
Poznan Supercomputing

and

Networking Center

Summer Projects

Michał Matłoka

michal.matloka@student.put.poznan.pl

Date: September 23, 2010, Poznań

Contents
1 Introduction 1

2 Automated code review of SMOA Services 1
2.1 Flawfinder . 1
2.2 Rough Auditing Tool for Security - RATS . 2
2.3 Splint . 2

3 Integration with PL-grid accounting infrastructure - bat_updater module 3

4 PBS DRMAA - implementing "triggered" mode 4

5 Improved DRMAA Scalability program 4

6 DRMAA implementation for SLURM 5
6.1 Introduction . 5
6.2 Input Documents . 5
6.3 Mapping of DRMAA interface on SLURM API . 5

6.3.1 DRMAA job attributes mapping to SLURM 5
6.3.2 DRMAA states mapping . 6
6.3.3 drmaa_control operations mapping . 7

6.4 Native specification . 7
6.5 DRMAA library implementation using DRMAA Utils 8
6.6 End User Manual . 8
6.7 DRMAA testsuite . 8

1 Introduction
During my summer work in Poznan Supercomputing Networking Center I have worked on a few
projects where the most important are listed below

1. Automated code review of SMOA Services

2. Integration with PL-grid accounting infrastructure - bat_updater module

3. PBS DRMAA - implementing "triggered" mode

4. DRMAA implementation for SLURM

Total time spent on projects was one month.

2 Automated code review of SMOA Services
Automated code review software checks source code in order to find violations of program standards
and displays them as the list of warnings. My task was to use these tools to check the SMOA Core

library.

2.1 Flawfinder
Output fragment:

Hits = 6

Lines analyzed = 308 in 0.52 seconds (18364 lines/second)

Physical Source Lines of Code (SLOC) = 225

Hits@level = [0] 0 [1] 3 [2] 2 [3] 0 [4] 1 [5] 0

Hits@level+ = [0+] 6 [1+] 6 [2+] 3 [3+] 1 [4+] 1 [5+] 0

Hits/KSLOC@level+ = [0+] 26.6667 [1+] 26.6667 [2+] 13.3333 [3+] 4.44444 [4+] 4.44444 [5+] 0

Minimum risk level = 1

1

Not every hit is necessarily a security vulnerability.

There may be other security vulnerabilities; review your code!

Flawfinder version 1.27, (C) 2001-2004 David A. Wheeler.

Number of dangerous functions in C/C++ ruleset: 160

Examining ipc.c

ipc.c:52: [2] (buffer) char:

Statically-sized arrays can be overflowed. Perform bounds checking,

use functions that limit length, or ensure that the size is larger than

the maximum possible length.

ipc.c:123: [2] (buffer) char:

Statically-sized arrays can be overflowed. Perform bounds checking,

use functions that limit length, or ensure that the size is larger than

the maximum possible length.

ipc.c:128: [2] (buffer) char:

Statically-sized arrays can be overflowed. Perform bounds checking,

use functions that limit length, or ensure that the size is larger than

the maximum possible length.

ipc.c:227: [1] (buffer) read:

Check buffer boundaries if used in a loop.

Program output had 1858 lines. Flawfinder displays mainly tips for programmers what they should
be aware of while using certain functions. Eventually all verified by me warnings were were not
dangerous.

2.2 Rough Auditing Tool for Security - RATS
Output fragment:

Total lines analyzed: 309

Total time 0.000270 seconds

1144444 lines per second

Entries in perl database: 33

Entries in ruby database: 46

Entries in python database: 62

Entries in c database: 334

Entries in php database: 55

Analyzing ipc.c

ipc.c:52: High: fixed size local buffer

ipc.c:123: High: fixed size local buffer

ipc.c:128: High: fixed size local buffer

Extra care should be taken to ensure that character arrays that are allocated

on the stack are used safely. They are prime targets for buffer overflow attacks.

Program output had 593-791 lines depends on check level. Like in Flawfinder user gets list of
tips and in all checked cases they were not dangerous in SMOA Core.

2.3 Splint
Output fragment:

ipc.c: (in function sm_ipc_send_fd)

ipc.c:85:5: Arrow access of non-pointer (struct iovec [1]): iov->iov_base

Types are incompatible. (Use -type to inhibit warning)

ipc.c:86:5: Arrow access of non-pointer (struct iovec [1]): iov->iov_len

ipc.c: (in function sm_ipc_recv_fd)

ipc.c:133:126: Function assert expects arg 1 to be boolean gets int *:

fd_received

ipc.c:157:5: Arrow access of non-pointer (struct iovec [1]): iov->iov_base

ipc.c:158:5: Arrow access of non-pointer (struct iovec [1]): iov->iov_len

ipc.c: (in function sm_simple_read)

2

ipc.c:220:110: Function assert expects arg 1 to be boolean gets void *: buf

ipc.c: (in function sm_simple_write)

ipc.c:256:110: Function assert expects arg 1 to be boolean gets void *: buf

ipc.c:39:19: File static variable rcsid declared but not used

A variable is declared but never used.

Program output had 2909 lines. Splint is a more "strict" software. It does not display tips but
warnings concerning given source code. Program output had 2909 lines. I have verified 10 most
frequently occuring warnings and all of them was not dangerous in SMOA Core. Example:

uuid.c:111:3: Format argument 4 to snprintf (%02x) expects unsigned int gets

int: (int)uuid->time_low[3]

snprintf set to get integer but got size_t.

odbc.c:537:2: Assignment of unsigned short int to int: posix_time->tm_mon = timestamp->month - 1

3 Integration with PL-grid accounting infrastructure - bat_updater
module

bat_updater is a SMOA Computing module which allows publication of resource usage data via DR-
MAA. Transport layer is based on JMS (Java Messaging Service) and uses opensource implementa-
tion of ActiveMQ called Apache ActiveMQ CPP ([http://activemq.apache.org/cms/index.html).
Obtained rusage data are converted to XML format.
Example genarated XML via DRMAA interface:

<?xml version="1.0" encoding="UTF-8"?> <site name="psnc-smoa-plgrid">

<job>

<batch_server>mich-laptop</batch_server>

<job_id>10732.mich-laptop</job_id>

<user>mich</user>

<group>mich</group>

<queue>batch</queue>

<ctime>1285112777</ctime>

<qtime>1285112777</qtime>

<etime>1285112777</etime>

<start>16518</start>

<end>1285112868</end>

<exec_host>

<node>

<nodename>mich-laptop</nodename>

<cpu>0</cpu>

</node>

</exec_host>

<cputime>0</cputime>

<walltime>91</walltime>

<mem>2547712</mem>

<vmem>29581312</vmem>

<estatus>0</estatus>

<infrastructure>smoa</infrastructure>

<grid_job_id>"368e7fb7-666f-467c-ab84-820804a0372d"</grid_job_id>

<userDN>"(anonymous)"</userDN>

</job>

</site>

In this module a C++ ActiveMQ implementation is used because C version is not fully functional. A
C wrapper interface composed of three functions (activemqcpp_connect, activemqcpp_send_message,
activemqcpp_disconnect) was written in order to allow communication with ActiveMQ from bat_updater

module.

3

http://activemq.apache.org/cms/index.html

4 PBS DRMAA - implementing "triggered" mode
Triggered mode allows DRMAA to acquire job state-change events. This mode may be the only
solution for many production clusters (e.g. reef.man.poznan.pl).

wait_thread pbs_home mode keep completed needed comments
0 not set polling yes default configuration
1 not set polling yes more effective than above
1 set triggered no read access to server logs needed

Configuration - polling and triggered modes

At the start of the DRMAA program the current log file’s size is stored. Later, in the "wait thread"
log file parsing starts from the previously remebered position. Log file name is determined by
pbs_home configuration variable (Path to Torque/PBS Pro spool directory that contains server logs
e.g.: /var/spool/pbs). This way only new lines releted to current execution are being parsed. On
day change old file is being parsed once more and then new path to log file is generated.

Every Log file line is composed of 6 fields: FLD_DATE;FLD_EVENT;FLD_OBJ;FLD_TYPE;FLD_ID;FLD_MSG

FLD_EVENT FLD_MSG comments
0008 Job Run at request of On Job run we launch job_ps in

order to get execution host etc
0008 Job Modified at request of

Scheduler@mich-laptop
From FLD_DATE we get modify
time

0008 Job Queued at request of , owner
= , job name = , queue =

0008 Job deleted at request of

0010 Exit_status= resources_used.cput=
resources_used.mem=
resources_used.vmem=
resources_used.walltime=

Job completed, status and resource
usage information parse

Every line gives information about job state.
Collected data in triggered mode is passed to pbsdrmaa_job_update_status routine.
PBS DRMAA in "triggered mode" passed official OGF DRMAA testsuite on Torque and PBS

Pro systems.

5 Improved DRMAA Scalability program
A dedicated test program was written for scalability testing purposes. It simulates SMOA Computing

service under continious workload.
Addition thread killing jobs was added. This program takes 5 arguments: SUB_INT, SLEEP_TIME,
POLL_INTERVAL, WAIT_INTERVAL, KILL_RANGE and starts 4 threads:

• first thread submits sleep job with SLEEP_TIME parameter

• second thread every POOL_INTERVAL checks status of every job

• third thread with WAIT_INTERVAL (timeout) and SESSION_ANY (job) parameters runs drmaa_wait
and updates finished jobs list.

• fourth thread kills a random job every k seconds where ks is chosen randomly from interval
(0,KILL_RANGE)

Jobs are submited until user press ctrl+c. Then first, second and fourth thread stops and program
waits for every submitted job end.

4

6 DRMAA implementation for SLURM
6.1 Introduction
PSNC DRMAA for Simple Linux Utility for Resource Management (SLURM) is an implementation
of Open Grid Forum DRMAA 1.0 (Distributed Resource Management Application API) specification
for submission and control of jobs to Simple Linux Utility for Resource Management (SLURM).
Using DRMAA, grid applications builders, portal developers and ISVs can use the same high-level
API to link their software with different cluster/resource management systems.
This software also enables the integration of SMOA Computing with the underlying LoadLeveler

system for remote multi-user job submission and control over Web Services.

6.2 Input Documents
• DRMAA 1.0 Grid Recommendation ’
http://www.ogf.org/documents/GFD.133.pdf

• DRMAA C Binding v1.0
https://forge.gridforum.org/sf/docman/do/downloadDocument/projects.drmaa-wg/docman.

root.ggf_13/doc5545

• Simple Linux Utility for Resource Management (SLURM) Documentation
https://computing.llnl.gov/linux/slurm/documentation.html

6.3 Mapping of DRMAA interface on SLURM API
6.3.1 DRMAA job attributes mapping to SLURM

SLURM job is described by job_desc_msg_t structure.

5

http://www.ogf.org/documents/GFD.133.pdf
https://forge.gridforum.org/sf/docman/do/downloadDocument/projects.drmaa-wg/docman.root.ggf_13/doc5545
https://forge.gridforum.org/sf/docman/do/downloadDocument/projects.drmaa-wg/docman.root.ggf_13/doc5545
https://computing.llnl.gov/linux/slurm/documentation.html

DRMAA SLURM Comment
drmaa_block_email do not set mail_user

drmaa_deadline_time OPTIONAL ATTRIBUTE NOT IMPLEMENTED

drmaa_duration_hlimit OPTIONAL ATTRIBUTE NOT IMPLEMENTED

drmaa_duration_slimit OPTIONAL ATTRIBUTE NOT IMPLEMENTED

drmaa_error_path char * std_err

drmaa_input_path char * std_in

drmaa_job_category library configuration
.slurm_drmaa.conf, use
native specification function

Syntax like in native specification
attribute "--account My_job -N

1=2"

drmaa_job_name char * name

drmaa_join_files same values of std_err and
std_out

drmaa_js_state uint32_t priority 0 = held
drmaa_native_specification arguments like in

sbatch

Syntax example "--account

My_job -N 1=2"

drmaa_output_path char * std_out

drmaa_remote_command char * script contains generated bash script
drmaa_start_time time_t begin_time

drmaa_transfer_files OPTIONAL ATTRIBUTE NOT IMPLEMENTED, practically
not used because every cluster
has shared file system

drmaa_v_argv Add to bash script
drmaa_v_email char * mail_user

drmaa_v_env char ** environment,

uint32_t env_size

name=value pairs, one per line

drmaa_wct_hlimit uint32_t time_limit

drmaa_wct_slimit NOT IMPLEMENTED
drmaa_wd char * work_dir

6.3.2 DRMAA states mapping

The DRMAA states list was compared with SLURM states that can be retrieved using API.

SLURM DRMAA
JOB_PENDING in next table
JOB_RUNNING DRMAA_PS_RUNNING

JOB_SUSPENDED DRMAA_PS_USER_SUSPENDED

JOB_COMPLETE DRMAA_PS_DONE

JOB_CANCELLED DRMAA_PS_FAILED

JOB_FAILED DRMAA_PS_FAILED

JOB_TIMEOUT DRMAA_PS_FAILED

JOB_NODE_FAIL DRMAA_PS_FAILED

JOB_PENDING is additionaly described by state_reason variable:

6

SLURM DRMAA
WAIT_NO_REASON DRMAA_PS_QUEUED_ACTIVE

WAIT_PRIORITY DRMAA_PS_QUEUED_ACTIVE

WAIT_DEPENDENCY DRMAA_PS_QUEUED_ACTIVE

WAIT_RESOURCES DRMAA_PS_QUEUED_ACTIVE

WAIT_PART_NODE_LIMIT DRMAA_PS_QUEUED_ACTIVE

WAIT_PART_TIME_LIMIT DRMAA_PS_QUEUED_ACTIVE

WAIT_PART_STATE DRMAA_PS_QUEUED_ACTIVE

WAIT_HELD DRMAA_PS_USER_ON_HOLD

WAIT_TIME DRMAA_PS_QUEUED_ACTIVE

WAIT_LICENSES DRMAA_PS_QUEUED_ACTIVE

WAIT_ASSOC_JOB_LIMIT DRMAA_PS_QUEUED_ACTIVE

WAIT_ASSOC_RESOURCE_LIMIT DRMAA_PS_QUEUED_ACTIVE

WAIT_ASSOC_TIME_LIMIT DRMAA_PS_QUEUED_ACTIVE

WAIT_RESERVATION DRMAA_PS_QUEUED_ACTIVE

WAIT_NODE_NOT_AVAIL DRMAA_PS_QUEUED_ACTIVE

WAIT_TBD1 DRMAA_PS_QUEUED_ACTIVE

WAIT_TBD2 DRMAA_PS_QUEUED_ACTIVE

FAIL_DOWN_PARTITION DRMAA_PS_FAILED

FAIL_DOWN_NODE DRMAA_PS_FAILED

FAIL_BAD_CONSTRAINTS DRMAA_PS_FAILED

FAIL_SYSTEM DRMAA_PS_FAILED

FAIL_LAUNCH DRMAA_PS_FAILED

FAIL_EXIT_CODE DRMAA_PS_FAILED

FAIL_TIMEOUT DRMAA_PS_FAILED

FAIL_INACTIVE_LIMIT DRMAA_PS_FAILED

FAIL_BANK_ACCOUNT DRMAA_PS_FAILED

For value greater than 0x4000 we do not update DRMAA state because describes a transient state.

6.3.3 drmaa_control operations mapping

DRMAA LoadLeveler Comments
DRMAA_CONTROL_SUSPEND slurm_suspend Administrators only
DRMAA_CONTROL_RESUME slurm_resume Administrators only
DRMAA_CONTROL_HOLD priority = 0

DRMAA_CONTROL_RELEASE priority != 0 Administrators only, on hold
save job priority and on
release bring old value. When
job is submited in held state
after resume it gets MAX
UINT32_T value

DRMAA_CONTROL_TERMINATE slumr_kill_job(job_id,SIGKILL,0)

6.4 Native specification
DRMAA interface allows to pass DRM dependent job submission options. Those options may be
specified directly by setting drmaa_native_specification job template attribute or indirectly by the
drmaa_job_category job template attribute. In SLURM DRMAA the following set of sbatch arguments
were implemented:

7

Native specification Description
-A, �account=name Charge job to specified accounts

�acctg-freq Define the job accounting sampling interval
�comment An arbitrary comment

-C, �constraint=list Specify a list of constraints
�contiguous If set, then the allocated nodes must form a contiguous set
�exclusive Allocate nodenumber of tasks to invoke on each nodes in

exclusive mode when cpu consumable resource is enabled
�mem=MB Minimum amount of real memory

�mem-per-cpu=MB Maximum mount of real memory per allocated cpu required by a job
�mincpus=n Minimum number of logical processors (threads) per node

-N, �nodes=N Number of nodes on which to run (N = min[-max])
�ntasks-per-node=n Number of tasks to invoke on each node

-p, �partition=partition Partition requested
�qos=qos Quality of Service
�requeue If set, permit the job to be requeued

�reservation=name Allocate resources from named reservation
-s, �share Job allocation can share nodes with other running jobs

-w, �nodelist=hosts Request a specific list of hosts

Additional description of each parameter can be found in ‘man sbatch‘.

6.5 DRMAA library implementation using DRMAA Utils
Library was implemented in C based on the implementation of DRMAA for LoadLeveler ([http://
gforge.man.poznan.pl/svn/smoaincubator/drmaa/ll/), drmaa_utils ([http://gforge.man.poznan.
pl/gf/project/smoaincubator/scmsvn/?action=browse&path=/drmaa/drmaa_utils/) and tools like
GNU Compiler Collection and GNU Project Debugger accordingly to created mappings.

6.6 End User Manual
Documentation can be found in doc folder in the library package.

6.7 DRMAA testsuite
Library covers all DRMAA 1.0 specification with exceptions listed below. It was successfully tested
with Simple Linux Utility for Resource Management (SLURM) 2.1.13 on Linux and passes 44/44
tests of the official DRMAA test-suite and is therefore DRMAA1.0-compliant for test suite version
1.7.2.

Using non-administrator account SLURM DRMAA passes 40/44 tests of the official DRMAA
test-suite.
Known limitations:

• fuction drmaa_control with DRMAA_CONTROL_HOLD, DRMAA_CONTROL_RELEASE, DRMAA_CONTROL_SUSPEND,
DRMAA_CONTROL_RESUME is administrator only

• drmaa_wct_slimit not implemented

• optional attributes drmaa_deadline_time, drmaa_duration_hlimit, drmaa_duration_slimit,
drmaa_transfer_files not implemented

8

http://gforge.man.poznan.pl/svn/smoaincubator/drmaa/ll/
http://gforge.man.poznan.pl/svn/smoaincubator/drmaa/ll/
http://gforge.man.poznan.pl/gf/project/smoaincubator/scmsvn/?action=browse&path=/drmaa/drmaa_utils/
http://gforge.man.poznan.pl/gf/project/smoaincubator/scmsvn/?action=browse&path=/drmaa/drmaa_utils/

	Introduction
	Automated code review of SMOA Services
	Flawfinder
	Rough Auditing Tool for Security - RATS
	Splint

	Integration with PL-grid accounting infrastructure - bat_updater module
	PBS DRMAA - implementing "triggered" mode
	Improved DRMAA Scalability program
	DRMAA implementation for SLURM
	Introduction
	Input Documents
	Mapping of DRMAA interface on SLURM API
	DRMAA job attributes mapping to SLURM
	DRMAA states mapping
	 drmaa_control operations mapping

	Native specification
	DRMAA library implementation using DRMAA Utils
	End User Manual
	DRMAA testsuite

