD

See Appendix C
To describe the
relationship between
user assigned
variables, aa thru
zzz, and variable
arrays, ab[], al[]
and aw[]

29

aw[index]
	 16-bit Array Variables

Related
Commands:

a . . z

aa . . zz

aaa . . zzz

al[index]

ab[index]

VST

VLD

APPLICATION: General purpose data

DESCRIPTION: User signed 16 bit data variables

EXECUTION: Immediate

CONDITIONAL TO: Index values 0 to 101

LIMITATIONS: This data space is shared with variables aa . . zz, 	
aaa . . zzz, arrays ab[] and al[], and coordinated 	motion.

 (see MD).

REPORT COMMAND: Raw[index]

READ/WRITE: Read write		

LANGUAGE ACCESS: Assignment, expressions and conditional testing

UNITS: Signed 16 bit number

RANGE OF VALUES: -32768 to 32767

TYPICAL VALUES: -32768 to 32767

DEFAULT VALUE: 0

FIRMWARE VERSIONS: 4.00 and higher	

DETAILED DESCRIPTION:

The SmartMotor™ has 8, 16 and 32 bit arrays. The 16 bit array takes the form of the
variables aw[index]. These are general purpose 16 bit signed variables that can be
reported, used on either side of an equation, and used with variables other than 16
bit. Like all user variables, they are always lower case, can be sequentially loaded
and are automatically initialized at power up or reset. All arrays share memory space
with the variables aa through zz and aaa through zzz.

The syntax of the 16 bit array is aw[index], which stands for array word, and accepts
an index value between 0 and 101. This index can be specified explicitly or though
another variable.

EXAMPLE:

	 aw[4] refers to the fifth element in the 16 bit array

	 aw[i] refers to the (I+I)th element of the array, where the value of i must 		
be between 0 and 101.

The value of any array element aw[] is reported with the R, PRINT() or PRINT1()
functions. For example to send the value of variable aw[47] out the primary serial
port, use the command Raw[47] or PRINT(aw[47],#13). To send the value of the
variable aw[37]out serial port 1, use PRINT1(aw[37],#13).The aw[] array is classi-
fied as read write, meaning that they can be assigned a value, or can be assigned to

Appendix C
(Page ?)

uses tables to
describe the
relationship between
user assigned
variables, aa thru
zzz, and variable
arrays, ab[], al[]
and aw[]

30

some other variable or function. Another way of saying this, though more cryptically
technocratic, is that these variables can be left or right hand values.

EXAMPLE:

aw[24]=aw[43]+aw[7]

The above is a perfectly valid equation, taking aw[43] and aw[7] and stuffing the sum
into aw[24].

As signed 16 bit variables, they are subject to the usual restrictions of signed digital
words and values. The first bit is always a sign bit. They are limited to integer values
between -32768 and 32767. Math operations that result in decimal values are trun-
cated, or rounded down. If you assign or perform an operation that would normally
result in a value outside of this range, the variable will "wrap," or take on the cor-
responding modulo. As an example, because of this, 32767+1=-32768. The result
"wrapped around" to the negative extreme.

Bit Overflow Status (Bd System Status bit):

If •	 aw[1]+a exceeds 32 signed bits the operation c=aw[1]+a
will produce a wrong result. No error flag is set.

If •	 a-aw[1] exceeds 32 signed bits the operation c=a-aw[1]
will produce a wrong result. No error flag is set.

If •	 a*aw[1] exceeds 32 signed bits the operation c=a*aw[1]
will produce a wrong result. The system flag, Bd, will be set.

If one of these variables is used with a variable of another type, it will be appropri-
ately converted. In technical jargon, the variable will be type cast. For example, in
the equation where the variable on the left of the equal sign is an 8 bit one like ab[4],
all variables will be converted to 8 bit values and then operated on. Assigning the
variable aw[27]=al[m] directly stores the 16 least significant bits of al[m] into aw[27].
The higher bits of the variable al[m] are lost. Conversely, if the left value is a 32 bit
variable and the right side contains 16 bit variables, the 16 bit variables will tempo-
rarily revert to 32 bits. In the equation al[3]=ab[4]-aw[7], both ab[4] and aw[7] are
converted into 32 bit numbers before the subtraction occurs.

In the SmartMotor™ language, all user variables are written as lower case variables,
while functions and commands have at least one upper case character. The term
aw[i] is a general purpose variable, while A is the Acceleration function. Any user
variable can be assigned a value with an equation, as discussed above, but can also
be sequentially loaded by specifying the starting variable and the series of values to
be loaded.

(Continued on following page)

aw[index] (continued)
	 16-Bit Array Variable

Related
Commands:

a . . z

aa . . zz

aaa . . zzz

al[index]

ab[index]

VST

VLD

31

(Continued from preceding page)

EXAMPLE:

	 aw[6] 123 345 567 346 31868.

The above loads sets aw[6] equal to 123, aw[7] to 345 and so forth, ending with
31868 loaded into aw[10]. The command syntax requires a space between the lead-
ing variable and each subsequent value. The function is terminated by a period.

All user variables are initialized to the value of 0 at power up or upon execution of the
system reset command Z. Other than by direct assignment, this is the only way that
the SmartMotor™ sets all of the user variables to 0. Issuing a RUN command does
not perform this automatic initialization. For this reason, it is usually preferred to test
a program, whether it is auto-execution or not, by power cycling the SmartMotor or
issuing a system reset command Z.

The aa through zz and aaa through zzz variables share the same physical memory
as part of the ab[], aw[] and al[] arrays. That is, if you set aaa=123456, you will find
that al[0] has the same value, regardless of what you set it to before. Similarly, the
values of ab[0] through ab[3] and aw[0] and aw[1] will have values that correspond
to the individual 8 bit bytes and 16 bit words that are part of aa.

aw[index] (continued)
	 16-Bit Array Variable

Related
Commands:

a . . z

aa . . zz

aaa . . zzz

al[index]

ab[index]

VST

VLD

Appendix C
(Page ?)

uses tables to
describe the
relationship between
user assigned
variables, aa thru
zzz, and variable
arrays, ab[], al[]
and aw[]

32

A=expression
	 Set Acceleration

APPLICATION: Trajectory control

DESCRIPTION: Set buffered acceleration				

EXECUTION: Buffered pending G command

CONDITIONAL TO: E, G, V, PIDn

LIMITATIONS: Must not be negative
 Effective value is rounded down to next even
 number

REPORT COMMAND: RA

READ/WRITE: Read write 		

LANGUAGE ACCESS: Assignment, expressions and conditional testing

UNITS: Scaled encoder counted/sample2

RANGE OF VALUES: 0 to 2147483647

TYPICAL VALUES: 0 to 5000		

DEFAULT VALUE: 0

FIRMWARE VERSIONS: ALL

DETAILED DESCRIPTION:

Setting the buffered A value determines the acceleration that will be used by subse-
quent position or velocity moves to calculate the required trajectory. Changing A dur-
ing a move will not alter the current trajectory unless a new G command is issued.

To set acceleration, take the desired acceleration in Rev/S², multiply it by 7.91 for 500
line encoder motors and 15.82 for 1000 line encoder motors. Then set A equal to it
(the integer portion).

Acceleration is pre-scaled by 65,536 (256*256) and may range from 0 to 2,147,483,648;
the default value is zero. A is buffered by G. It should also be understood that since
A is bit shifted once to the right by the extended PID filter loop, odd values for A will
be reduced by 1 in operation. An A=1 command will have the same effect as A=0,
you won't go anywhere.

Equations for Real world Units:

Acceleration (Encoder Counts/Sec2) = A x k
Acceleration (RPS2) = A x k / Encoder Resolution
Acceleration (RPM2) = A x k / Encoder Resolution x 60

Where: Encoder Resolution = Encoder Counts per Revolution

and k=252.63236 for all standard SmartMotors™ <=v4.95

Related
Commands:

D

E

G

MP

MV

PIDn

P

S

V

X

F=1

33

Example:
	 MP		 'Set Mode Position
	 A=5000	 'Set Acceleration
	 P=20000	 'Set Absolute Position
	 V=100000	'Set Velocity

 G 'Start Motion

Example:
	 A=100	 	 'set buffered acceleration
	 V=750		 'set buffered velocity
	 MV			 'set buffered velocity mode
	 G			 'Start motion

Related
Commands:

D

E

G

MP

MV

PIDn

P

V

X

F=1

A=expression (continued)

34

APPLICATION: Serial communications control

DESCRIPTION: Motor address				

EXECUTION: N/A

CONDITIONAL TO: Firmware >= 4.15, Use "SADDR=" for <4.15

LIMITATIONS: N/A

REPORT COMMAND: PRINT(ADDR), (variable)=ADDR R(variable)

READ/WRITE: Read/Write above version 4.15

LANGUAGE ACCESS: Assignment, expressions and conditional testing 		
UNITS: Address

RANGE OF VALUES: 0 to 100

TYPICAL VALUES: 1 to 100

DEFAULT VALUE: 0 on power-up until assigned

FIRMWARE VERSIONS: 4.00 and higher

DETAILED DESCRIPTION:

SmartMotors™ are designed to be used as much in multiple axis systems as in
single axis ones. For that reason, they have been afforded the ability to be uniquely
addressed. This is done with the ADDR=expression command (not available in ver-
sions below 4.15. Use the SADDR# command). For example ADDR=5 or SADDR5
both set the motor’s address to be 5. ADDR is a read write function, so it can also
be used to access the address of the current SmartMotor.

Using ADDR within a program permits an identical program stored in different motors
to differentiate between motors and provide individual runtime controls.
	 SWITCH ADDR
		 CASE 1		 ' motors 1,2 and 3 "GO"
		 CASE 2
		 CASE 3 G
			 BREAK
		 CASE 4 S		 ' motor 4 "STOP"

	 ENDS				 ' Start motion (or stop)

Note: ADDR=# syntax DOES NOT work with v4.40 SM2315 series motors!
SADDR# syntax must be used to assign the address.

Related
Commands:

SADDR

ADDR
	 Set Motor Address

35

AIN{address}{input}
	 Analog Input from I/O Device

Related
Commands:

AOUT

DIN

DOUT

UAA

APPLICATION: Input command (use with Anilink device)

DESCRIPTION: Fetch 8 bit analog input byte

EXECUTION: Immediate AniLink byte read

CONDITIONAL TO: N/A

LIMITATIONS: Port = A .. H and Input = 1, 2, 3, or 4

REPORT COMMAND: RAIN{address}{input}

READ/WRITE: Read only		

LANGUAGE ACCESS: Expressions and conditional testing	

UNITS: Numerical value

RANGE OF VALUES: 0 to 255

TYPICAL VALUES: 0 to 255	

DEFAULT VALUE: 255 in absence of peripheral device

FIRMWARE VERSIONS: ALL	

DETAILED DESCRIPTION:	

The SmartMotor™ communicates with optional expansion cards such as the AIO-100
and AIO110 AniLink cards through the AIN{address}{input} command, where
address refers to the address of the Anilnk card and input refers to the input channel
of the Anilink card. The address is given as a character between A and H, while the
input is between 1 and 4. See the AIO-100 User Manual for specific details.

The AIN{address}{input} returns an unsigned 8 bit value, ranging from 0 to 255, lin-
early corresponding to the analog voltage on the specified input channel. A return of
0 corresponds to 0 volts and 255 to 5 volts. If the specified card is not present or the
connected is not present, the function will return a value of 255.

The AIN{address}{input} function is read only. It cannot be used on the left side of
an equation, but only on the right.

The value of the AIN{address}{input} function can be reported through the primary
serial port with the PRINT(AIN{address}{input},#13) and AIN{address}{input}
functions. To transmit the value through serial channel 1 use PRINT1(AIN{address}
{input},#13).

Example:
x=AINA1 'Assign analog value of Port A input 1 to "a"

Please refer to the associated Users Manuals for specifics about each optional
Analog I/O card.

All seven
SmartMotor™ I/O
points also serve
as direct Analog
inputs.

36

APPLICATION: Amplifier control

DESCRIPTION: Sets maximum allowed PWM to motor windings

EXECUTION: Next PID sample

CONDITIONAL TO: N/A

LIMITATIONS: Must not be negative

REPORT COMMAND: RAMPS

READ/WRITE: Read write

LANGUAGE ACCESS: Assignment, expressions and conditional testing

UNITS: 1/1023 of maximum PWM permitted

RANGE OF VALUES: 0 to 1023

TYPICAL VALUES: 1000

DEFAULT VALUE: 1000

FIRMWARE VERSIONS: ALL

DETAILED DESCRIPTION:

The AMPS command effectively limits both the continuous torque and speed of the
SmartMotor™.

To set the SmartMotor to use maximum available PWM, issue the command
AMPS=1023. Setting AMPS=0 limits PWM to 0 thereby preventing any output torque.
To conceptually understand what happens when you use values between 0 and 1023,
consider the following torque-speed diagram:

The AMPS function essentially cuts the torque-speed characteristic of the motor
by slicing off the part of the curve to the right of the AMPS line. Note that there are
some values of AMPS that will limit
top speed but not peak torque. The
slope of the line is highly depen-
dent on the voltage of the power
source.

AMPS is often used to limited torque
and speed.

AMPS has no effect in torque mode
(MT, T) . In this mode, the value of
T controls the commanded torque
of the motor, without limitation by
AMPS.

AMPS=expression
	 Set Drive PWM Limit

Related
Commands:

RAMPS

T

MT

AMPS torque-speed
diagram

Referencing
against a hard stop
this way
can eliminate an
additional switch
and cable.

37

AOUT{address},{value}
	 Analog Output to I/O Device

APPLICATION: Output command (use with Anilink device)

DESCRIPTION: Output analog byte to Anilink peripheral port

EXECUTION: Immediate AniLink byte write

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: None

READ/WRITE: Write only

LANGUAGE ACCESS: Unlatched output value, to recall, create shadow 		
 variable

UNITS: Numerical value

RANGE OF VALUES: 0 to 255

TYPICAL VALUES: 0 to 255

DEFAULT VALUE: N/A

FIRMWARE VERSIONS: ALL

DETAILED DESCRIPTION:

When using an optional AniLink Analog I/O Card such as AIO-100 or AIO-110, an
8-bit (0-255) output voltage can be specified. Adjustments on the card allow the user
to set the upper and lower limits, and therefore the range, anywhere between zero
and Full scale output voltage. The examples assume the voltage reference inputs
are set to full scale, zero and 5 VDC such as for the AIO-100.

Examples:
 AOUTC128 'Output 2.5V Mod: C

Use a comma when using a variable:
 a=128 'Set any variable

 AOUTC,a 'Output to port

See the appendix for information about the use of the Ani-Link AIO-100 analog I/O
expansion module and associated AniLink chip set.

The syntax of the command is AOUT{address},{value} sends a byte value to the
associated AniLink peripheral card. The "address" of the AIO-100 card is a character
between A and H, and is set on the card by three jumpers. The value is a number
between 0 and 255. If the value is 0, the output voltage is the minimum value. If it is
255, the voltage is maximum.

Please refer to the associated Users Manuals for specifics about each optional
Analog I/O card.

Related
Commands:

AIN

DIN

DOUT

38

Ba

	 Peak-Over-Current Status Bit

Related
Commands:

RW

RPW

Z

Za

ZS

APPLICATION:	 Monitor Motor status

DESCRIPTION:	 Over current detected state 	

EXECUTION:	 Historical, latched by PID sample

CONDITIONAL TO:	 Hardware Detection

LIMITATIONS:	 None

REPORT COMMAND:	 Rba, RW(bit 14), RPW(bit14)

READ/WRITE:	 Read only. To reset , issue Za or ZS

LANGUAGE ACCESS:	 Expressions and conditional testing

UNITS:	 Binary bit

RANGE OF VALUES:	 0 or 1

TYPICAL VALUES:	 0	

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 4.00 and higher

DETAILED DESCRIPTION:	

The SmartMotor™ firmware checks each PID Sample to see whether or not a Peak-
Over current condition exists. The set point is in hardware and depends on the model
motor and drive stage. If the set point is reached, the system flag Ba is to 1. Once an
over-current has been detected, the SmartMotor will shut the amplifier off for several
servo samples in attempt to reduce the peak load and then turn back on to try to com-
plete its commanded motion. If the position error exceeds the allowable following error
E, during the off state, the servo will get a Following Error (Be status Bit) .

The Ba bit is not reset until either a power reset, a Z, ZS, or Za command is issued.

Note: in non-PLS firmware motors, a "G" will reset the Ba bit.

If Ba flag is regularly found to be set there may be a problem. This typically indicated
that the motor is undersized in the peak range. Please verify the motor is correctly
"sized" for the presently assigned task.

IF the Ba bit is set every machine cycle, try lowering acceleration,. If it is still set very
cycle, there could be a large moment of inertia mismatch.

The AMPS command has no effect on the Ba bit. It only effects continuous current, not
peak current.

Example: (sub component of system check routine)
	 IF Ba 'If Peak over Current is detected
 		 PRINT("OVER CURRENT") 'inform host
 		 Za			 'clear over current state latch
	 ENDIF

39

Bb
	 Parity Error Status Bit

Related
Commands:

CHN

CHN0

CHN1

OCHN

Z

Zb

ZS

APPLICATION:	 Monitor Serial Communications

DESCRIPTION:	 Serial communications parity error detected state

EXECUTION:	 Historical, latched by serial communications 	

CONDITIONAL TO:	 Channel 0 or channel 1 open with Even or Odd 	
parity

LIMITATIONS:	 None

REPORT COMMAND:	 RBb, RCHN (bit3), RCHN0 (bit3), RCHN1 (bit3)

READ/WRITE:	 Read only. To reset to zero issue Zb command

LANGUAGE ACCESS:	 Expressions and conditional testing

UNITS:	 Binary bit

RANGE OF VALUES:	 0 or 1

TYPICAL VALUES:	 0

DEFAULT VALUE:	 0 Not applicable to default No parity

FIRMWARE VERSIONS:	 4.00 and higher 		

DETAILED DESCRIPTION:

The firmware checks for and flags any communications parity error event by setting
Bb to 1. If such an error occurs, an error recovery routine can be implemented at the
discretion of the user. In practice, unless the environment is electrically noisy, this error
is unlikely. Any data or syntax error due to noise is potentially dangerous in a motion
control environment; please take appropriate precautions.		

Parity only has relevance when the serial protocol includes parity checking. To include
parity checking, the open channel command OCHN parity parameter must specify
either even parity (E) or odd parity (O). The default is no parity (N), in which case there
is no parity bit transmitted over the serial channel to check. If ignore parity (I) is speci-
fied as the parity parameter, there is a parity bit included with every data character, but
it is not checked.

Example: (sub component of system check routine)

	 OCHN(RS4,1,E,9600,1,8,C)	 'open RS485 channel 1 		
	 IF Bb
		 PRINT("SERIAL PARITY ERROR")	
		 Zb			 'clear Parity Error status bit
	 ENDIF

40

Bc

	 Communications Overflow Status Bit

Related
Commands:

CHN

CHN0

CHN1

Z

Zc

ZS

OCHN

RCHN0

RCHN1

APPLICATION:	 Monitor Serial Communications

DESCRIPTION:	 Serial Communications Receive Buffer overflow occurred

EXECUTION:	 Historical, latched by Buffer Overflow detection

CONDITIONAL TO:	 Serial port buffer overflow

LIMITATIONS:	 None

REPORT COMMAND:	 RBc, RCHN (bit0), RCHN0 (bit0), RCHN1 (bit0)

READ/WRITE:	 Read only. To reset to zero issue Zc command

LANGUAGE ACCESS:	 Expressions and conditional testing

UNITS:	 Binary bit

RANGE OF VALUES:	 0 or 1

TYPICAL VALUES:	 0

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 3.00 and higher

DETAILED DESCRIPTION:

Version 4.00 and higher motors have a software serial receive buffer maintained by
the firmware. The buffer length is 16 characters. If a motor receives serial characters
faster than the command interpreter can read them, the buffer will eventually overflow,
and Bc is set to 1. An error routine can be written to recover from such a failure.

In any serial daisy chain link, if characters are transmitted to the motors with no inter-
mission between characters, the motors can get behind, eventually overflowing the
motors’ input buffer. The generally accepted solution is to put a delay between char-
acters, between commands, or between long blocks of characters. In the case of the
SmartMotor™, the above does not normally happen because most applications have
naturally-occuring intervals between commands or groups of commands.

Example: (sub component of system check routine)
	 IF Bc
	 PRINT("SERIAL OVERFLOW") 'inform host
	 Zc			 'clear overflow state latch
	 ENDIF	

41

APPLICATION:	 Monitor expression evaluation math overflow

DESCRIPTION:	 Math product overflow, value out of range

EXECUTION:	 Historical, immediate

CONDITIONAL TO:	 Software detects value out of range

LIMITATIONS:	 None

REPORT COMMAND:	 RBd, RW (bit 11), RPW (bit 11)

READ/WRITE:	 Read only. To reset to zero issue Zd or Zs command 	

LANGUAGE ACCESS:	 Expressions and conditional testing

UNITS:	 Binary bit

RANGE OF VALUES:	 0 or 1

TYPICAL VALUES:	 0

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 3.00 and higher

DETAILED DESCRIPTION:

Bd is set to 1 by a math multiplication out of range condition (>32Bit signed integer)
or an out of range Mode Follow Ratio result (>256).
 The SmartMotor™ employs 32 bit signed integer calculations for all math func-
tions. If, for example, a*b results in a magnitude greater than 31 binary bits, the Bd
system flag is set to 1. You can possibly avoid this by scaling the numbers, perform-
ing calculations in a different order, or using different method of calculation.

Example:

Try this following product on your own hand held calculator and observe the result.
Then try the same calculation using a motor.
	 Zd				 'reset error flag	
	 zz=123456789
	 aa=987654321
	 f=aa*zz
	 Rf		 <Response to host will be -67153019>
	 RBd		 <Response to host will be 1>

Notice that even the sign of the product is incorrect.

Bd

	 Math Overflow Status Bit

Related
Commands:

Zd

ZS

RW

RPW

42

Example:

Mode Follow with Ratio permits the shaft to respond with a user defined
scaling gain to the external encoder input. There is a limit to the magnitude
of the gain such that

-256 < GAIN < 256

The system flag Bd is set if this GAIN restriction is violated.

The flag is set immediately after executing the MFR command.
Zd			 'reset error flag
MFMUL=256	'Multiplier for incoming encoder counts
MFDIV=1		 'Divisor for incoming encoder counts
RBd			 'Response to host 0
MFR			 'Calculate Mode Follow Ratio
RBd			 'Response to host 1
The MFMUL parameter cannot exceed 256 * MFDIV.

Note: The Bd bit will only go out of range on multiplication of two numbers,
not addition. In other words, IF you add two numbers and the result exceeds
+/-231 in magnitude, the number will be bit rolled over.

Example:
a=2140000000
ZS
b=a+a
Rb -14967296

Under the above condition even though the value of "b" is not correct, the
Math overflow bit was not set.

Bd (continued)
	 Math Overflow Status Bit

Related
Commands:

Zd

ZS

RW

RPW

43

Be

	 Excessive Position Error Status Bit

Related
Commands:

Ze

ZS

G

E

RW

RPW

APPLICATION:	 Monitor trajectory for error

DESCRIPTION:	 Position error declared

EXECUTION:	 Historical, immediate

CONDITIONAL TO:	 Position error exceeded E value during trajectory 	
move

LIMITATIONS:	 Torque modes have no position error	

REPORT COMMAND:	 RBe, RS (bit 5), RW (bit 5), RPW (bit 5)

READ/WRITE:	 Read only. Reset to issuing a G command

LANGUAGE ACCESS:	 Expressions and conditional testing

UNITS:	 Binary bit

RANGE OF VALUES:	 0 or 1

TYPICAL VALUES:	 0		

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

The Be status bit indicates the detection of a position error. Each and every PID sample,
the magnitude of the measured position error is compared to the allowable following
error (E) value set by the user. If this value is exceeded, the servo will be immediately
turned off, The Bo bit will be set to 1, The Bt bit will be set to 0, and Be will be set to
1 all at the same time. If issued, RMODE will return an "E".

This condition is reset by:

 * Issuing a G in non-PLS

 * Issuing Ze or ZS (PLS firmware only).

Example: (sub component move monitor routine)
	 TWAIT			 'wait for trajectory in progress
					 'to complete
	 IF Be			 'unsuccessful, position error?
		 PRINT("POSITION ERROR") 	 'inform host

	 ENDIF

Note: an extended period of peak over current may result in a position error
due to the fact that an over current condition will cause a reduction in power to
the motor thereby causing it to fall behind possibly enough to exceed E (maxi-
mum allowable position error)
If a motor continuously gets a Position Error no matter what, check for loss of
drive power, increased load or locked load.

44

Bf

	 Communications Framing Error Status Bit

Related
Commands:

CHN

CHN0

CHN1

Z

Zf

ZS

APPLICATION:	 Monitor serial communications

DESCRIPTION:	 Serial communication framing error detected

EXECUTION:	 Historical, latched by serial communication receive

CONDITIONAL TO:	 Hardware detection

LIMITATIONS:	 None

REPORT COMMAND:	 RBf, RCHN (bit 1), RCHN0 (bit 1), RCHN1 (bit 1)

READ/WRITE:	 Read only. Reset to zero using command

LANGUAGE ACCESS:	 Expressions and conditional testing

UNITS:	 Binary bit

RANGE OF VALUES:	 0 or 1

TYPICAL VALUES:	 0		

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 4.00 and higher

DETAILED DESCRIPTION:

Bf indicates whether a framing error has been detected. Every serial byte
received by the SmartMotor™ is checked to see if it has the correct start and
stop bits, or "frame." If not, Bf is set to 1. If such an error occurs, the error recov-
ery routine is at the discretion of the user. In practice, unless the environment
is electrically noisy, this error is unlikely. Any data error or syntax error due
to noise is potentially dangerous in a motion control environment; please take
appropriate precautions.	

Note: A framing error can occur with slightly mismatched baud rates between two
devices as well. SmartMotors meet the IEEE specification of baud rate +/-10%.
If baud rates exceed that range between two devices, a framing error is likely to
occur.

	

Example: (sub component of system check routine)
	 IF Bf
		 PRINT("SERIAL FRAMING ERROR")	'inform host
		 Zf		 'clear over current state latch
	 ENDIF

45

Bh

	 Overheat/RMS Over-Current Status Bit

Related
Commands:

TEMP

TH

THD

Z

OFF

RW

RPW

APPLICATION:	 Monitor motor error state

DESCRIPTION:	 Hardware motor overheat state

EXECUTION:	 Real time, set after thermal delay (THD)/reset each 	 PID
sample

CONDITIONAL TO:	 Motor temperature, temperature set point (TH), 		
	 temperature set point dead band, thermal delay (THD)

LIMITATIONS:	 None

REPORT COMMAND:	 Real time: 	 RBh

	 Historical:	 RS (bit 6), RW (bit 6), RPW (bit 6)

READ/WRITE:	 Read only

LANGUAGE ACCESS:	 Expressions and conditional testing

UNITS:	 Binary bit

RANGE OF VALUES:	 0 or 1

TYPICAL VALUES:	 0

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

There are two mechanisms in the SmartMotor™ that can indicate excessive heat.
The first is a temperature sensor, while the second is an RMS current monitor. The
former is a direct measurement of heat, while the latter predicts that an overheat will
occur. In either case, Bh will be set to 1.

 With continuous heavy loads all motors will generate heat. If the heat sinking or
ventilation is inadequate, eventually the motor will overheat. If this situation repeatedly
occurs it may mean that the motor does not have enough power for the assigned task
(motor sizing inadequate) or excessive resistance (friction) to motion is occurring. In
this event, please check your overall motion system.

The overheat temperature limit is adjustable by the user by the TH command, but cannot
exceed 70º Celsius (optional 85º). The amount of time that the temperature is allowed
to stay at or above this temperature is set by the THD function. If the temperature stays
at or above the TH value for longer than THD servo samples, the amplifier will turn off,
Bh will be set to 1, the motor off bit Bo set to 1 and the trajectory bit is cleared to 0
ALL at the same time!. If issued, RMODE will return "O" meaning the drive stage is
off. The SmartMotor will reject any command to start motion until the temperature has
fallen 5º Celsius below the trip point.

Note: If power is removed and restored and temperature is <5 degrees below the set
point, the motor will be allowed to move. This however can lead to damage if it is done
repeatedly.

46

Bh (continued)
	 Overheat/RMS Over-Current Status Bit

Related
Commands:

TEMP

TH

THD

Z

OFF

RW

RPW

The RMS current monitor continuously calculates the equivalent Root-Mean-
Square current of the amplifier. If the RMS current is too high for longer than
THD servo samples, the amplifier will turn off, Bh will be set to 1, the motor off bit
Bo set to 1 and the trajectory bit cleared to 0 ALL at the same time!. If issued,
RMODE will return "O." The SmartMotor™ will reject any motion commands
for approximately 10 milliseconds. The biggest difference between the two
overheat mechanisms described will be that, if the RMS current monitor detects
and overheat, the SmartMotor may not physically feel hot.

Once Bh is set to 1, the historical overheat flag is latched when read by RW,
RS or accessing S. If the overheat condition no longer exists, Bh will be reset to
zero upon reporting (RS, RW) or accessing the S value.

Example: (sub component of system check routine)

	 IF Bh
		 IF TEMP>69
			 PRINT("MOTOR TOO HOT")		 'inform host
			 GOSUB123			 'deal with condition
		 ELSE
			 PRINT("RMS Over Current Trip")	
			 GOSUB123			 'deal with condition
		 ENDIF
	 ENDIF	

Example:

Test to measure approximate shut down time - not very accurate but illustrates
TH, THD, and TEMP.

	 PRINT(#13,"Default value of TH = ",TH) 'default=70
	 PRINT(#13,"Motor Temperature = ",TEMP)
	 PRINT(#13,"START MOTION")
	 A=222
	 V=44444
	 MV
	 G
	 THD=32000	 'THD default = 12000 or 3 seconds
				 ' units are PID samples
	 TH=TEMP-5	 'Force an over heat condition
				 ' units are degrees Centigrade
				 ' TH maximum setting is 70
	 a=CLK
	 WHILE Bh==0 LOOP
	 WHILE Bt LOOP
	 b=CLK
	 PRINT(#13,"Servo OFF after ",b-a," PID samples")

47

Bi
	 Index-Position Captured Status Bit

Related
Commands:

Bx

I

Rl

F=

APPLICATION:	 Monitor Index Latching

DESCRIPTION:	 Hardware index position available state.

EXECUTION:	 Set upon hardware index latched

CONDITIONAL TO:	 Hardware index level detected high and prior index 		
	 value read, F command and Port G.

LIMITATIONS:	 Latched until index value read

REPORT COMMAND:	 RBi, RS (bit3), RW (bit3), RPW (bit3)

READ/WRITE:	 Read only. Reset to zero by reading or assigning 		
	 index value

LANGUAGE ACCESS:	 Expressions and conditional testing

UNITS:	 Binary bit

RANGE OF VALUES:	 0 or 1

TYPICAL VALUES:	 Any legal encoder value	

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

When enabled, the Bi flag is set to 1 when the internal encoder Z pulse (index mark)
is detected. The value of the primary encoder in the servo sample that the index is
captured is stored in the "I" system register WITHIN 5 microseconds of the time it
was captured!

While Bi is 1, the microprocessor is prohibited from making another index capture. If the
captured value is read or accessed via accessing the I register via RI of <variable>=I,
the Bi flag will be reset to zero and the ability to capture the index is again enabled.

The commands RI and PRINT(I,#13) report the captured index reading through the
primary serial channel. PRINT1(I,#13) reports through the channel 1 serial port. Any of
these command sequences reset the Bi flag to zero. Assignments such as variable=I
likewise assign the captured value and reset the Bi flag to zero. If Bi is zero at the time
the I value is accessed, the previously captured index value is again returned.	

Example: (simple homing)
 MV			 'set buffered velocity mode
 A=10			 'set buffered acceleration
 V=-4000		 'set low buffered maximum velocity
 G			 'start slow motion profile
 WHILE Bm==0 	 'travel until negative limit reached
 i=I		 'clear and arm index capture
 LOOP
 X			 'decelerate to a stop
 P=I			 'go back to index
 G			 'start motion
 TWAIT		 'wait till end of trajectory
 O=0			 'set origin at index

48

Example: (Fast Index Find)
 MP			 'set buffered velocity mode
 A=1000		 'set fast acceleration
 V=4000000		 'set fast velocity
 D=2100		 'set relative distance just beyond
			 'one shaft turn
 i=I			 'clear and arm index capture
 O=0			 'force change to position register
 G			 'start fast move
 TWAIT		 'wait till end of trajectory
 P=I			 'go back to index
 G			 'start motion
 TWAIT		 'wait until end of trajectory
 O=0			 'set origin at index

Index used as High Speed Position Capture:

When enabled via F=1024 (v4.95 or later firmware) the Bi flag is set to 1 when
Port G I/O pin gets driven to zero. This happens within 5 microseconds of Port
G going low. As a result Port G can be used to capture position for high speed
registration applications

Example: (Fast Position Capture)
 UGI			 'Set Port G as Input Port
'Set F command flags
al[0]=64 	'set value to enable C2 interrupt call
		 '(C2 gets called when Port G grounded)
al[1]=1024 	'set value to enable Index Position capture
		 'to be triggered from Port G
 F=al[0]+al[1]
V=100000	 'Set Velocity
A=100		 'Set Acceleration
MV		 'Set to Velocity Mode
G		 'Start Moving
END

C2 'This routine gets called automatically when Port G goes low
	 PRINT("Port G grounded when",#13)
	 PRINT("position=",@P,#13)
RETURNI

Sample Terminal Screen output from above code:

(Port G repeatedly grounded)
	 Port G grounded when
	 position=226076
	 Port G grounded when
	 position=257022
	 Port G grounded when
	 position=271849
	 Port G grounded when
	 position=279430
	 Port G grounded when
	 position=295069

Bi (continued)
	 Index-Position Captured Status Bit

Related
Commands:

Bx

I

Rl

F=

49

Bk
	 User Program Checksum Error Status Bit

Related
Commands:

RCKS

RW

RPW

LOAD

UPLOAD

VST

APPLICATION:	 EEPROM data validation

DESCRIPTION:	 EEPROM Checksum Failure State

EXECUTION:	 Historical, set on eeprom data check

CONDITIONAL TO:	 RCKS, VST(), or RES calibration data check

LIMITATIONS:	 Stored EEPROM program is SMX formatted

REPORT COMMAND:	 RBk, RW (bit 15), RPW (bit 15)

READ/WRITE:	 Read only, reset by RCKS
	 and first post reset RES	command

LANGUAGE ACCESS:	 Expressions and conditional testing

UNITS:	 Binary flag

RANGE OF VALUES:	 0 or 1

VALUE BY STATE:	 0= valid EEPROM user program checksum

	 and valid VST()

	 1 = Invalid EEPROM user program checksum, 		
	 or invalid 	 VST()

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 4.00 and higher

DETAILED DESCRIPTION:

Bk indicates whether a user program checksum write error has been detected. If Bk is
1, either the user program and/or program header has been corrupted. You should not
run the program in the SmartMotor™. This can occur if communications connection
was lost or corrupted during a download of a program. Bk is reset to zero by a power
reset, Z, and a valid (pass) checksum is detected via RCKS.

RCKS scans the entire program including header and returns two 6-bit checksums fol-
lowed by a "P" (pass) or "F" (fail) at the end. If RCKS reports a failure, Bk is set to 1.
RCKS sends its value through the primary serial port.

Example: (commands issued and responses from terminal screen)
	 RCKS 000049 0025E0 P
	 RBk 0

The VST() command also has the capability to set Bk to 1. VST() performs a read
operation after every byte it writes to the User Data EEPROM; if the read byte is not
the same as what was sent, the flag Bk is set to 1.

50

Bl
	 Historical Left-Limit Status Bit

Related
Commands:

Bm

Bp

Br

LIMH

LIML

LIMD

LIMN

RS

RPW

RW

UCI

UCP

UCO

UDI

UDM

UDO

SLE

SLD

SLP

SLN

Zl

ZS

APPLICATION:	 Monitor left limit switch

DESCRIPTION:	 Left limit latch

EXECUTION:	 Historical, sampled each PID update until latched

CONDITIONAL TO:	 LIMH. LIML, UDI, UDO, UDM

LIMITATIONS:	 None

REPORT COMMAND:	 RBl, RS (bit 2), RW (bit 2), RPW (bit 2)

READ/WRITE:	 Read only. Reset by Zl, ZS, RS, RW, RPW, 			
	 assignment or printing of S

LANGUAGE ACCESS:	 Expressions and conditional testing

UNITS:	 Binary flag

RANGE OF VALUES:	 0 or 1

VALUE BY STATE:	 0= Left/negative limit has not been active

	 1= Left/negative limit has been active

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 4.00 and higher firmware motors

DETAILED DESCRIPTION:

Bl is the historical left limit flag. If the left limit is found to be active during any servo
sample, Bl is set to 1, and remains 1 until reset by the user. In addition, the motion will
stop and the motor will either servo or turn the amplifier OFF, depending on the value
of the F function. The historical left/negative limit flag Bl provides a latched value in
case the limit may have already been reached and overpassed but is not at presently
active.

The real time left/negative limit flag is Bm, which only remains set to 1 while the signal
level on the user pin D is active. Whenever Bm is set to 1, Bl is set to one. The polar-
ity of the signal that is considered active is determined by commands LIMH (Active
High-To-Stop) and LIML (active Low-To_Stop) in all non-PLS firmware motors. PLS
firmware motors are always Active High asserted.

If the pin’s function is assigned to being general purpose I/O by use of the UDI or UDO
commands, neither Bm nor Bl will be affected by the pin state. Changing pin states
will not elicit limit behavior from the motor. It will be necessary to issue the UDM com-
mand to assign the pin’s function to being a limit switch, for the pin to again elicit limit
behavior, including the setting of Bl.

(Continued on next page)

51

In non-PLS firmware motors, Bl is reset to zero under the following condi-
tions:

1. When the S status byte is accessed for assignment

2. or reported via RS, PRINT(S,#13) or PRINT1(S,#13)

3. or directly reset with Zl and ZS.

4. or a G command is issued AND the Bm bit is not set.

In PLS firmware motors, Bl is reset to zero under the following conditions:

By issuing either Zl and ZS.

Example code:

	 IF Bm
 		 PRINT("LEFT LIMIT PRESENTLY ACTIVE")		
	 ELSEIF Bl
 		 PRINT("LEFT LIMIT Previously CONTACTED")
	 ELSE
 		 PRINT("LEFT LIMIT NEVER REACHED")
	 ENDIF

Bl (continued)
	 Historical Left-Limit Status Bit
Related
Commands:

Bm

Bp

Br

LIMH

LIML

LIMD

LIMN

RS

RPW

RW

UCI

UCP

UCO

UDI

UDM

UDO

SLE

SLD

SLP

SLN

Zl

ZS

Hardware Travel Limit Overview Status Bits Command to
Clear Historical Bit

Command to
Disable

Travel Limit Input

Command to
Enable

Travel Limit InputPort Pos/Neg Plus/Minus Left/Right Real Time Historical

Port C Positive PLUS RIGHT Br Bp Zr, or ZS UCI or UCO UCP
Port D Negative MINUS LEFT Bl Bm Zl, or Zs UDI or UDO UDM

52

Bm
	 Real-Time Left-Limit Status Bit

APPLICATION:		 Monitor left/negative switch

DESCRIPTION:		 Left limit state

EXECUTION:			 Real time, sampled each PID update

CONDITIONAL TO:	 LIMH, LIML, UCI, UCO, UCM

LIMITATIONS:			 None

REPORT COMMAND:	 RBm, RW and RPW (bit 10)

READ/WRITE:		 Read only, set/reset by pin voltage level

LANGUAGE ACCESS:	 Expressions and conditional testing

UNITS:				 Binary bit

RANGE OF VALUES:	 0 or 1

VALUES BY STATE:	 0 = left / negative limit switch not active
					 or pin not assigned as a limit switch	

					 1 = left / negative limit switch active

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

Bm indicates if the Left/Negative pin is presently active. If Bm is set to 1, the histori-
cal Left limit flag Bl is also set to one. In non PLS firmware motors, the polarity of the
signal that is considered active is determined by commands LIMH and LIML. [PLS
firmware has Active High Limits only!]

Note on Programmable Software Limits (>=4.76 firmware)
The Active/Real-Time status bit will be set to a one as long real time position is
beyond the programmed software limit position.

The Left/Negative Hardware Travel Limit may be disabled by being assigned
as a general purpose Input via UDI command or Output via UDO command.
To Re-Enable the Left/Negative Hardware Travel Limit, issue UDM.

Example:
	 IF Bm
 		 PRINT("LEFT LIMIT PRESENTLY ACTIVE")		
	 ELSEIF Bl
 		 PRINT("LEFT LIMIT Previously CONTACTED")
	 ELSE
 		 PRINT("LEFT LIMIT NEVER REACHED")
	 ENDIF

Related
Commands:

Bl

Bp

Br

LIMH

LIML

LIMD

LIMN

RS

RPW

RW

UCI

UCP

UCO

UDI

UDM

UDO

SLE

SLD

SLP

SLN

Zl

ZS

Hardware Travel Limit Overview Status Bits Command to
Clear Historical Bit

Command to
Disable

Travel Limit Input

Command to
Enable

Travel Limit InputPort Pos/Neg Plus/Minus Left/Right Real Time Historical

Port C Positive PLUS RIGHT Br Bp Zr, or ZS UCI or UCO UCP
Port D Negative MINUS LEFT Bl Bm Zl, or Zs UDI or UDO UDM

53

Bo
	 Motor-Off Status Bit

Related
Commands:

BRKTRJ

G

OFF

Z

APPLICATION:	 Monitor Motor Off State

DESCRIPTION:	 Motor OFF state

EXECUTION:	 Sampled each PID sample

CONDITIONAL TO:	 Motor is off 	

LIMITATIONS:	 None

REPORT COMMAND:	 RBo

READ/WRITE:	 Read only. Set by G

LANGUAGE ACCESS:	 Expressions and conditional testing

UNITS:	 Binary flag

RANGE OF VALUES:	 0 or 1

VALUE BY STATE:	 1 = Motor is off

	 0 = Motor is on		

DEFAULT VALUE:	 1

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

Simply stated Bo=0, drive stage is on, Bo =1 dirve stage is off. The Red Drive LED on
the motor direclty follows the Bo bit and is therfore a direct indication of the Bo bit. If
Bo=1, the Red LED is on. If Bo=0, the Red LED is off.

There are only three reasons that Bo=1.

 1. Upon first power-up of a SmartMotor™ and prior to any command that would turn 	
 on the drive stage.

 2. Any time the OFF command is issued.

 3. Any Motor Fault resulting in the OFF command being issued at firmware level.

 a. Position Error (Be=1),

 b. Overheat/RMS-Over-Current (Bh=1),

 c. Exceeding enabled travel limits (Br or Bl detected even briefly).

 A motor reset via the Z command will also have Bo set to one only beacuce it is the
same as a Power-up in #1 above.

If BRKTRJ has been issued, when a trajectory is not in progress (Bt is 0), the brake
is engaged and power is not applied to the motor coils. In this state, Bo will not be 0,
even though the amplifier is actually off. This may seem confusing, but it is because
the brake is holding the the shaft locked in place nd therefor may be applying a force
to the load. BRKTRJ is the only mode that behaves this way.

54

Bp

	 Real-Time Right-Limit Status Bit

APPLICATION:	 Monitor right limit switch

DESCRIPTION:	 Right / Positive limit state

EXECUTION:	 Sampled each PID update

CONDITIONAL TO:	 LIMH, LIML

LIMITATIONS:	 None

REPORT COMMAND:	 RBp

READ/WRITE:	 Read only

LANGUAGE ACCESS:	 Expressions and conditional testing

UNITS:	 Binary flag

RANGE OF VALUES:	 0 or 1

VALUES BY STATE:	 0= right/positive limit switch not active or pin not 	
	 assigned as a limit switch	 	

	 1= right/positive limit switch is active

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

Bp indicates if the right/positive pin is presently active. If Bp is set to 1, the
historical right limit flag Br is also set to one. In non PLS firmware motors, the
polarity of the signal that is considered active is determined by commands LIMH
and LIML. [PLS firmware has Active High Limits only!]

Note on Programmable Software Limits (>=4.76 firmware)
The Active/Real-Time status bit will be set to a one as long real time position is
beyond the programmed software limit position.

The Right/Positive Hardware Travel Limit may be disabled by being assigned
as a general purpose Input via UCI command or Output via UCO command.
To Re-Enable the Right/Positve Hardware Travel Limit, issue UCP.

Example:
	 IF Br
 		 PRINT("Right LIMIT PRESENTLY ACTIVE")		
	 ELSEIF Bp
 		 PRINT("Right LIMIT Previously CONTACTED")
	 ELSE
 		 PRINT("Right LIMIT NEVER REACHED")
	 ENDIF

Related
Commands:

Bm

Bl

Br

LIMH

LIML

LIMD

LIMN

RS

RPW

RW

UCI

UCP

UCO

UDI

UDM

UDO

SLE

SLD

SLP

SLN

Zl

ZS

Hardware Travel Limit Overview Status Bits Command to
Clear Historical Bit

Command to
Disable

Travel Limit Input

Command to
Enable

Travel Limit InputPort Pos/Neg Plus/Minus Left/Right Real Time Historical

Port C Positive PLUS RIGHT Br Bp Zr, or ZS UCI or UCO UCP
Port D Negative MINUS LEFT Bl Bm Zl, or Zs UDI or UDO UDM

55

Br
	 Historical Right-Limit Status Bit

APPLICATION:	 Monitor Right limit switch latch

DESCRIPTION:	 Right limit latch

EXECUTION:	 Sampled each PID update until latched

CONDITIONAL TO:	 LIMH, LIML

LIMITATIONS:	 None

REPORT COMMAND:	 RBr

READ/WRITE:	 Read only. Reset by RW, RS, Zr, ZS

LANGUAGE ACCESS:	 Expressions and conditional testing

UNITS:	 Binary flag

RANGE OF VALUES:	 0 or 1

VALUE BY STATE:	 0= Right/positive limit has not been active

	 1= Right /positive limit has been active

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 4.00 and higher

DETAILED DESCRIPTION:

Br is the historical right limit flag. If the right limit is found to be active during any servo
sample, Br is set to 1, and remains 1 until reset by the user. In addition, the motion will
stop and the motor will either servo or turn the amplifier OFF, depending on the value
of the F function. The historical right/positive limit flag Br provides a latched value in
case the limit may have already been contacted (active) but is not at presently active.

The real time Right/Positive limit flag is Bp, which only remains set to 1 while the signal
level on the user pin C is active. Whenever Bp is set to 1, Br is set to one. The polar-
ity of the signal that is considered active is determined by commands LIMH (Active
High-To-Stop) and LIML (active Low-To_Stop) in all non-PLS firmware motors. PLS
firmware motors are always Active High asserted.

If the pin’s function is assigned to being general purpose I/O by use of the UCI or UCO
commands, neither Bp nor Br will be affected by the pin state. Changing pin states
will not elicit limit behavior from the motor. It will be necessary to issue the UCP com-
mand to assign the pin’s function to being a limt switch, for the pin to again elicit limit
behavior, including the setting of Br.

(Continued on next page)

Related
Commands:

Bm

Bp

Bl

LIMH

LIML

LIMD

LIMN

RS

RPW

RW

UCI

UCP

UCO

UDI

UDM

UDO

SLE

SLD

SLP

SLN

Zl

ZS

56

In non-PLS firmware motors, Br is reset to zero under the following condi-
tions:

1. When the S status byte is accessed for assignment

2. or reported via RS, PRINT(S,#13) or PRINT1(S,#13)

3. or directly reset with Zr and ZS.

4. or a G command is issued AND the Bp bit is not set.

In PLS firmware motors, Br is reset to zero under the following conditions:

By issuing either Zr and ZS.

Example code:

	 IF Br
 		 PRINT("Right LIMIT PRESENTLY ACTIVE")		
	 ELSEIF Bp
 		 PRINT("Right LIMIT Previously CONTACTED")
	 ELSE
 		 PRINT("Right LIMIT NEVER REACHED")
	 ENDIF

Br (continued)
	 Historical Right-Limit Status Bit
Related
Commands:

Bm

Bp

Bl

LIMH

LIML

LIMD

LIMN

RS

RPW

RW

UCI

UCP

UCO

UDI

UDM

UDO

SLE

SLD

SLP

SLN

Zl

ZS

Hardware Travel Limit Overview Status Bits Command to
Clear Historical Bit

Command to
Disable

Travel Limit Input

Command to
Enable

Travel Limit InputPort Pos/Neg Plus/Minus Left/Right Real Time Historical

Port C Positive PLUS RIGHT Br Bp Zr, or ZS UCI or UCO UCP
Port D Negative MINUS LEFT Bl Bm Zl, or Zs UDI or UDO UDM

57

Bs
	 Syntax-Error Status Bit

Related
Commands:

RCS

RCS1

RCKS

RBk

RUN

Z

ZS

APPLICATION:	 Monitor Command Syntax Errors

DESCRIPTION:	 Command syntax error occurred state

EXECUTION:	 Immediate

CONDITIONAL TO:	 Syntax error found while executing commands

LIMITATIONS:	 None

REPORT COMMAND:	 RBs

READ/WRITE:	 Read only. Reset to zero using Zs command

LANGUAGE ACCESS:	 Expressions and conditional testing

UNITS:	 Binary flag

RANGE OF VALUES:	 0 or 1

VALUE BY STATE:	 0= no syntax error occurred

	 1= syntax error detected 		

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

If a syntax error is encountered in either a serial command or user program, the Bs
flag is set to 1. This flag only indicates that a syntax error was encountered. The most
common syntax errors are misspellings of commands, but the improper use of vari-
ables are also flagged. For example, trying to access the array element aw[20000] will
also produce a syntax error. If this is the case, the command that contains the syntax
error is ignored.

Some errors may appear to be valid syntax, and require other means to detect. To
more fully protect against ASCII input stream errors one can use RCKS, RCS, and
RCS1 commands as well as checking for framing and parity errors.

Examples:

	 Suppose host transmitted A=100 but A=101 is received due to noise.
		 Bs would not be set, but Bb might be.

	 Suppose host should have transmitted A=100 but actually
		 transmitted A=L00.
			 Bs would be set but Bb would not be.

Note: Responses to requests for values in variables or otherwise may cause the Bs bit to be set
in any downstream motors on an RS-232 bus or any other motor on a parallel RS-485 bus.
The reason for this is because a value (a number) in and of itself is not a valid SmartMotor™
command and as a result, the other motors seeing that response will flag their Bs Bit.

Example:
Issue RP to Motor-1 in a 3 motor system, when Motor-1 responds with it's position in
the form of just an integer number, that number in and of itself is not seen as
valid command syntax.

58

Bt
	 Trajectory-In-Progress Status Bit

Related
Commands:

BRKTRJ

G

OFF

S

X

APPLICATION:	 Monitor Trajectory

DESCRIPTION:	 Trajectory in progress state flag

EXECUTION:	 Updated each PID sample

CONDITIONAL TO:	 Trajectory in progress

LIMITATIONS:	 None

REPORT COMMAND:	 RBt

READ/WRITE:	 Read only

LANGUAGE ACCESS:	 Expressions and conditional testing

UNITS:	 Binary flag

RANGE OF VALUES:	 0 or 1

VALUE BY STATE:	 0 = no trajectory in progress

	 1 = trajectory in progress		

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

The flag Bt is set to 1 any time the motor is performing a calculated trajectory path
from one point to another. Once the trajectory generator has requested the final target
position, the Bt flag is reset to zero. At this point, the PID positioning control takes over
the motion, which means that the motor shaft may still be moving due to mechanical
settling.

Torque Mode (MT) will not set the Bt bit to 1 because there is no target trajectory.

Mode Velocity (MV) will maintain the Bt bit to 1 regardless of commanded velocity or
acceleration even they are set to Zero.

Mode Follow and Mode Step will maintain Bt to 1 even if there are no change in incom-
ing counts.

If a relative or absolute move is commanded in position mode (MP), and there is no
(zero) commanded Acceleration or Velocity, the Bt bit will be set to 1 and the motor
shaft will not move.

Example 1:
 	 WHILE Bt 	 'while trajectory in progress
	 LOOP
	 WHILE @V	 'while still settling or while velocity not zero	
	 LOOP
	 OFF		 'motor off
	 BRKENG	 'brake engage

59

Example 2:
	 MP				 'buffer a position move request

	 A=10

	 V=440000

	 P=10000

	 G	 			 'start the first buffered move

	 WHILE Bt		 'wait for first trajectory to be done

	 LOOP			 'Note: TWAIT could have been used!	

	 A=20			 'buffer another move

	 V=-222000

	 P=20000

	 G				 'now begin the second move

Example 3:
	 MV				 'Set to Velocity Mode

	 A=10

	 V=440000

	 G				 'start moving

	 WHILE Bt		 'Bt will remain 1 until commanded

	 LOOP	 		 'otherwise or the motor

					 'errors out for some reason 			

Bt (continued)
	 Trajectory-In-Progress Status Bit

Related
Commands:

BRKTRJ

G

OFF

S

X

60

Bu
	 Array Index Error Status Bit

Related
Commands:

ZS

Zu

APPLICATION:	 Monitor array index error

DESCRIPTION:	 Out of range array index state flag

EXECUTION:	 Latched high upon illegal array access attempted

CONDITIONAL TO:	 User command attempted to access an array using 	
	 an illegal index

LIMITATIONS:	 None

REPORT COMMAND:	 RBu

READ/WRITE:	 Read only. Reset to zero using Zu command

LANGUAGE ACCESS:	 Expressions and conditional testing

UNITS:	 Binary bit

RANGE OF VALUES:	 0 or 1

VALUE BY STATE:	 0 = no illegal array index has occured	

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 4.00 or higher

DETAILED DESCRIPTION:

The index for each of the ab[index], aw[index] and al[index] arrays has a valid
range. If you go outside the valid range, the system flag Bu is set to 1. The syntax
error bit Bs will also be set to 1. Bu is more explicit.

Example:
	 Zu				 'reset illegal index flag
	 t=0
	 WHILE t<60
	 al[t]=t			 'initialize array members 	
	 t=t+1			 'to values 0,1,2,3,4….
	 LOOP
	 RBu

Response is 1 since al[50] is the legal end of array.

61

Bw
	 Encoder-Wrap-Around Status Bit

Related
Commands:

Z

G

Bi

RBx

RBi

I

APPLICATION:		 Monitor Encoder Wrap Around

DESCRIPTION:		 Encoder overflow or underflow occurred

EXECUTION:		 Updated each PID sample

CONDITIONAL TO:	 	 Position mode set

LIMITATIONS:		 Velocity and Torque Modes are immune to 		
		 encoder wrap around, all others are subject to it.

REPORT COMMAND:		 RBw

READ/WRITE:		 Read only. Reset via G or ZS command

LANGUAGE ACCESS:		 Expressions and conditional testing

UNITS:		 Binary flag

RANGE OF VALUES:		 0 or 1

VALUE OF STATES:		 0= No encoder wrap around occurred

		 1= Encoder wrap around occurred by
		 position mode move	

DEFAULT VALUE:		 0		

FIRMWARE VERSIONS:	 ALL	

DETAILED DESCRIPTION:

If Bw is 1, it indicates that the encoder position has exceeded or "wrapped,"
beyond maximum value for the 32 bit position register. Specifically, the position
has gone outside of the range -2147483648 to 2147483647.

This does not at all mean that the SmartMotor™ has lost its position informa-
tion. It is still tracking its position. If the SmartMotor "wraps" while in Absolute
or Relative Position Mode, it will set the Position Error Bit Be to 1, as well.

Velocity mode is designed to survive the wrap around condition and torque
mode does not care about any trajectory updates. Neither of these causes Bw
will set to 1.

Note: Mode Follow (MF_) allows for a means around wrapping condition by
allowing MF0 to be issued on the fly. This will zero out encoder counter regis-
ters without having an effect on the motion profile.

Continued on next page.

62

Bw (continued)
	 Encoder-Wrap-Around Status Bit

Related
Commands:

Z

G

Bi

RBx

RBi

I

Example to prevent wrap status while in Mode Follow continuously:
MF4	 'Set to Mode Follow at default 1:1 ratio
WHILE 1
	 IF @P>2147480000
		 MF0
	 ENDIF
	 IF @P<-2147480000
		 MF0
	 ENDIF
LOOP
END

Example to prevent wrap status while continuously indexing :
UGI				 'Use Port G as general input
D=20000			 'Set relative distance
V=1234567			 'Set Velocity
A=123				 'Set Acceleration
WHILE 1	 'while forever
	 WHILE UGI LOOP	 'wait for Port G to be grounded
	 G			 'Go (start Moving)
	 TWAIT			 'Wait until the move is complete
	 O=0			 'set origin to zero
	 WHILE UGI==0 LOOP	'prevent double trigger
LOOP
END

63

Bx
	 Real-Time Index Input Status Bit

Related
Commands:

Bi

I

Rl

F=

APPLICATION:	 Monitor Hardware Index Capture Input

DESCRIPTION:	 Index input state

EXECUTION:	 Updated each PID sample

CONDITIONAL TO:	 N/A

LIMITATIONS:	 None

REPORT COMMAND:	 RBx

READ/WRITE:	 Read only			

LANGUAGE ACCESS:	 Expressions and conditional testing	

UNITS:	 Binary flag

RANGE OF VALUES:	 0 or 1

VALUE OF STATES:	 0 = index capture input is not in contact (low)

	 1 = index capture input is in contact (high)

DEFAULT VALUE:	 0		

FIRMWARE VERSIONS:	 4.00 and higher	

DETAILED DESCRIPTION:

Bx is the real-time state of the index input level. The Bx bit is set to a 1 ONLY while
the motor is sitting on the index. Be aware that the index marker is only one encoder
count wide, this function is mainly used to verify the exact position of the index. For
most other uses, it is more efficient to use the functions Bi and I.

Example: (Fast Index Find , Report Bx)
 MP			 'set buffered velocity mode
 A=1000		 'set fast acceleration
 V=4000000		 'set fast velocity
 D=2100		 'set relative distance just beyond
			 'one shaft turn
 i=I			 'clear and arm index capture
 O=0			 'force change to position register
 G			 'start fast move
 TWAIT		 'wait till end of trajectory
 P=I			 'go back to index
 G			 'start motion
 TWAIT		 'wait until end of trajectory
 O=0			 'set origin at index

 IF Bx
 PRINT("On Index Pulse",#13)
 ENDIF

64

BASE
	 Cam Mode Master Cycle Length

APPLICATION:	 CAM Mode Control

DESCRIPTION:	 Cycle period of Mode Cam encoder

EXECUTION:	 Immediate

CONDITIONAL TO:	 SIZE, MC_, G being issued

LIMITATIONS:	 2 < BASE < 32767

REPORT COMMAND:	 N/A	

READ/WRITE:	 Write only		

LANGUAGE ACCESS:	 None	

UNITS:	 Encoder counts

RANGE OF VALUES:	 2 < BASE < 32767

TYPICAL VALUES:	 User determined	

DEFAULT VALUE:	 User determined

FIRMWARE VERSIONS:	 4.12 and higher

DETAILED DESCRIPTION:

CAM Mode requires three items to properly perform a cam profile, a BASE, SIZE
and DATA table. BASE specifies the number of encoder counts that the master turns
through one cycle while the slaved, camming SmartMotor™ moves through the points
in its data table. SIZE is the number of points in the data table.

In the example given below, the camming SmartMotor moves from zero to 120 encoder
counts in the positive direction and then back to the zero for every 2000 counts of
the master encoder. If the master encoder moves at a constant velocity in the posi-
tive direction, this camming profile will continue to repeat for as long as the master
encoder continues to move. Since the profile completes every 2000 counts of the
master encoder, the BASE is 2000.

The Units are actual encoder counts that are seen at the SmartMotors external encoder
input, User ports A and B. This is the same external encoder input that can be read
through the counter function CTR.

BASE is a parameter required to control Cam Mode motion. In Cam Mode, each value
of the external encoder defines a required corresponding SmartMotor position; Cams
typically define a periodic motion profile or trajectory. BASE defines the number of
encoder counts through the external Cam moves before the required position map-
ping, or required motion, is exactly repeated. Suppose BASE=10000 encoder counts,
and the suppose the required Smart position is to be 100 when the external encoder
(CTR) reports a value of 2506, then SmartMotor will be required to be at position 100
whenever CTR= … -27494, -17294, 2506, 12506, 22506, 32506, etc.

The SmartMotor performs a practical cam application by partitioning the required cam
trajectory definition into a number of linearly interpolated segments. The SIZE param-
eter stores the number of segments. The segments are required to partition the BASE

Related
Commands:

MC

MC2

MC4

MC8

SIZE

aw[index]

MF1

MF2

MF3

MF4

65

into a set of equally spaced intervals. Suppose BASE=1000 and SIZE=50. Each seg-
ment will then be of width BASE/SIZE or 20 counts. The cam motion is then defined
by providing the required SmartMotor™ positions corresponding to CTR= 0, 20, 40,
60 …940, 960 and 980 and 1000. If the motion is truly periodic the required position
at CTR=0 will identical to the required position at CTR=1000.

The cam table is loaded into the aw[] array, beginning at aw[0] and ending with
aw[SIZE]. It is simplest to define the cam using position at CTR=0 to be encoder posi-
tion 0 by issuing MF0 and O=0 commands.

EXAMPLE:

A "saw tooth" cam with periodic motion every 2000 external encoder counts and the
motion interpolation divided into 25 (equal) segments.

BASE=2000 	'Cam period
SIZE=25	 'data segments (number of data points in table)
'CTR data interval = BASE/SIZE = 2000/25 = 80
'CAM motor will be at Data position every 80
'Master encoder counts:
'CTR=0, CTR=80, CTR=160,.... CTR=1840, CTR=1920, CTR=2000
'Now assigning data values beginning with aw[0]:
aw[0] 0 10 20 30 40 50 60 70 80 90 100.
aw[20] 110 120 120 110 100 90 80 70 60.
aw[19] 50 40 30 20 10 0.
MF4	 'reset external encoder to zero
O=0	 'reset internal encoder position	
MC	 'buffer CAM Mode
G	 'start following the external encoder using cam data

The motor will now begin following the External (Master) encoder via the defined CAM
profile above.

BASE (continued)
	 Cam Mode Master Cycle Length

Related
Commands:

MC

MC2

MC4

MC8

SIZE

Aw[index]

MF1

MF2

MF3

MF4

66

BRKC
	 Brake Control Re-Direct to Port C

APPLICATION: Hardware brake control

DESCRIPTION: Re-Direct Brake Control to Port C user Output

EXECUTION: Immediate and effective until otherwise
 commanded

CONDITIONAL TO: BRKI, BRKG

LIMITATIONS: None

REPORT COMMAND: N/A

READ/WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT STATE: BRKI (Brake Control Default to Internal Bake Pin)

FIRMWARE VERSIONS: 4.15, all PLS firmware. (Not available on 4.40)

DETAILED DESCRIPTION:	

SmartMotors™ may be purchased with optional internal zero backlash brakes used
to hold a load for safety purposes.

They are Fail Safe Magnetic Clutch Disk Brakes. When power is lost the brake engag-
es. The default with power on is to disengage the brake when ever the drive stage is
turned on. The brake takes between 3 and 5 milliseconds to actuate or release.

If an External Brake is used instead of the optional internal brake, the BRKC com-
mand allows automatic and interrupt driven control of the external brake via I/O port
pin C.

BRKC is a re-direction of the same signal that would otherwise control an internal
brake. As a result, Port C will follow the state of the internal brake pin. Port C will be
active low (zero volts) when ever the brake should be engaged and at 5VDC when
ever the brake should be disengaged.

The logic state follows the present Brake control method chosen.

See BRKSRV, BRKTRJ, BRKENG and BRKRLS for more.

Example:
	 UCO		 ' Assign Port C to be used as an output pin
	 BRKC		 ' re-direct brake control to port C pin
	 BRKRLS	 ' will set port C to 0VDC
	 BRKENG	 ' will set port C to 5VDC

Related
Commands:

BRKENG

BRKRLS

BRKSRV

BRKTRJ

BRKG

BRKI

UCO

67

BRKENG
	 Brake Engage

APPLICATION: Hardware brake control

DESCRIPTION: Engages hardware brake immediately

EXECUTION: Immediate and effective until otherwise
 commanded

CONDITIONAL TO: Hardware BRAKE required

LIMITATIONS: None

REPORT COMMAND: N/A

READ/WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT STATE: Power On: 	 BRKSRV

 Power Off:	 brake is engaged

FIRMWARE VERSIONS: 4.00 and higher

DETAILED DESCRIPTION:

SmartMotors™ may be purchased with optional internal zero backlash brakes used
to hold a load for safety purposes.

They are Fail Safe Magnetic Clutch Disk Brakes. When power is lost the brake engag-
es. The default with power on is to disengage the brake when ever the drive stage is
turned on. The brake takes between 3 and 5 milliseconds to actuate or release.

When BRKENG is issued, the brake is de-energized allowing the magnetic brake to
lock the shaft in place.

BRKENG terminates the brake control modes BRKSRV, BRKTRJ, and BRKRLS.

NOTE: BRKENG is a manual over-ride to the BRKSRV and BRKTRJ commands. You
must subsequently issue either BRKSRV, BRKTRJ, or BRKRLS to allow any further
shaft movement !

Example:
	 OFF			 ' turn motor off
	 WHILE @V 		 ' wait for zero velocity
	 LOOP			 ' before 	
	 BRKENG		 ' applying the brake (shaft locked)

Related
Commands:

BRKRLS

BRKSRV

BRKTRJ

BRKC

BRKG

BRKI

It is important to
turn the servo off
when the brake
is engaged, or
the motor could
be driving against
the brake and
overheat. When
the SmartMotor
powers up, or
comes out of a soft
reset, the brake
control is set to
BRKSRV by default
to automatically
enforce this safety
rule.

68

BRKG
	 Brake Control Re-Direct to Port G

APPLICATION: Hardware brake control

DESCRIPTION: Re-Direct Brake Control to Port G user Output

EXECUTION: Immediate and effective until otherwise
 commanded

CONDITIONAL TO: BRKI, BRKC

LIMITATIONS: None

REPORT COMMAND: N/A

READ/WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT STATE: BRKI (Brake Control Default to Internal Bake Pin)

FIRMWARE VERSIONS: 4.15, all PLS firmware. (Not available on 4.40)

DETAILED DESCRIPTION:	

SmartMotors™ may be purchased with optional internal zero backlash brakes used
to hold a load for safety purposes.

They are Fail Safe Magnetic Clutch Disk Brakes. When power is lost the brake engag-
es. The default with power on is to disengage the brake when ever the drive stage is
turned on. The brake takes between 3 and 5 milliseconds to actuate or release.

If an External Brake is used instead of the optional internal brake, the BRKC com-
mand allows automatic and interrupt driven control of the external brake via I/O port
pin G.

BRKG is a re-direction of the same signal that would otherwise control an internal
brake. As a result, Port G will follow the state of the internal brake pin. Port G will be
active low (zero volts) when ever the brake should be engaged and at 5VDC when
ever the brake should be disengaged.

The logic state follows the present Brake control method chosen.

See BRKSRV, BRKTRJ, BRKENG and BRKRLS for more.

Example:
	 UGO		 ' Assign Port G to be used as an output pin
	 BRKG		 ' re-direct brake control to port G pin
	 BRKRLS	 ' will set port G to 0VDC
	 BRKENG	 ' will set port G to 5VDC

Related
Commands:

BRKENG

BRKRLS

BRKSRV

BRKTRJ

BRKC

BRKI

UGO

69

BRKI
	 Brake Control Re-Direct to Port I

APPLICATION: Hardware brake control

DESCRIPTION: Re-Direct Brake Control to Internal Brake Pin

EXECUTION: Immediate and effective until otherwise
 commanded

CONDITIONAL TO: BRKG, BRKC

LIMITATIONS: None

REPORT COMMAND: N/A

READ/WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT STATE: BRKI (Brake Control Default to Internal Bake Pin)

FIRMWARE VERSIONS: 4.15, all PLS firmware. (Not available on 4.40)

DETAILED DESCRIPTION:	

SmartMotors™ may be purchased with optional internal zero backlash brakes used
to hold a load for safety purposes.

They are Fail Safe Magnetic Clutch Disk Brakes. When power is lost the brake engag-
es. The default with power on is to disengage the brake when ever the drive stage is
turned on. The brake takes between 3 and 5 milliseconds to actuate or release.

If an External Brake is used instead of the optional internal brake, the BRKC or BRKG
commands allow automatic and interrupt driven control of the external brake via I/O
port pin C or G respectively.

BRKI allows the control of the internal brake.

The logic state follows the present Brake control method chosen.

See BRKSRV, BRKTRJ, BRKENG and BRKRLS for more.

Example:
	 UGO		 ' Assign Port G to be used as an output pin
	 BRKG		 ' Direct brake control to port G pin
	 BRKI		 ' Re-Direct brake control back to internal brake

Related
Commands:

BRKENG

BRKRLS

BRKSRV

BRKTRJ

BRKC

BRKG

70

BRKRLS
	 Brake Release

APPLICATION: Hardware brake control

DESCRIPTION: Release hardware break immediately

EXECUTION: Immediate and effective until otherwise
 commanded

CONDITIONAL TO: Hardware BRAKE required

LIMITATIONS: None

REPORT COMMAND: N/A

READ/WRITE: N/A		

LANGUAGE ACCESS: N/A	

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A	

DEFAULT STATE: Power on:	 BRKSRV

 Power off:	 brake engaged

FIRMWARE VERSIONS: 4.00 and higher	

DETAILED DESCRIPTION:

SmartMotors™ may be purchased with optional internal zero backlash brakes used
to hold a load for safety purposes.

They are Fail Safe Magnetic Clutch Disk Brakes. When power is lost the brake
engages. The default with power on is to disengage the brake when ever the drive
stage is turned on. The brake takes between 3 and 5 milliseconds to actuate or
release.

When BRKRLS is issued, the brake is maintained energized allowing full shaft
movement.

BRKRLS terminates BRKSRV mode, BRKTRJ mode, and BRKENG condition.

	 BRKENG	 ' Assuming motion has stopped	
	 OFF		 ' or almost stopped
	 WAIT=4069
	 V=0		 ' Set buffered velocity
	 A=0		 ' Set buffered acceleration
	 MP		 ' Set buffered mode	
	 P=@P		 ' Set Target position to current position
	 G		 ' Begin servo at current position
	 BRKRLS 	 ' Release, disengage brake

It is important
to turn the servo
off when the brake
is engaged, or the
motor could be
driving against
the brake and
overheat.

See BRKSRV
command.

Related
Commands:

BRKENG

BRKSRV

BRKTRJ

BRKC

BRKG

BRKI

71

BRKSRV
	 Brake Engage When Not Servoing

APPLICATION: Hardware brake control

DESCRIPTION: Release hardware break while motor is on

 Engage hardware brake while motor is off

EXECUTION: Immediate and effective until otherwise
 commanded

CONDITIONAL TO: Hardware BRAKE required

LIMITATIONS: None

REPORT COMMAND: N/A

READ/WRITE: N/A		

LANGUAGE ACCESS: N/A	

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A	

DEFAULT STATE: Power On:	 BRKSRV

 Power Off:	 brake engaged

FIRMWARE VERSIONS: 4.00 and higher	

DETAILED DESCRIPTION:	

SmartMotors™ may be purchased with optional internal zero backlash brakes used
to hold a load for safety purposes.

They are Fail Safe Magnetic Clutch Disk Brakes. When power is lost the brake engag-
es. The default with power on is to disengage the brake when ever the drive stage is
turned on. The brake takes between 3 and 5 milliseconds to actuate or release.

It is important to turn the servo off when the brake is engaged, or the motor could be
driving against the break and overheat. The BRKSRV command does this for you by
releasing the brake automatically whenever the motor is on and engaging it whenever
the motor turns off for any reason. Another way of looking at this is, the brake will be
applied whenever the motor off bit Bo is 1.

BRKSRV terminates the brake control modes BRKENG, BRKTRJ, and BRKRLS.

	 BRKSRV	 'set brake mode assuming it is safe
	 MP		 'set buffered mode
	 A=100		 'set buffered acceleration	
	 V=100000	 'set buffered maximum velocity
	 P=1000	 'set target
	 G		 'servo on, brake release, go to target

Related
Commands:

BRKENG

BRKRLS

BRKTRJ

BRKC

BRKG

BRKI

NOTE:

A position error
will terminate both
the trajectory in
progress state and
servo on state.
In this instance,
the brake would
then be asserted
automatically.

72

BRKTRJ
	 Brake Engage With No Active Trajectory

APPLICATION: Hardware brake control

DESCRIPTION: Release hardware brake while a trajectory is in progress	
 Engage brake, turn off servo while no trajectory is in 		
 progress

EXECUTION: Immediate and effective until otherwise
 commanded

CONDITIONAL TO: Hardware BRAKE required

LIMITATIONS: None

REPORT COMMAND: N/A

READ/WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT STATE: Power On:	 BRKSRV

 Power Off:	 brake engaged

FIRMWARE VERSIONS: 4.00 and higher

DETAILED DESCRIPTION:	

SmartMotors™ may be purchased with optional internal zero backlash brakes used
to hold a load for safety purposes.

They are Fail Safe Magnetic Clutch Disk Brakes. When power is lost the brake engag-
es. The default with power on is to disengage the brake when ever the drive stage is
turned on. The brake takes between 3 and 5 milliseconds to actuate or release.

BRKTRJ automatically coordinates movement and brake application. When a trajec-
tory is started by a G command, the brake is released. When the trajectory completes
the brake is engaged and, simultaneously, the servo is turned off. In this mode, and
whenever the motor is not performing a trajectory, the brake is automatically engaged
and the servo turned off for any reason that the Bt (Busy Trajectory Bit) clears.

A consequence of this behavior is that any non-trajectory mode, like torque mode,
will not result in motion, as the brake will be engaged and the servo will be off. This
could be confusing to a user unaware of the nature of BRKTRJ, especially since the
motor-off flag Bo is 0 or false. To understand this, from an operating control mode
point of view, the motor has not changed modes to OFF, which would be coincidental
with Bo set to 1. When running in torque or some other non-trajectory mode, it is
more appropriate to use BRKSRV

BRKTRJ terminates the BRKSRV mode, BRKENG condition, and BRKRLS condi-
tion.

Related
Commands:

BRKENG

BRKRLS

BRKSRV

BRKC

BRKG

BRKI

73

One consequence of BRKTRJ is that the trajectory flag is reset to zero immediately
when trajectory generator declares the trajectory to be over. At this instant, the
BRKTRJ will engage the brake (de-energize the brake)

	 BRKTRJ	 'set brake mode to follow Bt bit.
	 MP		 'set buffered mode
	 A=100		 'set buffered acceleration
	 V=100000	 'set buffered maximum velocity
	 C1		 'program statement label
	 P=1000	 'set buffered target position
	 G		 'servo on, start trajectory
(The brake will automatically be energized and released)
	 TWAIT		 'wait for trajectory to end
			 'now brake will be on and servo off
	 WAIT=4069	 'brake on for ~one second
	 P=0		 'set new buffered target position
	 G		 'servo on, brake off, trajectory
	 WAIT=4069

	 GOTO1 'effective loop forever			
Note: A position error will terminate the trajectory in progress state. In this case, brake
would then be asserted.

Once in BRKTRJ mode, the brake can be audibly hear clicking on at the beginning of
each move and clicking back off at the end of each move.
This is normal and gives assurance of proper operation.

BRKTRJ (continued)
	 Brake Engage With No Active Trajectory

Related
Commands:

BRKENG

BRKRLS

BRKSRV

BRKC

BRKG

BRKI

74

BREAK
	 Program Flow Loop Exit Control

Related
Commands:

CASE

DEFAULT

ENDS

LOOP

SWITCH

WHILE

APPLICATION:		 Program execution flow control

DESCRIPTION:		 Causes immediate exit from a WHILE

				 or SWITCH control block

EXECUTION:		 Immediate

CONDITIONAL TO:		 N/A

LIMITATIONS:		 Downloaded code only, not via Serial Port !

REPORT COMMAND:	 N/A

READ/WRITE:		 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:			 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:		 N/A	

DEFAULT VALUE:		 N/A

FIRMWARE VERSIONS:	 4.00 and higher	

DETAILED DESCRIPTION:

BREAK is used both by WHILE . . LOOP and SWITCH . . ENDS control flow structure
blocks. In both structures, if BREAK is encountered the program jumps out of that
particular WHILE loop or SWITCH structure. If the control blocks are to be nested,
BREAK only exits the WHILE loop or SWITCH structure that it is currently in.

The most common use of BREAK is to end each CASE of a SWITCH control struc-
ture. Without the BREAK statement, the program would continue to execute into the
next CASE, even if it is not true.

EXAMPLE:
	 SWITCH a
		 CASE 1
			 PRINT("Hiya!",#13)
		 CASE 2
			 PRINT("Lo there!",#13)
		 BREAK
		 CASE 3
			 PRINT("Me here!",#13)
		 BREAK
		 DEFAULT
			 PRINT("Urp!",#13)
		 BREAK

	 ENDS

If a=2, the SmartMotor™ will print "Lo there!" If a=1, however, the SmartMotor will print
both "Hiya!" and "Lo there!" There is no BREAK statement to stop the program from
running into case 2.

75

BREAK could always be replaced by GOTO, and this is how it is actually executed
using the precompiled program location. BREAK has the advantages of not requiring
a statement label to define the program branch location and conforming to structured
programming methodology.

BREAK is not a valid terminal command, it is only valid from within a user program. If
you want to be able to "break out of" a control block by remote (terminal) commands
you will need to use GOTO# or GOSUB# and appropriate statement labels. The exam-
ple illustrates this concept.

EXAMPLE:
	 a=1
	 WHILE a
	 PRINT("I am still here …",#13)
		 WAIT=12000		
	 IF a==100	
	 BREAK	 'a=100 could be sent via serial command
	 ENDIF
	 LOOP
 GOTO20
 C10
	 PRINT("EXITED with a==100",#13)
 END	
	 C20
	 PRINT("EXITED with a<0",#13)
 END	

BREAK (continued)
	 Program Flow Loop Exit Control

Related
Commands:

CASE

DEFAULT

ENDS

LOOP

SWITCH

WHILE

76

C{statement_label_number}
	 Program Subroutine Label

Related
Commands:

GOSUBnnn

GOTOnnn

APPLICATION: Program execution flow control

DESCRIPTION: Program statement label

EXECUTION: N/A

CONDITIONAL TO: N/A

LIMITATIONS: Pre 4.00 firmware only permits labels C0…C9

 Firmware 4.00 and higher permits labels 			
C0…C999

REPORT COMMAND: N/A

READ/WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSIONS: ALL

DETAILED DESCRIPTION:

C{number} is a statement label, where "number" is a value between 0 and 999.
Statement labels mainly provide the internal addressing required to support the
GOSUB{number} and GOTO{number} language commands. For example GOTO1
directs the program to label C1, while GOSUB37 directs the program to the subrou-
tine that starts at label C37. You can also use labels to simply enhance program clar-
ity. Statement labels may be placed anywhere within a program except in the middle
of an expressions.

The program labels work via a jump table in the header of the compiled program.
The header contains the location of every label from 0 up to the highest label value
used.

EXAMPLES: (consider these two programs)

	 C0
	 END
and
	 C999
	 END

The first compiled program (C0 . . END) will be much smaller than the second (C999
. . END), even though they behave exactly the same.

The program header is read whenever the SmartMotor™ powers up or is reset. This
means that the SmartMotor knows how to jump to any label location, even if the

77

program has never been run, and start executing the program from there. This is a
common means of making a single program that contains several routines that can
be invoked on demand from a host.

EXAMPLE:

		 END
		 C0
			 PRINT("Routine 0",#13)
			 END
		 C1
			 PRINT("Routine 1",#13)
			 END
		 C2
			 PRINT("Routine 2",#13)

			 END

To run routine 1, the host simply issues GOTO1 to the SmartMotor™. If the host
issues GOTO3, routine 3 is run. You can use a similar technique to allow the host to
control where the program starts.

Using GOTOnnn to jump to a location within a SWITCH block may be syntacti-
cally valid but yield unexpected runtime program execution when CASE number is
encountered.

It is also possible to use IF, WHILE, and SWITCH to provide such multiple choice
program start points.

EXAMPLES:

	 IF a==6
		 C0
		 G
	 ENDIF
	
	 GOTO5					 'valid syntax
	 SWITCH a
 	 CASE 1 PRINT("1")
 	 C5 	 CASE 2 PRINT("2")	 'at runtime "2" will be 	
 	 ENDS 				 'transmitted END

C{statement_label_number} (continued)
	 Program Subroutine Label

Related
Commands:

GOSUBnnn

GOTOnnn

78

APPLICATION:		 Communications control

DESCRIPTION:		 Close a communications channel

EXECUTION:		 Immediate

CONDITIONAL TO:		 N/A

LIMITATIONS:		 N/A

REPORT COMMAND:	 N/A

READ/WRITE:		 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:			 N/A

PARAMETERS:		 Type= RS2, RS4

				 Channel = 0 or 1

RANGE OF VALUES:	 N/A

TYPICAL VALUES:		 N/A	

DEFAULT VALUE:		 N/A

FIRMWARE VERSIONS:	 4.00 and higher	

DETAILED DESCRIPTION:

CCHN(type,channel) closes the specified communications channel, where
"type" is the communications mode, and "channel" is the comm port you want
to close. This command flushes the serial port buffer and any characters still in
the buffer will be lost. The channel 0 comm port can only be RS-232 or RS-485,
while channel 1 can only be RS-485.

Valid CCHN commands:
	 CCHN(RS2,0)	'Close the channel 0 RS232 port

	 CCHN(RS4,1)	'Close the channel 1 RS485 port

After power up or Z reset command, channel 0 is opened

as RS232 by default.

Related
Commands:

OCHN()

Z

CCHN(type,channel)
	 Close Communications Channel

79

Related
Commands:

Bb

Bc

Bf

Bs

CHN0

CHN1

Zs

CHN
	 Combined Communications Error Flag

APPLICATION:		 Serial communications control

DESCRIPTION:		 Fetch combined serial communications error 		
				 event flags

EXECUTION:		 Immediate

CONDITIONAL TO:		 N/A

LIMITATIONS:		 Cannot assign value of CHN

REPORT COMMAND:	 RCHN

READ/WRITE:		 Report value only		

LANGUAGE ACCESS:	 Report via RCHN only

UNITS:			 Set of 4 binary state flags

PARAMETERS:		 Type= RS2, RS4, or IIC

				 Channel = 0 or 1

RANGE OF VALUES:	 0 to 15

TYPICAL VALUES:		 0	

DEFAULT VALUE:		 0

FIRMWARE VERSIONS:	 4.00 and higher	

DETAILED DESCRIPTION:

The read only function CHN holds binary coded historical error information
about the two serial channels on the SmartMotor™. It gives the 4 bit status of
either serial port channels 0 or 1, broken down as follows:

	 CHN bit 0= 1 if either receive buffer has overflowed

	 CHN bit 1= 1 if a framing error occurred on either channel

	 CHN bit 2= 1 if a scan error occurred on either channel

	 CHN bit 3= 1 if a parity error occurred on either channel

For example, if RCHN returns a 4, it means that a scan error was detected on
channel 0 or channel 1. You cannot tell, however, whether the syntax error was
on channel 0, 1 or both. If you really must know, you would issue RCHN0 and
RCHN1, which return the 4 bit status of the individual serial ports.

CHN is read only, but cannot be assigned to a variable. It can be reported
through RCHN, PRINT(CHN,#13) and PRINT1(CHN,#13) as well.

80

Related
Commands:

Bb

Bc

Bf

Bs

CHN0

CHN1

Zs

CHN (continued)
	 Combined Communications Error Flag

Each of the four bits of CHN correspond to one of the four communica-
tions system status bytes:

	 Bc= CHN bit 0

	 Bf= CHN bit 1

	 Bs= CHN bit 2 AND User Program Scan Error

	 Bb= CHN bit 3

81

CHN0
	 Communications Error Flag (RS-232)

APPLICATION: Serial communications control

DESCRIPTION: Fetch serial communications channel 0 error event 	
flags

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: RCHN0

READ/WRITE: Read only		

LANGUAGE ACCESS: Expressions and conditional testing

UNITS: Set of 4 binary state bits

RANGE OF VALUES: 0 to 15

TYPICAL VALUES: 0	

DEFAULT VALUE: 0

FIRMWARE VERSIONS: 4.00 and higher

DETAILED DESCRIPTION:

CHN0 holds binary coded historical error information regarding the channel 0 com-
munications channel. It gives the 4 bit status of the primary, or channel 0, serial port,
broken down as follows:

	 CHN0 bit 0= 1 if the primary receive buffer has overflowed

	 CHN0 bit 1 = 1 if a framing error occurred on channel 0

	 CHN0 bit 2= 1 if a scan error occurred on channel 0

 	 CHN0 bit 3= 1 if a parity error occurred on channel 0

If RCHN0 returns a 4, it means that a scan error was detected on channel 0. If CHN0
equals zero, no error has been detected since opening the channel.

CHN0 is read only, but cannot be assigned to a variable. It can be reported through
RCHN0, as already seen, and PRINT(CHN0,#13) and PRINT1(CHN0,#13) as well.	

See Examples on follOwing page:

Related
Commands:

CHN

CHN1

RCHN

RCHN0

RCHN1

82

Example:

The host transmitted A=100 but the serial port actually received K=100
then tried to execute K=100
	 PRINT(CHN0) 'responds to host with 4

				 'since K= is invalid

Example: (test individual flags)
	 IF CHN0&4
		 PRINT("HOST CHANNEL - scan error occurred")
	 ELSEIF CHN0&1
		 PRINT("HOST CHANNEL - buffer overflow")
	 ENDIF

Example: (test all flags)

	 IF CHN0
		 PRINT("SERIAL ERROR !!")
	 ENDIF	

CHN0 (continued)
	 Communications Error Flag (RS-232)

Related
Commands:

CHN

CHN1

RCHN

RCHN0

RCHN1

83

CHN1
	 Communications Error Flag (RS-485)

APPLICATION: Serial communications control

DESCRIPTION: Fetch serial communications channel 1 error event 		
 flags

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: RCHN1

READ/WRITE: Read only

LANGUAGE ACCESS: Expressions and conditional testing

UNITS: Set of 4 binary state bits

RANGE OF VALUES: 0 to 15

TYPICAL VALUES: 0

DEFAULT VALUE: 0

FIRMWARE VERSIONS: 4.00 and higher

DETAILED DESCRIPTION:

CHN1 holds binary coded historical error information regarding the channel 1 com-
munications channel. It gives the 4 bit status of the channel 1 serial port, broken down
as follows:

 CHN1 bit 0= 1 if the primary receive buffer has overflow

 CHN1 bit 1= 1 if a framing error occurred on channel 0

 CHN1 bit 2= 1 if a scan error occurred on channel 0

 CHN1 bit 3= 1 if a parity error occurred on channel 0

If RCHN1 returns a 4, it means that a scan error was detected on channel 1. If CHN1
equals zero, no error has been detected since opening the channel.

CHN1 is read only, but cannot be assigned to a variable. It can be reported through
RCHN1, as already seen, and PRINT(CHN1,#13) and PRINT1(CHN1,#13) as well.

See Examples on Following Page

Related
Commands:

CHN

CHN0

RCHN

RCHN0

RCHN1

84

Example:

Host transmitted A=100 but the serial port actually received K=100 then tried to
execute K=100
	 PRINT(CHN1) 	 'responds to host with 4

 	 'since K= is invalid

Example: (test individual flags)
	 IF CHN1&4
		 PRINT("CHANNEL 1 - scan error occurred")
	 ELSEIF CHN1&1
		 PRINT("CHANNEL 1 - buffer overflow")

 ENDIF

Example: (test all flags)
	 IF CHN1
		 PRINT("CHANNEL 1 SERIAL ERROR !!")
	 ENDIF			

Related
Commands:

CHN

CHN0

RCHN

RCHN0

RCHN1

CHN1 (continued)
	 Communications Error Flag (RS-485)

85

CLK
	 Hardware Clock Variable

APPLICATION: Hardware clock access

DESCRIPTION: Value of free running firmware clock

EXECUTION: Incremented once each PID sample

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: RCLK

READ/WRITE: Read only

LANGUAGE ACCESS: Expressions and conditional testing	

UNITS: Number	

RANGE OF VALUES: 0 to 2147483647

TYPICAL VALUES: Sequential	

DEFAULT VALUE: 0

FIRMWARE VERSIONS: ALL

DETAILED DESCRIPTION:

CLK is an independent, free running, read write counter. It is reset to zero upon a
hardware or software reset, and it increments once per PID cycle. The default PID
rate produces ~4069 samples per second, so there are roughly four CLK ticks per
millisecond at PID1. If the PID sample is modified by PID2, PID4 or PID8, the amount
of time associated with one CLK tick will increase by 2x, 4x or 8x, respectively. The
user may also assign a value to this counter at any time. CLK is 31 bits in size and
will roll over (return to zero) at value 2,147,483,647, which corresponds to 4.13 days
at PID1.

Example 1:

The following two examples perform the same function, pause for one second:

	 WAIT=4069 			 'Pause for one sec
	 CLK=0				 'Initialize clock
	 WHILE CLK<4069 		 'Loop one sec

	 LOOP

Related
Commands:

RCLK

WAIT

86

The advantage of the second example is that you could write code within the WHILE
loop to execute during the pause.

Example 2:

CLK increments more slowly at PID2 than PID1 etc.

To most easily see the effect, load and run the following code.

	 PID1
	 a=5
	 WHILE a
 		 a=a-1
 		 CLK=20
 		 WHILE CLK<4089 LOOP 'note nested whiles are permitted
 		 PRINT("PID1",#13)
	 LOOP
	 a=5
	 PID2
	 WHILE a
 		 a=a-1
 		 CLK=20
 		 WHILE CLK<4089 LOOP
 		 PRINT("PID2",#13)
	 LOOP
	 PID4
	 a=5
	 WHILE a
 		 a=a-1
 		 CLK=20
 		 WHILE CLK<4089 LOOP
 		 PRINT("PID4",#13)
	 LOOP
	 PID1					 'return to PID1
	 END			

CLK (continued)
	 Hardware Clock Variable

Related
Commands:

RCLK

WAIT

87

CMD
	 Accept Command Input RS-232

APPLICATION: Serial communications control Parameter

DESCRIPTION: Set serial communication channel 0 to receive

 commands

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: N/A

READ/WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT STATE: Command channel		

FIRMWARE VERSIONS: 4.00 and higher

DETAILED DESCRIPTION:

By default, anything received over the primary serial port is interpreted as a com-
mand. By configuration, however, both the primary and channel 1 serial ports can
treat incoming information as either commands or data. The CMD function tells the
SmartMotor™ to interpret information coming into the primary port as standard com-
mands.

The alternate to CMD is DAT, which causes the SmartMotor to simply store incoming
bytes in the 16 character serial buffer. The characters are read from the buffer with
the GETCHR command, while the LEN function holds the number of characters in
the buffer.

WARINING !! Issuing DAT at the command line will prevent the motor from
responding to any further commands via Com 0 (RS-232 Port) and will essen-
tially lock you out of the motor !!!

It is a good idea to devise a means of invoking CMD via I/O or specific serial data if
you use data mode.

See next Page for Examples.

Related
Commands:

CMD1

DAT

DAT1

OCHN

88

Example: (using the default host channel)
	 PRINT(#13,"Default mode is CMD")
	 PRINT(#13,"Issuing DAT")
	 DAT
	 PRINT(#13,"Issuing a=GETCHR")
	 PRINT(#13,"Use SMI to send RP command",#13)
	 a=GETCHR
	 b=GETCHR
	 c=GETCHR
	 PRINT(#13,"Received ASCII ",a)
	 PRINT(#13,"Received ASCII ",b)
	 PRINT(#13,"Received ASCII ",c)
	 PRINT(#13,"Issuing CMD")
	 CMD
	 IF a==82 GOTO10 ENDIF 'validate user command
	 IF b==80 GOTO10 ENDIF 'sent via SMI
	 IF c==32 GOTO10 ENDIF
	 PRINT(#13,"Use SMI to send RP command")
	 PRINT(#13,"You should see a motor response",#13)
	 END
	 C10
	 PRINT(#13,"PROGRAM DID NOT RECEIVE RP COMMAND")
	 PRINT(#13,"PROGRAM ABORTING",#13)
	 END

CMD (continued)
	 Accept Command Input RS-232

Related
Commands:

CMD1

DAT

DAT1

OCHN

89

Related
Commands:

CMD

DAT

DAT1

OCHN

APPLICATION: Serial communications control

DESCRIPTION: Set serial communication channel 1 to receive			
 commands

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: N/A

READ/WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT STATE: Command channel

FIRMWARE VERSIONS: 4.00 and higher

DETAILED DESCRIPTION:

By default, anything received over the secondary serial port is interpreted as a com-
mand. By configuration, however, channel 1 serial port can treat incoming information
as either commands or data. The CMD1 function tells the SmartMotor™ to interpret
information coming into the channel 1 port as commands.

The alternate to CMD1 is DAT1, which causes the SmartMotor to simply store incom-
ing bytes in the 16 character serial buffer. The characters are read from the buffer
with the GETCHR1 command, while the LEN1 function holds the number of charac-
ters in the buffer. For details about the use of data mode, please refer to the DAT1
command.

WARINING !! Issuing DAT1 at the command line will prevent the motor from
responding to any further commands via Com 1 (RS-485 Port) and will essen-
tially lock you out of the motor !!!

It is a good idea to devise a means of invoking CMD1 via I/O or specific serial data if
you use data mode.

See next page for example:

CMD1
	 Accept Command Input RS-485

90

Example: (using the default channel 1)
	 PRINT1(#13,"Default mode is CMD")
	 PRINT1(#13,"Issuing DAT")
	 DAT
	 PRINT1(#13,"Issuing a=GETCHR")
	 PRINT1(#13,"Use SMI to send RP command",#13)
	 a=GETCHR
	 b=GETCHR
	 c=GETCHR
	 PRINT1(#13,"Received ASCII ",a)
	 PRINT1(#13,"Received ASCII ",b)
	 PRINT1(#13,"Received ASCII ",c)
	 PRINT1(#13,"Issuing CMD")
	 CMD1
	 IF a==82 GOTO10 ENDIF 'validate user command
	 IF b==80 GOTO10 ENDIF 'sent via SMI
	 IF c==32 GOTO10 ENDIF
	 PRINT1(#13,"Use SMI to send RP command")
	 PRINT1(#13,"You should see a motor response",#13)
	 END
	 C10
	 PRINT1(#13,"PROGRAM DID NOT RECEIVE RP COMMAND")
	 PRINT1(#13,"PROGRAM ABORTING",#13)
	 END

CMD1 (continued)
	 Accept Command Input RS-485

Related
Commands:

CMD

DAT

DAT1

OCHN

91

CTR
	 Second Encoder/Step and Direction Counter

APPLICATION: External Encoder

DESCRIPTION: External encoder counter reading

EXECUTION: Updated once each PID sample

CONDITIONAL TO: External encoder input signal available

 ENC0 and ENC1 commands - see example below

LIMITATIONS: None

REPORT COMMAND: RCTR

READ/WRITE: Read only		

LANGUAGE ACCESS: Expressions and conditional testing	

UNITS: Encoder counts

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: 0

DEFAULT VALUE: 0

FIRMWARE VERSIONS: ALL

DETAILED DESCRIPTION:

By Default, CTR contains the present value for the secondary encoder (or Step and
Direction) signals. ENC0 and ENC1 determine whether the internal or external inputs
are primary or secondary. ENC0 is the default state. This means that the internal
encoder will be the primary encoder and Ports A and B will be the source for Phase
A and B (or Step and Direction) of an external source. Under this condition, CTR will
contain the position or count value for Ports A and B. Unlike using O=expression for
the internal encoder counter, CTR cannot be set to any specific value. It can only be
set to zero

If you issue MS0, MF0, MF1, MF2, or MF4, CTR will be set to zero and Ports A and B
will be set to receive phase A and B of a standard quadrature encoder. If the external
encoder changes position. RCTR will report that value.

If you issue ENC1, CTR will be set to zero and the sources of CTR and @P will swap.
Now CTR will reflect internal encoder position and @P will reflect external encoder
position.

If you issue ENC0, the sources will swap back to default and again CTR will follow
the external encoder.

 MF0 and MS0 will both set CTR to Zero without changing the mode of operation.

(Continued on next page)

Related
Commands:

ENC0

ENC1

MC

MF

MF0

MF1

MF2

MF4

MFR

MS

MS0

MSR

* Some low cost
SmartMotors™ do
not have second
encoder input capa-
bility.

92

EXAMPLE:

To better understand the meaning of CTR; try the following with a SmartMotor™.
	 O=1234		 'Set origin to zero
Then issue:
	 RP			 'response will be 1234
Then issue:					
	 ENC1			 'make INTERNAL encoder the source of	
CTR
Then issue:
	 RP			 'response will be zero
	 RCTR			 'response is also zero 0
				 'Physically turn the motor shaft and
				 'Query the position again
	 RP			 'response should again be that
				 'NON ZERO response obtained before	
	 RCTR			 'response is another non zero number
	 ENC0			 'return internal motor shaft encoder to
				 'Normal functioning

If you have an external encoder, attach it to a SmartMotor and repeat the above
sequence or some similar sequence.

If in gear mode (Mode Follow via MF(n)) and you issue MF0 on the fly, CTR will be
set to zero while trajectory continues without any glitch in movement. This serves two
purposes. One, it gives a means to zero the counter while moving. Two, it allows the
user to prevent Wrap status from occurring should CTR exceed +/-2^31.

 Second Encoder/Step and Direction Counter

Related
Commands:

ENC0

ENC1

MC

MF

MF0

MF1

MF2

MF4

MFR

MS

MS0

MSR

93

D=expression
	 Set R elative Distance

APPLICATION: Trajectory control

DESCRIPTION: Relative move distance for position mode

EXECUTION: Buffered pending a G command

CONDITIONAL TO: Position mode. See MFR command for alternate 	
usage.

LIMITATIONS: Encoder wrap around will produce a position error

REPORT COMMAND: RD

READ/WRITE: Read write

LANGUAGE ACCESS: Assignment, expressions and conditional testing

UNITS: Encoder counts

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: N/A

DEFAULT VALUE: 0

FIRMWARE VERSIONS: ALL

DETAILED DESCRIPTION:

D=expression commands a relative distance move from the present position and will
be repeated every time a G command is issued. It is a signed value allowing a relative
move in either direction.

If you command a D move while the motor shaft is moving, its starting point will be
the actual shaft position when the G command is executed. In other words, the D
move will be relative to the reception of the G command on-the-fly. This method will
result in accumulating drift.

 To avoid drift, If you issue the command D=100 and then enter the G command
ten times each after the previous move has completed, you will travel a total of
precisely 1000 counts regardless of any following error at the end of the previous
moves. The D move starts from where you are supposed to be, regardless of the
present position error, avoiding the problem of position drift or accumulating errors
over several relative moves.

In downloaded code, you would use the TWAIT command prior to the next G com-
mand. In doing so, the next G will not be issued until the previous trajectory has
completed.

Relative Moves are subject to wrap status. If the next relative move causes the coun-
ter to exceed +/- 2^31 counts, the motor will error out. The following code example
will allow continuous indexing without exceeding maximum count.

Continued on next page 			

Related
Commands:

A

G

MP

MF1

MFR

P

V

The D command
can be used
during gearing
to implement
Dynamic Phase
Adjust

(See MFR).

The D command
can also be sued
in CAM mode to
implement a dwell
between CAM
cycles.

94

D=expression (continued)
	 Set Relative Distance

Example

(Continuous Index Moves with no accumulated error or roll over)
	 O=0				 'reset origin		 A=100
					 'Set Acceleration		 V=100000
					 'Set Velocity		 D=20000	
		
					 'Set Relative distance		
	 MP					
					 'Set to Position Mode	
	 WHILE 1			 'While Forever.......			

		 G				
					 'Initiate Index Move
		 TWAIT			 'Wait until Move is Completed		
	
		 O=0			 'Reset Position to Zero
	 LOOP				 'loop back to repeat continuously
	 END

In the above example, the motor counts will continuously increase to 20000
during each move and then be set back to zero at the end of each move. There
will be no accumulating error because the O=(expression) command accounts
for any following error that may be present after the trajectory has completed.

Phase Offset Moves using the D command.

While in gearing (Mode Follow or Step Mode), the motor will follow an external
encoder or pulse and direction signal. The D command allows a move within
gearing to adjust the shaft position forward or backwards .

Suppose the motor is set on Mode follow and is following a conveyor at a
continuous speed of 1000RPM. If the shaft needs to be moved forward 2000
counts, you can enter D=2000, V=(speed relative to machine base), and G and
the motor will move forward in it's gearing trajectory by 2000 counts.

This method may be used for printing alignment on electronic line shafts. It may
also be used for tension control between two motors feeding a product through
nip rollers. Phase offset moves allow for anti-backlash where two motors drive
the same gear or load from the same point. It may also be used for adjustment
and alignment of wide gantries where there may be two X or two Y motors.

Related
Commands:

P

A

V

G

MP

MF1

MFR

The D command
is also used
during gearing to
implement
Dynamic Phase
Adjust

(See MFR).

95

DAT
	 Accept Data Input Only (RS-232)

Related
Commands:

CMD

CMD1

DAT1

APPLICATION: Serial communications control

DESCRIPTION: Set serial communication channel 0 to receive data

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: Applies to Com Channel 0 (main RS-232 Port)

REPORT COMMAND: N/A

READ/WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT STATE: Command channel (See CMD)		

FIRMWARE VERSIONS: 4.00 and higher

DETAILED DESCRIPTION:

By default, anything received over the primary serial port is interpreted as a com-
mand. By configuration, however, incoming information can be parsed as general
data instead of actual command data. The DAT applies to the primary Com channel
0 port and will simply store incoming bytes in the 16 character serial buffer without
attempting to execute any of that data. The characters are read from the buffer with
the GETCHR command, while the LEN function holds the number of characters in the
buffer. With proper code writing a custom serial command parser can be created.

Warning: The DAT command should only be used within the context of a downloaded
program with proper code to follow that deals with all incoming serial data from that
point on. If DAT is issued via serial port, you will be immediately locked out of the
motor until next power-up. It is highly recommended to write code that will handle any
incoming data and allow a means to issue CMD command within that code to re-open
standard command mode via serial port.

The following code example is written to parse out incoming data. It specifically
looks for the characters R, P, and (space key) one by one. Each incoming character
is stored into 3 consecutive variables. Then they are compared to the proper ASCII
value to insure they match. If the match, the program prints acknowledgment of it.

See next page for code example

96

Example: (using the default host channel)
	 PRINT(#13,"Default mode is CMD")
	 PRINT(#13,"Issuing DAT")
	 DAT
	 PRINT(#13,"Issuing a=GETCHR")
	 PRINT(#13,"Use SMI to send RP command",#13)
	 a=GETCHR
	 b=GETCHR
	 c=GETCHR
	 PRINT(#13,"Received ASCII ",a)
	 PRINT(#13,"Received ASCII ",b)
	 PRINT(#13,"Received ASCII ",c)
	 PRINT(#13,"Issuing CMD")
	 CMD
	 IF a!=82 GOTO10 ENDIF 'check for "R"
	 IF b!=80 GOTO10 ENDIF 	'check for "P"
	 IF c!=32 GOTO10 ENDIF 	'check for space character
	 PRINT(#13,"Use SMI to send RP command")
	 PRINT(#13,"You should see a motor response",#13)
	 END
	 C10
	 PRINT(#13,"PROGRAM DID NOT RECEIVE RP COMMAND")
	 PRINT(#13,"PROGRAM ABORTING",#13)

DAT (continued)
	 Accept Data Input Only (RS-232)

Related
Commands:

CMD

CMD1

DAT1

LEN

OCHN

97

APPLICATION:		 Serial communications control

DESCRIPTION:	 	 Set serial communication channel 1 to receive data

EXECUTION:			 Immediate

CONDITIONAL TO:		 N/A

LIMITATIONS:		 Applies to Com Channel 1 (Alternate RS-485 Port)

REPORT COMMAND:	 N/A

READ/WRITE:		 N/A		

LANGUAGE ACCESS:	 N/A

UNITS:			 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:		 N/A	

DEFAULT STATE:		 Command channel		

FIRMWARE VERSIONS:	 4.00 and higher	

DETAILED DESCRIPTION:

By default, anything received over the secondary serial port is interpreted as a com-
mand. By configuration, however, incoming information can be parsed as general data
instead of actual command data. The DAT1 applies to the secondary Com channel
1 port and will simply store incoming bytes in the 16 character serial buffer without
attempting to execute any of that data. The characters are read from the buffer with
the GETCHR1 command, while the LEN1 function holds the number of characters
in the buffer. With proper code writing a custom serial command parser can be cre-
ated.

Warning: The DAT1 command should only be used within the context of a down-
loaded program with proper code to follow that deals with all incoming serial data from
that point on. If DAT1 is issued via serial port, you will be immediately locked out of
the motor until next power-up. It is highly recommended to write code that will handle
any incoming data and allow a means to issue CMD1 command within that code to
re-open standard command mode via serial port.

The following code example is written to parse out incoming data. It specifically
looks for the characters R, P, and (space key) one by one. Each incoming character
is stored into 3 consecutive variables. Then they are compared to the proper ASCII
value to insure they match. If the match, the program prints acknowledgment of it.

See next page for code example

DAT1
	 Accept Data Input Only (RS-485)

Related
Commands:

CMD

CMD1

DAT

98

Example: (using the secondary com channel 1)

	 PRINT1(#13,"Default mode is CMD1")
	 PRINT1(#13,"Issuing DAT1")
	 DAT1
	 PRINT1(#13,"Issuing a=GETCHR1")
	 PRINT1(#13,"Use SMI to send RP command",#13)
	 a=GETCHR1
	 b=GETCHR1
	 c=GETCHR1
	 PRINT1(#13,"Received ASCII ",a)
	 PRINT1(#13,"Received ASCII ",b)
	 PRINT1(#13,"Received ASCII ",c)
	 PRINT1(#13,"Issuing CMD1")
	 CMD1
	 IF a!=82 GOTO10 ENDIF 'check for "R"
	 IF b!=80 GOTO10 ENDIF 	'check for "P"
	 IF c!=32 GOTO10 ENDIF 	'check for space character
	 PRINT1(#13,"Use SMI to send RP command")
	 PRINT1(#13,"You should see a motor response",#13)
	 END
	 C10
	 PRINT1(#13,"PROGRAM DID NOT RECEIVE RP COMMAND")
	 PRINT1(#13,"PROGRAM ABORTING",#13)
	 END

DAT1 (continued)
	 Accept Data Input Only (RS-485)

Related
Commands:

CMD

CMD1

DAT1

LEN

OCHN

99

APPLICATION:		 Program execution control

DESCRIPTION:		 Default for SWITCH program control	block

EXECUTION:			 Immediate

CONDITIONAL TO:		 N/A

LIMITATIONS:		 Must reside within a SWITCH and ENDS structure

REPORT COMMAND:	 N/A

READ/WRITE:		 N/A

LANGUAGE ACCESS:	 N/A

UNITS:			 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:		 N/A

DEFAULT VALUE:	 	 N/A

FIRMWARE VERSIONS:	 4.00 and higher

DETAILED DESCRIPTION:

DEFAULT allows controlled code execution in a SWITCH structure for non-CASE
evaluated results. In the following example, DEFAULT is used when no VASE can be
executed for the value of "x".

EXAMPLE 1:
	 SWITCH x
		 CASE 1
			 PRINT("x=1",#13)
		 BREAK
		 CASE 2
			 PRINT("x=2",#13)
		 BREAK
		 CASE 3
			 PRINT("x=3",#13)
		 BREAK
		 DEFAULT
			 PRINT("x does not equal 1, 2 or 3,#13)
		 BREAK

	 ENDS

The first line, SWITCH x, lets the SmartMotor™ know that it is checking the value of
the variable x. The second line, CASE 1:, begins the section of code that tells the
SmartMotor what to do if x is equal to 1. Similarly, the 8th line, CASE 3:, tells what to
do if x=3. Finally, DEFAULT, tells what to do if none of the CASE's match the value of
the x.

DEFAULT
	 Switch-Case Structure Element

Related
Commands:

BREAK

CASE

ENDS

SWITCH

100

If no CASE number equals the value of the SWITCH expression and there is no
DEFAULT case, program execution passes through the SWITCH control block
to the ENDS statement without explicitly performing any commands.

There can only be one DEFAULT statement per SWITCH control block.

DEFAULT is not a valid terminal command, it is only valid within a user pro-
gram.

Example 2:
	 a=20
	 WHILE a
		 SWITCH a-12
			 CASE -4 PRINT("-4 ") BREAK
			 CASE -3 PRINT("-3 ") BREAK
			 CASE -2 PRINT("-2 ") BREAK
			 CASE -1 PRINT("-1 ") BREAK
			 CASE 0 BREAK
			 CASE 1 PRINT("+1 ") BREAK
			 CASE 2 PRINT("+2 ") BREAK
			 CASE 3 PRINT("+3 ") BREAK
			 CASE 4 PRINT("+4 ") BREAK
			 DEFAULT PRINT("D ")
		 ENDS
	 a=a-1

	 LOOP

The above code example produces the following output:

	 D D D D +4 +3 +2 +1 -1 -2 -3 -4 D D D D D D D

DEFAULT (continued)
	 Switch-Case Structure Element

Related
Commands:

BREAK

CASE

ENDS

SWITCH

101

DIN{port}{channel}
	 Input Byte From I/O Device

APPLICATION: Input control

DESCRIPTION: Fetch AniLink digital peripheral input byte

EXECUTION: Immediate byte read from IIC link

CONDITIONAL TO: Peripheral input attached to motor

LIMITATIONS: Port= A . . H and Channel= 0 . . 63

REPORT COMMAND: RDIN{Port}{channel}

READ/WRITE: Read only

LANGUAGE ACCESS: Expressions and conditional testing

UNITS: Number

RANGE OF VALUES: 0 to 255

TYPICAL VALUES: 0 to 255

DEFAULT VALUE: 255

FIRMWARE VERSIONS: ALL

DETAILED DESCRIPTION:

The DIN{Address}{Channel} is used to read the single byte integer value of a
given address and channel from a peripheral I/O device such as the DIO-100
or OPTO-1 digital I/O expansion module. The value is received via the AniLink
communications channel. The "address" parameter must correspond with hard-
ware address jumpers on the peripheral expansion card. The Addresses are
designated as A, B, C, D, E, F, G, or H. The "channel" number, which may be
from 0 to 63, is device specific. Typically it is 0 thru 8. See the specific periph-
eral user manual for specific details.

DIN{address}{channel} returns an unsigned 8 bit value, ranging from 0 to 255.
If the specified card or connection is not present, the function will return a value
of 255.

Example 1: (reading the first 8 inputs of an OPTO-1 on Address A)
 x=DINA0 'Assign first 8 inputs to "x"

Example 2: (reading the second 8 inputs of an OPTO-1 on Address A)
 x=DINA1 'Assign second 8 inputs to "x"

Example 3: (reading the third input bit of an OPTO-1 on Address A)
 x=DINA0 & 4 'Assign second 8 inputs to "x"

Related
Commands:

DOUT

See Appendix ?
for greater detail
and information
about expanding
the SmartMotor™
I/O using AniLink
chip sets.

102

DOUT{port}{channel}{expression}
	 Output Byte to I/O Device

Related
Command:

DIN

APPLICATION:	 Input control

DESCRIPTION:	 Output byte to Anilink digital peripheral

EXECUTION:	 Immediate byte write to IIC link

CONDITIONAL TO:	 Peripheral output attached to motor

LIMITATIONS:	 Port = A . . H and Channel = 0 . . 63

REPORT COMMAND:	 N/A

READ/WRITE:	 Write only		

LANGUAGE ACCESS:	 Assignment to output peripheral only	

UNITS:	 Number

RANGE OF VALUES:	 0 to 255

TYPICAL VALUES:	 0 to 255	

DEFAULT VALUE:	 255

RELATED COMMANDS:	 DIN	

FIRMWARE VERSIONS:	 ALL	

DETAILED DESCRIPTION:

The DOUT{Address}{channel}, expression command allows eight bits of data to be
written to a peripheral I/O device such as the DIO-100 or OPTO-1 digital I/O expan-
sion module. The value is transmitted via the AniLink communications channel. The
"address" parameter must correspond with hardware address jumpers on the periph-
eral expansion card. The Addresses are designated as A, B, C, D, E, F, G, or H. The
"channel" number, which may be from 0 to 63, is device specific. Typically it is 0 thru
8. See the specific peripheral user manual for specific details.

DIN{address}{channel} returns an unsigned 8 bit value, ranging from 0 to 255. If the
specified card or connection is not present, the function will return a value of 255.

Example 1: (sending data to the first 8 outputs of an OPTO-1 on Address A)

	 DOUTA0,255		 'Sets first 8 outputs to 1
	 DOUTA0,0		 'Sets first 8 outputs to 0

Example 2: (setting value to specific bit output of an OPTO-1 on Address A)

	 x=DINA0		 'Fist read state of the outputs
	 DOUTA0,x|4		 'Set 3rd bit to 1
	 DOUTA0,x&251	 'Set 3rd bit to 0

NOTE:
8 bit data =
Logical AND of
expression with
255

103

APPLICATION: Position Error Handling

DESCRIPTION: Maximum Allowable Following Error

EXECUTION: Immediate. Enforced each PID sample

CONDITIONAL TO: Trajectory in progress

LIMITATIONS: Torque mode has no position error

REPORT COMMAND: RE

READ/WRITE: Read and Write

LANGUAGE ACCESS: Assignment, expressions and conditional testing

UNITS: Encoder counts

RANGE OF VALUES: 0 to 8388607 (23 Bit UNSIGNED Value)

TYPICAL VALUES: 1000

DEFAULT VALUE: 1000

FIRMWARE VERSIONS: ALL

DETAILED DESCRIPTION:

The E command is used to set the maximum allowable Position Error in encoder
counts. Position Error is the difference between the desired position, at any instant in
time, and the actual position. The SmartMotor™ uses the position error to generate
a torque by means of the PID filter. The more the error or deflection, the more torque
the motor applies in attempt to correct.

E is primarily used as a safety measure, a programmable allowable error beyond
which the motor recognizes it is outside of the domain of control you wish to enforce.
If E=100 is command and a position error of greater than 100 encoder counts occurs,
the motor will be turned off. When the motor is turned off, the Bo (Motor-Off Bit) is
set to 1, and the Be (Position Error Bit) will be set to 1. All closed-loop modes are
bound by this E value. Non-closed loop modes such as Torque Mode, ignore the
value of E.

The amount of Position Error is always proportional to the difference between com-
manded torque and load torque. The higher the commanded speed, the higher the
position error will be. High Accelerations can lead to short duration high spikes in
position error. The value for E should always be high enough to allow for acceleration
and declaration ramps. It may be necessary to increase tuning gains to keep position
error within reasonable limits for good dynamic operation.

Example:
	 E=1234		 'set maximum allowable error to 1234

If the motor dynamically ever exceeds 1234, it fault on Position error immediately.

E=expression
	 Set Allowable Position Error

Related Commands

G

MP

MV

104

APPLICATION:		 Serial communications control

DESCRIPTION:		 Motor echoes received channel 0 serial

EXECUTION:		 Immediate

CONDITIONAL TO:		 N/A

LIMITATIONS:		 Applies to Channel 0 (Primary Com Port)

REPORT COMMAND:	 N/A

READ/WRITE:		 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:			 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:		 N/A	

DEFAULT VALUE:		 Motor defaults to ECHO_OFF (non-echo)

FIRMWARE VERSIONS:	 ALL	

DETAILED DESCRIPTION:

The ECHO command causes the SmartMotor™ to re-transmit (or echo
out) all serial bytes on the transmit line that were received on the receive
line of the primary comm port. This retransmission occurs when the
SmartMotor reads these bytes from the buffer, regardless of whether
these bytes are command or individual data bytes. ECHO_OFF termi-
nates the echo facility. ECHO can be issued to control a single motor
communicating with a host terminal or any another serial device, as well
as control groups of motors sharing series loop (daisy chain) serial com-
munication lines.

ECHO is required to pass serial bytes though a motor to the next motor
in a multi-drop serial daisy chain setup such as when the Add-A-Motor
cables are used. It is also often used in single motor applications for
transmit verification.

ECHO
	 Echo Incoming RS-232 Data

Related
Commands:

ECHO1

ECHO_OFF

ECHO_OFF1

105

ECHO_OFF
	 Turn RS-232 Echo Off

Related
Commands:

ECHO

ECHO_ON

ECHO_OFF1

APPLICATION:		 Serial communications control

DESCRIPTION:		 Motor does NOT echo received channel 0
				 serial characters

EXECUTION:		 Immediate

CONDITIONAL TO:		 N/A

LIMITATIONS:		 N/A

REPORT COMMAND:	 N/A

READ/WRITE:		 N/A

LANGUAGE ACCESS:	 N/A

UNITS:			 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:		 N/A

DEFAULT VALUE:		 Motor Defaults to ECHO_OFF (non-echo)
off

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

ECHO_OFF causes the SmartMotor™ channel 0, or primary, comm port
to stop echoing. This is the default power-up state of any SmartMotor. No
incoming channel 0 characters are re-transmitted. The command can
be issued to control a single motor communicating with a host terminal
or any another serial device, as well as control groups of motors sharing
series or parallel serial communication I/O lines.

In order to automatically detect and differentiate between multiple motors
on a serial daisy chain cable, the ECHO state can be alternately turned
on and off to insure addressing is done properly.

Note: It is not possible to maintain communications on a serial chain
without issuing ECHO.

106

APPLICATION:		 Serial communications control

DESCRIPTION:		 Motor echoes received channel 1 serial

EXECUTION:		 Immediate

CONDITIONAL TO:		 N/A

LIMITATIONS:		 N/A

REPORT COMMAND:	 N/A

READ/WRITE:		 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:			 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:		 N/A	

DEFAULT VALUE:		 ECHO1 is off

FIRMWARE VERSIONS:	 ALL	

DETAILED DESCRIPTION:

The ECHO1 command causes the SmartMotor™ to re-transmit (or echo out)
all serial bytes on the transmit line that were received on the receive line of the
secondary comm port. This retransmission occurs when the SmartMotor reads
these bytes from the buffer, regardless of whether these bytes are command or
individual data bytes. ECHO_OFF1 terminates the echo facility.

It is important to note that the channel 1 serial port is half-duplex RS485. It
cannot simultaneously send and receive. Thus, when used directly as RS-485,
the ECHO1 command is not recommended.

ECHO1
	 Echo Incoming RS-485 Data

Related
Commands:

ECHO

ECHO_OFF

ECHO_OFF1

107

ECHO_OFF1
	 Turn RS-485 Echo Off

Related
Commands:

ECHO

ECHO_OFF

ECHO_OFF1

APPLICATION:		 Serial communications control

DESCRIPTION:		 Motor does NOT echo received serial 1
				 characters

EXECUTION:		 Immediate

CONDITIONAL TO:		 N/A

LIMITATIONS:	 	 N/A

REPORT COMMAND:	 N/A

READ/WRITE:		 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:			 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:		 N/A	

DEFAULT VALUE:	 	 ECHO is off

FIRMWARE VERSIONS:	 ALL	

DETAILED DESCRIPTION:

ECHO_OFF1 causes the SmartMotor™ channel 1 serial port to stop
echoing. No incoming channel 1 characters are retransmitted. The
command can be issued to control a single motor communicating with
a host terminal or any another serial device, as well as control groups of
motors sharing series or parallel serial communication I/O lines.

108

APPLICATION:		 Program execution control

DESCRIPTION:		 Component of IF expression … ELSE …. 		
		 ENDIF control block

EXECUTION:		 Immediate if exercised

CONDITIONAL TO:		 Value of associated IF expression	

LIMITATIONS:		 Must reside with IF expression … ENDIF
				 program control block

REPORT COMMAND:	 N/A

READ/WRITE:		 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:			 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:		 N/A	

DEFAULT VALUE:		 N/A

FIRMWARE VERSIONS:	 4.00 and higher		

DETAILED DESCRIPTION:

An IF expression … ENDIF control block may optionally include an ELSE state-
ment to control execution when none of the test conditions are true. Sup-
pose that you want the SmartMotor™ to do one thing if the variable g=43, and
another if it isn’t.

EXAMPLE:
	 IF g==43
		 PRINT("Gee … 43!",#13)
	 ELSE
		 PRINT("No 43 for me.",#13)

	 ENDIF

The first line checks to see if g is equal to 43. If so, the string "Gee … 43!" is
sent out the primary serial port. The ELSE in line 3 tells the SmartMotor what
to do otherwise.

An IF control block can only have, at most, one ELSE. If such an ELSE exists
and the language interpreter evaluates the IF expression to be false (zero) and
there are no ELSEIF statements, then program will branch immediately to the
statement following the ELSE. If there are ELSEIF expression clauses within
the control block, all the ELSEIF clauses must precede the ELSE clause. In
these cases the ELSE clause is only executed in if both the IF expression is
false (zero) and all the ELSEIF expressions are false (zero).

ELSE
	 IF-Structure command flow element

Related
Commands:

ELSEIF exp

ENDIF

IF exp

109

ELSE is analogous to the DEFAULT case for a SWITCH control block.

ELSE is not a valid terminal command, it is only valid within a user
program.

EXAMPLE:

	 a=1			 'PRINT("FALSE") is always executed
	 IF a==2
		 PRINT("TRUE")
	 ELSE
		 PRINT("FALSE")

	 ENDIF

EXAMPLE:
	 IF a==1 	 'only if a is NOT 1, 2, or 3
			 'will GOSUB5 be executed.
		 GOSUB2
	 ELSEIF a==2
		 GOSUB3
	 ELSEIF a==3
		 GOSUB4
	 ELSE
		 GOSUB5
	 ENDIF

ELSE (continued)
	 IF-Structure command flow element

Related
Commands:

ELSEIF exp

ENDIF

IF exp

110

APPLICATION:		 Program execution control

DESCRIPTION:		 Alternate Evaluation of IF ..ENDIF control block

EXECUTION:		 Immediate if exercised

CONDITIONAL TO:		 Value of associated ELSEIF expression

LIMITATIONS:		 Must reside with IF expression … ENDIF
				 program control block

REPORT COMMAND:	 N/A

READ/WRITE:		 N/A

LANGUAGE ACCESS:	 N/A	

UNITS:			 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:		 N/A	

DEFAULT VALUE:		 N/A

FIRMWARE VERSIONS:	 4.00 and higher		

DETAILED DESCRIPTION:

An IF expression, ENDIF control block may optionally include any number of
ELSEIF expressions to perform multiple evaluations in a specified order. Sup-
pose that you want the SmartMotor™ to do one thing if the variable g=43,
another if g=43000 and another if g=-2.

EXAMPLE:
	 IF g==43
		 PRINT("Gee … 43!",#13)
	 ELSEIF g==43000
		 PRINT("43 grand for me."#13)
	 ELSEIF g==-2
		 PRINT("2?"#13)

	 ENDIF

The first line checks to see if g is equal to 43. If so, the string "Gee … 43!" is
sent out the primary serial port and the IF control block terminates. If g is not
43, the program goes on to test if g is 43000. If it is, "43 grand for me." is sent
out the primary serial port and the IF control block terminates. Similarly, if g
is not 43000, the program goes on to test if g is -2. If it is, "-2?" is sent out the
primary serial port and the IF control block terminates.

An IF control block can have multiple ELSEIF statements. If such an ELSEIF
clause exists and the language interpreter evaluates the IF expression to be
false (zero) the program will branch immediately to first ELSEIF expression.

ELSEIF
	 IF-structure command flow element

Related
Commands:

ELSE

ENDIF

IF exp

111

If the associated expression is true, then the following clause is exe-
cuted until an ELSEIF, ELSE or ENDIF is encountered and then execu-
tion branches to the ENDIF of the present IF control block. If the first
ELSIF clause is not executed, then program execution continues at the
next ELSEIF expression and so on until all the ELSEIF expressions have
been tested. In the case all ELSEIFs have false expressions and an
ELSE clause exists that clause will be executed.

The ELSEIF statement is similar to the CASE number case for a
SWITCH control block. Note the difference - ELSEIF handles expres-
sions, CASE only handle a fixed number.

ELSEIF is not a valid terminal command, it is only valid within a user
program.

Example:
	 a=3			
	 IF a==2		 'expression will be found false	
 		 PRINT("222"
	 ELSEIF a==3		 'expression will be found true	
 		 PRINT("333"	'so "3333" will be printed.	

	 ENDIF

Example:
	 IF a==1 		 'only if a is NOT 1, 2, or 3
				 'will	GOSUB5 be executed.
 		 GOSUB2
	 ELSEIF a==2
		 GOSUB3
	 ELSEIF a==3
		 GOSUB4
	 ELSE
		 GOSUB5
	 ENDIF

ELSEIF (continued)
	 IF-structure command flow element

Related
Commands:

ELSE

ENDIF

IF exp

112

ENC0
	 Set/Restore Internal Encoder for Servo

APPLICATION: Encoder control			

DESCRIPTION: Use internal encoder as the primary encoder

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: N/A

READ/WRITE: N/A		

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A	

DEFAULT STATE: ENC0		

FIRMWARE VERSIONS: 4.11 and higher

DETAILED DESCRIPTION:

The SmartMotor™ can accept inputs from either the internal integrated encoder or
an external source. ENC0 will cause the SmartMotor to read its position from the
internal encoder, while ENC1 uses the secondary (external) encoder. When ENC0
is active, the external encoder input will be tracked by the CTR variable and @P will
track the internal encoder.

EXAMPLE:
 ENC1 'Servo from external encoder
 ENC0 'restore default encoder behavior

 ENC1 'Servo from external encoder
 ENC0 'restore default encoder behavior

Related
Commands:

CTR

ENC1

113

ENC1
	 Select External Encoder for Servo

APPLICATION: Encoder selection control

DESCRIPTION: Swap internal and external encoder functions.

 Use external encoder as the primary encoder.

 The internal encoder is now associated with CTR
 value.

EXECUTION: Immediate

CONDITIONAL TO: External encoder attached to motor

LIMITATIONS: N/A

REPORT COMMAND: N/A

READ/WRITE: N/A		

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT STATE: ENC0

FIRMWARE VERSIONS: 4.11 and higher

DETAILED DESCRIPTION:

The SmartMotor™ can accept inputs from either the internal integrated
encoder or an external source. The ENC1 command will cause the SmartMotor
to servo from the secondary (external) encoder channel, instead of the internal
encoder. The internal encoder will likewise then be readable by way of the CTR
variable. @P will rack the external encoder. The default mode of operating
from the internal encoder is restored with the ENC0 command.

If the external encoder is not connected or connected wrong, the motor may
run away. If this happens, use the RP command to check the position. If by
rotating the shaft you can change the position, then the encoder is connected,
but the A and B signals likely need to be swapped to reverse the direction
described by the quadrature phasing of the A and B signals.

EXAMPLE:
	 ENC1 	'Servo from external encoder
	 ENC0 	'restore default encoder behavior

Related
Commands:

ENC0

WARNING:

If the ENC1
command is issued
without an external
encoder connected
both electrically to
the A and B inputs
and physically to
the shaft, and
connected properly,
the shaft will run
away with full speed
and torque.

114

END
	 End Program Code Execution

APPLICATION: 	 Program execution control

DESCRIPTION: 	 Terminates the user program execution

EXECUTION: 	 Immediate

CONDITIONAL TO: 	 Valid whether issued by host or user program

LIMITATIONS: 	 N/A

REPORT COMMAND: 	 N/A

READ/WRITE: 	 N/A

LANGUAGE ACCESS: 	 N/A

UNITS: 	 N/A

RANGE OF VALUES: 	 N/A

TYPICAL VALUES: 	 N/A

DEFAULT VALUE: 	 N/A

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

END terminates execution of a user program if running. END may be issued via
serial communications channels or from within the user program itself. Each program
must have a minimum of at least one END statement. The windows interface SMI
scanner will not compile a source file without at least one END present. END only
terminates the user program and internally resets the program pointer to the begin-
ning of the program; no other state, variable, mode, or trajectory is affected.

The SMI program provides a speed bar button to send END. This is especially useful
when something prevents the user from fully typing END at the terminal screen.

Example:

	 IF Be END ENDIF	 'terminate user program
 	 'upon position error

Note: All PLS firmware Motors automatically issue END upon receiving any of the
following error conditions:

 Be (Position Error)

 Bl (Left Travel Lmit)

 Br (Right Travel Limit)

 Bh (Over Temperature/RMS Over Current)

Please consult PLS firmware documentation for more details and options around
this.

Related
Commands:

RCKS

Rv

RUN

RUN?

UP

UPLOAD

Z

115

ENDIF
	 End IF Statement

APPLICATION: Program execution control

DESCRIPTION: IF expression … ENDIF control block terminator

EXECUTION: N/A

CONDITIONAL TO: There must exist a corresponding IF expression

LIMITATIONS: N/A

REPORT COMMAND: N/A

READ/WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSIONS: ALL

DETAILED DESCRIPTION:

Each control block commencing with IF expression … must have a corresponding
ENDIF block exit statement. The program statement following ENDIF is the common
exit point branched to upon processing the IF … ENDIF control block regardless of
the execution path thought the control block at run time. There can only be one ENDIF
statement for each IF statement. The common exit point following ENDIF is branched
to upon the following:

 1. Processing a true IF expression clause and encountering ELSEIF, 		
 ELSE, or ENDIF.

 2.	 Processing a true ELSEIF expression and encountering another 		
 	 ELSEIF, ELSE, or ENDIF.

 3. Processing an ELSE expression and encountering ENDIF.

 4. If all IF and ELSIF expressions are false and there no ELSE 			
 clause.

ENDIF is not a valid terminal command, it is only valid within a user program.

Example:
	 IF a==1
		 PRINT("ok",#13)
	 ENDIF
	 PRINT("EXIT",#13)

Related Command:

IF exp

ELSE

ELSEIF exp

Every IF
structure must
be terminated with
an ENDIF

116

ENDS
	 End SWITCH Statement

APPLICATION: Program execution control

DESCRIPTION: SWITCH expression … ENDS control block 			
 terminator

EXECUTION: N/A

CONDITIONAL TO: a corresponding SWITCH expression

LIMITATIONS: N/A

REPORT COMMAND: N/A

READ/WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSIONS: 4.00 and higher

DETAILED DESCRIPTION:

Each SWITCH expression must have a corresponding ENDS block exit statement.
Any program statement immediately following ENDS is the common exit point
branched to upon processing the SWITCH . . . ENDS control block regardless of
execution path through the control block at run time. There can only be one ENDS
statement for each SWITCH statement.

The common exit point following ENDS is branched to upon the following:

 1. Upon encountering a BREAK

 2. Upon encountering ENDS

 3. The SWITCH expression value is not equal to any CASE number 		
 value and there is no DEFAULT statement label for the control block.

ENDS is not a valid terminal command, it is only valid within a user program.

EXAMPLE :
	 SWITCH x
		 CASE 1 PRINT("x=1",#13) BREAK
		 CASE 2 PRINT("x=2",#13) BREAK
		 CASE 3 PRINT("x=3",#13) BREAK
	 ENDS
	 'This is the exit point for SWITCH...ENDS code block

Related Command:

CASE number

DEFAULT

SWITCH exp

117

EPTR=expression
	 Set Data EEPROM Pointer

Related
Command:

VST

VLD

APPLICATION:	 EEPROM Data storage control

DESCRIPTION:	 Set user data EEPROM pointer

EXECUTION:	 Immediate

CONDITIONAL TO: N/A

LIMITATIONS:	 N/A

REPORT COMMAND: None

READ/WRITE:	 Write only. EPTR auto incriminated as used

LANGUAGE ACCESS: Assignment only 	

UNITS: 	 EEPROM Address pointer

RANGE OF VALUES: 0 to 7999 <= v4.13, 0-32000 >= v4.15

TYPICAL VALUES: 0 to 32000			

DEFAULT VALUE: 0		

FIRMWARE VERSIONS: 4.00 and higher

DETAILED DESCRIPTION:

EPTR sets the address location (pointer) within the Nonvolatile used data
EEPROM for the data retrieval read VLD(variable, number) function and data
storage write VST(variable, number) function. The EPTR value is write only,
once it is set, EPTR auto-increments by 1, 2, or 4 with each read or write
access to the physical EEPROM device according to the present data type.

Example:
 EPTR=4000 'set EPTR = 4000
 VST(hh,1) 'store a 32 bit value	
 	 	 'EPTR is now 4004
 VST(ab[7]) 'store an 8 bit value
 	 	 'EPTR is now 4005
 VST(aw[7]) 'store a 16 bit value
 	 	 'EPTR is now 4007
 VST(x,3) 'Store 3 consecutive variables, x,y,z
 	 	 'EPTR is now 4007+(3*4) or 4019
 VST(x,4) 'INVALID !!! EPTR remains 4019 !!!

Note: You cannot store consecutive variables past their group range. In other
words, you can store any consecutive variables a-z or aa-zz or aaa-zzz within
their groups only.

 VST(aa,26)	 'Perfectly Valid !!!

 VST(aa,27)	 'INVALID !!!

118

ES400
	 Set EPROM Read/Write Speed

APPLICATION:	 EEPROM Read write Control

DESCRIPTION:	 Set EEPROM read write rate to 400kz

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT COMMAND:	 None

READ/WRITE:	 None

LANGUAGE ACCESS:	 N/A	

UNITS:	 Bits per sec

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 N/A	

DEFAULT VALUE:	 1000	

FIRMWARE VERSIONS:	 4.00 and higher

DETAILED DESCRIPTION:

ES400 controls the transmit and receive bit rate while communicating between the
EEPROMS and the microprocessor. There are two settings ES400 and ES1000.
ES1000 is the preferable higher data transfer rate for read and writing user programs
and data, and is the default data rate of version 4 and later SmartMotors™ and later.
The ES400 command is used with older EEPROMs. If you have an "older" EEPROMs
and SmartMotors of differing versions, you may wish to consider upgrading the
EEPROMS.

Note: The following applies to units prior to year 2000.

If you get an "F,"or failure, response to the RCKS command (report program check-
sum) following a program download, you may wish to issue an ES400 command from
the terminal and try again. If RCKS now passes, you may have a slow EEPROM.
In some cases you may need to make ES400 the first program statement within a
program, but as the command controls the speed at which the memory is read, the
command really has little value in a program, and you may wish to consider upgrading
the EEPROM.

Related Command:

ES1000

119

Example:

The following simple test program may well abort if ES400 is unreliable.
	 PRINT("TEST ES400 & ES1000")
	 a=1000
	 WHILE a
	 a=a-1
	 ES400				 'slower data rate
	 PRINT(#13,"ES400 ",a)
	 GOSUB5				
	 ES1000			 'faster data rate
	 PRINT(#13,"ES1000 ",a)
	 GOSUB5
	 LOOP
	 PRINT(#13,"TEST RAN TO COMPLETION")
	 PRINT(#13,"NO DATA ERROR DETECTED")
	 END
	 C5
	 WAIT=100
	 c=a
	 b=a
	 IF c!=b
		 PRINT("DATA PROBLEM - ABORT TEST")
	 ENDIF
	 RETURN			 'add many GOTO10 statements here
	 GOTO10			 'to fill up your program EEPROM
	 C10
	 PRINT(#13,"PROGRAM POINTER ERROR - ABORT TEST")
	 END

ES400 (continued)
	 Set EPROM Read/Write Speed

Related
Command:

ES1000

120

ES1000
	 Set EPROM Read/Write Speed

APPLICATION:	 EEPROM Read write Control

DESCRIPTION:	 Set EEPROM read write rate to 1000kz

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 EEPROM Read Write Capability

REPORT COMMAND:	 None

READ/WRITE:	 None

LANGUAGE ACCESS:	 N/A	

UNITS:	 Bits per sec

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 N/A	

DEFAULT VALUE:	 1000

FIRMWARE VERSIONS:	 4.00 and higher

DETAILED DESCRIPTION:

ES1000 controls the transmit and receive bit rate while communicating between the
EEPROMS and the microprocessor. There are two settings - ES400 and ES1000.
ES1000 is the preferable higher data transfer rate for read and writing user programs
and data, and is the default data rate of version 4 SmartMotors™ and later. The ES400
command is used with older EEPROMs. If you have an "older" EEPROMs and Smart-
Motors of differing versions, you may wish to consider upgrading the EEPROMs.

Note: the following applies to units prior to year 2000:

If you get an "F,"or failure, response to the RCKS command (report program check-
sum) following a program download, you may wish to issue an ES400 command from
the terminal and try again. If RCKS now passes, you may have a slow EEPROM.
In some cases you may need to make ES400 the first program statement within a
program, but as the command controls the speed at which the memory is read, the
command really has little value in a program, and you may wish to consider upgrading
the EEPROM.

Related Command:

ES400

121

ES1000 (continued)
	 Set EPROM Read/Write Speed

Example:

The following simple test program may well abort if ES1000 is unreliable.
	 PRINT("TEST ES400 & ES1000")
	 a=1000
	 WHILE a
	 a=a-1
	 ES400			 'slower data rate
	 PRINT(#13,"ES400 ",a)
	 GOSUB5				
	 ES1000			 'faster data rate
	 PRINT(#13,"ES1000 ",a)
	 GOSUB5
	 LOOP
	 PRINT(#13,"TEST RAN TO COMPLETION")
	 PRINT(#13,"NO DATA ERROR DETECTED")
	 END
	 C5
	 WAIT=100
	 c=a
	 b=a
	 IF c!=b
		 PRINT("DATA PROBLEM - ABORT TEST")
	 ENDIF
	 RETURN			 'add many GOTO10 statements here
	 GOTO10			 'to fill up your program EEPROM
	 C10
	 PRINT(#13,"PROGRAM POINTER ERROR - ABORT TEST")
	 END

Related
Command:

ES400

122

APPLICATION: Amplifier control	

DESCRIPTION: Load buffered PID filter values into PID filter

EXECUTION: Next PID sample

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: N/A

READ/WRITE: N/A		

LANGUAGE ACCESS: N/A	

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A	

DEFAULT VALUE: N/A

FIRMWARE VERSIONS: ALL	

DETAILED DESCRIPTION:

The servo tuning parameters, KA, KD, KG, KI, KL, KP, KS, and KV, are all buffered
parameters. These parameters, once requested, take effect only when the F com-
mand is issued. This allows several parameters to be change at one time, without
intermediate tuning states causing disruptions. Tuning parameters can be changed
during a move profile, although caution is urged.

A default set of tuning parameters is in effect at power up or reset, but are optimized
for an unloaded shaft. Different motor sizes have different optimal PID default gain
values.

EXAMPLE:

	 KP=100		 'initialize KP to a some value	
	 F			 'load into present PID filter
	 G			 'start motion
	 WAIT=40000
	 KP=KP+10		 'increment the present KP gain value`:
	 F 			 'change into filter END

Related
Command:

HA

KD

KG

KI

KL

KP

KS

KV

F
	 Load PID Filter

123

F=expression
	 Motor Function Control

APPLICATION:		 Motor Function control		

DESCRIPTION:		 Miscellaneous commands

EXECUTION:			 Immediate			

CONDITIONAL TO:	 	 N/A

LIMITATIONS:		 N/A

REPORT COMMAND:	 RF

READ/WRITE:		 Write only		

LANGUAGE ACCESS:	 Assignment only	

UNITS:			 Number

RANGE OF VALUES:	 0 to 15

TYPICAL VALUES:		 0	

DEFAULT VALUE:		 0

FIRMWARE VERSIONS:	 4.00 and higher	

DETAILED DESCRIPTION:

F=value sets various functions or operational conditions of the motor. The value is Bit-
weighted meaning that each binary bit is a on or off state for that particular function. As
a result, it is also bit additive meaning that to turn on or off any selected function the
appropriate bits must be set to 1 or 0. F is not assignable or readable. If you wish to
rack it's value a shadow variable may be used.

Example:		 x=2

			 F=x

			 x=2& 8

			 F=x

This allows you to keep track of the functions that are enabled or disabled via the F
command.

The following page covers a description of each function.

Related Command:

None

124

F=1		 Decelerate to stop on limit switch input (as opposed to just 				
		 turning off)

F=2 *		 Invert Commutation (Changes Shaft rotation)

F=4		 Any Report commands transmit to Com 1 only. (Use with 				
		 Extreme Caution)

F=8		 Clear PID integral term at trajectory-end to avoid possible 				
		 slow settling

F=16 *		 Mode Cam positions are relative for each re-entry into CAM 			
		 table (from either direction)

F=32 *		 GOSUB1 is issued under motor fault condition 							
		 C1 can not be called again prior to receiving a RETURNF

F=64 * 		 GOSUB2 is issued on user input G transition from high to low 			
		 C2 can not be called again prior to receiving a RETURNI

F=128 *	 Internal Slave Counter = base + dwell modulo while in CAM Mode

F=256 *	 Set T.O.B. to be active for entire move profile.

F=512 *	 Suppress T.O.B. until Slew Velocity has been reached

F=1024 *	 Enables Port G to Index trigger latch function (only in 					
		 SM2316D/DT >=4.93 firmware)

* Note: Only Applies to >=v4.77 only……..

Warning: C1 has priority over C2. C1 can be activated when in C2.

The F value can be changed on the fly while in an Interrupt subroutine to change
its effect. An example would be turning off the G interrupt once in C2 to prevent
any subsequent calls.

F Command is Binary Bit flag additive:

Example: F=21 would break down to F=(16+4+1). Motor would run CAM Mode
relative, redirect print statements to port 1, and decelerate on limits.

F=expression (continued)
	 Motor Function Control

Related
Command:

None

125

Example using F=32 for Interrupt driven Fault routine

F=32		 'Enable C1 Fault routine

MV		 'Set to Velocity Mode
V=10000	 'Set Speed
A=100 		 'Set Acceleration
G		 'Start moving in Velocity Mode

END

C1	 ' Fault Routine (Gets called on any of the following
faults)
	 IF Be			 ' Checking for error status bits
		 PRINT(" Position Error",#13)	
	 ENDIF	
	 IF Bh	
		 PRINT(" Over Temp Error",#13)	
	 ENDIF	
	 IF Bi	
		 PRINT(" Over Current Error",#13)	
	 ENDIF	
	 IF Bl	
		 PRINT(" Left/Positive Travel Limit Error",#13)	
	 ENDIF	
	 IF Br	
		 PRINT(" Right/Negative Travel Limit Error",#13)	
	 ENDIF	
	 WHILE 1		 'Wait for Motor Reset
		 IF r==1	 'If host sends r=1 via serial port
			 ZS	 'Reset the motor
		 ENDIF
		 IF UAI==0	 'If Input A gets rounded
			 ZS	 'Reset the motor
		 ENDIF
	 LOOP
RETURNF	 		 'Return form Fault routine

Example using F=64 for Port G, C2 interrupt subroutine call

F=64	 'Enable Port G interrupt routine
END
C2		 ' Port G interrupt Routine
	 PRINT(" Port G was grounded",#13)
RETURNI 	 ' Return from Input Trigger

Example using F=64 for C2 subroutine call and F=1024 Index Re-direct for posi-
tion capture

F=64+1024	 'Enable Port G interrupt routine and Index Capture
Re-direct
END
C2	 ' Port G interrupt Routine
	 PRINT(" Port G was grounded",#13)
	 PRINT(" Position captured at:",I,#13)
RETURNI 'Return from Input Trigger

F=expression (continued)
	 Motor Function Control

Related
Command:

None

126

G
	 Start Motion (GO)

APPLICATION: Trajectory control, Parameter Update

DESCRIPTION: Initiate or change trajectory parameters.	

EXECUTION: Next PID sample

CONDITIONAL TO: Clearing of prior errors (in PLS firmware only)

LIMITATIONS: N/A

REPORT COMMAND: N/A

READ/WRITE: N/A		

LANGUAGE ACCESS: N/A	

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A	

DEFAULT VALUE: N/A

FIRMWARE VERSIONS: ALL		

DETAILED DESCRIPTION:

The G command stands for "Go" and is used to start motion or update buffered val-
ues such as Speed or acceleration.

A "G" command is required in each of the following cases:

1. Initiate an Absolute Move in Mode Position (MP)

 V=10000 A=100 P=1234 MP G

2. Initiate a Relative Move in Mode Position (MP)
 V=10000 A=100 D=4000 MP G

3. Initiate a Velocity in Mode Velocity (MV)
 V=10000 A=100 MV G

4. Change to a new Velocity in Mode Position (MP) or Mode Velocity (MV)
 V=10000 A=100 MV G WAIT=1000 V=V*2 G

5. Change to a new Acceleration in Mode Position (MP) or Mode Velocity (MV)
 V=10000 A=100 MV G WAIT=1000 A=A*2 G

6 Initiate/Change an Electronic Gear Ratio in Mode Follow with Ratio (MFR),
 MF0 MFMUL=1 MFDIV=10 MFR G

7 Initiate/Change an Electronic Gear Ratio in Mode Step with Ratio (MSR),
 MF0 MFMUL=1 MFDIV=10 MSR G

8. Initiate Cam Mode (MC) :
 MF0 MC1 G

Related
Command:

A

D

E

MC

MD

MFR

MP

MV

P

UG

UGI

UGO

V

127

9. Begin Host Mode (MD).motion prior to filling all buffered data slots.

 (See Users Guide for Host Mode)

10. Initiate a phase Offset Move while in Electronic Gear Ratio in either Mode-		
 Follow or Mode-Step

 MF0 MFMUL=1 MFDIV=10 MFR G WAIT=2000 D=2000 V=100 G

On Power-Up, the Motor defaults to the Off state with MP (Mode Position buffered
in with no Velocity or Acceleration values. As a result, if G is issued the motor will
immediately servo in place.
Mode Follow (MS1, MF1, MF2 and MF4), Mode Step (MS), Mode Torque (MT),
and Amplifier Mode (MD50) are immediately active, they do not wait for any G com-
mand.

If a G command is transmitted and no motion results, any of the following may be
the cause:

E=0•	 or too small

A=0•	 or 1

V=0•	 or so small motion is not visible to naked eye

Target position equals present position•	

D=0•	

Bh=1•	 the motor is hotter than max permitted temperature TH

AMPS=0•	 or too small

T=0•	 or too small

Motor is in •	 Torque Mode

LIMD•	 is in effect and the "wrong" limit input switch is active

Issued •	 MF0 or MS0 instead of MFn or MS

External encoder signal not present or not changing (in follow modes)•	

Motor is part of a daisy chain that hasn't been properly set up•	

Serial communications are good but target motor is not	 addressed•	

Serial communications at incorrect baud rate•	

Serial communications cable not attached or poorly connected•	

Motor has no drive power•	

Motor has a prior fault that needs to be cleared first (PLS firmware)•	

Motor has no connections to limit switch inputs on boot-up and therefor has •	
travel limit fault (PLS firmware)

G (continued)
	 Start Motion (GO)

Related
Command:

A

D

E

MC

MD

MFR

MP

MV

P

UG

UGI

UGO

V

128

G (continued)
	 Start Motion (GO)

Related Command:

A

D

E

MC

MD

MFR

MP

MV

P

UG

UGI

UGO

V

Example:

	 A=100 	 'Set buffered Acceleration
	 V=10000	 'Set buffered Velocity
	 P=1000 	 'Set buffered Position
	 MP 		 'Set buffered Position Mode
	 G 		 'load buffered move, Start Motion

To servo in place:
	 P=@P 		 'Set buffered position equal to actual position
	 G 		 'Servo in place

The execution time for G command varies with the computational burden of the mode
or on the fly move. In the some cases, the G command computation may take longer
than expected, and may result in motion profiles of poor quality or erroneous move-
ment. This can happen in very tight loops that don't allow the G command to fully
process with each cycle, such as the following:

Example:

	 C10			 'Place a label
	 P=CTR		 'Set position equal to CTR
	 G			 'Issue GO command
	 GOTO10		 'Loop back to label

This type of code practice is not recommended because it forces a re-calculation over
and over again and will cause abrupt jerks or small glitches in the move profile.

129

GETCHR
	 Get Character from main RS-232

Related
Command:

GETCHR1

LEN

LEN1

OCHN

APPLICATION: 	 Serial communications control

DESCRIPTION: 	 Fetch next character in channel 0 serial
 	 input buffer

EXECUTION: 	 Immediate

CONDITIONAL TO: 	 Requires that a character is in the buffer

LIMITATIONS: 	 Must check if LEN>0 before using

REPORT COMMAND: 	 N/A

READ/WRITE: 	 Read only

LANGUAGE ACCESS: 	 Expressions and conditional testing

UNITS: 	 N/A

RANGE OF VALUES: 	 N/A

TYPICAL VALUES: 	 N/A

DEFAULT VALUE: 	 N/A

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

GETCHR reads and removes the next available character in the channel
0 serial receive buffer. It is absolutely necessary to check that LEN>0
before issuing the GETCHR command.

Normally, the SmartMotor™ interprets incoming RS-232 data as com-
mands. Sometimes, it is useful to prevent that from happening and
instead, write a custom command interpreter. This is accomplished by
re-opening the input channel in data mode with the OCHN command.

Example:
	 C20				 'Place a label
	 IF LEN>0		 'Check to see that LEN>0
	 c=GETCHR		 'Get character from buffer
	 IF c==69		 'Check to see if it is an E
 END		 'End the program
 ENDIF
 ENDIF
	 GOTO20			 'Loop back to C20

WARNING:

The OCHN
command will
cause the
SmartMotor to
ignore incomming
commands and can
lock you out. It is
a good idea to use
the RUN?
command during
development. If
you get locked out,
you can recover by
sending two capitol
E's during the first
1/2 second after
power up. This will
cause the motor to
abort its program
and give you a
chance to download
a better one. The
terminal software
has utilites to do
this.

130

APPLICATION:	 Serial communications control

DESCRIPTION:	 Fetch next character in channel 1 serial input buffer

EXECUTION:	 Immediate

CONDITIONAL TO:	 Requires that a character is in the buffer

LIMITATIONS:	 Must check if LEN1>0 before using

REPORT COMMAND:	 N/A

READ/WRITE:	 Read only	

LANGUAGE ACCESS:	 Expressions and conditional test	

UNITS:	 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 N/A	

DEFAULT VALUE:	 N/A

FIRMWARE VERSIONS:	 ALL		

DETAILED DESCRIPTION:

GETCHR1 reads and removes the next available character in the channel 1
serial receive buffer. It is absolutely necessary to check that LEN1>0 before
issuing the GETCHR1 command.

Sometimes, it is useful to be able to accept special commands and/or data
over the RS-485 port such as might come from a light curtain or a bar code
reader. This is accomplished by opening the input channel in data mode with
the OCHN1 command.

Example:

	 C20				 'Place a label
	 IF LEN1>0		 'Check to see that LEN>0
	 c=GETCHR1		 'Get character from buffer
	 IF c==69		 'Check to see if it is an E
 END		 'End the program
 ENDIF
 ENDIF
	 GOTO20			 'Loop back to C20

GETCHR1
	 Get Character From RS-485

Related Command:

GETCHR

LEN

LEN1

OCHN1

131

GOSUB{number}
	 Subroutine Call

APPLICATION: Program execution control

DESCRIPTION: Perform subroutine beginning at Cnumber

EXECUTION: Immediate

CONDITIONAL TO: C number previously defined	

LIMITATIONS: GOSUB0 to GOSUB999

 nesting msut be <=6 levels deep !!!

REPORT COMMAND: N/A

READ/WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSIONS: ALL

DETAILED DESCRIPTION:

The GOSUB{number} command redirects program execution to a subroutine of the
program marked with a label C{number}. The end of every subroutine is marked
by the RETURN statement, which causes execution to return to the line following
the corresponding GOSUB{number} command. Subroutines may call further sub-
routines; this is called nesting. There may be as many as a thousand GOSUBs but
they may be nested only up to six deep. A subroutine may call itself, which is called
recursion but is highly discouraged because it can lead to a stack overflow or nest-
ing limit. A counter, conditional test or some other scheme can prevent exceeding
the nesting limit.

The STACK control flow command explicitly and deliberately destroys the RETURN
address history. Thus, if you issue STACK, take care that the program execution
does not encounter a RETURN before the next GOSUB.

The GOSUB command is valid from both the serial channels and within the a user
program. Do not, however, issue GOSUB{number} unless the corresponding
C{number} label exists within the stored program. Otherwise you willg et a memory
pointing error.

Note: If an attempt to issue a nonexistent GOSUB call is done via serial port, the
motor will respond with "+/-" which basically means a memory error.

Related Command:

C{number}

GOTO{number}

STACK

Subroutines
present a great
opportunity to
partition and
organize your
code.

132

Example:
	 GOSUB20		 'run subroutine 20
	 GOSUB21		 'run subroutine 20
	 a=3
	 GOSUB25		 'run subroutine 20
	 END				 'End code execution

	 C20				 'nested subroutine
	 GOSUB30
	 PRINT("20",#13)
	 RETURN
	 C21				 'nested subroutine
	 GOSUB30
	 PRINT("21",#13)
	 RETURN
	 C25				 'recursive subroutine
	 PRINT(" 25:",a)	
	 a=a-1
	 IF a==0
		 RETURN
	 ENDIF
	 GOSUB25
	 RETURN
	 C30				 'normal subroutine
	 PRINT(#13,"Subroutine Call ")
	 RETURN

The output will be as follows:

Subroutine Call 20

Subroutine Call 21

 25:3 25:2 25:1

In the above program example you can issue GOSUB20, GOSUB21,
GOSUB25 or GOSUB30 from the terminal as well.

GOSUB{number} (continued)
	 Subroutine Call

Related
Command:

C{number}

GOTO{number}

STACK

133

GOTO{number}
	 Branch Program Flow to a Label

APPLICATION:	 Program execution control

DESCRIPTION:	 Branch program execution to statement
	 C{number}

EXECUTION:	 Immediate

CONDITIONAL TO:	 C{number} previously defined

LIMITATIONS:	 GOTO0 to GOTO999

REPORT COMMAND:	 N/A

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 N/A

DEFAULT VALUE:	 N/A

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

The GOTO{Number} command unconditionally redirects program execution control
to another part of the program marked by the label C{Number}.

The GOTO{Number} command is valid from both the serial channels and within a
user program. Take care, however, not to issue a GOTO{Number} command unless
the corresponding C{Number} label exists witihn the stored program.

Novice programmers use IF statements and GOTOs to create elaborate and sophis-
ticated programs that quickly become impossible to read or debug. Force yourself to
use GOSUBs for program control. You'll be glad you did.

Example: (download the following program)
	 C0			 'Place main label
	 IF UAI==0
	 PRINT("Input A Low",#13)
	 ENDIF
	 GOTO0			 'GOTO allows program to run forever
	 END

Related Command:

BREAK

C{number}

ELSE

DEFAULT

GOSUB{number}

NOTE:

Extensive use of
IF statements and
GOTOs can quickly
make your programs
impossible to read or
debug.

Learn to organize your
code with one main
loop using a GOTO
and write the rest
of the program with
subroutines.

134

I (capital i)
	 Encoder Index Pulse Location

APPLICATION: Hardware Index Capture

DESCRIPTION: Encoder value latched by hardware index capture

EXECUTION: Immediate

CONDITIONAL TO: Index previously captured

LIMITATIONS: High velocity at time of capture will create a
 systematic offset error

REPORT COMMAND: RI

READ/WRITE: Read only

LANGUAGE ACCESS: Expressions and conditional testing	

UNITS: Encoder counts

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: -2147483648 to 2147483647	

DEFAULT VALUE: 0

FIRMWARE VERSIONS: ALL

DETAILED DESCRIPTION:

I (capital i) is the function that stores the last hardware latched encoder index posi-
tion. It can be read from a host with the RI command, or it can be read by the
program with a line such as a=I. Only after it is read by either of these means, will
the SmartMotor™ be looking for the next Index event. The host or the program can
monitor for the event by reading the flag, Bi. Bi will read as zero until an index is
latched, at which time Bi will be set to one. Bi is set to zero when the index position
is read or accessed.

The commands RI and PRINT(I,#13) report the captured index value through the
primary serial channel. PRINT1(I,#13) reports through the channel 1 serial port.
All three commands reset the Bi flag to zero. Assignments such as variable=I also
assign the captured value and reset the Bi flag to zero. If Bi is zero at the time the I
value is accessed, the previously captured index value is returned again.	

The index is a physical reference mark on the encoder. It is also referred to as a Z
pulse, marker pulse, and sometimes combinations of all three names. Its most widely
used in homing sequences requiring a high degree of repeatability.

Related
Commands:

Bi

Bx

RBi

RBx

135

Example: (homing against a hard stop with Index reference)

	 AMPS=100	 	 'Current limit 10%
	 O=0 			 'Declare this home
	 MP 			 'Set Mode Position
	 A=100 		 'Set Acceleration
	 V=100000 		 'Set Velocity
	 P=-1000000 		 'Move negative
	 G 			 'Start Motion
	 WHILE Bt 		 'Wait for motion fault
	 IF Bi 		 'If Index Pulse Seen
	 a=I 		 'Record Index Position
	 ENDIF
	 LOOP 			 'Loop back to wait
	 O=-a 			 'Last Index is Home
	 P=0 			 'Move to New Home
	 G 			 'Start Motion
	 AMPS=1023 		 'Restore power

Note: >=v4.95 has the ability to redirect Port G to the Index register input trig-
ger allowing high speed position capture via Port G this capture time occurs at
CMOS level and is typically around 3 to 5 microseconds.
All the same rules apply to arming and clearing the index as stated above.
The Re-Direct to Port G is accomplished with the F command. See F= in this
programmers guide for more detail.

I (continued)
	 Encoder Index Pulse Location

Related
Commands:

Bi

Bx

RBi

RBx

136

IF expression
	 Conditional Program Code Execution

APPLICATION: Program execution control

DESCRIPTION: Conditional run time program execution

EXECUTION: Test expression and take action as coded

CONDITIONAL TO: Program execution branch if expression is zero or 		
 false

LIMITATIONS: Requires corresponding ENDIF

 Can be executed only from within user program

REPORT COMMAND: N/A

READ/WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSIONS: ALL

DETAILED DESCRIPTION:

The IF statement is the basic means by which an executing program can make a
choice between alternative execution paths at runtime. In its simplest form the IF
control block consists of:

 IF (expression) evaluates as non-zero 							
 Run the code below the "IF" command						
 ENDIF

Expression is a test condition, Both mathematical comparisons and boolean logic
bit wise comparisons can be used. Each must evaluate to be true.

IF a==b (If a equals b) IF a!=b (If a does not equal b)

IF a<b (If a is less than b) IF a<=b (If a is less than or equal to b)

IF a>b (If a is greater than b) IF a>=b (If a is greater than or equal to b)

IF a&b (If a AND b, bit-wise) IF a|b (If a OR b, bit wise comparison)	

IF a (If a does not equal zero, common shortcut to IF a==1)

All above examples must be True to allow code beginning below the IF command
to run. If they are not true, the code execution will jump down to the nearest ELSE,
ELSEIF or ENDIF and continue from there.

Related
Commands:

ELSE

ELSEIF

ENDIF

Every "IF" struc-
ture must be
terminated with an
"ENDIF".

137

Example 1: Simple case of: IF true, run some code.

	 IF @P>12345	'If Position is above 12345				

		 PRINT("position is greater than 12345",#13)
	 ENDIF
			 'This is the next line of code to be executed
			 'whether it is true or not.

Example 2: If true, run some code, ELSE if false run some other code...

	 IF @P>12345		 'If Position is above 12345
		 PRINT("position is greater than 12345",#13)
	 ELSE			 'If it is no true
		 PRINT("position is not greater than 12345",#13)
	 ENDIF
	 'This is the next line of code to be executed

Example 3: If true, run some code, else if something else is true......

	 IF @P>12345		 'If Position is above 12345
		 PRINT("position is greater than 12345",#13)
	 ELSEIF @P==0	 'If Position equals zero
		 PRINT("position is at zero",#13)
	 ENDIF
	 'This is the next line of code to be executed
	 'even if position is not at zero and
	 'not greater than 12345.

Example 4: Test for two conditions and default to another line of code:

	 IF @P>100		 'If Position is above 100
		 PRINT("position is greater than 100",#13)
	 ELSEIF @P<=0	 'If it less than or equal to zero
		 PRINT("position is <= to zero",#13)
	 ELSE
		 PRINT("position is between zero and 100",#13)
	 ENDIF

(Continued on next page)

IF expression (continued)
	 Conditional Program Code Execution

Related
Commands:

ELSE

ELSEIF

ENDIF

138

Example 5: Binary Bit Mask Comparison:

a=10	 'binary 1010
b=5	 'binary 0101
c=7	 'binary 0111
d=1	 'binary 0001
e=0	 'binary 0000

IF a&2	 'Compare "a" and 2 as binary numbers bit for it.
	 PRINT("This is true because 2 is 0010",#13)
ENDIF
IF a&d	 'Are any bits in common with a AND d?
	 PRINT("This will never PRINT",#13)
ENDIF
IF a|b	 'Are there any bits that are 1 in either number?
	 PRINT("This will print",#13)
ENDIF
IF d|e	 'even though e is zero, d is non-zero:
	 PRINT("This will print",#13)
ENDIF
IF b&c
	 PRINT("This is true",#13)
ENDIF
END

IF expression (continued)
	 Conditional Program Code Execution

Related
Commands:

ELSE

ELSEIF

ENDIF

Every "IF" struc-
ture must be
terminated with an
"ENDIF".

139

KA=expression
	 PID Acceleration Feed Forward

APPLICATION: PID filter control

DESCRIPTION: Acceleration feed forward gain	

EXECUTION: Buffered pending an F command

CONDITIONAL TO: N/A

LIMITATIONS: Must be positive

REPORT COMMAND: RKA

READ/WRITE: Read write	

LANGUAGE ACCESS: Expressions and conditional testing

UNITS: N/A

RANGE OF VALUES: 0 to 65535

TYPICAL VALUES: 0 to 3000

DEFAULT VALUE: 0

FIRMWARE VERSIONS: ALL

DETAILED DESCRIPTION:

KA sets the buffered acceleration feed forward gain. The acceleration feed forward
term helps the PID filter to cope with the predictable effects of acceleration and
inertia.

The KA gain factor is only applied in position (MP) and velocity (MV) moves. Issuing
a new KA parameter is not effective until it is loaded into the present PID filter by
the F command. The default value for KA is 0, and acceptable values range from 0
to 65,535.

It is difficult or impossible to tune KA in low inertia systems. Even in high inertia
systems it can be a challenge to observe the benefit during very short acceleration
periods. It is best to rely on the host tuning utility for assistance if it is thought that
KA could be useful.

PRINT(KA,#13) and RKA both report the value of KA through the primary serial
port, while PRINT1(KA, #13) sends it out channel 1. KA is valid with any expres-
sion, and can be treated as if it were any read-write variable. The motion or servo
characteristics are unaffected until KA is applied by the F function.

Example:
	 KA=200	 'set buffered acceleration feed forward
	 F		 'update PID filter

Related
Commands:

F

RKA

KD

KG

KI

KL

KP

KS

KV

140

KD=expression
	 PID Derivative Compensation

APPLICATION: PID filter control

DESCRIPTION: Derivative gain		

EXECUTION: Buffered pending an F command

CONDITIONAL TO: N/A

LIMITATIONS: Must be positive

REPORT COMMAND: RKD

READ/WRITE: Read write		

LANGUAGE ACCESS: Assignment, expressions and conditional testing

UNITS: N/A

RANGE OF VALUES: 0 to 65535

TYPICAL VALUES: 400 to 2000	

DEFAULT VALUE: Motor size dependent

FIRMWARE VERSIONS: ALL	

DETAILED DESCRIPTION:

KD sets the value of the derivative gain of the PID filter. If the PID filter gives stable
performance, KD is usually the vibration absorbing, or damping, term.

For any stable KP value there is an optimum KD value, prior to and beyond which the
motor will be unstable. An effective way to tune the filter, therefore, is to repetitively
raise the KP value and then run the KD term up and down to find the local optimum.
The point at which the KD term cannot stabilize the servo is the point where KP has
gone too far. To test each setting twist the shaft of the motor and let it go while looking
for abrupt and resolute response. The host level tuning utility can be useful in finding
the optimum. The F command must be issued for a new buffered KD parameter to take
effect. Typically a KD of ~10x KP is a good starting point for any given KP<300.

PRINT(KD,#13) and RKD both report the value of KD through the primary serial port,
while PRINT1(KD, #13) sends it out channel 1. KD is valid with any expression, and
can be treated as if it were any read-write variable. The motion and servo character-
istics are unaffected until KD is applied by the F function.

Example:

	 KD=2000		 'set buffered derivative gain
	 F			 'update PID filter

Related
Commands:

KA

KG

KI

KL

KP

KS

KV

141

KG=expression
	 PID Gravity Compensation

APPLICATION: PID filter control

DESCRIPTION: Gravitational gain		

EXECUTION: Buffered pending an F command

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: RKG

READ/WRITE: Read write		

LANGUAGE ACCESS: Assignment, expressions and conditional testing

UNITS: N/A

RANGE OF VALUES: -8388608 to 8388607

TYPICAL VALUES: 0

DEFAULT VALUE: 0

FIRMWARE VERSIONS: ALL	

DETAILED DESCRIPTION:

KG sets the gravity compensation term of the PID filter.

Simple PID filters are ill equipped where a constant force is asserted on the
system. An example of such a constant force is that induced by gravity acting
on a vertically moving axis. The KG term exists to offset the PID filter output in
a way that removes the effect of such constant forces.

The best way to set KG is to turn KP and KI to zero and servo in place. The
load will want to fall, but hold it in place. Issue increasingly positive or increas-
ingly negative KG parameters until the load barely holds. Record that value and
continue increasing the parameter until the load starts to go up. Now record this
value. The optimum KG value is the average of these two.

Valid values for KG are integers from -8388608 to 8388607. As a result, you
may not see much of an effect until KG is greater than one million in magnitude.
However, extremely higher magnitudes values risks rapid pulse width modula-
tion (PWM) saturation (uncontrollable servo behavior). The default value is 0.

PRINT(KG,#13) and RKG both report the value of KG through the primary
serial port, while PRINT1(KG, #13) sends it out channel 1. KG is valid with any
expression, and can be treated as if it were any read-write variable. The motion
and servo characteristics are unaffected until KG is applied by the F function.

Example :
	 KG=10000000 	 'Set buffered Gravity Term
	 F 		 'Update Filter

Related
Commands:

KA

KD

KI

KL

KP

KS

KV

142

KI=expression
	 PID Integral Compensation

APPLICATION: PID filter control

DESCRIPTION: Integral gain

EXECUTION: Buffered pending an F command

CONDITIONAL TO: N/A

LIMITATIONS: Must be positive, total integral limited by KL

REPORT COMMAND: RKI

READ/WRITE: Read write

LANGUAGE ACCESS: Assignment, expressions and conditional testing

UNITS: N/A

RANGE OF VALUES: 0 to 32767

TYPICAL VALUES: 0 to equal that of present KP

DEFAULT VALUE: Motor size dependent

FIRMWARE VERSIONS: ALL

DETAILED DESCRIPTION:

The KI term sets the integral gain of the PID filter. The integral compensator is not for
stability. Raising it too far will cause the motor to become unstable. The KI command
is designed to compensate for friction in the system. Since the amount of power sent
to the motor is proportional to the distance it is from its target position, there comes
a time, close to the target, where the small position error is creating too small of a
torque for the motor to reach the final target.

The integral term of the PID filter is generated by taking the sum of the position
error of every sample and then multiplying by KI. As such, it creates a force that is a
function of error and time. As time passes (a few milliseconds) and the control sees
that a correction is not being made, it boosts the signal. This boost occurs at a rate
set by the KI parameter. While you are tuning your motor for stability, it is probably
a good idea to set KI to zero, and then later bring it up until you see that it reliably
compensates for the friction of your system. The F command must be issued for a
new buffered KI parameter to take effect and KL, the protective upper limit, must be
high enough to allow KI to do its job.

PRINT(KI,#13) and RKI both report the value of KI through the primary serial port,
while PRINT1(KI, #13) sends it out channel 1. KI is valid with any expression, and
can be treated as if it were any read-write variable. The motion and servo character-
istics are unaffected until KI is applied by the F function.

Example:

	 KI=250		 'Set buffered integral gain
	 F 	 		 'Update Filter

Related
Commands:

KL

KA

KD

KG

KP

KS

KV

143

KL=expression
	 PID Integral Limit

APPLICATION: PID filter control

DESCRIPTION: Integral limit

EXECUTION: Buffered pending an F command

CONDITIONAL TO: N/A

LIMITATIONS: Must be positive

REPORT COMMAND: RKL

READ/WRITE: Read write	

LANGUAGE ACCESS: Assignment, expressions and conditional testing

UNITS: N/A

RANGE OF VALUES: 0 to 32767

TYPICAL VALUES: 5 to 200

DEFAULT VALUE: Motor size dependent

FIRMWARE VERSIONS: ALL

DETAILED DESCRIPTION:

The KL term sets a limit on the effects of the KI term. Since the KI integrates the
position error over time, it can ultimately dominate the PID equation. KL sets an upper
limit on what the KI term can be.

Physically speaking, the KI term will raise the power to the servo as a function of time.
If there is something other than friction blocking the servo and it is unable to move,
the amount of torque given to the motor over time can quickly become unreasonably
large. It is therefor a good idea to keep KL as low as possible while still allowing the
KI term to effectively contend with friction. The F command must be issued for a new
buffered KL parameter to take effect.

PRINT(KL,#13) and RKL both report the value of KL through the primary serial port,
while PRINT1(KL, #13) sends it out channel 1. KL is valid with any expression, and
can be treated as if it were any read-write variable. The motion and servo character-
istics are unaffected until KL is applied by the F function.

Example:
	 KL=1500 			 'Set buffered integral limit
	 F				 'Update Filter

Related
Command:

KA

KD

KG

KI

KP

KS

KV

144

KP=expression
	 PID Proportional Compensation

APPLICATION: PID filter control

DESCRIPTION: Proportional gain		

EXECUTION: Buffered pending an F command

CONDITIONAL TO: N/A

LIMITATIONS: Must be positive

REPORT COMMAND: RKP

READ/WRITE: Read write		

LANGUAGE ACCESS: Assignment, expressions and conditional testing

UNITS: N/A

RANGE OF VALUES: 0 to 32767

TYPICAL VALUES: 40 to 300	

DEFAULT VALUE: Motor size dependant

FIRMWARE VERSIONS: ALL	

DETAILED DESCRIPTION:

The KP command is used to set the gain of the proportional parameter of the PID
filter. Any new value of KP is held in a buffer until an F command is issued.

The higher the KP the stiffer the motor will be. At some point the added stiffness will
cause the motor to become unstable. If moving the KD value up and down cannot
stabilize the servo, then the KP value is too high and must be reduced.

PRINT(KP,#13) and RKP both report the value of KP through the primary serial
port, while PRINT1(KP, #13) sends it out channel 1. KP is valid with any expres-
sion, and can be treated as if it were any read-write variable. The motion and servo
characteristics are unaffected until KP is applied by the F function.

Example:
	 KP=250 			 'Set buffered proportional gain
	 F 				 'Update Filter

Related
Command:

KA

KD

KG

KI

KL

KS

KV

145

KS=expression
	 PID Derivative Term Sample Rate

APPLICATION: PID filter control

DESCRIPTION: Inertial load gain		

EXECUTION: Buffered pending an F command

CONDITIONAL TO: N/A

LIMITATIONS: Must be positive

REPORT COMMAND: RKS

READ/WRITE: Read write		

LANGUAGE ACCESS: Assignment, expressions and conditional testing

UNITS: N/A

RANGE OF VALUES: 0 to 255

TYPICAL VALUES: 1	

DEFAULT VALUE: 1

FIRMWARE VERSIONS: ALL	

DETAILED DESCRIPTION:

The KS term of the extended PID filter will sometimes allow the SmartMotor™ to
handle inertial ratios in excess of the traditional 5:1 or 10:1. This reflected load to rotor
inertia ratio is often sighted as a traditional limit for dependable servo motor applica-
tion. The KS term represents the number of sample periods used to form the integra-
tion of the KD term. By raising the KS value beyond one, a latency is developed within
the response vector of the PID equation’s differential element. Since this reduces the
rate at which the current error switches sign, it allows the motor to apply its available
torque more decisively. This is also useful in situations where the mechanical time
constant of the motor/load system is longer than the PID period by several orders of
magnitude. Such systems can be very difficult to stabilize with a traditional PID filter.

If your application has an inertial ratio of greater than 5:1, experiment with raising
KS above 1. Your ear will provide a good method of judgment; listen for a range KS
values which provide relaxed but decisive motor response across the velocity and
acceleration regions required by your application.

PRINT(KS,#13) and RKS both report the value of KS through the primary serial port,
while PRINT1(KS, #13) sends it out channel 1. KS is valid with any expression, and
can be treated as if it were any read-write variable. The motion and servo character-
istics are unaffected until KS is applied by the F function.

Example :
	 KS=5 		 'Set buffered differential sample rate
	 F 		 'Update Filter

Related
Command:

KA

KD

KG

KI

KL

KP

KV

146

KV=expression
	 PID Velocity Feed Forward

APPLICATION: PID filter control

DESCRIPTION: Velocity feed forward gain		

EXECUTION: Buffered pending an F command

CONDITIONAL TO: N/A

LIMITATIONS: Must be positive

REPORT COMMAND: RKV

READ/WRITE: Read write		

LANGUAGE ACCESS: Assignment, expressions and conditional testing

UNITS: N/A

RANGE OF VALUES: 0 to 32767

TYPICAL VALUES: 0 to 400

DEFAULT VALUE: 0

FIRMWARE VERSIONS: ALL	

DETAILED DESCRIPTION:

KV sets the gain for the velocity feed forward element of the extended PID filter.
The velocity feed forward element can be thought of as a dynamically proportional
adjustment to the PID filter required by the latency of the digital filter with respect to
time. A zero value for KV disables the term within the filter.

If you put the SmartMotor™ into at a relatively high speed velocity move and moni-
tor the position error with the Status Monitor, you will see a constant position error.
Issue a series of successively larger KV parameters followed by F commands and
watch the error reduce to zero.

The default value for KV is zero, acceptable values range from 0 to 65,535. Typically
useful values range from 0 to 2000. Current values can be read back with RKV.

PRINT(KV,#13) and RKV both report the value of KV through the primary serial port,
while PRINT1(KV, #13) sends it out channel 1. KV is valid with any expression, and
can be treated as if it were any read-write variable. The motion and servo character-
istics are unaffected until KV is applied by the F function.

Example :
	 KV=1000		 'Set buffered velocity feed forward
	 F 			 'Update Filter

Related
Command:

KA

KD

KG

KI

KL

KP

KS

147

LEN
	 Main RS-232 data buffer fill level

APPLICATION:	 Communication control

DESCRIPTION:	 Number of characters in serial host (channel 0) 	
receive buffer

EXECUTION:	 Immediate

CONDITIONAL TO:	 Host communication channel open

LIMITATIONS:	 Maximum buffer length is 16 characters

REPORT COMMAND:	 None

READ/WRITE:	 Read only		

LANGUAGE ACCESS:	 Expressions and conditional testing	

UNITS:	 Number of available characters

RANGE OF VALUES:	 0 to 16

TYPICAL VALUES:	 0 to 16	

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 4.00 and higher	

DETAILED DESCRIPTION:

LEN returns the number of characters placed in the serial communications channel 0
receive buffer which are still awaiting to be processed. A serial channel in COMMAND
mode will typically return LEN as 0, but a serial channel in DATA mode may well return
a non zero value. Testing the value of LEN is a good way to see if there is any char-
acter for GETCHR to fetch.

Example:

	 DAT			 'Set serial channel 0 to DATA mode
	 i=0
	 IF LEN 		 'any data received?
 		 GOSUB5	 'if so process data
	 ENDIF
	 END
	 C5
	 ab[i]=GETCHR	 'read and store in data
				 'process incoming data
	 i=i+1			 'maintain reference index

	 RETURN

From the above example, "i" will be equal to LEN.

Related Command:

GETCHAR

GETCHAR1

LEN1

148

LEN1
	 RS-485 data buffer fill level

APPLICATION:	 Communication control

DESCRIPTION:	 Number of characters in channel 1 serial
	 receive buffer

EXECUTION:	 Immediate

CONDITIONAL TO:	 Host communication channel open

LIMITATIONS:	 Maximum buffer length is 16 characters

REPORT COMMAND:	 None

READ/WRITE:	 Read only		

LANGUAGE ACCESS:	 Expressions and conditional testing	

UNITS:	 Number of available characters

RANGE OF VALUES:	 0 to 16

TYPICAL VALUES:	 0 to 16	

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 4.00 and higher	

DETAILED DESCRIPTION:

LEN1 returns the number of characters placed in the serial communications
channel 1 receive buffer which are still awaiting to be processed. A serial
channel in COMMAND mode will typically return LEN1 as 0, but a serial chan-
nel in DATA mode may well return a non zero value. Testing the value of LEN1
is a good way to see if there is any character for GETCHR to fetch.

Example:

	 DAT1			 'make serial channel 1 DATA mode
	 i=0
	 IF LEN1 		 'any data received ?	
		 GOSUB5	 'if so process data
	 ENDIF
	 END
	 C5
	 ab[i]=GETCHR1	 'read and store in data
				 'process incoming data
	 i=i+1			 'maintain reference index

	 RETURN

From the above example, "i" will be equal to LEN.

Related
Command:

GETCHAR

GETCHAR1

LEN

149

LIMD
	 Enable Directional Travel Limits

APPLICATION:	 Travel Limit switch controL

DESCRIPTION:	 Limit switches have directional property

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT COMMAND:	 N/A

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 N/A

DEFAULT PROPERTY:	 Limits are non directional	 	

FIRMWARE VERSIONS:	 4.15 and 4.40 (non-PLS firmware only) 	

DETAILED DESCRIPTION:

LIMD (Limit Directional) specifies the way the SmartMotor™ responds to a G com-
mand while any limit input is active.

LIMD prevents motion further into or past the detected limit. LIMD can be cancelled
by LIMN (Limit non-directional), which allows movement further into the limit. Neither
of these commands change the response of the motor when it encounters a limit after
already in motion.

Basic Effects of LIMD are as follows:

If the Positive Limit is active and the motor is commanded in the positive direction, 	
it will fail to move.

If the negative limit is active and the motor is commanded in the negative direction,
the motor will fail to move.

In both cases above, LIMD has prevented further motion beyond the detected travel
limit.

In contrast, if the negative limit is active and motion is commanded in the positive
direction, motion will be allowed.

If the positive limit is active and motion is commanded in the negative direction, motion
will be allowed.

Note: LIMD behavior is applicable to all modes of operation.

Related Command:

LIMH

LIML

LIMN

150

LIMH
	 Travel Limits Active High

APPLICATION:		 Travel Limit Switch Control

DESCRIPTION:		 Limits are active high to stop motion

EXECUTION:			 Immediate

CONDITIONAL TO:		 N/A

LIMITATIONS:	 	 N/A

REPORT COMMAND:	 N/A

READ/WRITE:		 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:			 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:		 N/A	

DEFAULT PROPERTY:	 Limits are active low

FIRMWARE VERSIONS:	 4.15 and 4.40. (not available in PLS firmware) 	

DETAILED DESCRIPTION:

The limit switches are associated with the I/O C and I/O D pins. Following a power up
or reset (the Z command), the limit inputs are active LOW by default. This means if
the logic state goes low, the motor will stop.

 LIMH defines the limit inputs to be active HIGH. This means if the logic state level
goes high, the motor will stop.

NOTE: The limit input pins have 5K Ohm pull-ups meaning they are seen as logic high
when there is no connection to them.

LIML defines them back to active low.

Associated with the limit switches are the system flags:

Hardware Travel Limit Overview Status Bits Command
to Clear

Historical Bit

Command to
Disable

Travel Limit Input

Command to
Enable

Travel Limit InputPort Pos/Neg Plus/Minus Left/Right Real Time Historical

Port C Positive PLUS RIGHT Br Bp Zr, or ZS UCI or UCO UCP

Port D Negative MINUS LEFT Bl Bm Zl, or Zs UDI or UDO UDM

Note: PLS firmware defaults to LIMH with no option to change it.

Please consult PLS firmware documentation for more information.
	 	 	 	

Related Command:

LIMD

LIML

LIMN

UCP

UDM

151

LIML
	 Travel Limits Active Low

APPLICATION:		 Limit switch control

DESCRIPTION:		 Limit switches are active low

EXECUTION:			 Immediate

CONDITIONAL TO:	 	 N//A

LIMITATIONS:		 N/A

REPORT COMMAND:	 N/A

READ/WRITE:		 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:			 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:		 N/A	

DEFAULT PROPERTY:	 Limit switches are active low	

FIRMWARE VERSIONS:	 4.15 and 4.40	

DETAILED DESCRIPTION:

The limit switches are associated with the I/O C and I/O D pins. Following a power up
or reset (the Z command), the limit inputs are active LOW by default. This means if
the logic state goes low, the motor will stop.

 LIML defines the limit inputs to be active Low. This means if the logic state level goes
low, the motor will stop.

NOTE: The limit input pins have 5K Ohm pull-ups meaning they are seen as logic high
when there is no connection to them.

LIMH defines them to active High.

Associated with the limit switches are the system flags:

Note: PLS firmware defaults to LIMH with no option to change it.

Please consult PLS firmware documentation for more information.

Related Command:

LIMD

LIMH

LIMN

UCP

UDM

Hardware Travel Limit Overview Status Bits Command
to Clear

Historical Bit

Command to
Disable

Travel Limit Input

Command to
Enable

Travel Limit InputPort Pos/Neg Plus/Minus Left/Right Real Time Historical

Port C Positive PLUS RIGHT Br Bp Zr, or ZS UCI or UCO UCP

Port D Negative MINUS LEFT Bl Bm Zl, or Zs UDI or UDO UDM

152

LIMN
	 Enable Non-Directional Travel Limits

APPLICATION:	 Limit switch control

DESCRIPTION:	 Limit switches non directional

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT COMMAND:	 N/A

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 N/A

DEFAULT PROPERTY:	 Limit switches are non directional

FIRMWARE VERSIONS:	 4.15 and 4.40 (not available in PLS firmware)

DETAILED DESCRIPTION:

LIMN (Limit NON-Directional) specifies the way the SmartMotor™ responds to a G
command while any limit input is active.

LIMN means that if you are on a limit switch (if it is active at the time). The motor will
still be allowed to move in the same direction upon receiving another G (go) com-
mand.

Basic Effects of LIMN are as follows:

If the Positive Limit is active and the motor is commanded in the positive direction, 	
it will still be able to move

If the negative limit is active and the motor is commanded in the negative direction, it
will still be able to move.

Note: LIMN behavior is applicable to all modes of operation.

Related Command:

LIMD

LIML

LIMH

153

LOAD
	 Download Compiled User Program to Motor

APPLICATION: User program EEPROM control

DESCRIPTION: Receive and store SmartMotor™ executable program

EXECUTION: Immediate

CONDITIONAL TO: User program EEPROM present

LIMITATIONS: EPPROM capacity is limited to 8k, 16k, or 32k

REPORT COMMAND: UP, UPLOAD, RCKS

READ/WRITE: EEPROM is read write unless "locked"		

LANGUAGE ACCESS: N/A	

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A	

DEFAULT VALUE: N/A

FIRMWARE VERSIONS: ALL	

DETAILED DESCRIPTION:

LOAD is used by a terminal to download a compiled program file and store it within
the USER PROGRAM EEPROM of the SmartMotor. The LOAD command causes
a SmartMotor to load all incoming host communications into program memory up to
the first occurrence of the ASCII character 255. Program sizes can be as great as
32k. This command is mainly used by host utilities, which also compiles the program
before download.

LOAD does not terminate the present motion mode or trajectory, change motion
parameters such as E, A, V, KP etc, or alter the present value of the user variables.

If the motor does not receive the ASCII 255 byte sometime after the LOAD com-
mand, the motor will continue to store incoming serial bytes directly to the Program
EEPROM; During this time you are likely to be confused by the motor’s apparent lack
of response to your commands. The only way to terminate this condition is to transmit
ASCII 255s or to reset the power.

Note: The SMI (SmartMotor Interface) software package is adjusted to take care of
this automatically.

By using the "LOAD" command you can download from any controller/HMI/PLC or
PC based program capable of storing an ASCI text file. For any given motor that is
actively addressed, (i.e. you are talking to it and it responds) If you issue the LOAD
command to the motor, it immediately goes into a memory-write mode while checking
all incoming data. Every ASCII character that is received after the LOAD command
is issued goes directly onto the Program EPROM. To terminate the LOAD command,
the last characters to send are 2(two) hexFF characters. The hexFF characters tell
the motor that it is the end of the file and to drop back into regular command mode.

Related
Command:

LOCKP

LOCKPROM

RCKS

RUN

RUN?

UP

UPLOAD

This command
is intended to be
used in custom
terminal software

154

Details on the downloadable file:

When you compile an SMS file with the SMI software, it creates an SMX file
extension with the same name in the same directory. This is the file you need
to download to the motor.

So basically here is what you should do:

Do an initial download of your program to the motor from SMI on some other
machine. Issue the "RCKS" command. This is the "Report Checksum" com-
mand. It will respond with a string in the form of:

 RCKS 000000 0000EB P

where the 000000 0000EB will be different than shown and represent a unique
2-byte checksum to any given program. The P at the end will be either a P
(passed) or F (failed). Keep this number in your own program/PLC that will do
the downloading.

1. Store the SMX file for downloading.

2. Store the string received from the RCKS command above as well.

3. Establish serial communications with the motor.

4. Issue RCKS command

5. If it does not match the stored checksum number: Open the smx file. Issue
the LOAD command. Start sending down all characters in the smx file from
beginning to end. When the last character is read from the file and sent to the
motor then send2(two) hexFF characters to the motor.

6. Issue RCKS command again If it comas back with the stored string 		
 (with the "P" at the end) then the download was successful.

7. Issue "RUN" to see if it works as expected.

Reasons for unsuccessful download:

 a. Noise on serial port

 b. Loss of connection during download.

 c. Failure to send the two hexFF's before power-down.

 d. The SMX file as SMI compiled it was altered in some way.

Note: If you were to open an SMX file in NotePad to look at it and then save
it, Notepad will automatically add carriage return characters at the end of each
line it sees. The resultant file will not work. Each carriage return would have to
be stripped back out prior to download. So do not alter the smx file in any way
from how SMI generated it.

LOAD (continued)
	 Download Compiled User Program to Motor

Related
Command:

LOCKP

RCKS

RUN

RUN?

UP

UPLOAD

155

LOCKP
	 Prevent User Program Upload

APPLICATION:		 User program execution control

DESCRIPTION:		 Prevents effects of UP and UPLOAD

EXECUTION:			 N/A

CONDITIONAL TO:		 N/A

LIMITATIONS:		 N/A

REPORT COMMAND:	 N/A

READ/WRITE:		 N/A

LANGUAGE ACCESS:	 N/A

UNITS:			 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 	 N/A

DEFAULT VALUE:	 	 N/A

FIRMWARE VERSIONS:	 4.00 and higher	

DETAILED DESCRIPTION:

LOCKP modifies the contents of the header file portion of the downloaded Program
in the motor's EEPROM to prevent the contents from being uploaded. That is, the
commands UP and UPLOAD will not actually be able to upload the program body or
contents. This does not prevent the downloading of another program.

It is suggested that the LOCKP command is used after program development and
testing is complete.

LOCKP is intended as a serial command only. It should be issued from the terminal
screen.

It should not be in the actual downloaded code.

Once LOCKP is issued, issuing UP or UPLOAD will no longer produce results.

Related Command:

UP

UPLOAD

NOTE:

(For motors
with a plug-in
Memory Module)

Once LOCKP has
been invoked the
Memory Module
EEPROM cannot
be unlocked and
the module must be
replaced to return to
an unlocked
condition.

156

LOOP
	 Return to WHILE Program Flow Control

APPLICATION:		 Program execution control

DESCRIPTION:		 Terminator for WHILE expression

EXECUTION:	 		 Immediate

CONDITIONAL TO:	 	 N/A

LIMITATIONS:		 N/A

REPORT COMMAND:	 N/A

READ/WRITE:		 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:	 		 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 	 N/A	

DEFAULT VALUE:	 	 N/A

FIRMWARE VERSIONS:	 ALL	

DETAILED DESCRIPTION:

LOOP is the statement terminator for the WHILE control block. Each WHILE must
have one and only one corresponding LOOP. Each time LOOP is encountered, pro-
gram execution branches back to re-evaluate the WHILE expression.

The WHILE (expression) . . LOOP control block creates a program loop that repeat-
edly executes for as long as the expression value is true or non zero. The expression
is evaluated at the time WHILE is first encountered, and each time program execution
is sent back to the WHILE by the corresponding terminating LOOP statement. If the
expression value is zero or false, program execution continues on the line of code
just below the LOOP command.

For version 4.00 and higher the SMI compiler encodes the LOOP (corresponding)
WHILE program address location within the executable file. No WHILE/GOSUB
return stack is used to carry out the proper execution of the LOOP statement. Thus
LOOP executes the function equivalent of a GOTO without the need for declaring a
program statement label. Simply restated: WHILE expression .. LOOP is function-
ally encoded as Cx WHILE expression . . GOTOx. This means that it is legal to jump
into a WHILE control loop directly from an external program location.

LOOP is not a valid terminal command. It is only valid within a user program.

(Continued on next page.)

Related Command:

BREAK

WHILE

157

Example:

	 b=1			
	 WHILE b<5		
		 PRINT(#13,"b=",b)
		 b=b+1
	 LOOP
	 PRINT(#13,"Exit Loop")
	 END

Output will be:

	 b=1
	 b=2
	 b=3
	 b=4
	 b=5
	 Exit Loop

LOOP (continued)
	 Return to WHILE Program Flow Control

Related
Command:

BREAK

WHILE

158

MC
	 Enable Mode-CAM (Electronic Camming)

Related Command:

BASE

CTR

G

MC2

MC4

MF1

MF2

MF4

MS

SIZE

APPLICATION:		 Motion mode control

DESCRIPTION:		 Request CAM mode

EXECUTION:	 		 Buffered pending a G

CONDITIONAL TO:		 BASE=expression and SIZE=expression

LIMITATIONS:	 	 Requires external encoder signal source

REPORT COMMAND:	 RMODE

READ/WRITE:		 N/A

LANGUAGE ACCESS:	 N/A

UNITS:			 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:		 N/A

DEFAULT MODE:		 MP

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

MC puts the SmartMotor™ into CAM Mode, which causes the SmartMotor to follow
a predetermined profile in accordance with an external encoder source. To set up a
cam operation, you must also specify BASE, SIZE, aw[0]..aw[SIZE] position data
and initialize to the external encoder counter. Start the camming motion by issuing a G
command. The example below is a complete command sequence.

In Cam Mode, each value of the external encoder defines a required corresponding
SmartMotor position; cams typically define a periodic motion profile or trajectory.
BASE defines the number of encoder counts through which the external Cam moves
before the required position mapping, or required motion, is exactly repeated.

EXAMPLE:

This is a "saw tooth" CAM with periodic motion of BASE=2000 external encoder
counts and the motion interpolation divided into 25 (equal) segments:

(Continued on next page)

159

'Example CAM MODE Setup:
BASE=2000 	'Cam period
SIZE=25	 'data segments (number of data points in table)
'CTR data interval = BASE/SIZE = 2000/25 = 80
'CAM motor will be at Data position every 80
'Master encoder counts:
'CTR=0, CTR=80, CTR=160,.... CTR=1840, CTR=1920, CTR=2000
'Now assigning data values beginning with aw[0]:
aw[0] 0 10 20 30 40 50 60 70 80 90 100.
aw[20] 110 120 120 110 100 90 80 70 60.
aw[19] 50 40 30 20 10 0.
MF4	 'reset external encoder to zero
O=0	 'reset internal encoder position	
MC	 'buffer CAM Mode
G	 'start following the external encoder using cam data

The motor will now begin following the External (Master) encoder via the defined
CAM profile above. The SmartMotor™ performs a practical cam application
by partitioning the required cam trajectory definition into a number of linearly
interpolated segments. The variable SIZE stores the number of segments.
The segments are required to partition the BASE into a set of equally spaced
intervals.

The set of required positions must always use the 16-Bit array values beginning
at aw[0] and ending with aw[SIZE]. (aw[0 thru 99]). While this appears to limit
the size of the cam table to 100 entries no larger than +32678, this is not the
case. You can continually load new values into the aw[] array as the values get
used - be sure you load the new values into aw[] array elements only after they
have been used. The actual cam target positions can be increased by 2x, 4x or
8x with the MC2, MC4 or MC8 statements.

In other words, suppose aw[20]=100. If you use MC2, the effective value will be
200, with MC4, it will be 400, and with MC8 it will be 800.

So MC2, MC4 or MC8 change the amplitude by a factor of 2X, 4X, or 8X
respectively.

The Cam Mode, like any other position mode, is subject to the error band defined
by the E value, and subject to limit switch inputs. While in motion during Cam
Mode, flag Bo will be 0, flag Bt will be 1 and flag Be will be 0.

Note: PLS version Firmware allow the ability to run a relative CAM mode vice
Absolute. Please consult the Firmware addendum documents for more detail.

Related
Command:

BASE

CTR

G

LOAD

MC2

MC4

MC8

MF1

MF2

MF4

MS

SIZE

MC (continued)
	 Enable Mode-CAM (Electronic Camming)

160

MC2
	 Mode CAM 2X Multiplier

APPLICATION:		 Motion mode control

DESCRIPTION:		 Request MODE CAM with x2 multiplier

EXECUTION:			 Buffered pending a G

CONDITIONAL TO:	 	 BASE=expression and SIZE=expression

LIMITATIONS:		 Requires external encoder signal source

REPORT COMMAND:	 RMODE

READ/WRITE:		 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 		 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 	 N/A

DEFAULT MODE:		 MP

FIRMWARE VERSIONS:	 Version 4.10 and higher

DETAILED DESCRIPTION: Same as mode MC in all regards with exception that all
data points int he CAM table are multiplied by 2.
Suppose the following CAM table:
	 aw[0] 0 10 20 30 40 50 40 30 20 10 0.

The CAM motor would normally move through points 0, 10, 20, 30, etc....
But if MC is replaced with MC2, the CAM motor would instead mover though points
0, 20, 40, 60, 80, 100, 80, 60, 40, 20, and back to zero.
See the MC command for full details on CAM mode.

Related Command:

BASE

CTR

G

MC

MC4

MC8

MF1

MF2

MF4

MS

SIZE

161

MC4
	 Mode CAM 4X Multiplier

APPLICATION:		 Motion mode control

DESCRIPTION:		 Request MODE CAM with x4 multiplier

EXECUTION:			 Buffered pending a G

CONDITIONAL TO:	 	 BASE=expression and SIZE=expression

LIMITATIONS:		 Requires external encoder signal source

REPORT COMMAND:	 RMODE

READ/WRITE:		 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 		 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 	 N/A

DEFAULT MODE:		 MP

FIRMWARE VERSIONS:	 Version 4.10 and higher

DETAILED DESCRIPTION: Same as mode MC in all regards with exception that all
data points in the CAM table are multiplied by 2.
Suppose the following CAM table:
	 aw[0] 0 10 20 30 40 50 40 30 20 10 0.

The CAM motor would normally move through points 0, 10, 20, 30, etc....
But if MC is replaced with MC4, the CAM motor would instead mover though points
0, 40, 80, 160, 340, 680, 340, 160, 80, 40, and back to zero.
See the MC command for full details on CAM mode.

Related Command:

BASE

CTR

G

MC

MC2

MC8

MF1

MF2

MF4

MS

SIZE

162

MC8
	 Mode CAM 8X Multiplier

APPLICATION:		 Motion mode control

DESCRIPTION:		 Request MODE CAM with x8 multiplier

EXECUTION:			 Buffered pending a G

CONDITIONAL TO:	 	 BASE=expression and SIZE=expression

LIMITATIONS:		 Requires external encoder signal source

REPORT COMMAND:	 RMODE

READ/WRITE:		 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 		 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 	 N/A

DEFAULT MODE:		 MP

FIRMWARE VERSIONS:	 Version 4.10 and higher

DETAILED DESCRIPTION: Same as mode MC in all regards with exception that all
data points in the CAM table are multiplied by 8.
Suppose the following CAM table:
	 aw[0] 0 10 20 30 40 50 40 30 20 10 0.

The CAM motor would normally move through points 0, 10, 20, 30, etc....
But if MC is replaced with MC8, the CAM motor would instead mover though points
0, 80, 160, 240, 320, 400, 320, 240, 160, 80, and back to zero.
See the MC command for full details on CAM mode.

Related Command:

BASE

CTR

G

MC

MC2

MC4

MF1

MF2

MF4

MS

SIZE

163

MD50
	 Enable Direct Analog-Input Drive-Mode

APPLICATION:		 Motion mode control

DESCRIPTION:	 	 Request MODE ANALOG AMPLIFIER

EXECUTION:	 		 Immediate

CONDITIONAL TO:	 	 Analog signal input available

LIMITATIONS:		 N/A

REPORT COMMAND:	 RMODE

READ/WRITE:	 	 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:		 	 N/A

RANGE OF VALUES:	 N/A	

TYPICAL VALUES:	 	 N/A	

DEFAULT MODE:	 	 MP

FIRMWARE VERSIONS:	 4.15 and 4.40 series only 	

DETAILED DESCRIPTION:

MD50 converts the SmartMotor™ into a simple analog amplifier with motor. It accepts
a 0 to 5V analog signal from I/O Port A pin with a 10-Bit A/D resolution. It is center
weighted such that 2.5VDC gives zero PWM, 5VDC gives full positive PWM and 0VDC
gives full negative PWM. Since Port A has a 5K pull-up resistor, if MD50 is initiated
with no connection to Port A, the motor will immediately be commanded to full positive
PWM.

	 In operation, MD50 is similar to Mode Torque - there is no trajectory calculation,
so there is no position error associated with the resultant motion. Flags Bo, Bt and Be
will all be zero. Motion is not affected by the E value. A motor in MD50 mode responds
to RMODE with W. MD50 motion is conditional to limit switch input activity, (see LIMD
, LIMN, LIMH and LIML), and MD50 can be terminated with OFF, S, and X.

MD50, like MT, is immediate, and if the signal input at PIN A is a logical high or low,
then full output will be requested instantly. If you assign Port A as an output, then set
Port A to logic 1 or zero via UA=1 or UA=0 respectively, the motor will be commanded
to full PWM in either positive or negative direction respectively.

MD50 performs an analog read on the I/O A pin signal every PID sample. A to D
conversions are one of the most lengthy processes, so you may wish to use the
PID2 command if you are also running a user program that takes additional analog
readings.

MD50 is closely tied to MT. When invoked, any prior value in the "T" parameter gets
over written. To change from MD50 to MT, be sure to first issue OFF and then T=value
before issuing the MT command.

Related Command:

N/A

164

APPLICATION: External encoder control

DESCRIPTION: Reset external encoder to zero

EXECUTION: Immediate

CONDITIONAL TO: External encoder inputs available

LIMITATIONS: N/A

REPORT COMMAND: RCTR

READ/WRITE: References read only external encoder CTR		

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: Resets CTR to zero

FIRMWARE VERSIONS: All except 4.40 series		

DETAILED DESCRIPTION:

The command MF0 allows the user to zero the second encoder register (see the CTR
command) without changing the present motion mode of the SmartMotor™.

Following MF0, a secondary encoder signal, whether coming from an external source
through the I/O A and B pins, will be continuously tracked and made available in
the form of the CTR function; no gearing relationship is active, unless you write one
yourself.

If the Mode Follow with Ratio (MFR) or the CAM Mode does not meet your require-
ment you can write your own loop and define a unique relationship between the
incoming secondary encoder signal and the motor’s position.

In addition, it may be that you do not want there to be any such relationship to motion.
A common use of MF0 is to take input from a quadrature output selector switch,
especially in the context of a user interface, often including an LCD readout like the
Animatics LCD2X20 and LCD4X20.

If the you are running in MF, MFR, MC or other encoder follow modes, be careful
issuing MF0 as the value of CTR is immediately zeroed. The SmartMotor will interpret
this to be a sudden change in the master encoder input from its prior value to 0.

Continued on next page

MF0
	 Enable Quadrature-Input Counter Mode

Related Command:

RCTR

CTR

MF1

MF2

MF4

165

MF0 (continued)
	 Enable Quadrature-Input Counter Mode

Related
Command:

RCTR

CTR

MF1

MF2

MF4

EXAMPLE: (This example will print to the main channel)

	 b=4				 'b high for initial print
	 C1				 'Switch watch routine
 		 a=CTR&3		 'a will recycle 0-3
 		 IF a!=b		 'See if new a
 			 PRINT("SELECT: ",a,#13)
 			 b=a		 'Update b, no re-prnt.
 		 ENDIF
 		 IF UGI==0		 'Look for button
 			 GOSUB20	 'Sub. to use a
 		 ENDIF
	 GOTO1				 'Infinite loop

166

MF1
	 Enable Mode-Follow, Raw Resolution

APPLICATION: Motion mode control

DESCRIPTION: Mode Follow 4 external counts per 1 count of 	shaft
motion

EXECUTION: Immediate

CONDITIONAL TO: External encoder inputs present

LIMITATIONS: Do not issue MF0 while in mode MF1

REPORT COMMAND: RMODE

READ/WRITE: Associated external encoder is read only		

LANGUAGE ACCESS: N/A	

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A	

DEFAULT MODE: MP

FIRMWARE VERSIONS: All except 4.40 series	

DETAILED DESCRIPTION:

MF1 causes the SmartMotor™ to instantly and precisely follow a second, external,
encoder signal from input pins A and B, resetting the external encoder CTR value
to zero. For each 4 external encoder counts (in the same direction) received by the
SmartMotor, the motor shaft will be requested to follow, moving 1 internal encoder
count in the same direction. Velocity and acceleration feed-forward gains are not
computed during this mode. Issuing any other mode such as MT or MP followed by
G will take the SmartMotor™ out of this following behavior.

MF1 instantly turns on the servo and resets any position error. The servo off flag Bo
is set to 0, the trajectory flag Bt is set to 1, and the position error flag Be is reset to 0.
The motion is restricted by the present E value. Issuing E=0 will immediately cause
a position error after 4 encoder counts, in the same direction, are received from the
external encoder. The motion is also subject to the currently defined activity of the
limit switches.

Example:

	 MF1 			 'Reset CTR and Set follow mode
	 RMODE			 'RESPONSE is "F"
	 WAIT=100000 	 'Follow for a while
	 MP 			 'Revert to position mode
	 P=0 			 'Set destination for home
	 A=100			 'Set acceleration
	 V=537*1000		 'Set velocity
	 G 		 'Terminate following start position move
	 RMODE			 'RESPONSE is "P"

Related
Command:

CTR

MC

MC2

MC4

MC8

MF0

MF2

MF4

MS

For other ratios
and fractional
relationships see
Mode Follow with
Ratio (MFR)

167

MF2
	 Enable Mode-Follow Half-Quadrature

APPLICATION: Motion mode control

DESCRIPTION: Mode Follow 2 external counts per 1 count of 	
shaft motion

EXECUTION: Immediate

CONDITIONAL TO: External encoder inputs present

LIMITATIONS: Do not issue MF0 while in mode MF2

REPORT COMMAND: RMODE

READ/WRITE: Associated external encoder is read only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT MODE: MP

FIRMWARE VERSIONS: All except 4.40 series

DETAILED DESCRIPTION:

MF2 causes the SmartMotor™ to instantly and precisely follow a second, external,
encoder signal from input pins A and B, resetting the external encoder CTR value
to zero. For each 4 external encoder counts (in the same direction) received by the
SmartMotor, the motor shaft will be requested to follow, moving 1 internal encoder
count in the same direction. Velocity and acceleration feed-forward gains are not
computed during this mode. Issuing any other mode such as MT or MP followed by G
will take the SmartMotor™ out of this following behavior.

MF2 instantly turns on the servo and resets any position error. The servo off flag Bo
is set to 0, the trajectory flag Bt is set to 1, and the position error flag Be is reset to
0. The motion is restricted by the present E value. Issuing E=0 will immediately cause
a position error after 4 encoder counts, in the same direction, are received from the
external encoder. The motion is also subject to the currently defined activity of the
limit switches

Example:

	 MF2 			 'Reset CTR and Set follow mode
	 RMODE			 'RESPONSE is "F"
	 WAIT=100000 	 'Follow for a while
	 MP 			 'Revert to position mode
	 P=0 			 'Set destination for home
	 G 		 'Terminate following start position move
	 RMODE			 'RESPONSE is "P"

Related Command:

CTR

MC

MC2

MC4

MC8

MF0

MF1

MF4

MS

For other ratios
and fractional
relationships see
Mode Follow with
Ratio (MFR)

168

MF4
Enable Mode Follow Full Quadrature

APPLICATION: Motion mode control

DESCRIPTION: Mode Follow 1 external counts per 1 count of shaft 	
motion.

EXECUTION: Immediate

CONDITIONAL TO: External encoder inputs present

LIMITATIONS: Do not issue MF0 while in mode MF4

REPORT COMMAND: RMODE

READ/WRITE: Associated external encoder is read only		

LANGUAGE ACCESS: N/A	

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A	

DEFAULT MODE: MP

FIRMWARE VERSIONS: All except 4.40 series	

DETAILED DESCRIPTION:

MF4 causes the SmartMotor™ to instantly and precisely follow a second, external,
encoder signal from input pins A and B, resetting the external encoder CTR value
to zero. For each 4 external encoder counts (in the same direction) received by the
SmartMotor, the motor shaft will be requested to follow, moving 1 internal encoder
count in the same direction. Velocity and acceleration feed-forward gains are not
computed during this mode. Issuing any other mode such as MT or MP followed by G
will take the SmartMotor™ out of this following behavior.

MF4 instantly turns on the servo and resets any position error. The servo off flag Bo
is set to 0, the trajectory flag Bt is set to 1, and the position error flag Be is reset to
0. The motion is restricted by the present E value. Issuing E=0 will immediately cause
a position error after 4 encoder counts, in the same direction, are received from the
external encoder. The motion is also subject to the currently defined activity of the
limit switches.

Example:
	 MF4 			 'Reset CTR and Set follow mode
	 RMODE			 'RESPONSE is "F"
	 WAIT=100000 	 'Follow for a while
	 MP 			 'Revert to position mode
	 A=100			 'Set acceleration
	 V=537*1000		 'Set velocity
	 P=0 			 'Set destination for home
	 G 		 'Terminate following start position move
	 RMODE			 'RESPONSE is "P"

Related Command:

CTR

MC

MC2

MC4

MC8

MF0

MF1

MF2

MS

169

MFDIV
	 Set Mode-Follow Divisor

APPLICATION:	 Mode follow control

DESCRIPTION:	 Mode follow external encoder with ratio
	 MFMUL/MFDIV

EXECUTION:	 Buffered pending a G

CONDITIONAL TO:	 D, MFMUL, MF1, MF2, MF4, V

LIMITATIONS:	 Magnitude of ratio MFMUL/MFDIV must be less 	
than 256

REPORT COMMAND:	 N/A

READ/WRITE:	 Write only		

LANGUAGE ACCESS:	 Assignment, expressions and conditional testing

UNITS:	 Number

RANGE OF VALUES:	 -32768 to 332767

TYPICAL VALUES:	 -5 < (MFMUL/MFDIV) < 5	

DEFAULT VALUE:	 N/A

FIRMWARE VERSIONS:	 4.00 and higher	

DETAILED DESCRIPTION:

The ratio MFMUL/MFDIV specifies the gain for Mode Follow with Ratio (MRF). To
use MFR, you will need to define the specific relationship (ratio) of the encoder count
input to outgoing requested encoder counts of motion. The command MFR must
be issued after both MFMUL and MFDIV have been set. Both MFMUL and MFDIV
may positive or negative; use this fact to control the direction of shaft motion. Overly
large ratio gains are flagged by the firmware setting the system flag Bd, and may be
unstable. The error flag Bd will be set by MFR if the magnitude of MFMUL/MFDIV is
256 or greater. MFR does NOT reset Bd if already set by a prior procedure.

Example:
	 Zd			 'reset Bd system flag
	 MF0 			 'reset CTR
	 MFDIV=-10 		 'Denominator = -10
	 MFMUL=21 		 'Numerator = 21
	 MFR 			 'Calculate Ratio, input 21 external counts
				 'resulting motion -10 counts
	 D=0 			 'No phase shift
	 IF Bd GOTO12
	 ENDIF			 'gain too large
	 G 			 'Start Following
				 'Implementing Phase Adjust:
	 D=500 		 'Set Relative Distance
	 V=5000 		 'Set Relative Velocity
	 G 			 'Start Phase Adjust
	 END
	 C12
		 S		 'Stop Motion
	 END

Related Command:

Bd

CTR

D

G

MF1

MF2

MF4

MFR

MFMUL

V

170

APPLICATION:	 Mode follow control

DESCRIPTION:	 Mode follow external encoder with ratio
	 MFMUL/MFDIV

EXECUTION:	 Buffered pending a G

CONDITIONAL TO:	 D, MFMUL, MF1, MF2, MF4, V

LIMITATIONS:	 Magnitude of ratio MFMUL/MFDIV must be less 	
than 256

REPORT COMMAND:	 N/A

READ/WRITE:	 Write only

LANGUAGE ACCESS:	 Assignment, expressions and conditional testing

UNITS:	 Number

RANGE OF VALUES:	 -32768 to 332767

TYPICAL VALUES:	 -5 < (MFMUL/MFDIV) < 5

DEFAULT VALUE:	 N/A

FIRMWARE VERSIONS:	 4.00 and higher

DETAILED DESCRIPTION:

The ratio MFMUL/MFDIV specifies the gain for Mode Follow with Ratio (MRF). To
use MFR, you will need to define the specific relationship (ratio) of the encoder count
input to outgoing requested encoder counts of motion. The command MFR must
be issued after both MFMUL and MFDIV have been set. Both MFMUL and MFDIV
may positive or negative; use this fact to control the direction of shaft motion. Overly
large ratio gains are flagged by the firmware setting the system flag Bd, and may be
unstable. The error flag Bd will be set by MFR if the magnitude of MFMUL/MFDIV is
256 or greater. MFR does NOT reset Bd if already set by a prior procedure.

Example:
	 Zd		 'reset Bd system flag
	 MF0 		 'reset CTR
	 MFDIV=-10 	 'Denominator = -10
	 MFMUL=21 	 'Numerator = 21
	 MFR 		 'Calculate Ratio, input 21 external counts
			 'resulting motion -10 counts
	 D=0 		 'No phase shift
	 IF Bd GOTO12
	 ENDIF		 'gain too large
	 G 		 'Start Following
			 'Implementing Phase Adjust:
	 D=500 	 'Set Relative Distance
	 V=5000 	 'Set Relative Velocity
	 G 		 'Start Phase Adjust
	 END
	 C12
		 S
	 END

Related Command:

Bd

CTR

D

G

MF1

MF2

MF4

MFDIV

MFR

V

MFMUL
	 Set Mode-Follow Multiplier

171

APPLICATION:	 Motion mode control

DESCRIPTION:	 Request MODE FOLLOW WITH RATIO

EXECUTION:	 Buffered pending a G

CONDITIONAL TO:	 Ratio MFMUL/MFDIV, D, and V

LIMITATIONS:	 Magnitude of ratio MFMUL/MFDIV must be less than
256

REPORT COMMAND:	 Ratio Cannot be reported

READ/WRITE:	 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:	 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 -5 < MFMUL/MFDIV < 5 (non-reportable)	

DEFAULT MODE:	 MP

FIRMWARE VERSIONS:	4.00 and higher	

DETAILED DESCRIPTION:

The command MFR is used to implement a fractional relationship between an
incoming secondary encoder signal and the SmartMotor™ internal shaft posi-
tion, represented by the primary internal encoder count. The fractional relation-
ship is defined the user set ratio of MFMUL to MFDIV.

To use MFR, you will need to define the specific desired relationship (ratio) of
the external encoder input to shaft position, represented by the primary internal
encoder count. The command MFR must be issued after both MFMUL and
MFMUL have been specified. Both MFMUL and MFDIV may positive or nega-
tive; use this fact to control the resulting direction of shaft motion. Overly large
ratio gains are flagged by the firmware setting the system flag Bd, and may
be unstable. The error flag Bd will be set by MFR if the magnitude of MFMUL/
MFDIV is 256 or greater. MFR does NOT reset Bd if already set by a prior pro-
cedure.

MFR followed by G will immediately turn on the servo and reset any position
error. The servo off flag Bo is set to 0, the trajectory flag Bt is set to 1, and
the position error flag Be is reset to 0. The motion is restricted by the present
E value. Issuing E=0 would immediately cause a position error upon a single
count of output motion being requested. The motion is also subject to the cur-
rently defined activity of the limit switches.

The fractional ratio is accurate to 23 binary places, this means that if the exter-
nal encoder displacement during the motion exceeds 256*256*64 or 4,000,000
counts the G command should be reissued. Within this limitation, the calculated
requested trajectory position is to within one count of mathematical precision.

MFR
	 Calculate/Enable Mode-Follow-Ratio

Related
Command:

CTR

D

G

MF1

MF2

MF4

MFDIV

MFMUL

V

172

Phase Offset Adjust:

In some applications, it may be necessary to introduce a phase shift to achieve
proper alignment during MFR following.

To perform this shift, parameters D and V are employed to superimpose the
corrective phase. During a phase shift RD will report the remaining phase dif-
ference.

Example:

	 Zd			 'reset Bd system flag
	 MF0 			 'reset CTR
	 MFDIV=-10 		 'Denominator = -10
	 MFMUL=21 		 'Numerator = 21
	 MFR 			 'Calculate Ratio
				 'input 21 external counts
				 'resulting motion -10 counts
	 D=0 			 'No phase shift
	 IF Bd GOTO12
	 ENDIF			 'gain too large
	 G 			 'Start Following
				 'Implementing Phase Adjust:
	 D=500 		 'Set Relative Distance
	 V=5000 		 'Set Relative Velocity
	 G 			 'Start Phase Adjust
	 RMODE			 'Response is "X"
	 END
	 C12
		 S		 'Stop Motion
	 END

MFR (continued)
	 Calculate/Enable Mode-Follow-Ratio

Related
Command:

CTR

D

G

MF1

MF2

MF4

MFDIV

MFMUL

V

173

MP
	 Enable Position-Mode

APPLICATION:	 Motion mode control

DESCRIPTION:	 Request MODE POSITION

EXECUTION:	 Buffered pending a G

CONDITIONAL TO:	 A, D, E, G, P,V, PID loop

LIMITATIONS:	 Motor power sufficient to deliver acceleration A
	 and velocity V

REPORT COMMAND:	 RMODE

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 N/A

DEFAULT MODE:	 Default motion mode at power up

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

The position mode is the default mode of the motor. If you ever change modes, you can
return to position mode by issuing the MP command. The mode request is buffered
until a G command is issued.

For a standard position mode move, the SmartMotor™ requires, at a minimum,
a position, non-zero trajectory velocity V and an non-zero positive acceleration A.
Position mode calculates the trajectory to the target position at the time the G command
is issued. The preceding P=expression or D=expression determines if the move is
to be absolute (destination target set equal to buffered P value) or relative (destination
target set equal to current trajectory position plus the buffered D offset value). The G
command may be issued at any time and may be repeated, particularly in the case of
relative modes with D=offset.

MP followed by G will immediately turn on the servo and reset any position error.
The servo off flag Bo is set to 0, the trajectory flag Bt is set to 1, and the position
error flag Be is reset to 0. The motion is restricted by the present E value. Issuing
E=0 would immediately cause a position error upon a single count of output motion
being required. The motion is also subject to the currently defined activity of the limit
switches. RMODE will respond with a "P".

The SmartMotor performs trapezoidal and triangular velocity profiles by default, but
because position, velocity and acceleration are all changeable "on the fly" (during a
move), more elaborate profiles can be implemented through programming.

Continued on next page:

Related
Command:

A

D

E

G

MV

P

V

For a standard
position mode
move, the
SmartMotor™
requires, at a
minimum,
a Position,
Velocity and an
Acceleration.

174

Due to integer math truncation, A is effectively rounded down to the next even number.
A value of 1 or 0, therefore, produce a net acceleration of ZERO. In these instances,
requests to change the current velocity produce no change in velocity until A>=2 is
requested and a new G command issued.

Example:

	 MV 			 'Velocity Mode
	 A=1000		 'Set Acceleration
	 V=50000		 'Set Velocity
	 G			 'Start Motion
	 WAIT=6000		 'Wait 6000 samples
	 MP			 'Position Mode
	 A=50 			 'Set Acceleration
	 V=40000		 'Set Velocity
	 P=1000		 'Set Position
	 G			 'Start (change) Motion
	 WAIT=200		 'Wait 200 samples
	 V=45000		 'Change Velocity
	 P=0			 'Update Position
	 G			 'Start Motion

MP (continued)
	 Enable Position-Mode

Related
Command:

A

D

E

G

MV

P

V

175

APPLICATION: Motion mode control

DESCRIPTION: Request MODE STEP AND DIRECTION

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: Step and direction input available	

REPORT COMMAND: RMODE

READ/WRITE: Associated step and direction counter CTR is read 		
 only

LANGUAGE ACCESS: N/A	

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A	

DEFAULT VALUE: MS resets CTR to zero

FIRMWARE VERSIONS: ALL	

DETAILED DESCRIPTION:

The MS command enables mode step and direction. In the step and direction mode
the SmartMotor™ emulates a 2,000 or 4000, depending on model, step per revo-
lution stepping motor and driver package, where I/O pins "A" and "B" are used to
receive the step and direction inputs, respectively. In Step and Direction mode the
SmartMotor is still operating in a closed loop fashion with the PID loop executing the
servo functions, so tuning is still important.

The MS command is immediate and concurrently resets the external encoder CTR
value to zero. For each external step pulse received by the SmartMotor, the motor
will be requested to move one internal encoder count in the same direction as the
direction input. For other ratios and fractional relationships see Mode Follow with
Ratio (MSR). Velocity and acceleration parameters have no meaning in this mode.
Issuing any other mode such as MT or MP, followed by G, will take the SmartMotor
out of this following behavior.

Under MS, a logic level high on the DIRECTION input causes motion in the posi-
tive direction. That is, the shaft will move such that the internal encoder value will
increase. The STEP input is enabled on the rising edge of the I/O A input signal and
active while the signal is high. The actually motion of the step occurs on the signal
falling edge. In accordance with standard rules, do not change the DIRECTION
signal while the STEP signal is active (logic high). If you do, you can cause that step
move to go the wrong direction.

MS
	 Enable Mode-Step

Related Command:

CTR

RCTR

RMODE

MFDIV

MFMUL

MSR

Opto-isolaton
modules are
suggested when
using Step and
Direction to assure
reliable operation.

176

MS will immediately turn on the servo and reset any position error. The servo off Bo
is set to 0, the trajectory flag Bt is set to 1, and the position error flag Be is reset to 0.
The motion is restricted by the present E value. Issuing E=0 would immediately cause
a position error upon any encoder pulse being received from the external encoder.
The motion is also subject to the currently defined activity of the limit switches.

As with most stepping systems, opto-isolation modules are suggested when using
Step and Direction to assure robust operation.

Example 1: Immediate Mode Step, 1:1

	 MS 			 'Reset CTR and step and direction mode
	 'Motor will immediately start following pulses at 1:1
	 RMODE			 'RESPONSE is "S"
	 WAIT=100000 	 'Follow for a while
	 MP 			 'Revert to position mode
	 P=0 			 'Set destination for home
	 A=100			 'Set acceleration
	 V=50000		 'Set velocity
	 G 			 'Terminate following start position move
	 RMODE			 'RESPONSE is "P"

Example 2: Buffered Mode Step with ratio of 1:10

	 MS0 		 'Reset CTR to Zero, no motion will result
	 'This also sets up Port A and B
	 'for step and direction input mode
	 RMODE		 'RESPONSE will be from previous mode!
	 MFMUL=10 	 'Multiply incoming pulses by 10
	 MFDIV=100	 'Divide incoming pulses by 100
	 MSR 		 'Calculate Mode Step Ratio
	 G 		 'motor will now begin following a 1:10
	 RMODE		 'RESPONSE is "X"

MS (continued)
	 Enable Mode-Step

Related
Command:

CTR

RCTR

RMODE

MFDIV

MFMUL

MSR

177

APPLICATION: Counter mode control

DESCRIPTION: Request step and direction counter mode

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: Step and direction input available	

REPORT COMMAND: RCTR

READ/WRITE: step and direction counter CTR is read 	only		

LANGUAGE ACCESS: N/A	

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A	

DEFAULT VALUE: MS0 resets CTR to zero

FIRMWARE VERSIONS: ALL	

DETAILED DESCRIPTION:

The command MS0 (Mode Step Zero) allows the user to zero the second encoder
register (CTR) without changing the mode status of the SmartMotor™. Following
MS0, incoming step and direction signals, using I/O pins A and B, will be fully decoded
and presented in the form of the CTR variable; no gearing relationship is active,
unless you write one yourself.

If the you are running in MS MF, MSR, MFR, MC or other encoder follow modes, be
careful issuing MS0 as the value of CTR is immediately zeroed. The SmartMotor will
interpret this to be a sudden change in the master encoder input from its prior value
to 0.

As with most stepping systems, opto-isolation modules are suggested when using
Step and Direction to assure robust operation.

Example:
	 MS0		 'reset CTR to zero
			 'CTR value follows step and direction inputs

Example:

It may be useful to monitor the quantity or frequency of incoming pulses.
	 a=CTR 			 'Read CTR at start
	 WAIT=4069 			 'Wait one second
	 a=CTR-a			 'Read the difference
	 PRINT("Rate=",a," Pulses/Sec")

MS0
	 Enable Step/Direction Counter Mode

Related Command:

CTR

RCTR

MS

MSR

MFMUL

MFDIV

178

APPLICATION: Motion mode control

DESCRIPTION: Request MODE STEP WITH 	 RATIO

EXECUTION: Buffered pending a G

CONDITIONAL TO: Ratio MFMUL/MFDIV, D, and V

LIMITATIONS: Magnitude of ratio MFMUL/MFDIV must be less than 256

REPORT COMMAND: RMODE

READ/WRITE: N/A		

LANGUAGE ACCESS: N/A	

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: -5 < MFMUL/MFDIV < 5	

DEFAULT MODE: MP

FIRMWARE VERSIONS: 4.00 and higher	

DETAILED DESCRIPTION:

MSR is used to implement a fractional relationship between an incoming secondary
encoder signal and the SmartMotor™ internal shaft position, represented by the pri-
mary internal encoder count. The fractional relationship is defined the user set ratio
of MFMUL to MFDIV.

To use MSR, you will need to define the specific relationship (ratio) of the external
encoder input to shaft position, represented by the primary internal encoder count.
The command MSR must be issued after both MFMUL and MFDIV have been speci-
fied. Both MFMUL and MFDIV may be positive or negative; use this fact to control the
resulting direction of shaft motion. Overly large ratio gains are flagged by the firmware
setting the system flag Bd, and may be unstable. The error flag Bd will be set by
MFR if the magnitude of MFMUL/MFDIV is 256 or greater. MFR does NOT reset Bd
if already set by a prior procedure.

MSR followed by G will immediately turn on the servo and reset any position error.
The servo off Bo is set to 0, the trajectory flag Bt is set to 1, and the position error
flag Be is reset to 0. The motion is restricted by the present E value. Issuing E=0
would immediately cause a position error upon a single count of output motion
being required. The motion is also subject to the currently defined activity of the limit
switches.

The fractional ratio is accurate to 23 binary places, this means that if the external
encoder displacement during the motion exceeds 256*256*64 or 4,000,000 counts
the G command should be reissued. Within this limitation, the calculated requested
trajectory position is to within one count of mathematical precision.

In some applications, it may be necessary to introduce a phase shift to achieve proper

MSR
	 Calculate/Enable Mode-Step-Ratio

Related
Command:

Bd

CTR

D

G

MF1

MF2

MF4

MFDIV

MFMUL

V

179

alignment during MFR following. To perform this shift, parameters D and V are
employed to superimpose the corrective phase. During a phase shift RD will
report the remaining phase difference.

As with most stepping systems, opto-isolation modules are suggested when
using Step and Direction to assure robust operation.

Example:
	 Zd			 'reset Bd system flag
	 MFDIV=-10 		 'Numerator = 21
	 MFMUL=21 		 'Numerator = 21
	 MSR 			 'Calculate Ratio
				 'input 21 external counts
				 'resulting motion -10 counts
	 D=0 			 'No phase shift
	 IF Bd GOTO5 ENDIF 	 'gain too large

 G 		 'Start Following
Implementing Phase Adjust:
	 D=500 		 'Set Relative Distance
	 V=5000 		 'Set Relative Velocity
	 G 			 'Start Phase Adjust
	 RMODE 		 'RESPONSE is "X"
	 C5
	 END

Related
Command:

Bd

CTR

D

G

MF1

MF2

MF4

MFDIV

MFMUL

V

MSR (continued)
	 Calculate/Enable Mode-Step-Ratio

180

MT
	 Enable Torque-Mode

APPLICATION: Motion mode control

DESCRIPTION: Request MODE TORQUE

EXECUTION: Immediate

CONDITIONAL TO: -1023 < T < 1023

LIMITATIONS: None

REPORT COMMAND: RMODE, RT

READ/WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT MODE: MP	

FIRMWARE VERSIONS: ALL

DETAILED DESCRIPTION:

MT enables torque mode. In this mode, the motor is commanded to develop a spe-
cific power level, set by T=expression. T is in units of tenths of percent of the full
capacity of the subject motor.

T=1023 results 100% PWM full torque in the positive direction.

T=-1023 results 100% PWM full torque in the negative direction.

The encoder still tracks position and can still be read with the @P variable, but the
PID loop is off and the motor is not servoing or running a trajectory.

For any given torque and no applied load, there will be a velocity at which the back
EMF of the motor will cause the acceleration to stop and the velocity to hold more
or less constant. Under the no load condition, therefore, the T command will control
velocity. As the delivered torque increases, the velocity decreases.

Note that this means that MT does not regulate torque. Instead, it delivers a fixed
amount of power to the motor coils. As motor power is the product of torque and
RPM, velocity decreases as the delivered torque increases and vice versa.

MT will immediately turn on the servo and reset any position error. The servo off flag
Bo is set to 0, the trajectory flag Bt is reset to 0, and the position error flag Be is reset
to 0. The motion is not restricted by the present E value. Issuing E=0 would have no
effect upon the present motion. The motion is subject to the currently defined activity
of the limit switches.

Related Command:

T=exp

181

MT (continued)
	 Enable Torque-Mode

Amplifier mode MD50 effects the internal value of T.

The Reported value of T will not reflect the effect if switching from MD50 to
MT mode. To change from mode MD50 to mode MT, issue the sequence OFF
T=value MT.

Torque Mode Example:

	 UAI			 'Set I/O A as Input
	 T=0			 'Initialize T=0
	 MT			 'Enter Mode Torque
	 C1			 'Loop Forever
	 a=UAA-512	 '2.5V = 0 Torque
				 'UAA will range from 0 to 1023 over
				 'an input voltage of 0 to 5VDC
	 T=2*a
	 GOTO1
 END

The above example will track an incoming analog signal from 0 to 5 Volts
UAA= 0 to 1023

Note: Do not attempt to regulate speed with Torque Mode. It is not designed
for that and will give poor results. In like manner, it is difficult at best to attempt
to place a speed limit on Torque mode. If the load decreases, the motor shaft
speed will increase to a new equilibrium with th lighter load because Power
must remain the same.

Related
Command:

T=exp

182

APPLICATION: Motion mode control

DESCRIPTION: Dynamically brakes the motor

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: N/A

READ/WRITE: N/A		

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT MODE: N/A

FIRMWARE VERSIONS: >=4.76

DETAILED DESCRIPTION:

MTB places the SmartMotor™ into dynamic brake mode. In this mode, the motor
coils are shorted together. Any motion of the shaft would normally produce Back EMF
somewhat proportional to speed. Bt having the windings shorted out causes this Back
EMF to be dissipated immediately. he result is a magnetic damping counter force to
any attempted motion of the shaft for an external source.

IF MTB is issued while moving at a given speed, the shaft will come to a gradual stop
at a rate proportional to the Back-EMF that was being generated at the time of issu-
ing the MTB command. The shaft doesn’t stop at any predetermined or commanded
position and its trajectory is uncontrolled.

While in MTB, the motor will not produce any external DC bus voltage rise if the shaft
is rotated because all windings are shorted back to themselves. As a result, the DC
bus is protected against bus over voltage to within the drive stage current limits.

MTB is the default mode of operation for all motors with >=4.765 firmware. MTB is
automatically issued any time the motor faults on over temp, position errors or travel
limit crash.

The only mean to prevent this automatic action is to issue BRKRLS and OFF in that
sequence,.

To Re-enable the automatic MTB function, issue BRKSRV (brake Servo)

MTB
	 Enable Mode Torque Brake

Related Command:

CTR

D

G

MF1

MF2

MF4

MFDIV

MFMUL

MT

T

V

183

MV
	 Enable Velocity-Mode

APPLICATION: Motion mode control

DESCRIPTION: Request MODE VELOCITY

EXECUTION: Buffered pending a G

CONDITIONAL TO: A, D, E, G, P, V, PID loop

LIMITATIONS: Motor power sufficient to deliver Acceleration, A, 		
 and Velocity, V

REPORT COMMAND: RMODE

READ/WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT MODE: MP

FIRMWARE VERSIONS: ALL

DETAILED DESCRIPTION:

The MV command enables velocity mode. In velocity mode, the value of V, the tar-
get velocity, can be negative or positive. In contrast, position mode only uses the
magnitude of the velocity parameter. Acceleration and velocity can be changed at
any time, even during motion. The G command will initiate "on the fly" changes to
any of the parameters.

If the actual velocity is greater that the value defined by V, then, upon reception of
the next G command, the motor shaft will decelerate at the rate set by A until the
excess velocity is removed. Conversely, if the actual velocity is less than V when
the G command is entered, then the motor shaft motion will accelerate at the rate
set by A until the requested velocity is attained. Similarly, if the actual velocity is in
the opposite direction of V when the G command is entered, then the motor shaft
motion will decelerate and then accelerate at the rate set by A until the requested
velocity is attained.

Once the commanded velocity V is attained, motion continues at this rate, i.e. uni-
form velocity, indefinitely until the commanded velocity is changed or the mode is
otherwise terminated. The encoder may wrap around during this mode, but no posi-
tion error will be declared during the wrap.

In all firmware pror to 4.76, MV followed by G will immediately turn on the servo and
reset any position error. The servo off Bo is set to 0, the trajectory flag Bt is set to
1, and the position error flag Be is reset to 0. The motion is restricted by the present

Related
Command:

A

D

E

G

MV

P

V

PID loop

184

E value. Issuing E=0 would immediately cause a position error upon a single
count of output motion being required The motion is subject to the currently
defined activity of the limit switches. RMODE will respond with a V.

In firmware ==4.76 if ay prior errors exist, Zs r th appropriate command must
be used to clear the associated error status bit flag.

Due to arcane digital math, A is effectively rounded down to the next even
number. A values of 1 and 0 therefor produce a net acceleration of zero. In
these instances, requests to change the current velocity produce no change in
velocity until A>=2 is requested and a new G command issued.

Example:
	 MV			 'buffer velocity mode request
	 A=2			 'set the minimum possible buffered acceleration
	 V=44444		 'set buffered velocity
	 G			 'apply buffered motion parameter and mode
	 WAIT=V		 'do not use TWAIT since move is forever
	 RMODE		 'response is "V"
	 V=-V		 'prepare to reverse velocity direction
	 A=2*A		 'with double the present acceleration
	 G			 'reverse direction
	 V=V/4		 'prepare to slow to one quarter
				 'of original velocity
	 WAIT=V*V	 'this is a valid expression
	 G			 'slow to one quarter original velocity
	 WAIT=4096*10	 'Wait 10 seconds
					 '(4069 servo samples = 1 second)
	 X			 'decelerate to stop at acceleration set by "A"
END

MV (continued)
	 Enable Velocity-Mode

Related
Command:

A

D

E

G

MV

P

V

PID loop

185

O=expression
	 Set Main Position Counter

APPLICATION: Reset SmartMotor’s™ encoder origin

DESCRIPTION: Request SmartMotor’s encoder origin change

EXECUTION: Immediate

CONDITIONAL TO: Present encoder count

LIMITATIONS: SmartMotor’s axis must be at rest

REPORT COMMAND: RP

READ/WRITE: Write only

LANGUAGE ACCESS: Assignment

UNITS: Encoder counts

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: -2147483648 to 2147483647	

DEFAULT VALUE: 0

FIRMWARE VERSIONS: ALL

DETAILED DESCRIPTION:

The O=expression allows the current position to be set to any value desired. 	
You may declare the current position to be zero by entering O=0 			
(the letter "O" the number zero). Similarly, you may declare the current position to
be 1234 by entering O=1234. Using the O=expression does not modify previously
entered P and D registers.

The O=expression avoids position drift and accumulated error by changing the
SmartMotor’s commanded position for the sample in which the command is executed,
regardless of the real time position error and whether or not the shaft is moving. This
command is useful in homing routines to set an origin or "home" position.

In firmware versions 4.12, 4.40 and later, The SmartMotor explicitly performs the
O=expression operation before checking for excessive position error.

O=0 is often used to avert a 32 bit roll-over condition.

Continued on next page

Related
Command:

RP

MS0

MF0

186

Example: (reassigning origin does not destroy P and P buffered values)
	 A=20
	 V=100000
	 P=5000
	 MP
	 O=-1000		 'present position set to negative 10000
	 GOSUB5
	 O=12345		 'present position set to 12345
	 GOSUB5
	 D=5000
	 O=3000		 'present position set to 3000
	 GOSUB5
	 END
	 C5
	 PRINT(#13,"Move origin is ",@P)
	 G
	 WHILE Bt LOOP
	 WAIT=4000
	 PRINT(#13,"Position is ")
	 RP

 RETURN

Program output is:

 Move origin is -1000’
 Position is 5000
 Move origin is 12345
 Position is 5000
 Move origin is 3000
 Position is 8000

O=expression (continued)
	 Set Main Position Counter

Related
Command:

RP

MS0

MF0

187

OCHN
	 Open /Set-up Communications Channel

APPLICATION:	 Communication control

DESCRIPTION:	 Open a communications channel

EXECUTION:	 Immediate

CONDITIONAL TO:	 External communication i/o connections

LIMITATIONS:	 Hardware capabilities

REPORT COMMAND:	 RCHN, RCHN0, RCHN1 report status conditions

READ/WRITE:	 N/A	 	

LANGUAGE ACCESS:	 N/A	

UNITS:	 N/A

RANGE OF VALUES:	 See detailed description

TYPICAL VALUES:	 See detailed description

DEFAULT VALUE:	 OCHN (RS2, 0, N, 9600, 1, 8, C)

FIRMWARE VERSIONS:	 4.00 and higher	

DETAILED DESCRIPTION:

OCHN(TYPE,CHANNEL,PARITY,RATE,STOP BITS,DATA BITS, SPECIFICATION)
opens a serial channel with the following specifications:

		 TYPE: 				 RS2, RS4, or IIC
		 CHANNEL:			 0 (for host), 1
		 PARITY:				 O=odd, E=even, N=none, I=ignore
		 Serial baud RATE:			 2400, 4800, 9600, 19200, 38400 bps
		 AniLink bit RATE:			 100 khz, 400 khz	
		 STOP BITS:			 1
		 DATA BITS:			 8
		 Serial SPECIFICATION:	 C=cmd, D=data		
		 AniLink SPECIFICATION	 M=master, S=slave.

Opening channel 0 as a RS485 port dedicates I/O G to the RS485 control function,
which is required for use with Animatics RS232 to RS485 converters like the RS485
and RS485-ISO. When using one of these adapters, you must ensure that the I/O
G pin is configured as a TTL output with the UGO command before the channel is
opened.

Example:
	 OCHN(RS2,0,N,9600,1,8,C)	 'performed at reset

Related Command:

CCHN

RCHN

RCHN0

RCHN1

188

OFF
	 Turn Off Drive Stage

Related
Command:

G

MD50

MF1

MF2

MF4

MS

MT

MTB

APPLICATION:	 Motor control

DESCRIPTION:	 Turn servo off

EXECUTION:	 Next PID sample update

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT COMMANDS:	 RS and RBo

READ/WRITE:	 Read only associated status flag, Bo		

LANGUAGE ACCESS:	 N/A	

UNITS:	 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 N/A

DEFAULT VALUE:	 OFF

FIRMWARE VERSIONS:	 ALL	

DETAILED DESCRIPTION:

OFF turns the power to the motor coils off and terminates the activity of the current
motion mode. The system flag for Motor Off, Bo, will be set to 1. The shaft will be free
to coast to a stop, or to be rotated by other external means. The response to RMODE
is O for off. The system flag, Bt, for trajectory in progress will be set to zero. The
system position error flag, Be, to zero. The motor will still track any shaft movement
and continue to update the present encoder position.

Note: In all firmware -4.76, the OFF command may result in switching to: MTB (Mode
Torque Brake) depending on settings. If the otor is in default settings, MTB would be
the default "Off-State mode when OFF is issued.

Please see MTB command for more details

189

P=expression
	 Set Commanded Absolute Position

Related
Command:

@P

@PE

A

D

E

G

MP

V

APPLICATION: Trajectory control

DESCRIPTION: Set trajectory target position

EXECUTION: Buffered pending a G command

CONDITIONAL TO: A, E, G, MP, and V

LIMITATIONS: A, V, and E all non zero for real time position 		
 to change

REPORT COMMAND: RP

READ/WRITE: Read write

LANGUAGE ACCESS: Assignment, expressions, and conditional testing

UNITS: Encoder counts

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: -2147483648 to 2147483647	

DEFAULT VALUE: 0

FIRMWARE VERSIONS: ALL

DETAILED DESCRIPTION:

To specify an absolute target position to the SmartMotor’s™ positional origin, set
P=target position, positive or negative, and then follow with a G command.

P=expression sets the target position in Position Mode.

Unless a subsequent D=expression is issued, and as long as the appropriate tra-
jectory parameters A and V, the motor will move to position specified by the last
requested P value when the G command is issued.

The Mode of operation will be Absolute Positon Mode. The RMODE command will
respond with "P"

RP will report the actual position, but if you set a variable equal to P such as "a=P",
that variable will be loaded with the last entered target position rather than the actual
position. If you want to use the actual position in your program then use the @P vari-
able such as a=@P.

Continued on next page:

190

P=expression (continued)
	 Set Commanded Absolute Position

Related
Command:

@P

@PE

A

D

E

G

MP

V

Example:

	 MP			 'Change to position mode (default power-up mode)
	 P=1000		 'Set buffered position to 1000 encoder counts
	 A=100		 'Set acceleration
	 V=32212*50	 'Set velocity
	 G			 'Start Motion
	 TWAIT		 'Wait for move to be performed
	 P=2000		 'set a new buffered absolute target position
	 G
	 TWAIT
	 P=-2000		 'Set a new (negative) buffered target position.
	 G
	 TWAIT
	 P=-1000
	 G
	 TWAIT
	 P=0
	 G

191

PID#
	 P.I.D. Tuning Filter Control

Related Command:

A

V

WAIT

CLK

APPLICATION:	 PID sample rate control

DESCRIPTION:	 Set PID sample rate to basic rate

EXECUTION:	 Next PID update

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT COMMAND:	 N/A

READ/WRITE:	 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:	 PID Modulo samples

RANGE OF VALUES:	 1, 2, 4, and 8 only.

TYPICAL VALUES:	 N/A	

DEFAULT RATE:	 PID1		

FIRMWARE VERSIONS:	 4.00 and higher	

DETAILED DESCRIPTION:

The PID parameter sets the PID sample rate.

Valid values are: PID1, PID2, PID4, and PID8.

PID1 is the default. See the RSP, Report Sample Period, detailed description for
determining the actual default sample rate frequency of your SmartMotor™. The
default rate is close to 4000 samples/second.

Each PID sample period, the motor firmware scans and updates encoder position,
trajectory generator, I/O, serial communications ports, and uses position error to
perform the PID calculation to control the servo drive stage. The user program code, if
any, is executed at any time the microprocessor is not involved in these activities.
The WAIT command is controlled by the system CLK (clock) The PID value
changes the reported values to CLK and the effects of WAIT as well.
Both Velocity and Acceleration are impacted the same way the WAIt command is.

The values of 1, 2 4 and 8 mean the PID filter will react upon and update on position
error to correct dive power every 1 2 4 or 8 PID samples. This does not change how
code is executed but does change how much time is given to that execution. As a
result, a program run at PID8 will typically run faster than a program run at PID1.
However, since the frequency of PID updates to the drive stage are changed and
samples of position error are done at different intervals, PID8 will result in a more
course or abrasive motion than PID1. Special care should be taken when using the
PID command due to this fact. Improper usage could result in very sporadic motion.

The next page show a comparison of the different PID values

192

PID# (Continued)
	 P.I.D. Tuning Filter Control

Related
Command:

A

V

WAIT

CLK

Example:

'For a 2000 count encoder SmartMotor™:
'Using three fixed values under each of the PID settings
	 v=128504		 'use to Set commanded Velocity
	 a=3167		 'use to Set commanded Acceleration
	 w=32552		 'use to set Wait time

	 PID1			 'Default PID updates every servo sample
	 WAIT=w		 'Wait time = 8 seconds
	 V=v			 'Velocity = 2400 RPM
	 A=a			 'Acceleration = 400 RPS^2

	 PID2			 'PID updates every 2 servo samples
	 WAIT=w		 'Wait time = 4 seconds
	 V=v			 'Velocity = 1200 RPM
	 A=a			 'Acceleration = 200 RPS^2

	 PID4			 'PID updates every 4 servo samples	
	 WAIT=w		 'Wait time = 2 seconds
	 V=v			 'Velocity = 600 RPM
	 A=a		 	 'Acceleration = 100 RPS^2

	 PID8			 'PID updates every 8 servo samples
	 WAIT=w		 'Wait time = 1 second
	 V=v			 'Velocity = 300 RPM
	 A=a			 'Acceleration = 50 RPS^2

'
	 PID1			 'Return to Default PID
	 WAIT=w		 'Wait time = 8 seconds
	
	 END

As can be seen above, although the values used for Velocity, Acceleration, and Wait
times remained the same, their effect was changed by a factor for the PID setting.
As a result, much care should be taken if changes are made in the middle of a
program.
The PID parameter can be changed from PID1 to PID8 while the motor is sitting still
to increase I/O scanning efficiency or other code execution and then returned to
PID1 just prior to the next move. This is a technique used to increase response time
for input triggers or mathematical calculations while there is no trajectory in progress.

193

PRINT()
	 Print to Primary Communications Port

Related Command:

BAUD

CCHN

CMD

DAT

F=4

OHCN

PRINT1

PRINTA . .

. . PRINTH

APPLICATION: Communications output control

DESCRIPTION: Serial communications channel 0 PRINT function

EXECUTION: Immediate, at present baud rate

CONDITIONAL TO: Host or channel 0 serial port open

LIMITATIONS: Output is not buffered, each character 	transmitted 		
 must wait for previous character to be finished. 		
 Next command not executed until entire PRINT 		
 function is done. 	

REPORT COMMAND: N/A

READ/WRITE: N/A		

LANGUAGE ACCESS: N/A	

UNITS: N/A

RANGE OF VALUES: Values passed to PRINT string must be
 in the range of -2147483648 to 2147483647

TYPICAL VALUES: Any of the ASCII character set

DEFAULT VALUE: N/A

FIRMWARE VERSIONS: ALL	

DETAILED DESCRIPTION:	 PRINT ("ASCII string", #ascii_code, expression)

The PRINT() command is used to transmit (output) data to the serial communica-
tions channel 0, RS232 TX and RS232 RX pins, otherwise known as the primary
host channel. PRINT() commands may be used to send output to a terminal for
display, communicate with third party devices, or used to send commands to other
motors.

All items to be printed reside within the parentheses and are separated by commas.
ASCII Text strings must be within double quotation marks. Variables are referenced
by name and their ASCII string vales are printed. Simple math expressions are
allowed.

Raw ASCII code values are prefixed by the # sign. The SPACE character is #32,
TAB is #9, CARRIAGE RETURN is #13, and LINE FEED is #10.

PRINT() commands pause other code execution until the last character has been
transmitted. No language commands, whether from the host or user program, are
executed until the last character has been placed in the hardware transmit port.

What does this mean in practice? To put it more simply, there is a practical difference
between PRINT(a,b,c) and the sequence PRINT(a) PRINT(b) PRINT(c). Executing
from within a program PRINT(a,b,c) will output the values of a, b, and c without the
possibility of another command from the terminal interfering. Executing PRINT(a)
PRINT(b) PRINT(c) from within a program while the host terminal is transmitting
GOSUB5 to the motor could lead to the execution sequence GOSUB5

WARNING:

DO NOT USE
A COMMENT
MARKER (‘)
WITHIN PRINT().

IT WILL CAUSE A
COMPILER ERROR

194

PRINT() (continued)
	 Print to Primary Communications Port

Example:
OFF
KP=100	 'Set Proportional Gain
O=1234	 'Set origin to 1234
a=1 b=2
PRINT("Demonstration:",#13)
PRINT("a=",a)
PRINT(" and b=",b,#13)
PRINT("a+b=",a+b,#13)
PRINT("Position:",@P,#13)
WAIT=10			 'Allow time for serial buffer processing
PRINT("KP=",KP,#13)
PRINT("Hello World",#13,#13)
PRINT("Run Subroutines",#13)
WAIT=10
PRINT(#128,"GOSUB5 ",#13)	 'tell all motors to run subroutine 5
WAIT=10
PRINT(#129,"GOSUB10",#13)	 'Tell Motor-1 to run subroutine 10
WAIT=10
PRINT(#130,"GOSUB20",#13)	 'Tell Motor-2 to run subroutine 20
WAIT=10
PRINT(#131,"GOSUB30",#13)	 'Tell Motor-3 to run subroutine 30
x=123
PRINT(#132,"GOSUB",x,#13)	 'Tell Motor-4 to run subroutine 123
v=100000
a=100
p=2000
PRINT(#130,"A=",a," V=",v,#13)	 'Set speed and accel in motor 2
WAIT=10
PRINT(#130,"MP P=",p, " G",#13)	 'Command Motor-2 to position
2000
WAIT=10
PRINT(#13,#13,"End of Demonstration.",#13)
END
--
Output:
Demonstration:
a=1 and b=2
a+b=3
Position:1234
KP=100
Hello World

Run Subroutines
 GOSUB5
 GOSUB10
 GOSUB20
 GOSUB30
 GOSUB123
 A=100 V=100000
 MP P=2000 G

End of Demonstration.

Related
Command:

BAUD

CCHN

CMD

DAT

F=4

OHCN

PRINT1

PRINTA..

..PRINTH

195

PRINT1()
	 Print to Secondary Communications Port

Related Command:

BAUD

CCHN

CMD

DAT

OCHN

PRINT

PRINTA . .

. . PRINTH

APPLICATION:	 Communications output control

DESCRIPTION:	 Serial communications channel 1 PRINT function

EXECUTION:	 Immediate, at present baud rate

CONDITIONAL TO:	 Channel 1 serial port open

LIMITATIONS:	 Output is not buffered. Each character transmitted 		
	 must wait for previous character to be finished.
	 Next command not executed until entire PRINT 	
function is done.

REPORT COMMAND:	 N/A

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 N/A

RANGE OF VALUES:	 Values passed to PRINT string must be
			 in the range of -2147483648 to 2147483647

TYPICAL VALUES:	 Any of ASCII character set

DEFAULT VALUE:	 N/A

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

The PRINT1() command is used to transmit (output) data to the serial communications
channel 1, I/O pin E and F, otherwise known as the secondary serial channel.
Note: Proper OCHN command is required prior to use of PRINT1 !!

All items to be printed reside within the parentheses and are separated by commas.
ASCII Text strings must be within double quotation marks. Variables are referenced
by name and their ASCII string vales are printed. Simple math expressions are
allowed.

Raw ASCII code values are prefixed by the # sign. The SPACE character is #32,
TAB is #9, CARRIAGE RETURN is #13, and LINE FEED is #10.

PRINT1() commands pause other code execution until the last character has been
transmitted. No language commands, whether from the host or user program, are
executed until the last character has been placed in the hardware transmit port.

What does this mean in practice? To put it more simply, there is a practical differ-
ence between PRINT1(a,b,c) and the sequence PRINT1(a) PRINT(b) PRINT(c).
Executing from within a program PRINT1(a,b,c) will output the values of a, b, and c
without the possibility of another command from the terminal interfering. Executing
PRINT1(a) PRINT1(b) PRINT1(c) from within a program while the host terminal is
transmitting GOSUB5 to the motor could lead to the execution sequence GOSUB5

196

Example:
OFF
KP=100	 'Set Proportional Gain
O=1234	 'Set origin to 1234
a=1 b=2
PRINT1("Demonstration:",#13)
PRINT1("a=",a)
PRINT1(" and b=",b,#13)
PRINT1("a+b=",a+b,#13)
PRINT1("Position:",@P,#13)
WAIT=10			 'Allow time for serial buffer
processing
PRINT1("KP=",KP,#13)
PRINT1("Hello World",#13,#13)
PRINT1("Run Subroutines",#13)
WAIT=10
PRINT1(#128,"GOSUB5 ",#13)	 'tell all motors to run
subroutine 5
WAIT=10
PRINT1(#129,"GOSUB10",#13)	 'Tell Motor-1 to run subroutine
10
WAIT=10
PRINT1(#130,"GOSUB20",#13)	 'Tell Motor-2 to run subroutine
20
WAIT=10
PRINT1(#131,"GOSUB30",#13)	 'Tell Motor-3 to run subroutine
30
x=123
PRINT1(#132,"GOSUB",x,#13)	 'Tell Motor-4 to run subroutine
123
v=100000
a=100
p=2000
PRINT1(#130,"A=",a," V=",v,#13)	 'Set speed and accel in
motor 2
WAIT=10
PRINT1(#130,"MP P=",p, " G",#13)	 'Command Motor-2 to
position 2000
WAIT=10
PRINT1(#13,#13,"End of Demonstration.",#13)
END
--
Output:
Demonstration:
a=1 and b=2
a+b=3
Position:1234
KP=100
Hello World

Run Subroutines
 GOSUB5
 GOSUB10
 GOSUB20
 GOSUB30
 GOSUB123
 A=100 V=100000
 MP P=2000 G

End of Demonstration.

PRINT1() (continued)
	 Print to Secondary Communications Port

Related
Command:

BAUD

CCHN

CMD

DAT

OCHN

PRINT

PRINTA . .

. . PRINTH

197

PRINTA() . . . PRINTH()
	 Print to External LCD Display

Related Command:

BAUD

CCHN

CMD

DAT

OCHN

PRINT

PRINT1

APPLICATION:	 Anilink communications output control

DESCRIPTION:	 Anilink communications PRINT function

EXECUTION:	 Immediate, at present baudrate

CONDITIONAL TO:	 Anilink LCD required for display

LIMITATIONS:	 Output is not buffered. Each character transmitted 	
must wait for previous character to be finished. Next 	 command not executed
until entire PRINT function 	is done.		

REPORT COMMAND:	 N/A

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 N/A

RANGE OF VALUES:	 Expressions limited to -2147483648 to 2147483647

TYPICAL VALUES:	 Any of ASCII character set

DEFAULT VALUE:	 N/A

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

The PRINTA() through PRINTH() print to an LCD on the AniLink port or to a DIO-100
card. The command actually employs DOUTA1 as the export mechanism. PRINTA()
outputs to an LCD that is addressed A, PRINTB() to an LCD addressed B and so
forth. As in the case with all AniLink expansion cards, the LCD address is selectable
via jumpers

All items to be printed reside within the parentheses and are separated by commas.
ASCII Text strings must be within double quotation marks. Variables are referenced
by name and their ASCII string vales are printed. Simple math expressions are
allowed.

Raw ASCII code values are prefixed by the # sign. The SPACE character is #32, TAB
is #9, CARRIAGE RETURN is #13, and LINE FEED is #10.

There is a practical difference between PRINTA(a,b,c) and the sequence PRINTA(a)
PRINTA(b) PRINTA(c). Executing from within a program PRINTA(a,b,c) will be output
the values of a, b, and c without the possibility of another command from the terminal
interfering. Executing PRINTA(a) PRINTA(b) PRINTA(c) from within a program while
the host terminal is transmitting GOSUB5 to the motor could lead to the execution
sequence GOSUB5 PRINT(a) PRINTA(b) PRINTA(c), or PRINTA(a) GOSUB5
PRINTA(b) PRINTA(c) etc., depending upon the exact timing. The resulting output
may or may not be the identical.

198

PRINTA() . . . PRINTH() (continued)
	 Print to External LCD Display

Related
Command:

BAUD

CCHN

CMD

DAT

OCHN

PRINT

PRINT1

In SMI, the character " ‘ " is a comment delimiter. As such, if you put a " ‘ " inside
of the PRINT statement, the SMI debugger will think that are commenting out
the rest of the PRINT statement and flag it as an error. The SmartMotor™,
however, doesn’t use comments, and will transmit the " ‘ " as a character. The
easiest thing to do is simply not use " ‘ " within a print string.

Please consult manual for LCD display products for more
on the following example.

Example: (printing output to an AniLink LCD with port address A)

	 PRINTA(#56,#14,#6,#1)	 '#56 initialize LCD,
							 #14 turns on cursor
							 #6 sets cursor
								 direction
							 #1 clears LCD and
								 resets position to
	 	 	 	 	 	 	 	 first character of
	 	 	 	 	 	 	 	 first line

	 PRINTA(#128,"I AM LCD ADDRESS A")	'Print stating 	
							 from character block 		
					 128, far left character 			
	 	 	 	 of first line

	 PRINTA(#192,"2nd. TEXT LINE")	 'Print starting from 	
						 character block 192, far 			
				 left character of second 					
		 line of LCD

	 PRINTA(#148,"3rd. TEXT LINE")	 'Print starting from 	
						 character block 148, 1st 			
				 character 3rd line. Four 					
		 line LCD4X20 only)

	 PRINTA(#212,"4th. TEXT LINE")	 'Print starting from 	
						 character block 212, 1st 			
				 character fourth line. 					
		 Four line LCDX20 only

199

Q
	 Report Host-Mode Status

Related Command:

MD

APPLICATION:		 Report command

DESCRIPTION:	 	 Request HOST MODE status packet

EXECUTION:	 	 Immediate

CONDITIONAL TO:		 MD host mode

LIMITATIONS:	 	

REPORT COMMAND:	 N/A

READ/WRITE:		 N/A		

LANGUAGE ACCESS:	 N/A

UNITS:	 		 Data packet - see detailed description

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 	 N/A	

DEFAULT VALUE:	 	 N/A	

FIRMWARE VERSIONS:	 4.15 and later. ??	

DETAILED DESCRIPTION:

SEE SMI DOCUMENTATION FOR HOST UTILITY

Host Position Status Request Command Q Returns BINARY data only!

To track host positioning mode progress, the Q command returns status, clock, and
space available in the dedicated circular buffer. The response to Q takes two forms,
one while the mode not running and another while a trajectory is progress and no error
has occurred. Both response conform to the overall byte format of 0xF9 + byte1 +
byte2 + byte3 + byte 4 in binary. See diagram below:

A trajectory terminates if an unacceptable position error occurs, if invalid data received.
if data overflow, or if data underflow. The host should send data pairs only when at
least 3 empty data slots are available. MD responds to limit switches, trajectory will
be aborted. MD mode uses KV feed forward for improved performance.

Identifier Status Byte 24 Bit Clock Data
1 1 1 1 1 0 0 1

F 9 = 1 if: In MD Mode (prior to filling buffers (slot) or G received)
= 1 if: In MD Mode and Running, Either G received or = 16 slots were filled
= 1 if: Invalid Time Delta 16 bit value received
= 1 if: Invalid Position Delta 23 Bit value received
= 1 if: Internal Program Data space error
= 1 if: Buffer Overflow (to much data received)
= 1 if: Buffer Underflow (to little data received)
= 1 if: If in Host Mode, =0 if not in Host Mode

0
1

2
3

4
5

6
7

200

Ra . . . Rz
	 Report 32-Bit Variable Data Value

APPLICATION: 	 Report command

DESCRIPTION: 	 Report user variable a . . . z

EXECUTION: 	 Immediate

CONDITIONAL TO: 	 N/A

LIMITATIONS: 	 Pre 4.00 only variables defined 				
 	 are a, b, c, d, e, f, g and h

REPORT VALUE: 	 a through z

READ/WRITE: 	 N/A

LANGUAGE ACCESS: 	 N/A

UNITS: 	 Number

RANGE OF VALUES: 	 -2147483648 to 2147483647

TYPICAL VALUES: 	 -2147483648 to 2147483647

DEFAULT VALUE: 	 0

RELATED COMMANDS: 	 N/A

FIRMWARE VERSIONS: 	 4.00 and higher

DETAILED DESCRIPTION:

Ra reports the signed value of the variable a to the primary serial channel. A minus
sign will precede negative values, no leading zeros are transmitted, and an ASCII
carriage return terminates the transmitted data value. The equivalent PRINT()
command is PRINT(a,#13). Use similar PRINT commands for Rb, Rc, through Rx,
Ry, Rz.

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. That is, if Ra is received
through channel 0, the response is sent through channel 0. If Ra is received
through channel 1, the response goes out channel 1.

In SmartMotors so equipped, if F=4 has been commanded, this report is redi-
rected to serial channel 1 and the reported value is not be "seen" output the
primary or currently active serial channel. Following F=4, the equivalent to Ra is
PRINT1(a,#13). F=0 resets report commands to again be sent out the primary or
currently active serial port.

Related
Command:

PRINT()

It is recommended
that you use
the alternative
"PRINT()"
command when
printing from
your embedded
programs because
of its greater
completeness
and versitility.

201

Ra . . . Rz (continued)
	 Report 32-Bit Variable Data Value

Example:

	 F=0			 'use HOST channel
	 PRINT(#13,"F=0 ")
	 GOSUB5
	 F=4			 'redirect report output
	 PRINT(#13,"F=4 ")
	 GOSUB5
	 F=0			 'reset to default
	 END
	 C5
	 a=123
	 b=456
	 c=789
	 PRINT(a,b,c)
	 Ra
	 Rb
	 Rc
	 END

Host terminal only "sees" the following program output, Take note of the carriage
returns (not explicitly shown here)

	 F=0 123456789123
	 456
	 789

Related
Command:

PRINT()

202

Raa . . . Rzz
	 Report 32-Bit Variable Data Value

APPLICATION: Report command

DESCRIPTION: Report user variable aa

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: Not valid for pre 4.00 firmware

REPORT VALUE: aa

READ/WRITE: N/A		

LANGUAGE ACCESS: N/A	

UNITS: Number

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: -2147483648 to 2147483647		

DEFAULT VALUE: 0

FIRMWARE VERSIONS: 4.00 and higher	

DETAILED DESCRIPTION:

Raa reports the signed value of the variable aa to the primary serial channel. A minus
sign will precede negative values, no leading zeros are transmitted, and an ASCII
carriage return terminates the transmitted data value. The equivalent PRINT() com-
mand is PRINT(aa,#13). Use similar PRINT commands for Rbb, Rcc, through Rxx,
Ryy, Rzz.

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. That is, if Raa is received
through channel 0, the response is sent through channel 0. If Raa is received through
channel 1, the response goes out channel 1.

In SmartMotors™ so equipped, if F=4 has been commanded, this report is redirected
to serial channel 1 and the reported value is not be "seen" output the primary or cur-
rently active serial channel. Following F=4, the equivalent to Raa is PRINT1(aa,#13).
F=0 resets report commands to again be sent out the primary or currently active
serial port.

Related Command:

N/A

203

Example:

	 F=0			 'use HOST channel
	 PRINT(#13,"F=0 ")
	 GOSUB5
	 F=4			 'redirect report output
	 PRINT(#13,"F=4 ")
	 GOSUB5
	 F=0			 'reset to default
	 END
	 C5
	 rr=123
	 ss=456
	 tt=789
	 PRINT(rr,ss,tt)
	 Rrr
	 Rss
	 Rtt
	 END

Host terminal only "sees" the following program output. Take note of the carriage
returns (not explicitly shown here).

	 F=0 123456789123
	 456
	 789

Raa . . . Rzz (continued)
	 Report 32-Bit Variable Data Value

Related
Command:

N/A

204

Raaa . . . Rzzz
	 Report 32-Bit Variable Data Value

Related Command:

N/A

APPLICATION:	 Report command

DESCRIPTION:	 Report user variable aaa

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 Not valid for pre 4.00 firmware

REPORT VALUE:	 aaa

READ/WRITE:	 N/A	 	

LANGUAGE ACCESS:	 N/A	

UNITS:	 Number

RANGE OF VALUES:	 -2147483648 to 2147483647

TYPICAL VALUES:	 -2147483648 to 2147483647		

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 4.00 and higher	

DETAILED DESCRIPTION:	

Raaa reports the signed value of the variable aaa to the primary serial channel. A
minus sign will precede negative values, no leading zeros are transmitted, and an
ASCII carriage return terminates the transmitted data value. The equivalent PRINT()
command is PRINT(aaa,#13). Use similar PRINT commands for Rbbb, Rcccc, through
Rxxx, Ryyy, Rzzz.

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. That is, if Raaa is received
through channel 0, the response is sent through channel 0. If Raaa is received through
channel 1, the response goes out channel 1.

In SmartMotors™ so equipped, if F=4 has been commanded, this report is redirected to
serial channel 1 and the reported value is not be "seen" output the primary or currently
active serial channel. Following F=4, the equivalent to Raaa is PRINT1(a,#13). F=0
resets report commands to again be sent out the primary or currently active serial
port.

205

Raaa . . . Rzzz (continued)
	 Report 32-Bit Variable Data Value

Related
Command:

N/A

Example:

	 F=0			 'use HOST channel
	 PRINT(#13,"F=0 ")
	 GOSUB5
	 F=4			 'redirect report output
	 PRINT(#13,"F=4 ")
	 GOSUB5
	 F=0			 'reset to default
	 END
	 C5
	 iii=123
	 jjj=456
	 kkk=789
	 PRINT(iii,jjj,kkk)
	 Rii
	 Rjj
	 Rkk
	 END

Host terminal only "sees" the following program output. Note the carriage returns
(not explicitly shown here).

	 F=0 123456789123	
	 456
	 789

206

Rab[index]
	 Report 8-Bit Array Data Value

APPLICATION:		 Report command

DESCRIPTION:	 	 Report user variable ab[index]

EXECUTION:	 		 Immediate

CONDITIONAL TO:	 	 N/A

LIMITATIONS:	 		 Index range from 0 to 50

REPORT VALUE:		 ab[index]

READ/WRITE:		 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:			 Number

RANGE OF VALUES:	 	 -128 to 127

TYPICAL VALUES:		 -128 to 127	

DEFAULT VALUE:		 0

FIRMWARE VERSIONS:	 4.00 and higher	

DETAILED DESCRIPTION:

Rab[index] reports the signed value of the variable ab[index] to the primary serial
channel. A minus sign will precede negative values, no leading zeros are transmitted,
and an ASCII carriage return terminates the transmitted data value. The equivalent
PRINT() command is PRINT(ab[index],#13).

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. That is, if Rab[23] is
received through channel 0, the response is sent through channel 0. If Rab[23] is
received through channel 1, the response goes out channel 1.

The valid range of values of "index" is 0 to 200. Index may be expressed directly as
a number, a variable a . . z, the sum of two a . . z variables, or difference of two a .
. z variables. There are no other combinations. See Example 1 for clarification; the
example illustrates all legal index formats; thus Rab[-6], Rab[t-6], and Rab[-g] do not
represent valid index references. If you attempt to use a legal valid syntax, but the
actual index value is out of range, system state flag Bs set to 1 and a syntax error
message may be reported. See Examples 3 and 4.

The ab[0] to ab[200] variables represent signed 8 bit values; assignment of larger
values is handled by truncating any extra leading data bits. The most significant bit
is always considered to be a sign bit. See Example 2 for results when ab[index] is
assigned a value larger than 255.

Related Command:

N/A

207

Example 1:
	 a=0			 'assign test values
	 WHILE a<=6
		 ab[a]=a
		 a=a+1
	 LOOP
	 p=2 q=3 u=1 v=5
	 PRINT(ab[0]," ") Rab[0]		 'report ab[0]
	 PRINT(ab[1]," ") Rab[1]		 'report ab[1]
	 PRINT(ab[2]," ") Rab[p]		 'report ab[2]
	 PRINT(ab[3]," ") Rab[q]		 'report ab[3]
	 PRINT(ab[4]," ") Rab[v-u]	 'report ab[4]		
	 PRINT(ab[5]," ") Rab[v]		 'report ab[5]
	 PRINT(ab[6]," ") Rab[v+u] 	 'report ab[6]
	 END

Example 2:
	 a=254			 'assign test values
	 WHILE a<=258
		 i=a-252		
		 ab[i]=a	 'assignment truncated to only 8 bits
		 Rab[i]	 'reported values are -2 -1 0 1 and 2
		 a=a+1
	 LOOP
	 END

Example 3:
	 Rab[201] 	 'sets Bs
			 'fails to report a value but instead
			 'emits a syntax error message
			 'if syntax reports active	

Example 4:

	 v=605
	
	 Rab[v]	 'sets Bs
			 'fails to report a value but instead
			 'emits a syntax error message

				 'if syntax reports active

Rab[index] (continued)
	 Report 8-Bit Array Data Value

Related
Command:

N/A

208

Ral[index]
	 Report 32-Bit Array Data Value

APPLICATION:		 Report command

DESCRIPTION:	 	 Report user variable al[index]

EXECUTION:	 		 Immediate

CONDITIONAL TO:	 	 N/A

LIMITATIONS:	 	 Index range from 0 to 200

REPORT VALUE:		 al[index]

READ/WRITE:		 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 		 Number

RANGE OF VALUES: 	 -2147483648 to 2147483647

TYPICAL VALUES: 		 -2147483648 to 2147483647		

DEFAULT VALUE:		 0

FIRMWARE VERSIONS:	 4.00 and higher

DETAILED DESCRIPTION:	

Ral[index] reports the signed value of the variable al[index] to the primary serial
channel. A minus sign will precede negative values, no leading zeros are transmitted,
and an ASCII carriage return terminates the transmitted data value. The equivalent
PRINT() command is PRINT(al[index],#13).

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. That is, if Ral[23] is received
through channel 0, the response is sent through channel 0. If Ral[23] is received
through channel 1, the response goes out channel 1.

The valid range for the value of "index" is 0 to 50. Index may be expressed directly
as a number, a variable a . . z, the sum of two a . . z variables, or difference of two a
. . z variables.

See Example 1 for clarification; the example illustrates ALL legal index formats; thus
Rab[-6],

Rab[t-6], and Rab[-g] do not represent valid index references. If you attempt to
use a legal valid syntax, but the actual index value is out of range, system state
flag Bs set to 1 and a syntax error message may be reported See Examples 2 and
3.

The al[0] to al[50] variables represent signed 32 bit values; assignment of larger
values is handled by truncating any extra leading data bits. The most significant bit, is
always considered to be a sign bit.

Related Command:

N/A

209

Ral[index](continued)
	 Report 32-Bit Array Data Value

Example 1:
	 a=0			 'assign test values
	 WHILE a<=6
		 al[a]=a
		 a=a+1
	 LOOP
	 p=2 q=3 u=1 v=5
	 PRINT(al[0]," ") Ral[0]	 	 'report al[0]
	 PRINT(al[1]," ") Ral[1]	 	 'report al[1]
	 PRINT(al[2]," ") Ral[p]	 	 'report al[2]
	 PRINT(al[3]," ") Ral[q]		 'report al[3]
	 PRINT(al[4]," ") Ral[v-u]	 'report al[4]		
	 PRINT(al[5]," ") Ral[v]	 	 'report al[5]
	 PRINT(al[6]," ") Ral[v+u] 	 'report al[6]

	 END

Example 2:
	 Ral[51] 		 'sets Bs
				 'fails to report a value but instead
				 'emits a syntax error message
				 'if syntax reports active

Example 3:
	 H=222
	 al[h] 		 'sets Bs
				 'fails to report a value but instead
				 'emits a syntax error message
				 'if syntax reports active

Related
Command:

N/A

210

Raw[index]
	 Report 16-Bit Array Data Value

Related Command:

N/A

APPLICATION:		 Report command

DESCRIPTION:	 	 Report user variable aw[index]

EXECUTION:		 	 Immediate

CONDITIONAL TO:	 	 N/A

LIMITATIONS:	 	 Index range from 0 to 100

REPORT VALUE:		 aw[index]

READ/WRITE:		 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:	 		 Number

RANGE OF VALUES:	 -32768 to 32767

TYPICAL VALUES:		 -32768 to 32767

DEFAULT VALUE:		 0

RELATED COMMANDS:	 N/A

FIRMWARE VERSIONS:	 4.00 and higher	

DETAILED DESCRIPTION:

Raw[index] reports the signed value of the variable aw[index] to the primary serial
channel. A minus sign will precede negative values, no leading zeros are transmitted,
and an ASCII carriage return terminates the transmitted data value. The equivalent
PRINT() command is PRINT(aw[index],#13).

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. That is, if Raw[23] is
received through channel 0, the response is sent through channel 0. If Raw[23] is
received through channel 1, the response goes out channel 1.

The valid range for the value of "index" is 0 to 100. Index may be expressed directly
as a number, a variable a . . z, the sum of two a . . z variables, or difference of two
a . . z variables.

See Example 1 for clarification; the example illustrates ALL legal index formats; thus
Raw[-6], Raw[t-6] and Raw[-g] do not represent valid index references. If you attempt
to use a legal valid syntax, but the actual index value is out of range, system state flag
Bs set to 1 and a syntax error message may be reported See Examples 3 and 4.

The aw[0] to aw[100] variables represent signed 16 bit values; assignment of larger
values is handled by truncating any extra leading data bits. The most significant bit,
is always considered to be a sign bit. See Example 2 for results when aw[index] is
assigned a value larger than 256*256 or 65536.

211

Example 1:
	 a=0			 'assign test values
	 WHILE a<=6
		 aw[a]=a
		 a=a+1
	 LOOP
	 p=2 q=3 u=1 v=5
	 PRINT(aw[0]," ") Raw[0]		 'report aw[0]
	 PRINT(aw[1]," ") Raw[1]		 'report aw[1]
	 PRINT(aw[2]," ") Raw[p]		 'report aw[2]
	 PRINT(aw[3]," ") Raw[q]		 'report aw[3]
	 PRINT(aw[4]," ") Raw[v-u]	 'report aw[4]		
	 PRINT(aw[5]," ") Raw[v]		 'report aw[5]
	 PRINT(aw[6]," ") Raw[v+u]	 'report aw[6]
	 END

Example 2:
	 a=65534		 'assign test values
	 WHILE a<=65538
		 i=a-65534		
		 aw[i]=a	 'assignment truncated to only 16 bits
		 Rwb[i]	 'reported values are -2 -1 0 1 and 2
		 a=a+1
	 LOOP
	 END

Example 3:
	 Raw[101] 	 'sets Bs
			 'fails to report a value but instead
			 'emits a syntax error message

				 'if syntax reports active

Example 4:
	 v=-605
	 aw[v] 	 'sets Bs
			 'fails to report a value but instead
			 'emits a syntax error message
			 'if syntax reports active

Raw[index] (continued)
	 Report 16-Bit Array Data Value

Related
Command:

N/A

212

RA
	 Report Commanded Acceleration

Related Command:

N/A

APPLICATION:		 Report command

DESCRIPTION:		 Report buffered acceleration

EXECUTION:	 		 Immediate

CONDITIONAL TO:	 	 N/A

LIMITATIONS:	 		 N/A

REPORT VALUE:	 	 A

READ/WRITE:		 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 		 Scaled encounter counts/PID sample/PID sample

RANGE OF VALUES:	 -2147483648 to 2147483647

TYPICAL VALUES:		 -2147483648 to 2147483647

DEFAULT VALUE:		 0

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

RA reports the signed value of the buffered acceleration to the primary serial channel.
A minus sign will precede negative values, no leading zeros are transmitted, and an
ASCII carriage return terminates the transmitted data value. The equivalent PRINT()
command is PRINT(A,[index],#13).

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. Thus, if RA is received
through channel 0, the response is transmitted through channel 0. If RA is received
through channel 1, the response is transmitted through channel 1.

Example:
	 V=3333
	 A=33
	 MV
	 G				 'use acceleration value 333
	 A=444
	 RA				 'returns the value 444

213

RAIN{port}{input}
	 Report Expanded Analog Input Value

APPLICATION:	 Report command

DESCRIPTION:	 Fetch and report Anilink peripheral analog input
	 byte

EXECUTION:	 Immediate IIC byte read, followed by transmit
	 character

CONDITIONAL TO:	 Port and input must exist

LIMITATIONS:	 Port = A .. H and Input = 1, 2, 3, or 4

REPORT VALUE:	 AIN{port}{input}

READ/WRITE:	 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:	 Unsigned numerical value

RANGE OF VALUES:	 0 to 255

TYPICAL VALUES:	 0 to 255	

DEFAULT VALUE:	 If requested input does not exist, the value 255 is
	 returned

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

RAIN{address}{channel} fetches the unsigned 8 bit data value from the
AIO-100 AniLink and reports it to the primary serial channel. The parameters
address and channel refer to address and input channel, respectively, of the
expansion card. No leading zeros are transmitted, and an ASCII carriage return
terminates the transmitted data value. The equivalent PRINT() command is
PRINT(AIN{address}{channel},#13).

Address may be A, B, C, D, E, F, G, or H, which is defined by jumper settings on
the corresponding peripheral. The range of valid channels is 1 through 4.

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through
the current active serial channel and not just the primary port. Thus, if the report
command is received through channel 0, the response is transmitted through
channel 0. If the report command is received through channel 1, the response
is transmitted through channel 1.

Examples:
	 RAINC3		 'valid port and channel
	 RAINA1		 'valid port and channel
	 RAINW4		 'invalid port, syntax error created
	 RAINB0		 'invalid channel, syntax error created

Related
Command:

AOUT

DIN

DOUT

214

RAMPS
	 Report Allowable PWM Limit

Related Command:

AMPS

T

MT

APPLICATION:	 Report command

DESCRIPTION:	 Report maximum allowed current to motor	 windings

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT VALUE:	 AMPS

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 1/1023 of maximum current permitted

RANGE OF VALUES:	 0 to 1023

TYPICAL VALUES:	 1023

DEFAULT VALUE:	 1023

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

RAMPS reports the unsigned value of AMPS, the maximum power setting, to the
primary serial channel. No leading zeros are transmitted, and an ASCII carriage
return terminates the transmitted data value. The equivalent PRINT() command is
PRINT(AMPS,#13)

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. Thus, if the report command
is received through channel 0, the response is transmitted through channel 0. If the
report command is received through channel 1, the response is transmitted through
channel 1.

Example:
	 AMPS=333
	 RAMPS		 'response is 333
	 AMPS=2000	 'too large, entry auto corrected for safety
	 RAMPS		 'response is 1023

215

RBa
	 Report PEAK-Over-current Status Bit

APPLICATION:	 Report command

DESCRIPTION:	 Report system state over current latch

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT VALUE:	 Ba

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 Binary state

RANGE OF VALUES:	 0 to 1

STATE VALUE 1:	 Over current event occurred

STATE VALUE 0:	 Over current has not occurred

FIRMWARE VERSIONS:	 Versions 4.xx excluding HIRES Version 4.20

DETAILED DESCRIPTION:

RBa reports the value of the system over-current flag, Ba. It returns a 1 if an over-
current has been detected and a 0 if not. It is followed by an ASCII carriage return. The
equivalent PRINT() command is PRINT(Ba,#13)

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. Thus, if the report command
is received through channel 0, the response is transmitted through channel 0. If the
report command is received through channel 1, the response is transmitted through
channel 1.

Example:
	 PID1			 'sample rate 4069 / second	
	 WHILE Bt		 'report trajectory status about each second
		 WAIT=4000
		 PRINT(#13,"OVERCURRENT STATE ")
			 RBa
		 PRINT(#13,"OVERHEAT STATE ")
			 RBh
		 PRINT(#13,"POSITION ERROR STATE ")
			 RBe
	 LOOP
		 PRINT(#13,"TRAJECTORY TERMINATED",#13)

END

Related
Command:

Z

Za

ZS

216

RBb
	 Report Communications Parity Error Status Bit

Related Command:

RCHN

RCHN0

RCHN1

Zb

Z

ZS

APPLICATION:	 Report command

DESCRIPTION:	 Report system state flag communication parity	
error latched

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT VALUE:	 Bb

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 Binary state

RANGE OF VALUES:	 0 to 1

STATE VALUE 1:	 Parity error event has occurred

STATE VALUE 0:	 Parity error event has not occurred

FIRMWARE VERSIONS:	 Versions 4.xx excluding HIRES Version 4.20

DETAILED DESCRIPTION:

RBb reports the value of the communications parity error flag, Bb. It returns a 1 if any
parity error has been detected and a 0 if not. It is followed by an ASCII carriage return.
The equivalent PRINT() command is PRINT(Bb,#13)

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. Thus, if the report command
is received through channel 0, the response is transmitted through channel 0. If the
report command is received through channel 1, the response is transmitted through
channel 1.

Example:
	 C10		 'communication status check subroutine
			 'check both serial channel simultaneously
	 IF CHN0	 'return immediately if no errors found			
		 PRINT("PARITY ERROR STATE ") RBb
		 PRINT("BUFFER OVERFLOW STATE ") RBc
		 PRINT("FRAMING ERROR STATE ") RBf
		 PRINT("SYNTAX ERROR STATE ") RBs
	 ENDIF
	 RETURN

Note:
A syntax error from
the terminal causes
RCHN to respond
with value 4 but
the value CHN0 or
CHN1, assigned to
an expression is still
zero.

217

RBc
	 Report Communications Overflow Status Bit

APPLICATION:	 Report command

DESCRIPTION:	 Report system state flag communication buffer
	 overflow event latch

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT VALUE:	 Bc

READ/WRITE:	 N/A				

LANGUAGE ACCESS:	 N/A	

UNITS:	 Binary state

RANGE OF VALUES:	 0 to 1

STATE VALUE 1:	 Communication buffer overflow event occurred	

STATE VALUE 0:	 Communications buffer overflow has not occured

FIRMWARE VERSIONS:	 Versions 4.xx excluding HIRES Version 4.20

DETAILED DESCRIPTION:

RBc reports the state of the serial communications overflow error flag, Bc. It
returns a 1 if any overflow error has been detected and a 0 if not. It is followed by
an ASCII carriage return. The equivalent PRINT() command is PRINT(Bc,#13).

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through
the current active serial channel and not just the primary port. Thus, if the report
command is received through channel 0, the response is transmitted through
channel 0. If the report command is received through channel 1, the response
is transmitted through channel 1.

Example:
	 C10		 'communication status check subroutine
			 'check both serial channel simultaneously
	 IF CHN0	 'return immediately if no errors found		
		 PRINT("PARITY ERROR STATE ") RBb
		 PRINT("BUFFER OVERFLOW STATE ") RBc
		 PRINT("FRAMING ERROR STATE ") RBf
		 PRINT("SYNTAX ERROR STATE ") RBs
	 ENDIF
	 RETURN

Related
Command:

RCHN

RCHN0

RCHN1

Z

Zc

ZS

Note:
A syntax error from
the terminal causes
RCHN to respond
with value 4 but
the value CHN
assigned to an
expression is still
zero.

218

RBd
	 Report Math Overflow Status Bit

Related Command:

Z

Zd

ZS

APPLICATION:	 Report command

DESCRIPTION:	 Report system state flag math overflow event latch

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT VALUE:	 Bd

READ/WRITE:	 N/A			

LANGUAGE ACCESS:	 N/A	

UNITS:	 Binary state

RANGE OF VALUES:	 0 to 1

STATE VALUE 1:	 Math overflow during product calculation 			
	 or	MFMUL/MFDIV division, has occurred	

STATE VALUE 0:	 No math overflow has occurred

FIRMWARE VERSIONS:	 Versions 4.xx excluding HIRES Version 4.20

DETAILED DESCRIPTION:

RBd reports the value of the MFMUL/MFDIV math overflow error flag, Bd. It returns
a 1 if any math overflow error was detected and a 0 if not. It is followed by an ASCII
carriage return. The equivalent PRINT() command is PRINT(Bd,#13).

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. Thus, if the report command
is received through channel 0, the response is transmitted through channel 0. If the
report command is received through channel 1, the response is transmitted through
channel 1.

Example 1:
	 Zd
	 RBd			 'returns 0
	 a=1111111
	 b=2222222
	 c=a*b
	 Rc			 'returns -470886558
	 RBd			 'returns 1

Example 2:
	 Zd			 'reset Bd
	 MFMUL=257		 'initialize Mode Follow with Ratio
	 MFDIV=1
	 MFR
	 RBd			 'returns 1 => MFR gain too large

If a standard 32 bit hand held calculator, in decimal mode, is used, it would also report
an error.

219

RBe
	 Report Position Error Status Bit

APPLICATION:	 Report command	

DESCRIPTION:	 Report system state flag position error occurred 	
latch

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT VALUE:	 Be

READ/WRITE:	 N/A				

LANGUAGE ACCESS:	 N/A	

UNITS:	 Binary state

RANGE OF VALUES:	 0 to 1

STATE VALUE 1:	 Position error during trajectory motion occurred

STATE VALUE 0:	 No position error during trajectory has occurred

FIRMWARE VERSIONS:	 Versions 4.xx excluding HIRES Version 4.20

DETAILED DESCRIPTION:

RBe reports the value of the position error flag, Be. It returns a 1 if a position error
was detected and a 0 if not. It is followed by an ASCII carriage return. The equivalent
PRINT() command is PRINT(Be,#13).

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. Thus, if the report command
is received through channel 0, the response is transmitted through channel 0. If the
report command is received through channel 1, the response is transmitted through
channel 1.

Example:
	 O=0			 'Set current position to zero	
	 A=100			 'Set acceleration
	 V=50000		 'Set velocity
	 P=100000000		 'Set target position
	 E=1000		 'default position error limit
	 MP			 'Set to position mode
	 G			 'Go and begin buffered move
	 WAIT=40000		 'Wait abut 10 seconds
	 E=0			 'Force a position error by setting 			
				 'allowable limit to zero
	 WAIT=10		 'Wait ten servo samples
	 RBe			 'response is 1
	 T=111
	 MT			 'position error reset by mode change
	 RPE			 'report position error limit,
						 response is 0
	 RBe			 'report position error bit,
						 response is 0

Related Command:

G

RS

RW

RPW

Z

220

APPLICATION:	 Report command

DESCRIPTION:	 Report system state flag communications framing 	
error event latch

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT VALUE:	 Bf

READ/WRITE:	 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:	 Binary state

RANGE OF VALUES:	 0 to 1

STATE VALUE 1:	 Parity error event occurred on either channel 0 or 	
channel 1	

STATE VALUE 0:	 No communication parity error event has occurred

FIRMWARE VERSIONS:	 Versions 4.xx excluding HIRES Version 4.20

DETAILED DESCRIPTION:

RBf reports the value of the serial communications framing error flag, Bf. It returns a 1
if any framing error has been detected and a 0 if not. It is followed by an ASCII carriage
return. The equivalent PRINT() command is PRINT(Bf,#13).

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. That is, if the report command
is received through channel 0, the response is sent through channel 0. If the report
command is received through channel 1, the response goes out channel 1.

Example:
	 C10		 'communication status check subroutine
			 'check both serial channels simultaneously
	 IF CHN0	 'return immediately if no error found
		 PRINT("PARITY ERROR STATE ") RBb
		 PRINT("BUFFER OVERFLOW STATE ") RBc
		 PRINT("FRAMING ERROR STATE ") RBf
		 PRINT("SYNTAX ERROR STATE ") RBs
	 ENDIF
	 RETURN

RBf
	 Report Communications Framing Error Status Bit

Related Command:

OCHN

RCHN

RCHN0

RCHN1

Z

Zf

ZS

Note a syntax error
from the terminal
causes RCHN to
respond with value
4 but the value
CHN assigned to
an expression is still
zero.

221

RBh
	 Report Over-Heat/RMS Over-Current Status Bit

APPLICATION:	 Report command

DESCRIPTION:	 Report real time system state motor overheat
	 condition

EXECUTION:	 Updated each PID sample

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT VALUE:	 Bh

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 Binary state

RANGE OF VALUES:	 0 to 1

STATE VALUE 1:	 Motor in overheat condition

STATE VALUE 0:	 Motor not is overheat condition

FIRMWARE VERSIONS:	 Versions 4.xx excluding HIRES Version 4.20

DETAILED DESCRIPTION:

RBh reports the value of the overheat flag, Bh. It returns a 1 if an overheat was
detected and a 0 if not. It is followed by an ASCII carriage return. The equivalent
PRINT() command is PRINT(Bh,#13)

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through
the current active serial channel and not just the primary port. That is, if the
report command is received through channel 0, the response is sent through
channel 0. If the report command is received through channel 1, the response
goes out channel 1.

Example:
	 WHILE Bt		 'report trajectory status 	
		 WAIT=4000 	 'about once a second
		 PRINT("OVER CURRENT STATE ")
			 RBa
		 PRINT("OVER HEAT STATE ")
			 RBh
		 PRINT("POSITION ERROR STATE ")
		 RBe
	 LOOP
	 PRINT(#13,"TRAJECTORY TERMINATED",#13)

Related
Command:

TEMP

TH

THD

Z

222

RBi
	 Report Index-Captured Status Bit

Related Command:

Bx

I

RI

Z

APPLICATION:	 Report command

DESCRIPTION:	 Report system state flag index position latched

EXECUTION:	 Latch updated at PID sample if index event 	 observed

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT VALUE:	 Bi

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A	

UNITS:	 Binary state

RANGE OF VALUES:	 0 to 1

STATE VALUE 1:	 Latched index encoder count reading available

STATE VALUE 0:	 No new latched index position available

FIRMWARE VERSIONS:	 Versions 4.xx excluding HIRES Version 4.20

DETAILED DESCRIPTION:

RBi reports the value of the index available flag, Bi. It returns a 1 if a new index value
was latched and a 0 if not. It is followed by an ASCII carriage return. The equivalent
PRINT() command is PRINT(Bi,#13).

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. That is, if the report command
is received through channel 0, the response is sent through channel 0. If the report
command is received through channel 1, the response goes out channel 1.

Example: (Notice PRINT outputs from the following program)
	 A=10			 'buffer a slow velocity mode move
	 V=4000
	 MV
	 E=100			 'small error band
	 G			 'go
	 WHILE Bt
		 RBi
		 IF Bi
			 PRINT("NEW INDEX VALUE ")
		 ELSE
			 PRINT("OLD INDEX VALUE ")
		 ENDIF
		 RI
		 WAIT=400
	 LOOP
	 END

223

RBk
	 Report EEPROM Checksum Status Bit

APPLICATION:	 Report command

DESCRIPTION:	 Report EEPROM state flag I/O error event latch

EXECUTION:	 Immediate

CONDITIONAL TO:	 RCKS

LIMITATIONS:	 N/A

REPORT VALUE:	 Bk

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 Binary state

RANGE OF VALUES:	 0 to 1

STATE VALUE 1:	 RCKS reported Program EEPROM checksum 	
error

	 VST() reported Write Data EEPROM error

STATE VALUE 0:	 RCKS reported Program EEPROM checksum 	
error

FIRMWARE VERSIONS:	 Versions 4.xx excluding HIRES Version 4.20

DETAILED DESCRIPTION:

RBk reports the state of the checksum error flag, Bk. It returns a 1 if a checksum
was detected and a 0 if not. It is followed by an ASCII carriage return. The
equivalent PRINT() command is PRINT(Bk,#13).

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through
the current active serial channel and not just the primary port. That is, if the
report command is received through channel 0, the response is sent through
channel 0. If the report command is received through channel 1, the response
goes out channel 1.

Example:
	 RCKS
	 RBk	 'reporting value, If 1 then the stored program is bad

Related Command:

RCKS

RW

Z

224

RBl
	 Report Real-Time Left-Over-Travel-Limit State

Related
Command:

Bm

RS

RW

S

Z

ZS

APPLICATION:	 Report command

DESCRIPTION:	 Report Left Limit State Latch

EXECUTION:	 Updated each PID sample

CONDITIONAL TO:	 LIML, LIMH, UDM

LIMITATIONS:	 N/A

REPORT VALUE:	 Bl

READ/WRITE:	 N/A				

LANGUAGE ACCESS:	 N/A	

UNITS:	 Binary state

RANGE OF VALUES:	 0 to 1

STATE VALUE 1:	 Left limit switch has been active

STATE VALUE 0:	 Left limit switch has not been active

FIRMWARE VERSIONS:	 Versions 4.xx excluding HIRES Version 4.20	

DETAILED DESCRIPTION:

RBl reports the value of the historical left limit flag, Bl. It returns a 1 if an active left
limit input was detected and a 0 if not. It is followed by an ASCII carriage return. The
equivalent PRINT() command is PRINT(Bl,#13).

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. That is, if the report command
is received through channel 0, the response is sent through channel 0. If the report
command is received through channel 1, the response goes out channel 1.

225

RBm
	 Report Historical Left-Over-Travel-Limit Status Bit

APPLICATION:	 Report command

DESCRIPTION:	 Report Historical Left Limit State

EXECUTION:	 Updated each PID sample

CONDITIONAL TO:	 LINH, LIML, UDI, UDO

LIMITATIONS:	 N/A

REPORT VALUE:	 Bm

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 Binary state

RANGE OF VALUES:	 0 to 1

STATE VALUE 1:	 Left limit switch active

STATE VALUE 0:	 Left limit switch not active

FIRMWARE VERSIONS:	 Versions 4.xx excluding HIRES Version 4.20

DETAILED DESCRIPTION:

RBm reports the value of the Historical left limit flag, Bm. It returns a 1 if an active left
limit input was detected and a 0 if not. It is followed by an ASCII carriage return. The
equivalent PRINT() command is PRINT(Bm,#13)

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. That is, if the report command
is received through channel 0, the response is sent through channel 0. If the report
command is received through channel 1, the response goes out channel 1.

Related Command:

Bl

Z

226

RBo
	 Report Motor-Off Status Bit

Related
Command:

G

Z

ZS

APPLICATION:	 Report command

DESCRIPTION:	 Report real time system state motor off

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT VALUE:	 Bo

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 Binary state

RANGE OF VALUES:	 0 to 1

STATE VALUE 1:	 Motor PWM signal is off

STATE VALUE 0:	 Motor PWM signal is on, motor coils are powered.

FIRMWARE VERSIONS:	 Versions 4.xx excluding HIRES Version 4.20

DETAILED DESCRIPTION:

RBo reports the state of the motor off flag, Bo. It returns a 1 if an active left
limit input was detected and a 0 if not. It is followed by an ASCII carriage
return. The equivalent PRINT() command is PRINT(Bo,#13).

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through
the current active serial channel and not just the primary port. That is, if the
report command is received through channel 0, the response is sent through
channel 0. If the report command is received through channel 1, the response
goes out channel 1.

Example:
	 OFF
	 RBo			 'motor responds with a 1
	 T=100
	 MT			 'servo on, no PID loop
	 RBo			 'motor responds with a 0
	 MP
	 G			 'change mode, servo on with PID loop	

	 RBo			 'motor still responds with a 0
	 OFF
	 RBo			 'motor responds with a 1
	 END

227

RBp
	 Report Historical Right-Over-Travel-Limit Logic State

APPLICATION:	 Report command

DESCRIPTION:	 Report Historical Right Limit State

EXECUTION:	 Updated each PID sample

CONDITIONAL TO:	 LIMH, LIML, UCI, UCP, UCO

LIMITATIONS:	 N/A

REPORT VALUE:	 Bp

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 Binary state

RANGE OF VALUES:	 0 to 1

STATE VALUE 1:	 Right limit switch active

STATE VALUE 0:	 Right limit switch not active

FIRMWARE VERSIONS:	 Versions 4.xx excluding HIRES Version 4.20

DETAILED DESCRIPTION:

RBp reports the value of the Historical right limit flag, Bp. It returns a 1 if an active left
limit input was detected and a 0 if not. It is followed by an ASCII carriage return. The
equivalent PRINT() command is PRINT(Bp,#13).

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. That is, if the report command
is received through channel 0, the response is sent through channel 0. If the report
command is received through channel 1, the response goes out channel 1.

Related Command:

Z

228

RBr
	 Report Real-Time Right-Over-Travel-Limit State

Related
Command:

Z

APPLICATION:	 Report command

DESCRIPTION:	 Report Right Limit Active State Latch

EXECUTION:	 Updated each PID sample

EXECUTION:	 Updated each PID sample

CONDITIONAL TO:	 LIMH, LIMH, UCP

LIMITATIONS:	 N/A

REPORT VALUE:	 Br

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 Binary state

RANGE OF VALUES:	 0 to 1

STATE VALUE 1:	 Right limit switch active

STATE VALUE 0:	 Right limit switch not active

FIRMWARE VERSIONS:	 Versions 4.xx excluding HIRES Version 4.20

DETAILED DESCRIPTION:

RBr reports the value of the real time right limit flag, Br. It returns a 1 if an active
left limit input was detected and a 0 if not. It is followed by an ASCII carriage
return. The equivalent PRINT() command is PRINT(Br,#13).

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through
the current active serial channel and not just the primary port. That is, if the
report command is received through channel 0, the response is sent through
channel 0. If the report command is received through channel 1, the response
goes out channel 1.

229

RBs
	 Report Syntax-Error Status Bit

APPLICATION:	 Report command

DESCRIPTION:	 Report system state flag scanning error event latch

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT VALUE:	 Bs

READ/WRITE:	 N/A				

LANGUAGE ACCESS:	 N/A	

UNITS:	 Binary state

RANGE OF VALUES:	 0 to 1

STATE VALUE 1:	 Command scan error has occurred since Bs reset

STATE VALUE 0:	 Command scan error has not occurred since Bs 	
reset

FIRMWARE VERSIONS:	 Versions 4.xx excluding HIRES Version 4.20	

DETAILED DESCRIPTION:

RBs reports the value of the real time right limit flag, Bs. It returns a 1 if an active left
limit input was detected and a 0 if not. It is followed by an ASCII carriage return. The
equivalent PRINT() command is PRINT(Bs,#13).

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. Thus, if the report command
is received through channel 0, the response is sent through channel 0. If the report
command is received through channel 1, the response goes out channel 1.

Scan errors result from malformed command and data syntax. An illegal array read/
write access index also sets the scan error flag. Scan errors can occur from commands
within program execution or received via either serial channel. A program encountering
an illegal array access or syntax error should be carefully debugged. These programs
may not execute accurately following the error.

Bs is reset by ZS and Zs.

Note: Downstream motors in a serial daisy chain will get their Bs bit set when
upstream motors respond to report commands This is common and can be ignored.

Example:
	 Zs		 'reset any prior scan error state
	 j=88		 'for use as array index			
	 zzz=3333		
	 al[j]=zzz	 'value assigned is OK
			 'but the index value is not, max
Array al[index] is location al[50]

	 RBs			 'responds with 1

Related Command:

Z

Zs

ZS

230

RBt
	 Report Busy-Trajectory Status Bit

Related Command:

G

Z

APPLICATION:	 Report command

DESCRIPTION:	 Report real time system trajectory in progress state

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT VALUE:	 Bt

READ/WRITE:	 N/A				

LANGUAGE ACCESS:	 N/A	

UNITS:	 Binary state

RANGE OF VALUES:	 0 to 1

STATE VALUE 1:	 Trajectory in progress	

STATE VALUE 0:	 No trajectory in progress

FIRMWARE VERSIONS:	 Versions 4.xx excluding HIRES Version 4.20	

DETAILED DESCRIPTION:

RBt reports the state of the trajectory in progress flag, Bt. It returns a 1 if a a trajectory
is in progress and a 0 if not. It is followed by an ASCII carriage return. The equivalent
PRINT() command is PRINT(Bt,#13)

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. That is, if the report command
is received through channel 0, the response is sent through channel 0. If the report
command is received through channel 1, the response goes out channel 1.

Example:
	 OFF		 'free shaft, no trajectory calculation
	 RBt		 'motor responds with 0
	 A=555
	 V=777777
	 MV		 'Set to Mode Velocity
	 G		 'Start trajectory calculation
	 RBt		 'motor responds with 1	
	 WAIT=8000
	 T=7
	 MT		 'Set to Mode Torque (no trajectory)
	 RBt		 'motor responds with 0
	 WAIT=8000
	 OFF
	 WAIT=8000
	 MF4		 'Mode Follow starts trajectory calculation
	 RBt		 'motor responds with 1
	 END

231

RBu
	 Report Array Index Error Status Bit

APPLICATION:	 Report command

DESCRIPTION:	 Report write array access error latch

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT VALUE:	 Bu

READ/WRITE:	 N/A			

LANGUAGE ACCESS:	 N/A	

UNITS:	 Binary state

RANGE OF VALUES:	 0 to 1

STATE VALUE 1:	 Illegal report array value event occurred 	

STATE VALUE 0:	 Illegal report array value event has not occurred

FIRMWARE VERSIONS:	 Versions 4.xx excluding HIRES Version 4.20	

DETAILED DESCRIPTION:

RBu reports the state of the array index error flag, Bu. It returns a 1 if there was
any attempt to use an invalid index for an array variable and a 0 if not. It is followed
by an ASCII carriage return. The equivalent PRINT() command is PRINT(Bu,#13).

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through
the current active serial channel and not just the primary port. That is, if the report
command is received through channel 0, the response is sent through channel 0. If
the report command is received through channel 1, the response goes out channel 1.

Bu is reset by Z, ZS, and Zu. Note, illegal array indexes always set Bs flag.

Example: (if the following is executed by a user program)

 ZS
	 m=44444
	 Raw[m]
	 PRINT(#13,"Issued Raw[illegal]",#13)
	 PRINT("Bu") Rbu	 'Bu=1. array index range error occurred 	 	
	 PRINT("Bs") RBs	 'Bs is 1, syntax occurred
	 PRINT(#13,"Issue ZS ",#13)
	 ZS
	 PRINT("Bu") RBu
	 PRINT("Bs",Bs) RBs
	 n=44444
	 s=aw[n] 	 'Illegal assignment behaves differently	 		
	 PRINT(#13,"Assigned aw[illegal]",#13)
			 'expression value is simply not assigned
	 PRINT("Bu") Rbu	 'Bu is 0	
	 PRINT("Bs") RBs	 'Bs is 1
	 END

Related Command:

Z

Zu

ZS

232

RBw
	 Report Encoder Wrap Status Bit

Related Command:

G

Z

APPLICATION:	 Report command

DESCRIPTION:	 Report system state flag

EXECUTION:	 Immediate

CONDITIONAL TO:	 Current motion mode

LIMITATIONS:	 N/A

REPORT VALUE:	 Bw

READ/WRITE:	 N/A	

LANGUAGE ACCESS:	 N/A	

UNITS:	 Binary state

RANGE OF VALUES:	 0 to 1

STATE VALUE 1:	 Encoder wrap around occurred during a position 	
move	

STATE VALUE 0:	 Encoder wrap around event not recorded

FIRMWARE VERSIONS:	 Versions 4.xx excluding HIRES Version 4.20	

DETAILED DESCRIPTION:

RBw reports the state of the position wrap around flag, Bw. In any motion mode
other than MV, MT or MD50, it returns a 1 if the encoder position wrapped and a 0 if
not. It is followed by an ASCII carriage return. The equivalent PRINT() command is
PRINT(Bw,#13).

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. That is, if the report command
is received through channel 0, the response is sent through channel 0. If the report
command is received through channel 1, the response goes out channel 1.

Example: (try the follow Bw test program, at no instance is Bw set)
	 ZS
	 O=2147480000 'place close to wrap around at 2147483647
	 T=33
	 MT
	 PRINT(#13,"VALUE OF @ = ") RP
	 PRINT(#13,"VALUE OF Bw = ") RBw
	 WAIT=20000
	 IF @P<0
		 PRINT(#13,"VALUE OF @ = ") RP
	 ENDIF
	 IF Bt
		 PRINT(#13,"STILL GOING OK!")
	 ENDIF
	 PRINT(#13,"VALUE OF Bw = ") RBw
	 END

233

RBx
	 Report Real-Time Index Pulse Logic State

APPLICATION:	 Report command

DESCRIPTION:	 Report real time index input state

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT VALUE:	 Bx

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 Binary state

RANGE OF VALUES:	 0 to 1

STATE VALUE 1:	 Index input presently contacted

STATE VALUE 0:	 Index input not presently contacted

FIRMWARE VERSIONS:	 Versions 4.xx excluding HIRES Version 4.20

DETAILED DESCRIPTION:

RBx reports the state of the real time index flag, Bx. It returns a 1 if the current
position is coincident with the encoder index 0 if not. It is followed by an ASCII
carriage return. The equivalent PRINT() command is PRINT(Bx,#13).

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through
the current active serial channel and not just the primary port. That is, if the report
command is received through channel 0, the response is sent through channel 0. If
the report command is received through channel 1, the response goes out channel
1.

Example: (Fast Index Find , Report Bx)
 MP			 'set buffered velocity mode
 A=1000		 'set fast acceleration
 V=4000000		 'set fast velocity
 D=2100		 'set relative distance just beyond
			 'one shaft turn
 i=I			 'clear and arm index capture
 O=0			 'force change to position register
 G			 'start fast move
 TWAIT		 'wait till end of trajectory
 P=I			 'go back to index
 G			 'start motion
 TWAIT		 'wait until end of trajectory
 O=0			 'set origin at index

 RBx
Output will be 1

Related Command:

Bi

Z

234

RBy
	 Report Step/Direction Change Over-Run Status

Related Command:

N/A

APPLICATION:	 Report command	

DESCRIPTION:	 Report system state step direction change overrun 	
event latch

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT VALUE:	 By

READ/WRITE:	 N/A				

LANGUAGE ACCESS:	 N/A	

UNITS:	 Binary state

RANGE OF VALUES:	 0 to 1

STATE VALUE 1:	 Step direction overrun event occurred	

STATE VALUE 0:	 Step direction overrun event has not occurred

FIRMWARE VERSIONS:	 4.40 only!

DETAILED DESCRIPTION:

RBy reports the state of the step and direction overrun flag, By. It returns a 1 if the
SmartMotor™ detected an invalid step, most likely due to an improper direction
change, and a 0 if not. It is followed by an ASCII carriage return. The equivalent
PRINT() command is PRINT(By,#13).

Note: IEEE standard states that the Direction bit should be looked at while the stp bit
is low. If th direction bit transitions at the exact same time as the stp bit the By bit will
be set.

235

RCHN
	 Report Serial Communications Status Flags

APPLICATION:	 Report command

DESCRIPTION:	 Report serial communications status flags

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT VALUE:	 Logical OR of CHN0 with CHN1

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 Binary states

RANGE OF VALUES:	 0 to 15

TYPICAL VALUES:	 0 to 15

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 4.00 and higher

DETAILED DESCRIPTION:

RCHN returns the value of the historical communications function CHN. The
read only function CHN holds binary coded historical error information about the
two serial channels on the Smartmotor™. It gives the 4 bit status of either serial
port channels 0 or 1, broken down as follows:

	 CHN bit 0 = 1 if either receive buffer has overflowed

	 CHN bit 1 = 1 if a framing error occurred on either channel

	 CHN bit 2 = 1 if a scan error occurred on either channel

	 CHN bit 3 = 1 if a parity error occurred on either channel

No leading zeros are transmitted, and it is followed by an ASCII carriage return.
It is followed by an ASCII carriage return. The equivalent PRINT() command is
PRINT(CHN,#13).

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through
the current active serial channel and not just the primary port. That is, if the
report command is received through channel 0, the response is sent through
channel 0. If the report command is received through channel 1, the response
goes out channel 1.

Example:
	 RCHN		 'test all command input combined error flags
			 'error occurred in value return is non zero	

Related
Command:

CCHN

OCHN

RCHN0

RCHN1

236

RCHN0
	 Report Primary Serial Port Status

Related Command:

CCHN

OCHN

RCHN

RCHN1

APPLICATION:	 Report command

DESCRIPTION:	 Report serial communications channel 0 status 	
flags

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT VALUE:	 CHN0

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 Binary states

RANGE OF VALUES:	 0 to 15

TYPICAL VALUES:	 0 to 15

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 4.00 and higher

DETAILED DESCRIPTION:

RCHN0 returns the value of the historical communications function CHN0. The read
only function CHN0 holds binary coded historical error information about the two serial
channels on the SmartMotor™. It gives the 4 bit status of either serial port channels
0 or 1, broken down as follows:

	 CHN0 bit 0 = 1 if either receive buffer has overflowed

	 CHN0 bit 1 = 1 if a framing error occurred on either channel

	 CHN0 bit 2 = 1 if a scan error occurred on either channel

	 CHN0 bit 3 = 1 if a parity error occurred on either channel

No leading zeros are transmitted, and it is followed by an ASCII carriage return.
It is followed by an ASCII carriage return. The equivalent PRINT() command is
PRINT(CHN0,#13).

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. That is, if the report command
is received through channel 0, the response is sent through channel 0. If the report
command is received through channel 1, the response goes out channel 1.

237

Example: (download and run the following)
	 END
	 C5				 'test individual flags
	 IF CHN0&4
		 PRINT("CHANNEL 0 - scan error occurred")
	 ELSEIF CHN0&1
		 PRINT("CHANNEL 0 - buffer overflow")
	 ENDIF 						
	 PRINT(#13)
	 RETURN				
	 C10				 'test all flags
	 IF CHN0
		 PRINT("CHANNEL 0 SERIAL ERROR !!")
	 ENDIF
	 PRINT(#13)
	 RETURN

Then from terminal type RKK GOSUB5.

RCHN0 (continued)
	 Report Primary Serial Port Status

Related
Command:

CCHN

OCHN

RCHN

RCHN1

238

RCHN1
	 Report Secondary Serial Port Status

APPLICATION:	 Report command

DESCRIPTION:	 Report serial communications channel 1 status 	
flags

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT VALUE:	 CHN1

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 Binary states

RANGE OF VALUES:	 0 to 15

TYPICAL VALUES:	 0 to 15

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 4.00 and higher

DETAILED DESCRIPTION:

RCHN1 returns the value of the historical communications function CHN1. The read
only function CHN1 holds binary coded historical error information about the two serial
channels on the SmartMotor™. It gives the 4 bit status of either serial port channels
0 or 1, broken down as follows:

	 CHN1 bit 0 = 1 if either receive buffer has overflowed

	 CHN1 bit 1 = 1 if a framing error occurred on either channel

	 CHN1 bit 2 = 1 if a scan error occurred on either channel

	 CHN1 bit 3 = 1 if a parity error occurred on either channel

No leading zeros are transmitted, and it is followed by an ASCII carriage return.
It is followed by an ASCII carriage return. The equivalent PRINT() command is
PRINT(CHN1,#13).

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. That is, if the report command
is received through channel 0, the response is sent through channel 0. If the report
command is received through channel 1, the response goes out channel 1.

Related Command:

CCHN

OCHN

RCHN0

RCHN1

239

Example: (download and run the following)
	 END
	 C5				 'test individual flags
	 IF CHN1&4
		 PRINT1("CHANNEL 1 - scan error occurred")
	 ELSEIF CHN1&1
		 PRINT1("CHANNEL 1 - buffer overflow")
	 ENDIF 						
	 PRINT1(#13)
	 RETURN				
	 C10				 'test all flags
	 IF CHN1
		 PRINT1("CHANNEL 1 SERIAL ERROR !!")
	 ENDIF
	 PRINT1(#13)
	 RETURN

Then from terminal type RKK GOSUB5

RCHN1 (continued)
	 Report Secondary Serial Port Status

Related
Command:

CCHN

OCHN

RCHN0

RCHN1

240

RCS
	 Report Primary Serial Port Checksum

Related Command:

RCS1

APPLICATION:	 Report command

DESCRIPTION:	 Report channel 0 serial receive checksum

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT VALUE:	 Checksum for channel 0 since prior RCS

LANGUAGE ACCESS:	 N/A

READ/WRITE:	 N/A		

UNITS:	 ASCII checksum number

RANGE OF VALUES:	 0 to 255

TYPICAL VALUES:	 0 to 255	

DEFAULT VALUE:	 Non zero

FIRMWARE VERSIONS:	 4.00 and higher	

DETAILED DESCRIPTION:	

RCS reports the accumulated channel 0 checksum value to the primary serial channel.
No leading zeros are transmitted, and it is followed by an ASCII carriage return. It is
followed by an ASCII carriage return. There is no equivalent PRINT() command.

The RCS checksum value is the simple 8 bit sum of all the ASCII bytes received by
channel 0 serial channel. RCS resets the channel 0 checksum to zero after reporting
the current value. See the ASCII Table in the appendix to map character to ASCII value.
There is no CS command or function. It cannot be printed or assign to a variable.
In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. That is, if the report command
is received through channel 0, the response is sent through channel 0. If the report
command is received through channel 1, the response goes out channel 1.

Example: (using the SMI terminal screen)

First noting 	 ASCII Space = 32 	 ASCII A = 65
			 ASCII 1 = 49		 ASCII C = 67
			 ASCII 2 = 50		 ASCII R = 82
			 ASCII 3 = 51		 ASCII S = 83	
			 ASCII "=" is 61 and SMI issues a space following a command
	 Z
	 RCS		 'response is 8 = Mod 8
			 '[82+67+83+32]=264-256=8
	 A=112
	 RCS		 'response is 58 = Mod 8
			 '[65+61+49+49+50+32+82+67+83+32]=570-512= 58
	 A=113
	 RCS		 'response is 59, which is as expected,
			 'one more than before.

241

RCS1
	 Report Secondary Serial Port Checksum

APPLICATION:	 Report command

DESCRIPTION:	 Report channel 1 serial receive checksum

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT VALUE:	 Checksum for channel 0 since prior RCS1

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A	

UNITS:	 Number

RANGE OF VALUES:	 0 to 255

TYPICAL VALUES:	 0 to 255

DEFAULT VALUE:	 Non zero

FIRMWARE VERSIONS:	 4.00 and higher

DETAILED DESCRIPTION:

RCS1 reports the accumulated channel 1 checksum value to the primary serial channel.
No leading zeros are transmitted, and it is followed by an ASCII carriage return. It is
followed by an ASCII carriage return. There is no equivalent PRINT() command.

There is no CS1 command or function. You cannot print or assign a variable to CS1.

The RCS1 checksum value is the simple 8 bit sum of all the ASCII bytes received
by the channel 1 serial channel. RCS1 resets the channel 1 checksum to zero after
reporting the current value. See the ASCII Table appendice to map character to ASCII
value.

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. That is, if the report command
is received through channel 0, the response is sent through channel 0. If the report
command is received through channel 1, the response goes out channel 1.

Example: (see example RCS for additional explanation)
	 Z
	 RCS1		 'response is 8 = Mod 8
			 '[82+67+83+32]=264-256=8
	 A=112
	 RCS		 'response is 58 = Mod 8
			 '[65+61+49+49+50+32+82+67+83+32]=570-512= 58
	 A=113
	 RCS1		 'response is 59, which is as expected,
			 'one more than before.

Related Command:

RCS

242

RCTR
	 Report Secondary Encoder Counter

Related Command:

CTR

ENC0

ENC1

MC

MF0

MFR

MS0

MSR

APPLICATION:	 Report command

DESCRIPTION:	 Report external encoder counter value

EXECUTION:	 Updated each PID sample

CONDITIONAL TO:	 External encoder signal available

LIMITATIONS:	 N/A

REPORT VALUE:	 CTR

READ/WRITE:	 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:	 Encoder counts or step pulses

RANGE OF VALUES:	 -2147483648 to 2147483647

TYPICAL VALUES:	 -2147483648 to 2147483647	

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 ALL	

DETAILED DESCRIPTION:

RCTR reports the signed 32 bit value of the secondary encoder counter
CTR. No leading zeros are transmitted and it is followed by an ASCII
carriage return. The equivalent PRINT() command is PRINT(CTR,#13).

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through
the current active serial channel and not just the primary port. That is, if the report
command is received through channel 0, the response is sent through channel 0. If
the report command is received through channel 1, the response goes out channel 1.

Example:

	 MF0
	 RCTR			 'responds with 0

Now provide external encoder input change.

	 RCTR			 'response is non zero
	 MF4
	 RCTR			 'CTR reset to zero
				 'response is 0

243

RD
	 Report Commanded Relative Distance Value

APPLICATION:	 Report command

DESCRIPTION:	 Report buffered relative move distance

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT VALUE:	 D

READ/WRITE:	 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:	 Encoder counts

RANGE OF VALUES: 	 -2147483648 to 2147483647

TYPICAL VALUES: 	 -2147483648 to 2147483647	

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 ALL	

DETAILED DESCRIPTION:

RD reports the value of the buffered relative move distance D. No leading zeroes
are transmitted and it is followed by an ASCII carriage return. It is followed by an
ASCII carriage return. The equivalent PRINT() command is PRINT(D,#13)

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through
the current active serial channel and not just the primary port. That is, if the
report command is received through channel 0, the response is sent through
channel 0. If the report command is received through channel 1, the response
goes out channel 1.

Example:

	 O=0				 'set up a move
	 MP
	 A=222
	 V=44444
	 D=-7777			 'first buffered D value to be used	

	 G
	 D=2266			 'buffered D value
	 RD				 'response is 2266

Related
Command:

A

E

G

P

MFR

MP

244

RDIN{port}{channel}
	 Report Expanded Input Logic Status

Related Command:

DOUT

APPLICATION:	 Report command

DESCRIPTION:	 Fetch and report Anilink digital peripheral input 	
byte

EXECUTION:	 Immediate byte read from IIC link

CONDITIONAL TO:	 Peripheral input attached to motor

LIMITATIONS:	 Returns 255 if port and channel does not exist

REPORT VALUE:	 DIN{port}{channel}

READ/WRITE:	 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:	 Number

RANGE OF VALUES:	 0 to 255

TYPICAL VALUES:	 0 to 255

DEFAULT VALUE:	 255

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

RDIN{address}{channel} Report the unsigned 8 bit data value from the specified
Anilink digital peripheral and reports it to the primary channel. The parameters address
and channel refer to address and input channel, respectively, of the expansion card.
No leading zeros are transmitted, and an ASCII carriage return terminates the
transmitted data value. The equivalent PRINT() command is PRINT(DIN{address}
{channel},#13).

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. That is, if the report command
is received through channel 0, the response is sent through channel 0. If the report
command is received through channel 1, the response goes out channel 1.

The command is most commonly used with an Animatics DIO-100 digital I/O module
or an AniLink thumb wheel module.

Address may be A, B, C, D, E, F, G, or H, which is defined by jumper settings on
the corresponding peripheral. The range of valid channels is 0 through 63, and is
determined by the hardware.

Example:
	 PRINT("DISPLAY THUMBWHEEL C INPUTS",#13,#13)
	 RDINC0			 'report wheel C, digit 0
	 RDINC1			 'report wheel C, digit 1
	 RDINC2			 'report wheel C, digit 2

Example:
	 RDINK0			 'invalid port
	 RDINA66			 'invalid channel
	 RDINC

245

RE
	 Report Maximum Allowable Position Error

APPLICATION:	 Report command

DESCRIPTION:	 Report maximum allowable position error

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT VALUE:	 E

READ/WRITE:	 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:	 Encoder counts

RANGE OF VALUES: 	 -32768 to 32767

TYPICAL VALUES: 	 -32768 to 32767	

DEFAULT VALUE:	 1000

FIRMWARE VERSIONS:	 ALL	

DETAILED DESCRIPTION:

RE reports the value of the allowable following error E. No leading zeros are transmitted
and it is followed by an ASCII carriage return. The equivalent PRINT() command is
PRINT(E,#13).

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. That is, if the report command
is received through channel 0, the response is sent through channel 0. If the report
command is received through channel 1, the response goes out channel 1.

For normal operation E is greater than or equal to zero. If E is assigned a negative
value a position error is immediately generated.

Example:
	 A=554			 'set up a buffered velocity move
	 V=666666
	 MV
	 E=300
	 G			 'go
	 WAIT=4000
	 RE			 'response is 1000
	 E=-E
	 RE			 'response is NOT -1000

Related Command:

A

E

G

P

MP

MV

V

I

246

RETURN
	 Return-From-Subroutine Program Flow Control

APPLICATION: 	 Program execution control

DESCRIPTION: 	 Return subroutine execution to next program
 	 statement following present subroutine call

EXECUTION: 	 Immediate

CONDITIONAL TO: 	 A prior program statement GOSUBn was
 	 performed

LIMITATIONS: 	 Prior to version 4.00 only total of 6 WHILE and 		
 GOSUB permitted at any one time. Version 4.00 			
 supports up to 6 GOSUBS permitted at any one 			
 time.

REPORT COMMAND: 	 N/A

READ/WRITE: 	 N/A

LANGUAGE ACCESS: 	 N/A

UNITS: 	 N/A

RANGE OF VALUES: 	 N/A

TYPICAL VALUES: 	 N/A

DEFAULT VALUE: 	 N/A

FIRMWARE VERSIONS: 	 ALL

DETAILED DESCRIPTION:

The RETURN command is used to terminate a subroutine within a user program.
Upon execution of the RETURN, program execution takes up immediately after the
GOSUB that invoked the subroutine call. RETURN is normally executed from within
the user program, but with care, the HOST terminal may also be used to issue a
RETURN instruction.

The RETURN program locations are stored in memory called a stack. The stack
depth is 6. Do not use more than 6 nested subroutines; if the the stack overflows,
the program may will crash.

Example:
	 PRINT("WAIT FOR HOST TERMINAL COMMANDS",#13)
	 GOSUB10				 'start of subroutine 10
	 PRINT("PROGRAM RECEIVED EXTERNAL RETURN")
	 END
	 C10					 'start of subroutine 10
	 WHILE 1				 'wait for terminal commands	
		 WAIT=100			 'report terminal errors
		 IF Bs
			 PRINT(#13,"SCAN ERROR",#13)
			 Zs
		 ENDIF
	 LOOP
	 RETURN 'return to line just below GOSUB10 command

Related
Command:

C

END

GOSUB

RUN

RUN?

Subroutines
present a great
opportunity to
partition and
organize your
code.

247

RI
	 Report Last-Captured Index Pulse Location

APPLICATION:	 Report command

DESCRIPTION:	 Report latched index position

EXECUTION:	 Immediate

CONDITIONAL TO:	 Index capture

LIMITATIONS:	 N/A

REPORT VALUE:	 I

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 Encoder counts

RANGE OF VALUES:	 -2147483648 to 2147483647

TYPICAL VALUES:	 -2147483648 to 2147483647

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

RI reports the signed value of the latest captured index. No leading zeros are
transmitted and it is followed by an ASCII carriage return. The equivalent PRINT()
command is PRINT(I,#13).

If system flag Bi is 1 a "new" Index value is available. Issuing RI will reset Bi to zero.

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. That is, if the report command
is received through channel 0, the response is sent through channel 0. If the report
command is received through channel 1, the response goes out channel 1.

Example: (Notice PRINT outputs from the following program)
	 A=10			 'buffer a slow velocity mode move
	 V=4000
	 MV
	 E=100			 'small error band
	 G			 'go
	 WHILE Bt
		 RBi
		 IF Bi
			 PRINT("NEW INDEX VALUE ")
		 ELSE
			 PRINT("OLD INDEX VALUE ")
		 ENDIF
		 RI
		 WAIT=400
	 LOOP
	 END

Related Command:

Bi

Bx

I

Rbi

RBx

248

RKA
	 Report Acceleration-Feed-Forward Gain Tuning Value

APPLICATION:	 Report command

DESCRIPTION:	 Report buffered acceleration feed forward gain

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT VALUE:	 KA

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 PID coefficient

RANGE OF VALUES:	 0 to 32767

TYPICAL VALUES:	 0

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

RKA reports the signed value of the buffered PID acceleration feed forward gain value
KA. No leading zeros are transmitted, and it is followed by an ASCII carriage return.
The equivalent PRINT() command is PRINT(KA,#13).

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. That is, if the report command
is received through channel 0, the response is sent through channel 0. If the report
command is received through channel 1, the response goes out channel 1.

The KA gain factor is only applied in position (MP) and velocity (MV) moves. Unlike the
KV gain, the effectiveness of KA is difficult to verify. Future implementation will most
likely be modified. The buffered KA value is not effective until a load filter command
F is issued.

	 RKA 			 'Report present buffered KA

Related Command:

F

KA

KV

249

RKD
	 Report Derivative-Gain Tuning Value

APPLICATION:	 Report command

DESCRIPTION:	 Report buffered differential gain

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT VALUE:	 KD

READ/WRITE:	 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:	 PID coefficient

RANGE OF VALUES:	 0 to 32767

TYPICAL VALUES:	 0	

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 ALL	

DETAILED DESCRIPTION:

RKD reports the signed value of the buffered PID derivative gain value KD. No leading
zeros are transmitted, and it is followed by an ASCII carriage return. The equivalent
PRINT() command is PRINT(KD,#13).

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. That is, if the report command
is received through channel 0, the response is sent through channel 0. If the report
command is received through channel 1, the response goes out channel 1.

	 RKD 			 'Report present buffered KD

Related Command:

F

KI

KL

KP

250

RKG
	 Report Gravitational Compensation Gain Tuning Value

APPLICATION:	 Report command

DESCRIPTION:	 Report buffered gravitational gain

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT VALUE:	 KD

READ/WRITE:	 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:	 PID coefficient

RANGE OF VALUES:	 -8388608 to 8388607

TYPICAL VALUES:	 0	

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 ALL	

DETAILED DESCRIPTION:

RKG reports the signed value of the buffered PID gravity constant KG. No leading
zeros are transmitted, and it is followed by an ASCII carriage return. The equivalent
PRINT() command is PRINT(KG,#13).

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. That is, if the report command
is received through channel 0, the response is sent through channel 0. If the report
command is received through channel 1, the response goes out channel 1.

	 RKG 			 'Report present buffered KG

Related Command:

F

KGON

KGOFF

251

RKI
	 Report Integral-Gain Tuning Value

APPLICATION:	 Report command

DESCRIPTION:	 Report buffered integral gain

EXECUTION:	 Immediate

CONDITIONAL TO:	 Integral limited by KL term

LIMITATIONS:	 N/A

REPORT VALUE:	 KI

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 PID coefficient

RANGE OF VALUES:	 0 to 32767

TYPICAL VALUES:	 0 to 20

DEFAULT VALUE:	 Motor size dependant

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

RKI reports the signed value of the buffered PID integral gain value KI. No leading
zeros are transmitted, and it is followed by an ASCII carriage return. The equivalent
PRINT() command is PRINT(KI,#13).

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. That is, if the report command
is received through channel 0, the response is sent through channel 0. If the report
command is received through channel 1, the response goes out channel 1.

	 RKI 			 'Report present buffered KI

Related Command:

F

KD

KI

KL

KP

252

RKP
	 Report Proportional-Gain Tuning Value

APPLICATION:	 Report command

DESCRIPTION:	 Report buffered proportional gain

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT VALUE:	 KP

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 PID coefficient

RANGE OF VALUES:	 0 to 32767

TYPICAL VALUES:	 40 to 400

DEFAULT VALUE:	 Motor size dependent

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

RKP reports the signed value of the buffered PID proportional gain value KP. No
leading zeros are transmitted, and it is followed by an ASCII carriage return. The
equivalent PRINT() command is PRINT(KP,#13).

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. That is, if the report command
is received through channel 0, the response is sent through channel 0. If the report
command is received through channel 1, the response goes out channel 1.
	
	 RKP 			 'Report present buffered KP

Related Command:

F

KD

KI

KL

KP

253

RKS
	 Report Inertial Time Constant Tuning Value

APPLICATION:	 Report command

DESCRIPTION:	 Report buffered inertial constant

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT VALUE:	 KS

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 PID coefficient

RANGE OF VALUES:	 0 to 255

TYPICAL VALUES:	 1

DEFAULT VALUE:	 1

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

RKS reports the signed value of the buffered PID sample rate modifier KS. No leading
zeros are transmitted, and it is followed by an ASCII carriage return. The equivalent
PRINT() command is PRINT(KS,#13). A value of KS=0 is functionally equivalent to
a KS=1.

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. That is, if the report command
is received through channel 0, the response is sent through channel 0. If the report
command is received through channel 1, the response goes out channel 1.

	 RKS 			 'Report present buffered KS

Related Command:

F

KD

KI

KL

KP

254

RKV
	 Report Velocity-Feed-Forward Tuning Value

APPLICATION:	 Report command

DESCRIPTION:	 Report buffered velocity feed forward gain

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT VALUE:	 KV

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 PID coefficient

RANGE OF VALUES:	 0 to 32767

TYPICAL VALUES:	 0 to 400

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

RKV reports the signed value of the buffered PID velocity feed forward value KV.
No leading zeros are transmitted, and it is followed by an ASCII carriage return. The
equivalent PRINT() command is PRINT(KV,#13)

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. That is, if the report command
is received through channel 0, the response is sent through channel 0. If the report
command is received through channel 1, the response goes out channel 1.

KV is very useful to fine tune long constant velocity trajectory profiles. Changes in KV
are not updated until the load PID filter F command is issued.

	 RKV 			 'Report present buffered KV

Related Command:

F

KA

KV

255

RP
	 Report Real Time Position

APPLICATION:	 Report command

DESCRIPTION:	 Report current position

EXECUTION:	 Next PID sample

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT VALUE:	 @P

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 Encoder counts

RANGE OF VALUES:	 -2147483648 to 2147483647

TYPICAL VALUES:	 -2147483648 to 2147483647

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

RP is the fundamental command to position data. RP reports the real time value of the
primary encoder counter @P. No leading zeros are transmitted and it is followed by
an ASCII carriage return. The equivalent PRINT() command is PRINT(@P,#13).

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. That is, if the report command
is received through channel 0, the response is sent through channel 0. If the report
command is received through channel 1, the response goes out channel 1.

Do not confuse RP with PRINT(P). RP returns the present position, whereas PRINT(P)
returns the latest P=expression buffered requested absolute target position value.
Notice also, ENC1 changes the encoder position signal source from the default internal
encoder to the external encoder inputs.
	 RP 			 'Report present shaft position

Related Command:

@P

@E

P

256

RPE
	 Report Real-Time Position Error

APPLICATION:	 Report command

DESCRIPTION:	 Report position error

EXECUTION:	 Next PID sample

CONDITIONAL TO:	 Servo active

LIMITATIONS:	 Torque mode has zero position error

REPORT VALUE:	 @PE		

READ/WRITE:	 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:	 Encoder counts

RANGE OF VALUES:	 -E to E

TYPICAL VALUES:	 -E to E	

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 ALL	

DETAILED DESCRIPTION:

RPE reports the signed value of the instantaneous position error @PE. No leading
zeros are transmitted and it is followed by an ASCII carriage return. The equivalent
PRINT() command is PRINT(@PE,#13).

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. That is, if the report command
is received through channel 0, the response is sent through channel 0. If the report
command is received through channel 1, the response goes out channel 1.

Related Command:

E

G

@PE

257

Example: (measure motion settling time)

	 O=0					 'set current shaft position as origin
	 P=20000	 'set target position
	 V=1000000	 'set velocity
	 A=100		 'set acceleration
	 G		 'Go/start motion
	 WHILE Bt
	 LOOP			 'wait for trajectory complete
	 a=CLK			 'read the clock into variable 		
				 '"a". Clock measured in servo 		
				 'samples 4069 servo samples =1second.
	 GOSUB5		 'observe settling motion
	 END
	 C5					 'subroutine label 5
	 IF @PE GOTO10 ENDIF 		 'de-bounce position error
	 IF @PE GOTO10 ENDIF
	 IF @PE GOTO10 ENDIF
	 IF @PE GOTO10 ENDIF
	 t=CLK-a		 'Store clock into variable t
				 'measure settling time
	 PRINT(#13,"DECLARED AS SETTLED")
	 PRINT(#13,"SETTLING TIME ")
	 GOSUB20 PRINT(".")
	 GOSUB20 PRINT(" seconds")
	 RETURN
	 C10						 'subroutine label 10
		 PRINT(#13,"POSITION ERROR ")
		 RPE			 'report position error
	 GOTO5
	 C20				 'Subroutine label 20.
					 'perform 	 long divide
		 s=t/4069
		 PRINT(s)
		 p=s*4069
		 r=t-p
		 t=10*r
	 RETURN

END

RPE (continued)
	 Report Real-Time Position Error

Related
Command:

E

G

@PE

258

RS
	 Report 8-Bit System Status Byte

APPLICATION:	 Report command

DESCRIPTION:	 Report motor status bits

EXECUTION:	 	 Immediate

CONDITIONAL TO:	 N//A

LIMITATIONS:		 N/A

REPORT VALUE:	 S		

READ/WRITE:	 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:		 	 8 motor status bits

RANGE OF VALUES:	 0 to 255

TYPICAL VALUES:	 0 to 255	

DEFAULT VALUE:	 128 =- Motor OFF

FIRMWARE VERSIONS:	 ALL		

DETAILED DESCRIPTION:

RS reports the unsigned value of the present SmartMotor™ status byte S. No leading
zeros are transmitted and it is followed by an ASCII carriage return. The equivalent
PRINT() command is PRINT(S,#13). As does RW, RS resets the Bh, Bl, and Br flag
values to zero.

A summary of S, the motor status byte, is:

	 Bo		 Motor OFF						 Status flag 7

	 Bh		 Excessive temperature		 Status flag 6 	 reset by RS, RW

	 Be		 Excessive position error		 Status flag 5

	 Bw		 Encoder wrap around			 Status flag 4

	 Bi		 Index report available			 Status flag 3 	reset by RI

	 Bl		 Historical negative limit		 Status flag 2 	 reset by RW, RS

	 Br		 Historical positive limit		 Status flag 1 	reset by RW, RS

	 Bt	 	 Trajectory in progress			 Status flag 0

In versions 4.15, 4.75, 4.41 and later, this has been changed to report through the
current active serial channel and not just the primary port. That is, if the report command
is received through channel 0, the response is sent through channel 0. If the report
command is received through channel 1, the response goes out channel 1.

Related Command:

RPW

RW

259

Example:
	 O=10000			 'Set current shaft position
					 'as position 10000, set up move
	 P=0
	 A=222
	 V=33333
	 MP
	 G				 'go
	 WHILE Bt
		 GOSUB5 		 'monitor for status change
	 LOOP
	 PRINT(#13,"FINAL REPORT",#13)
	 GOSUB5			 'final report
	 END
	 C5				 'subroutine 5
	 PRINT(#13,"STATUS BYTE VALUE ") RS
	 IF S&32	 'logical AND status byte "S"
			 'and position error status bit (0010 0000)
		 PRINT(#13,"POSITION ERROR !!!")
	 ENDIF
	 IF S&16	 'logical AND status byte "S"
			 'and wraparound status bit 	 (0001 0000)
		 PRINT(#13,"WRAP AROUND !!!")
	 ENDIF
	 IF S&1	 'logical AND status byte "S"
			 'and trajectory error status bit (0000 0001)
		 PRINT(#13,"TRAJECTORY IN PROGRESS")
	 ENDIF
	 RETURN

Related
Command:

RPW

RW

RS (continued)
	 Report 8-Bit System Status Byte

260

RS2
	 Restore Port G normal control

APPLICATION:	 I/O Control

DESCRIPTION:	 Restore PIN G I/O to default

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT COMMAND:	 N/A

READ/WRITE:	 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:	 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 N/A	

DEFAULT MODE:	 RS-232		

FIRMWARE VERSIONS:	 3.4x and higher

DETAILED DESCRIPTION:

The RS2 puts the SmartMotor™ primary serial port into its default operating mode,
RS232. The command is commonly used to put the primary serial port into RS232
mode after being previously put into RS485 mode with RS4. Among other things, RS4
dedicates the I/O pin G to make the primary full-duplex RS232 channel a half-duplex
RS485 channel. RS2 frees the I/O G pin for general purpose use.

RS2 is also an argument in the OCHN command, used to put the target serial port in
RS232 mode.

Related Command:

CCHN

OCCHN

RS4

261

RS4
	 Set Port G to RS-485 R/W Control Pin

APPLICATION:	 I/O Control

DESCRIPTION:	 PIN G is set to support RS485

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 ECHO_OFF

REPORT COMMAND:	 N/A

READ/WRITE:	 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:	 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 N/A	

DEFAULT MODE:	 RS232		

FIRMWARE VERSIONS:	 3.4x and higher	

DETAILED DESCRIPTION:

The RS4 command puts the primary serial port into RS485 mode. This allows
you to use a RS232 to RS485 adapter, like the Animatics RS485 or RS485-ISO,
on the primary serial port. As RS485 is half duplex and RS232 is full duplex,
RS4 dedicates the I/O pin G to control the direction of RS485 data. This is
required for use with Animatics RS232 to RS485 converters like the RS485 and
RS485-ISO. When using one of these adapters, you must ensure that the I/O
G pin is configured as a TTL output with the UGO command before the channel
is opened.

Note: RS4 should only be used when the RS485ISO
communications adapter is being used.

Related
Command:

CCHN

ECHO

ECHO_OFF

OCCHN

RS2

262

RSP
	 Report CPU speed and Firmware Revision

APPLICATION:	 Report command

DESCRIPTION:	 Report PID sample period and Firmware Revision

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT STRING:	 ASCII alphanumeric string

READ/WRITE:	 Read only		

LANGUAGE ACCESS:	 N/A	

UNITS:	 ASCII string

RANGE OF VALUES:	 Firmware version dependant

TYPICAL VALUES:	 N/A		

DEFAULT VALUE:	 N/A

FIRMWARE VERSIONS:	 ALL	

DETAILED DESCRIPTION:

The report command RSP returns a five digit value of the PID sample period,
followed by an ASCII string code representing firmware version. For versions
4.0 and higher, this basic sample rate is associated with the command PID1. The
following is a table of firmware releases and RSP responses at the time of this
printing:

The PID sample period, in microseconds, is the five digit number/100.

All version 4XX series motors respond in t form of:

24576/(firmware revision)

Example when sent to anSM2315D with 4.40c firmware.:

 RSP 24576/440C

Related Command:

PID1

PID2

PID4

PID8

263

RT
	 Report Commanded Torque Value

APPLICATION:	 Report command

DESCRIPTION:	 Report torque request

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT VALUE:	 T

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 Encoder counts

RANGE OF VALUES:	 -1023 to 1023

TYPICAL VALUES:	 -1000 to 1000

DEFAULT VALUE:	 1000

FIRMWARE VERSIONS:	 <v4.95

DETAILED DESCRIPTION:

RT reports the value of the mode torque output value T. No leading zeros are
transmitted and it is followed by an ASCII carriage return. The equivalent PRINT()
command is PRINT(T,#13).

Example: (this demonstrates the Severe Warning label in the margin)
	 T=33				 'Test only with open shaft, 			
				 'setting torque value
	 MT				 'set torque mode
	 WAIT=4000			 'wait about 1 second
	 PRINT("TORQE VALUE ")
	 RT	 'report torque requested
	 MD50 	'use analog voltage input to control torque 			
	 'control mode. Potentiometer placed on I/O pin A. 			
'Voltage of 0V equates to t=-1023
		 'and 5 V equates to T=1023
	 WAIT=4000
	 PRINT("TORQE VALUE ") RT
	 WAIT=4000
	 MT				 'Effect: torque request of 33
					 'has been destroyed
	 PRINT("ISSUED MT")
	 WAIT=4000
	 T=33

Related Command:

MT

SEVERE
WARNING:

If MT follows
MD50, issue OFF
and T=expression
before the MT
command.

264

RUN
	 Start/Re-Start Program Execution

APPLICATION:	 Program execution control

DESCRIPTION:	 Execute user EPPROM program beginning at 	
initial command

EXECUTION:	 Immediate

CONDITIONAL TO:	 No effect if no EEPROM program exists

LIMITATIONS:	 Valid EEPROM stored program commands

REPORT COMMAND:	 UP and UPLOAD

READ/WRITE:	 EEPROM source

LANGUAGE ACCESS:	 N/A

UNITS:	 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 N/A

DEFAULT:	 RUN at power recycle, or software reset

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

The RUN command will start a stored (downloaded) user EEPROM program.

 Issuing a RUN command does not reset any motion, variable or I/O states.

It does reset the program execution pointer (Stack Pointer) to zero, and resets the
internal GOSUB stack.

To test your program with a truly "fresh" start use the Z command to completely reset
the motor as if it were newly powered up.

If a program exists within the SmartMotor™ user EEPROM it will automatically be
run every time the motor is turned on.

To prevent this, make RUN? the first program statement of your user program, or if
you wish, place RUN? anywhere in your program. Upon encountering a RUN? the
program interpreter, execution machine, recalls whether or not the RUN command
was previously issued, and if RUN was not issued, program execution ceases. This
is similar to to encountering an END statement, except that a subsequent RUN com-
mand causes the program to take up after the RUN? statement.

Version 4 SmartMotors provide an abort facility to prevent auto-execution of stored
program. In version 4.0, 4.10 through 4.13 and 4.2 SmartMotors, the stored program
is aborted if any recognizable serial character is received during the first 500 mil-

Related Command:

END

RUN?

265

liseconds after power up or reset. In versions 4.15, 4.75 and onwards, the
stored program is aborted if the serial character string "EE", or subset "EE"
of "EEEEEEEEEEEE …." during the first 500 milliseconds after power up or
reset.

Example: (user program with possible halt)
	 PRINT(" LOADING TRAJECTORY")
	 A=100
	 V=1000000
	 P=1000000
	 MP
	 PRINT(" Type RUN to start",#13	 'Prompt user for 		
				 "RUN" command
	 RUN?		 'Run command requested. Stop program 		
			 'execution until "RUN" command is received.
	 PRINT(" EXECUTING TRAJECTORY")
	 G
	 END

RUN (continued)
	 Start/Re-Start Program Execution

Related
Command:

END

RUN?

266

Related
Command:

END

RUN

APPLICATION:	 Program execution control

DESCRIPTION:	 Halt execution of user program commenced 	 without
RUN

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT COMMAND:	 N/A

READ/WRITE:	 Valid via serial communication or program read

LANGUAGE ACCESS:	 N/A	

UNITS:	 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 N/A	

DEFAULT:	 Halts programs automatically started at power up

FIRMWARE VERSIONS:	 ALL	

DETAILED DESCRIPTION:

If a program exists within the SmartMotor™ user EEPROM it will automatically run
every time the motor is turned on. To prevent this make RUN? the first program
statement of the user program, or place RUN? anywhere in the program. When
RUN? is encountered the program interpreter, execution machine, recalls whether or
not the RUN command was previously issued, and if RUN was not issued, program
execution ceases. This is similar to to encountering an END statement, except that
a subsequent RUN command causes the program to take up after the RUN? state-
ment.

RUN? does not terminate the present motion mode or trajectory, change motion
parameters such as E, A, V, and KP, or alter the present value of the user vari-
ables.

RUN? may be issued externally through the serial channel. It can distinguish motors
which have suffered a power reset or software reset Z from those motors in a daisy
chain which have not performed a reset..

Example:
	 GOSUB1 	 'always execute subroutine 1 upon any reset
	 GOSUB2	 'always execute subroutine 2 upon any reset	

	 PRINT("Type RUN to start",#13)	 'Prompt user for
							 'RUN command

	 RUN?		 'Halt program execution until
			 'RUN command is received

	 GOSUB3	 'conditionally execute subroutine 3
	 END

RUN?
	 Halt Program Execution until RUN Received

The program will
only begin when
explicitly told to
run by a "RUN"
command sent by
a host.

267

APPLICATION: Report command

DESCRIPTION: Report current velocity

EXECUTION: Next PID sample

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT VALUE: @V	

READ/WRITE: N/A		

LANGUAGE ACCESS: N/A	

UNITS: Scaled encoder counts/sample

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: -3200000 to 3200000	

DEFAULT VALUE: 0

FIRMWARE VERSIONS: ALL

DETAILED DESCRIPTION:

RV reports the signed 32 bit value of the current trajectory velocity @V. It is not the
actual velocity, but what the velocity is supposed to be at the time the RV command
was executed. No leading zeros are transmitted and it is followed by an ASCII car-
riage return. The equivalent PRINT() command is PRINT(@V,#13).

Example: (monitor acceleration ramp)
	 O=0			 'set up a velocity move
	 E=4000
	 A=10
	 v=4000000
	 V=v
	 MV
	 G
	 WHILE @V<v		 'monitor velocity while 	
		 IF Be 		 'accelerating
			 BREAK 	 'exit if position error	
		 ENDIF
		 GOSUB5		 'report trajectory velocity
	 LOOP
	 GOSUB5			 'final report
	 END
	 C5
	 PRINT(" VELOCITY ")
	 RV				 'report trajectory
	 WAIT=4000			 'commanded velocity request
	 RETURN

Related
Command:

@V

V

RV
	 Report Current Trajectory Velocity

268

APPLICATION: 	 Report command

DESCRIPTION: 	 Report extended motor status flags

EXECUTION:	 	 Immediate

CONDITIONAL TO: 	 N/A

LIMITATIONS:	 	 N/A

REPORT VALUE: 	 N/A

READ/WRITE: 	 Report only

LANGUAGE ACCESS:	 None

UNITS:		 	 16 motor status bits

RANGE OF VALUES:	 **

TYPICAL VALUES: 	 **

DEFAULT VALUE: 	 128 = Motor OFF

FIRMWARE VERSIONS:	 4.00 and higher 	

DETAILED DESCRIPTION:

RW reports the unsigned value of the present SmartMotor™ status word W. No leading
zeros are transmitted and it is followed by an ASCII carriage return. The equivalent
PRINT() command is PRINT(W,#13). As does RS, RW resets the Bh, Bl, and Br flag
values to zero.

A summary of W, the motor status word, is:
	 Bk		 EEPROM checksum failure		 bit 15
	 Ba		 AMPS over current latch			 bit 14
	 Bs	 	 Syntax error						 bit 13
	 Bu	 	 Array index range error			 bit 12
	 Bd	 	 Math overflow error				 bit 11
	 Bm		 Real time negative limit active		 bit 10
	 Bp	 	 Real time positive limit active		 bit 9	
	 Bx	 	 Real time index report			 bit 8		
	 Bo		 Motor OFF						 bit 7
	 Bh		 Excessive temperature			 bit 6 	 reset by RPW, RW, RS
	 Be		 Excessive Position error			 bit 5
	 Bw	 	 Position wrap around				 bit 4
	 Bi	 	 Historical index report latched		 bit 3 	 reset by RI, bit 3
	 Bl	 	 Historical negative limit			 bit 2 	 reset by RPW, RW, RS
	 Br	 	 Historical positive limit			 bit 1 	 reset by RPW, RW, RS
	 Bt	 	 Trajectory in progress			 bit 0

If RW is reported the historical limit and overheat flags are immediately reset after
the request command operation is completed. The value W cannot be assigned to a
variable.

Related Command:

RPW

RW

RW
	 Report System 16-Bit Status Word

Whoops, some
more of those pesky
asterisks that don't
seem
to go anywhere

269

S (as command)
	 Stop Motion Quickly

APPLICATION:	 		 Motion mode control

DESCRIPTION:	 		 Abruptly stop motor motion

EXECUTION:		 		 Immediate

CONDITIONAL TO:		 E value

LIMITATIONS:	 		 If position error exceeds E, motor will shut off and 		
				 coast to a stop

REPORT COMMAND:	 N/A

READ/WRITE:			 N/A	

LANGUAGE ACCESS:	 N/A	

UNITS:	 				 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 	 N/A	

DEFAULT VALUE:	 	 N/A

FIRMWARE VERSIONS:	 ALL	

DETAILED DESCRIPTION:

The S command causes an emergency stop. It does not turn the motor off, rather it
sets the target position at the current position. The resulting commanded motion will
be very abrupt. In some cases it will be so abrupt that the amplifier can over current
or the servo error can exceed the maximum allowable error set by the E command.
This will, in turn, cause the motor to be turned off and coast. Consequently, careful
use of the S command is vital. Following S, the motion mode is position mode, unless
a position error is created, regardless of the mode it was in before. The response to
RMODE will be "R." If the motion that was stopped was a Mode Position move, the
previous target P or D values are still retained.

Example:

	 A=100
	 V=1000000
	 P=5000000
	 G
	 WHILE Bt
	 IF UAI 		 'E-stop if PIN A high
	 S 				 'Stop Abruptly
	 PRINT("Emergency Stop")
	 ENDIF
	 LOOP

Related Command:

A

D

E

G

MP

MV

P

X

Caution

Careful use of
the S command
is vital.

270

APPLICATION:	 		 Program execution control

DESCRIPTION:	 		 Fetch primary motor status flags

EXECUTION:		 		 Immediate

CONDITIONAL TO:		 N/A

LIMITATIONS:	 		 N/A

REPORT COMMAND:	 RS

READ/WRITE:			 Read only

LANGUAGE ACCESS:	 Expressions and conditional testing

UNITS:	 				 Status byte

RANGE OF VALUES:	 0 to 255

TYPICAL VALUES:	 	 0 to 255

DEFAULT VALUE:	 	 128= Motor OFF

FIRMWARE VERSIONS:	 4.00 and higher

DETAILED DESCRIPTION:

S is the value of the primary motor status byte, composed of 8 system flags states.
The individual meaning of each flag is as follows:

	 Bo		 Motor OFF					 bit 7
	 Bh		 Excessive temperature		 bit 6 	 reset by access S
	 Be		 Excessive position error		 bit 5
	 Bw		 Encoder wrap around			 bit 4
	 Bi		 Index report available			 bit 3	 reset by access I
	 Bl		 Historical negative limit		 bit 2	 reset by access S
	 Br		 Historical positive limit		 bit 1	 reset by access S
	 Bt		 Trajectory in progress			 bit 0

If S is reported, accessed or assigned, the historical bits, Bl and Br, are reset after
the requested operation is completed. S may be monitored or periodically tested to
check for unexpected conditions. If you are going to test S for various flag values,
read S into a variable to avoid losing historical data and states. Since S reflects sys-
tem states it is read only; S=expression is invalid; it will be ignored but it will cause
a syntax error and set the extended system flag Bs.

S (as status byte)
	 8-Bit System Status Byte

Related Command:

RPW

RS

RW

271

S (as status byte) (continued)
	 8-Bit System Status Byte

Related
Command:

RPW

RS

RW

Example:
	 O=10000			 'set up move
	 P=0
	 A=222
	 V=33333
	 MP
	 G				 'go
	 WHILE Bt
		 GOSUB5 		 'monitor for status change
	 LOOP
	 PRINT(#13," FINAL REPORT",#13)
	 GOSUB5			 'final report
	 END
	 C5
	 ss=S				 'READ VALUE ONCE
					 'to record historical latches 	
					 'before reset !	
	 PRINT(#13," STATUS BYTE VALUE ", ss)
	 IF ss&32
		 PRINT(#13," POSITION ERROR !!!")
	 ENDIF
	 IF ss&16
		 PRINT(#13," WRAP AROUND !!!")
	 ENDIF
	 IF ss&1
		 PRINT(#13," TRAJECTORY IN PROGRESS")
	 ENDIF
	 RETURN

272

SADDR#
	 Set Motor Address

APPLICATION: Serial communication control

DESCRIPTION: Set motor address

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: N/A

READ/WRITE: N/A

LANGUAGE ACCESS: Expression and conditional testing via ADDR	

UNITS: Number

RANGE OF VALUES: 1 to 120

TYPICAL VALUES: 1 to 4

DEFAULT VALUE: 0= global address

FIRMWARE VERSIONS: ALL

DETAILED DESCRIPTION:

The SADDR{value} command is used to set the unit address of a SmartMotor™,
where "value" is an integer between 0 and 100. Separate addresses allow multiple
SmartMotors to share a common communication channel and still differentiate them-
selves.

The SADDR command is typically one of the first commands in a downloaded pro-
gram. In an RS-485 network, where all communications go over the same two parallel
wires, the SADDR command must be in the program, whereas in an RS-232 network,
where communications travel from one motor to the next, addressing can be accom-
plished from a host, or master motor.

The address can be from 0 to 100. If it is zero, the motor will have no unique address.
Address 0 is the global address; it is used to talk to all motors on a network at once.

Example:
	 SADDR1 			 'Set address to 1

When given a non-zero address, a SmartMotor begins to listen to commands after it
receives its own unique address or the global address byte from the network. There
is no need to repeat the address byte with subsequent commands intended for the
same motor. The particular SmartMotor will continue to listen to commands until it
receives a different address byte, after which commands are ignored. The echo func-
tion of the SmartMotor is not affected by the addressed state. That is, if told to echo, a
SmartMotor will continue to echo, regardless of whether it is listening to commands.

Continued n next page:

Related
Command:

ADDR

273

SADDR# (continued)
	 Set Motor Address

EXAMPLE:
'Example Auto Addressing for 4 SmartMotors™ via SADDR command
'on an RS-232 Daisy chain
'This program code would be run at the same time
'in all motors on the chain at power-up.

ECHO						 ' Enable ECHO mode
a=1						 ' User variable "a" to set
address.
WAIT=2000				 ' Wait about 1/2 second to allow
power-up to each motor
PRINT(#128,"a=a+1 ",#13)	 'Print downstream to each motor
WAIT=2000				 ' Wait about 1/2 second for each motor
to ECHO
						 ' through the same string to the
next motor

'Note: At this point, each motor will have run the exact same code
'causing successive motors downstream to receive the same command
string
'from the number of motors upstream.

SWITCH a					 ' Check he value of "a"
	 CASE 1
		 SADDR1			 ' Set Address to 1
		 GOSUB10
	 BREAK
	 CASE 2
		 SADDR2			 ' Set Address to 2
		 GOSUB20
	 BREAK

	 CASE 3
		 SADDR3			 ' Set Address to 3
		 GOSUB30
	 BREAK

	 CASE 4
		 SADDR4			 ' Set Address to 4
		 GOSUB40
	 BREAK
ENDS

END

C10 'MOTOR 1 CODE

RETURN
C20 'MOTOR 2 CODE

RETURN
C30 'MOTOR 3 CODE

RETURN
C40 'MOTOR 4 CODE

RETURN

Related
Command:

ADDR

274

SILENT
	 Silence Primary Port Outgoing Communications

APPLICATION:	 Serial communication control

DESCRIPTION:	 Motor prevented from sending channel 0 			
responses to commands

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT COMMAND:	 N/A

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A	

UNITS:	 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 N/A	

DEFAULT VALUE:	 TALK0 state

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

The SILENT command causes the SmartMotor™ to suppress all internally originating
serial communication messages intended for the channel 0 primary port. It does
not prevent the SmartMotor from sending messages in response to incoming serial
report commands from the host, and it does not interfere with ECHOing received
serial communication over channel 0.

This command is most commonly used when sending a new program to an individual
SmartMotor mounted in a networked system. In order to guarantee that the program
arrives as sent, it is required that all other motors in the array be silent during
download.

The TALK command negates the effect of SILENT and restores the motor's primary
port to it's default state of operation.

Related
Command:

TALK

TALK1

SILENT1

These commands
are almost always
sent from a host,
rather than existing
within a program.

275

APPLICATION:	 Serial communication control

DESCRIPTION:	 Motor prevented from sending channel 1 			
responses to commands

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT COMMAND:	 N/A

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A	

UNITS:	 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 N/A	

DEFAULT VALUE:	 TALK1 state

FIRMWARE VERSIONS:	 4.0 and later

DETAILED DESCRIPTION:

The SILENT1 command causes the SmartMotor™ to suppress all internally originating
serial communication messages intended for the channel 1 secondary port. It does
not prevent the SmartMotor from sending messages in response to incoming serial
report commands from the host..

This command is most commonly used when sending a new program to an individual
SmartMotor mounted in a networked system. In order to guarantee that the program
arrives as sent, it is required that all other motors in the array be silent during
download.

The TALK1 command negates the effect of SILENT1 and restores the motor's
secondary port to it's default state of operation.

Related
Command:

TALK

TALK1

SILENT

SILENT1
	 Silence Secondary Port Outgoing Communications

276

SIZE=expression
	 Set Number of CAM Table Data Points

APPLICATION: Mode CAM control

DESCRIPTION: Number a data entries for CAM Mode

EXECUTION: Buffered pending MC and G commands

CONDITIONAL TO: N/A

LIMITATIONS: SIZE < BASE

REPORT COMMAND: None

READ/WRITE: Write only		

LANGUAGE ACCESS: Assignment only	

UNITS: Encoder counts

RANGE OF VALUES: 0 to 32767

TYPICAL VALUES: 0 to 100	

DEFAULT VALUE: 0

FIRMWARE VERSIONS: 4.00 and higher	

DETAILED DESCRIPTION:

The SmartMotor™ performs a practical cam application by partitioning the required
cam trajectory definition into a number of linearly interpolated segments. The vari-
able SIZE stores the number of segments.

The segments are required to partition the BASE into a set of equally spaced
intervals. For example; if BASE=1000 and SIZE=50, each segment will then be 20
counts wide (BASE/SIZE).

The cam motion is then defined by providing the required SmartMotor positions
corresponding to CTR=0, 20, 40, 60, . . . 940, 960, 980 and 1000. If the motion is
truly periodic the required position at CTR=0 will be identical to the required position
at CTR=1000. The set of required positions are to be entered into the aw[] array,
beginning at aw[0] and ending with aw[SIZE]. It is simplest to define the cam using
position at CTR=0 to be encoder position 0 by issuing MF0 and O=0 commands.

Related Command:

BASE

G

MC

277

Example:

A "saw tooth" cam with periodic motion every 2000 external encoder counts
and the motion interpolation divided into 25 (equal) segments.

BASE=2000 	'Cam period
SIZE=25	 'data segments (number of data points in table)
'CTR data interval = BASE/SIZE = 2000/25 = 80
'CAM motor will be at Data position every 80
'Master encoder counts:
'CTR=0, CTR=80, CTR=160,.... CTR=1840, CTR=1920, CTR=2000
'Now assigning data values beginning with aw[0]:
aw[0] 0 10 20 30 40 50 60 70 80 90 100.
aw[20] 110 120 120 110 100 90 80 70 60.
aw[19] 50 40 30 20 10 0.
MF4	 'reset external encoder to zero
O=0	 'reset internal encoder position	
MC	 'buffer CAM Mode
G	 'start following the external encoder using cam data

The motor will now begin following the External (Master) encoder via the defined
CAM profile above.

SIZE=expression (continued)
	 Set Number of CAM Table Data Point

Related
Command:

BASE

G

MC

278

SLEEP
	 Ignore Incoming Commands on Primary Port

APPLICATION: Serial communication control

DESCRIPTION: Motor prevented from executing channel 0 			
commands

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: Illegal with a user program

REPORT COMMAND: N/A

READ/WRITE: N/A

LANGUAGE ACCESS: N/A	

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A	

DEFAULT VALUE: WAKE state

FIRMWARE VERSIONS: ALL

DETAILED DESCRIPTION:

The SLEEP command is used to put a SmartMotor™ into Sleep Mode with respect
to channel 0 serial commands. While in Sleep Mode, a SmartMotor will continue to
echo (if in ECHO mode) all characters received over the network, but will ignore all
commands other than a WAKE command. A sleeping SmartMotor will also ignore
a G-line input "go" request, but will be responsive to other input’s dedicated func-
tions.

The most common use of the SLEEP command is to keep daisy-chained SmartMotors
from responding to commands in a program which is being downloaded to another
SmartMotor™ in the same chain.

If a program is running when a SmartMotor receives the SLEEP command, the pro-
gram will continue to run. Messages originating from within the running program of a
sleeping SmartMotor will be transmitted unless the motor is also in SILENT mode.

SLEEP may be issued from the terminal or within a user program. SLEEP mode is
terminated by the WAKE command.

Related Command:

SLEEP1

WAKE

WAKE1

The SLEEP and
WAKE commands
are only sent from
a host, never part
of a SmartMotor™
program.

279

SLEEP1
	 Ignore Incoming Commands on Secondary Port

APPLICATION:	 Serial communication control

DESCRIPTION:	 Motor prevented from executing channel 1 	
commands

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 Illegal with a user program

REPORT COMMAND:	 N/A

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A	

UNITS:	 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 N/A	

DEFAULT VALUE:	 WAKE1 state

FIRMWARE VERSIONS:	 4.00 and higher

DETAILED DESCRIPTION:

The SLEEP1 command is used to put a SmartMotor™ into Sleep Mode with respect
to channel 1 serial commands. When in Sleep Mode, a SmartMotor will continue to
echo (if in ECHO1 mode) all characters received over the network, but will ignore all
commands other than a WAKE1 command. A sleeping SmartMotor will also ignore a
G-line input "go" request, but will be responsive to other input’s dedicated functions.

The most common use of the SLEEP1 command is to keep SmartMotors in a
daisy-chain from responding to commands imbedded in a program which is being
downloaded to another SmartMotor in the same chain.

If a program is running when a SmartMotor™ receives the SLEEP1 command, the
program will continue to run. Messages originating from within the running program
of a sleeping SmartMotor will be transmitted unless the motor is also in SILENT1
mode.

SLEEP1 may be issued from the terminal or within a user program. SLEEP1 mode
is terminated by the WAKE1 command.

Related Command:

SLEEP

WAKE

WAKE1

280

STACK
	 Clear Stack Pointer Register

APPLICATION:	 Program execution control		

DESCRIPTION:	 Reset user program subroutine return stack

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 Prior to version 4.00 a total of 6 WHILE and 	 GOSUB 	
	 statements are permitted at one time.

	 Version 4.00 supports up to 6 GOSUB statements 	
	 at one time.

REPORT COMMAND:	 N/A

READ/WRITE:	 N/A			

LANGUAGE ACCESS:	 N/A	

UNITS:	 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 N/A	

DEFAULT VALUE:	 Return STACK empty

FIRMWARE VERSIONS:	 4.00 and higher	

DETAILED DESCRIPTION:

STACK empties the queue of pending (GOSUB) RETURN addresses.

In order to execute the RETURN program statement, the processor needs to be able
to recall the program address point to which it should return. These addresses are
stored within a region called a "stack".

A maximum of six address locations can be stored within the stack. This means
that if a seventh GOSUB is called prior to any intervening RETURN statements, the
stack will overflow and the program execution may fail. The stack region is managed
using a pointer to the presently effective return address storage location. The STACK
command directly resets this pointer to its initial condition. So the STACK command
clears all RETURN addresses in the stack queue.

Note: Since Issuing STACK will cause any RETURN command to follow to be ignored
, proper program flow via GOTO commands or otherwise should be used to prevent a
memory mapping error. Care should be taken when the STACK command is used.

Since GOSUB command may be issued serially to the Smartmotor, it may be possible
to overflow the stack regardless of the downloaded program code. The STACK
can be issued via serial communications as well to permit the program execution to
continue without concern for "how did we get here?". However, it is not recommended
since full knowledge of what lin of code the motor may be running at the time wuuld
not be known.

Related Command:

END

GOSUB

RUN

RUN?

Are there any
WHILE statements
in version 4.00?

281

STACK (continued)
	 Clear Stack Pointer Register

Related
Command:

END

GOSUB

RUN

RUN?

Example:

	 C0
	 GOTO1

	 C7
	 PRINT(#13, "NO PROGRAM CRASH")
	 RETURN

	 END
	 GOSUB1
	 C1 GOSUB2
	 C2 GOSUB3
	 C3 GOSUB4
	 C4 GOSUB5
	 C5 GOSUB6		 'sixth GOSUB without return
	 C6
	 STACK 		 'reset internal stack
	 GOSUB7		 'allowing a seventh GOSUB
	 PRINT(#13,"RETURN FROM GOSUB7 OK")
	 END

The example above is not a good way to write code. It is just a means to
explain where the STACK command would be used to prevent program
crashes.
Often times, the STACK command is used after an error or motor protection
fault is detected. Then immediately after the STACK command, either RUN,
END or GOTO(location near top of program) is issued to recover.

282

SWITCH expression
	 Selectable Program Flow Control

APPLICATION:	 Program execution control	

DESCRIPTION:	 Multiple choice branch for program execution

EXECUTION:	 Immediate	

CONDITIONAL TO:	 N/A

LIMITATIONS:	 Can only be executed from within user program

REPORT COMMAND:	 N/A

READ/WRITE:	 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:	 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 N/A	

DEFAULT VALUE:	 N/A

FIRMWARE VERSIONS:	 4.00 and higher	

DETAILED DESCRIPTION:

The SWITCH command allows program flow control based on specific integer values
of an expression or specific parameter or variable..

At execution runtime the program interpreter evaluates the SWITCH expression value
and then tests the CASE numbers for a equal value in the order written in the program.
If the expression value does not equal the CASE number, the next CASE statement is
evaluated. If the expression value does equal the CASE number, program execution
continues with the command immediately after. The execution time is similar to the
equivalent IF expression control block. This means placing the most likely CASE
values at the top of the CASE list will yield the faster average program execution time.
The DEFAULT entry point is used if no CASE number is equals the expression value;
it is executed last. If no CASE number equals the value of the SWITCH expression
and there is no DEFAULT case, program execution passes through the SWITCH to
the ENDs without performing any commands.

If a BREAK is encountered, program execution branches to the instruction or label
following the ENDs of the SWITCH control block. BREAK can be used to isolate
CASEs. Without BREAK, the CASE number syntax is transparent and program
execution continues at the next instruction. That is, you will run into the next CASE
number code sequence.

Each SWITCH control block must have at least one CASE number defined plus one,
and only one, ENDS statement. SWITCH is not a valid terminal command, it is only
valid within a user program.

Related Command:

BREAK

CASE number

DEFAULT

ENDS

283

Consider the following code fragment:
	 SWITCH v
		 CASE 1
			 PRINT(" v = 1 ",#13)
			 BREAK
		 CASE 2
			 PRINT(" v = 2 ",#13)
			 BREAK
		 CASE -23
			 PRINT(" v = -23 ",#13)
			 BREAK
		 DEFAULT
			 PRINT("v IS NOT 1,2 OR -23",#13)
		 BREAK									
	 ENDS

The first line, SWITCH v, lets the SmartMotor™ know that it is checking the
value of the variable v. Each following CASE begins the section of code that
tells the SmartMotor what to do if v is equal to that "case".

Example:
a=-3						 'test value
WHILE a<4
	 PRINT(#13,"a=",a," ")
	 SWITCH a				 'test expression
		 CASE 3
			 PRINT("MAX VALUE",#13)
		 BREAK
		 CASE -1 		 'negative test values are valid
		 CASE -2		 'note no BREAK here	
		 CASE -3
			 PRINT("NEGATIVE")
		 BREAK			 'note use of BREAK

		 CASE 0		 'zero test value is valid
			 PRINT("ZERO")	 'note order is random

		 DEFAULT		 'the default case
			 PRINT("NO MATCH VALUE")
		 BREAK
	 ENDS				 'need not be numerical
		 a=a+1
	 LOOP

	 END

The output is
	 a=-3 NEGATIVE
	 a=-2 NEGATIVE
	 a=-1 NEGATIVE
	 a=0 ZERO
	 a=1 NO MATCH VALUE
	 a=2 NO MATCH VALUE
	 a=3 MAX VALUE

SWITCH expression (continued)
	 Selectable Program Flow Control

Related
Command:

BREAK

CASE number

DEFAULT

ENDS

284

APPLICATION: Motion mode control

DESCRIPTION: Torque value for MODE TORQUE

EXECUTION: Immediate

CONDITIONAL TO: MT issued

LIMITATIONS: N/A

REPORT COMMAND: RT

READ/WRITE: Read write

LANGUAGE ACCESS: Assignment, expressions and conditional testing

UNITS: Fraction of available torque

RANGE OF VALUES: -1023 to 1023

TYPICAL VALUES: -1000 and 1000

DEFAULT VALUE: 0

FIRMWARE VERSIONS: ALL

DETAILED DESCRIPTION:

Command MT enables torque mode. In this mode, the motor is commanded to
develop a specific power level, set by T=expression. T is in units of Tenths of
Percent of the full capacity of the subject motor and takes values between -1023
and 1023. T=-1023 results in full torque in the negative direction. The encoder still
tracks position and can still be read with the @P variable, but the PID loop is off
and the motor is not servoing or running a trajectory.

MT sets the PWM signal to the drive to a fixed percentage, which means that the
amplifier tries to deliver a fixed amount of power to the motor coils. For any given
torque and no applied load, there will be a velocity at which the back EMF of the
motor will cause the acceleration to stop and the velocity to hold more or less
constant. Under the no load or static load conditions, the T command will control
velocity. As the load torque increases, the velocity decreases.

Note: This means that MT does not regulate torque. Instead, it delivers a fixed
amount of power to the motor coils. As motor power is the product of torque and
RPM, velocity decreases as the delivered torque increases and vice versa.

In all firmware 4.76, MT will immediately turn on the servo and reset any position
error. The servo-off flag Bo is set to 0, the trajectory flag Bt is reset to 0, and the
position error flag Be is reset to 0. The motion is not restricted by the present E
value. Issuing E=0 would have no effect upon the present motion. The drive stage
is still subject to the currently defined activity of the limit switches.

In all firmware >=476, any prior faults must be cleared prior to accepting the MT
command.

Continued on next page:

T=expression
	 Set Open Loop Commanded Torque Value

Related
Command:

MT

RT

285

T=expression (continued)
	 Set Open Loop Commanded Torque Value

Related
Command:

MT

RT

Amplifier mode MD50 DOES EFFECT the value of T. To change from mode
MD50 to mode MT, issue the sequence OFF T=value MT.

Example:

	 UAI 			 'Set I/O A as Input
	 T=0 			 'Initialize T=0
	 MT 			 'Enter Mode Torque
	 C1 			 'Label 1, Loop Forever
	 a=UAA-512 		 'Read User defined I/O pin
				 '10 bit analog reading range
				 'is 0 to 1023 from 0 to 5VDC
				 '[2.5 V = 0 Torque]
	 T=2*a			
' Result: -1023 to +1023 values from 0 to 5VDC

	 GOTO1			 'GOTO LABEL 1

	 END
The above example will track an incoming analog signal from 0 to 5 Volts
(UAA=0 to 1023) and assign it to the T torque value of -1023 to 1023.

286

TALK
	 Enable Outgoing Messages on Primary Port

APPLICATION: Serial communication control

DESCRIPTION: Normal channel 0 communications mode

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: N/A

READ/WRITE: N/A

LANGUAGE ACCESS: N/A	

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A	

DEFAULT VALUE: TALK state

FIRMWARE VERSIONS: ALL	

DETAILED DESCRIPTION:

TALK restores the motor’s ability to print messages to the serial communication
channel 0 if that ability was previously suppressed with the SILENT command.
This command is most commonly used following the download a user program to
a SmartMotor™ within a daisy chain. It could also be used to "un-silence" a debug
routine.

TALK may be issued from the terminal or within a user program.

Related
Command:

SILENT

SILENT1

TALK1

These commands
are almost always
sent from a host,
rather than existing
within a program.

287

TALK1
	 Enable Outgoing Messages on Secondary Port

APPLICATION:	 Serial communication control

DESCRIPTION:	 Normal channel 1 communications mode

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT COMMAND:	 N/A

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A	

UNITS:	 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 N/A	

DEFAULT VALUE:	 TALK1 state

FIRMWARE VERSIONS:	 ALL	

DETAILED DESCRIPTION:

TALK1 restores the motor’s ability to print messages to the serial communication
channel 1 if that ability was previously suppressed with the SILENT1 command.
This command is most commonly used following the download a user program
to a SmartMotor™ within a daisy chain. It could also be used to "un-silence" a
debug routine.

TALK1 may be issued from the terminal or within a user program.

Related
Command:

SILENT

SILENT1

TALK

288

TEMP
	 Read Motor Temperature

APPLICATION:	 Temperature control

DESCRIPTION:	 Read motor temperature	

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A	

REPORT COMMAND:	 N/A

READ/WRITE:	 Read Only		

LANGUAGE ACCESS:	 N/A	

UNITS:	 Degrees Centigrade

RANGE OF VALUES:	 -128 to 127

TYPICAL VALUES:	 20 to 60	

DEFAULT VALUE:	 Room temperature

FIRMWARE VERSIONS:	 4.11 and higher	

DETAILED DESCRIPTION:

The present temperature of the motor can be determined by assigning TEMP to a user
variable or issuing PRINT(TEMP). The units are degrees Centigrade. Example:
	 t=TEMP
	 Rt		 'response 30

	 PRINT(TEMP) 'response 31 - the motor is warming up

Motors with version 4.11 and higher permit the user to set the overheat temperature
trip point with the command TH=expression, and to set the time (THD=expression)
for which the overheat condition must exist before the servo is shut off. A motor in the
overheat condition will not turn on the servo even if commanded to do so.

If the motor were operating in Torque Mode at TEMP>TH for 4 seconds, the motor
would shut off. It would not restart until both the condition TH-TEMP>5 were true and
then MT command reissued.
	 a=-5
	 WHILE a<=10
		 TH=TEMP+a
		 WAIT=4000
		 G
		 WAIT=4000
		 IF Bt
			 BREAK
		 ENDIF
		 a=a+1
	 LOOP
	 PRINT("MOTOR RESTARTED WHEN TH-TEMP=",a)
	 END

Restart announced at TH - TEMP = 6.

Related Command:

BH

RBh

TH

THD

289

TH
	 Set Maximum Allowable Temperature

APPLICATION:	 Temperature control

DESCRIPTION:	 Set maximum allowable temperature limit

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT COMMAND:	 N/A

READ/WRITE:	 Read write

LANGUAGE ACCESS:	 N/A

UNITS:	 Degrees Centigrade

RANGE OF VALUES:	 0 to 70

TYPICAL VALUES:	 20 to 60

DEFAULT VALUE:	 70 or 85 (model number dependant)

FIRMWARE VERSIONS:	 4.11 and higher

DETAILED DESCRIPTION:

TH=expression sets the maximum allowable temperature at which the SmartMotor™
is permitted to continually servo. The amount of time that the SmartMotor can still
servo at or above this temperature is set by the THD function. If the temperature stays
at or above the TH value for longer than THD servo samples, the amplifier will turn
off, Bh will be set to 1, the motor off bit Bo set to 1 and the trajectory bit cleared to 0.
If issued, RMODE will return "O." The SmartMotor will reject any command to start
motion until the temperature has fallen 5º Celsius.

There is no direct report command for TH, but variable=TH and PRINT(TH) are both
valid.

Example: (demonstrates relationship between TEMP, TH, and Bh)
	 GOSUB10		 'report TEMP, TH, and Bh

	 a=5
	 WHILE a>-5		 'vary TH about the present TEMP
		 TH=TEMP-a
		 WAIT=2000
		 GOSUB10 	 'observe Bh flag change from o to 1
		 a=a-1		 'as TH is reduced to TEMP value and 		
					 less
	 LOOP

	 END

	 C10
		 PRINT(#13,"Read the temperature ",TEMP)
		 PRINT(#13,"Read TH overheat value ",TH)
		 PRINT(#13,"Read Bh overheat flag ",Bh)
	 RETURN

Related Command:

Bh

RBh

TEMP

THD

290

THD
	 Set Overheat Delay Timer

APPLICATION:	 Temperature control

DESCRIPTION:	 Set overheat delay time

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A	

REPORT COMMAND:	 N/A

READ/WRITE:	 Write only

LANGUAGE ACCESS:	 N/A	

UNITS:	 PID samples

RANGE OF VALUES:	 0 to 65536

TYPICAL VALUES:	 12000	

DEFAULT VALUE:	 12000 samples, approximately 3 seconds

FIRMWARE VERSIONS:	 4.11 and higher	

DETAILED DESCRIPTION:

The THD command permits the user to set to set the time for which the overheat condition
may exist before the servo is shut off. THD=16000 means that the SmartMotor ™ will
allows an overheat condition for 16000 servo samples or approximately 4 seconds
before shutting down. The maximum value for THD is 20000, in 4.4x series firmware
and 64000 in all others. One Servo Sample is ~ 250useconds.

If an overheat condition exists for more than THD samples, the amplifier will turn off,
Bh will be set to 1, the motor off bit Bo set to 1 and the trajectory bit cleared to 0.
If issued, RMODE will return "O." The SmartMotor will reject any command to start
motion until the temperature has fallen 5º Celsius.

Example: (test to measure approximate shut down time - not very accurate 	 but
illustrates TH, THD, and TEMP)
	 PRINT(#13,"Default value of TH = ",TH)
	 PRINT(#13,"Motor Temperature = ",TEMP)
	 PRINT(#13,"START MOTION")
	 A=222
	 V=44444
	 MV
	 G
	 THD=32000	 'THD default = 12000 PID samples or 3 seconds
	 TH=TEMP-5	 'Force an over heat condition
			 'Units are degrees Centigrade
	 a=CLK
	 WHILE Bh==0 LOOP
	 WHILE Bt LOOP
	 b=CLK
	 PRINT(#13,"Servo OFF after ",b-a," PID samples")
	 END

Related Command:

Bh

RBh

TEMP

TH

291

TWAIT
	 Pause Program Execution During Active Trajectory

APPLICATION: Program execution control

DESCRIPTION: Suspend command execution while in trajectory

EXECUTION: Immediate

CONDITIONAL TO: Bt state

LIMITATIONS: N/A

REPORT COMMAND: N/A

READ/WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSIONS: ALL

DETAILED DESCRIPTION:

The TWAIT command will pause program execution until the Busy Trajectory status
bit clears. Normally, program execution and trajectory generation are completely inde-
pendent. Regardless of what the motion is doing, the processor executed ode form
the top down. If there were three consecutive motion commands they would all exe-
cute sequentially. Before the motor could even start to move, last motion command
would dominate. Using the TWAIT command, however, allows the move commands
to occur and complete end to end. An alternative to TWAIT is WHILE Bt . . . LOOP.

Both TWAIT and the WHILE Bt construction terminate when the trajectory ends,
regardless of the cause. Depending on the application, you may wish to perform error
checking to ensure that the move was properly completed.

Example:
C100 		 'Motion Subroutine
	 MP 		 'Mode Position
	 A=100 	 'Set acceleration
	 V=10000 	 'Set velocity
	 P=2000 	 'Set first position
	 G 		 'Start Motion
	 TWAIT	 	 'wait till trajectory is done
	 P=-4000 	 'Set next position
	 G 		 'Start Motion
	 WHILE Bt	 'While moving (similar to TWAIT)
		 IF UA==0
			 GOSUB200
		 ENDIF
	 LOOP 	'wait till trajectory is done

RETURN 	 'Return to GOSUB

Related Command:

WAIT=exp

292

UA=expression
	 Set I/O Port A Out t Logi c State

APPLICATION: I/O control

DESCRIPTION: Set Pin A output latch

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: N/A

READ/WRITE: Write only

LANGUAGE ACCESS: Assignment only

UNITS: Binary bit

RANGE OF VALUES: 0 or 1

TYPICAL VALUES: 0 or 1

DEFAULT VALUE: 0

FIRMWARE VERSIONS: ALL

DETAILED DESCRIPTION:

User I/O line A can function as a TTL output. The pin defaults to be a general purpose
TTL (0 - 5 volt) input. To use PIN A as an output, set the value of the pin A output latch
UA to either 0 or 1. Issue the command UAO if this has not already been issued.

I/O pin A will be a logic high voltage if UA=1 and a logic low voltage if UA=0.

Regardless of whether the I/O pin is being used as an input or output, a 10 bit analog
reading of that I/O pin is always available through the UAA function.

Example:
	 UAO		 'set PIN A to function as a digital output
	 UA=0		 'set PIN A to logic 0 (zero volts)
	 UA=1		 'set PIN A to logic 1 (+5 volts)

Note: The I/O state can be set prior to assigning as an output.

	 UA=0		 'Pre-set PIN A to logic 0 (zero volts)
	 UAO		 'set PIN A as an output pre-initialized to zero

Related
Command:

UAA

UAI

UAO

With this function
you could actu-
ally check if your
output is shorted.

293

UAA
Read I/O Port A as Analog Input

APPLICATION: I/O control

DESCRIPTION: Read PIN A analog input

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: PRINT(UAA)

READ/WRITE: Read only

LANGUAGE ACCESS: Expression and conditional testing

UNITS: Number

RANGE OF VALUES: 0 to 1023

TYPICAL VALUES: 0 to 1023

DEFAULT VALUE: I/O dependent

FIRMWARE VERSIONS: 4.00 and higher

DETAILED DESCRIPTION:

User I/O line A can serve as a 10 bit analog to digital input. The A to D reference is
5VDC and the returned data is between 0 and 1023. A value of 0 corresponds to
0 volts and 1023 to 5 volts. UAA is read only, and can be accessed with the state-
ment variable=UAA, PRINT(UAA,#13) or WHILE UAA>200 . . . LOOP. The analog
read occurs once at the time the UAA command is executed. Assigning the variable
a=UAA will perform the analog read once and store it into the variable a.

All user I/O pins have in internal 5K pull-up resistor, as well as current limiting and
other protection mechanisms. Any analog voltage source, then, should be rated to
adequately drive a 5K ohm input impedance.

The analog to digital conversion is always available on its corresponding I/O pin. That
is, regardless of whether the pin is being used as an input, output or other function, a
10 bit analog reading of I/O that pin is always available.

Example:
		 PRINT(#13,"PRINT UAA = ",UAA)
		 b=UAA	
		 PRINT(#13,"REPORT UAA = ")
		 Rb

RUAA	 'Directly Report Port A Analog Value (>=4.76 firmware only)

Related Command:

UA

UAI

UAO

294

UAI (as command)
	 Set I/O Port A to Input

APPLICATION:	 I/O control

DESCRIPTION:	 Set Pin A to be an input

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT COMMAND:	 N/A

READ/WRITE:	 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:	 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 N/A	

DEFAULT VALUE:	 Input

FIRMWARE VERSIONS:	 ALL	

DETAILED DESCRIPTION:

User I/O line A serves many functions. It can be a TTL (0 to 5V) input, TTL output, 10
bit analog input, secondary encoder input A or the step input in Step and Direction
Mode. While, user I/O line A defaults to being a general purpose TTL input, it can be
explicitly set up as a digital input with the UAI command.

If I/O line A has been set to an output with the command UAO, it can be reset to be an
input with the command UAI.

EXAMPLE:
	 UAI		 'Initialize (U)ser defined I/O pin (A) as (I)nput
	 PRINT(#13,"PIN A Input ",UAI)
	 n=UAI		 'Store state of I/O pin A
			 'as digital input into variable name "n"
	 PRINT(#13,"REPORT PIN A Input ") Rn
	 END

Related Command:

UA

UAA

UAO

295

UAI (as input value)
	 Read I/O Port A Logic State

APPLICATION: I/O input

DESCRIPTION: Input at Pin A

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: PRINT(UAI)

READ/WRITE: Read only

LANGUAGE ACCESS: Expression and conditional testing	

UNITS: Binary bit

RANGE OF VALUES: 0 or 1

TYPICAL VALUES: 0 or 1

DEFAULT VALUE: I/O dependent

FIRMWARE VERSIONS: ALL

DETAILED DESCRIPTION:

User I/O line A serves many functions. It can be a TTL (0 to 5V) input, TTL output, 10 bit
analog input, secondary encoder input A or the step input in Step and Direction Mode.
User I/O line A defaults to being a general purpose TTL input. It can be accessed with
the statement variable=UAI, PRINT(UAI,#13) or WHILE UAI ... LOOP. The digital
read occurs once at the time the UAI command is executed. Assigning the variable
a=UAI will perform the digital read once and store it into the variable a.

If I/O line A has been set to an output with the command UAO, it can be reset to be
an input with the command UAI.

EXAMPLE:
	 UAI		 'Initialize (U)ser defined I/O pin (A) as (I)nput
	 PRINT(#13,"PIN A Input ",UAI)
	 n=UAI		 'Store state of I/O pin A
			 'as digital input into variable name "n"
	 PRINT(#13,"REPORT PIN A Input ") Rn
	 END

RUA 'Directly Report Port A logic State (>=4.76 firmware only)

n=U&1	'Bitmask Port A to the variable n, (>=4.76 firmware only)
Rn	 'Report Result

Related
Command:

UA

UAA

UAO

296

UAO (as command)
	 Set I/O Port A to Output

APPLICATION:	 I/O control

DESCRIPTION:	 Set Pin A to be an output

EXECUTION:	 Immediate

CONDITIONAL TO:	 UA=0 or UA=1

LIMITATIONS:	 N/A

REPORT COMMAND:	 N/A

READ/WRITE:	 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:	 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 N/A	

DEFAULT VALUE:	 Input

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

User I/O line A can function as a TTL output. The pin defaults to be a general purpose
TTL (0 - 5 volt) input. The command UAO specifies the I/O pin A as an output, while
UA=value sets the voltage. I/O pin A will be a logic high voltage if UA=1 and a logic
low voltage if UA=0. Regardless of whether the I/O pin is being used as an input or
output, a 10 bit analog reading of that I/O pin is always available through the UAA
function.

In order for the output voltage to reflect the state of UA, both UAO and UA=value
have to be issued. Suppose the I/O pin is functioning as a digital input. If you want to
output a logic low signal, the pin will not sink current until both UAO and UA=0 have
been issued. You only have to issue UAO once; the I/O pin stays configured as an
output for some other configuration specification is issued.

EXAMPLE:

	 UAO 			 'define PIN A output	
	 UA=1			 'set output latch value
	 PRINT(UAO)		 'recall the latch value.		
				 'response is 1
	 UA=0			 'set output latch value
	 PRINT(UAO)		 'recall the latch value
				 'response is 0

Related Command:

UA

UAA

UAI

297

UBexpression
	 Set I/O Port B Output Logic State

APPLICATION: I/O control

DESCRIPTION: Set Pin B output latch

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: N/A

READ/WRITE: Write only

LANGUAGE ACCESS: Assignment only

UNITS: Binary bit

RANGE OF VALUES: 0 or 1

TYPICAL VALUES: 0 or 1

DEFAULT VALUE: 0

FIRMWARE VERSIONS: ALL

DETAILED DESCRIPTION:

User I/O line B can function as a TTL output. The pin defaults to be a general purpose
TTL (0 - 5 volt) input. To use PIN B as an output, set the value of the pin B output latch
UB to either 0 or 1. Issue the command UBO if this has not already been issued.

I/O pin A will be a logic high voltage if UB=1 and a logic low voltage if UB=0.

Regardless of whether the I/O pin is being used as an input or output, a 10 bit analog
reading of that I/O pin is always available through the UBA function.

Example:
	 UBO		 'set PIN B to function as a digital output
	 UB=0		 'set PIN B to logic 0 (zero volts)
	 UB=1		 'set PIN B to logic 1 (+5 volts)

Note: The I/O state can be set prior to assigning as an output.

	 UB=0		 'Pre-set PIN B to logic 0 (zero volts)
	 UBO		 'set PIN B as an output pre-initialized to zero

Related

UBA

UBI

UBO

298

UBA
	 Read I/O Port B as Analog Input

APPLICATION: I/O input

DESCRIPTION: Read Pin B analog input

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: PRINT(UBA)

READ/WRITE: Read only

LANGUAGE ACCESS: Expression and conditional testing

UNITS: Number

RANGE OF VALUES: 0 or 1023

TYPICAL VALUES: 0 or 1023

DEFAULT VALUE: I/O dependent

FIRMWARE VERSIONS: 4.00 and higher

DETAILED DESCRIPTION:

User I/O line B can serve as a 10 bit analog to digital input. The A to D reference
is 5VDC and the returned data is between 0 and 1023. A value of 0 corresponds to
0 volts and 1023 to 5 volts. UBA is read only, and can be accessed with the state-
ment variable=UBA, PRINT(UBA,#13) or WHILE UBA>200 . . . LOOP. The analog
read occurs once at the time the UBA command is executed. Assigning the variable
a=UBA will perform the analog read once and store it into the variable a.

All user I/O pins have in internal 5K pull-up resistor, as well as current limiting and
other protection mechanisms. Any analog voltage source, then, should be rated to
adequately drive a 5K ohm input impedance.

The analog to digital conversion is always available on its corresponding I/O pin. That
is, regardless of whether the pin is being used as an input, output or other function, a
10 bit analog reading of I/O that pin is always available.

Example:
		 PRINT(#13,"PRINT UBA = ",UBA)
		 b=UBA	
		 PRINT(#13,"REPORT UBA = ")
		 Rb

RUBA	 'Directly Report Port B Analog Value (>=4.76 firmware only)

Related Command:

UB

UBI

UBO

299

UBI (as command)
	 Set I/O Port B to Input

APPLICATION: I/O control

DESCRIPTION: Set Pin B to be an input

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: N/A

READ/WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: Input

FIRMWARE VERSIONS: ALL

DETAILED DESCRIPTION:

User I/O line B serves many functions. It can be a TTL (0 to 5V) input, TTL output,
10 bit analog input, secondary encoder input B or the direction input in Step and
Direction Mode. While user I/O line B defaults to being a general purpose TTL input,
it can be explicitly set up as a digital input with the UBI command.

If I/O line B has been set to an output with the command UBO, it can be reset to be
an input with the command UBI.

Example:
	 UBI		 'Initialize (U)ser defined I/O pin (B) as (I)nput
	 PRINT(#13,"PIN B Input ",UBI)
	 n=UBI		 'Store state of I/O pin B
			 'as digital input into variable name "n"
	 PRINT(#13,"REPORT PIN B Input ") Rn
	 END

Related Command:

UB

UBA

UBO

300

UBI (as input value)
	 Read I/O Port B Logic State

APPLICATION:	 I/O input

DESCRIPTION:	 Input at Pin B

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT COMMAND:	 PRINT(UBI)

READ/WRITE:	 Read only

LANGUAGE ACCESS:	 Expression and conditional testing	

UNITS:	 Binary bit

RANGE OF VALUES:	 0 or 1

TYPICAL VALUES:	 0 or 1	

DEFAULT VALUE:	 I/O dependent

FIRMWARE VERSIONS:	 ALL	

DETAILED DESCRIPTION:

User I/O line B serves many functions. It can be a TTL (0 to 5V) input, TTL output,
10 bit analog input, secondary encoder input B or the direction input in Step and
Direction Mode. User I/O line B defaults to being a general purpose TTL input. It
can be accessed with the statement variable=UBI, PRINT(UBI,#13) or WHILE UBI
. . . LOOP. The digital read occurs once at the time the UBI command is executed.
Assigning the variable a=UBI will perform the digital read once and store it into the
variable a.

If I/O line B has been set to an output with the command UBO, it can be reset to be an
input with the command UBI.

Example:
	 UBI		 'Initialize (U)ser defined I/O pin (B) as (I)nput
	 PRINT(#13,"PIN B Input ",UBI)
	 n=UBI		 'Store state of I/O pin B
			 'as digital input into variable name "n"
	 PRINT(#13,"REPORT PIN B Input ") Rn
	 END

RUB 'Directly Report Port B logic State (>=4.76 firmware only)

n=U&2	'Bitmask Port B to the variable n, (>=4.76 firmware only)
Rn	 'Report Result

Related
Command:

UB

UBA

UBO

301

UBO (as command)
	 Set I/O Port B to Output

APPLICATION:	 I/O control

DESCRIPTION:	 Set Pin B to be an output

EXECUTION:	 Immediate

CONDITIONAL TO:	 UB=0 or UB=1

LIMITATIONS:	 N/A

REPORT COMMAND:	 N/A

READ/WRITE:	 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:	 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 N/A	

DEFAULT VALUE:	 Input

FIRMWARE VERSIONS:	 ALL	

DETAILED DESCRIPTION:

User I/O line B can function as a TTL output. The pin defaults to be a general purpose
TTL (0 - 5 volt) input. The command UBO specifies the I/O pin B as an output, while
UB=value sets the voltage. I/O pin B will be a logic high voltage if UB=1 and a logic
low voltage if UB=0. Regardless of whether the I/O pin is being used as an input or
output, a 10 bit analog reading of that I/O pin is always available through the UBA
function.

In order for the output voltage to reflect the state of UB, both UBO and UB=value
have to be issued. Suppose the I/O pin is functioning as a digital input. If you want to
output a logic low signal, the pin will not sink current until both UBO and UB=0 have
been issued. You only have to issue UBO once; the I/O pin stays configured as an
output for some other configuration specification is issued.

EXAMPLE:

	 UBO 			 'define PIN B output	
	 UB=1			 'set output latch value
	 PRINT(UBO)		 'recall the latch value.		
				 'response is 1
	 UB=0			 'set output latch value
	 PRINT(UBO)		 'recall the latch value
				 'response is 0

Related Command:

UB

UBA

UBI

302

UCexpression
	 Set I/O Port C Output Logic State

APPLICATION: I/O control

DESCRIPTION: Set Pin C output latch

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: N/A

READ/WRITE: Write only

LANGUAGE ACCESS: Assignment only

UNITS: Binary bit

RANGE OF VALUES: 0 or 1

TYPICAL VALUES: 0 or 1

DEFAULT VALUE: 0

FIRMWARE VERSIONS: 4.00 and higher

DETAILED DESCRIPTION:

User I/O line C can function as a TTL output. The pin defaults to be a general purpose
TTL (0 - 5 volt) input. To use PIN C as an output, set the value of the pin C output latch
UC to either 0 or 1. Issue the command UCO if this has not already been issued.

I/O pin C will be a logic high voltage if UC=1 and a logic low voltage if UC=0.

Regardless of whether the I/O pin is being used as an input or output, a 10 bit analog
reading of that I/O pin is always available through the UCA function.

Example:
	 UCO		 'set PIN C to function as a digital output
	 UC=0		 'set PIN C to logic 0 (zero volts)
	 UC=1		 'set PIN C to logic 1 (+5 volts)

Note: The I/O state can be set prior to assigning as an output.

	 UC=0		 'Pre-set PIN C to logic 0 (zero volts)
	 UCO		 'set PIN C as an output pre-initialized to zero

Related Command:

UCA

UCI

UCO

303

UCA
	 Read I/O Port C as Analog Input

APPLICATION: I/O control

DESCRIPTION: Read Pin C analog input

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: PRINT(UCA)

READ/WRITE: Read only

LANGUAGE ACCESS: Expression and conditional testing

UNITS: Number

RANGE OF VALUES: 0 or 1023

TYPICAL VALUES: 0 or 1023

DEFAULT VALUE: I/O dependent

FIRMWARE VERSIONS: 4.00 and higher

DETAILED DESCRIPTION:

User I/O line C can serve as a 10 bit analog to digital input. The A to D reference
is 5VDC and the returned data is between 0 and 1023. A value of 0 corresponds to
0 volts and 1023 to 5 volts. UCA is read only, and can be accessed with the state-
ment variable=UCA, PRINT(UCA,#13) or WHILE UCA>200 . . . LOOP. The analog
read occurs once at the time the UCA command is executed. Assigning the variable
a=UCA will perform the analog read once and store it into the variable a.

All user I/O pins have in internal 5K pull-up resistor, as well as current limiting and
other protection mechanisms. Any analog voltage source, then, should be rated to
adequately drive a 5K ohm input impedance.

The analog to digital conversion is always available on its corresponding I/O pin. That
is, regardless of whether the pin is being used as an input, output or other function, a
10 bit analog reading of I/O that pin is always available.

Example:
		 PRINT(#13,"PRINT UCA = ",UCA)
		 b=UCA	
		 PRINT(#13,"REPORT UCA = ")
		 Rb

RUCA	 'Directly Report Port C Analog Value (>=4.76 firmware only)

Related Command:

UC

UCI

UCO

304

UCI (as command)
	 I/O COMMAND

APPLICATION: I/O control

DESCRIPTION: Set Pin C to be an input

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: N/A

READ/WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: Input

FIRMWARE VERSIONS: 4.00 and higher

DETAILED DESCRIPTION:

User I/O line C serves many functions. It can be a TTL (0 to 5V) input, TTL output,
10 bit analog input and the positive travel limit input. While user I/O line C defaults
to being the positive limit input, it can be explicitly set up as a digital input with the
UCI command.

If I/O line C has been set to an output with the command UCO, it can be reset to be
an input with the command UCI.

EXAMPLE:
	 UCI		 'Initialize (U)ser defined I/O pin (C) as (I)nput
	 PRINT(#13,"PIN C Input ",UCI)
	 n=UCI		 'Store state of I/O pin C
			 'as digital input into variable name "n"
	 PRINT(#13,"REPORT PIN C Input ") Rn
	 END

Related Command:

UC

UCA

UCO

305

UCI (as input value)
	 Read I/O Port C to Input

APPLICATION:	 I/O input

DESCRIPTION:	 Input at Pin C

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT COMMAND:	 PRINT(UCI)

READ/WRITE:	 Read only

LANGUAGE ACCESS:	 Expression and conditional testing

UNITS:	 Binary bit

RANGE OF VALUES:	 0 or 1

TYPICAL VALUES:	 0 or 1

DEFAULT VALUE:	 I/O dependent

FIRMWARE VERSIONS:	 4.00 and higher

DETAILED DESCRIPTION:

User I/O line C serves many functions. It can be a TTL (0 to 5V) input, TTL output, 10
bit analog input, and Defaults to the positive travel limit input. It can be accessed with
the statement variable=UCI, PRINT(UCI,#13) or WHILE UCI . . . LOOP. The digital
read occurs once at the time the UCI command is executed. Assigning the variable
a=UCI will perform the digital read once and store it into the variable a.

EXAMPLE:
	 UCI		 'Initialize (U)ser defined I/O pin (C) as (I)nput
	 PRINT(#13,"PIN C Input ",UCI)
	 n=UCI		 'Store state of I/O pin C
			 'as digital input into variable name "n"
	 PRINT(#13,"REPORT PIN C Input ") Rn
	 END

RUC 'Directly Report Port C logic State (>=4.76 firmware only)

n=U&4	'Bitmask Port C to the variable n, (>=4.76 firmware only)
Rn	 'Report Result

Related
Command:

UC

UCA

UCO

306

UCO (as command)
	 Set I/O Port C to Output

APPLICATION:	 I/O control

DESCRIPTION:	 Set Pin C to be an output

EXECUTION:	 Immediate

CONDITIONAL TO:	 UC=0 or UC=1

LIMITATIONS:	 N/A

REPORT COMMAND:	 N/A

READ/WRITE:	 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:	 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 N/A	

DEFAULT VALUE:	 Input

FIRMWARE VERSIONS:	 4.00 and higher	

DETAILED DESCRIPTION:

Although its default function is to be the right limit input, user I/O line C can function as
a TTL output. The command UCO specifies the I/O pin C as an output, while UC=value
sets the voltage. I/O pin C will be a logic high voltage if UC=1 and a logic low voltage if
UC=0. Regardless of whether the I/O pin is being used as an input or output, a 10 bit
analog reading of that I/O pin is always available through the UCA function.

In order for the output voltage to reflect the state of UC, both UCO and UC=value
have to be issued. Suppose the I/O pin is functioning as a digital input. If you want to
output a logic low signal, the pin will not sink current until both UCO and UC=0 have
been issued. You only have to issue UCO once; the I/O pin stays configured as an
output for some other configuration specification is issued.

EXAMPLE:

	 UCO 			 'define PIN C output	
	 UC=1			 'set output latch value
	 PRINT(UCO)		 'recall the latch value.		
				 'response is 1
	 UC=0			 'set output latch value
	 PRINT(UCO)		 'recall the latch value
				 'response is 0

Related Command:

UC

UCA

UCI

307

UCP
	 Set I/O Port C as Positive Over Travel Limit

APPLICATION:	 I/O control

DESCRIPTION:	 Set PIN C to be right / positive limit input

EXECUTION:	 Immediate

CONDITIONAL TO:	 UC=0 or UC=1

LIMITATIONS:	 N/A

REPORT COMMAND:	 N/A

READ/WRITE:	 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:	 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 N/A	

DEFAULT VALUE:	 Limit switch

FIRMWARE VERSIONS:	 4.00 and higher	

DETAILED DESCRIPTION:

User I/O line C can be a TTL (0 to 5V) input, TTL output, 10 bit input, or act as the
positive limit input, which is the default state. UCP explicitly defines I/O pin C to be
the positive limit, while commands UCI and UCO make it into a TTL input or output,
respectively, disabling the limit behavior.

Example:
	 UCI 		 'use PIN C as a general purpose input
			 'suppress limit behavior
	 a=UCI		 'read the input value as digital input
	 Ra		 'report input value
	 UCP		 'restore default positive limit behavior to PIN C

Related Command:

LIMD

LIMH

LIML

LIMN

UC

UCA

UCI

308

UDexpression
	 Set I/O Port D Output Logic State

APPLICATION: I/O control

DESCRIPTION: Set Pin D output latch

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: N/A

READ/WRITE: Write only		

LANGUAGE ACCESS: Assignment only	

UNITS: Binary bit

RANGE OF VALUES: 0 or 1

TYPICAL VALUES: 0 or 1	

DEFAULT VALUE: 0

FIRMWARE VERSIONS: 4.00 and higher	

DETAILED DESCRIPTION:
User I/O line D can function as a TTL output. The pin defaults to be a general purpose
TTL (0 - 5 volt) input. To use PIN D as an output, set the value of the pin D output
latch UD to either 0 or 1. Issue the command UDO if this has not already been issued.

I/O pin D will be a logic high voltage if UD=1 and a logic low voltage if UD=0.

Regardless of whether the I/O pin is being used as an input or output, a 10 bit
analog reading of that I/O pin is always available through the UDA function.

Example:
	 UDO		 'set PIN D to function as a digital output
	 UD=0		 'set PIN D to logic 0 (zero volts)
	 UD=1		 'set PIN D to logic 1 (+5 volts)

Note: The I/O state can be set prior to assigning as an output.

	 UD=0		 'Pre-set PIN D to logic 0 (zero volts)
	 UDO		 'set PIN D as an output pre-initialized to zero

Related Command:

UDA

UDI

UDO

309

UDA
	 Read I/O Port D as Analog Input

APPLICATION: I/O control

DESCRIPTION: Read Pin D analog input

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: PRINT(UDA)

READ/WRITE: Read only		

LANGUAGE ACCESS: Expressions and conditional testing	

UNITS: Number

RANGE OF VALUES: 0 or 1023

TYPICAL VALUES: 0 or 1023	

DEFAULT VALUE: I/O dependent

FIRMWARE VERSIONS: 4.00 and higher	

DETAILED DESCRIPTION:

User I/O line D can serve as a 10 bit analog to digital input. The A to D reference
is 5VDC and the returned data is between 0 and 1023. A value of 0 corresponds to
0 volts and 1023 to 5 volts. UDA is read only, and can be accessed with the state-
ment variable=UDA, PRINT(UDA,#13) or WHILE UDA>200 . . . LOOP. The analog
read occurs once at the time the UDA command is executed. Assigning the variable
a=UDA will perform the analog read once and store it into the variable a.

All user I/O pins have in internal 5K pull-up resistor, as well as current limiting and
other protection mechanisms. Any analog voltage source, then, should be rated to
adequately drive a 5K ohm input impedance.

The analog to digital conversion is always available on its corresponding I/O pin. That
is, regardless of whether the pin is being used as an input, output or other function, a
10 bit analog reading of I/O that pin is always available.

Example:
		 PRINT(#13,"PRINT UDA = ",UDA)
		 b=UDA	
		 PRINT(#13,"REPORT UDA = ")
		 Rb

RUDA	 'Directly Report Port D Analog Value (>=4.76 firmware only)

Related Command:

UD

UDI

UDO

310

UDI (as command)
	 Set I/O Port D to Input

APPLICATION:	 I/O control

DESCRIPTION:	 Set Pin D to be an input

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT COMMAND:	 N/A

READ/WRITE:	 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:	 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 N/A	

DEFAULT VALUE:	 Input

FIRMWARE VERSIONS:	 4.00 and higher	

DETAILED DESCRIPTION:

User I/O line D serves many functions. It can be a TTL (0 to 5V) input, TTL output, 10
bit analog input and the negative travel limit input. While user I/O line D defaults to
being the negative limit input, it can be explicitly set up as a digital input with the UDI
command.

If I/O line D has been set to an output with the command UDO, it can be reset to be
an input with the command UDI.

EXAMPLE:
	 UDI		 'Initialize (U)ser defined I/O pin (D) as (I)nput
	 PRINT(#13,"PIN D Input ",UDI)
	 n=UDI		 'Store state of I/O pin D
			 'as digital input into variable name "n"
	 PRINT(#13,"REPORT PIN D Input ") Rn
	 END

Related Command:

UD

UDA

UDM

UDO

311

UDI (as input value)
	 Read I/O Port D to Input

APPLICATION:	 I/O input

DESCRIPTION:	 Input at Pin D

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT COMMAND:	 PRINT(UDI) [RUDI >-v4.76]

READ/WRITE:	 Read only

LANGUAGE ACCESS:	 Expression and conditional testing

UNITS:	 Binary bit

RANGE OF VALUES:	 0 or 1

TYPICAL VALUES:	 0 or 1

DEFAULT VALUE:	 I/O dependent

FIRMWARE VERSIONS:	 4.00 and higher

DETAILED DESCRIPTION:

User I/O line D serves many functions. It can be a TTL (0 to 5V) input, TTL output, 10
bit analog input, and Defaults to being the negative travel limit input. It can be accessed
with the statement variable=UDI, PRINT(UDI,#13) or WHILE UDI . . . LOOP. The
digital read occurs once at the time the UDI command is executed. Assigning the
variable a=UDI will perform the digital read once and store it into the variable a.

EXAMPLE:
	 UDI		 'Initialize (U)ser defined I/O pin (D) as (I)nput
	 PRINT(#13,"PIN D Input ",UDI)
	 n=UDI		 'Store state of I/O pin D
			 'as digital input into variable name "n"
	 PRINT(#13,"REPORT PIN D Input ") Rn
	 END

RUD 'Directly Report Port D logic State (>=4.76 firmware only)

n=U&8	'Bitmask Port D to the variable n, (>=4.76 firmware only)
Rn	 'Report Result

Related
Command:

UD

UDA

UDM

UDO

312

UDM
	 Set I/O Port D as Negative Over Travel Limit

APPLICATION:	 I/O control

DESCRIPTION:	 Set Pin D to be left/negative limit input

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT COMMAND:	 N/A

READ/WRITE:	 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:	 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 N/A	

DEFAULT STATE:	 Limit switch

FIRMWARE VERSIONS:	 4.00 and higher	

DETAILED DESCRIPTION:

User I/O line D can be a TTL (0 to 5V) input, TTL output, 10 bit input, or act as the
negative limit input, which is the default state. UDM explicitly defines I/O pin D to be
the negative limit, while commands UDI and UDO make it into a TTL input or output,
respectively, disabling the limit behavior.

EXAMPLE:
	 UDI 		 'Initialize PIN D as a general purpose input
			 'suppress limit behavior
	 a=UDI		 'read the input value as a digital value
	 Ra		 'report input value
	 UDM		 'restore default negative limit behavior to PIN D

Related Command:

LIMH

LIML

LIMN

UD

UDA

UDI

313

UDO (as command)
	 Set I/O Port D to Output

APPLICATION:	 I/O control

DESCRIPTION:	 Set Pin D to be an output

EXECUTION:	 Immediate

CONDITIONAL TO:	 UD=0 or UD=1

LIMITATIONS:	 N/A

REPORT COMMAND:	 N/A

READ/WRITE:	 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:	 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 N/A	

DEFAULT VALUE:	 Input

FIRMWARE VERSIONS:	 4.00 and higher	

DETAILED DESCRIPTION:

Although its default function is to be the left limit input, user I/O line D can function as a
TTL output. The command UDO specifies the I/O pin D as an output, while UD=value
sets the voltage. I/O pin D will be a logic high voltage if UD=1 and a logic low voltage if
UD=0. Regardless of whether the I/O pin is being used as an input or output, a 10 bit
analog reading of that I/O pin is always available through the UDA function.

In order for the output voltage to reflect the state of UD, both UDO and UD=value
have to be issued. Suppose the I/O pin is functioning as a digital input. If you want to
output a logic low signal, the pin will not sink current until both UDO and UD=0 have
been issued. You only have to issue UDO once; the I/O pin stays configured as an
output for some other configuration specification is issued.

EXAMPLE:

	 UDO 			 'define PIN D output	
	 UD=1			 'set output latch value
	 PRINT(UDO)		 'recall the latch value.		
				 'response is 1
	 UD=0			 'set output latch value
	 PRINT(UDO)		 'recall the latch value
				 'response is 0

Related Command:

UD

UDA

UDI

314

UEexpression
	 Set I/O Port E Output Logic State

APPLICATION:	 I/O control

DESCRIPTION:	 Set Pin E output latch

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT COMMAND:	 N/A

READ/WRITE:	 Write only		

LANGUAGE ACCESS:	 Assignment only

UNITS:	 Binary bit

RANGE OF VALUES:	 0 or 1

TYPICAL VALUES:	 0 or 1

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 4.00 and higher	

DETAILED DESCRIPTION:
User I/O line E can function as a TTL output. The pin defaults to be a general purpose
TTL (0 - 5 volt) input. To use PIN E as an output, set the value of the pin E output
latch UE to either 0 or 1. Issue the command UEO if this has not already been issued.

I/O pin E will be a logic high voltage if UE=1 and a logic low voltage if UE=0.

Regardless of whether the I/O pin is being used as an input or output, a 10 bit
analog reading of that I/O pin is always available through the UEA function.

Example:
	 UEO		 'set PIN E to function as a digital output
	 UE=0		 'set PIN E to logic 0 (zero volts)
	 UE=1		 'set PIN E to logic 1 (+5 volts)

Note: The I/O state can be set prior to assigning as an output.

	 UE=0		 'Pre-set PIN E to logic 0 (zero volts)
	 UEO		 'set PIN E as an output pre-initialized to zero

Related Command:

UEA

UEI

UEO

315

UEA
	 Read I/O Port E as Analog Input

APPLICATION: I/O control

DESCRIPTION: Read Pin E analog input

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: PRINT(UEA)

READ/WRITE: Read only		

LANGUAGE ACCESS: Expressions and conditional testing

UNITS: Number

RANGE OF VALUES: 0 or 1023

TYPICAL VALUES: 0 or 1023	

DEFAULT VALUE: I/O dependent

FIRMWARE VERSIONS: 4.00 and higher

DETAILED DESCRIPTION:

User I/O line E can serve as a 10 bit analog to digital input. The A to D reference
is 5VDC and the returned data is between 0 and 1023. A value of 0 corresponds to
0 volts and 1023 to 5 volts. UEA is read only, and can be accessed with the state-
ment variable=UCE, PRINT(UEA,#13) or WHILE UEA>200 . . . LOOP. The analog
read occurs once at the time the UEA command is executed. Assigning the variable
a=UEA will perform the analog read once and store it into the variable a.

All user I/O pins have in internal 5K pull-up resistor, as well as current limiting and
other protection mechanisms. Any analog voltage source, then, should be rated to
adequately drive a 5K ohm input impedance.

The analog to digital conversion is always available on its corresponding I/O pin. That
is, regardless of whether the pin is being used as an input, output or other function, a
10 bit analog reading of I/O that pin is always available.

Example:
		 PRINT(#13,"PRINT UEA = ",UEA)
		 b=UEA	
		 PRINT(#13,"REPORT UEA = ")
		 Rb

RUEA	 'Directly Report Port E Analog Value (>=4.76 firmware only)

Related Command:

UE

UEI

UEO

316

UEI (as command)
	 Set I/O Port E to Input

APPLICATION: I/O control

DESCRIPTION: Set Pin E to be an input

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: N/A

READ/WRITE: N/A		

LANGUAGE ACCESS: N/A	

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A	

DEFAULT VALUE: Input

FIRMWARE VERSIONS: 4.00 and higher	

DETAILED DESCRIPTION:

User I/O line E serves many functions. It can be a TTL (0 to 5V) input, TTL output, 10
bit analog input, the AniLink data line and the RS485 A signal. While user I/O line E
defaults to being the AniLink data line, it can be explicitly set up as a digital input with
the UEI command.

If I/O line E has been set to an output with the command UEO, it can be reset to be
an input with the command UEI.

Example:
	 UEI		 'Initialize (U)ser defined I/O pin (E) as (I)nput
	 PRINT(#13,"PIN E Input ",UEI)
	 n=UEI		 'Store state of I/O pin E
			 'as digital input into variable name "n"
	 PRINT(#13,"REPORT PIN E Input ") Rn
	 END

RUE 'Directly Report Port E logic State (>=4.76 firmware only)

n=U&16 'Bitmask Port E to the variable n, (>=4.76 firmware only)
Rn	 'Report Result

Related Command:

UE

UEA

UEO

317

UEI (as input value)
	 Set I/O Port E to Input

APPLICATION:		 I/O input

DESCRIPTION:		 Input at Pin E

EXECUTION:	 	 Immediate

CONDITIONAL TO:		 N/A

LIMITATIONS:	 	 N/A

REPORT COMMAND:		 PRINT(UEI)

READ/WRITE:		 Read only

LANGUAGE ACCESS:	 	 Expression and conditional testing	

UNITS:		 Binary bit

RANGE OF VALUES:	 	 0 or 1

TYPICAL VALUES:		 0 or 1	

DEFAULT VALUE:		 I/O dependent

FIRMWARE VERSIONS:		 4.00 and higher	

DETAILED DESCRIPTION:

User I/O line E serves many functions. It can be a TTL (0 to 5V) input, TTL output, 10
bit analog input, the AniLink data line and the RS485 A signal. While user I/O line E
defaults to being the AniLink data line, it can be explicitly set up as a digital input with
the UEI command.

If I/O line E has been set to an output with the command UEO, it can be reset to be an
input with the command UEI.

Example:
	 UEI		 'Initialize (U)ser defined I/O pin (E) as (I)nput
	 PRINT(#13,"PIN E Input ",UEI)
	 n=UEI		 'Store state of I/O pin E
			 'as digital input into variable name "n"
	 PRINT(#13,"REPORT PIN E Input ") Rn
	 END

RUE 'Directly Report Port E logic State (>=4.76 firmware only)

n=U&16 'Bitmask Port E to the variable n, (>=4.76 firmware only)
Rn	 'Report Result

Related
Command::

UE

UEA

UEO

318

UEO (as command)
	 Set I/O Port E to Input

APPLICATION:	 I/O control

DESCRIPTION:	 Set Pin E to be an output

EXECUTION:	 Immediate

CONDITIONAL TO:	 UE=0 or UE=1

LIMITATIONS:	 N/A

REPORT COMMAND:	 N/A

READ/WRITE:	 N/A		

LANGUAGE ACCESS:	 N/A

UNITS:	 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 N/A	

DEFAULT VALUE:	 Input

FIRMWARE VERSIONS:	 4.00 and higher	

DETAILED DESCRIPTION:

Although its default function is to be the AniLink data line, user I/O line E can function as
a TTL output. The command UEO specifies the I/O pin E as an output, while UE=value
sets the voltage. I/O pin E will be a logic high voltage if UE=1 and a logic low voltage if
UE=0. Regardless of whether the I/O pin is being used as an input or output, a 10 bit
analog reading of that I/O pin is always available through the UEA function.

In order for the output voltage to reflect the state of UE, both UEO and UE=value have
to be issued. Suppose the I/O pin is functioning as a digital input. If you want to output
a logic low signal, the pin will not sink current until both UEO and UE=0 have been
issued. You only have to issue UEO once; the I/O pin stays configured as an output
for some other configuration specification is issued.

Example: (set PIN E as output and recall output latch value)

	 UEO 			 'define PIN E output	
	 UE=1			 'set output latch value
	 PRINT(UEO)		 'recall the latch value.		
				 'response is 1
	 UE=0			 'set output latch value
	 PRINT(UEO)		 'recall the latch value
				 'response is 0

Related Command:

UE

UEA

UEI

319

UFexpression
	 Set I/O Port F Output Logic State

APPLICATION: I/O control

DESCRIPTION: Set Pin F output latch

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: N/A

READ/WRITE: Write only	

LANGUAGE ACCESS: Assignment only

UNITS: Binary bit

RANGE OF VALUES: 0 or 1

TYPICAL VALUES: 0 or 1	

DEFAULT VALUE: 0

FIRMWARE VERSIONS: 4.00 and higher	

DETAILED DESCRIPTION:
User I/O line F can function as a TTL output. The pin defaults to be a general purpose
TTL (0 - 5 volt) input. To use PIN F as an output, set the value of the pin F output
latch UF to either 0 or 1. Issue the command UFO if this has not already been issued.

I/O pin F will be a logic high voltage if UF=1 and a logic low voltage if UF=0.

Regardless of whether the I/O pin is being used as an input or output, a 10 bit
analog reading of that I/O pin is always available through the UFA function.

Fxample:
	 UFO		 'set PIN F to function as a digital output
	 UF=0		 'set PIN F to logic 0 (zero volts)
	 UF=1		 'set PIN F to logic 1 (+5 volts)

Note: The I/O state can be set prior to assigning as an output.

	 UF=0		 'Pre-set PIN F to logic 0 (zero volts)
	 UFO		 'set PIN F as an output pre-initialized to zero

Related
Command:

UFA

UFI

UFO

320

UFA
	 Read I/O Port F as Analog Input

APPLICATION:	 I/O control

DESCRIPTION:	 Read Pin F analog input

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT COMMAND:	 PRINT(UFA)

READ/WRITE:	 Read only

LANGUAGE ACCESS:	 Expressions and conditional testing

UNITS:	 Number

RANGE OF VALUES:	 0 or 1023

TYPICAL VALUES:	 0 or 1023	

DEFAULT VALUE:	 I/O dependent

FIRMWARE VERSIONS:	 4.00 and higher

DETAILED DESCRIPTION:

User I/O line F can serve as a 10 bit analog to digital input. The A to D reference is
5VDC and the returned data is between 0 and 1023. A value of 0 corresponds to 0
volts and 1023 to 5 volts. UFA is read only, and can be accessed with the statement
variable=UFA, PRINT(UFA,#13) or WHILE UFA>200 . . . LOOP. The analog read
occurs once at the time the UFA command is executed. Assigning the variable a=UFA
will perform the analog read once and store it into the variable a.

All user I/O pins have in internal 5K pull-up resistor, as well as current limiting and
other protection mechanisms. Any analog voltage source, then, should be rated to
adequately drive a 5K ohm input impedance.

The analog to digital conversion is always available on its corresponding I/O pin. That
is, regardless of whether the pin is being used as an input, output or other function, a
10 bit analog reading of I/O that pin is always available.

Example:
		 PRINT(#13,"PRINT UCA = ",UFA)
		 b=UFA	
		 PRINT(#13,"REPORT UFA = ")
		 Rb

RUFA	 'Directly Report Port F Analog Value (>=4.76 firmware only)

Related
Command::

UF

UFI

UFO

321

UFI (as command)
	 Set I/O Port F to Input

APPLICATION: I/O control

DESCRIPTION: Set Pin F to be an input

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: N/A

READ/WRITE: N/A		

LANGUAGE ACCESS: N/A	

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A	

DEFAULT VALUE: Input

FIRMWARE VERSIONS: 4.00 and higher	

DETAILED DESCRIPTION:

User I/O line F serves many functions. It can be a TTL (0 to 5V) input, TTL output, 10
bit analog input, the AniLink clock line and the RS485 B signal. While user I/O line
F defaults to being the AniLink clock line, it can be explicitly set up as a digital input
with the UFI command.

If I/O line F has been set to an output with the command UFO, it can be reset to be
an input with the command UFI.

Example:
	 UFI		 'Initialize (U)ser defined I/O pin (F) as (I)nput
	 PRINT(#13,"PIN F Input ",UFI)
	 n=UFI		 'Store state of I/O pin F
			 'as digital input into variable name "n"
	 PRINT(#13,"REPORT PIN F Input ") Rn
	 END

RUF 'Directly Report Port F logic State (>=4.76 firmware only)

n=U&32 'Bitmask Port F to the variable n, (>=4.76 firmware only)
Rn	 'Report Result

Related Command:

UF

UFA

UFO

322

UFI (as input value)
	 Read I/O Port F Logic State

APPLICATION:		 I/O input

DESCRIPTION:		 Input at Pin F

EXECUTION:	 	 Immediate

CONDITIONAL TO:		 N/A

LIMITATIONS:	 	 N/A

REPORT COMMAND:		 PRINT(UFI)

READ/WRITE:		 Read only

LANGUAGE ACCESS:	 	 Expression and conditional testing	

UNITS:		 Binary bit

RANGE OF VALUES:	 	 0 or 1

TYPICAL VALUES:		 0 or 1	

DEFAULT VALUE:		 I/O dependent

FIRMWARE VERSIONS:		 4.00 and higher	

DETAILED DESCRIPTION:

User I/O line F serves many functions. It can be a TTL (0 to 5V) input, TTL output, 10
bit analog input, the AniLink clock line and the RS485 B signal. While user I/O line F
defaults to being the AniLink clock line, it can be explicitly set up as a digital input with
the UFI command.

If I/O line F has been set to an output with the command UFO, it can be reset to be an
input with the command UFI.

Example:
	 UFI		 'Initialize (U)ser defined I/O pin (F) as (I)nput
	 PRINT(#13,"PIN E Input ",UFI)
	 n=UFI		 'Store state of I/O pin F
			 'as digital input into variable name "n"
	 PRINT(#13,"REPORT PIN F Input ") Rn
	 END

RUF 'Directly Report Port F logic State (>=4.76 firmware only)

n=U&32 'Bitmask Port F to the variable n, (>=4.76 firmware only)
Rn	 'Report Result

Related
Command::

UF

UFA

UFO

323

UFO (as command)
	 Set I/O Port F to Output

APPLICATION:	 I/O control

DESCRIPTION:	 Set Pin F to be an output

EXECUTION:	 Immediate

CONDITIONAL TO:	 UF=0 or UF=1

LIMITATIONS:	 N/A

REPORT COMMAND:	 N/A

READ/WRITE:	 N/A		

LANGUAGE ACCESS:	 N/A	

UNITS:	 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 N/A	

DEFAULT VALUE:	 Input

FIRMWARE VERSIONS:	 4.00 and higher	

DETAILED DESCRIPTION:

Although its default function is to be the AniLink clock line, user I/O line F can function as
a TTL output. The command UFO specifies the I/O pin F as an output, while UF=value
sets the voltage. I/O pin F will be a logic high voltage if UF=1 and a logic low voltage if
UF=0. Regardless of whether the I/O pin is being used as an input or output, a 10 bit
analog reading of that I/O pin is always available through the UFA function.

In order for the output voltage to reflect the state of UF, both UFO and UF=value have
to be issued. Suppose the I/O pin is functioning as a digital input. If you want to output
a logic low signal, the pin will not sink current until both UFO and UF=0 have been
issued. You only have to issue UFO once; the I/O pin stays configured as an output
for some other configuration specification is issued.

Example: (set PIN F as output and recall output latch value)

	 UFO 			 'define PIN F output	
	 UF=1			 'set output latch value
	 PRINT(UFO)		 'recall the latch value.		
				 'response is 1
	 UF=0			 'set output latch value
	 PRINT(UFO)		 'recall the latch value
				 'response is 0

Related Command:

UF

UFA

UFI

324

UG
	 Enable/Re-Enable Port G Sync Functionality

APPLICATION:	 I/O control

DESCRIPTION:	 Set Pin G to Act as "G" command when grounded

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT COMMAND:	 N/A

READ/WRITE:	 N/A		

LANGUAGE ACCESS:	 Assignment only

UNITS:	 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 N/A	

DEFAULT VALUE:	 N/A

FIRMWARE VERSIONS:	 ALL	

DETAILED DESCRIPTION:
User I/O line G can function as the "GO" or G command when grounded. It
does so by default. If at any time UGI or UGO commands are used, this func-
tionality is disabled. To Re-enable the "sync-function" just issue UG by itself.

The reason it is called the "sync function" is because it allows multiple motors to trig-
ger Go commands via hardware at the exact same time thereby synchronizing them.

Related Command:

UGA

UGI

UGO

RS4

325

UGexpression
	 Set I/O Port G Output Logic State

APPLICATION:	 I/O control

DESCRIPTION:	 Set Pin G output latch

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT COMMAND:	 N/A

READ/WRITE:	 Write only		

LANGUAGE ACCESS:	 Assignment only

UNITS:	 Binary bit

RANGE OF VALUES:	 0 or 1

TYPICAL VALUES:	 0 or 1	

DEFAULT VALUE:	 0

FIRMWARE VERSIONS:	 ALL	

DETAILED DESCRIPTION:
User I/O line G can function as a TTL output. The pin defaults to be a general purpose
TTL (0 - 5 volt) input. To use PIN G as an output, set the value of the pin G output
latch UG to either 0 or 1. Issue the command UGO if this has not already been issued.

I/O pin G will be a logic high voltage if UG=1 and a logic low voltage if UG=0.

Regardless of whether the I/O pin is being used as an input or output, a 10 bit
analog reading of that I/O pin is always available through the UGA function.

Gxample:
	 UGO		 'set PIN G to function as a digital output
	 UG=0		 'set PIN G to logic 0 (zero volts)
	 UG=1		 'set PIN G to logic 1 (+5 volts)

Note: The I/O state can be set prior to assigning as an output.

	 UG=0		 'Pre-set PIN G to logic 0 (zero volts)
	 UGO		 'set PIN G as an output pre-initialized to zero

Related Command:

UGA

UGI

UGO

RS4

326

UGA (as input value)
	 Read I/O Port G As Analog Input

APPLICATION:	 I/O control

DESCRIPTION:	 Read Pin G analog input

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT COMMAND:	 PRINT(UGA)

READ/WRITE:	 Read only

LANGUAGE ACCESS:	 Expressions and conditional testing

UNITS:	 Number

RANGE OF VALUES:	 0 or 1023

TYPICAL VALUES:	 0 or 1023	

DEFAULT VALUE:	 I/O dependent

FIRMWARE VERSIONS:	 4.00 and higher	

DETAILED DESCRIPTION:

User I/O line G can serve as a 10 bit analog to digital input. The A to D reference
is 5VDC and the returned data is between 0 and 1023. A value of 0 corresponds to
0 volts and 1023 to 5 volts. UGA is read only, and can be accessed with the state-
ment variable=UGA, PRINT(UGA,#13) or WHILE UGA>200 . . . LOOP. The analog
read occurs once at the time the UGA command is executed. Assigning the variable
a=UGA will perform the analog read once and store it into the variable a.

All user I/O pins have in internal 5K pull-up resistor, as well as current limiting and
other protection mechanisms. Any analog voltage source, then, should be rated to
adequately drive a 5K ohm input impedance.

The analog to digital conversion is always available on its corresponding I/O pin. That
is, regardless of whether the pin is being used as an input, output or other function, a
10 bit analog reading of I/O that pin is always available.

Example:
		 PRINT(#13,"PRINT UGA = ",UGA)
		 b=UGA	
		 PRINT(#13,"REPORT UGA = ")
		 Rb

RUGA	 'Directly Report Port G Analog Value (>=4.76 firmware only)

Related Command:

UG

UGI

UGO

327

UGI (as input value)
	 Read I/O Port G Logic Level State

APPLICATION:	 I/O control

DESCRIPTION:	 Read Pin G Logicinput

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT COMMAND:	 PRINT(UGI)

READ/WRITE:	 Read only

LANGUAGE ACCESS:	 Expressions and conditional testing

UNITS:	 Number

RANGE OF VALUES:	 0 or 1023

TYPICAL VALUES:	 0 or 1023	

DEFAULT VALUE:	 I/O dependent

FIRMWARE VERSIONS:	 4.00 and higher	

DETAILED DESCRIPTION:

User I/O line G serves many functions. It can be a TTL (0 to 5V) input, TTL output, 10 bit analog
input, the hardware "go" line, and the primary port RS485 control line. While user I/O line G
defaults to being the active low hardware "go," it can be explicitly set up as a digital input with
the UGI command.

If I/O line G has been set to an output with the command UGO, it can be reset to be an input
with the command UGI.

Example:
	 UGI		 'Initialize (U)ser defined I/O pin (G) as (I)nput
	 PRINT(#13,"PIN E Input ",UGI)
	 n=UGI		 'Store state of I/O pin G
			 'as digital input into variable name "n"
	 PRINT(#13,"REPORT PIN G Input ") Rn
	 END

RUG 'Directly Report Port G logic State (>=4.76 firmware only)

n=U&64 'Bitmask Port G to the variable n, (>=4.76 firmware only)
Rn	 'Report Result

Related Command:

UG

UGI

UGO

328

UGI (as command)
	 Set I/O Port G to Input

APPLICATION:		 I/O control

DESCRIPTION:		 Set PIN G to be an input

EXECUTION:	 		 Immediate

CONDITIONAL TO:	 	 N/A

LIMITATIONS:	 	 N/A

REPORT COMMAND:	 N/A

READ/WRITE:		 N/A		

LANGUAGE ACCESS:	 N/A

UNITS:	 		 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 	 N/A	

DEFAULT STATE:		 Input

FIRMWARE VERSIONS:	 ALL	

DETAILED DESCRIPTION:

User I/O line G serves many functions. It can be a TTL (0 to 5V) input, TTL output, 10 bit analog
input, the hardware "go" line, and the primary port RS485 control line. While user I/O line G
defaults to being the active low hardware "go," it can be explicitly set up as a digital input with
the UGI command.

If I/O line G has been set to an output with the command UGO, it can be reset to be an input
with the command UGI.

Example:
	 UGI		 'Initialize (U)ser defined I/O pin (G) as (I)nput
	 PRINT(#13,"PIN G Input ",UGI)
	 n=UGI		 'Store state of I/O pin G
			 'as digital input into variable name "n"
	 PRINT(#13,"REPORT PIN G Input ") Rn
	 END

RUG 'Directly Report Port G logic State (>=4.76 firmware only)

n=U&64 'Bitmask Port G to the variable n, (>=4.76 firmware only)
Rn	 'Report Result

Related Command:

UG

UGA

UGO

RS4

329

UGO (as command)
	 Set I/O Port G to Output

APPLICATION:	 I/O control

DESCRIPTION:	 Set Pin G to be an output

EXECUTION:	 Immediate

CONDITIONAL TO:	 UG=0 or UG=1

LIMITATIONS:	 N/A

REPORT COMMAND:	 N/A

READ/WRITE:	 N/A		

LANGUAGE ACCESS:	 N/A

UNITS:	 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 N/A	

DEFAULT VALUE:	 Input

FIRMWARE VERSIONS:	 ALL	

DETAILED DESCRIPTION:

Although its default function is the hardware "go" line, user I/O line G can function as a
TTL output. The command UGO specifies the I/O pin G as an output, while UG=value
sets the voltage. I/O pin G will be a logic high voltage if UG=1 and a logic low voltage
if UG=0. Regardless of whether the I/O pin is being used as an input or output, a 10
bit analog reading of the I/O pin is always available through the UGA function.

In order for the output voltage to reflect the state of UG, both UGO and UG=value
have to be issued. Suppose the I/O pin is functioning as a digital input. If you want
to output a logic low signal, the pin will not sink current until both UGO and UG=0
have been issued. Just issue UGO once, the I/O pin stays configured until another
configuration specification is issued.

When you open channel 0 as an RS485 port dedicates I/O G to the RS485 control
function, which is required for use with Animatics RS232 to RS485 converters like the
RS485 and RS485-ISO. When using one of these adapters, you must ensure that the
I/O G pin is configured as a TTL output with the UGO command before the channel
is opened.

EXAMPLE:

	 UGO 			 'define PIN G output	
	 UG=1			 'set output latch value
	 PRINT(UGO)		 'recall the latch value.		
				 'response is 1
	 UG=0			 'set output latch value
	 PRINT(UGO)		 'recall the latch value
				 'response is 0

Related Command:

UG

UGA

UGI

RS4

330

UP
	 Complied User Program and Header Upload

APPLICATION:		 User program verification

DESCRIPTION:		 Upload user EEPROM through serial communications

EXECUTION:		 Immediate

CONDITIONAL TO:		 N/A

LIMITATIONS:		 N/A

REPORT COMMAND:		 N/A

READ/WRITE:		 N/A

LANGUAGE ACCESS:		 N/A

UNITS:		 ASCII Characters

RANGE OF VALUES:		 Alpha numeric

TYPICAL VALUES:		 Alpha numeric	

DEFAULT VALUE:	 	N/A

FIRMWARE VERSIONS:		 4.00 and higher	

DETAILED DESCRIPTION:

The UP command will cause the SmartMotor™ compiled user program runtime code
to be sent out the primary serial port. In contrast, the UPLOAD command returns the
user program in readable text. The output from the UP command will include a header
containing binary information and special codes, created by the compiler to make the
program run faster, interspersed with the program text.

UP immediately terminates any running user program. The program counter is lost. UP
does not terminate the present motion mode or trajectory, change motion parameters
such as E, A, V, or KP, or alter the present value of the user variables.

The comments in your original source code do not appear when you UP or UPLOAD
a program. Comments are removed by the compiler, which is normal for any compiled
computer program.

When uploading a program from a SmartMotor in a daisy chain, prevent the other
SmartMotors in the chain from issuing unexpected characters by using the SILENCE
and SLEEP commands. After the upload is complete, you can re-enable normal
communications with WAKE and TALK.

Related
Command::

UPLOAD

WARNING

Do not use the
UP
command within
a user program.

It will terminate
the program.

331

UPLOAD
	 Standard User Program Upload

APPLICATION: User program verification

DESCRIPTION: Upload user EEPROM through serial 			
 communications

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: UPLOAD terminates user program execution

REPORT COMMAND: N/A

READ/WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: ASCII Characters

RANGE OF VALUES: Alpha numeric

TYPICAL VALUES: Alpha numeric	

DEFAULT VALUE: N/A

FIRMWARE VERSIONS: 4.00 and higher	

DETAILED DESCRIPTION:

The UPLOAD command will upload only the text portion of the SmartMotor’s™
program as it appeared in your original source file. In contrast, the UP command
will upload the text along with all of the binary information created by the
compiler that allows the program to run faster.

UPLOAD immediately terminates any running user program. The program
counter is lost. UPLOAD does not terminate the present motion mode or
trajectory, or change motion parameters such as E, A, V, KP, etc., or alter the
present value of the users variables.

When communicating over a terminal use the UPLOAD command to verify the
program is the expected one. The comments in your original source code do not
appear when you UP or UPLOAD a program. The comments were removed by
the compiler, as is usual for any compiled computer program.

When uploading a program from a SmartMotor in a daisy chain, prevent the
other SmartMotors in the chain from issuing unexpected characters by using
the SILENCE and SLEEP commands. After the upload is complete, you can
re-enable normal communications with WAKE and TALK.

Example: (try the following program, down load it and then RUN)
PRINT(" PERFORM UPLOAD CMD")
UPLOAD
PRINT(" ANY MORE ?")
END

Output is "PERFORM UPLOAD CMD"

Related
Command::

UP

WARNING

Do not use the
UPLOAD
command within
a user program.

It will terminate
the program.

332

V
	 Commanded Velocity

APPLICATION: Trajectory control	

DESCRIPTION: Maximum velocity

EXECUTION: Buffered

CONDITIONAL TO: MP, MV

LIMITATIONS: N/A

REPORT COMMAND: PRINT(V)

READ/WRITE: Read write		

LANGUAGE ACCESS: Assignment, expressions, and conditional testing

UNITS: Scaled encoder counts

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: -23200000 to 3200000	

DEFAULT VALUE: 0

FIRMWARE VERSIONS: ALL

DETAILED DESCRIPTION:

Use the V=expression to set the slew rate used by the velocity and position mode
moves. In the SmartMotor™, a point to point move is determined by P=expression,
the target position, V=expression, the target travelling velocity, and A=expression,
the acceleration at which to reach the target velocity. In a velocity mode move, you
only need V=expression, the target travelling velocity, and A=expression, the accel-
eration at which to reach the target velocity. V is always positive in position mode but
can be positive or negative in velocity mode.

The value of V defaults to zero so it must be given a value before any motion can take
place. The new value does not take effect until the next G command is executed.
	 MP 				 'Set Position Mode
	 P=10000 			 'Set Position
	 V=10000 			 'Set Velocity
	 A=1000 			 'Set Acceleration
	 G				 'Start Motion
	 TWAIT				 'pause program execution during move
	 P=0				 'Set new position
	 G				 'Start Motion again

Velocity is held to 32 bits, 16 bits integer and 16 bits fractional. The units are counts
per sample period, shifted by the 16 bits (65,536).

32,212= (2,000counts/revolution)(65,536)
(4,069samples/second)

Related
Command:

@P

@PE

@V

A

D

E

G

MP

MV

V

333

VLD(variable, number)
	 Data EEPROM READ/WRITE COMMAND

APPLICATION:	 User data recovery

DESCRIPTION:	 Sequentially load user variables from data EPROM 	

EXECUTION:	 Immediate	

CONDITIONAL TO:	 EPTR= variable

LIMITATIONS:	 EPTR set from 0 to 32000

REPORT COMMAND:	 N/A

READ/WRITE:	 Sequential read

LANGUAGE ACCESS:	 N/A

UNITS:	 1 byte, 2 byte, or 4 byte reads

RANGE OF VALUES:	 -2147483648 to 2147483647

TYPICAL VALUES:	 -2147483648 to 2147483647

DEFAULT VALUE:	 User stored values

FIRMWARE VERSIONS:	 4.00 and higher

DETAILED DESCRIPTION:

VST() or VLD() commands are used to store and load data from internal nonvolatile
RAM, (EEPROM). To read or write into this memory space a memory address location
must first be specified with the EPTR=expression command, where expression takes
a value between 0 and 32000, and then use the VST() or VLD() commands to store
or retrieve data.

To Read in a series of values and assign these values to a sequence of user variables
use the VLD(variable, number) command. 						
The first parameter (variable) specifies the name of the first user variable of a
sequence of variables that you wish to load. 						
 The second parameter (number) specifies the number of variables in the sequence
of variables that you wish to store. 								
 The command interpreter will automatically note the size of variable you define,
either 1, 2, or 4 bytes long.

When using the data EEPROM, it is important to note that the only the data values are
stored or loaded. The association of these values to any variable is not retained. The
only way to retrieve this data is by keeping track of the EPTR value.

If the data memory access is out of range, the scan error flag Bs will be set.

Examples:
Storing and retrieving a single 32 bit standard variable:
a=123456778 'assign a value to the variable "a"
EPTR=100	 'Set EPROM pointer to 100
VST(a,1)	 'Store into EPROM (EPTR incremental to 104 automatically)
EPTR=100 'Set Eprom to 100 again	
VLD(b,1)	 'Load from location 100 into the variable "b"
Rb		 'Report result will be: 123456789

Related Command:

Bk

EPTR

RBk

VST

334

Storing and retrieving a single 16 bit standard variable:
aw[0]=32000 'assign a value to the 16 bit "array word"(0)
EPTR=100	 'Set Eprom pointer to 100
VST(aw[0],1) 'Store into EPROM (EPTR incremental to 102 automatically)
EPTR=100	 'Set Eprom to 100 again	
VLD(x,1)	 'Load from location 100 into the variable "x"
Rx		 'Report result will be: 32000

Storing and retrieving a single 8 bit standard variable:
ab[0]=126 'assign a value to the 8 bit "array byte"(0)
EPTR=100	 'Set Eprom pointer to 100
VST(aw[0],1) 'Store into EPROM EPTR incremental to 101 automatically)
EPTR=100 'Set Eprom to 100 again	
VLD(x,1)	 'Load from location 100 into the variable "x"
Rx		 'Report result will be: 126

Storing and retrieving a 5 consecutive 32 bit standard variables:
a 10 11 12 13 14. 	 'assign values to the variables "a" thru "f"
EPTR=100	 'Set Eprom pointer to 100
VST(a,5)	 'EPTR will increment to 100+(4*5)=120
		 '(4 bytes x 5 stored)
EPTR=100	 'Set Eprom to 100 again	
VLD(v,5)	 'Load from location 100 into the variable "b"
Rv			 'will report 10
Rw			 'will report 11
Rx			 'will report 12
Ry			 'will report 13
Rz			 'will report 14

Storing 7 16-bit numbers into EEPROM:
	 i=10	 'Using the variable "i" as index to an array variable
	 j=7	 'Using the variable "j" as the number of sequential
		 'variables you wish to store

Example 16-bit array data Data :
	 aw[i] 1111 2222 3333 4444 -1111 -2222 -3333.	
	 EPTR=3200		 'Set EPROM memory pointer location to 3200
	 VST(aw[i],j)	 'Store "j" or 7 sequential variables
				 'beginning with aw[i]
				 'into EPROM starting at address 3200.
Note: The EEPROM value will automatically increment for each value stored.
EPTR value after above execution will be set to
3200+(7 variable * 2 bytes each) or 3214

Retrieving Same data into other variables for later use:
	 EPTR=3200
	 i=10	 'Using the variable "i" as index to an array variable
	 j=7	 'Using the variable "j" as the number of sequential
		 'variables you wish to store
	 VLD(aw[r],s)
	 WHILE t<5
		 PRINT(#13,aw[t+r]," ")
		 t=t+1
	 LOOP
	 END			 'output is 111 222 333 444 -1111

VLD(variable, number) (continued)
	 data EEPROM READ/WRITE COMMAND

Related
Command:

Bk

EPTR

RBk

VST

I've left the
strikethroughs
intact. I assume
there'll be
something to
replace them or
they'll go away
eventually

. . . Ernie

335

VST(variable, number)
	 DATA-EEPROM READ/WRITE COMMAND

APPLICATION: User data storage		

DESCRIPTION: Sequentially store user variables to data EPROM

EXECUTION: Immediate	

CONDITIONAL TO: EPTR= variable	

LIMITATIONS: EPTR set from 0 to 7999	

REPORT COMMAND: N/A

READ/WRITE: Sequential write

LANGUAGE ACCESS: N/A

UNITS: 1 byte, 2 byte, or 4 byte reads

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: -2147483648 to 2147483647

DEFAULT VALUE: User determined values	

FIRMWARE VERSIONS: 4.00 and higher	

DETAILED DESCRIPTION:

VST() command is used to store data into internal nonvolatile RAM, (EEPROM).
To write into this memory space a memory address location must first be specified
with the EPTR=expression command, where expression takes a value between 0
and 32000, use the VST(variable, number) command. The first parameter (variable)
specifies the name of the first user variable of a sequence of variables that you wish
to write from. The second parameter (number) specifies the number of variables in
the sequence of variables that you wish to store. 						
 The command interpreter will automatically note the size of variable you define,
either 1, 2, or 4 bytes long.

When using the data EEPROM, it is important to note that the only the data values
are stored. The association of these values to any variable is not retained. The only
way to retrieve this data is by keeping track of the EPTR value.

As each byte is written to the EEPROM, is immediately verified by reading the
EEPROM device. If the byte read does not match the byte write the system bit Bk
will be set to 1. If the data memory access is out of range, the scan error flag Bs will
be set.

Examples:
Storing and retrieving a single 32 bit standard variable:
a=123456778 'assign a value to the variable "a"
EPTR=100	 'Set EPROM pointer to 100
VST(a,1)	 'Store into EPROM (EPTR incremental to 104 automatically)
EPTR=100 'Set Eprom to 100 again	
VLD(b,1)	 'Load from location 100 into the variable "b"
Rb		 'Report result will be: 123456789

Related Command:

Bk

EPTR

RBk

VST

336

VST(variable, number) (continued)
	 DATA-EEPROM READ/WRITE COMMAND

Storing and retrieving a single 16 bit standard variable:
aw[0]=32000 'assign a value to the 16 bit "array word"(0)
EPTR=100	 'Set Eprom pointer to 100
VST(aw[0],1) 'Store into EPROM (EPTR incremental to 102 automatically)
EPTR=100	 'Set Eprom to 100 again	
VLD(x,1)	 'Load from location 100 into the variable "x"
Rx		 'Report result will be: 32000

Storing and retrieving a single 8 bit standard variable:
ab[0]=126 'assign a value to the 8 bit "array byte"(0)
EPTR=100	 'Set Eprom pointer to 100
VST(aw[0],1) 'Store into EPROM EPTR incremental to 101 automatically)
EPTR=100 'Set Eprom to 100 again	
VLD(x,1)	 'Load from location 100 into the variable "x"
Rx		 'Report result will be: 126

Storing and retrieving a 5 consecutive 32 bit standard variables:
a 10 11 12 13 14. 	 'assign values to the variables "a" thru "f"
EPTR=100	 'Set Eprom pointer to 100
VST(a,5)	 'EPTR will increment to 100+(4*5)=120
		 '(4 bytes x 5 stored)
EPTR=100	 'Set Eprom to 100 again	
VLD(v,5)	 'Load from location 100 into the variable "b"
Rv			 'will report 10
Rw			 'will report 11
Rx			 'will report 12
Ry			 'will report 13
Rz			 'will report 14

Storing 7 16-bit numbers into EEPROM:
	 i=10	 'Using the variable "i" as index to an array variable
	 j=7	 'Using the variable "j" as the number of sequential
		 'variables you wish to store

Example 16-bit array data Data :
	 aw[i] 1111 2222 3333 4444 -1111 -2222 -3333.	
	 EPTR=3200		 'Set EPROM memory pointer location to 3200
	 VST(aw[i],j)	 'Store "j" or 7 sequential variables
				 'beginning with aw[i]
				 'into EPROM starting at address 3200.
Note: The EEPROM value will automatically increment for each value stored.
EPTR value after above execution will be set to
3200+(7 variable * 2 bytes each) or 3214

Retrieving Same data into other variables for later use:
	 EPTR=3200
	 i=10	 'Using the variable "i" as index to an array variable
	 j=7	 'Using the variable "j" as the number of sequential
		 'variables you wish to store
	 VLD(aw[r],s)
	 WHILE t<5
		 PRINT(#13,aw[t+r]," ")
		 t=t+1
	 LOOP
	 END			 'output is 111 222 333 444 -1111

Related
Command:

Bk

EPTR

RBk

VST

337

WAIT=expression
	 Pause Program Flow for pre-determined time

APPLICATION: Program execution control

DESCRIPTION: Suspends command execution for defined number 		
 of PID samples

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: N/A

READ/WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: PID samples

RANGE OF VALUES: 0 to 2147483647

TYPICAL VALUES: 0 to 4000

DEFAULT VALUE: N/A

FIRMWARE VERSIONS: ALL

DETAILED DESCRIPTION:

The WAIT=expression will pause program execution for a specified amount of time.
Time is measured in PID sample periods of which there are 4,069 per second by
default. Some firmware versions may have a different of PID rate - please refer to
the RSP command for details on how to query your SmartMotor™ for its PID sample
period. The number of PID sample periods per second can be changed with the PID#
commands for motors with version 4.00 or later firmware.

EXAMPLE: (pause program execution for a given period)

	 w=32552		 'use to set Wait time

	 PID1			 'Default PID updates every servo sample
	 WAIT=w		 'Wait time = 8 seconds

	 PID2			 'PID updates every 2 servo samples
	 WAIT=w		 'Wait time = 4 seconds

	 PID4			 'PID updates every 4 servo samples	
	 WAIT=w		 'Wait time = 2 seconds

	 PID8			 'PID updates every 8 servo samples
	 WAIT=w		 'Wait time = 1 second

'
	 PID1			 'Return to Default PID
	 WAIT=w		 'Wait time = 8 seconds

Related
Command:

TWAIT

CLK

PID#

338

WAKE
	 Enable Open Communications on Primary Port

APPLICATION: Serial communication control

DESCRIPTION: Motor to execute all communications channel 0
 commands

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: N/A

READ/WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A	

DEFAULT VALUE: WAKE state

FIRMWARE VERSIONS: ALL	

DETAILED DESCRIPTION:

WAKE clears the SLEEP condition of a SmartMotor™. A SmartMotor that has been
put to SLEEP rejects all commands received through the primary port but WAKE.

WAKE is intended to be used from the host terminal while programs are being down-
loaded to other motors, but is is perfectly valid from within a user program.

Related
Command:

SLEEP

SLEEP1

WAKE1

The SLEEP and
WAKE commands
are only sent from
a host, never part
of a SmartMotor™
program.

339

WAKE1
	 Enable Open Communications on Secondary Port

APPLICATION:	 Serial communication control

DESCRIPTION:	 Motor to execute all communications channel 1
	 commands

EXECUTION:	 Immediate

CONDITIONAL TO:	 N/A

LIMITATIONS:	 N/A

REPORT COMMAND:	 N/A

READ/WRITE:	 N/A

LANGUAGE ACCESS:	 N/A

UNITS:	 N/A

RANGE OF VALUES:	 N/A

TYPICAL VALUES:	 N/A	

DEFAULT VALUE:	 WAKE1 state

FIRMWARE VERSIONS:	 ALL	

DETAILED DESCRIPTION:

WAKE1 clears the SLEEP1 condition of a SmartMotor™. A SmartMotor that has been
put to SLEEP1 rejects all commands received through the channel 1 serial port but
WAKE1.

WAKE1 is intended to be used from the host terminal while programs are being
downloaded to other motors, but is is perfectly valid from within a user program.

Related
Command:

SLEEP

SLEEP1

WAKE1

340

WHILE expression
	 Conditional Program Loop Flow Control

APPLICATION: 	 Program execution control

DESCRIPTION: 	 Defines block of code repeatable while expression 		
 	 is true

EXECUTION: 	 Immediate

CONDITIONAL TO: 	 Value of expression

LIMITATIONS: 	 6 Deep WHILE loop nesting <v4.0 firmware 			
 	 No limit >=v4.0 firmware

REPORT COMMAND:	 N/A

READ/WRITE: 	 N/A

LANGUAGE ACCESS:	 N/A

UNITS: 	 N/A

RANGE OF VALUES:	 expression values -2147483648 to 2147483647

TYPICAL VALUES: 	 expression values -2147483648 to 2147483647

DEFAULT VALUE: 	 N/A

FIRMWARE VERSIONS:	 ALL

DETAILED DESCRIPTION:

The WHILE loop creates a program loop that repeatedly executes as long as a cer-
tain condition is true or non zero.

EXAMPLE:

 WHILE {expression is true}

 execute program command here

 LOOP

The "expression" is evaluated the first time WHILE is encountered, and each time
program execution is sent back to the WHILE by its corresponding LOOP statement.
If the "expression" value is zero or false, program execution re-directs to the code
just below the LOOP command. Any valid standard Animatics expression can be
used. In particular, WHILE 1 . . . LOOP is a standard loop forever control block.

Each WHILE expression control block must be terminated with a corresponding
LOOP exit statement. WHILE control blocks may be nested.

If BREAK is encountered while executing a WHILE control block, program execution
unconditionally takes up after the LOOP statement.

WHILE is not a valid terminal command, it is only valid within a user program.

See examples on next page

Related Command:

BREAK

LOOP

IF

SWITCH

341

WHILE expression (continued)
	 program flow structures

Example:
	 WHILE Bt 	 'While trajectory still in progress
	 	 	 'More efficient than Bt==1
		 UB=1	 'Set output high
		 UB=0	 'Set output low
	 LOOP		 'Loop back to While

Example:

	 a=0
	 WHILE a<7
		 b=a<3		 'this is valid syntax !

		 IF b
			 PRINT("T ")	'true !
		 ELSE
			 PRINT("F ")	'false !
		 ENDIF
		 a=a+1 			 'increment loop index
	 LOOP
	 END					
'output is "T T T F F F F "

Example of nested WHILE Loops:

D=20000		 'Set Relative Move Distance
A=100			 'Set Acceleration
V=1000000		 'Set Velocity
MP			 'Set to Position Mode

 WHILE 1		 'While Forever

	 WHILE UAI==1 LOOP		
	 'wait for Port A to be grounded

	 G		 'Start Relative Move

	 WHILE Bt	 'While Moving
		 IF UBI==0	 'If Port B is grounded
			 X	 'Stop motion
		 ENDIF
	 LOOP

	 WHILE UAI==0 LOOP	
	 'wait for Port A to reset.
	 IF UCI==0		 'If Port C was grounded
		 BREAK		 'exit the WHILE 1 LOOP
	 ENDIF

 LOOP
 PRINT("Port C was grounded"),#13)

END

Related
Command:

BREAK

LOOP

IF

SWITCH

342

X
	 Decelerate Shaft to a Relative Position

APPLICATION: Trajectory control

DESCRIPTION: Slow motor motion to stop

EXECUTION: Immediate

CONDITIONAL TO: A non zero

LIMITATIONS: N/A

REPORT COMMAND: N/A

READ/WRITE: N/A		

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A	

DEFAULT VALUE: N/A

RELATED COMMANDS: G, S	

FIRMWARE VERSIONS: ALL	

DETAILED DESCRIPTION:

The X command immediately abandons the current trajectory mode and causes the
motor to slow to a stop using the current acceleration value A. This is different from
the S command, which stops the motor a soon as possible without regard to the cur-
rent acceleration. Regardless of the motion mode prior to the command, X leaves the
motor position mode. The response to RMODE will be an "R".

Example:
	 MP			 'Select Position Mode
	 A=200			 'Set Acceleration
	 V=50000		 'Set Velocity
	 P=1000000		 'Set Position
	 G			 'Start Motion
	 WHILE Bt		 'Loop while Trajectory
		 IF UAI	 'If input goes high
			 X	 'Decelerate now
		 ENDIF
		 RMODE		 'response is "R"
	 LOOP

Related
Command:

G

S

343

Z
	 Total CPU Reset

APPLICATION: Reset motor

DESCRIPTION: Software reset motor to power up condition

EXECUTION: Immediate

CONDITIONAL TO: Serial character transmit completion

LIMITATIONS: None

REPORT COMMAND: N/A

READ/WRITE: N/A		

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A	

DEFAULT VALUE: N/A

FIRMWARE VERSIONS: ALL	

DETAILED DESCRIPTION:

The Z command will totally reset the SmartMotor™ just as if power were taken away
and later restored. Consequently, if there is a stored program, it will be run from the
beginning. All modes of operation, variables and status bits will be restored back to
their defaults. Subsequent to a power up or reset, the SmartMotor will

	 1.	 initialize the motion mode, status bits and variables,

	 2.	 hold the serial port closed for approximately ¼ second

	 3.	 open and initialize the serial port

	 4.	 delay for ½ second. At the end of this time, the SmartMotor will examine 	
	 the communications buffer. In versions 4.0 through 4.12, if any character		
	 is in the buffer, the stored program will not be executed. In versions 4.15		
	 and later, the stored program will be aborted only if the specific characters 	
	 "EE" are found.

	 5.	 The stored program will now run, unless aborted as described above.

After a program download, using the Z command is a very good way to evaluate how
your SmartMotor™ will operate when powered on. The RUN command will execute
the stored program, but it will not clear the motor to its default condition, so the sub-
sequent operation will not necessarily mimic what would happen at power up.

WARNING! The Z command should not be used at or near the top of program
code. In doing so, it may cause a continuous and repetitive resetting of the CPU and
lock out the motor. IF this does happen, the Communications Lockup recovery tool
may be used to regain access to the motor.

Related
Command:

RUN

RUN?

This command
should not be
used in a stored
SmartMotor™
program.

344

Za
	 Reset Peak Over Current Flag

Related Command:

Ba

RBa

APPLICATION: Program execution control

DESCRIPTION: Reset current limit violation latch

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: RBa

READ/WRITE: N/A 	

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

RESET VALUE: 0

FIRMWARE VERSIONS: 4.00 and higher	

DETAILED DESCRIPTION:

Za resets the overcurrent error flag Ba to zero. If the current violation still exists Ba
will be set to 1 again.

In early firmware versions, Ba was vallid only after being enabled by a Za or ZS com-
mand after the motion had started. This proved cumbersome to users, so enabling
is not required in versions 4.15, 4.41, 4.75 and later. If Ba flag is regularly found to
be set there may be a problem. Please verify the motor is correctly "sized" for the
presently assigned task.

Example:

	 IF Ba 				 'Test flag
		 PRINT("Over Current")
		 Za 				 'Reset flag
	 ENDIF
	 WAIT=4000
	 IF Ba 				 'Retest flag
		 PRINT("Over Current still in effect")
	 ENDIF

345

Zb
	 Reset Comms Parity Error Flag

Related
Command:

Bb

RBb

CHN0

CHN1

APPLICATION: Program execution control

DESCRIPTION: Reset serial data parity violation latch

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: RBb

READ/WRITE: N/A 	

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

RESET VALUE: 0

FIRMWARE VERSIONS: 4.00 and higher	

DETAILED DESCRIPTION:

Zb resets system flag Bb, the parity error violation latch, to zero. A parity error indi-
cates that the communications has failed at a fundamental level. For safe operation,
it is vital to find and eliminate the cause if this error flag is ever set.

EXAMPLE:

	 IF Bb 				 'Test flag
		 PRINT(" Parity Error ")
		 Zb				 'Reset flag
	 ENDIF

346

Zc
	 Reset Comms Buffer Overflow Flag

Related Command:

Bc

RBc

APPLICATION: Program execution control

DESCRIPTION: Reset communications buffer overflow latch

EXECUTION: Immediate

CONDITIONAL TO: N/A

LANGUAGE ACCESS: N/A

LIMITATIONS: N/A

REPORT COMMAND: RBc

READ/WRITE: N/A 	

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

RESET VALUE: 0

FIRMWARE VERSIONS: 4.00 and higher	

DETAILED DESCRIPTION:

Zc resets system flag Bc, the serial communication receive buffer overflow violation
latch, to zero. If the communication buffer overflows, the SmartMotor™ may receive
a garbled or partial data byte. For safe operation, it is vital to find and eliminate the
cause if this error flag is ever set.

EXAMPLE:

\
	 IF Bc				 'Test flag
		 PRINT("Buffer Overflow")
		 Zc			 'Reset flag
	 ENDIF

347

Zd
	 Reset Math Overflow Error Flag

Related
Command:

Bd

RBd

APPLICATION: Program execution control

DESCRIPTION: Reset math overflow violation latch

EXECUTION: Immediate

CONDITIONAL TO: N/A

LANGUAGE ACCESS: N/A

LIMITATIONS: N/A

REPORT COMMAND: RBd

READ/WRITE: N/A 	

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

RESET VALUE: 0

FIRMWARE VERSIONS: 4.00 and higher	

DETAILED DESCRIPTION:

Zd resets the math overflow violation flag Bd to zero. For safe operation, it is
vital to find and eliminate the cause if this error flag is ever set.

EXAMPLE:

	 IF Bd 			 'Test flag
		 PRINT("Math Overflow")
		 Zd 			 'Reset flag
	 ENDIF

348

Ze
	 Reset Position Error Flag

Related
Command:

Bd

RBd

APPLICATION: Program execution control

DESCRIPTION: Reset Position Error Status Bit "Be"

EXECUTION: Immediate

CONDITIONAL TO: N/A

LANGUAGE ACCESS: N/A

LIMITATIONS: N/A

REPORT COMMAND: RBd

READ/WRITE: N/A 	

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

RESET VALUE: 0

FIRMWARE VERSIONS: 4.46 and higher	

DETAILED DESCRIPTION:

Ze resets the Be Following error or position error flag to zero. This only works
with PLS. PS2 and =4.76 firmware

EXAMPLE:

	 IF Be 			 'Test flag
		 PRINT("Following Error")
		 Ze 			 'Reset flag
	 ENDIF

349

Zf
	 Reset Comms Framing Error Flag

Related Command:

Bf

RBf

APPLICATION: Program execution control

DESCRIPTION: Reset serial communication framing error latch

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: RBf

READ/WRITE: N/A 	

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

RESET VALUE: 0

FIRMWARE VERSIONS: 4.00 and higher	

DETAILED DESCRIPTION:

Zf resets system flag Bf, the serial communications framing error violation latch, to
zero. A framing error means that the serial communications has failed at a fundamen-
tal level. For safe operation, it is vital to find and eliminate the cause if this error flag
is ever set.

EXAMPLE:

	 IF Bf 			 'Test flag
		 PRINT("Framing Error")
		 Zf 			 'Reset flag
	 ENDIF

350

Zl
	 Reset Historical Left Limit Flag Flag

Related
Command:

Bl

RBl

APPLICATION: Program execution control

DESCRIPTION: Reset historical left limit latch

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: RBl

READ/WRITE: N/A 	

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

RESET VALUE: 0

FIRMWARE VERSIONS: 4.00 and higher

DETAILED DESCRIPTION:

Zl resets system flag Bl, the left limit latch, to zero. If you use Bl to detect
the activation of the left limit, take care to reset it with Zl before scanning
for the bit again.

EXAMPLE:

	 IF Bl 				 'Test flag
		 PRINT("Left Limit Latched ")
		 Zl 				 'Reset flag
	 ENDIF

351

Zr
	 Reset Historical Right Travel Limit Flag

Related Command:

Br

RBr

APPLICATION: Program execution control

DESCRIPTION: Reset historical right limit latch

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: RBr

READ/WRITE: N/A 	

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

RESET VALUE: 0

FIRMWARE VERSIONS: 4.00 and higher	

DETAILED DESCRIPTION:

Zr resets system flag Br, the right limit latch, to zero. If you use Br to detect the activa-
tion of the right limit, be sure to reset it with Zr before scanning for the bit again.

EXAMPLE:

	 IF Br 				 'Test flag
		 PRINT("Right Limit Latched")
		 Zr 				 'Reset flag
	 ENDIF

352

Zs
	 Reset Command Syntax Error Flag

Related
Command:

Bs

RBs

APPLICATION: Program execution control

DESCRIPTION: Reset command scan error latch

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: RBs

READ/WRITE: N/A 	

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

RESET VALUE: 0

FIRMWARE VERSIONS: 4.00 and higher	

DETAILED DESCRIPTION:

Zs resets system flag Bs, the syntax or index access error latch, to zero. The RBs
report and ZS commands may assist in discovering whether or not the present firm-
ware version recognizes what appears to be a perfectly valid command and data
packet.

EXAMPLE:

	 IF Bs 				 'Test flag
		 PRINT("Syntax Error")
		 Zs 				 'Reset flag
	 ENDIF

353

Zu
	 Reset Array Index Error state Flag

Related Command:

Bu

RBu

APPLICATION: Program execution control

DESCRIPTION: Reset user array index read access error latch

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: RBu

READ/WRITE: N/A 	

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

RESET VALUE: 0

FIRMWARE VERSIONS: 4.00 and higher

DETAILED DESCRIPTION:

Zu resets system flag Bu, the index read access violation latch, to zero. If the Bu
flag is set, it means that you are improperly using an array and you may be writing
data to an unspecified location. For safe operation, it is vital to find and eliminate the
cause if this error flag is ever set.

EXAMPLE:

	 IF Bu					 'Test flag
		 PRINT("Array Error")
		 Zu 				 'Reset flag
	 ENDIF

354

Zw
	 Reset Encoder Wrap Status Flag

Related
Command:

Bw

RBw

APPLICATION: Program execution control

DESCRIPTION: Reset encoder wrap around event latch

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT COMMAND: RBw

READ/WRITE: N/A 	

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

RESET VALUE: 0

RELATED COMMANDS: Bw, RBw	

FIRMWARE VERSIONS: 4.00 and higher	

DETAILED DESCRIPTION:

Zw resets system flag Bw, the encoder wrap around violation latch, to zero. The
SmartMotor™ tracks its position as 32 bit data, so a valid position is between
-2147483648 and +2147483648. If the motor moves out of this range, the position
will overflow or "wrap around". It is therefore advisable to not operate any following
mode, cam mode, absolute position move, or relative position move such that wrap
around may occur. Reset the origin to avoid operating in this region.

EXAMPLE:

	 IF Bw 				 'Test flag
		 PRINT("Wraparound Occurred")
		 Zw 				 'Reset flag
	 ENDIF

355

ZS
	 Global Reset System State Flags

Related Command:

Za

Zb

Zc

Zd

Zf

Zl

Zr

Zs

Zu

Zw

APPLICATION: Program execution control

DESCRIPTION: Reset software system latches to power up state

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: None

REPORT COMMAND: N/A

READ/WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

RESET VALUES: N/A

FIRMWARE VERSIONS: 4.00 and higher, 4.76 and higher, see below

DETAILED DESCRIPTION:

Almost any event that occurs within a SmartMotor™ gets recorded in system flags.
These flags can be read as part of a program or a host inquiry. Once read, it is nec-
essary to reset the flag that records the particular event in order to record the next
occurrence. ZS resets all of the latched bits in the S status byte and the W status
word, as well as the three communication status bits: Ba, Bb, Bc, Bd, Be, Bf, Bl, Br,
Bs, Bu and Bw.

	 ZS 	performs the following flag resets:
			 Za 	 Reset hardware current limit violation
			 Zb 	 Reset serial data parity error
			 Zc 	 Reset communications buffer overflow
			 Zd 	 Reset user math overflow
			 Ze	 Reset Position Error (In >=4.76 firmware only.)
			 Zf 	 Reset communications framing error
			 Zl 	 Reset historical left limit
			 Zr 	 Reset historical right limit
		 	 Zs 	 Reset user command syntax error
			 Zu 	 Reset user read array indexing out of range
			 Zw 	 Reset wraparound

Continued on next page

356

Example:
	 ZS		 'reset all error and limit flag latches
			 'useful for debugging new programs
			 'but not satisfactory for real time control
			 'consider the following
	 C900 		 'Error Report Subroutine
	 IF Ba 	 'Test flag
		 PRINT("Over Current")
	 ENDIF
	 IF Bb 	 'Test flag
		 PRINT("Parity Error")
	 ENDIF
	 IF Bc		 'Test flag
		 PRINT("Buffer Overflow")
	 ENDIF
	 IF Bd 	 'Test flag
		 PRINT("Math Overflow")
	 ENDIF
	 IF Bf 	 'Test flag
		 PRINT("Framing Error")
	 ENDIF
	 IF Bl 	 'Test flag
		 PRINT("Left Limit")
	 ENDIF
	 IF Br 	 'Test flag
		 PRINT("Right Limit")
	 ENDIF
	 IF Bs 	 'Test flag
		 PRINT("Syntax Error")
	 ENDIF
	 IF Bu 	 'Test flag
		 PRINT("Array Error")
	 ENDIF
	 IF Bw 	 'Test flag
		 PRINT("Wraparound Occurred")
	 ENDIF
	 ZS		 'Reset all tested flags. Faulty !!!

END 	 'By the time ZS is executed it is possible,
		 'some previously tested zero flags may now be set.

ZS (cont)
	 Reset System state Flag

Related
Command:

Za

Zb

Zc

Zd

Zf

Zl

Zr

Zs

Zu

Zw

357

MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB
ab[0] ab[28] ab[56] ab[84]

aw[0] LSB aw[14] LSB aw[28] LSB aw[42] LSB
MSB MSB MSB MSB
ab[1] ab[29] ab[57] ab[85]

aa al[0] LSB LSB hh al[7] LSB LSB oo al[14] LSB LSB vv al[21] LSB LSB
MSB MSB MSB MSB MSB MSB MSB MSB

ab[2] ab[30] ab[58] ab[86]
aw[1] LSB aw[15] LSB aw[29] LSB aw[43] LSB

MSB MSB MSB MSB
ab[3] ab[31] ab[59] ab[87]

LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB
MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB

ab[4] ab[32] ab[60] ab[88]
aw[2] LSB aw[16] LSB aw[30] LSB aw[44] LSB

MSB MSB MSB MSB
ab[5] ab[33] ab[61] ab[89]

bb al[1] LSB LSB ii al[8] LSB LSB pp al[15] LSB LSB ww al[22] LSB LSB
MSB MSB MSB MSB MSB MSB MSB MSB

ab[6] ab[34] ab[62] ab[90]
aw[3] LSB aw[17] LSB aw[31] LSB aw[45] LSB

MSB MSB MSB MSB
ab[7] ab[35] ab[63] ab[91]

LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB
MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB

ab[8] ab[36] ab[64] ab[92]
aw[4] LSB aw[18] LSB aw[32] LSB aw[46] LSB

MSB MSB MSB MSB
ab[9] ab[37] ab[65] ab[93]

cc al[2] LSB LSB jj al[9] LSB LSB qq al[16] LSB LSB xx al[23] LSB LSB
MSB MSB MSB MSB MSB MSB MSB MSB

ab[10] ab[38] ab[66] ab[94]
aw[5] LSB aw[19] LSB aw[33] LSB aw[47] LSB

MSB MSB MSB MSB
ab[11] ab[39] ab[67] ab[95]

LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB
MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB

ab[12] ab[40] ab[68] ab[96]
aw[6] LSB aw[20] LSB aw[34] LSB aw[48] LSB

MSB MSB MSB MSB
ab[13] ab[41] ab[69] ab[97]

dd al[3] LSB LSB kk al[10] LSB LSB rr al[17] LSB LSB yy al[24] LSB LSB
MSB MSB MSB MSB MSB MSB MSB MSB

ab[14] ab[42] ab[70] ab[98]
aw[7] LSB aw[21] LSB aw[35] LSB aw[49] LSB

MSB MSB MSB MSB
ab[15] ab[43] ab[71] ab[99]

LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB
MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB

ab[16] ab[44] ab[72] ab[100]
aw[8] LSB aw[22] LSB aw[36] LSB aw[50] LSB

MSB MSB MSB MSB
ab[17] ab[45] ab[73] ab[101]

ee al[4] LSB LSB ll al[11] LSB LSB ss al[18] LSB LSB zz al[25] LSB LSB
MSB MSB MSB MSB MSB MSB MSB MSB

ab[18] ab[46] ab[74] ab[102]
aw[9] LSB aw[23] LSB aw[37] LSB aw[51] LSB

MSB MSB MSB MSB
ab[19] ab[47] ab[75] ab[103]

LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB
MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB

ab[20] ab[48] ab[76] ab[104]
aw[10] LSB aw[24] LSB aw[38] LSB aw[52] LSB

MSB MSB MSB MSB
ab[21] ab[49] ab[77] ab[105]

ff al[5] LSB LSB mm al[12] LSB LSB tt al[19] LSB LSB aaa al[26] LSB LSB
MSB MSB MSB MSB MSB MSB MSB MSB

ab[22] ab[50] ab[78] ab[106]
aw[11] LSB aw[25] LSB aw[39] LSB aw[53] LSB

MSB MSB MSB MSB
ab[23] ab[51] ab[79] ab[107]

LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB
MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB

ab[24] ab[52] ab[80] ab[108]
aw[12] LSB aw[26] LSB aw[40] LSB aw[54] LSB

MSB MSB MSB MSB
ab[25] ab[53] ab[81] ab[109]

gg al[6] LSB LSB nn al[13] LSB LSB uu al[20] LSB LSB bbb al[27] LSB LSB
MSB MSB MSB MSB MSB MSB MSB MSB

ab[26] ab[54] ab[82] ab[110]
aw[13] LSB aw[27] LSB aw[41] LSB aw[55] LSB

MSB MSB MSB MSB
ab[27] ab[55] ab[83] ab[111]

LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB

Array Variable Memory Map
	 Page 1 of 2

358

MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB
ab[112] ab[140] ab[168] ab[196]

aw[56] LSB aw[70] LSB aw[84] LSB aw[98] LSB
MSB MSB MSB MSB

ab[113] ab[141] ab[169] ab[197]
ccc al[28] LSB LSB jjj al[35] LSB LSB qqq al[42] LSB LSB xxx al[49] LSB LSB

MSB MSB MSB MSB MSB MSB MSB MSB
ab[114] ab[142] ab[170] ab[198]

aw[57] LSB aw[71] LSB aw[85] LSB aw[99] LSB
MSB MSB MSB MSB

ab[115] ab[143] ab[171] ab[199]
LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB
MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB

ab[116] ab[144] ab[172] ab[200]
aw[58] LSB aw[72] LSB aw[86] LSB aw[100] LSB

MSB MSB MSB MSB
ab[117] ab[145] ab[173] ab[201]

ddd al[29] LSB LSB kkk al[36] LSB LSB rrr al[43] LSB LSB yyy al[50] LSB LSB
MSB MSB MSB MSB MSB MSB MSB MSB

ab[118] ab[146] ab[174] ab[202]
aw[59] LSB aw[73] LSB aw[87] LSB aw[101] LSB

MSB MSB MSB MSB
ab[119] ab[147] ab[175] ab[203]

LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB
MSB MSB MSB MSB MSB MSB MSB MSB MSB

Note:

The "zzz" memory location
is used for SWITCH-CASE
calculations.
Do not use it if the
SWITCH command is
being used in user code.

ab[120] ab[148] ab[176]
aw[60] LSB aw[74] LSB aw[88] LSB

MSB MSB MSB
ab[121] ab[149] ab[177]

eee al[30] LSB LSB lll al[37] LSB LSB sss al[44] LSB LSB zzz
MSB MSB MSB MSB MSB MSB

ab[122] ab[150] ab[178]
aw[61] LSB aw[75] LSB aw[89] LSB

MSB MSB MSB
ab[123] ab[151] ab[179]

LSB LSB LSB LSB LSB LSB LSB LSB LSB
MSB MSB MSB MSB MSB MSB MSB MSB MSB

ab[124] ab[152] ab[180]
aw[62] LSB aw[76] LSB aw[90] LSB

MSB MSB MSB
ab[125] ab[153] ab[181]

fff al[31] LSB LSB mmm al[38] LSB LSB ttt al[45] LSB LSB
MSB MSB MSB MSB MSB MSB

ab[126] ab[154] ab[182]
aw[63] LSB aw[77] LSB aw[91] LSB

MSB MSB MSB
ab[127] ab[155] ab[183]

LSB LSB LSB LSB LSB LSB LSB LSB LSB
MSB MSB MSB MSB MSB MSB MSB MSB MSB

ab[128] ab[156] ab[184]
aw[64] LSB aw[78] LSB aw[92] LSB

MSB MSB MSB
ab[129] ab[157] ab[185]

ggg al[32] LSB LSB nnn al[39] LSB LSB uuu al[46] LSB LSB
MSB MSB MSB MSB MSB MSB

ab[130] ab[158] ab[186]
aw[65] LSB aw[79] LSB aw[93] LSB

MSB MSB MSB
ab[131] ab[159] ab[187]

LSB LSB LSB LSB LSB LSB LSB LSB LSB
MSB MSB MSB MSB MSB MSB MSB MSB MSB

ab[132] ab[160] ab[188]
aw[66] LSB aw[80] LSB aw[94] LSB

MSB MSB MSB
ab[133] ab[161] ab[189]

hhh al[33] LSB LSB ooo al[40] LSB LSB vvv al[47] LSB LSB
MSB MSB MSB MSB MSB MSB

ab[134] ab[162] ab[190]
aw[67] LSB aw[81] LSB aw[95] LSB

MSB MSB MSB
ab[135] ab[163] ab[191]

LSB LSB LSB LSB LSB LSB LSB LSB LSB
MSB MSB MSB MSB MSB MSB MSB MSB MSB

ab[136] ab[164] ab[192]
aw[68] LSB aw[82] LSB aw[96] LSB

MSB MSB MSB
ab[137] ab[165] ab[193]

iii al[34] LSB LSB ppp al[41] LSB LSB www al[48] LSB LSB
MSB MSB MSB MSB MSB MSB

ab[138] ab[166] ab[194]
aw[69] LSB aw[83] LSB aw[97] LSB

MSB MSB MSB
ab[139] ab[167] ab[195]

LSB LSB LSB LSB LSB LSB LSB LSB LSB

Array Variable Memory Map
	 Page 2 of 2

	Language reference introduction
	! (exclamation point)	Pause Program Execution
	 (Single Space Character)	Single Space Delimiter and String Terminator
	Direct Binary Mode Control	Binary Trajectory Data Format
	@PE	Real-Time Actual Position Error
	@V	Present Trajectory Velocity
	a . . z	32-Bit Variables
	aa . . zzz	32-Bit Variables
	ab[index]	8-bit Array Variables
	al[index]	32-Bit Array Variables
	aw[index] 	16-bit Array Variables
	A=expression	Set Acceleration
	ADDR	Set Motor Address
	AIN{address}{input}	Analog Input from I/O Device
	AMPS=expression	Set Drive PWM Limit
	AOUT{address},{value}	Analog Output to I/O Device
	Ba	Peak-Over-Current Status Bit
	Bb	Parity Error Status Bit
	Bc	Communications Overflow Status Bit
	Be	Excessive Position Error Status Bit
	Bf	Communications Framing Error Status Bit
	Bh	Overheat/RMS Over-Current Status Bit
	Bi	Index-Position Captured Status Bit
	Bk	User Program Checksum Error Status Bit
	Bl	Historical Left-Limit Status Bit
	Bm	Real-Time Left-Limit Status Bit
	Bo	Motor-Off Status Bit
	Bp	Real-Time Right-Limit Status Bit
	Br	Historical Right-Limit Status Bit
	Bs	Syntax-Error Status Bit
	Bt	Trajectory-In-Progress Status Bit
	Bu	Array Index Error Status Bit
	Bw	Encoder-Wrap-Around Status Bit
	Bx	Real-Time Index Input Status Bit
	BASE	Cam Mode Master Cycle Length
	BRKC	Brake Control Re-Direct to Port C
	BRKENG	Brake Engage
	BRKG	Brake Control Re-Direct to Port G
	BRKI	Brake Control Re-Direct to Port I
	BRKRLS	Brake Release
	BRKSRV	Brake Engage When Not Servoing
	BRKTRJ	Brake Engage With No Active Trajectory
	BREAK	Program Flow Loop Exit Control
	C{statement_label_number}	Program Subroutine Label
	CCHN(type,channel)	Close Communications Channel
	CHN	Combined Communications Error Flag
	CHN0	Communications Error Flag (RS-232)
	CHN1	Communications Error Flag (RS-485)
	CLK	Hardware Clock Variable
	CMD	Accept Command Input RS-232
	CMD1	Accept Command Input RS-485
	CTR	Second Encoder/Step and Direction Counter
	D=expression	Set R elative Distance
	DAT	Accept Data Input Only (RS-232)
	DAT1	Accept Data Input Only (RS-485)
	DEFAULT	Switch-Case Structure Element
	DIN{port}{channel}	Input Byte From I/O Device
	DOUT{port}{channel}{expression}	Output Byte to I/O Device
	E=expression	Set Allowable Position Error
	ECHO	Echo Incoming RS-232 Data
	ECHO_OFF	Turn RS-232 Echo Off
	ECHO1	Echo Incoming RS-485 Data
	ECHO_OFF1	Turn RS-485 Echo Off
	ELSE	IF-Structure command flow element
	ELSEIF	IF-structure command flow element
	ENC0	Set/Restore Internal Encoder for Servo
	ENC1	Select External Encoder for Servo
	END	End Program Code Execution
	ENDIF	End IF Statement
	ENDS	End SWITCH Statement
	EPTR=expression	Set Data EEPROM Pointer
	ES400	Set EPROM Read/Write Speed
	ES1000	Set EPROM Read/Write Speed
	F	Load PID Filter
	F=expression	Motor Function Control
	G	Start Motion (GO)
	GETCHR	Get Character from main RS-232
	GETCHR1	Get Character From RS-485
	GOSUB{number}	Subroutine Call
	GOTO{number}	Branch Program Flow to a Label
	I (capital i)	Encoder Index Pulse Location
	IF expression	Conditional Program Code Execution
	KA=expression	PID Acceleration Feed Forward
	KD=expression	PID Derivative Compensation
	KG=expression	PID Gravity Compensation
	KI=expression	PID Integral Compensation
	KL=expression	PID Integral Limit
	KP=expression	PID Proportional Compensation
	KS=expression	PID Derivative Term Sample Rate
	KV=expression	PID Velocity Feed Forward
	LEN	Main RS-232 data buffer fill level
	LEN1	RS-485 data buffer fill level
	LIMD	Enable Directional Travel Limits
	LIMH	Travel Limits Active High
	LIML	Travel Limits Active Low
	LIMN	Enable Non-Directional Travel Limits
	LOAD	Download Compiled User Program to Motor
	LOCKP	Prevent User Program Upload
	LOOP	Return to WHILE Program Flow Control
	MC	Enable Mode-CAM (Electronic Camming)
	MC2	Mode CAM 2X Multiplier
	MC4	Mode CAM 4X Multiplier
	MC8	Mode CAM 8X Multiplier
	MD50	Enable Direct Analog-Input Drive-Mode
	MF0	Enable Quadrature-Input Counter Mode
	MF1	Enable Mode-Follow, Raw Resolution
	MF2	Enable Mode-Follow Half-Quadrature
	MF4
	MFDIV	Set Mode-Follow Divisor
	MFMUL	Set Mode-Follow Multiplier
	MFR	Calculate/Enable Mode-Follow-Ratio
	MP	Enable Position-Mode
	MS	Enable Mode-Step
	MS0	Enable Step/Direction Counter Mode
	MT	Enable Torque-Mode
	MTB	Enable Mode Torque Brake
	MV	Enable Velocity-Mode
	O=expression	Set Main Position Counter
	OCHN	Open /Set-up Communications Channel
	OFF	Turn Off Drive Stage
	P=expression	Set Commanded Absolute Position
	PID#	P.I.D. Tuning Filter Control
	PRINT()	Print to Primary Communications Port
	PRINT1()	Print to Secondary Communications Port
	PRINTA() . . . PRINTH()	Print to External LCD Display
	Q	Report Host-Mode Status
	Ra . . . Rz	Report 32-Bit Variable Data Value
	Raa . . . Rzz	Report 32-Bit Variable Data Value
	Raaa . . . Rzzz	Report 32-Bit Variable Data Value
	Rab[index]	Report 8-Bit Array Data Value
	Ral[index]	Report 32-Bit Array Data Value
	Ral[index](continued)	Report 32-Bit Array Data Value
	Raw[index]	Report 16-Bit Array Data Value
	RA	Report Commanded Acceleration
	RAIN{port}{input}	Report Expanded Analog Input Value
	RAMPS	Report Allowable PWM Limit
	RBa	Report PEAK-Over-current Status Bit
	RBb	Report Communications Parity Error Status Bit
	RBc	Report Communications Overflow Status Bit
	RBd	Report Math Overflow Status Bit
	RBe	Report Position Error Status Bit
	RBf	Report Communications Framing Error Status Bit
	RBh	Report Over-Heat/RMS Over-Current Status Bit
	RBi	Report Index-Captured Status Bit
	RBk	Report EEPROM Checksum Status Bit
	RBl	Report Real-Time Left-Over-Travel-Limit State
	RBm	Report Historical Left-Over-Travel-Limit Status Bit
	RBo	Report Motor-Off Status Bit
	RBp	Report Historical Right-Over-Travel-Limit Logic State
	RBr	Report Real-Time Right-Over-Travel-Limit State
	RBs	Report Syntax-Error Status Bit
	RBt	Report Busy-Trajectory Status Bit
	RBu	Report Array Index Error Status Bit
	RBw	Report Encoder Wrap Status Bit
	RBx	Report Real-Time Index Pulse Logic State
	RCHN	Report Serial Communications Status Flags
	RCHN0	Report Primary Serial Port Status
	RCHN1	Report Secondary Serial Port Status
	RCS	Report Primary Serial Port Checksum
	RCS1	Report Secondary Serial Port Checksum
	RCTR	Report Secondary Encoder Counter
	RD	Report Commanded Relative Distance Value
	RDIN{port}{channel}	Report Expanded Input Logic Status
	RE	Report Maximum Allowable Position Error
	RETURN	Return-From-Subroutine Program Flow Control
	RI	Report Last-Captured Index Pulse Location
	RKA	Report Acceleration-Feed-Forward Gain Tuning Value
	RKD	Report Derivative-Gain Tuning Value
	RKG	Report Gravitational Compensation Gain Tuning Value
	RKI	Report Integral-Gain Tuning Value
	RKP	Report Proportional-Gain Tuning Value
	RKS	Report Inertial Time Constant Tuning Value
	RKV	Report Velocity-Feed-Forward Tuning Value
	RP	Report Real Time Position
	RPE	Report Real-Time Position Error
	RS	Report 8-Bit System Status Byte
	RS2	Restore Port G normal control
	RS4	Set Port G to RS-485 R/W Control Pin
	RSP	Report CPU speed and Firmware Revision
	RT	Report Commanded Torque Value
	RUN	Start/Re-Start Program Execution
	RUN?	Halt Program Execution until RUN Received
	RV	Report Current Trajectory Velocity
	RW	Report System 16-Bit Status Word
	S (as command)	 Stop Motion Quickly
	S (as status byte)	8-Bit System Status Byte
	SADDR#	Set Motor Address
	SILENT	Silence Primary Port Outgoing Communications
	SILENT1	Silence Secondary Port Outgoing Communications
	SIZE=expression	Set Number of CAM Table Data Points
	SLEEP	Ignore Incoming Commands on Primary Port
	SLEEP1	Ignore Incoming Commands on Secondary Port
	STACK	Clear Stack Pointer Register
	SWITCH expression	Selectable Program Flow Control
	T=expression	Set Open Loop Commanded Torque Value
	TALK	Enable Outgoing Messages on Primary Port
	TEMP	Read Motor Temperature
	TH	Set Maximum Allowable Temperature
	THD	Set Overheat Delay Timer
	TWAIT	Pause Program Execution During Active Trajectory
	UA=expression	Set I/O Port A Out t Logi c State
	UAA
	UAI (as command)	Set I/O Port A to Input
	UAI (as input value)	Read I/O Port A Logic State
	UAO (as command)	Set I/O Port A to Output
	UBexpression	Set I/O Port B Output Logic State
	UBA	Read I/O Port B as Analog Input
	UBI (as command)	Set I/O Port B to Input
	UBI (as input value)	Read I/O Port B Logic State
	UBO (as command)	Set I/O Port B to Output
	UCexpression	Set I/O Port C Output Logic State
	UCA	Read I/O Port C as Analog Input
	UCI (as command)	I/O COMMAND
	UCI (as input value)	Read I/O Port C to Input
	UCO (as command)	Set I/O Port C to Output
	UCP	Set I/O Port C as Positive Over Travel Limit
	UDexpression	Set I/O Port D Output Logic State
	UDA	Read I/O Port D as Analog Input
	UDI (as command)	Set I/O Port D to Input
	UDI (as input value)	Read I/O Port D to Input
	UDM	Set I/O Port D as Negative Over Travel Limit
	UDO (as command)	Set I/O Port D to Output
	UEexpression	Set I/O Port E Output Logic State
	UEA	Read I/O Port E as Analog Input
	UEI (as command)	Set I/O Port E to Input
	UEI (as input value)	Set I/O Port E to Input
	UEO (as command)	Set I/O Port E to Input
	UFexpression	Set I/O Port F Output Logic State
	UFA	Read I/O Port F as Analog Input
	UFI (as command)	Set I/O Port F to Input
	UFI (as input value)	Read I/O Port F Logic State
	UFO (as command)	Set I/O Port F to Output
	UG	Enable/Re-Enable Port G Sync Functionality
	UGexpression	Set I/O Port G Output Logic State
	UGA (as input value)	Read I/O Port G As Analog Input
	UGI (as input value)	Read I/O Port G Logic Level State
	UGI (as command)	Set I/O Port G to Input
	UGO (as command)	Set I/O Port G to Output
	UP	Complied User Program and Header Upload
	UPLOAD	Standard User Program Upload
	V	Commanded Velocity
	VLD(variable, number)	Data EEPROM READ/WRITE COMMAND
	VST(variable, number)	DATA-EEPROM READ/WRITE COMMAND
	WAIT=expression	Pause Program Flow for pre-determined time
	WAKE	Enable Open Communications on Primary Port
	WAKE1	Enable Open Communications on Secondary Port
	WHILE expression	Conditional Program Loop Flow Control
	X	Decelerate Shaft to a Relative Position
	Z	Total CPU Reset
	Za	Reset Peak Over Current Flag
	Zb	Reset Comms Parity Error Flag
	Zc	Reset Comms Buffer Overflow Flag
	Zd	Reset Math Overflow Error Flag
	Ze	Reset Position Error Flag
	Zf	Reset Comms Framing Error Flag
	Zl	Reset Historical Left Limit Flag Flag
	Zr	Reset Historical Right Travel Limit Flag
	Zu	Reset Array Index Error state Flag
	Zw	Reset Encoder Wrap Status Flag
	ZS	Global Reset System State Flags
	Array Variable Memory Map	Page 1 of 2
	Array Variable Memory Map	Page 2 of 2

