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I. GENERAL HARDWARE OVERVIEW 

Eight processor boards make up the Controller Area Net-
work (CAN); six of which are based on the i80C196CA pro-
cessor and two on the i87C196KD processor. Software on one 
i87C196KD processor board control the DC bus voltage while 
the other simulates the track load by controlling the load mo-
tors.  The program contained on the i87C196CA evaluation 
board supports three classes of applications programs; the 
server Controller, Inverter Controller, and the Dynamic Brake 
Controller. All processor boards have an RS232C serial inter-
face operating at 38.2KB and a CAN interface using the 
RS485 physical layer.  The applications on the i87C196CA 
boards are selected by settings on the eight position DIP 
switch.  Two sets of DIP LED modules on the i87C196CA 
boards provide status information. LED 1 cycles in acknowl-
edgment of accepting a CAN control or status message.  LED 
2 blinks two elements that identifies the fact that an applica-
tion program is currently running and another led that identi-
fies which particular application program is executing.   

The i87C196CA processor boards are produced by Dear-
born Group in Dearborn, MI.  The systems are supplied with 
Intel RISM (Reduced Instruction Set Monitor) ROMS and 
were used while the application programs were under devel-
opment.  There are two possible ways to interface to the CAN 
using the 87C196CA evaluation boards; by the external 
i87527 CAN controller IC on the PCB or the internal CAN 
controller within the 80C196CA processor itself.  The 
i87C196KD processor boards is produced by Intel and also 
supplied with a RISM ROM base monitor.  These processor 
boards interface with the CAN using an i87527 CAN evalua-
tion board (See appendix B). After development, the RISM 
Monitor ROMS, U16 and U17,  were replace with application 
ROMS programmed with specific code.  The  address decod-
ing GAL22V10, IC5, on the 87C196CA boards and IC12 on 
the 87C196KD boards are modified to permit the system to 
operate  without a host CPU.  The applications code was de-
veloped using IAR ICC196 version 5.1 and Codeview IDE 
from Chip Tools,. Inc.   

The i87C196KD processor boards have the RS232 serial 
drivers on the evaluation boards where as the i87C196CA 
boards do not.  For the later processor boards, the RS232C 
drivers are located on an external driver board designed by the 
University of Idaho. Each 87C196 processor board and RS232 
driver board requires 500ma maximum current at 5 VDC.  The 
CAN - RS485 serial bus requires a DB9 male connector to 
interface to the 87C196CA board. 

II. CAN MESSAGE STRUCTURE 

The CAN uses a message based communications scheme 
that requires no network management resources or time when 
nodes enter or exit the network.  The primary information 
identification comes from a message ID and does not identify 
either the source or the destination of the message except by 
specific design using fields allocated inside the message data 

area.  Only the information itself is identified by a 28 bit word 
unique to each message type.  The message types specified in 
SAE standard J1939 assign variables to each data byte in the 
message data filed. 

Message data lengths are from zero to eight bytes.  The 
are three instances that initiate network traffic; unsolicited,  
request for data, and response to request for data.  The unsoli-
cited messages are initiated for system exceptions and by the 
server controller as control messages.  The server unit request 
new data on timed intervals by sending an abbreviated mes-
sage that contains the message identifier and a single bit that 
signals other units on the network that this is a request for 
data.  Units with this information immediately respond with 
the appropriate data message.   

All network arbitration and error management is handled 
by the CAN controller IC’s either the Intel 82527 or the 
87C196CA internal CAN controller.  Each CAN transmission 
uses bit stuffing for synchronization, 16 bit CRC for error 
checking, and message prioritization for collision avoidance. 

III. UNIT IDENTIFICATION 

Six control units use the 87C196CA processor boards.  
All six of these units have the identical microprocessor code.  
The boards are set for the particular application by selecting 
one of the six S1 DIP switch settings shown in Figure 1. The 
switch setting can be set before power is applied and the pro-
cessor will start in the corresponding applications mode.  The 
DIP switch settings are only read in the power up initialization 
routine. If the switches are modified while the processor is 
running, the unit must be reset, either by a power down - 
power up sequence or by pressing the reset push button, S2, 
on the processor board.  A reset is signaled on the processor 
board by all LED’s on LED1 and LED2 flashing three times.   
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Figure 1.  87C196CA processor board DIP switch settings 

DIP position 7 of S1 controls the “NO ACTIVITY” au-
tomatic reset function.  If no commands have been received 
from network communications for a period of five seconds. 
the unit executes a power up reset.  During the reset, the con-
trol outputs default to the safe-fail mode and the network is re-
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initialized to attempt to re-establish communications with the 
server unit. 

LED indication lights are packaged on two separate LED 
clusters each holding eight individual LEDs. During normal 
operations, the eight individual LED lights on the LED1 clus-
ter will sequence in a ring counter fashion.  For I/O processor 
units, the LED’s stop sequencing should network commands 
cease.  LED number eight on the LED2 cluster flashes at a 4 
second rate to signal that the processor is operating.  A  
second  LED on cluster LED2 flashes on at a two second rate.  
The particular LED that flashes corresponds to the unit iden-
tifier set on S1 as shown in Figure 1. 

IV. NETWORK OPERATION 

Although CAN accommodates peer-to-peer network 
communications,  this implementation currently has the server 
unit managing the network information.  Once each second 
the server unit requests updated information of all parameters 
from other units on the network.  This updated information is 
communicated with the supervisory PC over a 38.4KB RS232 
serial channel.  Although using ASCII text characters requires 
greater communications time than sending the information as 
binary data, ASCII allows data to be qualified quite easily and 
is very beneficial during development phases.  The PC is ex-
pected to operate on this information and generate new com-
mands in a timely manner.  When the new commands are re-
ceived by the server unit,  the information is disseminated 
over the network as specific messages to be implemented at 
remote locations.   If there is no response from the supervisory 
PC with in one second, no commands are sent out on the net-
work.   

Any i80C196CA board can be set to be the server unit by 
setting all eight DIP switches on S1 to off and pressing the 
reset button on the board.  Under normal operation, both LED 
units will flash on three times during initialization.  Before 
beginning operation, a the following text string is sent out the 
RS232 port: “%Supervisory system on line”.  A carriage-
return / linefeed (CR-LF) sequence is sent before and after the 
message.   

While running in the server mode, the serial communica-
tions to the supervisory PC  contains 14 space delimited val-
ues using the format shown in Table I.  The serial string is 
always 69 characters long including the terminating CR-LF 
sequence.  All values are four decimal digit with leading zero 
suppression except for the eleventh value which is a single 
decimal digit.  The serial communications operates at 38.4KB, 
eight data bits, no parity, and one stop bit.   

Table II describes the messages from the supervisory PC 
to the server controller. Six control variables are passed man-
age the energy production, use and storage for the train.  To 
reduce communications overhead, only positive variables are 
passed.  Present convention uses a range of zero to 2000 as 
nominal control parameters.  This represents -100.0% to 
+999.9% for all converter controls.  The DC bus voltage has a 

range of 0 to 1000 although it will be nominally set for 
800VDC. 

Table I. Server to PC data format 
Digit  Parameter Range 

Min         Max 
1 Traction Motor #1 Torque 0 2000 
2 Traction Motor #1 Speed 0 2000 
3 Traction Motor #2 Torque 0 2000 
4 Traction Motor #2 Speed 0 2000 
5 Flywheel #1 Torque 0 2000 
6 Flywheel #1 Speed 0 2000 
7 Flywheel #2 Torque 0 2000 
8 Flywheel #2 Speed 0 2000 
9 DC BUS Volts 0 2000 

10 DC BUS Amps 0 2000 
11 Dynamic Brake Control 0 1 
12 Train Speed 0 255 
13 Train Distance modulo 10K 

feet 
0 9999 

14 Train Distance / 10K feet 0 9999 

Table II. PC to server data format 
Digit Parameter Range 

Min   Max 
1 Traction Motor #1 Power 0 2000 
2 Traction Motor #1 Speed 0 2000 
3 Traction Motor #2 Power 0 2000 
4 Traction Motor #2 Speed 0 2000 
5 DC Bus Voltage 0 1000 
6 Brake control 0 1 

The server unit is configured to receive eight different 
CAN messages with each message containing eight bytes of 
data. Figure 2  illustrates the network configuration and the 
message routing.  Messages from the server to I/O nodes are 
either “request for status data” or “command” messages.  
Messages form the I/O units are all  “status” messages in re-
sponse to the “request for status data”.  Six units receive 
“commands” from the server unit; the two Traction Converter 
control units, the two Flywheel Converter control units, the 
Dynamic Brake control unit, and the DC bus voltage control 
unit.  The track position and train velocity data is provided by 
the Track Simulator unit. 

Table III. describes the message content for each of the 
message type used in the system. As the bi-directional arrows 
in Figure 2 imply, control messages and status messages be-
tween a given unit use the same message number.  For exam-
ple, if the server unit needs an update from the Traction Motor 
#1 unit, a “request for data” is made on the network for mes-
sage number 32769.  Traction motor #1 unit then responds 
with it’s data using message number 32769.  When the server 
unit issues a command to Traction Motor #1 unit,  it does so 
using the same 32769 message number.  Another unit moni-
toring network traffic that in set to receive message 32769 
would be able to distinguish the command data from the status 
data since the different information occupies different fields in 
the message structure as Table III describes. The CMD- STA-
TUS column indicate the information source.  As stated 
above, the source of command information (C) is the server 
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unit while status information (S) is generated by I/O units.  
Message data with unidentified sources are not used in this 
implementation.  Although the server unit controls the net-
work traffic in a master-slave fashion, peer-to-peer and unso-
licited slave to server communications is not precluded by 
hardware or software.  
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Figure 2. FRA Network information traffic routing 
 

Table III. Network message data formats 
 Number Message 

name 
Bit  

Posi-
tion 

Message 
data 

CMD
Status 

Data 
Type 

32769 Inverter  Bit 0 Dest. Unit  Byte 
-72 Torque Bit 1 Source Unit  Byte 

 Control Bits 2-3 Unit speed S Word 
  Bits 4-5 Commanded 

Power 
C Word 

  Bits 6-7 Unit Torque S Word 
      

65248 Train      
 Distance Bits 0-3 Trip distance - 

feet 
S Long 

  Bits 4-7 Total Distance 
- feet 

 Long 

      
65256 Train      

 Speed Bits 0-1 Direction  Word 
  Bits 2-3 Ground Speed S Word 
  Bits 4-5 Track Pitch  Word 
  Bits 6-7 Track Altitude  Word 
      

65271 Train      
 Electrical Bits 0-1 DC Bus Amps S Word 
  Bits 2-3 Alternator 

Current 
 Word 

  Bits 4-5 Alternator 
Volts 

C Word 

  Bits 6-7 Bus Volts S Word 
      

65274 Dynamic      
 Brakes Bit 0 Brake Appli-

cation 
C S Byt

e 
  Bit 1 Brake Pres-

sure #1 
 Byt

e 
  Bit 2 Brake Pres-

sure #2 
 Byt

e 
  Bits 3-7 Unused  NA 

Figure 3 shows the order of communications for the net-
work traffic as well as typical information timing.  This timing 
is specifically for the system designed for RS232C serial 
communication between the server and the supervisory PC 
operating at 38.4KB and the CAN operating at 74KB. The 
delay between the status update to the supervisory PC and 
new command data from the PC maybe as long as 150ms de-
pending upon PC activities and complexity of the Matlab al-
gorithm running at that time. Figure 4 shows the effects of an 
I/O processor missing from the network.  The server waits up 
to four milliseconds for after a request for message update 
before continuing on to the next update request. Figure 5 and 
Figure 6 shows the CAN message timing during request for 
updates in greater detail.  From these figures, the overhead 
associated with requesting message updates can be deter-
mined. 

 

 
Figure 3. Message timing for normal operations 

 

 

Figure 4. Message timing for no response from Flywheel #2 
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Figure 5.  CAN status update message 

  

 
Figure 6. CAN status message update with no response from Flyw-

heel #2 unit 

 

V. SERVER OPERATIONS 
 

Figures 5  through 1 describe the control flow for the 
server RTOS software.  Three token generating events deter-
mine the activity within the RTOS; an internal software timer, 
a CAN message received, and a new line of serial input.  
Time-out timers in application processes guarantee that no 
process waits for an unanswered request for action or informa-
tion from any internal or external process.  The RTOS loop 
must be executed every 15 ms or an internal Watchdog Timer 
resets the microprocessor.  During the reset (regardless of how 
the reset is initiated) resets all control variables an distributes 
this initialized information throughout the network.  A ‘No 
Activity’ flag resets the processor should no messages be re-
ceived from the supervisory PC within five seconds.   

The process called ‘Control Status Update’ in Figure 7 
actually consist of  a series of request for transmission on the 
CAN to update the status data base maintained in the server 
processor. This information is posted by the various I/O nodes 
in a timely manner such that no information is older than 
20ms when the status information is sent to the supervisory 
PC.  I/O processors transmit data on the CAN only when re-
quested or a control exception is detected by the I/O proces-
sor. 
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Figure 7. server RTOS software flow control 
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Figure 10. Serial IO control 

VI. INVERTER CONTROL OPERATIONS 
 

The operations of the inverter control processors ex-
cept for the message ID number used for passing control and 
status information. Figure 11 describes the control flow for 
the inverter unit RTOS software. The support routines are 
identical to Figures 8 through 10 implemented in the server 
unit.  This feature makes efficient code development and 
maintenance.  There are two events that cause an updated 
CAN message to be posted; New information received from 
the serial input and the expiration of a 10ms timer.  The inver-
ter DSP units are programmed to automatically reply the tor-
que and shaft angular velocity data after receiving a com-
mand.  Hence, when a timer generated command is sent, the 
status information is also updated because of this action. 

The four inverter control messages (message ID 
32769 through 32772) have five fields as shown in Table II.  
The Destination and Source Node ID fields are a reference to 
previous generations of network code and are no longer ac-
tively used for present implementations.  Information for the 
“Commanded Power’ field is supplied by the server unit using 
a data base maintained locally on the server unit. Before the 
control message is sent, data last received from the inverter 
controller is filled into the appropriate fields in the message. 
This data base is maintained by communications with the su-
pervisory PC.  Inverter - CAN interface units supply the data 
for the unit torque and unit speed using an 38.4KB RS232 
interface.  Inverter power data received from the server is 
filled into the CAN message before being sent by  the inver-
ter-CAN interface units.  This in effect makes complete in-
formation messages regardless of the source node and allows 
convenient monitoring by an independent processor connected 
to the network, 

Specifically, the 80C196CA unit sends the inverter 
DSP unit a ASCII decimal number in the range of 0 to 2000 
which the inverted DSP interprets as -100.0% to +99.9%.  
This string is terminated with a conventional ASCII line-feed 
and a carriage-return (0DH and 0AH).  Since the MCS96 
Evaluation PCB does not support an RS232C serial port di-
rectly, a Serial Interface and I/O Driver board was developed 
by the University of Idaho for this purpose.  The schematic 
diagram of this PCB is shown in the appendix as Figure 15. 

 
VII. BRAKE CONTROLLER 

 
 The RTOS software flow control described by Fig-
ure 12 uses  support routines identical to those shown in Fig-
ures 8 through 10 as implemented in the server unit.  The 
main difference between the this 80C106CA application code 
and those discussed above is that the I/O is directly imple-
mented on the microprocessor board using the add-on serial 
interface and I/O driver board shown in the appendix as Fig-
ure 2.  The I/O driver circuit has been modified to allow the 
digital tachometer to monitor an auxiliary contact on the brake 
unit for brake position status.  The microprocessor unit is pro-
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grammed to output the digital value over both the CAN and 
the RS232C serial channel when a new position is detected; a 
‘1’ if the brake is energized and ‘0’ if not..  Under normal 
operation, the brake commands are supplied via a network 
messages but for test purposes, the brake commands can also 
be set using the RS232 serial interface.  Entering  a ‘1’ fol-
lowed by a return will cause the brake to be energized and a 
‘0’ will disengage the brake. 
 

VIII. DC BUS VOLTAGE CONTROLLER 
 
 As stated above, this controller is implemented using 
an Intel i87C196KD processor. Appendix B describes the 
process of interfacing this processor or, more specifically, the 
i87C196KD Evaluation board to the i82527 CAN evaluation 
board.  Since the processors belong to the same family of mi-
cro controllers, significant code developed for the i87C196CA 
applications was leveraged for the i87C196KD programs.  
Namely the CAN management programs were useable with 
only minor modifications which dealt with the CAN processor 
reset and the physical mapped memory addressing.  The 
closed loop algorithm uses conventional digital PI control.  
The voltage set point is supplied by the supervisory PC via the 
CAN.  The on-chip 10 bit AD converter digitizes the DC bus 
voltage and DC bus current transducers signals which are 
needed for closed loop control and system status. Figure 13 
shows that process control loop the DC bus controller includes 
an LCD display of instrumentation and control variables.  The 
LCD is updated once for every 15 AD conversion complete 
interrupts.  During the AD complete ISR, the PI algorithm is 
executed and the instrumentation data is posted to the CAN 
controller.  The PI algorithm uses a 10 ms sample rate by 
scheduling the PTS (Peripheral Transaction Server) to burst 
convert two AD channels.  At the end of the burst cycle, the 
i87C196KD  is interrupted to begin processing the AD com-
plete ISR. Figure 16  in Appendix I shows the schematic dia-
gram for the IO driver and LCD interface board. 
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Appendix I 
Driver and Interface Board Schematic Diagrams 

 
Figure 15. 87C196CA I/0 auxiliary driver board schematic diagram 
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Figure 16. 87C196CA I/0 auxiliary driver board schematic diagram for brake control 
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Figure 16 Schematic diagram of auxiliary IO driver  for the 87C196KD processors 
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Appendix II 
Notes on Interfacing the Intel 82527 CAN controller satellite board to the 87C196KD-20 

Evaluation Board 
 
 

A.II.I. Introduction 
 
 The following discussion addresses issues interfacing the Intel CAN controller satellite board with a 87C196KD-20 
Evaluation board.  It was determined through research and experimentation that some hardware modifications are necessary.  
These modifications are concentrated in three areas.  The 60 pin DIN connector, JP3, the addressing mapping PAL, U12, and 
the 87C196KD crystal, X1.  No modifications of the 82527 CAN satellite board were necessary but jumper settings must be set 
for 8 bit standard Intel data transfers. 
 
 Code has been developed using ICC196 by IAR Systems[1] C compiler version 5.10 and  80196 assembler.  This code 
was loaded onto the 80C196 Evaluation board Rev. 3.1 running KBRISM Rev.1.2[2] using Chip-View 196 version 1.33 by 
ChipTools[3]. 
The EV82527 Rev. 1.1 evaluation CAN satellite board is available from Dearborn Group[4].  Reference manuals the evalua-
tion boards[5,6,7]   were needed to design and trouble shoot hardware modifications. 
 
A.II.II. EV80C196KD-20 JP3 Modifications 
  
 Interfacing the two evaluation boards is accomplished by connection the 60 pin header JP3 on the component side of 
the EV87C196KD-20  to 72 pin connector, JP4 on the solder side of the EV82527.  Only Pins 1 through 60 of JP4 on the 
EV82527 board are necessary and there is direct correspondence in pin functionality if the EV82527 mounts directly over the 
EV87C196KD-20 board.  Since the “ON-CHIP UART” connector, P2, interferes with JP4 on the EV82527 board, it is neces-
sary to extend the pins of JP3 on the EV87C196KD-20 board in some manner.  In this particular case, the pin header was re-
moved from JP3 of the EV80C196KD-20 board and was replaced with a pin header with 0.75 inch long pins.  This provided 
approximately 0.25 inches of clearance between P2 of the EV80C196KD-20 board and JP4 of the EV82527 board.  Note: us-
ing a ribbon wire with two connectors will not correct as doing so will reverse the odd and even pin locations. 
 
A.II.III. EV80C196KD-20 U12 PAL Modifications 
  
 The function of GAL22V10 (U12) PAL on the EV80C196KD-20 board is to provide chip selects for the EPROM and 
RAM memory, the 82510 UART IC as well as buswidth control and generate wait states for the 87C196KD processor.  The 
logic equations for this PAL are listed in the EV80C196KD user’s manual[2].  The design equations have been converted for 
use with ISP Synario[8]distributed by Lattice Semiconductor who also manufactures the GAL22V10 programmable logic de-
vice (PLD).  An Intel application note[9] provides used information when designing the modified PLD for interfacing the a 20 
Mhz 8XC196 processor to the 82527. The PLD must be modified to set the 87C196KD into 8 bit buswidth mode and generate 
three wait states for mapped memory accesses to the 82527 CAN controller in the memory address range of 0CA00 through 
0CCFFH.  The Address decoding PAL (U3) on the EV82527  is programmed for an 82527 chip select in address space 
0CA00H through 0CAFFH.  U3 also asserts the 82527 reset pin low when a “byte write” (8 bit memory write) is made to any 
address in the range 0CB00H through 0CBFFH.  The 82527 reset is released (set high) when a “byte write” is made to any 
address in the range 0CC00H through 0CCFFH.  U3 does not need to be modified for this interface strategy.  The modified 
PLD code is provided in Appendix I. 
 
A.II.IV. EV80C196KD-20 CRYSTAL, X1 Modifications 
 
 Although the Intel application note[9] discusses many issues with interfacing an 82527 CAN controller with a 20 Mhz 
8X196 processor,  it was found the EV87C196KD-20 board design is insufficient to support 20 Mhz operation.  By experimen-
tation, it was determined that changing the 87C196KD processor crystal, X1, to a frequency less than 18.5 Mhz but greater 
than 8 Mhz would result in proper operation.  It was determined that the EV82527 board provided sufficient loading at 20 
Mhz to render the EV80C196KD-20 inoperative even all IC connecting to the address, data and processor handshaking lines. 
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A.II.V. EV82527 JUMPER SETTINGS 
 
 The 82527 CAN controller allows for 8 to 16 bit data bus and for handshaking which is common to either Intel or 
Motorola processors.  Intel processors use separate active low read and write controls.  Motorola processors use and active 
low enable or select controls and a read-write control.  The read-write control is asserted high for a processor read and is as-
serted low for a processor write.  The following jumper setting configures the EV82527 for standard Intel 8 bit mode using the 
on-board 16 Mhz crystal. 
 
 E0  A-B Shorted 
 E1  A-B Shorted 
 E2  A-B Open     
 E4  A-B Shorted 
 E5  A-B Shorted 
 E6  A-B Shorted 
 JP6-1 2 Open 
 JP6-3 4 Open 
 JP6-5 6 Open 
 JP6-7 8 Open 
 JP6-9 10 Open 
 JP6-11 12 Open 
 JP6-13 14 Open 
 JP6-15 16 Open 
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Appendix III 
 Modified PLD code for EV80C196KD-20 U12. 

 
MODULE KD-CAN 
TITLE 'KD-RISM PAL for 82527 interface' 
"U12 device 'p22v10'; 
"Constants 
        H, L, X, Z, C = 1, 0, .X., .Z., .C.; 
 
"Inputs 
        CLKOUT                    pin 1; 
        STALE                     pin 2; 
        !HLDA                     pin 3; 
        A15, A14, A13, A12       pin 11, 10, 9, 8; 
        A11, A10, A9, A8         pin 7, 6, 5, 4; 
        !RESET                    pin 13; 
 
"Outputs 
        MAP                       pin 23  ISTYPE 'reg, pos, buffer' ; 
        !CE1                      pin 22; 
        !CE0                      pin 21; 
        !WAIT                     pin 19; 
        SB2                       pin 20  ISTYPE 'reg, pos, buffer' ; 
        SB1                       pin 18  ISTYPE 'reg, pos, buffer' ; 
        SB0                       pin 17  ISTYPE 'reg, pos, buffer' ; 
        !BUSWIDTH                pin 16; 
        !CE2                      pin 15; 
        !CS510                    pin 14; 
 
        MEMADDR         = [A15, A14, A13, A12, A11, A10, A9, A8, X, X, X, X, X, X, X, X]; 
 
        EPROM =        !MAP & ((MEMADDR>=^h2000) & (MEMADDR<=^h27FF)) #  
                               ((MEMADDR>=^h0) & (MEMADDR<=^hFF)) # 
                                 ((MEMADDR>=^h1D00) & (MEMADDR<=^h1DFF)); 
 
        EEPROM =  ((MEMADDR>=^h6000) & (MEMADDR<=^h7FFF)); 
 
        RAM  =        (MAP & ((MEMADDR >=^h2000) & (MEMADDR<=^h27FF))) # 
                                 (MEMADDR >=^h2800) & (MEMADDR<=^h5FFF); 
 
        OPEN0 =        ((MEMADDR>=^h100) & (MEMADDR<=^h1CFF)); 
 
        OPEN1 =        ((MEMADDR>=^h8000) & (MEMADDR<=^hBFFF)); 
 
        OPEN2 =        ((MEMADDR>=^hD000) & (MEMADDR<=^hFFFF)); 
 
        CAN = ((MEMADDR>=^hC000) & (MEMADDR<=^hCFFF)); 
 
        UART =        ((MEMADDR>=^h1E00) & (MEMADDR<=^h1EFF)); 
 
        bw   =        EEPROM # UART # CAN; 
 
 
        SR  = [SB2, SB1, SB0]; 
 
        ASYNC_START     =       [ 0, 0, 0]; 
        HOLD2           =       [ 0, 0, 1]; 
        HOLD3           =       [ 0, 1, 1]; 
        HOLD4           =       [ 1, 1, 1]; 
        HOLD5           =       [ 1, 1, 0]; 
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        HOLD6           =       [ 1, 0, 0]; 
        HOLD7           =       [ 1, 0, 1]; 
        REMOVE_HOLD     =       [ 0, 1, 0]; 
 
        WAIT7           =       0; 
        WAIT6           =       WAIT7; 
        WAIT5           =       WAIT6; 
        WAIT4           =       WAIT5; 
        WAIT3           =       STALE & !HLDA & (WAIT4 # CAN); 
        WAIT2           =       STALE & !HLDA & (WAIT3 # UART); 
        WAIT1 =       STALE & !HLDA & (WAIT2 # EPROM # OPEN0 # OPEN1); 
 
equations 
 
        CE0 =        EPROM; 
        CE1 =        RAM; 
        CE2 =        EEPROM; 
        CS510 =        UART; 
        BUSWIDTH =  bw; 
 
        MAP.D =       MAP # (!STALE & ((MEMADDR>=^h1000) & (MEMADDR<=^h1DFF))); 
        MAP.AR =       RESET; 
        MAP.SP =       0; 
        MAP.OE =       1; 
 
        SB0.AR = RESET; 
        SB0.SP = 0; 
        SB0.OE = 1; 
        SB1.AR = RESET; 
        SB1.SP = 0; 
        SB1.OE = 1; 
        SB2.AR = RESET; 
        SB2.SP = 0; 
        SB2.OE = 1; 
  
 
state_diagram SR; 
 
        state ASYNC_START: 
                WAIT = WAIT1; 
                case 
                        WAIT1 & !WAIT2  : REMOVE_HOLD; 
                        WAIT2           : HOLD2; 
                        !WAIT1 & !WAIT2 : ASYNC_START; 
                endcase; 
        state HOLD2: 
                WAIT = 1; 
 
                if WAIT3 then HOLD3 else REMOVE_HOLD; 
 
        state HOLD3: 
                WAIT = 1; 
 
                if WAIT4 then HOLD4 else REMOVE_HOLD; 
 
        state HOLD4: 
                WAIT = 1; 
 
                if WAIT5 then HOLD5 else REMOVE_HOLD; 
 
        state HOLD5: 
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                WAIT = 1; 
 
                if WAIT6 then HOLD6 else REMOVE_HOLD; 
 
        state HOLD6: 
                WAIT = 1; 
 
                if WAIT7 then HOLD7 else REMOVE_HOLD; 
 
        state HOLD7: 
                WAIT = 1; 
 
                goto  REMOVE_HOLD; 
 
        state REMOVE_HOLD: 
                goto ASYNC_START; 
 
END KD-CAN 

 

 

 

 


