

Technical Description

of the

TRAIN CONTROL NETWORK

January 14, 1997

Richard W. Wall
University of Idaho

Department of Electrical Engineering

 2

I. GENERAL HARDWARE OVERVIEW

Eight processor boards make up the Controller Area Net-
work (CAN); six of which are based on the i80C196CA pro-
cessor and two on the i87C196KD processor. Software on one
i87C196KD processor board control the DC bus voltage while
the other simulates the track load by controlling the load mo-
tors. The program contained on the i87C196CA evaluation
board supports three classes of applications programs; the
server Controller, Inverter Controller, and the Dynamic Brake
Controller. All processor boards have an RS232C serial inter-
face operating at 38.2KB and a CAN interface using the
RS485 physical layer. The applications on the i87C196CA
boards are selected by settings on the eight position DIP
switch. Two sets of DIP LED modules on the i87C196CA
boards provide status information. LED 1 cycles in acknowl-
edgment of accepting a CAN control or status message. LED
2 blinks two elements that identifies the fact that an applica-
tion program is currently running and another led that identi-
fies which particular application program is executing.

The i87C196CA processor boards are produced by Dear-
born Group in Dearborn, MI. The systems are supplied with
Intel RISM (Reduced Instruction Set Monitor) ROMS and
were used while the application programs were under devel-
opment. There are two possible ways to interface to the CAN
using the 87C196CA evaluation boards; by the external
i87527 CAN controller IC on the PCB or the internal CAN
controller within the 80C196CA processor itself. The
i87C196KD processor boards is produced by Intel and also
supplied with a RISM ROM base monitor. These processor
boards interface with the CAN using an i87527 CAN evalua-
tion board (See appendix B). After development, the RISM
Monitor ROMS, U16 and U17, were replace with application
ROMS programmed with specific code. The address decod-
ing GAL22V10, IC5, on the 87C196CA boards and IC12 on
the 87C196KD boards are modified to permit the system to
operate without a host CPU. The applications code was de-
veloped using IAR ICC196 version 5.1 and Codeview IDE
from Chip Tools,. Inc.

The i87C196KD processor boards have the RS232 serial
drivers on the evaluation boards where as the i87C196CA
boards do not. For the later processor boards, the RS232C
drivers are located on an external driver board designed by the
University of Idaho. Each 87C196 processor board and RS232
driver board requires 500ma maximum current at 5 VDC. The
CAN - RS485 serial bus requires a DB9 male connector to
interface to the 87C196CA board.

II. CAN MESSAGE STRUCTURE

The CAN uses a message based communications scheme
that requires no network management resources or time when
nodes enter or exit the network. The primary information
identification comes from a message ID and does not identify
either the source or the destination of the message except by
specific design using fields allocated inside the message data

area. Only the information itself is identified by a 28 bit word
unique to each message type. The message types specified in
SAE standard J1939 assign variables to each data byte in the
message data filed.

Message data lengths are from zero to eight bytes. The
are three instances that initiate network traffic; unsolicited,
request for data, and response to request for data. The unsoli-
cited messages are initiated for system exceptions and by the
server controller as control messages. The server unit request
new data on timed intervals by sending an abbreviated mes-
sage that contains the message identifier and a single bit that
signals other units on the network that this is a request for
data. Units with this information immediately respond with
the appropriate data message.

All network arbitration and error management is handled
by the CAN controller IC’s either the Intel 82527 or the
87C196CA internal CAN controller. Each CAN transmission
uses bit stuffing for synchronization, 16 bit CRC for error
checking, and message prioritization for collision avoidance.

III. UNIT IDENTIFICATION

Six control units use the 87C196CA processor boards.
All six of these units have the identical microprocessor code.
The boards are set for the particular application by selecting
one of the six S1 DIP switch settings shown in Figure 1. The
switch setting can be set before power is applied and the pro-
cessor will start in the corresponding applications mode. The
DIP switch settings are only read in the power up initialization
routine. If the switches are modified while the processor is
running, the unit must be reset, either by a power down -
power up sequence or by pressing the reset push button, S2,
on the processor board. A reset is signaled on the processor
board by all LED’s on LED1 and LED2 flashing three times.

1
2
3
4
5
6
7
8

ON

S1

1
2
3
4
5
6
7
8

ON

S1

1
2
3
4
5
6
7
8

ON

S1

1
2
3
4
5
6
7
8

ON

S1

1
2
3
4
5
6
7
8

ON

S1

1
2
3
4
5
6
7
8

ON

S1

Master Traction
Motor

#1

Traction
Motor

#2

Flywheel
#1

Flywheel
#2

Dynamic
Brake

Figure 1. 87C196CA processor board DIP switch settings

DIP position 7 of S1 controls the “NO ACTIVITY” au-
tomatic reset function. If no commands have been received
from network communications for a period of five seconds.
the unit executes a power up reset. During the reset, the con-
trol outputs default to the safe-fail mode and the network is re-

 3

initialized to attempt to re-establish communications with the
server unit.

LED indication lights are packaged on two separate LED
clusters each holding eight individual LEDs. During normal
operations, the eight individual LED lights on the LED1 clus-
ter will sequence in a ring counter fashion. For I/O processor
units, the LED’s stop sequencing should network commands
cease. LED number eight on the LED2 cluster flashes at a 4
second rate to signal that the processor is operating. A
second LED on cluster LED2 flashes on at a two second rate.
The particular LED that flashes corresponds to the unit iden-
tifier set on S1 as shown in Figure 1.

IV. NETWORK OPERATION

Although CAN accommodates peer-to-peer network
communications, this implementation currently has the server
unit managing the network information. Once each second
the server unit requests updated information of all parameters
from other units on the network. This updated information is
communicated with the supervisory PC over a 38.4KB RS232
serial channel. Although using ASCII text characters requires
greater communications time than sending the information as
binary data, ASCII allows data to be qualified quite easily and
is very beneficial during development phases. The PC is ex-
pected to operate on this information and generate new com-
mands in a timely manner. When the new commands are re-
ceived by the server unit, the information is disseminated
over the network as specific messages to be implemented at
remote locations. If there is no response from the supervisory
PC with in one second, no commands are sent out on the net-
work.

Any i80C196CA board can be set to be the server unit by
setting all eight DIP switches on S1 to off and pressing the
reset button on the board. Under normal operation, both LED
units will flash on three times during initialization. Before
beginning operation, a the following text string is sent out the
RS232 port: “%Supervisory system on line”. A carriage-
return / linefeed (CR-LF) sequence is sent before and after the
message.

While running in the server mode, the serial communica-
tions to the supervisory PC contains 14 space delimited val-
ues using the format shown in Table I. The serial string is
always 69 characters long including the terminating CR-LF
sequence. All values are four decimal digit with leading zero
suppression except for the eleventh value which is a single
decimal digit. The serial communications operates at 38.4KB,
eight data bits, no parity, and one stop bit.

Table II describes the messages from the supervisory PC
to the server controller. Six control variables are passed man-
age the energy production, use and storage for the train. To
reduce communications overhead, only positive variables are
passed. Present convention uses a range of zero to 2000 as
nominal control parameters. This represents -100.0% to
+999.9% for all converter controls. The DC bus voltage has a

range of 0 to 1000 although it will be nominally set for
800VDC.

Table I. Server to PC data format
Digit Parameter Range

Min Max
1 Traction Motor #1 Torque 0 2000
2 Traction Motor #1 Speed 0 2000
3 Traction Motor #2 Torque 0 2000
4 Traction Motor #2 Speed 0 2000
5 Flywheel #1 Torque 0 2000
6 Flywheel #1 Speed 0 2000
7 Flywheel #2 Torque 0 2000
8 Flywheel #2 Speed 0 2000
9 DC BUS Volts 0 2000

10 DC BUS Amps 0 2000
11 Dynamic Brake Control 0 1
12 Train Speed 0 255
13 Train Distance modulo 10K

feet
0 9999

14 Train Distance / 10K feet 0 9999

Table II. PC to server data format
Digit Parameter Range

Min Max
1 Traction Motor #1 Power 0 2000
2 Traction Motor #1 Speed 0 2000
3 Traction Motor #2 Power 0 2000
4 Traction Motor #2 Speed 0 2000
5 DC Bus Voltage 0 1000
6 Brake control 0 1

The server unit is configured to receive eight different
CAN messages with each message containing eight bytes of
data. Figure 2 illustrates the network configuration and the
message routing. Messages from the server to I/O nodes are
either “request for status data” or “command” messages.
Messages form the I/O units are all “status” messages in re-
sponse to the “request for status data”. Six units receive
“commands” from the server unit; the two Traction Converter
control units, the two Flywheel Converter control units, the
Dynamic Brake control unit, and the DC bus voltage control
unit. The track position and train velocity data is provided by
the Track Simulator unit.

Table III. describes the message content for each of the
message type used in the system. As the bi-directional arrows
in Figure 2 imply, control messages and status messages be-
tween a given unit use the same message number. For exam-
ple, if the server unit needs an update from the Traction Motor
#1 unit, a “request for data” is made on the network for mes-
sage number 32769. Traction motor #1 unit then responds
with it’s data using message number 32769. When the server
unit issues a command to Traction Motor #1 unit, it does so
using the same 32769 message number. Another unit moni-
toring network traffic that in set to receive message 32769
would be able to distinguish the command data from the status
data since the different information occupies different fields in
the message structure as Table III describes. The CMD- STA-
TUS column indicate the information source. As stated
above, the source of command information (C) is the server

 4

unit while status information (S) is generated by I/O units.
Message data with unidentified sources are not used in this
implementation. Although the server unit controls the net-
work traffic in a master-slave fashion, peer-to-peer and unso-
licited slave to server communications is not precluded by
hardware or software.

CAN Network

IBM Compatible

Server
Unit

Track Simulator

Traction Motor #1
Controller

Flywheel #1
Controller

Flywheel #2
Controller

Traction Motor #2
Controller

DC Bus
Controller

Dynamic Brake
Controller

32
76

9

32
77

0

32
77

1

32
77

2
65256

65248

65
27

4
65

27
1

Figure 2. FRA Network information traffic routing

Table III. Network message data formats
 Number Message

name
Bit

Posi-
tion

Message
data

CMD
Status

Data
Type

32769 Inverter Bit 0 Dest. Unit Byte
-72 Torque Bit 1 Source Unit Byte

 Control Bits 2-3 Unit speed S Word
 Bits 4-5 Commanded

Power
C Word

 Bits 6-7 Unit Torque S Word

65248 Train
 Distance Bits 0-3 Trip distance -

feet
S Long

 Bits 4-7 Total Distance
- feet

 Long

65256 Train

 Speed Bits 0-1 Direction Word
 Bits 2-3 Ground Speed S Word
 Bits 4-5 Track Pitch Word
 Bits 6-7 Track Altitude Word

65271 Train
 Electrical Bits 0-1 DC Bus Amps S Word
 Bits 2-3 Alternator

Current
 Word

 Bits 4-5 Alternator
Volts

C Word

 Bits 6-7 Bus Volts S Word

65274 Dynamic
 Brakes Bit 0 Brake Appli-

cation
C S Byt

e
 Bit 1 Brake Pres-

sure #1
 Byt

e
 Bit 2 Brake Pres-

sure #2
 Byt

e
 Bits 3-7 Unused NA

Figure 3 shows the order of communications for the net-
work traffic as well as typical information timing. This timing
is specifically for the system designed for RS232C serial
communication between the server and the supervisory PC
operating at 38.4KB and the CAN operating at 74KB. The
delay between the status update to the supervisory PC and
new command data from the PC maybe as long as 150ms de-
pending upon PC activities and complexity of the Matlab al-
gorithm running at that time. Figure 4 shows the effects of an
I/O processor missing from the network. The server waits up
to four milliseconds for after a request for message update
before continuing on to the next update request. Figure 5 and
Figure 6 shows the CAN message timing during request for
updates in greater detail. From these figures, the overhead
associated with requesting message updates can be deter-
mined.

Figure 3. Message timing for normal operations

Figure 4. Message timing for no response from Flywheel #2

 5

Figure 5. CAN status update message

Figure 6. CAN status message update with no response from Flyw-

heel #2 unit

V. SERVER OPERATIONS

Figures 5 through 1 describe the control flow for the
server RTOS software. Three token generating events deter-
mine the activity within the RTOS; an internal software timer,
a CAN message received, and a new line of serial input.
Time-out timers in application processes guarantee that no
process waits for an unanswered request for action or informa-
tion from any internal or external process. The RTOS loop
must be executed every 15 ms or an internal Watchdog Timer
resets the microprocessor. During the reset (regardless of how
the reset is initiated) resets all control variables an distributes
this initialized information throughout the network. A ‘No
Activity’ flag resets the processor should no messages be re-
ceived from the supervisory PC within five seconds.

The process called ‘Control Status Update’ in Figure 7
actually consist of a series of request for transmission on the
CAN to update the status data base maintained in the server
processor. This information is posted by the various I/O nodes
in a timely manner such that no information is older than
20ms when the status information is sent to the supervisory
PC. I/O processors transmit data on the CAN only when re-
quested or a control exception is detected by the I/O proces-
sor.

Foreground
token management

Allocate silicon based
resources

Foreground
token management

New line
readyParse String Serial Rx ISR

Send
network commands

CAN Rx
message

Network message
decoded

Control status update

Control setpoint
update

Timer ISRCAN Rx
message

Poll network for
control status

update
Yes

No

No

Yes

Yes

No

Server RTOS

Serial Tx

Figure 7. server RTOS software flow control

Timer ISR

Return to process in
progress

Decrement
Time-out Timers

Software
Time

Interrupt

Halt program
without

Watchdog timer
update

Decrement NO
Activity Timer

Activity in
 last 5 Sec?

Hardware reset

Yes

No

Figure 8. Timer event generator and 'No Activity' monitor

 6

CAN IO

Received
CAN

Message
ISR

Qualify
message

Update Control
Status Buffers

Set CAN Rx
Token

Post CAN
Message

Send CAN
Message

Invallidate
Message

Set CAN
control for
new data

Encode
Message
Identifier

Move control
data to CAN

message area

Vallidate
Message

Process
complete

Invallidate
Message

Set CAN
control for
new data

Encode
Message
Identifier

Move control
data to CAN

message area

Vallidate
Message

Process
complete

Request
CAN

Message
 ISR

Qualify
message

Set CAN
control for TX

Reqest

Encode
Message
Identifier

Decode
Message
Identifier

Process
complete

Figure 9. CAN message control

SERIAL IO

Serial Output
(printf - putch

-puts)

Buffer
full?

Yes

No

Initiate Tx
ISR

Load
transmit

ring
buffer

Return to RTOS
process manager

Serial Input
(gets - getch
- new line)

Load
receive

ring
buffer

Char ==
\n or \r?

No

Initiate Tx
ISR Yes

Serial
Input ISR

Figure 10. Serial IO control

VI. INVERTER CONTROL OPERATIONS

The operations of the inverter control processors ex-
cept for the message ID number used for passing control and
status information. Figure 11 describes the control flow for
the inverter unit RTOS software. The support routines are
identical to Figures 8 through 10 implemented in the server
unit. This feature makes efficient code development and
maintenance. There are two events that cause an updated
CAN message to be posted; New information received from
the serial input and the expiration of a 10ms timer. The inver-
ter DSP units are programmed to automatically reply the tor-
que and shaft angular velocity data after receiving a com-
mand. Hence, when a timer generated command is sent, the
status information is also updated because of this action.

The four inverter control messages (message ID
32769 through 32772) have five fields as shown in Table II.
The Destination and Source Node ID fields are a reference to
previous generations of network code and are no longer ac-
tively used for present implementations. Information for the
“Commanded Power’ field is supplied by the server unit using
a data base maintained locally on the server unit. Before the
control message is sent, data last received from the inverter
controller is filled into the appropriate fields in the message.
This data base is maintained by communications with the su-
pervisory PC. Inverter - CAN interface units supply the data
for the unit torque and unit speed using an 38.4KB RS232
interface. Inverter power data received from the server is
filled into the CAN message before being sent by the inver-
ter-CAN interface units. This in effect makes complete in-
formation messages regardless of the source node and allows
convenient monitoring by an independent processor connected
to the network,

Specifically, the 80C196CA unit sends the inverter
DSP unit a ASCII decimal number in the range of 0 to 2000
which the inverted DSP interprets as -100.0% to +99.9%.
This string is terminated with a conventional ASCII line-feed
and a carriage-return (0DH and 0AH). Since the MCS96
Evaluation PCB does not support an RS232C serial port di-
rectly, a Serial Interface and I/O Driver board was developed
by the University of Idaho for this purpose. The schematic
diagram of this PCB is shown in the appendix as Figure 15.

VII. BRAKE CONTROLLER

 The RTOS software flow control described by Fig-
ure 12 uses support routines identical to those shown in Fig-
ures 8 through 10 as implemented in the server unit. The
main difference between the this 80C106CA application code
and those discussed above is that the I/O is directly imple-
mented on the microprocessor board using the add-on serial
interface and I/O driver board shown in the appendix as Fig-
ure 2. The I/O driver circuit has been modified to allow the
digital tachometer to monitor an auxiliary contact on the brake
unit for brake position status. The microprocessor unit is pro-

 7

grammed to output the digital value over both the CAN and
the RS232C serial channel when a new position is detected; a
‘1’ if the brake is energized and ‘0’ if not.. Under normal
operation, the brake commands are supplied via a network
messages but for test purposes, the brake commands can also
be set using the RS232 serial interface. Entering a ‘1’ fol-
lowed by a return will cause the brake to be energized and a
‘0’ will disengage the brake.

VIII. DC BUS VOLTAGE CONTROLLER

 As stated above, this controller is implemented using
an Intel i87C196KD processor. Appendix B describes the
process of interfacing this processor or, more specifically, the
i87C196KD Evaluation board to the i82527 CAN evaluation
board. Since the processors belong to the same family of mi-
cro controllers, significant code developed for the i87C196CA
applications was leveraged for the i87C196KD programs.
Namely the CAN management programs were useable with
only minor modifications which dealt with the CAN processor
reset and the physical mapped memory addressing. The
closed loop algorithm uses conventional digital PI control.
The voltage set point is supplied by the supervisory PC via the
CAN. The on-chip 10 bit AD converter digitizes the DC bus
voltage and DC bus current transducers signals which are
needed for closed loop control and system status. Figure 13
shows that process control loop the DC bus controller includes
an LCD display of instrumentation and control variables. The
LCD is updated once for every 15 AD conversion complete
interrupts. During the AD complete ISR, the PI algorithm is
executed and the instrumentation data is posted to the CAN
controller. The PI algorithm uses a 10 ms sample rate by
scheduling the PTS (Peripheral Transaction Server) to burst
convert two AD channels. At the end of the burst cycle, the
i87C196KD is interrupted to begin processing the AD com-
plete ISR. Figure 16 in Appendix I shows the schematic dia-
gram for the IO driver and LCD interface board.

Foreground
token management

Allocate silicon based
resources

Foreground
token management

New line
readyParse String Serial Rx ISR

CAN Rx
message

Network message
decoded

Timer ISRCAN Rx
message

No

No

Yes

No

INVERTER CONTROL RTOS

Serial Tx
control data

YES

Post
network message

Post
network message

Serial Tx
control data

YES

Figure 11. Inverter control RTOS flow diagram

Foreground
token management

Allocate silicon based
resources

Foreground
token management

New line
readyParse String

CAN Rx
message

Network message
decoded

Timer ISRCAN Rx
message

No

No

Yes

No

DYNAMIC BRAKECONTROL RTOS

Serial Tx
control data

YES

Post
network message

Post
network message

YES

Set digital output
Read digital input

Set digital output
Read digital input

Serial Rx ISR

Figure 12. Brake controller RTOS flow diagram

 8

Foreground
token management

Allocate silicon based
resources

Foreground
token management

Send RS232C
Serial Data

CAN Rx
message

Network message
decoded

AD Complete ISRPID Loop
Control

No

Yes

Yes

No

DC BUS VOLTAGE CONTROLLER

Register VDC Set
Point

Compute new
control output

Relay VDC S.P.,
VDC Inst., & IDC

Inst. to RS232 port

Post instrumented
data to CAN

AD loop
counter

Schedule next AD
sample

AD Complete FlagUpdate LCD and
reset loop counter

Yes

No

Figure 13. DC bus control and instrumentation unit flow dia-
gram

 9

Foreground
token management

Allocate silicon based
resources

Foreground
token management

Send RS232C
Serial Data

AD Complete ISRSimulator
algorithm

No

Yes

No

TRACK-LOAD SIMULATOR

Register VDC Set
Point

Determine Speed
and Distance

Traveled

Relay speed and
distance data to

RS232 port

Post instrumented
data to CAN

AD loop
counter

Schedule next AD
sample

AD Complete FlagUpdate LCD and
reset loop counter Yes

Determine Load
torque

Figure 14. Track-Load simulator flow diagram

 10

Appendix I
Driver and Interface Board Schematic Diagrams

Figure 15. 87C196CA I/0 auxiliary driver board schematic diagram

 11

Figure 16. 87C196CA I/0 auxiliary driver board schematic diagram for brake control

 12

Figure 16 Schematic diagram of auxiliary IO driver for the 87C196KD processors

 13

Appendix II
Notes on Interfacing the Intel 82527 CAN controller satellite board to the 87C196KD-20

Evaluation Board

A.II.I. Introduction

 The following discussion addresses issues interfacing the Intel CAN controller satellite board with a 87C196KD-20
Evaluation board. It was determined through research and experimentation that some hardware modifications are necessary.
These modifications are concentrated in three areas. The 60 pin DIN connector, JP3, the addressing mapping PAL, U12, and
the 87C196KD crystal, X1. No modifications of the 82527 CAN satellite board were necessary but jumper settings must be set
for 8 bit standard Intel data transfers.

 Code has been developed using ICC196 by IAR Systems[1] C compiler version 5.10 and 80196 assembler. This code
was loaded onto the 80C196 Evaluation board Rev. 3.1 running KBRISM Rev.1.2[2] using Chip-View 196 version 1.33 by
ChipTools[3].
The EV82527 Rev. 1.1 evaluation CAN satellite board is available from Dearborn Group[4]. Reference manuals the evalua-
tion boards[5,6,7] were needed to design and trouble shoot hardware modifications.

A.II.II. EV80C196KD-20 JP3 Modifications

 Interfacing the two evaluation boards is accomplished by connection the 60 pin header JP3 on the component side of
the EV87C196KD-20 to 72 pin connector, JP4 on the solder side of the EV82527. Only Pins 1 through 60 of JP4 on the
EV82527 board are necessary and there is direct correspondence in pin functionality if the EV82527 mounts directly over the
EV87C196KD-20 board. Since the “ON-CHIP UART” connector, P2, interferes with JP4 on the EV82527 board, it is neces-
sary to extend the pins of JP3 on the EV87C196KD-20 board in some manner. In this particular case, the pin header was re-
moved from JP3 of the EV80C196KD-20 board and was replaced with a pin header with 0.75 inch long pins. This provided
approximately 0.25 inches of clearance between P2 of the EV80C196KD-20 board and JP4 of the EV82527 board. Note: us-
ing a ribbon wire with two connectors will not correct as doing so will reverse the odd and even pin locations.

A.II.III. EV80C196KD-20 U12 PAL Modifications

 The function of GAL22V10 (U12) PAL on the EV80C196KD-20 board is to provide chip selects for the EPROM and
RAM memory, the 82510 UART IC as well as buswidth control and generate wait states for the 87C196KD processor. The
logic equations for this PAL are listed in the EV80C196KD user’s manual[2]. The design equations have been converted for
use with ISP Synario[8]distributed by Lattice Semiconductor who also manufactures the GAL22V10 programmable logic de-
vice (PLD). An Intel application note[9] provides used information when designing the modified PLD for interfacing the a 20
Mhz 8XC196 processor to the 82527. The PLD must be modified to set the 87C196KD into 8 bit buswidth mode and generate
three wait states for mapped memory accesses to the 82527 CAN controller in the memory address range of 0CA00 through
0CCFFH. The Address decoding PAL (U3) on the EV82527 is programmed for an 82527 chip select in address space
0CA00H through 0CAFFH. U3 also asserts the 82527 reset pin low when a “byte write” (8 bit memory write) is made to any
address in the range 0CB00H through 0CBFFH. The 82527 reset is released (set high) when a “byte write” is made to any
address in the range 0CC00H through 0CCFFH. U3 does not need to be modified for this interface strategy. The modified
PLD code is provided in Appendix I.

A.II.IV. EV80C196KD-20 CRYSTAL, X1 Modifications

 Although the Intel application note[9] discusses many issues with interfacing an 82527 CAN controller with a 20 Mhz
8X196 processor, it was found the EV87C196KD-20 board design is insufficient to support 20 Mhz operation. By experimen-
tation, it was determined that changing the 87C196KD processor crystal, X1, to a frequency less than 18.5 Mhz but greater
than 8 Mhz would result in proper operation. It was determined that the EV82527 board provided sufficient loading at 20
Mhz to render the EV80C196KD-20 inoperative even all IC connecting to the address, data and processor handshaking lines.

 14

A.II.V. EV82527 JUMPER SETTINGS

 The 82527 CAN controller allows for 8 to 16 bit data bus and for handshaking which is common to either Intel or
Motorola processors. Intel processors use separate active low read and write controls. Motorola processors use and active
low enable or select controls and a read-write control. The read-write control is asserted high for a processor read and is as-
serted low for a processor write. The following jumper setting configures the EV82527 for standard Intel 8 bit mode using the
on-board 16 Mhz crystal.

 E0 A-B Shorted
 E1 A-B Shorted
 E2 A-B Open
 E4 A-B Shorted
 E5 A-B Shorted
 E6 A-B Shorted
 JP6-1 2 Open
 JP6-3 4 Open
 JP6-5 6 Open
 JP6-7 8 Open
 JP6-9 10 Open
 JP6-11 12 Open
 JP6-13 14 Open
 JP6-15 16 Open

V. REFERENCES

[1] IAR Systems, Internet: support.iar.com, Tel: 415-765-5500, FAX: 415-765-5503

[2] EV80C196KD Evaluation Board User’s Manual, Release 001, May 8 1992, Intel Corp., Order Number: 27193-001

[3] ChipTools, 1232 Stavebank Road, Mississauga, Ontario, Canada, L5G2V2, Internet: support@chiptools.com, Web:
www.chiptools.com, Tel: 905-274-6244, FAX: 905.891.2715

[4] Deargorn Group, Inc., 37632 Hills Tech Drive, Tel: 810 488-20082

[5] 8XC196KC/KD User’s Manual, 1992, Intel Corp. Order Number: 272238-001

[6] 82725 Serial Communications Controller Architectural Overview, 1993, Intel Corp., Order Number: 272410-001

[8] ISP Synario Starter Software & ISP Encyclopedia, CD, July 1996, Lattice Semiconductor Corp. 5555 Northeast Moore
Court. Hillsboro, OR, 97124, Tel: (503) 681-0118, FAX:(503) 681-3037.

[9] Interfacing a 20 Mhz 8XC196 to an 82527 Serial Communications Controller, John Shill, August 1995, Intel Corp., Order
Number: 272732-001

 15

Appendix III
 Modified PLD code for EV80C196KD-20 U12.

MODULE KD-CAN
TITLE 'KD-RISM PAL for 82527 interface'
"U12 device 'p22v10';
"Constants
 H, L, X, Z, C = 1, 0, .X., .Z., .C.;

"Inputs
 CLKOUT pin 1;
 STALE pin 2;
 !HLDA pin 3;
 A15, A14, A13, A12 pin 11, 10, 9, 8;
 A11, A10, A9, A8 pin 7, 6, 5, 4;
 !RESET pin 13;

"Outputs
 MAP pin 23 ISTYPE 'reg, pos, buffer' ;
 !CE1 pin 22;
 !CE0 pin 21;
 !WAIT pin 19;
 SB2 pin 20 ISTYPE 'reg, pos, buffer' ;
 SB1 pin 18 ISTYPE 'reg, pos, buffer' ;
 SB0 pin 17 ISTYPE 'reg, pos, buffer' ;
 !BUSWIDTH pin 16;
 !CE2 pin 15;
 !CS510 pin 14;

 MEMADDR = [A15, A14, A13, A12, A11, A10, A9, A8, X, X, X, X, X, X, X, X];

 EPROM = !MAP & ((MEMADDR>=^h2000) & (MEMADDR<=^h27FF)) #
 ((MEMADDR>=^h0) & (MEMADDR<=^hFF)) #
 ((MEMADDR>=^h1D00) & (MEMADDR<=^h1DFF));

 EEPROM = ((MEMADDR>=^h6000) & (MEMADDR<=^h7FFF));

 RAM = (MAP & ((MEMADDR >=^h2000) & (MEMADDR<=^h27FF))) #
 (MEMADDR >=^h2800) & (MEMADDR<=^h5FFF);

 OPEN0 = ((MEMADDR>=^h100) & (MEMADDR<=^h1CFF));

 OPEN1 = ((MEMADDR>=^h8000) & (MEMADDR<=^hBFFF));

 OPEN2 = ((MEMADDR>=^hD000) & (MEMADDR<=^hFFFF));

 CAN = ((MEMADDR>=^hC000) & (MEMADDR<=^hCFFF));

 UART = ((MEMADDR>=^h1E00) & (MEMADDR<=^h1EFF));

 bw = EEPROM # UART # CAN;

 SR = [SB2, SB1, SB0];

 ASYNC_START = [0, 0, 0];
 HOLD2 = [0, 0, 1];
 HOLD3 = [0, 1, 1];
 HOLD4 = [1, 1, 1];
 HOLD5 = [1, 1, 0];

 16

 HOLD6 = [1, 0, 0];
 HOLD7 = [1, 0, 1];
 REMOVE_HOLD = [0, 1, 0];

 WAIT7 = 0;
 WAIT6 = WAIT7;
 WAIT5 = WAIT6;
 WAIT4 = WAIT5;
 WAIT3 = STALE & !HLDA & (WAIT4 # CAN);
 WAIT2 = STALE & !HLDA & (WAIT3 # UART);
 WAIT1 = STALE & !HLDA & (WAIT2 # EPROM # OPEN0 # OPEN1);

equations

 CE0 = EPROM;
 CE1 = RAM;
 CE2 = EEPROM;
 CS510 = UART;
 BUSWIDTH = bw;

 MAP.D = MAP # (!STALE & ((MEMADDR>=^h1000) & (MEMADDR<=^h1DFF)));
 MAP.AR = RESET;
 MAP.SP = 0;
 MAP.OE = 1;

 SB0.AR = RESET;
 SB0.SP = 0;
 SB0.OE = 1;
 SB1.AR = RESET;
 SB1.SP = 0;
 SB1.OE = 1;
 SB2.AR = RESET;
 SB2.SP = 0;
 SB2.OE = 1;

state_diagram SR;

 state ASYNC_START:
 WAIT = WAIT1;
 case
 WAIT1 & !WAIT2 : REMOVE_HOLD;
 WAIT2 : HOLD2;
 !WAIT1 & !WAIT2 : ASYNC_START;
 endcase;
 state HOLD2:
 WAIT = 1;

 if WAIT3 then HOLD3 else REMOVE_HOLD;

 state HOLD3:
 WAIT = 1;

 if WAIT4 then HOLD4 else REMOVE_HOLD;

 state HOLD4:
 WAIT = 1;

 if WAIT5 then HOLD5 else REMOVE_HOLD;

 state HOLD5:

 17

 WAIT = 1;

 if WAIT6 then HOLD6 else REMOVE_HOLD;

 state HOLD6:
 WAIT = 1;

 if WAIT7 then HOLD7 else REMOVE_HOLD;

 state HOLD7:
 WAIT = 1;

 goto REMOVE_HOLD;

 state REMOVE_HOLD:
 goto ASYNC_START;

END KD-CAN

