
HSR – University of Applied Sciences Rapperswil

Institute for Software

Semester Thesis

metriculator
CDT metric Plug-in

Ueli Kunz, ukunz@hsr.ch
Julius Weder, jweder@hsr.ch

http://sinv-56013.edu.hsr.ch

Supervised by Prof. Peter Sommerlad

December 22, 2011

ukunz@hsr.ch
jweder@hsr.ch
http://sinv-56013.edu.hsr.ch

metriculator - CDT metric plug-in

Abstract

This thesis aims at statically analysing software written in C++ using known software
metrics. Software metrics are used to obtain objective, reproducible and quantifiable
measurements of source code. This measurements may support various tasks such as
performance optimization, quality assurance testing or software debugging [wik11].
Metriculator is programmed in Java and integrates in Eclipse as plug-in that depends
on the Codan [cod11] framework which is part of the C/C++ Development Tooling
platform (CDT, [CDT11]). Codan is a code analysis framework that offers a mechanism
to add new code analysis features. Each metric in metriculator is implemented as an
extension to Codan. First and foremost it is about extracting meaningful information
out of C++ source code using different software metrics.

After analysing the code, the results are shown in the metriculator view, which provides
different representations of the same underlying data. Additionally the metriculator view
helps finding problems and moving to their problematic source code sections. Optionally
the detected problems will be displayed as markers with detailed problem information
within the source code editors. Each metric can be activated or deactivated and as well
have variable threshold values that suite the needs of the specific domain.

There are five metrics already implemented and it is possible to extend metriculator
with additional metrics without touching the existing source code. Implemented met-
rics:

• Number of Logical Source Lines of Code (LSLOC)

• Cyclomatic Complexity (McCabe)

• Number of Parameters per Function

• Number of Members per Type

• Efferent Coupling per Type

Ueli Kunz, Julius Weder i December 22, 2011

metriculator - CDT metric plug-in

Management Summary

This chapter summarises the goals and outcomes of this thesis. And gives a preview on
what might be possible in the future.

Initial Situation
Various aspects of source code can be expressed in numbers. Such an aspect is called
a software metric. For instance, a well known software metric measures the number
of lines of code. Software metrics allow users to view the analysed source code from
different perspectives. They may give a high level overview of the size and quality of the
analysed source code. But they can also help developers to identify problematic source
code sections.
Static analysis tools investigate source code without running the application itself. Many
static analysis tools exist for various programming languages [met11b]. But at the time
of this project, there was no metric tool available that integrates into the Eclipse C/C++
Development Tooling platform (CDT, [CDT11]). Our goal was to create the first static
source code analysis tool for CDT.

Procedure and Technologies
metriculator is a plug-in for CDT that itself is a plug-in of the Eclipse framework. CDT
is a well known platform to develop C/C++ software. Beside CDT, metriculator uses
a framework called Codan [cod11] to analyse C++ source code. Codan is extensible so
that third party tools such as metriculator can hook in and add their own code analysis
features.
Metriculator analyses a user defined set of files. The analysis results are applied to func-
tions, classes, namespaces, files, folders and projects. The analysis results are viewable
using different views that all rely on the same underlying data.

Results
Metriculator supports the following five software metrics, each of which is described in
detail in section 3.

Logical Source Lines of Code numbers the size of the software by counting the lines of
code. See 3.1 for detailed description.

Ueli Kunz, Julius Weder iii December 22, 2011

metriculator - CDT metric plug-in

Cyclomatic Complexity also called McCabe, is an indicator for the complexity of the
software. For instance many if statements increase the complexity and lead to
unreadable and hard to maintain code. See 3.2 for detailed description.

Number of Parameters per Function measures the number of parameters of a function.
See 3.3 for detailed description.

Number of Members per Type measures the number of members of a class, struct or
union. See 3.4 for detailed description.

Efferent Coupling counts the number of foreign types a certain type depends on. For
instance, many dependencies indicate highly coupled software. See 3.5 for detailed
description.

Compared to the specified objectives at the start of the project there are two metrics
missing. The Number of Nested Levels and the Number of Template Parameters metric
were not implemented. This is because we decided to implement the Efferent Coupling
metric in advance and because of the unforeseen performance issues that must have been
resolved prior to additional feature implementations. See 5.1 for more details.

Metriculator is available as Eclipse plug-in and can be installed from within Eclipse
using the install wizard. After installation, users can run the Codan code analysis. As
part of this analysis, metriculator will run as well. The gathered metric data can be
investigated using different views provided by metriculator.

Illustrated Example

In this section we will explain the results, shown in the metriculator views, after analysing
a sample project.

Default View Figure 0.1 shows a screenshot of the default metriculator view after the
static code analysis ran. The default view shows all analysed files and folders in a
tree view. Files can further be expanded to explore the source code they contain.
The values of each metric are displayed in a separate sortable column. Each row
represents one analysed scope.

Warnings As visible in Figure 0.1 func3 has seven parameters. Because seven is above
the threshold set in the metric preferences the cell is highlighted.

Filter View The filter view in Figure 0.2 shows all functions. Other filters can be applied
to see a list of only files, types or namespaces. Thanks to the filter view, users are
able to quickly identify large files for instance.

Data Visualisation Metric values can also be visualised in a tag cloud, as illustrated in
Figure 0.3 using the LSLOC metric values. The bigger the font size of the function
name, the higher its metric value is.

Ueli Kunz, Julius Weder iv December 22, 2011

metriculator - CDT metric plug-in

Figure 0.1.: Screenshot of the metriculator hybrid view.

Figure 0.2.: Screenshot of the metriculator filter view listing all functions.

Future Work
There are many interesting not yet implemented metrics that would increase the value
of metriculator, see chapter 1.2.1 for an incomplete list.
Performance can further be improved to allow analysing source code with over about
300’000 physical lines of source code. Fixing that issue would make metriculator even
more attractive to analyse large projects. Other unresolved issues are listed in chap-
ter 5.2.
A reasonable application of metriculator in the future is to serve as refactoring assistant.
Based on a reported problem, metriculator could suggest a refactoring or quick fix that
solves that problem.

Ueli Kunz, Julius Weder v December 22, 2011

metriculator - CDT metric plug-in

Figure 0.3.: Generated tag cloud that visualises the LSLOC value of all functions.

Ueli Kunz, Julius Weder vi December 22, 2011

metriculator - CDT metric plug-in

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Objectives . 1

1.2.1. Advanced Objectives . 2
1.3. Project Duration . 3

2. Requirements 4
2.1. metriculator view . 4
2.2. Use Cases (Brief Format) . 6

2.2.1. Starting the Metrics Analysis . 6
2.2.2. Change Metric Configuration . 6
2.2.3. Visualise Metric as tag cloud . 6
2.2.4. Analyse Metric Results . 6

3. Metric Specification 7
3.1. Logical Source Lines of Code (LSLOC) . 7

3.1.1. Lambda Expressions . 7
3.1.2. Enum . 8

3.2. McCabe (Cyclomatic Complexity, CC) . 8
3.2.1. Example . 8

3.3. Number of Parameters per Function . 9
3.3.1. Exceptions . 9

3.4. Number of Members per Type . 10
3.4.1. Explanation of Member Types . 10

3.5. Efferent Coupling . 11

4. Implementation 12
4.1. Plug-in Architecture . 12

4.1.1. Plug-in Activator . 13
4.2. Tree Structure . 13

4.2.1. TreeBuilder . 14
4.2.2. AbstractNode . 14
4.2.3. TreePrinter . 17

4.3. Metric Checkers . 18
4.3.1. Tasks . 19
4.3.2. Scope Listeners . 19
4.3.3. AST Visitors . 19

Ueli Kunz, Julius Weder viii December 22, 2011

metriculator - CDT metric plug-in

4.4. Processing . 20

5. Conclusion 23
5.1. Performance Tuning . 23

5.1.1. Timing Issues . 23
5.1.2. Memory Issues . 24

5.2. Known Issues . 25
5.2.1. Performance . 25
5.2.2. Zest Cloudio Integration . 25
5.2.3. Installation via Composite Update Site 25
5.2.4. Merging of Function Declarations in Anonymous Namespaces . . . 25

5.3. Future Work . 25

A. Environment Set up 28
A.1. Hardware . 28
A.2. Project Management Software . 28

A.2.1. Set up & Configuration . 28
A.3. Version Control System, Git . 29
A.4. Development Environment . 30
A.5. Continuous Integration Server . 30

A.5.1. Set up & Configuration . 30
A.6. Build and Deployment Automation . 32

A.6.1. Set up & Configuration for Windows 32
A.6.2. Set up & Configuration for Ubuntu 32
A.6.3. Maven XML Configuration . 33
A.6.4. Jenkins Maven Integration . 34

B. Metriculator Metrics 36
B.1. Finding Problems using FindBugs . 36
B.2. Static Source Code Analysis . 36

B.2.1. Warnings . 36
B.2.2. metriculator Metrics Applied to Itself 36

B.3. Dependecy Analysis . 37
B.4. Test Coverage . 37

B.4.1. UI Code . 38
B.4.2. Model Code . 38

C. User Manual 40
C.1. Installation . 40
C.2. Start code analysis with metriculator . 41
C.3. Configuration of metriculator . 41
C.4. Working with the Views . 42

C.4.1. View Types . 42
C.5. Problem Reporting and Markers . 42

Ueli Kunz, Julius Weder ix December 22, 2011

metriculator - CDT metric plug-in

D. Developer Manual 45
D.1. Set up . 45
D.2. Adding a new Metric . 46
D.3. Writing Checker Tests . 47

E. Project Management 48
E.1. Project Plan . 48
E.2. Time Schedules . 49

E.2.1. Spent Time per Project Member 49
E.2.2. Mean Time to Fix . 49

E.3. Personal Impression . 49
E.3.1. Ueli Kunz . 51
E.3.2. Julius Weder . 51

F. Nomenclature 55

Experience is a hard teacher because she gives the test first, the lesson after ward.

Vernon Law

Ueli Kunz, Julius Weder x December 22, 2011

metriculator - CDT metric plug-in

1. Introduction

The investigation of source code has ever since been an important task in software
development [his11]. Static source code analysis is one type of source code investigation
with the objective to get a picture of the written code itself. One output of static source
code analysis are source code metrics. Many types of metrics exist since source code
can be inspected under different aspects. For instance the lines of code metric gives an
impression about the size of the code.
Many metric analysis tools for almost any programming language already exist. But
at the time of this semester thesis there was no official C++ metric tool available that
integrates well in to the Eclipse CDT (C/C++ Development Tooling) platform [CDT11].

1.1. Motivation
We intend to improve the quality of the Eclipse CDT platform as it will help other
developers to create better software. Code metrics provide a big picture of the quality of
the source code. There are plenty of well known and also standardised code measurement
techniques around and implemented for other tools and languages. We give our best to
implement these techniques and standards for the CDT platform.

1.2. Objectives
Project organization Fixed one-week iterations are used. Redmine [red11] is used for

planning, time tracking, issue tracking and as information radiator for the super-
visor. A project documentation is written. Organization and results are reviewed
weekly together with the supervisor.

Integration and Automation Sitting in front of a fresh Eclipse CDT installation a first
semester student can install our metric plug-in using an update site as long as
metriculator is not integrated into the main CDT plug-in. An update site is created
to allow the installation of metriculator using the Eclipse install wizard.

Quality The plug-in code is covered with automated test cases. Automated UI tests are
not mandatory.

Delivered Assets At the end, the project will be handed to the supervisor with two
CDs and two paper versions of the documentation. The CDs contain: this project
report, a video demonstrating the usage of metriculator, the source code and the
deployable plug-in.

Ueli Kunz, Julius Weder 1 December 22, 2011

metriculator - CDT metric plug-in

Implemented metrics The metrics listed below are going to implemented with highest
priority.

• Number of Members per Class
• Lines of Code per File
• Lines of Code per Class
• Lines of Code per Function
• Cyclomatic Complexity (McCabe) per Function
• Number of Nested Levels
• Number of Template Parameters
• Number of Parameters per Function

1.2.1. Advanced Objectives

If the basic objectives get finished before the end of the project, we may start imple-
menting the following metrics:

• Number of References of Type (class, struct, union)

• E/Afferent Coupling

• Feature Envy

• Lack Of Cohesion per Function

• Number of Overloads

• Depth of Inheritance Tree

• Instability

• Abstractness

• Normalized Distance from Main Sequence

• Number of Locals in Scope

• Number of Lines of Code vs Lines of Comment (Density of Comments)

1.2.1.1. Tag Cloud Integration

Tag clouds are an excellent way to visualise weighted data. The Sourcecloud plug-in for
Eclipse [sou11] generates a tag cloud of all words in source code files. The view of that
plug-in could be integrated in our plug-in to visualise weighted data of one metric. For
instance, the LSLOC values of all functions. A higher LSLOC value results in a bigger
font size of the function name.

Ueli Kunz, Julius Weder 2 December 22, 2011

metriculator - CDT metric plug-in

1.3. Project Duration
The semester thesis starts on September 19th and has to be finished until December
23rd, 2011.

Ueli Kunz, Julius Weder 3 December 22, 2011

metriculator - CDT metric plug-in

2. Requirements

This chapter describes the functional and non functional requirements of the metriculator
plug-in.

2.1. metriculator view
This view is able to show the data of all metrics for different scopes. It visualises the
underlying data in three different views.

hybrid view is the default view and shows the projects and its content as a mix of
physical and logical representation in a tree. This is the default view and shows a
tree view representing the file system structure of the investigated files and folders,
where the files further contain the logical tree structure that is a simplified form
of the abstract syntax tree (AST) of the file contents. The following node types
are displayed:

• project
• folder
• file
• namespace
• type (class, struct, union)
• function

logical view shows the logical representation of the source code in one tree. This view
merges the logical trees of all files and thus does not show any file system infor-
mation. The following node types are displayed:

• namespace
• type (class, struct, union)
• function

filter view shows a flat representation of all hybrid tree nodes. The node list can be
filtered by the different types of nodes. Following filters exist:

• file
• namespace
• type (class / struct / union)

Ueli Kunz, Julius Weder 4 December 22, 2011

metriculator - CDT metric plug-in

Figure 2.1.: Hybrid view

Figure 2.2.: Logical view

Figure 2.3.: Filter view

Ueli Kunz, Julius Weder 5 December 22, 2011

metriculator - CDT metric plug-in

• function

tag cloud view is another nice way of visualising metric values by generating a tag
cloud that allows fast visual detection of potentially problematic items such as
large functions or high coupled classes (Figure 2.4).

Figure 2.4.: Tag cloud view

In all views the columns can be sorted ascending or descending, by scope name or metric
value. The nodes in the tree structure can be expanded and collapsed (fully or partially).

2.2. Use Cases (Brief Format)
The following use cases apply to all implemented metrics.

2.2.1. Starting the Metrics Analysis

A user chooses some C++ projects he wants to analyse and runs the Codan command
in Eclipse. All calculated metrics will be displayed in the metriculator view.

2.2.2. Change Metric Configuration

A user can change the configuration of the Lines of Code metric by specifying an individ-
ual range of acceptable thresholds. The view marks the values outside of the thresholds.

2.2.3. Visualise Metric as tag cloud

The user chooses a metric in the metriculator view. Metriculator generates a tag cloud
which visualises the values of the selected metric.

2.2.4. Analyse Metric Results

The user has run the analysis and the metriculator view is shown. He can now switch
between the different views, sort columns, or generate a tag cloud.

Ueli Kunz, Julius Weder 6 December 22, 2011

metriculator - CDT metric plug-in

3. Metric Specification

This chapter specifies the details of the implemented metrics. Most metric implementa-
tions follow standards (specified in sub chapters) with some extensions where required
by C++. Each metric specification describes what the metric means, which scopes it
applies to and how it is measured.

3.1. Logical Source Lines of Code (LSLOC)
Source Lines Of Code (SLOC, or Lines Of Code) [lsl11] is a unit used to measure the
size of software programs. There exist different types of Lines Of Code (LOC) metric
definitions. Some count the number of statements, others count the physical lines of
source code (with or without comments) or even the number of byte code instructions.
We decided to use the term LSLOC (Logical Source Lines of Code) because the Univer-
sity of Southern Carolina defines a standard for LSLOC counting rules for C++ [lsl11].
As long as not otherwise noted metriculator respects the rules of this standard. Because
this standard does not define rules for some of the new concepts of the C++11 [cpp11]
standard, especially lambdas, we defined new rules where required.

3.1.1. Lambda Expressions

int z, x;
auto square =

[z, x] // 1 - one lambda -capture , two captures
()

{ // 1 - function body
return z*z; // 1 - statement
}
; // 1 - assignment statement

Listing 3.1: Lambda expression code snippet with LSLOC of 4

As illustrated in listing 3.1, the following rules apply to lambda expressions:

1. A lambda-capture counts one, regardless of the number of captures it contains.

2. Anonymous function declaration counts one (as any other function declaration
does).

3. Statements in the lambda body count as usual.

Ueli Kunz, Julius Weder 7 December 22, 2011

metriculator - CDT metric plug-in

4. The assignment of the lambda expression to square counts one (as any other as-
signment).

5. Direct calls of lambda expressions (no assignment) count one.

In contrast to other function declarations, lambdas may have a lambda-capture that
increases the LSLOC value by one.

3.1.2. Enum

enum x{
val1 ,
val2

} // 1 - type definition

Listing 3.2: Enum code snippet with LSLOC of 1

As illustrated in listing 3.2, the following rules apply to enums:

1. An enum declaration counts one.

2. Enum values do not count.

3.2. McCabe (Cyclomatic Complexity, CC)
The McCabe metric, also known as Cyclomatic Complexity [mcc11], is a software metric
for measuring the complexity of parts of a software. This metric indicates whether a
piece of code is still comprehensible to humans. Simply expressed it is the number of
binary branches plus one.
Our implementation is based on a paper published by Verifysoft Technology GmbH
[mcc11].

3.2.1. Example

namespace n1 { // 1 + 2 + 1 - 2 = initial + func1 + func2 - # children

int func1 (int i){ // 1 + 1
if(i < 0){ // 1

return 0;
}
return 0;

}

int func2 (int){ // 1
return 1;

}

Ueli Kunz, Julius Weder 8 December 22, 2011

metriculator - CDT metric plug-in

}

Listing 3.3: Code snippet example McCabe

Every node has an initial Cyclomatic Complexity of 1. In listing 3.3 the function func1
has due to the if statement a Cyclomatic Complexity of 2. The parent node of the two
functions has therefore a Cyclomatic Complexity of 2. To build the node value of a
parent node, all children node values are summed up. Afterwards the sum of the parent
is decremented by the number of children.

3.3. Number of Parameters per Function
The Number of Parameters per Function metric is a software metric, that counts the
amount of parameters in a function or member function. All parameters are counted.
This metric is an indicator whether a function is painful to call or maybe degrade per-
formance.

3.3.1. Exceptions

1. If a function definition has a forward declaration, the parameters of the forward
declaration are not counted. Following Listing 3.4 illustrates an example:

int doIt(int , bool); // does not count because of the definition below
int doAnother (int , bool); // counts 2 parameters

int doIt(int i, bool b){ // counts 2 parameters
return b ? i : 0;

}

Listing 3.4: Code snippet for Number of Parameters per Function - function declarations
and definitions

2. If a member function declaration has an associated definition, the parameters are
not counted in the logical view but they are counted in the hybrid view, expect
they are in the same file, then the hybrid view also does not count the function
declaration. Following Listing 3.5 illustrates an example:

class Example {
public :

void doIt(int , bool); // does not count because of the definition below
void doAnother (int , bool); // counts 2 parameters

};

void Example :: doIt(int i, bool b){ // counts 2 parameters
// do something

Ueli Kunz, Julius Weder 9 December 22, 2011

metriculator - CDT metric plug-in

}

Listing 3.5: Code snippet for Number of Parameters per Function - member function
declarations and definitions

3.4. Number of Members per Type
The Number of Members per Type metric is a software metric that counts the members
of a type. A types can be a class, struct or union.
Our implementation is based on the official C++11 Standard [cpp11] especially on the
chapter Class Members. As long as not otherwise noted, metriculator respects the rules
in this standard.

3.4.1. Explanation of Member Types

There are three different kinds of members:

1. data members

2. member functions

3. nested types
a) class
b) struct
c) union
d) enum
e) typedef declaration

Members are counted whatever visibility they have. Nested types can be anonymous.
Members are not counted if they are friend classes or member functions.
Listing 3.6 illustrates an example:

class Example {
int i; // counts 1

public :
class NestedExample1 ; // counts 1
struct NestedExample2 { // counts 2 (itself as nested type and its member)

int i; // counts 1
};
enum {a,b,c}; // counts 1
typedef int myInt ; // counts 1
void doIt (); // counts 1
friend class MyFried ; // does not count
friend void doAnother (); // does not count

};
void doNothing (); // does not count

Ueli Kunz, Julius Weder 10 December 22, 2011

metriculator - CDT metric plug-in

Listing 3.6: Code snippet for Number of Members per Type

3.5. Efferent Coupling
Efferent Coupling is a metric that numbers on how many distinct foreign units the unit
of interest relies on. Metriculator implements Efferent Coupling on type level. That
means that the more foreign types a type depends on, the higher its efferent coupling
value is. A dependency exists if a type is directly referenced.
Following Listing 3.7 illustrates an example:

class Example2 ;
class Example3 ;

class Example1 {
public :

void doSomething (Example2 *e2) {}; // counts 1 for type Example1
Example3 ex3 (); // counts 1 to type Example 1

};

class Example2 {
public :

void doSomething (Example1 *e1) {}; // counts 1 for type Example2
};

class Example3 {
};

Listing 3.7: Code snippet for Efferent Coupling

Ueli Kunz, Julius Weder 11 December 22, 2011

metriculator - CDT metric plug-in

4. Implementation

This chapter describes the main classes and concepts of the metriculator plug-in. First
we give an overview of the package level architecture. Then we dive into the details
of the model package by commenting static and dynamic aspects. At the end some
performance related actions as well as known issues will be presented in detail.

4.1. Plug-in Architecture
As visible in Figure 4.1 metriculator is based on the Codan framework. Codan uses
checkers to analyse source code. Each checker is specialised in one problem, for instance
unreachable code. Through extension points Codan allows third party tools to register
other checkers. Metriculator defines one checker per metric. As soon as a user invokes
the Codan command on the UI, Codan automatically calls all registered checkers.
The metriculator component in Figure 4.1 can further be divided into the packages
shown in Figure 4.2.

Figure 4.1.: Architectural representation of the components metriculator relies on.

The metriculator package is the core of this plug-in. Thanks to the PluginActivator we
know when the Codan command is started and finished. This allows us to initialise the
model each time before the checkers start working. After the work is done the Plugin-
Activator notifies the views to update their data via observer. As the checkers run they
build a tree model that represents the analysed files and their content.
The bidirectional dependency between the model and the metriculator component ex-

Ueli Kunz, Julius Weder 12 December 22, 2011

metriculator - CDT metric plug-in

Figure 4.2.: Package diagram with packages inside the metriculator plug-in.

ists because some model classes use a singleton inside of the metriculator component.
Singletons are used due to constraints of the Eclipse framework.

4.1.1. Plug-in Activator

The plug-in activator activates the plug-in when it is about to run. Every Eclipse plug-in
inherits from the AbstractUIPlugin of Eclipse. The MetriculatorPluginActivator holds
the singleton instance of this plug-in. The constructor of the MetriculatorPluginActiva-
tor registers itself at a job listener which notifies metriculator when Codan starts the
code analysis and when Codan has done its job.
Before the metriculator plug-in starts its job, it has to reset all model data. The job
listeners also reset the caches of the metric values, clear the views and models to deref-
erence all old objects from a previous execution of metriculator. See 5.1 for further
information.
All metric checkers has to register themselves at the MetriculatorPluginActivater. After
Codan has finished its job, the MetriculatorPluginActivator invokes the aggregation of
all values of the activated metrics and shows the metriculator view. MetriculatorPlug-
inActivator has a JobObservable that implements the Observable and is responsible for
notifying his observers if the plug-in is about to run or if its job is done. Observers of
the JobObservable are the metriculator view and all metric checkers.

4.2. Tree Structure
This sections describes the composite tree structure that is build by the AbstractMetric-
Checker instances during the processing described in Chapter 4.4. This tree structure
holds all the data shown in the metriculator view.

Ueli Kunz, Julius Weder 13 December 22, 2011

metriculator - CDT metric plug-in

Figure 4.3.: Class diagram with classes related to MetriculatorPluginActivator

4.2.1. TreeBuilder

As illustrated in Figure 4.4 metriculator uses three different tree models which corre-
spond to the three different views. The hybrid tree model is used in the hybrid view,
the logical tree model is used in the logical view and the flat tree model is used in the
filter view.
The TreeBuilder class is an abstract factory that is used by the checkers to create tree
models. AbstractMetricChecker uses a HybridTreeBuilder to add new nodes to the tree
structure. During the processing only the hybrid tree model is build because the hybrid
tree model holds all the information that other tree models require. Flat trees and logical
trees are build on demand using the data of the hybrid tree model. For instance, when
a user switches from the hybrid view to the logical or filter view. FlatTreeBuilder and
LogicalTreeBuilder use a PreOrderTreeVisitor to visit all nodes in the hybrid tree model
and transform it to the new respective tree model.
The class factory method createTreeFromPath(IPath) is used by the HybridTreeBuilder
to create a tree structure that represents a file system path. To obtain a LogicTreeBuilder
or FlatTreeBuilder instance clients use the buildFrom(TreeBuilder) method.

4.2.2. AbstractNode

As illustrated in Figure 4.5 the AbstractNode class is a simplified composite structure to
hold all relevant data the view displays. Each node has one parent and any number of
children. An AbstractNode represents a file system object or an ASTNode. The required
information extracted from the ASTNode are hold in a NodeInfo instance. We extract
the values from the ASTNode instead of holding a reference to it so that the ASTNode

Ueli Kunz, Julius Weder 14 December 22, 2011

metriculator - CDT metric plug-in

Figure 4.4.: Class diagram with classes related to TreeBuilder.

instance can be removed by the garbage collector. See chapter 5.1 for more details about
related performance issues.

4.2.2.1. AbstractNode Identifiers

Each AbstractNode has three types of string values that name it: hybridId, scopeName,
scopeUniqueName. All of them are illustrated in Figure 4.6.
The hybridId is the tree wide unique identifier of a node. It is needed to identify the
nodes and building the tree structures. The hybridId is build by concatenating the scope-
UniqueNames of all ancestor nodes and its own scopeUniqueName. To understand what
a scopeUniqueName is we first explain what a scopeName is.
The scopeName is the name of the represented underlying object. For instance the file
name or the signature of a function. Logical nodes do not always have a name. For in-
stance anonymous namespaces may exist at the same level. Hence it would be a problem

Ueli Kunz, Julius Weder 15 December 22, 2011

metriculator - CDT metric plug-in

Figure 4.5.: Class diagram with classes related to AbstractNode.

to identify objects by using only their scopeName because two namespaces at the same
level with no name would have the same hybridId.
Therefore we introduced the scopeUniqueName. The scopeUniqueName is build by ap-
pending the hash code of the NodeInfo instance to the existing scopeName.

Following example describes the identifier types used in AbstractNode and is illustrated
in Figure 4.6:

• scopeName of function f(int i) is f(int i)

• scopeUniqueName of an anonymous namespace is just a number (hash code)

• hybridId of the function f(int i) therefore is
Workspace:ProjectX:identifier_test.cpp:2470869:A1338645:f(int i)2730475

4.2.2.2. CompositeValue

The CompositeValue is used by AbstractNode objects to store the calculated values for
each AbstractMetric. As shown in Figure 4.5 the CompositeValue is implemented as a
pure value object.

Ueli Kunz, Julius Weder 16 December 22, 2011

metriculator - CDT metric plug-in

Figure 4.6.: Sample tree structure

The nodeValue field stores the current value of the node. The aggregatedValue field is
calculated by the nodeValue of it self plus the sum of all nodeValues of its descendant
nodes. The aggregatedValue is calculated once when the Codan job finishes. Calculation
is done for all nodes in the HybridTreeBuilder. See chapter Performance Tuning 5.1 for
more details. An example which describes the CompositeValue is illustrated in Figure 4.7:

Figure 4.7.: Example of CompositeValue, the values written in blue on the left are the
node values and the other values on the right are the aggregated values.

4.2.3. TreePrinter

The TreePrinter class was mainly used for debugging purposes. We use it in our test
cases to print the generated tree to the console after a test has been ran. Figure 4.8 shows
a sample output. Scope names are trimmed to a maximum length and the metric values
in each column are left aligned. The node values are in braces next to the aggregated
values.

Figure 4.8.: Sample output of the TreePrinter class.

Ueli Kunz, Julius Weder 17 December 22, 2011

metriculator - CDT metric plug-in

4.3. Metric Checkers
Codan offers extension points for third party tools to add new checkers. Metriculator
uses Codan’s extension points to define one checker per software metric. Every checker
in metriculator inherits from the AbstractMetricChecker that again inherits from the
AbstractIndexAstChecker of Codan.
Metriculator uses the AbstractMetric class to encapsulate checkers and metric relevant
data. Each checker implementation is associated with one AbstractMetric implemen-
tation. When the checker is created on application start up it associates itself with
the corresponding metric instance. A list of all AbstractMetric instances is accessible
through the plug-in singleton held by the MetriculatorPluginActivator. See Figure 4.9
for more details.

Figure 4.9.: Relations between the MetriculatorPluginActivator, AbstractMetric and Ab-
stractMetricChecker classes.

Beside the checker reference AbstractMetric implementations are responsible to imple-
ment a value aggregation strategy. The AbstractMetric class provides a default aggrega-
tion strategy as you can see in Listing 4.1.

public int aggregate (AbstractNode node){
CompositeValue metricValue = node. getValueOrDefaultOf (getKey ());
metricValue . aggregatedValue = 0;

for(AbstractNode child : node. getChildren ()) {
metricValue . aggregatedValue += aggregate (child);

}

metricValue . aggregatedValue += metricValue . nodeValue ;

return metricValue . aggregatedValue ;
}

Ueli Kunz, Julius Weder 18 December 22, 2011

metriculator - CDT metric plug-in

Listing 4.1: Code snippet of the default value aggregation strategy implemented in Ab-
stractMetric

4.3.1. Tasks

Each AbstractMetricChecker implementation is responsible for the following tasks:

• Visiting of the AST using a ScopedASTVisitor. see 4.3.3

• Initialisation of its profile preferences

• Problem creation and reporting

The following tasks are taken care of by the AbstractMetricChecker class:

• Getting the hybrid tree model. see 4.2.1

• Creating the file and folder nodes for each processed file and adding it to he hybrid
tree model. see also 4.4

• Resetting its problems, all tree models and AbstractNode references as soon as
Codan has finished its job.

4.3.2. Scope Listeners

The IScopeListener interface allows metric checkers to register themselves at Scope-
dAstVisitor instances to be notified if the scope changes. Checkers for instance use this
mechanism to report problems after function or type nodes have been analysed.
See Figure 4.10 to see the environment of the AbstractMetricChecker class.

4.3.3. AST Visitors

The ScopedASTVisitor is responsible for visiting the AST and has a reference to the
current scope node which is a AbstractNode instance. The ScopedASTVisitor inherits
from the ASTVisitor of Codan and implements the visit and leave methods. In the
ScopedASTVisitor all relevant ASTNodes of a file, provided by the calling checker in-
stance, are visited and added as nodes to the hybrid tree model. Thus all logical nodes
of the hybrid tree model are created with ScopedASTVisitor classes.

ScopedASTVisitor implementations like LSLOCScopedASTVisitor are responsible for
analysing the ASTNodes relevant for the related metric. ScopedASTVisitor create the
node values for the specific metric in the current scope. There is always one Scope-
dASTVisitor associated with one AbstractMetricChecker. Visitors can also notify reg-
istered IScopeListener instances if a scope is changing. See chapter 4.3.2 for more details.

Figure 4.11 shows a class diagram of the ScopedASTVisitor and related classes.

Ueli Kunz, Julius Weder 19 December 22, 2011

metriculator - CDT metric plug-in

Figure 4.10.: Class diagram with classes related to AbstractMetricChecker

4.4. Processing
The Codan framework invokes the metriculator checkers. At the end of the processing
of Codan, the view of metriculator appears. The whole processing is described in detail
below and is illustrated in Figure 4.12.

1. A user runs Codan with the Run C/C++ Code Analysis command in Eclipse CDT.

2. Metriculator is notified about the start of Codan.

3. Metriculator resets its models.

4. Codan starts processing the C++ resources to be analysed.

5. For each resource each checker is called to process it.

6. Each translation unit is processed.

7. The metriculator checker visits the relevant AST nodes to calculate metric data.

8. When Codan has finished, metriculator shows its view in Eclipse.

Ueli Kunz, Julius Weder 20 December 22, 2011

metriculator - CDT metric plug-in

Figure 4.11.: Class diagram with classes related to ScopedASTVisitor

Ueli Kunz, Julius Weder 21 December 22, 2011

metriculator - CDT metric plug-in

Figure 4.12.: High level sequence diagram of the processing of metriculator

Ueli Kunz, Julius Weder 22 December 22, 2011

metriculator - CDT metric plug-in

5. Conclusion

Overall, we reached our basic objectives defined in chapter 2. The plug-in performs well
in medium sized projects. It has a solid design and is easily extensible.
The following chapter describes analysis and problem finding processes related to per-
formance issues. After that we describe the unresolved issues of the project. At the end
we describe ideas to improve and extend metriculator.

5.1. Performance Tuning
In week nine we set up the last step in our deployment pipeline [HF10]. That is the
continuous and automated publishing of the latest plug-in build. The plug-in was made
available through a publicly available p2 update site [upd11]. The update site allowed
us to install the plug-in on an independent eclipse instance which is mandatory to test
the performance. According to the quantitative goals of this semester thesis 1 we ran
our performance tests against the llvm project [llv11] especially the clang sub project
[cla11].
The first manual test runs were very disappointing. The performance was very bad.
Analysing two thousand LSLOC did work. Everything above was critical and most
often eclipse ran out of heap space. Also the operation took very long to finish. We soon
realized that for the remaining two weeks of development, performance tuning will have
highest priority. The plug-in must perform well otherwise it would be useless, regardless
of the number of features implemented. Thanks to jprofiler [jpr11] we quickly figured
out the time consuming methods and memory bottle necks.

5.1.1. Timing Issues

We first optimized metriculator to take less time of execution. This was mainly achieved
by reducing the number of method calls by caching values instead of recalculating them
on every request.

An AbstractNode is able to sum up all node values of its descendant nodes. This process
has been triggered very often by the tree viewer control since every cell displays such an
aggregated value. To fix that problem we now only aggregate the values once at the end
of the code analysis, before the data are bound to the view.
Another hot spot was the clone mechanism of an AbstractNode. Cloning was imple-
mented as deep clone, which means that cloning one node in fact cloned the node itself
and all descendant nodes. Before caching aggregation values this step was mandatory to
show correct values in filter views. Thanks to cached values we changed the deep clone

Ueli Kunz, Julius Weder 23 December 22, 2011

metriculator - CDT metric plug-in

implementation to a shallow clone implementation. That is much more faster and saves
even more memory.
Similar to the value aggregation problem was the path algorithm problem. Each Ab-
stractNode has a unique path that represents its position in the tree. The initial im-
plementation requested the path of a parent node, every time a child was added. Since
the path building algorithm was recursively it was very time and also memory consum-
ing. Building the path only once and only force recalculation if mandatory solved that
performance issue.

5.1.2. Memory Issues

The main reason why metriculator crashed at the beginning was because the huge
amounts of memory allocation. The virtual machine run out of heap space and Eclipse
crashed. We identified two problem areas.

During the processing metriculator created ten thousands of char[] instances that al-
located mega bytes of memory. We figured out that the instances were hold by C++
parser class instances that were used to create the AST. Since AbstractNode referenced
the ASTNode instances they could not be removed by the garbage collector.
As a solution we introduced a new class called NodeInfo that serves as pure value object
holding only the relevant infos of an ASTNode that we really need to keep. As a result
memory allocation significantly decreased.
But there is still capability left to improve the memory allocation in NodeInfo. We
hold an IBinding reference that allows us to merge function declaration and function
definition. The merging task has to run after all checkers ran, because function declara-
tions and definitions may be in different files. Since the problematic memory allocation
happens during the processing we can not release the IBinding references and that still
causes a significant amount of memory being allocated.

The second problem was caused by the jface TreeViewer component. We used the
TreeViewer component in the hybrid view, as well as in all others views, including
the filter view. But in the filter view, we never displayed hierarchical data but very
large lists of for instance FunctionNodes. The TreeViewer component is not optimized
to display flat lists. Therefore we decided to use the TableViewer component in filter
views. That decision tremendously improved the performance of the filter view mode.
Now displaying and sorting thousands of FunctionNodes just takes a fraction of a second.

The introduction of the TableViewer component beside the existing TreeViewer com-
ponent forced us to create duplicated, almost identical code. Although their API is very
similar, TreeViewer and TableViewer do not share a common base that we could use
to create an abstract interface to interact with both of them. Additionally subclass-
ing is not allowed in SWT [swt11]. Therefore we just duplicated the code used for the
TreeViewer and replaced the types used.

Ueli Kunz, Julius Weder 24 December 22, 2011

metriculator - CDT metric plug-in

5.2. Known Issues
There are some known issues that should be taken care of in future releases. This chapter
describes this issues and also contains a reference to the issues documented in Redmine.

5.2.1. Performance

As already described in detail in section 5.1 we optimized metriculator to perform better
on large input data. Currently metriculator can analyse about 300’000 physical lines of
code if problem reporting is disabled and only the LSLOC metric is active.

Issue #117 at http://sinv-56013.edu.hsr.ch/redmine/issues/117

5.2.2. Zest Cloudio Integration

The tag cloud integration is not stable yet. The code of this feature was taken from
the project at [sou11] after the author contacted us and suggested to integrate his work.
We just customized the code to work within metriculator. Generating a tag cloud based
on large lists (for instance function nodes) sometimes results in exceptions saying that
there is not enough drawing space available.

Issue #176 at http://sinv-56013.edu.hsr.ch/redmine/issues/176

5.2.3. Installation via Composite Update Site

When installing metriculator multiple steps are required in advance to install the prereq-
uisites. Before metriculator can be installed via update site, users have to install CDT
and the Zest framework separately. The current composite update site does not work.

Issue #177 at http://sinv-56013.edu.hsr.ch/redmine/issues/177

5.2.4. Merging of Function Declarations in Anonymous Namespaces

This bugs only relates to the logical view. If a function is declared in an anonymous
namespace and the definition is outside of the anonymous namespace the definition does
not replace the declaration. Instead the declaration and the definition are deleted.

Issue #166 at http://sinv-56013.edu.hsr.ch/redmine/issues/166

5.3. Future Work
There are many interesting not yet implemented metrics that would increase the value
of metriculator, see chapter 1.2.1 for an incomplete list.
Performance can further be improved to allow analysing source code with over about
300’000 physical lines of source code. Fixing that issue would make metriculator even

Ueli Kunz, Julius Weder 25 December 22, 2011

metriculator - CDT metric plug-in

more attractive to analyse large projects. Other unresolved issues are listed in chapter
5.2.
A reasonable application of metriculator in the future is to serve as refactoring assistant.
Based on a reported problem, metriculator could suggest a refactoring or quick fix that
solves that problem.

Ueli Kunz, Julius Weder 26 December 22, 2011

metriculator - CDT metric plug-in

A. Environment Set up

This appendix describes the hardware and software components that support us in reach-
ing our project goals. We give detailed installation and configuration instructions and
highlight problem areas to be aware of when setting up a similar environment.

A.1. Hardware
We use a virtual server to host different kinds of software that support us in our daily
project tasks. The virtual server is hosted by the HSR. We have full root access and can
connect to the server by VPN if we are outside of the HSR-LAN. The server runs with
Ubuntu 10.04 TLS on 1GB RAM. The host name is sinv-56013.edu.hsr.ch.

A.2. Project Management Software
To support our project management tasks we decided to use Redmine. The latest release
at the start of our project was version 1.2.1. We use Redmine for the following tasks:

• issue tracking

• time tracking

• meeting records

• Git repository browsing (login required)

• Gather and share thoughts

Our Redmine instance is publicly and read only available at http://tiny.cc/metriculator.

A.2.1. Set up & Configuration

We followed the set up instructions on [red11] to install and configure Redmine using
Passenger.
Basically we used the following commands:

sudo aa - complain /usr/sbin/ mysqld
sudo apt -get update
sudo apt -get install redmine redmine - mysql
sudo apt -get install libapache2 -mod - passenger
sudo ln -s /usr/ share / redmine / public /var/www/ redmine
sudo a2enmod passenger

Ueli Kunz, Julius Weder 28 December 22, 2011

http://tiny.cc/metriculator

metriculator - CDT metric plug-in

sudo chmod a+x /usr/ share / redmine / public
sudo service apache2 restart

Listing A.1: Redmine set up commands

After these steps, Redmine is up and running at http://host/redmine.
To enable Redmine repository browsing the user under which Apache runs has to have
read access to the Git root directory. By default Apache runs as www-data. Additionally,
you might have to refresh Redmines repository cache.

preferably gather all users that require git access in one group
sudo adduser www -data group -with -read - access
cd /path/to/ redmine && /usr/bin/ ruby1 .8 script / runner \
" Repository . fetch_changesets " -e production

Listing A.2: Redmine repository browsing set up

Caution: Redmine version 1.2.x requires rails version 2.3.11 (with Ruby gems 1.3.7).
We also had to reset our MySQL root password. We followed the instructions on [mys11]
to accomplish this.

A.3. Version Control System, Git
To support our file version management we decided to use Git. The latest release at the
start of our project was version 1.7.6. We used the following commands to set up Git:

login as root

#add a group for the git - users
group ="git - users "
groupadd " $group "

add a user
user=" name_of_user "
adduser " $user "

add the user to the git group
usermod -aG " $group " " $user "

shared directory for the git - repository
mkdir -pv /var/ gitrepo
chmod 770 /var/ gitrepo
chgrp " $group " /var/ gitrepo
chmod g+s /var/ gitrepo

create a git repository
--shared : all users of the group must have access
--bare: no working directory , it is just the repository
cd /var/ gitrepo

Ueli Kunz, Julius Weder 29 December 22, 2011

metriculator - CDT metric plug-in

mkdir repository .git
cd repository .git

git init --bare --shared = group

acces via ssh with public -key authentication
every user has to generate a key
linux : generates a private and a public key in ida_rsa .pub
ssh - keygen -t rsa -b 2048 -f ~/. ssh/ id_rsa

the public key of the users has to be installed on the server
umask 077
mkdir -v "/home/${user }/. ssh"
cat " id_rsa_$ {user }. pub" >> "/home/${user }/. ssh/ authorized_keys "
chown " $user : $user " "/home/${user }/. ssh"
" ida_rsa_$ {user }. pub" ist he public key of the user

cloning the git repository
git clone ssh :// user@host /var/ gitrepo / repository .git

Listing A.3: Git repository set up

Caution: For using Git on Windows and how to set up the required SSH access see
[win11].

A.4. Development Environment
The plug-in was developed in Eclipse Indigo using the plug-in development environment
(PDE) plug-in. To test metriculator we used sample C++11 source code. To force the
compiler to build according to the C++11 standard add the -std=gnu++0x flag to the
following field: Project Properties > C/C++ Build > Settings > GCC C++ Compiler
> Miscellaneous > Other flags.

A.5. Continuous Integration Server
We installed Jenkins 1.434 [jen11] as continuous integration server. Jenkins provides a
solid platform for various plug-ins that enhance its basic continuous integration features.
Our Jenkins instance requires the plug-ins listed in table A.1.
With Jenkins in place we can always monitor the health of our latest commits. For
example if some unit tests fail, Jenkins will report that on the project homepage.

A.5.1. Set up & Configuration

To set up Jenkins we followed the set up instructions on [jen11]. Basically we used the
following commands:

Ueli Kunz, Julius Weder 30 December 22, 2011

metriculator - CDT metric plug-in

Name Version Description
Maven 2 Project 1.430 Allows to trigger Maven goals on

build events.
Static Analysis Utilities 1.30 Provides utilities for the static code

analysis plug-ins.
Static Analysis Collector 1.17 This plug-in is an add-on for the

plug-ins Checkstyle, Dry, Find-
Bugs, PMD, Tasks, and Warnings:
the plug-in collects the different
analysis results and shows the re-
sults in a combined trend graph.

FindBugs plug-in 4.29 This plug-in collects the FindBugs
analysis results of the project mod-
ules and visualizes the found warn-
ings.

Hudson Xvnc 1.10 Allows projects to run Xvnc during
a build. Xvnc is required to run
CDT plug-in tests since they start
Eclipse.

Jenkins GIT 1.1.12 Integrates Git with Jenkins.
Jenkins Emma 1.25 Integrates EMMA code coverage

reports to Jenkins.
ChuckNorris 0.4 Displays a picture of Chuck Nor-

ris followed by enlightening state-
ments.

Table A.1.: Installed Jenkins plug-ins

sudo aptitude install openjdk -6- jre
wget -q -O - http :// pkg.jenkins -ci.org/ debian /jenkins -ci.org.key | \
sudo apt -key add -
sudo sh -c ’echo deb http :// pkg.jenkins -ci.org/ debian binary / > \
/etc/apt/ sources .list.d/ jenkins .list ’
sudo aptitude update
sudo aptitude install jenkins

Listing A.4: Jenkins set up commands

Ueli Kunz, Julius Weder 31 December 22, 2011

metriculator - CDT metric plug-in

A.6. Build and Deployment Automation
The CDT project supports ant and Maven as build automation platform. We decided to
give Maven (in contribution with Tycho) a try because it seemed a lot easier to maintain
and has already been used in recent projects at HSR.

A.6.1. Set up & Configuration for Windows

Since we have never used Maven before, we started using Maven on the local development
environment. It was not mandatory to do something locally, but it simplified to get in
touch with Maven for the first time. We first set up the initial configuration files for our
projects. We followed the following steps to set up Maven on our Windows development
machines:

• Download Maven from [mav11a] and extract archive to <target>

• Add <target>\bin to the PATH variable

• Open your command line, change to your projects root directory.

• Run
run mvn org.codehaus.tycho:maven-tycho-plugin:generate-poms
-DgroupId=ch.hsr.ifs.cdt.metriculator
-Dtycho.targetPlatform=C:\Programme\eclipse
Where targetPlatform should point to your Eclipse installation folder.
This command will generate or update pom.xml files in all directories in your
project root. Chapter A.6.3 explains how to customize this pom.xml files.

A.6.2. Set up & Configuration for Ubuntu

Follow the steps on [mav11b] to install Maven 3 on Ubuntu. Basically these are the
steps:

sudo mkdir /usr/ local /apache - maven
cd /usr/ local /apache - maven /
sudo wget http :// ftp. heanet .ie/ mirrors /www. apache .org/dist/ \
maven / binaries /apache -maven -3.0.2 - bin.tar.gz
tar -xzvf apache -maven -3.0.2 - bin.tar.gz

Listing A.5: Maven set up commands

After that make sure to configure the environment variables as described at [mav11b].

Our plug-in unit tests require Maven to execute headless builds. That for we have
to install Xvnc with a X11 window manager. Use the following commands to install
Xvnc as virtual screen buffer and metacity as window manager.

Ueli Kunz, Julius Weder 32 December 22, 2011

metriculator - CDT metric plug-in

sudo aptitude install vnc4server metacity
sudo su jenkins
vncserver
enter password manually

Listing A.6: Set up xvnc

After the install command we have to manually set the vncserver password for the
Jenkins user. Otherwise the Jenkins build will fail because no password has been set.

A.6.3. Maven XML Configuration

Maven uses pom.xml for build instructions. We have one pom.xml in the root directory
of all Eclipse projects (root pom) and one in each subdirectory (project pom). To
automatically generate an initial version of the pom files follow the instructions in chapter
A.6.1. All pom files are checked-in to the VCS as well. This chapter only highlights the
changes applied to the generated pom files.

Version The version tag in all pom files should specify the same version as your plug-
in manifest does. We use <version>0.0.1.qualifier</version> in the project
pom files and Bundle-Version: 0.0.1.qualifier in our plug-in manifests.
All project pom files refer to the root pom file. The reference contains a version
tag as well. The version tag of the root pom and the version referenced in the
project pom files have to match. We use <version>0.0.1-SNAPSHOT</version>.

Repositories Although we imported some CDT projects into our Eclipse workspace (see
chapter A.4) there is no need for Maven to build them all. The only modules that
Maven has to build are the metriculator projects. Maven knows how to resolve the
dependencies of our projects and may download them from remote repositories.
We only need to specify the repositories to search in our root pom.

<repositories >
<repository >

<id >cdt - indigo </id >
<!-- required to resolve cdt.core. tests dependencies of test project
(in eclipse we use the project ’testing -project ’
that provides required jar files) -->

<url >http :// download . eclipse .org/ tools /cdt/ updates / indigo </url >
<layout >p2 </ layout >

</ repository >
<repository >

<id >indigo </id >
<url >http :// download . eclipse .org/ releases / indigo </url >
<layout >p2 </ layout >

</ repository >
<repository >

<id >updates </id >
<url >http :// download . eclipse .org/ eclipse / updates /3.7 </url >
<layout >p2 </ layout >

Ueli Kunz, Julius Weder 33 December 22, 2011

metriculator - CDT metric plug-in

</ repository >
<repository >

<!-- indigo swtbot release not available yet , 14. nov .2011 -->
<id >swtbot </id >
<url >http :// download . eclipse .org/ technology / swtbot / helios / \

dev - build /update -site </url >
<layout >p2 </ layout >

</ repository >
<repository >

<id >zest </id >
<layout >p2 </ layout >
<url >https :// hudson . eclipse .org/ hudson /job/gef -zest - integration \
/ws/org. eclipse .zest. repository / target / repository /</url >

</ repository >
</ repositories >

Listing A.7: Maven repositories

Caution: Note that at the time of writing the latest swtbot release available is
the one for helios.

Target Platform Since we want Maven to be able to build on Windows machines as well
as on our Linux based CI server we had to define different target platforms in our
root pom. We use Tycho in version 0.10.0.

<groupId >org. sonatype . tycho </ groupId >
<artifactId >target -platform - configuration </ artifactId >
<version >${tycho - version }</ version >
<configuration >

<resolver >p2 </ resolver >
<environments >

<environment >
<os >win32 </os >

<ws >win32 </ws >
<arch >x86 </arch >

</ environment >
<environment >

<os >linux </os >
<ws >gtk </ws >

<arch >x86_64 </arch >
</ environment >

</ environments >
</ configuration >

Listing A.8: Maven target platform configuration

A.6.4. Jenkins Maven Integration

There is a Maven plug-in available for Jenkins. This plug-in wraps the mvn command
of Maven. But it is also possible to use a custom build script that invokes the mvn
command. Since our build requires other actions being executed prior to the Maven

Ueli Kunz, Julius Weder 34 December 22, 2011

metriculator - CDT metric plug-in

build we use a custom build script. Another advantage of such a script is, that it is
easier to maintain. All build steps are saved in one place and easy to change.

#!/ bin/sh

export PATH =/ usr/ local /apache - maven /apache -maven -3.0.3/ bin: $PATH
#make $DISPLAY (from xvnc) globally available so that
other processes can access it.
export DISPLAY = $DISPLAY
THIS=$(readlink -f $0)
BUNDLE_ROOT ="‘dirname $THIS ‘"

cd $BUNDLE_ROOT
mvn -e clean install

Listing A.9: Jenkins build script

Ueli Kunz, Julius Weder 35 December 22, 2011

metriculator - CDT metric plug-in

B. Metriculator Metrics

This chapter describes the results of a metric analysis applied to the metriculator plug-in
source code.

B.1. Finding Problems using FindBugs
FindBugs did not find any problems.

B.2. Static Source Code Analysis
We used the Eclipse metrics plug-in [met11a] to analyse the metriculator source code.

B.2.1. Warnings

The analysis found two warnings, both are related to the McCabe metric.
The method LSLOCScopedASTVisitor.visit(IASTStatement) has a McCabe value of 16
which is 6 above the threshold of 10. Since this method has already been refactored
heavily and reviewed by our supervisor we decided not to change the current implemen-
tation.
The method NodeInfo.equals(Object) has a McCabe value of 14 which is 4 above the
threshold of 10. Since we have many fields to compare the McCabe value is exception-
ally high. Based on the best practice patterns [jia11] we used in our implementation we
do not think it would make much sense to further refactor the method.

B.2.2. metriculator Metrics Applied to Itself

This section outlines the metric results of the metrics that both the metrics plug-in and
metriculator implement. The metrics plug-in does not always use the exact same metric
names as metriculator does, but they can easily be mapped to the names we used.

Method Lines of Code (LSLOC) Beside the code in the tag cloud component, which we
did not change (details at 5.2.2), the methodMetriculatorPluginActivator.showMetriculatorView()
has the most lines of code, namely 40. This is because we create an anonymous class
that implements an interface with plenty of methods. Since there is no adapter for
that interface we have to implement all the methods, although we just need one.
The test package has 1410 lines of code. All other packages (views, resources,
checkers, metriculator, model.*) together count 3559 lines of code.

Ueli Kunz, Julius Weder 36 December 22, 2011

metriculator - CDT metric plug-in

Efferent Coupling The highest efferent coupling on package level is 15, for the package
ch.hsr.ifs.metriculator.checkers. This package has many references to the model
packages.

Number of Parameters The highest value is 4 which is good enough.

Number of Attributes (Number of Members per Type) The classMetriculatorView has
the highest value of 22.

B.3. Dependecy Analysis
We used Structure101 to analyse the architecture of metriculator. As visible in Fig-
ure B.1 Structure101 detected eleven cyclomatic dependencies between the model and
the metriculator package. Nine out of this eleven dependencies are because the Ab-
tractMetricChecker class requires to use the plug-in singleton. The remaining two de-
pendencies also come from the AbstractMetricChecker class. Metric checkers register
itself as job listener to be notified when the Codan command is about to run or has
finished. This events are mandatory to trigger for example post execution actions like
value aggregation.

Figure B.1.: Dependency graph of metriculator generated by Structure101.

B.4. Test Coverage
We used the EclEmma plug-in for Eclipse [emm11] to analyse the code coverage after
running all unit test. The coverage results are shown in Figure B.2. The left column
contains the packages and files analysed, the right column numbers the test coverage in
percent. The elements of our interest are expanded and will be explained in this section.

Ueli Kunz, Julius Weder 37 December 22, 2011

metriculator - CDT metric plug-in

B.4.1. UI Code

The packages mainly dedicated to the view have a low test code coverage. This is because
we do not have ui test code. Following packages heavily contain code that is related to
the view: views, resources, tagcloud.*.
The AbstractNode implementations in the package model.nodes all have a coverage of
over 50%. The reason for this low coverage in some classes is because they all implement
the AbtractNode.getIconPath() method which is only called from the view. Also the
AbstractMetricChecker has 7 out of 15 methods that are only called if the view is run.

B.4.2. Model Code

The checkers and model packages have a test coverage of over 80%. Most units tests
validate the correctness of the checker implementations which is reflected in a 95% cov-
erage of the checker package.

Ueli Kunz, Julius Weder 38 December 22, 2011

metriculator - CDT metric plug-in

Figure B.2.: Screenshot of the emma code coverage analysis after running all unit tests.

Ueli Kunz, Julius Weder 39 December 22, 2011

metriculator - CDT metric plug-in

C. User Manual

This user manual explains developers familiar with Eclipse and C++ how to use met-
riculator. It assumes that Eclipse CDT is already installed.

C.1. Installation
1. Install the Zest framework via update site from:

https://hudson.eclipse.org/hudson/job/gef-zest-integration/ws/org.eclipse.zest.repository/
target/repository/ (see Figure C.1)

Figure C.1.: Use the wizard at Help > Install New Software . . .

2. Install metriculator via update site from:
http://sinv-56013.edu.hsr.ch/updatesite/site (see Figure C.2)

Figure C.2.: Use the wizard at Help > Install New Software . . .

Ueli Kunz, Julius Weder 40 December 22, 2011

metriculator - CDT metric plug-in

C.2. Start code analysis with metriculator
1. Choose your C++ source code to be analysed. Select one or more files and folders.

2. In the Project Explorer right click on the selection. This can be one or more
projects, folders and files. Then choose to run the command Run C/C++ Code
Analysis. This will start the static code analysis and metriculator will analyse the
source code with the activated metrics. After the analysis the metriculator view
opens.

C.3. Configuration of metriculator
1. Open the Eclipse preferences via Window > Preferences

2. Open the Code Analysis preferences for C/C++ (see Figure C.3)

Figure C.3.: metriculator checker preferences

3. Under Metric Problems you can enable or disable metrics you want to run (see
Figure C.3)

4. Double click on a metric to open the metric preferences dialog.

5. Specify the thresholds for the metrics (see Figure C.4)

6. Activate / Deactivate problem reporting with problem markers (see Figure C.4).
If you deactivate the problem reporting, the metriculator view will still highlight
problematic cells, but the problem will not be reported to the Eclipse Problems
View. That implies that no markers are created in source code editors.

Ueli Kunz, Julius Weder 41 December 22, 2011

metriculator - CDT metric plug-in

Figure C.4.: Customise Problem

C.4. Working with the Views
Use the different views to watch at the results. That helps you detect problems and
obtain an overview of the quality and size of the analysed source code. Different metric-
ulator views show the metric values from different perspectives. In all views all columns
can be sorted. Cells with metric values beyond the thresholds are highlighted, this helps
figuring out potential problems in your source code. All scope labels, for example a
function name, can be double clicked to open an eclipse editor with the file where the
function is in and to select the function code. Views with a tree view (hybrid view and
logical view) can be easily expanded and collapsed with the commands in the upper
right corner of the metriculator view.

C.4.1. View Types

• hybrid view (Figure C.5)

• logical view (Figure C.6)

• filter view (Figure C.7)

• tag cloud (Figure C.8)

C.5. Problem Reporting and Markers
Metriculator allows to report problems to the Problems View built-in Eclipse. This will
also set markers in source code editors next to the problematic source code sections. If
the option Create problem markers in the metric problem preferences is activated (see
Figure C.4), metriculator reports the problems (Example C.9) and sets the markers
(Example C.10). Otherwise the problems are just visible inside the metriculator view.
Cells with problematic values are highlighted anyway.
Hint: Deactivating problem reporting can improve the speed of the analysis. [ecl11a].

Ueli Kunz, Julius Weder 42 December 22, 2011

metriculator - CDT metric plug-in

Figure C.5.: Hybrid view - This is the default view. It shows the projects and its content
as a mix of physical and logical nodes in a tree structure.

Figure C.6.: Logical view - Shows the logical representation of the source code in a tree
structure. The logical elements like namespaces or classes are decoupled
from the physical location and merged together.

Figure C.7.: Filter view - Shows a filtered representation of the hybrid view. Possible
filters are files, namespaces, types and functions.

Ueli Kunz, Julius Weder 43 December 22, 2011

metriculator - CDT metric plug-in

Figure C.8.: Tag cloud - visualisation of the nodes for a specific metric. The higher the
metric value the bigger the font size of the name in the cloud. This tag
cloud was generated for the metric LSLOC.

Figure C.9.: Problems View

Figure C.10.: Problem marker in the source code editor with a message explaining the
problem.

Ueli Kunz, Julius Weder 44 December 22, 2011

metriculator - CDT metric plug-in

D. Developer Manual

Metriculator allows you to add new C++ metrics easily. There are already some metrics
implemented which might help you to implement additional metrics. The following steps
describe how you can add new metrics fast an simple. This manual assumes that you are
working with Eclipse and have installed the Plug-in Development Environment (PDE)
as well as the C/C++ Development Tooling (CDT) plug-in.

D.1. Set up
1. Checkout sources from the Git repository at sinv-56013.edu.hsr.ch/var/gitrepo/metricular.git.

2. In Eclipse Import Existing Projects into Workspace, select the repository checked
out from point 1.

3. Set the missing baselines to ignore in Eclipse > Window > Preferences > Plug-in
Development > API Baselines

4. Open the target file in the package metriculator and set it as target platform
(illustrated in Figure D.1)

5. Update all the locations (illustrated in Figure D.1)

Figure D.1.: Target file

6. Clean all projects if there are still errors

Ueli Kunz, Julius Weder 45 December 22, 2011

metriculator - CDT metric plug-in

D.2. Adding a new Metric
1. Add a new checker with a problem in the plugin.xml. (illustrated in Figure D.2)

Figure D.2.: Part of the plugin.xml file. The highlighted element is the newly added
checker.

2. Create a new metric class which inherits from AbstractMetric class.
a) If your new metric requires a non default metric value aggregation override

the aggregate method

3. Create a new metric checker class that inherits from AbstractMetricChecker.
a) Define a problem ID.
b) Create the name, description and preferences strings.
c) Add the name, description and preferences strings to theMetricLabels.properties

file in the package resources.
d) Add the name, description and preferences strings to the MetricLabels class.
e) Create a new instance of the metric in this checker.
f) Register the new metric at the MetriculatorPluginActivator singleton in-

stance.
g) Implement the reportProblemsFor method.
h) Implement the processTranslationUnit method. See chapter 3 for further

information about visitors.

Ueli Kunz, Julius Weder 46 December 22, 2011

metriculator - CDT metric plug-in

4. Create a new ScopedAstVisitor.
a) Define the key string for this metric.
b) Override the shouldVisitxxx fields to visit the desired AST nodes.
c) Override and implement the visit method for the desired AST nodes to be

visited (could be one or more visit methods).

D.3. Writing Checker Tests
Each checker has its own test class. When implementing a new checker test you should
be aware of the following:

• Add your test class to the test suite by modifying AllTests.java

• You can use the TreePrinter class to print a tree structure to the console

• Use the loadCodeAndRun(getAboveComment()) methods provided by Codan, to
define the C++ code your checker under test will use.

• Reset the model after each test method has been ran.

Ueli Kunz, Julius Weder 47 December 22, 2011

metriculator - CDT metric plug-in

E. Project Management

This chapter provides an overview to project management related tasks such as project
planning and spent time analysis.

E.1. Project Plan
The project lasts fourteen weeks from September 19. to December 23. 2011. The first
version of the project plan E.1 was created in week one. During the first seven weeks
the initial project plan has experienced a few minor changes E.2.

Figure E.1.: Initial version of the project plan.

Figure E.2.: Final version of the project plan.

Ueli Kunz, Julius Weder 48 December 22, 2011

metriculator - CDT metric plug-in

The task Specification of metrics has been renamed to Specification & Impl.
of metrics. As we started with the implementation of the first metric (3.1) we noticed
that there was no task on the project plan for metric implementation. We did not
create a new one instead we extended the existing specification task since specification
and implementation can not strictly be separated especially because we follow iterative
development cycles.
The second change is related to user interface tasks. They were initially planned to
start in week 43, two weeks before the release of the prototype. In week 41 we gladly
realized that we are on schedule and that it would be reasonable to start with the
implementation of the view one week earlier as planed. As we started with the view
we decided to shift the markers and settings tasks to the end of the prototype phase
because they were relatively easy to implement since the Codan framework provides a
simple API to handle them.

E.2. Time Schedules
This chapter evaluates the time spent during the project. The first section describes
the time spent per project member and week, the next section the time spent on each
reported bug.

E.2.1. Spent Time per Project Member

Figure E.3 shows the time spent per member. The semester thesis module is worth 8
ECTS. This means that the expected work per week of an average student to pass the
module is about 17 hours1. In average each of us worked about 295 hours in total, which
is 57 hours (24%) above the expected 238 hours.

E.2.2. Mean Time to Fix

The mean time to fix Figure E.4 shows how long it took to fix a bug after it was reported.

The second bug has the biggest MTTF. This bug was reported because the Jenkins
server was not accessible from outside the HSR LAN. Since this circumstance was not
critical for us to go on working, we did not prioritize it. All other bugs were fixed within
maximum nine days.

E.3. Personal Impression
From the very beginning of this project we both worked consequent and targeted to
create a highly useful and simple to understand plug-in. In the sub chapters of this
section each team member writes about his personal impressions during this project.
But first of all we would like to thank our advisor, Prof. Peter Sommerlad, for his

18 ECTS * 30 hours per ECTS / 14 weeks

Ueli Kunz, Julius Weder 49 December 22, 2011

metriculator - CDT metric plug-in

Figure E.3.: Time spent per member working on the project.

Figure E.4.: Number of days it took to fix bugs after they were reported. X axis is sorted
ascending by date.

Ueli Kunz, Julius Weder 50 December 22, 2011

metriculator - CDT metric plug-in

valuable time and competent advices. Special thanks goes to Thomas Corbat, who was
always ready to generously assist us at technical problems.

E.3.1. Ueli Kunz

At the start of this project I was very excited what will be the outcome. I was highly
motivated to deliver a well designed and stable plug-in. Although it was a small team,
I was also interested in gathering more project management experiences and applying
the lessons learned from earlier term projects. Getting to known with a new framework
and contributing to it was also a motivating task. Since I have already benefited from
other open source projects I have been willing to give something back.

At the beginning we had some extra effort setting up the project environment soft-
ware. Setting up Jenkins with Git and Redmine was worth the experience but I think
next time it will not bother us that much any more. To set up build automation I had
to learn Maven from scratch. Afterwards I do not regret it. All in all, I feel like we spent
too much time working on tasks not directly related to the goals of this thesis.

I am proud of the overall result. We reached our objectives and the plug-in is good
enough to be used in medium sized projects. It has a solid design and is easily extensible.

I always had fun with Julius Weder, also during the effective extreme programming
sessions late in the evenings. We often discussed and solved problems together, that was
a great experience too.

E.3.2. Julius Weder

This was the biggest project in which I have participated. I learned a lot about working
with the Eclipse Plug-in Development Environment (PDE) as well as Eclipse CDT and
creating a useful plug-in. I could improve my programming skills extremely not only in
Java and C++ but also in applying all the software engineering aspects I have learned
theoretical the last years.

It was also a great experience to manage this project in reference to project management,
continuous integration, unit testing, documentation and deployment. At the beginning
there were a lot things to set up to finally start with core work of this project but I can
now say that it will be very helpful in future. During the project I always felt highly
motivated to improve the plug-in as well as my skills.

Overall, I am proud of the work we have done and it was surely a great experience
which improved my professional skills and helps for future projects. At this point I
would also like to thank Ueli Kunz for that he is a very competent and helpful project
partner. It was during the hole project a good time as well as a intensive but productive
teamwork.

Ueli Kunz, Julius Weder 51 December 22, 2011

metriculator - CDT metric plug-in

List of Figures

0.1. Screenshot of the metriculator hybrid view. v
0.2. Screenshot of the metriculator filter view listing all functions. v
0.3. Generated tag cloud that visualises the LSLOC value of all functions. . . vi

2.1. Hybrid view . 5
2.2. Logical view . 5
2.3. Filter view . 5
2.4. Tag cloud view . 6

4.1. Architectural representation of the components metriculator relies on. . . 12
4.2. Package diagram with packages inside the metriculator plug-in. 13
4.3. Class diagram with classes related to MetriculatorPluginActivator 14
4.4. Class diagram with classes related to TreeBuilder. 15
4.5. Class diagram with classes related to AbstractNode. 16
4.6. Sample tree structure . 17
4.7. Example of CompositeValue, the values written in blue on the left are the

node values and the other values on the right are the aggregated values. . 17
4.8. Sample output of the TreePrinter class. 17
4.9. Relations between the MetriculatorPluginActivator, AbstractMetric and

AbstractMetricChecker classes. 18
4.10. Class diagram with classes related to AbstractMetricChecker 20
4.11. Class diagram with classes related to ScopedASTVisitor 21
4.12. High level sequence diagram of the processing of metriculator 22

B.1. Dependency graph of metriculator generated by Structure101. 37
B.2. Screenshot of the emma code coverage analysis after running all unit tests. 39

C.1. Use the wizard at Help > Install New Software 40
C.2. Use the wizard at Help > Install New Software 40
C.3. metriculator checker preferences . 41
C.4. Customise Problem . 42
C.5. Hybrid view - This is the default view. It shows the projects and its

content as a mix of physical and logical nodes in a tree structure. 43
C.6. Logical view - Shows the logical representation of the source code in a tree

structure. The logical elements like namespaces or classes are decoupled
from the physical location and merged together. 43

C.7. Filter view - Shows a filtered representation of the hybrid view. Possible
filters are files, namespaces, types and functions. 43

Ueli Kunz, Julius Weder 52 December 22, 2011

metriculator - CDT metric plug-in

C.8. Tag cloud - visualisation of the nodes for a specific metric. The higher
the metric value the bigger the font size of the name in the cloud. This
tag cloud was generated for the metric LSLOC. 44

C.9. Problems View . 44
C.10.Problem marker in the source code editor with a message explaining the

problem. 44

D.1. Target file . 45
D.2. Part of the plugin.xml file. The highlighted element is the newly added

checker. 46

E.1. Initial version of the project plan. 48
E.2. Final version of the project plan. 48
E.3. Time spent per member working on the project. 50
E.4. Number of days it took to fix bugs after they were reported. X axis is

sorted ascending by date. 50

Ueli Kunz, Julius Weder 53 December 22, 2011

metriculator - CDT metric plug-in

List of Tables

A.1. Installed Jenkins plug-ins . 31

Ueli Kunz, Julius Weder 54 December 22, 2011

metriculator - CDT metric plug-in

F. Nomenclature

AST Abstract Syntax Tree – An abstract representation of a program or source code,
usually focusing on domain specific information.

VCS Version Control System – A software that helps managing multiple versions of files.

OSGi Specification for Java runtime service and modularisation platform.

PDE The Eclipse Plug-in Development Environment provides utilities to create, main-
tain, test and build Eclipse artefacts.

p2 Stands fro provisioning platform and is the engine used to install plug-ins and manage
dependencies in Eclipse.

Ueli Kunz, Julius Weder 55 December 22, 2011

metriculator - CDT metric plug-in

Bibliography

[CDT11] Eclipse cdt project homepage. http://eclipse.org/cdt/, 2011.

[cla11] Project homepage of the clang project. http://clang.llvm.org/, 2011.

[cod11] Codan is a lightweight code analysis framework for the eclipse cdt platform.
http://wiki.eclipse.org/CDT/designs/StaticAnalysis, 2011.

[cpp11] Iso/iec 14882. PDF, 2011.

[ecl11a] Eclipse bug report: Problems view updating too slow. https://bugs.
eclipse.org/bugs/show_bug.cgi?id=349869, 2011.

[ecl11b] jprofiler product page. profiling tool for the java virtual machine., 2011.

[emm11] Eclemma homepage. java code coverege tool for eclipse. http://www.
eclemma.org/, 2011.

[HF10] Jez Humble and David Farley. Continuous Delivery - Reliable Software Re-
leases Through Build, Test, and Deployment Automation. Addison-Wesley,
München, 1. aufl. edition, 2010.

[his11] A brief history of static analysis. http://www.coverity.com/library/pdf/
Coverity_White_Paper-SAT-Next_Generation_Static_Analysis.pdf,
2011. see p. 2, chapter ’A Brief History of Static Analysis’.

[jen11] Jenkins set up. https://wiki.jenkins-ci.org/display/JENKINS/
Installing+Jenkins+on+Ubuntu, 2011.

[jia11] Java ist auch eine insel - explanation of the equals method, in ger-
man. http://openbook.galileocomputing.de/javainsel/javainsel_03_
007.html#dodtp60b4b83b-b280-4e66-950f-1adf13899e67, 2011.

[jpr11] jprofiler product page. profiling tool for the java virtual machine. http://
www.ej-technologies.com/products/jprofiler/overview.html, 2011.

[llv11] Project homepage of the clang project. http://llvm.org, 2011.

[lsl11] Lsloc counting standard. http://sunset.usc.edu/research/CODECOUNT/,
2011.

[mav11a] Maven download. http://maven.apache.org/download.html, 2011.

Ueli Kunz, Julius Weder 56 December 22, 2011

http://eclipse.org/cdt/
http://clang.llvm.org/
http://wiki.eclipse.org/CDT/designs/StaticAnalysis
https://bugs.eclipse.org/bugs/show_bug.cgi?id=349869
https://bugs.eclipse.org/bugs/show_bug.cgi?id=349869
http://www.eclemma.org/
http://www.eclemma.org/
http://www.coverity.com/library/pdf/Coverity_White_Paper-SAT-Next_Generation_Static_Analysis.pdf
http://www.coverity.com/library/pdf/Coverity_White_Paper-SAT-Next_Generation_Static_Analysis.pdf
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins+on+Ubuntu
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins+on+Ubuntu
http://openbook.galileocomputing.de/javainsel/javainsel_03_007.html#dodtp60b4b83b-b280-4e66-950f-1adf13899e67
http://openbook.galileocomputing.de/javainsel/javainsel_03_007.html#dodtp60b4b83b-b280-4e66-950f-1adf13899e67
http://www.ej-technologies.com/products/jprofiler/overview.html
http://www.ej-technologies.com/products/jprofiler/overview.html
http://llvm.org
http://sunset.usc.edu/research/CODECOUNT/
http://maven.apache.org/download.html

metriculator - CDT metric plug-in

[mav11b] Maven set up on ubuntu. http://lukieb.wordpress.com/2011/02/15/
installing-maven-3-on-ubuntu-10-04-lts-server/, 2011.

[mcc11] Mccabe counting standard. http://www.verifysoft.com/de_cmtpp_
mscoder.pdf, 2011. see p. 40, chapter ’Die zyklomatische Komplexität von
McCabe’.

[met11a] Java metrics plug-in for ecplise. http://metrics.sourceforge.net/, 2011.

[met11b] list of metric tools. http://testingfaqs.org/t-static.html, 2011.

[mys11] Mysql password reset. https://help.ubuntu.com/community/
MysqlPasswordReset#Another_way.2C_purge, 2011.

[PDE11] Official help documentation for the eclipse plug-in development en-
vironment. http://help.eclipse.org/galileo/index.jsp?topic=/org.
eclipse.pde.doc.user/guide/intro/pde_overview.htm, 2011.

[red11] Redmine set up using mod passenger. http://www.redmine.
org/projects/redmine/wiki/HowTo_Install_Redmine_in_Ubuntu#
Ubuntu-1004-and-10041-using-Passenger, 2011.

[sou11] Sourcecloud plug-in for eclipse. https://github.com/misto/Sourcecloud,
2011.

[swt11] Article about subclassing in swt. http://www.eclipse.org/swt/faq.php#
subclassing, 2011.

[upd11] metriculator p2 update site. http://sinv-56013.edu.hsr.ch/updatesite,
2011.

[Vog11] Lars Vogel. Comprehensive tutorials for eclipse developers. http://www.
vogella.de, 2011.

[wik11] wikipedia article about software metrics. http://en.wikipedia.org/wiki/
Software_metric, 2011.

[win11] Git set up on windows. http://help.github.com/win-set-up-git/, 2011.

The versions of the documents, referenced to in this bibliography, that we used are stored
in our VCS.

Ueli Kunz, Julius Weder 57 December 22, 2011

http://lukieb.wordpress.com/2011/02/15/installing-maven-3-on-ubuntu-10-04-lts-server/
http://lukieb.wordpress.com/2011/02/15/installing-maven-3-on-ubuntu-10-04-lts-server/
http://www.verifysoft.com/de_cmtpp_mscoder.pdf
http://www.verifysoft.com/de_cmtpp_mscoder.pdf
http://metrics.sourceforge.net/
http://testingfaqs.org/t-static.html
https://help.ubuntu.com/community/MysqlPasswordReset#Another_way.2C_purge
https://help.ubuntu.com/community/MysqlPasswordReset#Another_way.2C_purge
http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.pde.doc.user/guide/intro/pde_overview.htm
http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.pde.doc.user/guide/intro/pde_overview.htm
http://www.redmine.org/projects/redmine/wiki/HowTo_Install_Redmine_in_Ubuntu#Ubuntu-1004-and-10041-using-Passenger
http://www.redmine.org/projects/redmine/wiki/HowTo_Install_Redmine_in_Ubuntu#Ubuntu-1004-and-10041-using-Passenger
http://www.redmine.org/projects/redmine/wiki/HowTo_Install_Redmine_in_Ubuntu#Ubuntu-1004-and-10041-using-Passenger
https://github.com/misto/Sourcecloud
http://www.eclipse.org/swt/faq.php#subclassing
http://www.eclipse.org/swt/faq.php#subclassing
http://sinv-56013.edu.hsr.ch/updatesite
http://www.vogella.de
http://www.vogella.de
http://en.wikipedia.org/wiki/Software_metric
http://en.wikipedia.org/wiki/Software_metric
http://help.github.com/win-set-up-git/

	Introduction
	Motivation
	Objectives
	Advanced Objectives

	Project Duration

	Requirements
	metriculator view
	Use Cases (Brief Format)
	Starting the Metrics Analysis
	Change Metric Configuration
	Visualise Metric as tag cloud
	Analyse Metric Results

	Metric Specification
	Logical Source Lines of Code (LSLOC)
	Lambda Expressions
	Enum

	McCabe (Cyclomatic Complexity, CC)
	Example

	Number of Parameters per Function
	Exceptions

	Number of Members per Type
	Explanation of Member Types

	Efferent Coupling

	Implementation
	Plug-in Architecture
	Plug-in Activator

	Tree Structure
	TreeBuilder
	AbstractNode
	TreePrinter

	Metric Checkers
	Tasks
	Scope Listeners
	AST Visitors

	Processing

	Conclusion
	Performance Tuning
	Timing Issues
	Memory Issues

	Known Issues
	Performance
	Zest Cloudio Integration
	Installation via Composite Update Site
	Merging of Function Declarations in Anonymous Namespaces

	Future Work

	Environment Set up
	Hardware
	Project Management Software
	Set up & Configuration

	Version Control System, Git
	Development Environment
	Continuous Integration Server
	Set up & Configuration

	Build and Deployment Automation
	Set up & Configuration for Windows
	Set up & Configuration for Ubuntu
	Maven XML Configuration
	Jenkins Maven Integration

	Metriculator Metrics
	Finding Problems using FindBugs
	Static Source Code Analysis
	Warnings
	metriculator Metrics Applied to Itself

	Dependecy Analysis
	Test Coverage
	UI Code
	Model Code

	User Manual
	Installation
	Start code analysis with metriculator
	Configuration of metriculator
	Working with the Views
	View Types

	Problem Reporting and Markers

	Developer Manual
	Set up
	Adding a new Metric
	Writing Checker Tests

	Project Management
	Project Plan
	Time Schedules
	Spent Time per Project Member
	Mean Time to Fix

	Personal Impression
	Ueli Kunz
	Julius Weder

	Nomenclature

